
Graph Neural
Networks

Foundations,
Frontiers,
and Applications

Lingfei Wu · Peng Cui
Jian Pei · Liang Zhao Eds.

Graph Neural Networks: Foundations,

Frontiers, and Applications

123

Lingfei Wu • Peng Cui • Jian Pei • Liang Zhao
Editors

Graph Neural Networks:
Foundations, Frontiers,
and Applications

Editors

Lingfei Wu

JD Silicon Valley Research Center

Mountain View, CA, USA

Peng Cui

Tsinghua University

Beijing, China

Jian Pei

Simon Fraser University

Burnaby, Canada

Liang Zhao

Emory University

Atlanta, USA

ISBN 978-981-16-6053-5 ISBN 978-981-16-6054-2 (eBook)

https://doi.org/10.1007/978-981-16-6054-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore

Pte Ltd. 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether

the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,

recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or

information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names are exempt from the relevant

protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book

are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or

the editors give a warranty, expressed or implied, with respect to the material contained herein or for any

errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional

claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.

The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

https://doi.org/10.1007/978-981-16-6054-2

Foreword

“The first comprehensive book covering the full spectrum of a young, fast-growing
research field, graph neural networks (GNNs), written by authoritative authors!”

Jiawei Han (Michael Aiken Chair Professor at University of Illinois at Urbana-
Champaign, ACM Fellow and IEEE Fellow)

“This book presents a comprehensive and timely survey on graph representation
learning. Edited and contributed by the best group of experts in this area, this book
is a must-read for students, researchers and pratictioners who want to learn anything
about Graph Neural Networks.”

Heung-Yeung ”Harry” Shum (Former Executive Vice President for Technology
and Research at Microsoft Research, ACM Fellow, IEEE Fellow, FREng)

“As the new frontier of deep learning, Graph Neural Networks offer great potential
to combine probabilistic learning and symbolic reasoning, and bridge knowledge-
driven and data-driven paradigms, nurturing the development of third-generation
AI. This book provides a comprehensive and insightful introduction to GNN, rang-
ing from foundations to frontiers, from algorithms to applications. It is a valuable
resource for any scientist, engineer and student who wants to get into this exciting
field.”

Bo Zhang (Member of Chinese Academy of Science, Professor at Tsinghua Uni-
versity)

“Graph Neural Networks are one of the hottest areas of machine learning and this
book is a wonderful in-depth resource covering a broad range of topics and applica-
tions of graph representation learning.”

Jure Leskovec (Associate Professor at Stanford University, and investigator at
Chan Zuckerberg Biohub).

“Graph Neural Networks are an emerging machine learning model that is already
taking the scientific and industrial world by storm. The time is perfect to get in on the
action – and this book is a great resource for newcomers and seasoned practitioners

v

vi Foreword

alike! Its chapters are very carefully written by many of the thought leaders at the
forefront of the area.”

Petar Veličković (Senior Research Scientist, DeepMind)

Preface

The field of graph neural networks (GNNs) has seen rapid and incredible strides over
the recent years. Graph neural networks, also known as deep learning on graphs,
graph representation learning, or geometric deep learning, have become one of the
fastest-growing research topics in machine learning, especially deep learning. This
wave of research at the intersection of graph theory and deep learning has also influ-
enced other fields of science, including recommendation systems, computer vision,
natural language processing, inductive logic programming, program synthesis, soft-
ware mining, automated planning, cybersecurity, and intelligent transportation.

Although graph neural networks have achieved remarkable attention, it still faces
many challenges when applying them into other domains, from the theoretical un-
derstanding of methods to the scalability and interpretability in a real system, and
from the soundness of the methodology to the empirical performance in an applica-
tion. However, as the field rapidly grows, it has been extremely challenging to gain
a global perspective of the developments of GNNs. Therefore, we feel the urgency
to bridge the above gap and have a comprehensive book on this fast-growing yet
challenging topic, which can benefit a broad audience including advanced under-
graduate and graduate students, postdoctoral researchers, lecturers, and industrial
practitioners.

This book is intended to cover a broad range of topics in graph neural networks,
from the foundations to the frontiers, and from the methodologies to the applica-
tions. Our book is dedicated to introducing the fundamental concepts and algorithms
of GNNs, new research frontiers of GNNs, and broad and emerging applications
with GNNs.

Book Website and Resources

The website and further resources of this book can be found at: https://
graph-neural-networks.github.io/. The website provides online preprints
and lecture slides of all the chapters. It also provides pointers to useful material and
resources that are publicly available and relevant to graph neural networks.

vii

https://graph-neural-networks.github.io/
https://graph-neural-networks.github.io/

viii Preface

To the Instructors

The book can be used for a one-semester graduate course for graduate students.
Though it is mainly written for students with a background in computer science,
students with a basic understanding of probability, statistics, graph theory, linear
algebra, and machine learning techniques such as deep learning will find it easily
accessible. Some chapters can be skipped or assigned as homework assignments for
reviewing purposes if students have knowledge of a chapter. For example, if students
have taken a deep learning course, they can skip Chapter 1. The instructors can also
choose to combine Chapters 1, 2, and 3 together as a background introduction course
at the very beginning.

When the course focuses more on the foundation and theories of graph neural net-
works, the instructor can choose to focus more on Chapters 4-8 while using Chapters
19-27 to showcase the applications, motivations, and limitations. Please refer to the
Editors’ Notes at the end of each chapter on how Chapters 4-8 and Chapters 19-27
are correlated. When the course focuses more on the research frontiers, Chapters
9-18 can be the pivot to organize the course. For example, an instructor can make
it an advanced graduate course where the students are asked to search and present
the most recent research papers in each different research frontier. They can also
be asked to establish their course projects based on the applications described in
Chapters 19-27 as well as the materials provided on our website.

To the Readers

This book was designed to cover a wide range of topics in the field of graph neu-
ral network field, including background, theoretical foundations, methodologies, re-
search frontiers, and applications. Therefore, it can be treated as a comprehensive
handbook for a wide variety of readers such as students, researchers, and profession-
als. You should have some knowledge of the concepts and terminology associated
with statistics, machine learning, and graph theory. Some backgrounds of the basics
have been provided and referenced in the first eight chapters. You should better also
have knowledge of deep learning and some programming experience for easily ac-
cessing the most of chapters of this book. In particular, you should be able to read
pseudocode and understand graph structures.

The book is well modularized and each chapter can be learned in a standalone
manner based on the individual interests and needs. For those readers who want
to have a solid understanding of various techniques and theories of graph neural
networks, you can start from Chapters 4-9. For those who further want to perform
in-depth research and advance related fields, please read those chapters of interest
among Chapters 9-18, which provide comprehensive knowledge in the most recent
research issues, open problems, and research frontiers. For those who want to ap-
ply graph neural networks to benefit specific domains, or aim at finding interesting
applications to validate specific graph neural networks techniques, please refer to
Chapters 19-27.

Acknowledgements

Graph machine learning has attracted many gifted researchers to make their seminal
contributions over the last few years. We are very fortunate to discuss the chal-
lenges and opportunities, and often work with many of them on a rich variety of
research topics in this exciting field. We are deeply indebted to these collaborators
and colleagues from JD.COM, IBM Research, Tsinghua University, Simon Fraser
University, Emory University, and elsewhere, who encouraged us to create such a
book comprehensively covering various topics of Graph Neural Networks in order
to educate the interested beginners and foster the advancement of the field for both
academic researchers and industrial practitioners.

This book would not have been possible without the contributions of many peo-
ple. We would like to give many thanks to the people who offered feedback on
checking the consistency of the math notations of the entire book as well as ref-
erence editing of this book. They are people from Emory University: Ling Chen,
Xiaojie Guo, and Shiyu Wang, as well as people from Tsinghua University: Yue He,
Ziwei Zhang, and Haoxin Liu. We would like to give our special thanks to Dr. Xiao-
jie Guo, who generously offered her help in providing numerous valuable feedback
on many chapters.

We also want to thank those who allowed us to reproduce images, figures, or data
from their publications.

Finally, we would like to thank our families for their love, patience and support
during this very unusual time when we are writing and editing this book.

ix

Editor Biography

Dr. Lingfei Wu is a Principal Scientist at JD.COM
Silicon Valley Research Center, leading a team of
30+ machine learning/natural language processing
scientists and software engineers to build intelligent
e-commerce personalization systems. He earned his
Ph.D. degree in computer science from the College
of William and Mary in 2016. Previously, he was a
research staff member at IBM Thomas J. Watson Re-
search Center and led a 10+ research scientist team
for developing novel Graph Neural Networks meth-
ods and systems, which leads to the #1 AI Chal-
lenge Project in IBM Research and multiple IBM
Awards including three-time Outstanding Technical

Achievement Award. He has published more than 90 top-ranked conference and
journal papers, and is a co-inventor of more than 40 filed US patents. Because of
the high commercial value of his patents, he has received eight invention achieve-
ment awards and has been appointed as IBM Master Inventors, class of 2020. He
was the recipients of the Best Paper Award and Best Student Paper Award of sev-
eral conferences such as IEEE ICC’19, AAAI workshop on DLGMA’20 and KDD
workshop on DLG’19. His research has been featured in numerous media out-
lets, including NatureNews, YahooNews, Venturebeat, TechTalks, SyncedReview,
Leiphone, QbitAI, MIT News, IBM Research News, and SIAM News. He has
co-organized 10+ conferences (KDD, AAAI, IEEE BigData) and is the founding
co-chair for Workshops of Deep Learning on Graphs (with AAAI’21, AAAI’20,
KDD’21, KDD’20, KDD’19, and IEEE BigData’19). He has currently served as
Associate Editor for IEEE Transactions on Neural Networks and Learning Systems,
ACM Transactions on Knowledge Discovery from Data and International Journal
of Intelligent Systems, and regularly served as a SPC/PC member of the following
major AI/ML/NLP conferences including KDD, IJCAI, AAAI, NIPS, ICML, ICLR,
and ACL.

xi

xii Editor Biography

Dr. Peng Cui is an Associate Professor with
tenure at Department of Computer Science in Ts-
inghua University. He obtained his PhD degree from
Tsinghua University in 2010. His research interests
include data mining, machine learning and multime-
dia analysis, with expertise on network representa-
tion learning, causal inference and stable learning,
social dynamics modeling, and user behavior model-
ing, etc. He is keen to promote the convergence and
integration of causal inference and machine learn-
ing, addressing the fundamental issues of today’s
AI technology, including explainability, stability and

fairness issues. He is recognized as a Distinguished Scientist of ACM, Distinguished
Member of CCF and Senior Member of IEEE. He has published more than 100 pa-
pers in prestigious conferences and journals in machine learning and data mining.
He is one of the most cited authors in network embedding. A number of his pro-
posed algorithms on network embedding generate substantial impact in academia
and industry. His recent research won the IEEE Multimedia Best Department Paper
Award, IEEE ICDM 2015 Best Student Paper Award, IEEE ICME 2014 Best Pa-
per Award, ACM MM12 Grand Challenge Multimodal Award, MMM13 Best Paper
Award, and were selected into the Best of KDD special issues in 2014 and 2016,
respectively. He was PC co-chair of CIKM2019 and MMM2020, SPC or area chair
of ICML, KDD, WWW, IJCAI, AAAI, etc., and Associate Editors of IEEE TKDE
(2017-), IEEE TBD (2019-), ACM TIST(2018-), and ACM TOMM (2016-) etc. He
received ACM China Rising Star Award in 2015, and CCF-IEEE CS Young Scien-
tist Award in 2018.

Editor Biography xiii

Dr. Jian Pei is a Professor in the School of
Computing Science at Simon Fraser University. He
is a well-known leading researcher in the general
areas of data science, big data, data mining, and
database systems. His expertise is on developing
effective and efficient data analysis techniques for
novel data intensive applications, and transferring
his research results to products and business practice.
He is recognized as a Fellow of the Royal Society of
Canada (Canada’s national academy), the Canadian
Academy of Engineering, the Association of Com-
puting Machinery (ACM) and the Institute of Elec-

trical and Electronics Engineers (IEEE). He is one of the most cited authors in data
mining, database systems, and information retrieval. Since 2000, he has published
one textbook, two monographs and over 300 research papers in refereed journals
and conferences, which have been cited extensively by others. His research has
generated remarkable impact substantially beyond academia. For example, his al-
gorithms have been adopted by industry in production and popular open-source
software suites. Jian Pei also demonstrated outstanding professional leadership in
many academic organizations and activities. He was the editor-in-chief of the IEEE
Transactions of Knowledge and Data Engineering (TKDE) in 2013-16, the chair of
the Special Interest Group on Knowledge Discovery in Data (SIGKDD) of the As-
sociation for Computing Machinery (ACM) in 2017-2021, and a general co-chair
or program committee co-chair of many premier conferences. He maintains a wide
spectrum of industry relations with both global and local industry partners. He is
an active consultant and coach for industry on enterprise data strategies, healthcare
informatics, network security intelligence, computational finance, and smart retail.
He received many prestigious awards, including the 2017 ACM SIGKDD Innova-
tion Award, the 2015 ACM SIGKDD Service Award, the 2014 IEEE ICDM Re-
search Contributions Award, the British Columbia Innovation Council 2005 Young
Innovator Award, an NSERC 2008 Discovery Accelerator Supplements Award (100
awards cross the whole country), an IBM Faculty Award (2006), a KDD Best Ap-
plication Paper Award (2008), an ICDE Influential Paper Award (2018), a PAKDD
Best Paper Award (2014), a PAKDD Most Influential Paper Award (2009), and an
IEEE Outstanding Paper Award (2007).

xiv Editor Biography

Dr. Liang Zhao is an assistant professor at the
Department of Compute Science at Emory Univer-
sity. Before that, he was an assistant professor in
the Department of Information Science and Tech-
nology and the Department of Computer Science at
George Mason University. He obtained his PhD de-
gree in 2016 from Computer Science Department
at Virginia Tech in the United States. His research
interests include data mining, artificial intelligence,
and machine learning, with special interests in spa-
tiotemporal and network data mining, deep learn-
ing on graphs, nonconvex optimization, model paral-

lelism, event prediction, and interpretable machine learning. He received AWS Ma-
chine Learning Research Award in 2020 from Amazon Company for his research on
distributed graph neural networks. He won NSF Career Award in 2020 awarded by
National Science Foundation for his research on deep learning for spatial networks,
and Jeffress Trust Award in 2019 for his research on deep generative models for bio-
molecules, awarded by Jeffress Memorial Trust Foundation and Bank of America.
He won the Best Paper Award in the 19th IEEE International Conference on Data
Mining (ICDM 2019) for the paper of his lab on deep graph transformation. He has
also won Best Paper Award Shortlist in the 27th Web Conference (WWW 2021) for
deep generative models. He was selected as “Top 20 Rising Star in Data Mining”
by Microsoft Search in 2016 for his research on spatiotemporal data mining. He has
also won Outstanding Doctoral Student in the Department of Computer Science at
Virginia Tech in 2017. He is awarded as CIFellow Mentor 2021 by the Computing
Community Consortium for his research on deep learning for spatial data. He has
published numerous research papers in top-tier conferences and journals such as
KDD, TKDE, ICDM, ICLR, Proceedings of the IEEE, ACM Computing Surveys,
TKDD, IJCAI, AAAI, and WWW. He has been serving as organizers such as pub-
lication chair, poster chair, and session chair for many top-tier conferences such as
SIGSPATIAL, KDD, ICDM, and CIKM.

List of Contributors

Miltiadis Allamanis
Microsoft Research, Cambridge, UK

Yu Chen
Facebook AI, Menlo Park, CA, USA

Yunfei Chu
Alibaba Group, Hangzhou, China

Peng Cui
Tsinghua University, Beijing, China

Tyler Derr
Vanderbilt University, Nashville, TN, USA

Keyu Duan
Texas A&M University, College Station, TX, USA

Qizhang Feng
Texas A&M University, College Station, TX, USA

Stephan Günnemann
Technical University of Munich, München, Germany

Xiaojie Guo
JD.COM Silicon Valley Research Center, Mountain View, CA, USA

Yu Hou
Weill Cornell Medicine, New York City, New York, USA

Xia Hu
Texas A&M University, College Station, TX, USA

Junzhou Huang
University of Texas at Arlington, Arlington, TA, United States

Shouling Ji

xv

xvi List of Contributors

Zhejiang University, Hangzhou, China

Wei Jin
Michigan State University, East Lansing, MI, USA

Anowarul Kabir
George Mason University, Fairfax, VA, USA

Seyed Mehran Kazemi
Borealis AI, Montreal, Canada.

Jure Leskovec
Stanford University, Stanford, CA, USA

Juncheng Li
Zhejiang University, Hangzhou, China

Jiacheng Li
Zhejiang University, Hangzhou, China

Pan Li
Purdue University, Lafayette, IN, USA

Yanhua Li
Worcester Polytechnic Institute, Worcester, MA, USA

Renjie Liao
University of Toronto, Toronto, Canada

Xiang Ling
Zhejiang University, Hangzhou, China

Bang Liu
University of Montreal, Montreal, Canada

Ninghao Liu
Texas A&M University, College Station, TX, USA

Zirui Liu
Texas A&M University, College Station, TX, USA

Hehuan Ma
University of Texas at Arlington, College Station, TX, USA

Collin McMillan
University of Notre Dame, Notre Dame, IN, USA

Christopher Morris
Polytechnique Montréal, Montréal, Canada

Zongshen Mu
Zhejiang University, Hangzhou, China

Menghai Pan

List of Contributors xvii

Worcester Polytechnic Institute, Worcester, MA, USA

Jian Pei
Simon Fraser University, British Columbia, Canada

Yu Rong
Tencent AI Lab, Shenzhen, China

Amarda Shehu
George Mason University, Fairfax, VA, USA

Kai Shen
Zhejiang University, Hangzhou, China

Chuan Shi
Beijing University of Posts and Telecommunications, Beijing, China

Le Song
Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab
Emirates

Chang Su
Weill Cornell Medicine, New York City, New York. USA

Jian Tang
Mila-Quebec AI Institute, HEC Montreal, Canada

Siliang Tang
Zhejiang University, Hangzhou, China

Fei Wang
Weill Cornell Medicine, New York City, New York, USA

Shen Wang
University of Illinois at Chicago, Chicago, IL, USA

Shiyu Wang
Emory University, Atlanta, GA, USA

Xiao Wang
Beijing University of Posts and Telecommunications, Beijing, China

Yu Wang
Vanderbilt University, Nashville, TN, USA

Chunming Wu
Zhejiang University, Hangzhou, China

Lingfei Wu
JD.COM Silicon Valley Research Center, Mountain View, CA, USA

Hongxia Yang
Alibaba Group, Hangzhou, China

Jiangchao Yao

xviii List of Contributors

Alibaba Group, Hangzhou, China

Philip S. Yu
University of Illinois at Chicago, Chicago, IL, USA

Muhan Zhang
Peking University, Beijing, China

Wenqiao Zhang
Zhejiang University, Hangzhou, China

Liang Zhao
Emory University, Atlanta, GA, USA

Chang Zhou
Alibaba Group, Hangzhou, China

Kaixiong Zhou
Texas A&M University, TX, USA

Xun Zhou
University of Iowa, Iowa City, IA, USA

Contents

Terminologies . xxxi
1 Basic concepts of Graphs . xxxi
2 Machine Learning on Graphs . xxxii
3 Graph Neural Networks . xxxii

Notations . xxxv

Part I Introduction

1 Representation Learning . 3
Liang Zhao, Lingfei Wu, Peng Cui and Jian Pei
1.1 Representation Learning: An Introduction . 3
1.2 Representation Learning in Different Areas 5

1.2.1 Representation Learning for Image Processing 5
1.2.2 Representation Learning for Speech Recognition 8
1.2.3 Representation Learning for Natural Language Processing 10
1.2.4 Representation Learning for Networks 13

1.3 Summary . 14

2 Graph Representation Learning . 17
Peng Cui, Lingfei Wu, Jian Pei, Liang Zhao and Xiao Wang
2.1 Graph Representation Learning: An Introduction 17
2.2 Traditional Graph Embedding . 19
2.3 Modern Graph Embedding . 20

2.3.1 Structure-Property Preserving Graph Representation
Learning . 20

2.3.2 Graph Representation Learning with Side Information . . . 23
2.3.3 Advanced Information Preserving Graph

Representation Learning . 24
2.4 Graph Neural Networks . 25
2.5 Summary . 26

xix

xx Contents

3 Graph Neural Networks . 27
Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao and Le Song
3.1 Graph Neural Networks: An Introduction . 28
3.2 Graph Neural Networks: Overview. 29

3.2.1 Graph Neural Networks: Foundations 29
3.2.2 Graph Neural Networks: Frontiers 31
3.2.3 Graph Neural Networks: Applications 33
3.2.4 Graph Neural Networks: Organization 35

3.3 Summary . 36

Part II Foundations of Graph Neural Networks

4 Graph Neural Networks for Node Classification 41
Jian Tang and Renjie Liao
4.1 Background and Problem Definition . 41
4.2 Supervised Graph Neural Networks . 42

4.2.1 General Framework of Graph Neural Networks 43
4.2.2 Graph Convolutional Networks . 44
4.2.3 Graph Attention Networks . 46
4.2.4 Neural Message Passing Networks 48
4.2.5 Continuous Graph Neural Networks 48
4.2.6 Multi-Scale Spectral Graph Convolutional Networks 51

4.3 Unsupervised Graph Neural Networks . 54
4.3.1 Variational Graph Auto-Encoders . 54
4.3.2 Deep Graph Infomax. 57

4.4 Over-smoothing Problem . 59
4.5 Summary . 61

5 The Expressive Power of Graph Neural Networks 63
Pan Li and Jure Leskovec
5.1 Introduction . 63
5.2 Graph Representation Learning and Problem Formulation 67
5.3 The Power of Message Passing Graph Neural Networks 70

5.3.1 Preliminaries: Neural Networks for Sets 70
5.3.2 Message Passing Graph Neural Networks 71
5.3.3 The Expressive Power of MP-GNN 72
5.3.4 MP-GNN with the Power of the 1-WL Test 75

5.4 Graph Neural Networks Architectures that are more Powerful
than 1-WL Test . 77
5.4.1 Limitations of MP-GNN . 77
5.4.2 Injecting Random Attributes . 79
5.4.3 Injecting Deterministic Distance Attributes 86
5.4.4 Higher-order Graph Neural Networks 92

5.5 Summary . 97

Contents xxi

6 Graph Neural Networks: Scalability . 99
Hehuan Ma, Yu Rong, and Junzhou Huang
6.1 Introduction . 100
6.2 Preliminary . 101
6.3 Sampling Paradigms . 101

6.3.1 Node-wise Sampling . 103
6.3.2 Layer-wise Sampling . 106
6.3.3 Graph-wise Sampling . 111

6.4 Applications of Large-scale Graph Neural Networks on
Recommendation Systems . 115
6.4.1 Item-item Recommendation . 116
6.4.2 User-item Recommendation . 116

6.5 Future Directions . 118

7 Interpretability in Graph Neural Networks . 121
Ninghao Liu and Qizhang Feng and Xia Hu
7.1 Background: Interpretability in Deep Models 121

7.1.1 Definition of Interpretability and Interpretation 122
7.1.2 The Value of Interpretation . 123
7.1.3 Traditional Interpretation Methods 124
7.1.4 Opportunities and Challenges . 127

7.2 Explanation Methods for Graph Neural Networks 128
7.2.1 Background . 128
7.2.2 Approximation-Based Explanation 130
7.2.3 Relevance-Propagation Based Explanation 134
7.2.4 Perturbation-Based Approaches . 135
7.2.5 Generative Explanation . 137

7.3 Interpretable Modeling on Graph Neural Networks 138
7.3.1 GNN-Based Attention Models . 138
7.3.2 Disentangled Representation Learning on Graphs 141

7.4 Evaluation of Graph Neural Networks Explanations 143
7.4.1 Benchmark Datasets . 143
7.4.2 Evaluation Metrics . 145

7.5 Future Directions . 146

8 Graph Neural Networks: Adversarial Robustness 149
Stephan Günnemann
8.1 Motivation . 149
8.2 Limitations of Graph Neural Networks: Adversarial Examples . . . 152

8.2.1 Categorization of Adversarial Attacks 152
8.2.2 The Effect of Perturbations and Some Insights 156
8.2.3 Discussion and Future Directions . 159

8.3 Provable Robustness: Certificates for Graph Neural Networks 160
8.3.1 Model-Specific Certificates . 160
8.3.2 Model-Agnostic Certificates . 163
8.3.3 Advanced Certification and Discussion 165

xxii Contents

8.4 Improving Robustness of Graph Neural Networks 165
8.4.1 Improving the Graph . 166
8.4.2 Improving the Training Procedure . 167
8.4.3 Improving the Graph Neural Networks’ Architecture 170
8.4.4 Discussion and Future Directions . 171

8.5 Proper Evaluation in the View of Robustness 172
8.6 Summary . 175

Part III Frontiers of Graph Neural Networks

9 Graph Neural Networks: Graph Classification 179
Christopher Morris
9.1 Introduction . 179
9.2 Graph neural networks for graph classification: Classic works

and modern architectures . 180
9.2.1 Spatial approaches . 181
9.2.2 Spectral approaches . 184

9.3 Pooling layers: Learning graph-level outputs from node-level
outputs . 186
9.3.1 Attention-based pooling layers . 187
9.3.2 Cluster-based pooling layers . 187
9.3.3 Other pooling layers . 188

9.4 Limitations of graph neural networks and higher-order layers for
graph classification . 189
9.4.1 Overcoming limitations . 190

9.5 Applications of graph neural networks for graph classification 191
9.6 Benchmark Datasets . 192
9.7 Summary . 192

10 Graph Neural Networks: Link Prediction . 195
Muhan Zhang
10.1 Introduction . 195
10.2 Traditional Link Prediction Methods . 197

10.2.1 Heuristic Methods . 197
10.2.2 Latent-Feature Methods . 200
10.2.3 Content-Based Methods . 203

10.3 GNN Methods for Link Prediction . 203
10.3.1 Node-Based Methods . 203
10.3.2 Subgraph-Based Methods . 206
10.3.3 Comparing Node-Based Methods and Subgraph-Based

Methods . 209
10.4 Theory for Link Prediction . 211

10.4.1 γ-Decaying Heuristic Theory . 211
10.4.2 Labeling Trick . 217

10.5 Future Directions . 220
10.5.1 Accelerating Subgraph-Based Methods 220

Contents xxiii

10.5.2 Designing More Powerful Labeling Tricks 221
10.5.3 Understanding When to Use One-Hot Features 222

11 Graph Neural Networks: Graph Generation . 225
Renjie Liao
11.1 Introduction . 225
11.2 Classic Graph Generative Models . 226

11.2.1 Erdős–Rényi Model . 226
11.2.2 Stochastic Block Model . 228

11.3 Deep Graph Generative Models . 229
11.3.1 Representing Graphs . 230
11.3.2 Variational Auto-Encoder Methods 230
11.3.3 Deep Autoregressive Methods . 236
11.3.4 Generative Adversarial Methods . 244

11.4 Summary . 250

12 Graph Neural Networks: Graph Transformation 251
Xiaojie Guo, Shiyu Wang, Liang Zhao
12.1 Problem Formulation of Graph Transformation 252
12.2 Node-level Transformation . 253

12.2.1 Definition of Node-level Transformation 253
12.2.2 Interaction Networks . 253
12.2.3 Spatio-Temporal Convolution Recurrent Neural Networks254

12.3 Edge-level Transformation . 256
12.3.1 Definition of Edge-level Transformation 256
12.3.2 Graph Transformation Generative Adversarial Networks . 257
12.3.3 Multi-scale Graph Transformation Networks 259
12.3.4 Graph Transformation Policy Networks 260

12.4 Node-Edge Co-Transformation . 261
12.4.1 Definition of Node-Edge Co-Transformation 261
12.4.2 Editing-based Node-Edge Co-Transformation 266

12.5 Other Graph-based Transformations . 271
12.5.1 Sequence-to-Graph Transformation 271
12.5.2 Graph-to-Sequence Transformation 272
12.5.3 Context-to-Graph Transformation . 273

12.6 Summary . 275

13 Graph Neural Networks: Graph Matching . 277
Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji
13.1 Introduction . 278
13.2 Graph Matching Learning . 279

13.2.1 Problem Definition . 280
13.2.2 Deep Learning based Models . 282
13.2.3 Graph Neural Network based Models 284

13.3 Graph Similarity Learning . 288
13.3.1 Problem Definition . 288

xxiv Contents

13.3.2 Graph-Graph Regression Tasks . 290
13.3.3 Graph-Graph Classification Tasks . 293

13.4 Summary . 295

14 Graph Neural Networks: Graph Structure Learning 297
Yu Chen and Lingfei Wu
14.1 Introduction . 297
14.2 Traditional Graph Structure Learning . 299

14.2.1 Unsupervised Graph Structure Learning 299
14.2.2 Supervised Graph Structure Learning 301

14.3 Graph Structure Learning for Graph Neural Networks 303
14.3.1 Joint Graph Structure and Representation Learning 304
14.3.2 Connections to Other Problems . 317

14.4 Future Directions . 319
14.4.1 Robust Graph Structure Learning . 319
14.4.2 Scalable Graph Structure Learning 320
14.4.3 Graph Structure Learning for Heterogeneous Graphs 320

14.5 Summary . 320

15 Dynamic Graph Neural Networks . 323
Seyed Mehran Kazemi
15.1 Introduction . 323
15.2 Background and Notation . 325

15.2.1 Graph Neural Networks . 325
15.2.2 Sequence Models . 327
15.2.3 Encoder-Decoder Framework and Model Training 330

15.3 Categories of Dynamic Graphs . 331
15.3.1 Discrete vs. Continues . 331
15.3.2 Types of Evolution . 333
15.3.3 Prediction Problems, Interpolation, and Extrapolation . . . 334

15.4 Modeling Dynamic Graphs with Graph Neural Networks 335
15.4.1 Conversion to Static Graphs . 335
15.4.2 Graph Neural Networks for DTDGs 337
15.4.3 Graph Neural Networks for CTDGs 340

15.5 Applications . 343
15.5.1 Skeleton-based Human Activity Recognition 343
15.5.2 Traffic Forecasting . 345
15.5.3 Temporal Knowledge Graph Completion 346

15.6 Summary . 348

16 Heterogeneous Graph Neural Networks . 351
Chuan Shi
16.1 Introduction to HGNNs . 351

16.1.1 Basic Concepts of Heterogeneous Graphs 353
16.1.2 Challenges of HG Embedding . 354
16.1.3 Brief Overview of Current Development 355

Contents xxv

16.2 Shallow Models . 356
16.2.1 Decomposition-based Methods . 357
16.2.2 Random Walk-based Methods . 358

16.3 Deep Models . 360
16.3.1 Message Passing-based Methods (HGNNs) 360
16.3.2 Encoder-decoder-based Methods . 363
16.3.3 Adversarial-based Methods . 364

16.4 Review . 366
16.5 Future Directions . 367

16.5.1 Structures and Properties Preservation 367
16.5.2 Deeper Exploration . 367
16.5.3 Reliability . 368
16.5.4 Applications . 369

17 Graph Neural Networks: AutoML . 371
Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu
17.1 Background . 372

17.1.1 Notations of AutoGNN . 373
17.1.2 Problem Definition of AutoGNN . 375
17.1.3 Challenges in AutoGNN . 375

17.2 Search Space . 376
17.2.1 Architecture Search Space . 377
17.2.2 Training Hyperparameter Search Space 380
17.2.3 Efficient Search Space . 381

17.3 Search Algorithms . 382
17.3.1 Random Search . 382
17.3.2 Evolutionary Search . 382
17.3.3 Reinforcement Learning Based Search 383
17.3.4 Differentiable Search . 385
17.3.5 Efficient Performance Estimation . 386

17.4 Future Directions . 387

18 Graph Neural Networks: Self-supervised Learning 391
Yu Wang, Wei Jin, and Tyler Derr
18.1 Introduction . 392
18.2 Self-supervised Learning . 393
18.3 Applying SSL to Graph Neural Networks: Categorizing Training

Strategies, Loss Functions and Pretext Tasks 395
18.3.1 Training Strategies . 396
18.3.2 Loss Functions . 399
18.3.3 Pretext Tasks . 402

18.4 Node-level SSL Pretext Tasks . 403
18.4.1 Structure-based Pretext Tasks . 403
18.4.2 Feature-based Pretext Tasks . 404
18.4.3 Hybrid Pretext Tasks . 406

18.5 Graph-level SSL Pretext Tasks . 408

xxvi Contents

18.5.1 Structure-based Pretext Tasks . 408
18.5.2 Feature-based Pretext Tasks . 413
18.5.3 Hybrid Pretext Tasks . 414

18.6 Node-graph-level SSL Pretext Tasks . 417
18.7 Discussion . 418
18.8 Summary . 419

Part IV Broad and Emerging Applications with Graph Neural Networks

19 Graph Neural Networks in Modern Recommender Systems 423
Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang
19.1 Graph Neural Networks for Recommender System in Practice 423

19.1.1 Introduction . 423
19.1.2 Classic Approaches to Predict User-Item Preference 428
19.1.3 Item Recommendation in user-item Recommender

Systems: a Bipartite Graph Perspective 429
19.2 Case Study 1: Dynamic Graph Neural Networks Learning 431

19.2.1 Dynamic Sequential Graph . 431
19.2.2 DSGL: Dynamic Sequential Graph Learning 432
19.2.3 Model Prediction . 435
19.2.4 Experiments and Discussions . 436

19.3 Case Study 2: Device-Cloud Collaborative Learning for Graph
Neural Networks . 438
19.3.1 The proposed framework . 438
19.3.2 Experiments and Discussions . 442

19.4 Future Directions . 444

20 Graph Neural Networks in Computer Vision . 447
Siliang Tang, Wenqiao Zhang, Zongshen Mu, Kai Shen, Juncheng Li,
Jiacheng Li and Lingfei Wu
20.1 Introduction . 448
20.2 Representing Vision as Graphs . 448

20.2.1 Visual Node representation . 448
20.2.2 Visual Edge representation . 450

20.3 Case Study 1: Image . 451
20.3.1 Object Detection . 451
20.3.2 Image Classification . 453

20.4 Case Study 2: Video . 454
20.4.1 Video Action Recognition . 454
20.4.2 Temporal Action Localization . 456

20.5 Other Related Work: Cross-media . 457
20.5.1 Visual Caption . 457
20.5.2 Visual Question Answering . 458
20.5.3 Cross-Media Retrieval . 459

20.6 Frontiers for Graph Neural Networks on Computer Vision 460
20.6.1 Advanced Graph Neural Networks for Computer Vision . 460

Contents xxvii

20.6.2 Broader Area of Graph Neural Networks on Computer
Vision . 461

20.7 Summary . 462

21 Graph Neural Networks in Natural Language Processing 463
Bang Liu, Lingfei Wu
21.1 Introduction . 463
21.2 Modeling Text as Graphs . 466

21.2.1 Graph Representations in Natural Language Processing . . 466
21.2.2 Tackling Natural Language Processing Tasks from a

Graph Perspective . 468
21.3 Case Study 1: Graph-based Text Clustering and Matching 470

21.3.1 Graph-based Clustering for Hot Events Discovery and
Organization . 470

21.3.2 Long Document Matching with Graph Decomposition
and Convolution . 473

21.4 Case Study 2: Graph-based Multi-Hop Reading Comprehension . . 475
21.5 Future Directions . 479
21.6 Conclusions . 480

22 Graph Neural Networks in Program Analysis . 483
Miltiadis Allamanis
22.1 Introduction . 483
22.2 Machine Learning in Program Analysis . 484
22.3 A Graph Represention of Programs . 486
22.4 Graph Neural Networks for Program Graphs 489
22.5 Case Study 1: Detecting Variable Misuse Bugs 491
22.6 Case Study 2: Predicting Types in Dynamically Typed Languages . 493
22.7 Future Directions . 495

23 Graph Neural Networks in Software Mining . 499
Collin McMillan
23.1 Introduction . 499
23.2 Modeling Software as a Graph . 500

23.2.1 Macro versus Micro Representations 501
23.2.2 Combining the Macro- and Micro-level 503

23.3 Relevant Software Mining Tasks . 503
23.4 Example Software Mining Task: Source Code Summarization 504

23.4.1 Primer GNN-based Code Summarization 505
23.4.2 Directions for Improvement . 510

23.5 Summary . 512

24 GNN-based Biomedical Knowledge Graph Mining in Drug
Development . 517
Chang Su, Yu Hou, Fei Wang
24.1 Introduction . 517

xxviii Contents

24.2 Existing Biomedical Knowledge Graphs . 518
24.3 Inference on Knowledge Graphs . 523

24.3.1 Conventional KG inference techniques 523
24.3.2 GNN-based KG inference techniques 524

24.4 KG-based hypothesis generation in computational drug
development . 528
24.4.1 A machine learning framework for KG-based drug

repurposing . 529
24.4.2 Application of KG-based drug repurposing in COVID-19 530

24.5 Future directions . 531
24.5.1 KG quality control . 532
24.5.2 Scalable inference . 533
24.5.3 Coupling KGs with other biomedical data 533

25 Graph Neural Networks in Predicting Protein Function and
Interactions . 541
Anowarul Kabir and Amarda Shehu
25.1 From Protein Interactions to Function: An Introduction 541

25.1.1 Enter Stage Left: Protein-Protein Interaction Networks . . 542
25.1.2 Problem Formulation(s), Assumptions, and Noise: A

Historical Perspective . 543
25.1.3 Shallow Machine Learning Models over the Years 543
25.1.4 Enter Stage Right: Graph Neural Networks 544

25.2 Highlighted Case Studies . 547
25.2.1 Case Study 1: Prediction of Protein-Protein and

Protein-Drug Interactions: The Link Prediction Problem . 547
25.2.2 Case Study 2: Prediction of Protein Function and

Functionally-important Residues . 549
25.2.3 Case Study 3: From Representation Learning to

Multirelational Link Prediction in Biological Networks
with Graph Autoencoders . 553

25.3 Future Directions . 555

26 Graph Neural Networks in Anomaly Detection 557
Shen Wang, Philip S. Yu
26.1 Introduction . 557
26.2 Issues . 561

26.2.1 Data-specific issues . 561
26.2.2 Task-specific Issues . 563
26.2.3 Model-specific Issues . 563

26.3 Pipeline . 564
26.3.1 Graph Construction and Transformation 564
26.3.2 Graph Representation Learning . 565
26.3.3 Prediction . 567

26.4 Taxonomy . 568
26.5 Case Studies . 568

Contents xxix

26.5.1 Case Study 1: Graph Embeddings for Malicious
Accounts Detection . 569

26.5.2 Case Study 2: Hierarchical Attention Mechanism based
Cash-out User Detection . 570

26.5.3 Case Study 3: Attentional Heterogeneous Graph Neural
Networks for Malicious Program Detection 572

26.5.4 Case Study 4: Graph Matching Framework to Learn
the Program Representation and Similarity Metric
via Graph Neural Networks for Unknown Malicious
Program Detection . 573

26.5.5 Case Study 5: Anomaly Detection in Dynamic Graph
Using Attention-based Temporal GCN 575

26.5.6 Case Study 6: GCN-based Anti-Spam for Spam Review
Detection . 576

26.6 Future Directions . 577

27 Graph Neural Networks in Urban Intelligence 579
Yanhua Li, Xun Zhou, and Menghai Pan
27.1 Graph Neural Networks for Urban Intelligence 580

27.1.1 Introduction . 580
27.1.2 Application scenarios in urban intelligence 581
27.1.3 Representing urban systems as graphs 584
27.1.4 Case Study 1: Graph Neural Networksin urban

configuration and transportation . 586
27.1.5 Case Study 2: Graph Neural Networks in urban

anomaly and event detection . 589
27.1.6 Case Study 3: Graph Neural Networks in urban human

behavior inference . 590
27.1.7 Future Directions . 592

References . 595

Terminologies

This chapter describes a list of definitions of terminologies related to graph neural
networks used throughout this book.

1 Basic concepts of Graphs

• Graph: A graph is composed of a node set and an edge set, where nodes rep-
resent entities and edges represent the relationship between entities. The nodes
and edges form the topology structure of the graph. Besides the graph structure,
nodes, edges, and/or the whole graph can be associated with rich information
represented as node/edge/graph features (also known as attributes or contents).

• Subgraph: A subgraph is a graph whose set of nodes and set of edges are all
subsets of the original graph.

• Centrality: A centrality is a measurement of the importance of nodes in the
graph. The basic assumption of centrality is that a node is thought to be im-
portant if many other important nodes also connect to it. Common centrality
measurements include the degree centrality, the eigenvector centrality, the be-
tweenness centrality, and the closeness centrality.

• Neighborhood: The neighborhood of a node generally refers to other nodes that
are close to it. For example, the k-order neighborhood of a node, also called the
k-step neighborhood, denotes a set of other nodes in which the shortest path
distance between these nodes and the central node is no larger than k.

• Community Structure: A community refers to a group of nodes that are
densely connected internally and less densely connected externally.

• Graph Sampling: Graph sampling is a technique to pick a subset of nodes and/
or edges from the original graph. Graph sampling can be applied to train ma-
chine learning models on large-scale graphs while preventing severe scalability
issues.

xxxi

xxxii Terminologies

• Heterogeneous Graphs: Graphs are called heterogeneous if the nodes and/or
edges of the graph are from different types. A typical example of heteronomous
graphs is knowledge graphs where the edges are composed of different types.

• Hypergraphs: Hypergraphs are generalizations of graphs in which an edge can
join any number of nodes.

• Random Graph: Random graph generally aims to model the probability dis-
tributions over graphs that the observed graphs are generated from. The most
basic and well-studied random graph model, known as the Erdos–Renyi model,
assumes that the node set is fixed and each edge is identically and independently
generated.

• Dynamic Graph: Dynamic graph refers to when at least one component of the
graph data changes over time, e.g., adding or deleting nodes, adding or deleting
edges, changing edges weights or changing node attributes, etc. If graphs are
not dynamic, we refer to them as static graphs.

2 Machine Learning on Graphs

• Spectral Graph Theory: Spectral graph theory analyzes matrices associated
with the graph such as its adjacency matrix or Laplacian matrix using tools of
linear algebra such as studying the eigenvalues and eigenvectors of the matrix.

• Graph Signal Processing: Graph Signal Processing (GSP) aims to develop
tools for processing signals defined on graphs. A graph signal refers to a finite
collection of data samples with one sample at each node in the graph.

• Node-level Tasks: Node-level tasks refer to machine learning tasks associated
with individual nodes in the graph. Typical examples of node-level tasks include
node classification and node regression.

• Edge-level Tasks: Edge-level tasks refer to machine learning tasks associated
with a pair of nodes in the graph. A typical example of an edge-level task in
link prediction.

• Graph-level Tasks: Graph-level tasks refer to machine learning tasks associ-
ated with the whole graph. Typical examples of graph-level tasks include graph
classification and graph property prediction.

• Transductive and Inductive Learning: Transductive learning refers to that
the targeted instances such as nodes or edges are observed at the training time
(though the labels of the targeted instances remain unknown) and inductive
learning aims to learn the model which is generalizable to unobserved instances.

3 Graph Neural Networks

• Network embedding: The goal of network embedding is to represent each node
in the graph as a low-dimensional vector so that useful information such as the

Terminologies xxxiii

graph structures and some properties of the graph is preserved in the embedding
vectors. Network embedding is also referred to as graph embedding and node
representation learning.

• Graph Neural Network: Graph neural network refers to any neural network
working on the graph data.

• Graph Convolutional Network: Graph convolutional network usually refers to
a specific graph neural network proposed by Kipf and Welling Kipf and Welling
(2017a). It is occasionally used as a synonym for graph neural network, i.e.,
referring to any neural network working on the graph data, in some literature.

• Message-Passing: Message-passing is a framework of graph neural networks in
which the key step is to pass messages between different nodes based on graph
structures in each neural network layer. The most widely adopted formulation,
usually denoted as message-passing neural networks, is to only pass messages
between nodes that are directly connected Gilmer et al (2017). The message
passing functions are also called graph filters and graph convolutions in some
literature.

• Readout: Readout refers to functions that summarize the information of indi-
vidual nodes to form more high-level information such as forming a subgraph/super-
graph or obtaining the representations of the entire graph. Readout is also called
pooling and graph coarsening in some literature.

• Graph Adversarial Attack: Graph adversarial attacks aim to generate worst-
case perturbations by manipulating the graph structure and/or node features so
that the performance of some models are downgraded. Graph adversarial attacks
can be categorized based on the attacker’s goals, capabilities, and accessible
knowledge.

• Robustness certificates: Methods providing formal guarantees that the predic-
tion of a GNN is not affected even when perturbations are performed based on
a certain perturbation model.

Notations

This Chapter provides a concise reference that describes the notations used through-
out this book.

Numbers, Arrays, and Matrices

A scalar x
A vector x
A matrix X
An identity matrix I
The set of real numbers R
The set of complex numbers C
The set of integers Z
The set of real n-length vectors Rn

The set of real m×n matrices Rm×n

The real interval including a and b [a,b]
The real interval including a but excluding b [a,b)
The element of the vector x with index i xi
The element of matrix X’s indexed by Row i and Column j Xi, j

Graph Basics

A graph G
Edge set E
Vertex set V
Adjacent matrix of a graph A
Laplacian matrix L
Diagonal degree matrix D
Isomorphism between graphs G and H G ∼= H
H is a subgraph of graph G H ⊆ G
H is a proper subgraph of graph G H ⊂ G
Union of graphs H and G G ∪H

xxxv

xxxvi Notations

Intersection of graphs H and G G ∩H
Disjoint Union of graphs H and G G +H
Cartesian Product of graphs of graphs H and G G ×H
The join of graphs H and G G ∨H

Basic Operations

Transpose of matrix X X⊤

Dot product of matrices X and Y X ·Y or XY
Element-wise (Hadamard) product of matrices X and Y X⊙Y
Determinant of X det(X)
p-norm (also called ℓp norm) of x ∥x∥p
Union ∪
Intersection ∩
Subset ⊆
Proper subset ⊂
Inner prodct of vector x and y < x,y >

Functions

The function f with domain A and range B f : A→ B
Derivative of y with respect to x dy

dx
Partial derivative of y with respect to x ∂y

∂x
Gradient of y with respect to x ∇xy
Matrix derivatives of y with respect to matrix X ∇X y
The Hessian matrix of function f at input vector x ∇2 f (x)
Definite integral over the entire domain of x

∫
f (x)dx

Definite integral with respect to x over the set S
∫
S f (x)dx

A function of x parametrized by θ f (x;θ)
Convolution between functions f and g f ∗g

Probablistic Theory

A probability distribution of a p(a)
A conditional probabilistic distribution of b given a p(b|a)
The random variables a and b are independent a⊥b
Variables a and b are conditionally independent given c a⊥b | c
Random variable a has a distribution p a∼ p
The expectation of f (a) with respect to the variable a under distri-
bution p

Ea∼p[f (a)]

Gaussian distribution over x with mean µ and covariance Σ N (x;µ,Σ)

Part I
Introduction

Chapter 1
Representation Learning

Liang Zhao, Lingfei Wu, Peng Cui and Jian Pei

Abstract In this chapter, we first describe what representation learning is and why
we need representation learning. Among the various ways of learning representa-
tions, this chapter focuses on deep learning methods: those that are formed by the
composition of multiple non-linear transformations, with the goal of resulting in
more abstract and ultimately more useful representations. We summarize the repre-
sentation learning techniques in different domains, focusing on the unique chal-
lenges and models for different data types including images, natural languages,
speech signals and networks. Last, we summarize this chapter.

1.1 Representation Learning: An Introduction

The effectiveness of machine learning techniques heavily relies on not only the de-
sign of the algorithms themselves, but also a good representation (feature set) of
data. Ineffective data representations that lack some important information or con-
tains incorrect or huge redundant information could lead to poor performance of
the algorithm in dealing with different tasks. The goal of representation learning is
to extract sufficient but minimal information from data. Traditionally, this can be
achieved via human efforts based on the prior knowledge and domain expertise on
the data and tasks, which is also named as feature engineering. In deploying ma-

Liang Zhao
Department of Computer Science, Emory University, e-mail: liang.zhao@emory.edu

Lingfei Wu
JD.COM Silicon Valley Research Center, e-mail: lwu@email.wm.edu

Peng Cui
Department of Computer Science, Tsinghua University, e-mail: cuip@tsinghua.edu.cn

Jian Pei
Department of Computer Science, Simon Fraser University, e-mail: jpei@cs.sfu.ca

3© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_1

mailto:liang.zhao@emory.edu
mailto:lwu@email.wm.edu
mailto:cuip@tsinghua.edu.cn
mailto:jpei@cs.sfu.ca
https://doi.org/10.1007/978-981-16-6054-2_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_1&domain=pdf

4 Liang Zhao, Lingfei Wu, Peng Cui and Jian Pei

chine learning and many other artificial intelligence algorithms, historically a large
portion of the human efforts goes into the design of prepossessing pipelines and data
transformations. More specifically, feature engineering is a way to take advantage
of human ingenuity and prior knowledge in the hope to extract and organize the dis-
criminative information from the data for machine learning tasks. For example, po-
litical scientists may be asked to define a keyword list as the features of social-media
text classifiers for detecting those texts on societal events. For speech transcription
recognition, one may choose to extract features from raw sound waves by the op-
erations including Fourier transformations. Although feature engineering is widely
adopted over the years, its drawbacks are also salient, including: 1) Intensive labors
from domain experts are usually needed. This is because feature engineering may
require tight and extensive collaboration between model developers and domain ex-
perts. 2) Incomplete and biased feature extraction. Specifically, the capacity and
discriminative power of the extracted features are limited by the knowledge of dif-
ferent domain experts. Moreover, in many domains that human beings have limited
knowledge, what features to extract itself is an open questions to domain experts,
such as cancer early prediction. In order to avoid these drawbacks, making learn-
ing algorithms less dependent on feature engineering has been a highly desired goal
in machine learning and artificial intelligence domains, so that novel applications
could be constructed faster and hopefully addressed more effectively.

The techniques of representation learning witness the development from the tra-
ditional representation learning techniques to more advanced ones. The traditional
methods belong to “shallow” models and aim to learn transformations of data that
make it easier to extract useful information when building classifiers or other pre-
dictors, such as Principal Component Analysis (PCA) (Wold et al, 1987), Gaussian
Markov random field (GMRF) (Rue and Held, 2005), and Locality Preserving Pro-
jections (LPP) (He and Niyogi, 2004). Deep learning-based representation learning
is formed by the composition of multiple non-linear transformations, with the goal
of yielding more abstract and ultimately more useful representations. In the light of
introducing more recent advancements and sticking to the major topic of this book,
here we majorly focus on deep learning-based representation learning, which can
be categorized into several types: (1) Supervised learning, where a large number of
labeled data are needed for the training of the deep learning models. Given the well-
trained networks, the output before the last fully-connected layers is always utilized
as the final representation of the input data; (2) Unsupervised learning (including
self-supervised learning), which facilitates the analysis of input data without corre-
sponding labels and aims to learn the underlying inherent structure or distribution
of data. The pre-tasks are utilized to explore the supervision information from large
amounts of unlabelled data. Based on this constructed supervision information, the
deep neural networks are trained to extract the meaningful representations for the
future downstream tasks; (3) Transfer learning, which involves methods that utilize
any knowledge resource (i.e., data, model, labels, etc.) to increase model learning
and generalization for the target task. Transfer learning encompasses different sce-
narios including multi-task learning (MTL), model adaptation, knowledge transfer,
co-variance shift, etc. There are also other important representation learning meth-

1 Representation Learning 5

ods such as reinforcement learning, few-shot learning, and disentangled representa-
tion learning.

It is important to define what is a good representation. As the definition by Ben-
gio (2008), representation learning is about learning the (underlying) features of
the data that make it easier to extract useful information when building classifiers or
other predictors. Thus, the evaluation of a learned representation is closely related to
its performance on the downstream tasks. For example, in the data generation task
based on a generative model, a good representation is often the one that captures
the posterior distribution of the underlying explanatory factors for the observed in-
put. While for a prediction task, a good representation is the one that captures the
minimal but sufficient information of input data to correctly predict the target label.
Besides the evaluation from the perspective of the downstream tasks, there are also
some general properties that the good representations may hold, such as the smooth-
ness, the linearity, capturing multiple explanatory and casual factors, holding shared
factors across different tasks and simple factor dependencies.

1.2 Representation Learning in Different Areas

In this section, we summarize the development of representation learning on four
different representative areas: (1) image processing; (2) speech recognition; (3) Nat-
ural language processing; and (4) network analysis. For the representation learning
in each research area, we consider some of the fundamental questions that have been
driving research in this area. Specifically, what makes one representation better than
another, and how should we compute its representation? Why is the representation
learning important in that area? Also, what are appropriate objectives for learning
good representations? We also introduce the relevant typical methods and their de-
velopment from the perspective of three main categories: supervised representation
learning, unsupervised learning and transfer learning, respectively.

1.2.1 Representation Learning for Image Processing

Image representation learning is a fundamental problem in understanding the se-
mantics of various visual data, such as photographs, medical images, document
scans, and video streams. Normally, the goal of image representation learning for
image processing is to bridge the semantic gap between the pixel data and semantics
of the images. The successful achievements of image representation learning have
enpowered many real-world problems, including but not limited to image search,
facial recognition, medical image analysis, photo manipulation and target detection.

In recent years, we have witnessed a fast advancement of image representation
learning from handcrafted feature engineering to that from scratch through deep
neural network models. Traditionally, the patterns of images are extracted with the

6 Liang Zhao, Lingfei Wu, Peng Cui and Jian Pei

help of hand-crafted features by human beings based on prior knowledge. For exam-
ple, Huang et al (2000) extracted the character’s structure features from the strokes,
then use them to recognize the handwritten characters. Rui (2005) adopted the mor-
phology method to improve local feature of the characters, then use PCA to ex-
tract features of characters. However, all of these methods need to extract features
from images manually and thus the prediction performances strongly rely on the
prior knowledge. In the field of computer vision, manual feature extraction is very
cumbersome and impractical because of the high dimensionality of feature vec-
tors. Thus, representation learning of images which can automatically extract mean-
ingful, hidden and complex patterns from high-dimension visual data is necessary.
Deep learning-based representation learning for images is learned in an end-to-end
fashion, which can perform much better than hand-crafted features in the target ap-
plications, as long as the training data is of sufficient quality and quantity.

Supervised Representation Learning for image processing. In the domain of im-
age processing, supervised learning algorithm, such as Convolution Neural Network
(CNN) and Deep Belief Network (DBN), are commonly applied in solving various
tasks. One of the earliest deep-supervised-learning-based works was proposed in
2006 (Hinton et al, 2006), which is focused on the MNIST digit image classifica-
tion problem, outperforming the state-of-the-art SVMs. Following this, deep convo-
lutional neural networks (ConvNets) showed amazing performance which is greatly
depends on their properties of shift in-variance, weights sharing and local pattern
capturing. Different types of network architectures were developed to increase the
capacity of network models, and larger and larger datasets were collected these days.
Various networks including AlexNet (Krizhevsky et al, 2012), VGG (Simonyan and
Zisserman, 2014b), GoogLeNet (Szegedy et al, 2015), ResNet (He et al, 2016a),
and DenseNet (Huang et al, 2017a) and large scale datasets, such as ImageNet and
OpenImage, have been proposed to train very deep convolutional neural networks.
With the sophisticated architectures and large-scale datasets, the performance of
convolutional neural networks keeps outperforming the state-of-the-arts in various
computer vision tasks.

Unsupervised Representation Learning for image processing. Collection and an-
notation of large-scale datasets are time-consuming and expensive in both image
datasets and video datasets. For example, ImageNet contains about 1.3 million la-
beled images covering 1,000 classes while each image is labeled by human workers
with one class label. To alleviate the extensive human annotation labors, many unsu-
pervised methods were proposed to learn visual features from large-scale unlabeled
images or videos without using any human annotations. A popular solution is to
propose various pretext tasks for models to solve, while the models can be trained
by learning objective functions of the pretext tasks and the features are learned
through this process. Various pretext tasks have been proposed for unsupervised
learning, including colorizing gray-scale images (Zhang et al, 2016d) and image in-
painting (Pathak et al, 2016). During the unsupervised training phase, a predefined
pretext task is designed for the models to solve, and the pseudo labels for the pretext
task are automatically generated based on some attributes of data. Then the models
are trained according to the objective functions of the pretext tasks. When trained

1 Representation Learning 7

with pretext tasks, the shallower blocks of the deep neural network models focus on
the low-level general features such as corners, edges, and textures, while the deeper
blocks focus on the high-level task-specific features such as objects, scenes, and
object parts. Therefore, the models trained with pretext tasks can learn kernels to
capture low-level features and high-level features that are helpful for other down-
stream tasks. After the unsupervised training is finished, the learned visual features
in this pre-trained models can be further transferred to downstream tasks (especially
when only relatively small data is available) to improve performance and overcome
over-fitting.

Transfer Learning for image processing. In real-world applications, due to the
high cost of manual labeling, sufficient training data that belongs to the same fea-
ture space or distribution as the testing data may not always be accessible. Transfer
learning mimics the human vision system by making use of sufficient amounts of
prior knowledge in other related domains (i.e., source domains) when executing
new tasks in the given domain (i.e., target domain). In transfer learning, both the
training set and the test set can contribute to the target and source domains. In most
cases, there is only one target domain for a transfer learning task, while either single
or multiple source domains can exist. The techniques of transfer learning in im-
ages processing can be categorized into feature representation knowledge transfer
and classifier-based knowledge transfer. Specifically, feature representation trans-
fer methods map the target domain to the source domains by exploiting a set of
extracted features, where the data divergence between the target domain and the
source domains can be significantly reduced so that the performance of the task
in the target domain is improved. For example, classifier-based knowledge-transfer
methods usually share the common trait that the learned source domain models are
utilized as prior knowledge, which are used to learn the target model together with
the training samples. Instead of minimizing the cross-domain dissimilarity by up-
dating instances’ representations, classifier-based knowledge-transfer methods aim
to learn a new model that minimizes the generalization error in the target domain
via the provided training set from both domains and the learned model.

Other Representation Learning for Image Processing. Other types of representa-
tion learning are also commonly observed for dealing with image processing, such
as reinforcement learning, and semi-supervised learning. For example, reinforce-
ment learning are commonly explored in the task of image captioning Liu et al
(2018a); Ren et al (2017) and image editing Kosugi and Yamasaki (2020), where
the learning process is formalized as a sequence of actions based on a policy net-
work.

8 Liang Zhao, Lingfei Wu, Peng Cui and Jian Pei

1.2.2 Representation Learning for Speech Recognition

Nowadays, speech interfaces or systems have become widely developed and inte-
grated into various real-life applications and devices. Services like Siri 1, Cortana 2,
and Google Voice Search 3 have become a part of our daily life and are used by mil-
lions of users. The exploration in speech recognition and analysis has always been
motivated by a desire to enable machines to participate in verbal human-machine
interactions. The research goals of enabling machines to understand human speech,
identify speakers, and detect human emotion have attracted researchers’ attention
for more than sixty years across several distinct research areas, including but not
limited to Automatic Speech Recognition (ASR), Speaker Recognition (SR), and
Speaker Emotion Recognition (SER).

Analyzing and processing speech has been a key application of machine learning
(ML) algorithms. Research on speech recognition has traditionally considered the
task of designing hand-crafted acoustic features as a separate distinct problem from
the task of designing efficient models to accomplish prediction and classification
decisions. There are two main drawbacks of this approach: First, the feature engi-
neering is cumbersome and requires human knowledge as introduced above; and
second, the designed features might not be the best for the specific speech recog-
nition tasks at hand. This has motivated the adoption of recent trends in the speech
community towards the utilization of representation learning techniques, which can
learn an intermediate representation of the input signal automatically that better fits
into the task at hand and hence lead to improved performance. Among all these suc-
cesses, deep learning-based speech representations play an important role. One of
the major reasons for the utilization of representation learning techniques in speech
technology is that speech data is fundamentally different from two-dimensional im-
age data. Images can be analyzed as a whole or in patches, but speech has to be
formatted sequentially to capture temporal dependency and patterns.

Supervised representation learning for speech recognition. In the domain of
speech recognition and analyzing, supervised representation learning methods are
widely employed, where feature representations are learned on datasets by leverag-
ing label information. For example, restricted Boltzmann machines (RBMs) (Jaitly
and Hinton, 2011; Dahl et al, 2010) and deep belief networks (DBNs) (Cairong
et al, 2016; Ali et al, 2018) are commonly utilized in learning features from speech
for different tasks, including ASR, speaker recognition, and SER. For example,
in 2012, Microsoft has released a new version of their MAVIS (Microsoft Audio
Video Indexing Service) speech system based on context-dependent deep neural net-
works (Seide et al, 2011). These authors managed to reduce the word error rate on
four major benchmarks by about 30% (e.g., from 27.4% to 18.5% on RT03S) com-

1 Siri is an artificial intelligence assistant software that is built into Apple’s iOS system.
2 Microsoft Cortana is an intelligent personal assistant developed by Microsoft, known as ”the
world’s first cross-platform intelligent personal assistant”.
3 Google Voice Search is a product of Google that allows you to use Google to search by speaking
to a mobile phone or computer, that is, to use the legendary content on the device to be identified
by the server, and then search for information based on the results of the recognition

1 Representation Learning 9

pared to the traditional models based on Gaussian mixtures. Convolutional neural
networks are another popular supervised models that are widely utilized for feature
learning from speech signals in tasks such as speech and speaker recognition (Palaz
et al, 2015a,b) and SER Latif et al (2019); Tzirakis et al (2018). Moreover, it has
been found that LSTMs (or GRUs) can help CNNs in learning more useful features
from speech by learning both the local and long-term dependency (Dahl et al, 2010).

Unsupervised Representation Learning for speech recognition. Unsupervised
representation learning from large unlabelled datasets is an active area of speech
recognition. In the context of speech analysis, it is able to exploit the practically
available unlimited amount of unlabelled corpora to learn good intermediate feature
representations, which can then be used to improve the performance of a variety of
downstream supervised learning speech recognition tasks or the speech signal syn-
thetic tasks. In the tasks of ASR and SR, most of the works are based on Variational
Auto-encoder (VAEs), where a generative model and an inference model are jointly
learned, which allows them to capture latent representations from observed speech
data (Chorowski et al, 2019; Hsu et al, 2019, 2017). For example, Hsu et al (2017)
proposed a hierarchical VAE to capture interpretable and disentangled representa-
tions from speech without any supervision. Other auto-encoding architectures like
Denoised Autoencoder(DAEs) are also found very promising in finding speech rep-
resentations in an unsupervised way, especially for noisy speech recognition (Feng
et al, 2014; Zhao et al, 2015). Beyond the aforementioned, recently, adversarial
learning (AL) is emerging as a powerful tool in learning unsupervised represen-
tation for speech, such as generative adversarial nets (GANs). It involves at least
a generator and a discriminator, where the former tries to generates as realistic as
possible data to obfuscate the latter which also tries its best to deobfuscate. Hence
both of the generator and discriminator can be trained and improved iteratively in
an adversarial way, which result in more discriminative and robust features. Among
these, GANs (Chang and Scherer, 2017; Donahue et al, 2018), adversarial autoen-
coders (AAEs) Sahu et al (2017) are becoming mostly popular in modeling speech
not only in ASR but also SR and SER.

Transfer Learning for speech recognition. Transfer learning (TL) encompasses
different approaches, including MTL, model adaptation, knowledge transfer, covari-
ance shift, etc. In the domain of speech recognition, representation learning gained
much interest in these approaches of TL including but not limited to domain adap-
tation, multi-task learning, and self-taught learning. In terms of Domain Adaption,
speech is a typical example of heterogeneous data and thus, a mismatch always ex-
ists between the probability distributions of source and target domain data. To build
more robust systems for speech-related applications in real-life, domain adaptation
techniques are usually applied in the training pipeline of deep neural networks to
learn representations which are able to explicitly minimize the difference between
the distribution of data in the source and target domains (Sun et al, 2017; Swietojan-
ski et al, 2016). In terms of MTL, representations learned can successfully increases
the performance of speech recognition without requiring contextual speech data,
since speech contains multi-dimensional information (message, speaker, gender, or
emotion) that can be used as auxiliary tasks. For example, In the task of ASR, by us-

10 Liang Zhao, Lingfei Wu, Peng Cui and Jian Pei

ing MTL with different auxiliary tasks including gender, speaker adaptation, speech
enhancement, it has been shown that the learned shared representations for differ-
ent tasks can act as complementary information about the acoustic environment and
give a lower word error rate (WER) (Parthasarathy and Busso, 2017; Xia and Liu,
2015).

Other Representation Learning for speech recognition. Other than the above-
mentioned three categories of representation learning for speech signals, there are
also some other representation learning techniques commonly explored, such as
semi-supervised learning and reinforcement learning. For example, in the speech
recognition for ASR, semi-supervised learning is mainly used to circumvent the lack
of sufficient training data. This can be achieved either by creating features fronts
ends (Thomas et al, 2013), or by using multilingual acoustic representations (Cui
et al, 2015), or by extracting an intermediate representation from large unpaired
datasets (Karita et al, 2018). RL is also gaining interest in the area of speech recog-
nition, and there have been multiple approaches to model different speech problems,
including dialog modeling and optimization (Levin et al, 2000), speech recogni-
tion (Shen et al, 2019), and emotion recognition (Sangeetha and Jayasankar, 2019).

1.2.3 Representation Learning for Natural Language Processing

Besides speech recognition, there are many other Natural Language Processing
(NLP) applications of representation learning, such as the text representation learn-
ing. For example, Google’s image search exploits huge quantities of data to map im-
ages and queries in the same space (Weston et al, 2010) based on NLP techniques.
In general, there are two types of applications of representation learning in NLP.
In one type, the semantic representation, such as the word embedding, is trained
in a pre-training task (or directly designed by human experts) and is transferred to
the model for the target task. It is trained by using language modeling objective
and is taken as inputs for other down-stream NLP models. In the other type, the
semantic representation lies within the hidden states of the deep learning model and
directly aims for better performance of the target tasks in an end-to-end fashion. For
example, many NLP tasks want to semantically compose sentence or document rep-
resentation, such as tasks like sentiment classification, natural language inference,
and relation extraction, which require sentence representation.

Conventional NLP tasks heavily rely on feature engineering, which requires care-
ful design and considerable expertise. Recently, representation learning, especially
deep learning-based representation learning is emerging as the most important tech-
nique for NLP. First, NLP is typically concerned with multiple levels of language en-
tries, including but not limited to characters, words, phrases, sentences, paragraphs,
and documents. Representation learning is able to represent the semantics of these
multi-level language entries in a unified semantic space, and model complex se-
mantic dependence among these language entries. Second, there are various NLP
tasks that can be conducted on the same input. For example, given a sentence, we

1 Representation Learning 11

can perform multiple tasks such as word segmentation, named entity recognition,
relation extraction, co-reference linking, and machine translation. In this case, it
will be more efficient and robust to build a unified representation space of inputs
for multiple tasks. Last, natural language texts may be collected from multiple do-
mains, including but not limited to news articles, scientific articles, literary works,
advertisement and online user-generated content such as product reviews and so-
cial media. Moreover, texts can also be collected from different languages, such as
English, Chinese, Spanish, Japanese, etc. Compared to conventional NLP systems
which have to design specific feature extraction algorithms for each domain accord-
ing to its characteristics, representation learning enables us to build representations
automatically from large-scale domain data and even add bridges among these lan-
guages from different domains. Given these advantages of representation learning
for NLP in the feature engineering reduction and performance improvement, many
researchers have developed efficient algorithms on representation learning, espe-
cially deep learning-based approaches, for NLP.

Supervised Representation Learning for NLP. Deep neural networks in the su-
pervised learning setting for NLP emerge from distributed representation learning,
then to CNN models, and finally to RNN models in recent years. At early stage,
distributed representations are first developed in the context of statistical language
modeling by Bengio (2008) in so-called neural net language models. The model
is about learning a distributed representation for each word (i.e., word embedding).
Following this, the need arose for an effective feature function that extracts higher-
level features from constituting words or n-grams. CNNs turned out to be the nat-
ural choice given their properties of excellent performance in computer vision and
speech processing tasks. CNNs have the ability to extract salient n-gram features
from the input sentence to create an informative latent semantic representation of
the sentence for downstream tasks. This domain was pioneered by Collobert et al
(2011) and Kalchbrenner et al (2014), which led to a huge proliferation of CNN-
based networks in the succeeding literature. The neural net language model was also
improved by adding recurrence to the hidden layers (Mikolov et al, 2011a) (i.e.,
RNN), allowing it to beat the state-of-the-art (smoothed n-gram models) not only in
terms of perplexity (exponential of the average negative log-likelihood of predicting
the right next word) but also in terms of WER in speech recognition. RNNs use
the idea of processing sequential information. The term “recurrent” applies as they
perform the same computation over each token of the sequence and each step is de-
pendent on the previous computations and results. Generally, a fixed-size vector is
produced to represent a sequence by feeding tokens one by one to a recurrent unit. In
a way, RNNs have “memory” over previous computations and use this information
in current processing. This template is naturally suited for many NLP tasks such
as language modeling (Mikolov et al, 2010, 2011b), machine translation (Liu et al,
2014; Sutskever et al, 2014), and image captioning (Karpathy and Fei-Fei, 2015).

Unsupervised Representation Learning for NLP. Unsupervised learning (includ-
ing self-supervised learning) has made a great success in NLP, for the plain text itself
contains abundant knowledge and patterns about languages. For example, in most
deep learning based NLP models, words in sentences are first mapped to their corre-

12 Liang Zhao, Lingfei Wu, Peng Cui and Jian Pei

sponding embeddings via the techniques, such as word2vec Mikolov et al (2013b),
GloVe Pennington et al (2014), and BERT Devlin et al (2019), before sending to
the networks. However, there are no human-annotated “labels” for learning those
word embeddings. To acquire the training objective necessary for neural networks,
it is necessary to generate “labels” intrinsically from the existing data. Language
modeling is a typical unsupervised learning task, which can construct the probabil-
ity distribution over sequences of words and does not require human annotations.
Based on the distributional hypothesis, using the language modeling objective can
lead to hidden representations that encode the semantics of words. Another typi-
cal unsupervised learning model in NLP is auto-encoder (AE), which consists of
a reduction (encoding) phase and a reconstruction (decoding) phase. For example,
recursive auto-encoders (which generalize recurrent networks with VAE) have been
used to beat the state-of-the-art at the moment of its publication in full sentence
paraphrase detection (Socher et al, 2011) by almost doubling the F1 score for para-
phrase detection.

Transfer Learning for NLP. Over the recent years, the field of NLP has wit-
nessed fast growth of transfer learning methods via sequential transfer learning
models and architectures, which significantly improved upon the state-of-the-arts
on a wide range of NLP tasks. In terms of domain adaption, the sequential transfer
learning consists of two stages: a pretraining phase in which general representa-
tions are learned on a source task or domain followed by an adaptation phase during
which the learned knowledge is applied to a target task or domain. The domain adap-
tion in NLP is categorized into model-centric, data-centric, and hybrid approaches.
Model-centric methods target the approaches to augmenting the feature space, as
well as altering the loss function, the architecture, or the model parameters (Blitzer
et al, 2006). Data-centric methods focus on the data aspect and involve pseudo-
labeling (or bootstrapping) where only small number of classes are shared between
the source and target datasets (Abney, 2007). Lastly, hybrid-based methods are built
by both data- and model-centric models. Similarly, great advances have also been
made into the multi-task learning in NLP, where different NLP tasks can result in
better representation of texts. For example, based on a convolutional architecture,
Collobert et al (2011) developed the SENNA system that shares representations
across the tasks of language modeling, part-of-speech tagging, chunking, named en-
tity recognition, semantic role labeling, and syntactic parsing. SENNA approaches
or sometimes even surpasses the state-of-the-art on these tasks while is simpler and
much faster than traditional predictors. Moreover, learning word embeddings can be
combined with learning image representations in a way that allow associating texts
and images.

Other Representation Learning for NLP. In NLP tasks, when a problem gets
more complicated, it requires more knowledge from domain experts to annotate
training instances for fine-grained tasks and thus increases the cost of data labeling.
Therefore, sometimes it requires the models or systems can be developed efficiently
with (very) few labeled data. When each class has only one or a few labeled in-
stances, the problem becomes a one/few-shot learning problem. The few-shot learn-
ing problem is derived from computer vision and has also been studied in NLP

1 Representation Learning 13

recently. For example, researchers have explored few-shot relation extractio (Han
et al, 2018) where each relation has a few labeled instances, and low-resource ma-
chine translation (Zoph et al, 2016) where the size of the parallel corpus is limited.

1.2.4 Representation Learning for Networks

Beyond popular data like images, texts, and sounds, network data is another im-
portant data type that is becoming ubiquitous across a large scale of real-world ap-
plications ranging from cyber-networks (e.g., social networks, citation networks,
telecommunication networks, etc.) to physical networks (e.g., transportation net-
works, biological networks, etc). Networks data can be formulated as graphs math-
ematically, where vertices and their relationships jointly characterize the network
information. Networks and graphs are very powerful and flexible data formulation
such that sometimes we could even consider other data types like images, and texts
as special cases of it. For example, images can be considered as grids of nodes with
RGB attributes which are special types of graphs, while texts can also be organized
into sequential-, tree-, or graph-structured information. So in general, representa-
tion learning for networks is widely considered as a promising yet more challenging
tasks that require the advancement and generalization of many techniques we devel-
oped for images, texts, and so forth. In addition to the intrinsic high complexity of
network data, the efficiency of representation learning on networks is also an impor-
tant issues considering the large-scale of many real-world networks, ranging from
hundreds to millions or even billions of vertices. Analyzing information networks
plays a crucial role in a variety of emerging applications across many disciplines.
For example, in social networks, classifying users into meaningful social groups is
useful for many important tasks, such as user search, targeted advertising and recom-
mendations; in communication networks, detecting community structures can help
better understand the rumor spreading process; in biological networks, inferring in-
teractions between proteins can facilitate new treatments for diseases. Nevertheless,
efficient and effective analysis of these networks heavily relies on good representa-
tions of the networks.

Traditional feature engineering on network data usually focuses on obtaining a
number of predefined straightforward features in graph levels (e.g., the diameter,
average path length, and clustering co-efficient), node levels (e.g., node degree and
centrality), or subgraph levels (e.g., frequent subgraphs and graph motifs). Those
limited number of hand-crafted, well-defined features, though describe several fun-
damental aspects of the graphs, discard the patterns that cannot be covered by them.
Moreover, real-world network phenomena are usually highly complicated require
sophisticated, unknown combinations among those predefined features or cannot be
characterized by any of the existing features. In addition, traditional graph feature
engineering usually involve expensive computations with super-linear or exponen-
tial complexity, which often makes many network analytic tasks computationally
expensive and intractable over large-scale networks. For example, in dealing with

14 Liang Zhao, Lingfei Wu, Peng Cui and Jian Pei

the task of community detection, classical methods involve calculating the spectral
decomposition of a matrix with at least quadratic time complexity with respect to
the number of vertices. This computational overhead makes algorithms hard to scale
to large-scale networks with millions of vertices.

More recently, network representation learning (NRL) has aroused a lot of re-
search interest. NRL aims to learn latent, low-dimensional representations of net-
work vertices, while preserving network topology structure, vertex content, and
other side information. After new vertex representations are learned, network ana-
lytic tasks can be easily and efficiently carried out by applying conventional vector-
based machine learning algorithms to the new representation space. Earlier work
related to network representation learning dates back to the early 2000s, when re-
searchers proposed graph embedding algorithms as part of dimensionality reduction
techniques. Given a set of independent and identically distributed (i.i.d.) data points
as input, graph embedding algorithms first calculate the similarity between pairwise
data points to construct an affinity graph, e.g., the k-nearest neighbor graph, and
then embed the affinity graph into a new space having much lower dimensionality.
However, graph embedding algorithms are designed on i.i.d. data mainly for dimen-
sionality reduction purpose, which usually have at least quadratic time complexity
with respect to the number of vertices.

Since 2008, significant research efforts have shifted to the development of ef-
fective and scalable representation learning techniques that are directly designed
for complex information networks. Many network representation learning algo-
rithms (Perozzi et al, 2014; Yang et al, 2015b; Zhang et al, 2016b; Manessi et al,
2020) have been proposed to embed existing networks, showing promising per-
formance for various applications. These methods embed a network into a latent,
low-dimensional space that preserves structure proximity and attribute affinity. The
resulting compact, low-dimensional vector representations can be then taken as fea-
tures to any vector-based machine learning algorithms. This paves the way for a
wide range of network analytic tasks to be easily and efficiently tackled in the new
vector space, such as node classification (Zhu et al, 2007), link prediction (Lü and
Zhou, 2011), clustering (Malliaros and Vazirgiannis, 2013), network synthesis (You
et al, 2018b). The following chapters of this book will then provide a systematic and
comprehensive introduction into network representation learning.

1.3 Summary

Representation learning is a very active and important field currently, which heavily
influences the effectiveness of machine learning techniques. Representation learn-
ing is about learning the representations of the data that makes it easier to extract
useful and discriminative information when building classifiers or other predictors.
Among the various ways of learning representations, deep learning algorithms have
increasingly been employed in many areas nowadays where the good representation
can be learned in an efficient and automatic way based on large amount of complex

1 Representation Learning 15

and high dimensional data. The evaluation of a representation is closely related to its
performance on the downstream tasks. Generally, there are also some general prop-
erties that the good representations may hold, such as the smoothness, the linearity,
disentanglement, as well as capturing multiple explanatory and casual factors.

We have summarized the representation learning techniques in different domains,
focusing on the unique challenges and models for different areas including the
processing of images, natural language, and speech signals. For each area, there
emerges many deep learning-based representation techniques from different cate-
gories, including supervised learning, unsupervised learning, transfer learning, dis-
entangled representation learning, reinforcement learning, etc. We have also briefly
mentioned about the representation learning on networks and its relations to that on
images, texts, and speech, in order for the elaboration of it in the following chapters.

Chapter 2
Graph Representation Learning

Peng Cui, Lingfei Wu, Jian Pei, Liang Zhao and Xiao Wang

Abstract Graph representation learning aims at assigning nodes in a graph to low-
dimensional representations and effectively preserving the graph structures. Re-
cently, a significant amount of progress has been made toward this emerging graph
analysis paradigm. In this chapter, we first summarize the motivation of graph repre-
sentation learning. Afterwards and primarily, we provide a comprehensive overview
of a large number of graph representation learning methods in a systematic manner,
covering the traditional graph representation learning, modern graph representation
learning, and graph neural networks.

2.1 Graph Representation Learning: An Introduction

Many complex systems take the form of graphs, such as social networks, biological
networks, and information networks. It is well recognized that graph data is often
sophisticated and thus is challenging to deal with. To process graph data effectively,
the first critical challenge is to find effective graph data representation, that is, how
to represent graphs concisely so that advanced analytic tasks, such as pattern discov-
ery, analysis, and prediction, can be conducted efficiently in both time and space.

Liang Zhao
Department of Computer Science, Emory University, e-mail: liang.zhao@emory.edu

Lingfei Wu
JD.COM Silicon Valley Research Center, e-mail: lwu@email.wm.edu

Peng Cui
Department of Computer Science, Tsinghua University, e-mail: cuip@tsinghua.edu.cn

Jian Pei
Department of Computer Science, Simon Fraser University, e-mail: jpei@cs.sfu.ca

Xiao Wang
Department of Computer Science, Beijing University of Posts and Telecommunications, e-mail:
xiaowang@bupt.edu.cn

17
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_2

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:liang.zhao@emory.edu
mailto:lwu@email.wm.edu
mailto:cuip@tsinghua.edu.cn
mailto:jpei@cs.sfu.ca
mailto:xiaowang@bupt.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_2&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_2

18 Peng Cui, Lingfei Wu, Jian Pei, Liang Zhao and Xiao Wang

Traditionally, we usually represent a graph as G = (V ,E), where V is a node set
and E is an edge set. For large graphs, such as those with billions of nodes, the
traditional graph representation poses several challenges to graph processing and
analysis.

(1) High computational complexity. These relationships encoded by the edge
set E take most of the graph processing or analysis algorithms either iterative or
combinatorial computation steps. For example, a popular way is to use the shortest
or average path length between two nodes to represent their distance. To compute
such a distance using the traditional graph representation, we have to enumerate
many possible paths between two nodes, which is in nature a combinatorial prob-
lem. Such methods result in high computational complexity that prevents them from
being applicable to large-scale real-world graphs.

(2) Low parallelizability. Parallel and distributed computing is de facto to pro-
cess and analyze large-scale data. Graph data represented in the traditional way,
however, casts severe difficulties to design and implementat of parallel and dis-
tributed algorithms. The bottleneck is that nodes in a graph are coupled to each
other explicitly reflected by E. Thus, distributing different nodes in different shards
or servers often causes demandingly high communication cost among servers, and
holds back speed-up ratio.

(3) Inapplicability of machine learning methods. Recently, machine learning
methods, especially deep learning, are very powerful in many areas. For graph data
represented in the traditional way, however, most of the off-the-shelf machine learn-
ing methods may not be applicable. Those methods usually assume that data sam-
ples can be represented by independent vectors in a vector space, while the samples
in graph data (i.e., the nodes) are dependant to each other to some degree determined
by E. Although we can simply represent a node by its corresponding row vector in
the adjacency matrix of the graph, the extremely high dimensionality of such a rep-
resentation in a large graph with many nodes makes the in sequel graph processing
and analysis difficult.

To tackle these challenges, substantial effort has been committed to develop
novel graph representation learning, i.e., learning the dense and continuous low-
dimensional vector representations for nodes, so that the noise or redundant infor-
mation can be reduced and the intrinsic structure information can be preserved. In
the learned representation space, the relationships among the nodes, which were
originally represented by edges or other high-order topological measures in graphs,
are captured by the distances between nodes in the vector space, and the structural
characteristics of a node are encoded into its representation vector.

Basically, in order to make the representation space well supporting graph anal-
ysis tasks, there are two goals for graph representation learning. First, the original
graph can be reconstructed from the learned representation space. It requires that, if
there is an edge or relationship between two nodes, then the distance of these two
nodes in the representation space should be relatively small. Second, the learned rep-
resentation space can effectively support graph inference, such as predicting unseen
links, identifying important nodes, and inferring node labels. It should be noted that
a representation space with only the goal of graph reconstruction is not sufficient

2 Graph Representation Learning 19

for graph inference. After the representation is obtained, downstream tasks such as
node classification , node clustering , graph visualization and link prediction can be
dealt with based on these representations. Overall, there are three main categories of
graph representation learning methods: traditional graph embedding, modern graph
embedding, and graph neural networks, which will be introduced separately in the
following three sections.

2.2 Traditional Graph Embedding

Traditional graph embedding methods are originally studied as dimension reduction
techniques. A graph is usually constructed from a feature represented data set, like
image data set. As mentioned before, graph embedding usually has two goals, i.e.
reconstructing original graph structures and support graph inference. The objective
functions of traditional graph embedding methods mainly target the goal of graph
reconstruction.

Specifically, Tenenbaum et al (2000) first constructs a neighborhood graph G us-
ing connectivity algorithms such as K nearest neighbors (KNN). Then based on G,
the shortest path between different data can be computed. Consequently, for all the
N data entries in the data set, we have the matrix of graph distances. Finally, the
classical multidimensional scaling (MDS) method is applied to the matrix to obtain
the coordinate vectors. The representations learned by Isomap approximately pre-
serve the geodesic distances of the entry pairs in the low-dimensional space. The key
problem of Isomap is its high complexity due to the computing of pair-wise short-
est pathes. Locally linear embedding (LLE) (Roweis and Saul, 2000) is proposed
to eliminate the need to estimate the pairwise distances between widely separated
entries. LLE assumes that each entry and its neighbors lie on or close to a locally
linear patch of a mainfold. To characterize the local geometry, each entry can be
reconstructed from its neighbors. Finally, in the low-dimensional space, LLE con-
structs a neighborhood-preserving mapping based on locally linear reconstruction.
Laplacian eigenmaps (LE) (Belkin and Niyogi, 2002) also begins with construct-
ing a graph using ε-neighborhoods or K nearest neighbors. Then the heat kernel
(Berline et al, 2003) is utilized to choose the weight of two nodes in the graph. Fi-
nally, the node representations can be obtained by based on the Laplacian matrix
regularization. Furthermore, the locality preserving projection (LPP) (Berline et al,
2003), a linear approximation of the nonlinear LE, is proposed.

These methods are extended in the rich literature of graph embedding by consid-
ering different characteristics of the constructed graphs (Fu and Ma, 2012). We can
find that traditional graph embedding mostly works on graphs constructed from fea-
ture represented data sets, where the proximity among nodes encoded by the edge
weights is well defined in the original feature space. While, in contrast, modern
graph embedding, which will be introduced in the following, mostly works on natu-
rally formed networks, such as social networks, biology networks, and e-commerce
networks. In those networks, the proximities among nodes are not explicitly or di-

20 Peng Cui, Lingfei Wu, Jian Pei, Liang Zhao and Xiao Wang

rectly defined. For example, an edge between two nodes usually just implies there is
a relationship between them, but cannot indicate the specific proximity. Also, even
if there is no edge between two nodes, we cannot say the proximity between these
two nodes is zero. The definition of node proximities depends on specific analytic
tasks and application scenarios. Therefore, modern graph embedding usually incor-
porates rich information, such as network structures, properties, side information
and advanced information, to facilitate different problems and applications. Modern
graph embedding needs to target both of goals mentioned before. In view of this,
traditional graph embedding can be regarded as a special case of modern graph em-
bedding, and the recent research progress on modern graph embedding pays more
attention to network inference.

2.3 Modern Graph Embedding

To well support network inference, modern graph embedding considers much richer
information in a graph. According to the types of information that are preserved in
graph representation learning, the existing methods can be categorized into three
categories: (1) graph structures and properties preserving graph embedding, (2)
graph representation learning with side information and (3) advanced information
preserving graph representation learning. In technique view, different models are
adopted to incorporate different types of information or address different goals. The
commonly used models include matrix factorization, random walk, deep neural net-
works and their variations.

2.3.1 Structure-Property Preserving Graph Representation
Learning

Among all the information encoded in a graph, graph structures and properties are
two crucial factors that largely affect graph inference. Thus, one basic requirement
of graph representation learning is to appropriately preserve graph structures and
capture properties of graphs. Often, graph structures include first-order structures
and higher-order structures, such as second-order structures and community struc-
tures. Graphs with different types have different properties. For example, directed
graphs have the asymmetric transitivity property. The structural balance theory is
widely applicable to signed graphs.

2.3.1.1 Structure Preserving Graph Representation Learning

Graph structures can be categorized into different groups that present at differ-
ent granularities. The commonly exploited graph structures in graph representation

2 Graph Representation Learning 21

learning include neighborhood structure, high-order node proximity and graph com-
munities.

How to define the neighborhood structure in a graph is the first challenge. Based
on the discovery that the distribution of nodes appearing in short random walks is
similar to the distribution of words in natural language, DeepWalk (Perozzi et al,
2014) employs the random walks to capture the neighborhood structure. Then for
each walk sequence generated by random walks, following Skip-Gram, DeepWalk
aims to maximize the probability of the neighbors of a node in a walk sequence.
Node2vec defines a flexible notion of a node’s graph neighborhood and designs
a second order random walks strategy to sample the neighborhood nodes, which
can smoothly interpolate between breadth-first sampling (BFS) and depth-first sam-
pling (DFS). Besides the neighborhood structure, LINE (Tang et al, 2015b) is pro-
posed for large scale network embedding, which can preserve the first and second
order proximities. The first order proximity is the observed pairwise proximity be-
tween two nodes. The second order proximity is determined by the similarity of
the “contexts” (neighbors) of two nodes. Both are important in measuring the re-
lationships between two nodes. Essentially, LINE is based on the shallow model,
consequently, the representation ability is limited. SDNE (Wang et al, 2016) pro-
poses a deep model for network embedding, which also aims at capturing the first
and second order proximites. SDNE uses the deep auto-encoder architecture with
multiple non-linear layers to preserve the second order proximity. To preserve the
first-order proximity, the idea of Laplacian eigenmaps (Belkin and Niyogi, 2002)
is adopted. Wang et al (2017g) propose a modularized nonnegative matrix factor-
ization (M-NMF) model for graph representation learning, which aims to preserve
both the microscopic structure, i.e., the first-order and second-order proximities of
nodes, and the mesoscopic community structure (Girvan and Newman, 2002). They
adopt the NMF model (Févotte and Idier, 2011) to preserve the microscopic struc-
ture. Meanwhile, the community structure is detected by modularity maximization
(Newman, 2006a). Then, they introduce an auxiliary community representation ma-
trix to bridge the representations of nodes with the community structure. In this
way, the learned representations of nodes are constrained by both the microscopic
structure and community structure.

In summary, many network embedding methods aim to preserve the local struc-
ture of a node, including neighborhood structure, high-order proximity as well as
community structure, in the latent low-dimensional space. Both linear and non-
linear models are attempted, demonstrating the large potential of deep models in
network embedding.

2.3.1.2 Property Preserving Graph Representation Learning

Currently, most of the existing property preserving graph representation learning
methods focus on graph transitivity in all types of graphs and the structural balance
property in signed graphs.

22 Peng Cui, Lingfei Wu, Jian Pei, Liang Zhao and Xiao Wang

We usually demonstrate that the transitivity usually exists in a graph. But mean-
while, we can find that preserving such a property is not challenging, because in a
metric space, the distance between different data points naturally satisfies the trian-
gle inequality. However, this is not always true in the real world. Ou et al (2015) aim
to preserve the non-transitivity property via latent similarity components. The non-
transitivity property declares that, for nodes v1, v2 and v3 in a graph where (v1;v2)
and (v2;v3) are similar pairs, (v1;v3) may be a dissimilar pair. For example, in a
social network, a student may connect with his classmates and his family, while his
classmates and family are probably very different. The main idea is that they learn
multiple node embeddings, and then compare different nodes based on multiple
similarities, rather than one similarity. They observe that if two nodes have a large
semantic similarity, at least one of the structure similarities is large, otherwise, all
of the similarities are small. In a directed graph, it usually has the asymmetric tran-
sitivity property. Asymmetric transitivity indicates that, if there is a directed edge
from node i to node j and a directed edge from j to v, there is likely a directed edge
from i to v, but not from v to i. In order to measure this high-order proximity, HOPE
(Ou et al, 2016) summarizes four measurements in a general formulation, and then
utilizes a generalized SVD problem to factorize the high-order proximity (Paige and
Saunders, 1981), such that the time complexity of HOPE is largely reduced, which
means HOPE is scalable for large scale networks. In a signed graph with both of
positive and negative edges, the social theories, such as structural balance theory
(Cartwright and Harary, 1956; Cygan et al, 2012), which are very different from the
unsigned graph. The structural balance theory demonstrates that users in a signed
social network should be able to have their “friends” closer than their “foes”. To
model the structural balance phenomenon, SiNE (Wang et al, 2017f) utilizes a deep
learning model consisting of two deep graphs with non-linear functions.

The importance of maintaining network properties in network embedding space,
especially the properties that largely affect the evolution and formation of networks,
has been well recognized. The key challenge is how to address the disparity and het-
erogeneity of the original network space and the embedding vector space at property
level. Generally, most of the structure and property preserving methods take high
order proximities of nodes into account, which demonstrate the importance of pre-
serving high order structures in network embedding. The difference is the strategy
of obtaining the high order structures. Some methods implicitly preserve highorder
structure by assuming a generative mechanism from a node to its neighbors, while
some other methods realize this by explicitly approximating high-order proximities
in the embedding space. As topology structures are the most notable characteristic
of networks, structure-preserving network methods embody a large part of the lit-
erature. Comparatively, property preserving network embedding is a relatively new
research topic and is only studied lightly. As network properties usually drive the
formation and evolution of networks, it shows great potential for future research and
applications.

2 Graph Representation Learning 23

2.3.2 Graph Representation Learning with Side Information

Besides graph structures, side information is another important information source
for graph representation learning. Side information in the context of graph represen-
tation learning can be divided into two categories: node content and types of nodes
and edges. Their difference is the way of integrating network structures and side
information.

Graph Representation Learning with Node Content. In some types of graphs,
like information networks, nodes are acompanied with rich information, such as
node labels, attributes or even semantic descriptions. How to combine them with
the network topology in graph representation learning arouses considerable research
interests. Tu et al (2016) propose a semi-supervised graph embedding algorithm,
MMDW, by leveraging labeling information of nodes. MMDW is also based on the
DeepWalk-derived matrix factorization. MMDW adopts support vector machines
(SVM) (Hearst et al, 1998) and incorporates the label information to find an optimal
classifying boundary. Yang et al (2015b) propose TADW that takes the rich informa-
tion (e.g., text) associated with nodes into account when they learn the low dimen-
sional representations of nodes. Pan et al (2016) propose a coupled deep model that
incorporates graph structures, node attributes and node labels into graph embedding.
Although different methods adopt different strategies to integrate node content and
network topology, they all assume that node content provides additional proximity
information to constrain the representations of nodes.

Heterogeneous Graph Representation Learning. Different from graphs with node
content, heterogeneous graphs consist of different types of nodes and links. How to
unify the heterogeneous types of nodes and links in graph embedding is also an
interesting and challenging problem. Jacob et al (2014) propose a heterogeneous
social graph representation learning algorithm for classifying nodes. They learn the
representations of all types of nodes in a common vector space, and perform the
inference in this space. Chang et al (2015) propose a deep graph representation
learning algorithm for heterogeneous graphs, whose nodes have various types(e.g.,
images and texts). The nonlinear embeddings of images and texts are learned by
a CNN model and the fully connected layers, respectively. Huang and Mamoulis
(2017) propose a meta path similarity preserving heterogeneous information graph
representation learning algorithm. To model a particular relationship, a meta path
(Sun et al, 2011) is a sequence of object types with edge types in between.

In the methods preserving side information, side information introduces addi-
tional proximity measures so that the relationships between nodes can be learned
more comprehensively. Their difference is the way of integrating network struc-
turess and side information. Many of them are naturally extensions from structure
preserving network embedding methods.

24 Peng Cui, Lingfei Wu, Jian Pei, Liang Zhao and Xiao Wang

2.3.3 Advanced Information Preserving Graph Representation
Learning

Different from side information, the advanced information refers to the supervised
or pseudo supervised information in a specific task. The advanced information pre-
serving network embedding usually consists of two parts. One is to preserve the
network structure so as to learn the representations of nodes. The other is to estab-
lish the connection between the representations of nodes and the target task. The
combination of advanced information and network embedding techniques enables
representation learning for networks.

Information Diffusion. Information diffusion (Guille et al, 2013) is an ubiquitous
phenomenon on the web, especially in social networks. Bourigault et al (2014) pro-
pose a graph representation learning algorithm for predicting information diffusion
in social network. The goal of the proposed algorithm is to learn the representations
of nodes in the latent space such that the diffusion kernel can best explain the cas-
cades in the training set. The basic idea is to map the observed information diffusion
process into a heat diffusion process modeled by a diffusion kernel in the continu-
ous space. The kernel describes that the closer a node in the latent space is from
the source node, the sooner it is infected by information from the source node. The
cascade prediction problem here is defined as predicting the increment of cascade
size after a given time interval (Li et al, 2017a). Li et al (2017a) argue that the pre-
vious work on cascade prediction all depends on the bag of hand-crafting features
to represent the cascade and graph structures. Instead, they present an end-to-end
deep learning model to solve this problem using the idea of graph embedding. The
whole procedure is able to learn the representation of cascade graph in an end-to-end
manner.

Anomaly Detection. Anomaly detection has been widely investigated in previous
work (Akoglu et al, 2015). Anomaly detection in graphs aims to infer the structural
inconsistencies, which means the anomalous nodes that connect to various diverse
influential communities (Hu et al, 2016), (Burt, 2004). Hu et al (2016) propose a
graph embedding based method for anomaly detection. They assume that the com-
munity memberships of two linked nodes should be similar. An anomaly node is
one connecting to a set of different communities. Since the learned embedding of
nodes captures the correlations between nodes and communities, based on the em-
bedding, they propose a new measure to indicate the anomalousness level of a node.
The larger the value of the measure, the higher the propensity for a node being an
anomaly node.

Graph Alignment. The goal of graph alignment is to establish the correspon-
dence between the nodes from two graphs, i.e., to predict the anchor links across
two graphs. The same users who are shared by different social networks naturally
form the anchor links, and these links bridge the different graphs. The anchor link
prediction problem is, given a source graph,a target graph and a set of observed
anchor links, to identify the hidden anchor links across the two graphs. Man et al
(2016) propose a graph representation learning algorithm to solve this problem. The

2 Graph Representation Learning 25

learned representations can preserve the graph structures and respect the observed
anchor links.

Advanced information preserving graph embedding usually consists of two parts.
One is to preserve the graph structures so as to learn the representations of nodes.
The other is to establish the connection between the representations of nodes and the
target task. The first one is similar to structure and property preserving network em-
bedding, while the second one usually needs to consider the domain knowledge of a
specific task. The domain knowledge encoded by the advanced information makes
it possible to develop end-to-end solutions for network applications. Compared with
the hand-crafted network features, such as numerous network centrality measures,
the combination of advanced information and network embedding techniques en-
ables representation learning for networks. Many network applications may be ben-
efitted from this new paradigm.

2.4 Graph Neural Networks

Over the past decade, deep learning has become the “crown jewel” of artificial intel-
ligence and machine learning, showing superior performance in acoustics, images
and natural language processing, etc. Although it is well known that graphs are ubiq-
uitous in the real world, it is very challenging to utilize deep learning methods to
analyze graph data. This problem is non-trivial because of the following challenges:
(1) Irregular structures of graphs. Unlike images, audio, and text, which have a clear
grid structure, graphs have irregular structures, making it hard to generalize some
of the basic mathematical operations to graphs. For example, defining convolution
and pooling operations, which are the fundamental operations in convolutional neu-
ral networks (CNNs), for graph data is not straightforward. (2) Heterogeneity and
diversity of graphs. A graph itself can be complicated, containing diverse types and
properties. These diverse types, properties, and tasks require different model archi-
tectures to tackle specific problems. (3) Large-scale graphs. In the big-data era, real
graphs can easily have millions or billions of nodes and edges. How to design scal-
able models, preferably models that have a linear time complexity with respect to the
graph size, is a key problem. (4) Incorporating interdisciplinary knowledge. Graphs
are often connected to other disciplines, such as biology, chemistry, and social sci-
ences. This interdisciplinary nature provides both opportunities and challenges: do-
main knowledge can be leveraged to solve specific problems but integrating domain
knowledge can complicate model designs.

Currently, graph neural networks have attracted considerable research attention
over the past several years. The adopted architectures and training strategies vary
greatly, ranging from supervised to unsupervised and from convolutional to re-
cursive, including graph recurrent neural networks (Graph RNNs), graph convo-
lutional networks (GCNs), graph autoencoders (GAEs), graph reinforcement learn-
ing (Graph RL), and graph adversarial methods. Specifically, Graroperty h RNNs
capture recursive and sequential patterns of graphs by modeling states at either the

26 Peng Cui, Lingfei Wu, Jian Pei, Liang Zhao and Xiao Wang

node-level or the graph-level; GCNs define convolution and readout operations on
irregular graph structures to capture common local and global structural patterns;
GAEs assume low-rank graph structures and adopt unsupervised methods for node
representation learning; Graph RL defines graph-based actions and rewards to ob-
tain feedbacks on graph tasks while following constraints; Graph adversarial meth-
ods adopt adversarial training techniques to enhance the generalization ability of
graphbased models and test their robustness by adversarial attacks.

There are many ongoing or future research directions which are also worthy of
further study, including new models for unstudied graph structures, compositional-
ity of existing models, dynamic graphs, interpretability and robustness, etc. On the
whole, deep learning on graphs is a promising and fast-developing research field
that both offers exciting opportunities and presents many challenges. Studying deep
learning on graphs constitutes a critical building block in modeling relational data,
and it is an important step towards a future with better machine learning and artifi-
cial intelligence techniques.

2.5 Summary

In this chapter, we introduce the motivation of graph representation learning. Then
in Section 2, we discuss the traditional graph embedding methods and the mod-
ern graph embedding methods are introduced in Section 3. Basically, the structure
and property preserving graph representation learning is the foundation. If one can-
not preserve well the graph structures and retain the important graph properties in
the representation space, serious information will be lost, which hurts the analytic
tasks in sequel. Based on the structures and property preserving graph representation
learning, one may apply the off-the-shelf machine learning methods. If some side
information is available, it can be incorporated into graph representation learning.
Furthermore, the domain knowledge of some certain applications as advanced infor-
mation can be considered. As shown in Section 4, utilizing deep learning methods
on graphs is a promising and fast-developing research field that both offers excit-
ing opportunities and presents many challenges. Studying deep learning on graphs
constitutes a critical building block in modeling relational data, and it is an impor-
tant step towards a future with better machine learning and artificial intelligence
techniques.

Chapter 3
Graph Neural Networks

Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao and Le Song

Abstract Deep Learning has become one of the most dominant approaches in Ar-
tificial Intelligence research today. Although conventional deep learning techniques
have achieved huge successes on Euclidean data such as images, or sequence data
such as text, there are many applications that are naturally or best represented with
a graph structure. This gap has driven a tide in research for deep learning on graphs,
among them Graph Neural Networks (GNNs) are the most successful in coping
with various learning tasks across a large number of application domains. In this
chapter, we will systematically organize the existing research of GNNs along three
axes: foundations, frontiers, and applications. We will introduce the fundamental
aspects of GNNs ranging from the popular models and their expressive powers, to
the scalability, interpretability and robustness of GNNs. Then, we will discuss vari-
ous frontier research, ranging from graph classification and link prediction, to graph
generation and transformation, graph matching and graph structure learning. Based
on them, we further summarize the basic procedures which exploit full use of vari-
ous GNNs for a large number of applications. Finally, we provide the organization
of our book and summarize the roadmap of the various research topics of GNNs.

Lingfei Wu
JD.COM Silicon Valley Research Center, e-mail: lwu@email.wm.edu

Peng Cui
Department of Computer Science, Tsinghua University, e-mail: cuip@tsinghua.edu.cn

Jian Pei
Department of Computer Science, Simon Fraser University, e-mail: jpei@cs.sfu.ca

Liang Zhao
Department of Computer Science, Emory University, e-mail: liang.zhao@emory.edu

Le Song
Mohamed bin Zayed University of Artificial Intelligence, e-mail: dasongle@gmail.com

27
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_3

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:lwu@email.wm.edu
mailto:cuip@tsinghua.edu.cn
mailto:jpei@cs.sfu.ca
mailto:liang.zhao@emory.edu
mailto:dasongle@gmail.com
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_3&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_3

28 Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao and Le Song

3.1 Graph Neural Networks: An Introduction

Deep Learning has become one of the most dominant approaches in Artificial In-
telligence research today. Conventional deep learning techniques, such as recurrent
neural networks (Schuster and Paliwal, 1997) and convolutional neural networks
(Krizhevsky et al, 2012) have achieved huge successes on Euclidean data such as
images, or sequence data such as text and signals. However, in a rich variety of scien-
tific fields, many important real-world objects and problems can be naturally or best
expressed along with a complex structure, e.g., graph or manifold structure, such
as social networks, recommendation systems, drug discovery and program analy-
sis. On the one hand, these graph-structured data can encode complicated pairwise
relationships for learning more informative representations; On the other hand, the
structural and semantic information in original data (images or sequential texts)
can be exploited to incorporate domain-specific knowledge for capturing more fine-
grained relationships among the data.

In recent years, deep learning on graphs has experienced a burgeoning inter-
est from the research community (Cui et al, 2018; Wu et al, 2019e; Zhang et al,
2020e). Among them, Graph Neural Networks (GNNs) is the most successful learn-
ing framework in coping with various tasks across a large number of application do-
mains. Newly proposed neural network architectures on graph-structured data (Kipf
and Welling, 2017a; Petar et al, 2018; Hamilton et al, 2017b) have achieved remark-
able performance in some well-known domains such as social networks and bioin-
formatics. They have also infiltrated other fields of scientific research, including
recommendation systems (Wang et al, 2019j), computer vision (Yang et al, 2019g),
natural language processing (Chen et al, 2020o), program analysis (Allamanis et al,
2018b), software mining (LeClair et al, 2020), drug discovery (Ma et al, 2018),
anomaly detection (Markovitz et al, 2020), and urban intelligence (Yu et al, 2018a).

Despite these successes that existing research has achieved, GNNs still face many
challenges when they are used to model highly-structured data that is time-evolving,
multi-relational, and multi-modal. It is also very difficult to model mapping between
graphs and other highly structured data, such as sequences, trees, and graphs. One
challenge with graph-structured data is that it does not show as much spatial locality
and structure as image or text data does. Thus, graph-structured data is not naturally
suitable for highly regularized neural structures such as convolutional and recurrent
neural networks.

More importantly, new application domains for GNNs that emerge from real-
world problems introduce significantly challenges for GNNs. Graphs provide a pow-
erful abstraction that can be used to encode arbitrary data types such as multidi-
mensional data. For example, similarity graphs, kernel matrices, and collaborative
filtering matrices can also be viewed as special cases of graph structures. Therefore,
a successful modeling process of graphs is likely to subsume many applications that
are often used in conjunction with specialized and hand-crafted methods.

In this chapter, we will systematically organize the existing research of GNNs
along three axes: foundations of GNNs, frontiers of GNNs, and GNN based applica-
tions. First of all, we will introduce the fundamental aspects of GNNs ranging from

3 Graph Neural Networks 29

popular GNN methods and their expressive powers, to the scalability, interpretabil-
ity, and robustness of GNNs. Next, we will discuss various frontier research which
are built on GNNs, including graph classification, link prediction, graph generation
and transformation, graph matching, graph structure learning, dynamic GNNs, het-
erogeneous GNNs, AutoML of GNNs and self-supervised GNNs. Based on them,
we further summarize the basic procedures which exploit full use of various GNNs
for a large number of applications. Finally, we provide the organization of our GNN
book and summarize the roadmap of the various research topics of GNNs.

3.2 Graph Neural Networks: Overview

In this section, we summarize the development of graph neural networks along three
important dimensions: (1) Foundations of GNNs; (2) Frontiers of GNNs; (3) GNN-
based applications. We will first discuss the important research areas under the first
two dimensions for GNNs and briefly illustrate the current progress and challenges
for each research sub-domain. Then we will provide a general summarization on
how to exploit the power of GNNs for a rich variety of applications.

3.2.1 Graph Neural Networks: Foundations

Conceptually, we can categorize the fundamental learning tasks of GNNs into five
different directions: i) Graph Neural Networks Methods; ii) Theoretical understand-
ing of Graph Neural Networks; iii) Scalability of Graph Neural Networks; iv) In-
terpretability of Graph Neural Networks; and v) Adversarial robustness of Graph
Neural Networks. We will discuss these fundamental aspects of GNNs one by one
in this subsection.

Graph Neural Network Methods. Graph Neural Networks are specifically de-
signed neural architectures operated on graph-structure data. The goal of GNNs is
to iteratively update the node representations by aggregating the representations of
node neighbors and their own representation in the previous iteration. There are
a variety of graph neural networks proposed in the literature (Kipf and Welling,
2017a; Petar et al, 2018; Hamilton et al, 2017b; Gilmer et al, 2017; Xu et al, 2019d;
Velickovic et al, 2019; Kipf and Welling, 2016), which can be further categorized
into supervised GNNs and unsupervised GNNs. Once the node representations are
learnt, a fundamental task on graphs is node classification that tries to classify the
nodes into a few predefined classes. Despite the huge successes that various GNNs
have achieved, a severe issue on training deep graph neural networks has been ob-
served to yield inferior results, namely, over-smoothing problem (Li et al, 2018b),
where all the nodes have similar representations. Many recent works have been pro-
posed with different remedies to overcome this over-smoothing issue.

30 Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao and Le Song

Theoretical understanding of Graph Neural Networks. Rapid algorithmic devel-
opments of GNNs have aroused a significant amount of interests in theoretical anal-
ysis on the expressive power of GNNs. In particular, much efforts have been made
in order to characterize the expressive power of GNNs when compared with the tra-
ditional graph algorithms (e.g. graph kernel-based methods) and how to build more
powerful GNNs so as to overcome several limitations in GNNs. Specifically, Xu
et al (2019d) showed that current GNN methods are able to achieve the expressive
power of the 1-dimensional Weisfeiler-Lehman test (Weisfeiler and Leman., 1968),
a widely used method in traditional graph kernel community (Shervashidze et al,
2011b). Much recent research has further proposed a series of design strategies in
order to further reach beyond the expressive power of the Weisfeiler-Lehman test by
including attaching random attributes, distance attributes, and utilizing higher-order
structures.

Scalability of Graph Neural Networks. The increasing popularity of GNNs have
attracted many attempts to apply various GNN methods on real-world applications,
where the graph sizes are often about having one hundred million nodes and one
billion edges. Unfortunately, most of the GNN methods cannot directly be applied
on these large-scale graph-structured data due to large memory requirements (Hu
et al, 2020b). Specifically, this is because the majority of GNNs are required to
store the whole adjacent matrices and the intermediate feature matrices in the mem-
ory, rendering the significant challenges for both computer memory consumption
and computational costs. In order to address these issues, many recent works have
been proposed with various sampling strategies such as node-wise sampling (Hamil-
ton et al, 2017b; Chen et al, 2018d), layer-wise sampling (Chen and Bansal, 2018;
Huang et al, 2018), and graph-wise sampling (Chiang et al, 2019; Zeng et al, 2020a).

Interpretability of Graph Neural Networks. Explainable artificial intelligence are
becoming increasingly popular in providing interpretable results on machine learn-
ing process, especially due to the black-box issue of deep learning techniques. As a
result, there is a surge of interests in improving the interpretability of GNNs. Gener-
ally speaking, explanation results on GNNs could be important nodes, important
edges, or important features of nodes or edges. Technically, white-box approxi-
mation based methods (Baldassarre and Azizpour, 2019; Sanchez-Lengeling et al,
2020) utilize the information inside the model inlucidng gradients, intermediate fea-
tures, and model parameters to provide the explanation. In contrast, the black-box
approximation based methods (Huang et al, 2020c; Zhang et al, 2020a; Vu and Thai,
2020) abandon the utilization of internal information of complex models but instead
leverage the intrinsically interpretable simple models (e.g. linear regression and de-
cision trees) to fit the complex models. However, most of the existing works are
time-consuming, which rendering the difficulty in coping with large-scale graph.
To this end, many recent efforts have been made in order to develop more efficient
approaches without compromising the explanation accuracy.

Adversarial robustness of Graph Neural Networks. Trustworthy machine learn-
ing has recently attracted a significant amount of attention since the existing studies
have shown that deep learning models could be deliberately fooled, evaded, misled,
and stolen (Goodfellow et al, 2015). Consequently, a line of research has exten-

3 Graph Neural Networks 31

sively studied the robustness of models in domains like computer vision and natural
language processing, which has also influenced similar research on the robustness
of GNNs. Technically, the standard approach (via adversarial examples) for study-
ing the robustness of GNNs is to construct a small change of the input graph data
and then to observe if it leads to a large change of the prediction results (i.e. node
classification accuracy). There are a growing number of research works toward ei-
ther adversarial attacks (Dai et al, 2018a; Wang and Gong, 2019; Wu et al, 2019b;
Zügner et al, 2018; Zügner et al, 2020) or adversarial training (Xu et al, 2019c; Feng
et al, 2019b; Chen et al, 2020i; Jin and Zhang, 2019). Many recent efforts have been
made to provide both theoretical guarantees and new algorithmic developments in
adversarial training and certified robustness.

3.2.2 Graph Neural Networks: Frontiers

Built on these aforementioned fundamental techniques of GNNs, there are various
fast-growing recent research developments in coping with a variety of graph-related
research problems. In this section, we will comprehensively introduce these research
frontiers that are either long-standing graph learning problems with new GNN solu-
tions or recently emerging learning problems with GNNs.

Graph Neural Networks: Graph Classification and Link Prediction. Since each
layer in GNN models only produce the node-level representations, graph pooling
layers are needed to further compute graph-level representation based on node-level
representations. The graph-level representation, which summarizes the key charac-
teristics of input graph-structure, is the critical component for the graph classifica-
tion. Depending on the learning techniques of graph pooling layers, these methods
can be generally categorized into four groups: simple flat-pooling (Duvenaud et al,
2015a; Mesquita et al, 2020), attention-based pooling (Lee et al, 2019d; Huang et al,
2019d), cluster-based pooling (Ying et al, 2018c), and other type of pooling (Zhang
et al, 2018f; Bianchi et al, 2020; Morris et al, 2020b). Beside graph classification,
another long-standing graph learning problem is link prediction task, which aims to
predict missing or future links between any pair of nodes. Since GNNs can jointly
learn from both graph structure and side information (e.g. node and edge features),
it has shown great advantages over other conventional graph learning methods for
link prediction. Regarding the learning types of link prediction, node-based methods
(Kipf and Welling, 2016) and subgraph-based methods (Zhang and Chen, 2018a,
2020) are two popular groups of GNN based methods.

Graph Neural Networks: Graph Generation and Graph Transformation. Graph
generation problem that builds probabilistic models over graphs is a classical re-
search problem that lies at the intersection between the probability theory and the
graph theory. Recent years have seen an increasing amount of interest in develop-
ing deep graph generative models that are built on modern deep learning on graphs
techniques like GNNs. These deep models have proven to be a more successful ap-
proach in capturing the complex dependencies within the graph data and generating

32 Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao and Le Song

more realistic graphs. Encouraged by the great successes of Variational AutoEn-
coder (VAE) (Kingma and Welling, 2013) and Generative Adversarial Networks
(Goodfellow et al, 2014a) (Goodfellow et al, 2014b), there are three representa-
tive GNN based learning paradigms for graph generation including GraphVAE ap-
proaches (Jin et al, 2018b; Simonovsky and Komodakis, 2018; Grover et al, 2019),
GraphGAN approaches (De Cao and Kipf, 2018; You et al, 2018a) and Deep Au-
toregressive methods (Li et al, 2018d; You et al, 2018b; Liao et al, 2019a). Graph
transformation problem can be formulated as a conditional graph generation prob-
lem, where its goal is to learn a translation mapping between the input source graph
and the output target graph (Guo et al, 2018b). Such learning problem often arises
in other domains such as machine translation problem in Natural Language Pro-
cessing domain and image style transfer in computer Vision domain. Depending on
what graph information is transformed, this problem can be generally grouped into
four categories including node-level transformation (Battaglia et al, 2016; Yu et al,
2018a; Li et al, 2018e), edge-level transformation (Guo et al, 2018b; Zhu et al, 2017;
Do et al, 2019), node-edge co-transformation (Maziarka et al, 2020a; Kaluza et al,
2018; Guo et al, 2019c), and graph-involved transformation (Bastings et al, 2017;
Xu et al, 2018c; Li et al, 2020f).

Graph Neural Networks: Graph Matching and Graph Structure Learning. The
problem of graph matching is to find the correspondence between two input graphs,
which is an extensively studied problem in a variety of research fields. Conven-
tionally, the graph matching problem is known to be NP-hard (Loiola et al, 2007),
rendering this problem computationally infeasible for exact and optimum solutions
for real-world large-scale problems. Due to the expressive power of GNNs, there
is an increasing attention on developing various graph matching methods based on
GNNs in order to improve the matching accuracy and efficiency (Zanfir and Smin-
chisescu, 2018; Rolı́nek et al, 2020; Li et al, 2019h; Ling et al, 2020). Graph match-
ing problem aims to measure the similarity between two graph structures without
changing them. In contrast, graph structure learning aims to produce an optimized
graph structure by jointly learning implicit graph structure and graph node repre-
sentation (Chen et al, 2020m; Franceschi et al, 2019; Velickovic et al, 2020). The
learnt graph structure often can be treated as a shift compared to the intrinsic graph
which is often noisy or incomplete. Graph structure learning can also be used when
the initial graph is not provided while the data matrix shows correlation among data
points.

Dynamic Graph Neural Networks and Heterogeneous Graph Neural Networks.
In real-world applications, the graph nodes (entities) and the graph edges (relations)
are often evolving over time, which naturally gives rise to dynamic graphs. Unfor-
tunately, various GNNs cannot be directly applied to the dynamic graphs, where
modeling the evolution of the graph is critical in making accurate predictions. A
simple yet often effective approach is converting dynamic graphs into static graphs,
leading to potential loss of information. Regarding the type of dynamic graphs, there
are two major categories of GNN-based methods, including GNNs for discrete-time
dynamic graphs (Seo et al, 2018; Manessi et al, 2020) and GNNs for continue-time
dynamic graphs (Kazemi et al, 2019; Xu et al, 2020a). Independently, another pop-

3 Graph Neural Networks 33

ular graph type in real applications is heterogeneous graphs that consist of different
types of graph nodes and edges. To fully exploit this information in heterogeneous
graphs, different GNNs for homogeneous graphs are not applicable. As a result, a
new line of research has been devoted to developing various heterogeneous graph
neural networks including message passing based methods (Wang et al, 2019l; Fu
et al, 2020; Hong et al, 2020b), encoder-decoder based methods (Tu et al, 2018;
Zhang et al, 2019b), and adversarial based methods (Wang et al, 2018a; Hu et al,
2018a).

Graph Neural Networks: AutoML and Self-supervised Learning. Automated ma-
chine learning (AutoML) has recently drawn a significant amount of attention in
both research and industrial communities, the goal of which is coping with the
huge challenge of time-consuming manual tuning process, especially for compli-
cated deep learning models. This wave of the research in AutoML also influences
the research efforts in automatically identifying an optimized GNN model architec-
ture and training hyperparameters. Most of the existing research focuses on either
architecture search space (Gao et al, 2020b; Zhou et al, 2019a) or training hyperpa-
rameter search space (You et al, 2020a; Shi et al, 2020). Another important research
direction of GNNs is to address the limitation of most of deep learning models
that requires large amount of annotated data. As a result, self-supervised learning
has been proposed which aims to design and leverage domain-specific pretext tasks
on unlabeled data to pretrain a GNN model. In order to study the power of serf-
supervised leanring in GNNs, there are quite a few works that systemmatically de-
sign and compare different self-supervised pretext tasks in GNNs (Hu et al, 2020c;
Jin et al, 2020d; You et al, 2020c).

3.2.3 Graph Neural Networks: Applications

Due to the power of GNNs to model various data with complex structures, GNNs
have been widely applied into many applications and domains, such as modern rec-
ommender systems, computer vision (CV), natural language processing (NLP), pro-
gram analysis, software mining, bioinformatics, anomaly detection, and urban intel-
ligence. Though GNNs are utilized to solve different tasks for different applications,
they all consist of two important steps, namely graph construction and graph repre-
sentation learning. Graph construction aims to first transform or represent the input
data as graph-structured data. Based on the graphs, graph representation learning
utilizes GNNs to learn the node or graph embeddings for the downstream tasks.
In the following, we briefly introduce the techniques of these two steps regarding
different applications.

34 Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao and Le Song

3.2.3.1 Graph Construction

Graph construction is important in capturing the dependency among the objects in
the input data. Given the various formats of input data, different applications have
different graph construction techniques, while some tasks need to pre-define the
semantic meaning of nodes and edges to fully express the structural information of
the input data.

Input Data with Explicit Graph Structures. Some applications naturally have
the structure inside the data without pre-defined nodes and the edges/relationships
among them. For example, the user-item interactions in a recommender systems nat-
urally form a graph where user-item preference is regarded as the edges between the
nodes of user and item. In the task of drug design, a molecule is also naturally rep-
resented as a graph, where each node denotes an atom and an edge denotes a bond
that connects two atoms. In the task of protein function prediction and interaction,
the graph can also easily fit into a protein, where each amino-acid refers to a node
and each edge refers to the interaction among amino-acids.

Some graphs are constructed with the node and edge attributes. For example, in
dealing with the transportation in the urban intelligence, the traffic networks can be
formalized as an undirected graph to predict the traffic state. Specifically, the nodes
are the traffic sensing locations, e.g., sensor stations, road segments, and the edges
are the intersections or road segments connecting those traffic sensing locations.
Some urban traffic network can be modeled as a directed graph with attributes to
predict the traffic speed, where the nodes are the road segments, and the edges are
the intersections. Road segment width, length, and direction are the attributes of the
nodes, and the type of intersection, and whether there are traffic lights, toll gates are
the attributes of edges.

Input Data with Implicit Graph Structures. For many tasks that do not naturally
involve a structured data, graph construction becomes very challenging. It is impor-
tant to choose the best representation so that the nodes and edges can capture all the
important things. For example, in computer vision (CV) tasks, there are three kinds
of graph construction. The first is to split the image or the frame of the video into
regular grids, and each grid serves as a vertex of the visual graph. The second way
is to first get the preprocessed structures which can be directly borrowed for vertex
representation, such as the formulation of scene graphs. The last one is about utiliz-
ing semantic information to represent visual vertexes, such as assigning pixels with
similar features to the same vertex. The edges in the visual images can capture two
kinds of information. One is spatial information. For example, for static methods,
generating scene graphs (Xu et al, 2017a) and human skeletons (Jain et al, 2016a) is
natural to choose edges between nodes in the visual graph to represent their location
connection. Another is temporal information. For example, to represent the video,
the model not only builds spatial relations in a frame but also captures temporal
connections among adjacent frames.

In the natural language processing (NLP) tasks, the graph construction from
the text data can be categorized into five categories: text graphs, syntactic graphs,
semantic graphs, knowledge graphs, and hybrid graphs. Text graphs normally re-

3 Graph Neural Networks 35

gard words, sentences, paragraphs, or documents as nodes and establish edges by
word co-occurrence, location, or text similarities. Syntactic graphs (or trees) empha-
size the syntactical dependencies between words in a sentence, such as dependency
graph and constituency graph. Knowledge graphs (KGs) are graphs of data intended
to accumulate and convey knowledge of the real world. Hybrid graphs contain mul-
tiple types of nodes and edges to integrate heterogeneous information. In the task of
program analysis, the formulation over graph representations of programs includes
syntax trees, control flow, data flow, program dependence, and call graphs, each pro-
viding different views of a program. At a high level, programs can be thought as a
set of heterogeneous entities that are related through various kinds of relations. This
view directly maps a program to a heterogeneous directed graph, with each entity
being represented as a node and each relationship of type represented as an edge.

3.2.3.2 Graph Representation Learning

After getting the graph expression of the input data, the next step is applying
GNNs for learning the graph representations. Some works directly utilize the typical
GNNs, such as GCN (Kipf and Welling, 2017a), GAT (Petar et al, 2018), GGNN
(Li et al, 2016a) and GraphSage (Hamilton et al, 2017b), which can be generalized
to different application tasks. While some special tasks needs an additional design
on the GNN architecture to better handle the specific problem. For example, in the
task of recommender systems, PinSage (Ying et al, 2018a) is proposed which takes
the top-k counted nodes of a node as its receptive field and utilizes weighted ag-
gregation for aggregation. PinSage can be scalable to the web-scale recommender
systems with millions of users and items. KGCN (Wang et al, 2019d) aims to en-
hance the item representation by performing aggregations among its corresponding
entity neighborhood in a knowledge graph. KGAT (Wang et al, 2019j) shares a gen-
erally similar idea with KGCN except for incorporating an auxiliary loss for knowl-
edge graph reconstruction. For instance, in the NLP task of KB-alignment, Xu et al
(2019e) formulated it as a graph matching problem, and proposed a graph attention-
based approach. It first matches all entities in two KGs, and then jointly models the
local matching information to derive a graph-level matching vector. The detailed
GNN techniques for each application can be found in the following chapters of this
book.

3.2.4 Graph Neural Networks: Organization

The high-level organization of the book is demonstrated in Figure 1.3. The book is
organized into four parts to best accommodate a variety of readers. Part I introduces
basic concepts; Part II discusses the most established methods; Part III presents the
most typical frontiers, and Part IV describes advances of methods and applications

36 Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao and Le Song

that tend to be important and promising for future research. Next, we briefly elabo-
rate on each chapter.

• Part I: Introduction. These chapters provide the general introduction from the
representation learning for different data types, to the graph representation
learning. In addition, it introduces the basic ideas and typical variants of graph
neural networks for the graph representation learning.

• Part II: Foundations. These chapters describe the foundations of the graph neu-
ral networks by introducing the properties of graph neural networks as well as
several fundamental problems in this line. Specifically, this part introduces the
fundamental problems in graphs: node classification, the expressive power of
graph neural networks, the interpretability and scalability issues of graph neu-
ral network, and the adversarial robustness of the graph neural networks.

• Part III: Frontiers. In these chapters, some frontier or advanced problems in
the domain of graph neural networks are proposed. Specifically, there are in-
troductions about the techniques in graph classification, link prediction, graph
generation, graph transformation, graph matching, graph structure learning. In
addition, there are also introductions of several variants of GNNs for different
types of graphs, such as GNNs for dynamic graphs, heterogeneous graphs. We
also introduce the AutoML and self-supervised learning for GNNs.

• Part IV: Broad and Emerging Applications. These chapters introduce the broad
and emerging applications with GNNs. Specifically, these GNNs-based applica-
tions covers modern recommender systems, tasks in computer vision and NLP,
program analysis, software mining, biomedical knowledge graph mining for
drug design, protein function prediction and interaction, anomaly detection, and
urban intelligence.

3.3 Summary

Graph Neural Networks (GNNs) have been emerging rapidly to deal with the graph-
structured data, which cannot be directly modeled by the conventional deep learning
techniques that are designed for Euclidean data such as images and text. A wide
range of applications can be naturally or best represented with graph structure and
have been successfully handled by various graph neural networks.

In this chapter, we have systematically introduced the development and overview
of GNNs, including the introduction of its foundations, frontiers, and applications.
Specifically, we provide the fundamental aspects of GNNs ranging from the existing
typical GNN methods and their expressive powers, to the scalability, interpretability
and robustness of GNNs. These aspects motivate the research on better understand-
ing and utilization of GNNs. Built on GNNs, recent research developments have
seen a surge of interests in coping with graph-related research problems, which
we called frontiers of GNNs. We have discussed various frontier research built on
GNNs, ranging from graph classification and link prediction, to graph generation,

3 Graph Neural Networks 37

Fig. 3.1: The high-level organization of the book

transformation, matching and graph structure learning. Due to the power of GNNs
to model various data with complex structures, GNNs have been widely applied into
many applications and domains, such as modern recommender systems, computer
vision, natural language processing, program analysis, software mining, bioinfor-
matics, anomaly detection, and urban intelligence. Most of these tasks consist of
two important steps, namely graph construction and graph representation learning.
Thus, we provide the introduction of the techniques of these two steps regarding
different applications. The introduction part will end here and thus a summary of
the organization of this book has been provided at the end of this chapter.

Part II
Foundations of Graph Neural Networks

Chapter 4
Graph Neural Networks for Node Classification

Jian Tang and Renjie Liao

Abstract Graph Neural Networks are neural architectures specifically designed for
graph-structured data, which have been receiving increasing attention recently and
applied to different domains and applications. In this chapter, we focus on a funda-
mental task on graphs: node classification. We will give a detailed definition of node
classification and also introduce some classical approaches such as label propaga-
tion. Afterwards, we will introduce a few representative architectures of graph neu-
ral networks for node classification. We will further point out the main difficulty—
the oversmoothing problem—of training deep graph neural networks and present
some latest advancement along this direction such as continuous graph neural net-
works.

4.1 Background and Problem Definition

Graph-structured data (e.g., social networks, the World Wide Web, and protein-
protein interaction networks) are ubiquitous in real-world, covering a variety of
applications. A fundamental task on graphs is node classification, which tries to
classify the nodes into a few predefined categories. For example, in social networks,
we want to predict the political bias of each user; in protein-protein interaction net-
works, we are interested in predicting the function role of each protein; in the World
Wide Web, we may have to classify web pages into different semantic categories.
To make effective prediction, a critical problem is to have very effective node rep-
resentations, which largely determine the performance of node classification.

Graph neural networks are neural network architectures specifically designed for
learning representations of graph-structured data including learning node represen-

Jian Tang
Mila-Quebec AI Institute, HEC Montreal, e-mail: jian.tang@hec.ca

Renjie Liao
University of Toronto, e-mail: rjliao@cs.toronto.edu

41
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_4

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:jian.tang@hec.ca
mailto:rjliao@cs.toronto.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_4&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_4

42 Jian Tang and Renjie Liao

tations of big graphs (e.g., social networks and the World Wide Web) and learning
representations of entire graphs (e.g., molecular graphs). In this chapter, we will
focus on learning node representations for large-scale graphs and will introduce
learning the whole-graph representations in other chapters. A variety of graph neu-
ral networks have been proposed (Kipf and Welling, 2017b; Veličković et al, 2018;
Gilmer et al, 2017; Xhonneux et al, 2020; Liao et al, 2019b; Kipf and Welling,
2016; Veličković et al, 2019). In this chapter, we will comprehensively revisit exist-
ing graph neural networks for node classification including supervised approaches
(Sec. 4.2), unsupervised approaches (Sec. 4.3), and a common problem of graph
neural networks for node classification—over-smoothing (Sec. 4.4).

Problem Definition. Let us first formally define the problem of learning node rep-
resentations for node classification with graph neural networks. Let G = (V ,E)
denotes a graph, where V is the set of nodes and E is the set of edges. A∈RN×N rep-
resents the adjacency matrix, where N is the total number of nodes, and X ∈ RN×C

represents the node attribute matrix, where C is the number of features for each
node. The goal of graph neural networks is to learn effective node representations
(denoted as H ∈ RN×F , F is the dimension of node representations) by combining
the graph structure information and the node attributes, which are further used for
node classification.

Table 4.1: Notations used throughout this chapter.

Concept Notation
Graph G = (V ,E)

Adjacency matrix A ∈ RN×N

Node attributes X ∈ RN×C

Total number of GNN layers K
Node representations at the k-th layer Hk ∈ RN×F , k ∈ {1,2, · · · ,K}

4.2 Supervised Graph Neural Networks

In this section, we revisit several representative methods of graph neural networks
for node classification. We will focus on the supervised methods and introduce the
unsupervised methods in the next section. We will start by introducing a general
framework of graph neural networks and then introduce different variants under this
framework.

4 Graph Neural Networks for Node Classification 43

4.2.1 General Framework of Graph Neural Networks

The essential idea of graph neural networks is to iteratively update the node repre-
sentations by combining the representations of their neighbors and their own repre-
sentations. In this section, we introduce a general framework of graph neural net-
works in (Xu et al, 2019d). Starting from the initial node representation H0 = X , in
each layer we have two important functions:

• AGGREGATE, which tries to aggregate the information from the neighbors of
each node;

• COMBINE, which tries to update the node representations by combining the
aggregated information from neighbors with the current node representations.

Mathematically, we can define the general framework of graph neural networks
as follows:

Initialization: H0 = X
For k = 1,2, · · · ,K,

ak
v = AGGREGATEk{Hk−1

u : u ∈ N(v)} (4.1)
Hk

v = COMBINEk{Hk−1
v ,ak

v}, (4.2)

where N(v) is the set of neighbors for the v-th node. The node representations HK

in the last layer can be treated as the final node representations.
Once we have the node representations, they can be used for downstream tasks.

Take the node classification as an example, the label of node v (denoted as ŷv) can
be predicted through a Softmax function, i.e.,

ŷv = Softmax(WH⊤v), (4.3)

where W ∈ R|L |×F , |L | is the number of labels in the output space.
Given a set of labeled nodes, the whole model can be trained by minimizing the

following loss function:

O =
1
nl

nl

∑
i=1

loss(ŷi,yi), (4.4)

where yi is the ground truth label of node i, nl is the number of labeled nodes,
loss(·, ·) is a loss function such as cross-entropy loss function. The whole neural
networks can be optimized by minimizing the objective function O with backprop-
agation.

Above we present a general framework of graph neural networks. Next, we will
introduce a few most representative instantiations or variants of graph neural net-
works in the literature.

44 Jian Tang and Renjie Liao

4.2.2 Graph Convolutional Networks

We will start from the graph convolutional networks (GCN) (Kipf and Welling,
2017b), which is now the most popular graph neural network architecture due to its
simplicity and effectiveness in a variety of tasks and applications. Specifically, the
node representations in each layer is updated according to the following propagation
rule:

Hk+1 = σ(D̃−
1
2 ÃD̃−

1
2 HkW k). (4.5)

Ã = A + I is the adjacency matrix of the given undirected graph G with self-
connections, which allows to incorporate the node features itself when updating the
node representations. I ∈ RN×N is the identity matrix. D̃ is a diagonal matrix with
D̃ii = ∑ j Ãi j. σ(·) is an activation function such as ReLU and Tanh. The ReLU ac-
tive function is widely used, which is defined as ReLU(x) = max(0,x). W k ∈RF×F ′

(F ,F ′ are the dimensions of node representations in the k-th, (k+1)-th layer respec-
tively) is a laywise linear transformation matrix, which will be trained during the
optimization.

We can further dissect equation equation 4.5 and understand the AGGREGATE
and COMBINE function defined in GCN. For a node i, the node updating equation
can be reformulated as below:

Hk
i = σ(∑

j∈{N(i)∪i}

Ãi j√
D̃iiD̃ j j

Hk−1
j W k) (4.6)

Hk
i = σ(∑

j∈N(i)

Ai j√
D̃iiD̃ j j

Hk−1
j W k +

1
D̃i

Hk−1
i W k) (4.7)

In the Equation equation 4.7, we can see that the AGGREGATE function is de-
fined as the weighted average of the neighbor node representations. The weight of
the neighbor j is determined by the weight of the edge between i and j (i.e. Ai j nor-
malized by the degrees of the two nodes). The COMBINE function is defined as the
summation of the aggregated messages and the node representation itself, in which
the node representation is normalized by its own degree.

Connections with Spectral Graph Convolutions. Next, we discuss the connec-
tions between GCNs and traditional spectral filters defined on graphs (Defferrard
et al, 2016). The spectral convolutions on graphs can be defined as a multiplication
of a node-wise signal x ∈ RN with a convolutional filter gθ = diag(θ) (θ ∈ RN is
the parameter of the filter) in the Fourier domain. Mathematically,

gθ ⋆x =UgθUT x. (4.8)

4 Graph Neural Networks for Node Classification 45

U represents the matrix of the eigenvectors of the normalized graph Laplacian ma-
trix L = IN −D−

1
2 AD−

1
2 . L = UΛUT , Λ is a diagonal matrix of eigenvalues, and

UT x is the graph Fourier transform of the input signal x. In practice, gθ can be un-
derstood as a function of the eigenvalues of the normalized graph Laplacian matrix
L (i.e. gθ (Λ)). In practice, directly calculating Eqn. equation 4.8 is very compu-
tationally expensive, which is quadratic to the number of nodes N. According to
(Hammond et al, 2011), this problem can be circumvented by approximating the
function gθ (Λ) with a truncated expansion of Chebyshev polynomials Tk(x) up to
Kth order:

gθ ′(Λ) =
K

∑
k=0

θ
′
kTk(Λ̃), (4.9)

where Λ̃ = 2
λmax

Λ − I, and λmax is the largest eigenvalue of L. θ ′ ∈ RK is the vector
of Chebyshev coefficients. Tk(x) are Chebyshev polynomials which are recursively
defined as Tk(x) = 2xTk−1(x)−Tk−2(x), with T0(x) = 1 and T1(x) = x. By combining
Eqn. equation 4.9 and Eqn. equation 4.8, the convolution of a signal x with a filter
gθ ′ can be reformulated as below:

gθ ′ ⋆x =
K

∑
k=0

θ
′
kTk(L̃)x, (4.10)

where L̃ = 2
λmax

L− I. From this equation, we can see that each node only depends
on the information within the Kth-order neighborhood. The overall complexity of
evaluating Eqn. equation 4.10 is O(|E |) (i.e. linear to the number of edges in the
original graph G), which is very efficient.

To define a neural network based on graph convolutions, one can stack multiple
convolution layers defined according to Eqn. equation 4.10 with each layer followed
by a nonlinear transformation. At each layer, instead of being limited to the explicit
parametrization by the Chebyshev polynomials defined in Eqn. equation 4.10, the
authors of GCNs proposed to limit the number of convolutions to K = 1 at each
layer. By doing this, at each layer, it only defines a linear function over the graph
Laplacian matrix L. However, by stacking multiple such layers, we are still capable
of covering a rich class of convolution filter functions on graphs. Intuitively, such a
model is capable of alleviating the problem of overfitting local neighborhood struc-
tures for graphs whose node degree distribution has a high variance such as social
networks, the World Wide Web, and citation networks.

At each layer, we can further approximate λmax ≈ 2, which could be accommo-
dated by the neural network parameters during training. Based on al these simplifi-
cations, we have

gθ ′ ⋆x≈ θ
′
0x+θ

′
1x(L− IN)x = θ

′
0x−θ

′
1D−

1
2 AD−

1
2 , (4.11)

where θ ′0 and θ ′1 are too free parameters, which could be shared over the entire
graph. In practice, we can further reduce the number of parameters, which allows to

46 Jian Tang and Renjie Liao

reduce overfitting and meanwhile minimize the number of operations per layer. As
a result, the following expression can be further obtained:

gθ ⋆x≈ θ(I+D−
1
2 AD−

1
2)x, (4.12)

where θ = θ ′0 = −θ ′1. One potential issue is the matrix IN + D−
1
2 AD−

1
2 , whose

eigenvalues lie in the interval of [0,2]. In a deep graph convolutional neural network,
repeated application of the above function will likely lead to exploding or vanish-
ing gradients, yielding numerical instabilites. As a result, we can further renormal-
ize this matrix by converting I+D−

1
2 AD−

1
2 to D̃−

1
2 ÃD̃−

1
2 , where Ã = A+ I, and

D̃ii = ∑ j Ãi j.
In the above, we only consider the case that there is only one feature channel

and one filter. This can be easily generalized to an input signal with C channels
X ∈ RN×C and F filters (or number of hidden units) as follows:

H = D̃−
1
2 ÃD̃−

1
2 XW, (4.13)

where W ∈ RC×F is a matrix of filter parameters. H is the convolved signal matrix.

4.2.3 Graph Attention Networks

In GCNs, for a target node i, the importance of a neighbor j is determined by the
weight of their edge Ai j (normalized by their node degrees). However, in practice,
the input graph may be noisy. The edge weights may not be able to reflect the true
strength between two nodes. As a result, a more principled approach would be to au-
tomatically learn the importance of each neighbor. Graph Attention Networks (a.k.a.
GAT(Veličković et al, 2018)) is built on this idea and try to learn the importance of
each neighbor based on the Attention mechanism (Bahdanau et al, 2015; Vaswani
et al, 2017). Attention mechanism has been wide used in a variety of tasks in nat-
ural language understanding (e.g. machine translation and question answering) and
computer vision (e.g. visual question answering and image captioning). Next, we
will introduce how attention is used in graph neural networks.

Graph Attention Layer. The graph attention layer defines how to transfer the hid-
den node representations at layer k−1 (denoted as Hk−1 ∈ RN×F) to the new node
representations Hk ∈ RN×F ′ . In order to guarantee sufficient expressive power to
transform the lower-level node representations to higher-level node representations,
a shared linear transformation is applied to every node, denoted as W ∈ RF×F ′ . Af-
terwards, self-attention is defined on the nodes, which measures the attention coeffi-
cients for any pair of nodes through a shared attentional mechanism a : RF ′×RF ′→
R

ei j = a(WHk−1
i ,WHk−1

j). (4.14)

4 Graph Neural Networks for Node Classification 47

ei j indicates the relationship strength between node i and j. Note in this subsec-
tion we use Hk−1

i to represent a column-wise vector instead of a row-wise vector.
For each node, we can theoretically allow it to attend to every other node on the
graph, which however will ignore the graph structural information. A more reason-
able solution would be only to attend to the neighbors for each node. In practice,
the first-order neighbors are only used (including the node itself). And to make the
coefficients comparable across different nodes, the attention coefficients are usually
normalized with the softmax function:

αi j = Softmax j({ei j}) =
exp(ei j)

∑l∈N(i) exp(eil)
. (4.15)

We can see that for a node i, αi j essentially defines a multinomial distribution over
the neighbors, which can also be interpreted as the transition probability from node
i to each of its neighbors.

In the work by Veličković et al (2018), the attention mechanism a is defined as
a single-layer feedforward neural network including a linear transformation with
the weight vector W2 ∈ R1×2F ′) and a LeakyReLU nonlinear activation function
(with negative input slope α = 0.2). More specifically, we can calculate the attention
coefficients with the following architecture:

αi j =
exp(LeakyReLU(W2[WHk−1

i ||WHk−1
j]))

∑l∈N(i) exp(LeakyReLU(W2[WHk−1
i ||WHk−1

l]))
, (4.16)

where || represents the operation of concatenating two vectors. The new node rep-
resentation is a linear combination of the neighboring node representations with the
weights determined by the attention coefficients (with a potential nonlinear trans-
formation), i.e.

Hk
i = σ

(
∑

j∈N(i)
αi jWHk−1

j

)
. (4.17)

Multi-head Attention.
In practice, instead of only using one single attention mechanism, multi-head at-

tention can be used, each of which determines a different similarity function over
the nodes. For each attention head, we can independently obtain a new node rep-
resentation according to Eqn. equation 4.17. The final node representation will be
a concatenation of the node representations learned by different attention heads.
Mathematically, we have

Hk
i =

∥∥∥∥
T

t=1
σ

(
∑

j∈N(i)
α

t
i jW

tHk−1
j

)
, (4.18)

48 Jian Tang and Renjie Liao

where T is the total number of attention heads, α t
i j is the attention coefficient calcu-

lated from the t-th attention head, W t is the linear transformation matrix of the t-th
attention head.

One thing that mentioned in the paper by Veličković et al (2018) is that in the
final layer, when trying to combine the node representations from different attention
heads, instead of using the operation concatenation, other pooling techniques could
be used, e.g. simply taking the average node representations from different attention
heads.

Hk
i = σ

(
1
T

T

∑
t=1

∑
j∈N(i)

α
t
i jW

tHk−1
j

)
. (4.19)

4.2.4 Neural Message Passing Networks

Another very popular graph neural network architecture is the Neural Message Pass-
ing Network (MPNN) (Gilmer et al, 2017), which is originally proposed for learn-
ing molecular graph representations. However, MPNN is actually very general, pro-
vides a general framework of graph neural networks, and could be used for the task
of node classification as well. The essential idea of MPNN is formulating existing
graph neural networks as a general framework of neural message passing among
nodes. In MPNNs, there are two important functions including Message and Up-
dating function:

mk
i = ∑

i∈N(j)
Mk(Hk−1

i ,Hk−1
j ,ei j), (4.20)

Hk
i =Uk(Hk−1

i ,mk
i). (4.21)

Mk(·, ·, ·) defines the message between node i and j in the k-th layer, which depends
on the two node representations and the information of their edge. Uk is the node
updating function in the k-th layer which combines the aggregated messages from
the neighbors and the node representation itself. We can see that the MPNN frame-
work is very similar to the general framework we introduced in Section 4.2.1. The
AGGREGATE function defined here is simply a summation of all the messages
from the neighbors. The COMBINE function is the same as the node Updating
function.

4.2.5 Continuous Graph Neural Networks

The above graph neural networks iteratively update the node representations with
different kinds of graph convolutional layers. Essentially, these approaches model

4 Graph Neural Networks for Node Classification 49

the discrete dynamics of node representations with GNNs. Xhonneux et al (2020)
proposed the continuous graph neural networks (CGNNs), which generalizes exist-
ing graph neural networks with discrete dynamics to continuous settings, i.e., trying
to model the continuous dynamics of node representations. The key idea is how to
characterize the continuous dynamics of node representations, i.e. the derivatives of
node representation w.r.t. time. The CGNN model is inspired by the diffusion-based
models on graphs such as PageRank and epidemic models on social networks. The
derivatives of the node representations are defined as a combination of the node
representation itself, the representations of its neighbors, and the initial status of the
nodes. Specifically, two different variants of node dynamics are introduced. The first
model assumes that different dimensions of node presentations (a.k.a. feature chan-
nels) are independent; the second model is more flexible, which allows different
feature channels to interact with each other. Next, we give a detailed introduction to
each of the two models.
Note: in this part, instead of using the original adjacency matrix A, we use the fol-
lowing regularized matrix for characterizing the graph structure:

A :=
α

2

(
I +D−

1
2 AD−

1
2

)
, (4.22)

where α ∈ (0,1) is a hyperparameter. D is the degree matrix of the original adja-
cency matrix A. With the new regularized adjacency matrix A, the eigenvalues of A
will lie in the interval [0,α], which will make Ak converges to 0 when we increase
the power of k.

Model 1: Independent Feature Channels. As different nodes in a graph are inter-
connected, a natural solution to model the dynamic of each feature channel should
be taking the graph structure into consideration, which allows the information to
propagate across different nodes. We are motivated by existing diffusion-based
methods on graphs such as PageRank (Page et al, 1999) and label propagation (Zhou
et al, 2004), which defines the discrete propagation of node representations (or sig-
nals on nodes) with the following step-wise propagation equations:

Hk+1 = AHk +H0, (4.23)

where H0 = X or the output of an encoder on the input feature X . Intuitively, at each
step, the new node representation is a linear combination of its neighboring node
representations as well as the initial node features. Such a mechanism allows to
model the information propagation on the graph without forgetting the initial node
features. We can unroll Eqn. equation 4.23 and explicitly derive the node represen-
tations at the k-th step:

Hk =

(
k

∑
i=0

Ai

)
H0 = (A− I)−1(Ak+1− I)H0. (4.24)

As the above equation effectively models the discrete dynamics of node repre-
sentations, the CGNN model further extended it to the continuous setting, which

50 Jian Tang and Renjie Liao

replaces the discrete time step k to a continuous variable t ∈ R+
0 . Specifically, it

has been shown that Eqn. equation 4.24 is a discretization of the following ordinary
differential equation (ODE):

dHt

dt
= logAHt +X , (4.25)

with the initial value H0 = (logA)−1(A− I)X , where X is the initial node features or
the output of an encoder applied to it. We do not provide the proof here. More details
can be referred to the original paper (Xhonneux et al, 2020). In Eqn. equation 4.25,
as logA is intractable to compute in practice, it is approximated with the first-order
of the Taylor expansion, i.e. logA≈ A− I. By integrating all these information, we
have the following ODE equation:

dHt

dt
= (A− I)Ht +X , (4.26)

with the initial value H0 = X , which is the first variant of the CGNN model.
The CGNN model is actually very intuitive, which has a nice connection with

traditional epidemic model, which aims at studying the dynamics of infection in a
population. For the epidemic model, it usually assumes that the infection of people
will be affected by three different factors including the infection from neighbors, the
natural recovery, and the natural characteristics of people. If we treat Ht as the num-
ber of people infected at time t, then these three factors can be naturally modeled by
the three terms in Eqn. equation 4.26: AHt for the infection from neighbors, −Ht

for the natural recovery, and the last one X for the natural characteristics of people.

Model 2: Modeling the Interaction of Feature Channels. The above model as-
sumes different node feature channels are independent with each other, which is a
very strong assumption and limits the capacity of the model. Inspired by the success
of a linear variant of graph neural networks (i.e., Simple GCN (Wu et al, 2019a)),
a more powerful discrete node dynamic model is proposed, which allows different
feature channels to interact with each other as,

Hk+1 = AHkW +H0, (4.27)

where W ∈RF×F is a weight matrix used to model the interactions between different
feature channels. Similarly, we can also extend the above discrete dynamics into
continuous case, yielding the following equation:

dHt

dt
= (A− I)Ht +Ht(W − I)+X , (4.28)

with the initial value being H0 = X . This is the second variant of CGNN with train-
able weights. Similar form of ODEs defined in Eqn. equation 4.28 has been studied
in the literature of control theory, which is known as Sylvester differential equa-
tion (Locatelli and Sieniutycz, 2002). The two matrices A−I and W−I characterize

4 Graph Neural Networks for Node Classification 51

the natural solution of the system while X is the information provided to the system
to drive the system into the desired state.

Discussion. The proposed continuous graph neural networks (CGNN) has multiple
nice properties: (1) Recent work has shown that if we increase the number of layers
K in the discrete graph neural networks, the learned node representations tend to
have the problem of over-smoothing (will introduce in detail later) and hence lose
the power of expressiveness. On the contrary, the continuous graph neural networks
are able to train very deep graph neural networks and are experimentally robust to
arbitrarily chosen integration time; (2) For some of the tasks on graphs, it is crit-
ical to model the long-range dependency between nodes, which requires training
deep GNNs. Existing discrete GNNs fail to train very deep GNNs due to the over-
smoothing problem. The CGNNs are able to effectively model the long-range de-
pendency between nodes thanks to the stability w.r.t. time. (3) The hyperparameter
α is very important, which controls the rate of diffusion. Specifically, it controls the
rate at which high-order powers of regularized matrix A vanishes. In the work pro-
posed by (Xhonneux et al, 2020), the authors proposed to learn a different value of
α for each node, which hence allows to choose the best diffusion rates for different
nodes.

4.2.6 Multi-Scale Spectral Graph Convolutional Networks

Recall the one-layer graph convolution operator used in GCNs (Kipf and Welling,
2017b) H = LHW , where L = D−

1
2 ÃD−

1
2 . Here we drop the superscript of the layer

index to avoid the clash with the notation of the matrix power. There are two main
issues with this simple graph convolution formulation. First, one such graph convo-
lutional layer would only propagate information from any node to its nearest neigh-
bors, i.e., neighboring nodes that are one-hop away. If one would like to propagate
information to M-hop away neighbors, one has to either stack M graph convolutional
layers or compute the graph convolution with M-th power of the graph Laplacian,
i.e., H = σ(LMHW). When M is large, the solution of stacking layers would make
the whole GCN model very deep, thus causing problems in learning like the van-
ishing gradient. This is similar to what people experienced in training very deep
feedforward neural networks. For the matrix power solution, naively computing the
M-th power of the graph Laplacian is also very costly (e.g., the time complexity is
O(N3(M−1)) for graphs with N nodes). Second, there are no learnable parameters
in GCNs associated with the graph Laplacian L (corresponding to the connectiv-
ities/structures). The only learnable parameter W is a linear transform applied to
every node simultaneously which is not aware of the structures. Note that we typ-
ically associate learnable weights on edges while applying the convolution applied
to regular graphs like grids (e.g., applying 2D convolution to images). This would
greatly improve the expressiveness of the model. However, it is not clear that how

52 Jian Tang and Renjie Liao

one can add learnable parameters to the graph Laplacian L since its size varies from
graph to graph.

Algorithm 1 : Lanczos Algorithm
1: Input: S,x,M,ε
2: Initialization: β0 = 0, q0 = 0, and q1 = x/∥x∥
3: For j = 1,2, . . . ,K:
4: z = Sq j

5: γ j = q⊤j z
6: z = z− γ jq j−β j−1q j−1
7: β j = ∥z∥2
8: If β j < ε , quit
9: q j+1 = z/β j

10:
11: Q = [q1,q2, · · · ,qM]
12: Construct T following Eq. (4.29)
13: Eigen decomposition T = BRB⊤

14: Return V = QB and R. =0

Fig. 4.1: The inference procedure of Lanczos Networks. The approximated top
eigenvalues {rk} and eigenvectors {vk} are computed by the Lanczos algorithm.
Note that this step is only needed once per graph. The long range/scale (top blocks)
graph convolutions are efficiently computed by the low-rank approximation of the
graph Laplacian. One can control the ranges (i.e., the exponent of eigenvalues)
as hyperparameters. Learnable spectral filters are applied to the approximated top
eigenvalues {rk}. The short range/scale (bottom blocks) graph convolution is the
same as GCNs. Adapted from Figure 1 of (Liao et al, 2019b).

To overcome these two problems, authors propose Lanczos Networks in (Liao
et al, 2019b). Given the graph Laplacian matrix L1 and node features X , one first

1 Here we assume a symmetric graph Laplacian matrix. If it is non-symmetric (e.g., for directed
graphs), one can resort to the Arnoldi algorithm.

{"#, %#}' =)*+,-./())

... 2 = 345645(7)

Short Range Spectral Filtering
e.g., S = 1, 2, …

concat 7

7< = = >)<?@< ∀B ∈ [|F|]

Long Range Spectral Filtering
e.g., I = {20, 50, , … }

Layer 1 Layer 2

>)< = K
#LM

'

N<("#
OP , "#

OQ , … , "#
O|R|)%#%#S

7< = =)TU?@< ∀B ∈ [|V|]

Short Range Spectral Filtering
e.g., S = 1, 2, …

concat 7

7< = = >)<?@< ∀B ∈ [|F|]

Long Range Spectral Filtering
e.g., I = {20, 50, , … }

>)< = K
#LM

'

N<("#
OP , "#

OQ , … , "#
O|R|)%#%#S

7< = =)TU?@< ∀B ∈ [|V|]

4 Graph Neural Networks for Node Classification 53

uses the M-step Lanczos algorithm (Lanczos, 1950) (listed in Alg. 1) to compute an
orthogonal matrix Q and a symmetric tridiagonal matrix T , such that Q⊤LQ = T .
We denote Q = [q1, · · · ,qM] where column vector qi is the i-th Lanczos vector. Note
that M could be much smaller than the number of nodes N. T is illustrated as below,

T =

γ1 β1

β1
.
. βM−1

βM−1 γM

. (4.29)

After obtaining the tridiagonal matrix T , we can compute the Ritz values and Ritz
vectors which approximate the top eigenvalues and eigenvectors of L by diagonal-
izing the matrix T as T = BRB⊤, where the K×K diagonal matrix R contains the
Ritz values and B ∈ RK×K is an orthogonal matrix. Here top means ranking the
eigenvalues by their magnitudes in a descending order. This can be implemented
via the general eigendecomposition or some fast decomposition methods special-
ized for tridiagonal matrices. Now we have a low rank approximation of the graph
Laplacian matrix L ≈V RV⊤, where V = QB. Denoting the column vectors of V as
{v1, · · · ,vM}, we can compute multi-scale graph convolution as

H = L̂HW

L̂ =
M

∑
m=1

fθ (rI1
m ,r

I2
m , · · · ,rIu

m)vmv⊤m , (4.30)

where {I1, · · · , Iu} is the set of scale/range parameters which determine how many
hops (or how far) one would like to propagate the information over the graph. For
example, one could easily set {I1 = 50, I2 = 100} (u = 2 in this case) to consider the
situations of propagating 50 and 100 steps respectively. Note that one only needs to
compute the scalar power rather than the original matrix power. The overall com-
plexity of the Lanczos algorithm in our context is O(MN2) which makes the whole
algorithm much more efficient than naively computing the matrix power. Moreover,
fθ is a learnable spectral filter parameterized by θ and can be applied to graphs with
varying sizes since we decouple the graph size and the input size of fθ . fθ directly
acts on the graph Laplacian and greatly improves the expressiveness of the model.

Although Lanczos algorithm provides an efficient way to approximately com-
pute arbitrary powers of the graph Laplacian, it is still a low-rank approximation
which may lose certain information (e.g., the high frequency one). To alleviate the
problem, one can further do vanilla graph convolution with small scale parameters
like H = LSHW where S could be small integers like 2 or 3. The resultant repre-
sentation can be concatenated with the one obtained from the longer scale/range
graph convolution in Eq. (4.30). Relying on the above design, one could add nonlin-
earities and stack multiple such layers to build a deep graph convolutional network
(namely Lanczos Networks) just like GCNs. The overall inference procedure of
Lanczos Networks is shown in Fig. 4.1. This method demonstrates strong empirical

54 Jian Tang and Renjie Liao

performances on a wide variety of tasks/benchmarks including molecular property
prediction in quantum chemistry and document classification in citation networks. It
just requires slight modifications to the implementation of the original GCNs. Nev-
ertheless, if the input graph is extremely large (e.g., some large social network), the
Lanczos algorithm itself would be a computational bottleneck. How to improve this
model in such a problem context would be an open question.

Here we only introduce a few representative architectures of graph neural net-
works for node classification. There are also many other well-known architectures
including gated graph neural networks (Li et al, 2016b)—which is mainly designed
for output sequences—and GraphSAGE (Hamilton et al, 2017b)—which is mainly
designed for inductive setting of node classification.

4.3 Unsupervised Graph Neural Networks

In this section, we review a few representative GNN-based methods for unsuper-
vised learning on graph-structured data, including variational graph auto-encoders
(Kipf and Welling, 2016) and deep graph infomax (Veličković et al, 2019).

4.3.1 Variational Graph Auto-Encoders

Following variational auto-encoders (VAEs) (Kingma and Welling, 2014; Rezende
et al, 2014) , variational graph auto-encoders (VGAEs) (Kipf and Welling, 2016)
provide a framework for unsupervised learning on graph-structured data. In the fol-
lowing, we first review the model and then discuss its advantages and disadvantages.

4.3.1.1 Problem Setup

Suppose we are given an undirected graph G = (V ,E) with N nodes. Each node
is associated with a node feature/attribute vector. We compactly denote all node
features as a matrix X ∈ RN×C. The adjacency matrix of the graph is A. We assume
self-loops are added to the orignal graph G so that the diagonal entries of A are 1.
This is a convention in graph convolutional networks (GCNs) (Kipf and Welling,
2017b) and makes the model consider a node’s old representation while updating its
new representation. We also assume each node is associated with a latent variable
(the collection of all latent variables is again compactly denoted as a matrix Z ∈
RN×F). We are interested in inferring the latent variables of nodes in the graph and
decoding the edges.

4 Graph Neural Networks for Node Classification 55

4.3.1.2 Model

Similar to VAEs, the VGAE model consists of an encoder qφ (Z|A,X), a decoder
pθ (A|Z), and a prior p(Z).

Encoder The goal of the encoder is to learn a distribution of latent variables asso-
ciated with each node conditioning on the node features X and the adjacency matrix
A. We could instantiate qφ (Z|A,X) as a graph neural network where the learnable
parameters are φ . In particular, VGAE assumes an node-independent encoder as
below,

qφ (Z|X ,A) =
N

∏
i=1

qφ (zi|X ,A) (4.31)

qφ (zi|X ,A) = N (zi|µi,diag(σ2
i)) (4.32)

µ,σ = GCNφ (X ,A) (4.33)

where zi, µi, and σi are the i-th rows of the matrices Z, µ, and σ respectively. Ba-
sically, we assume a multivariate Normal distribution with the diagonal covariance
as the variational approximated distribution of the latent vector per node (i.e., zi).
The mean and diagonal covariance are predict by the encoder network, i.e., a GCN
as described in Section 4.2.2. For example, the original paper uses a two-layer GCN
as follows,

µ= ÃHWµ (4.34)

σ = ÃHWσ (4.35)

H = ReLU(ÃXW0), (4.36)

where Ã = D−
1
2 AD−

1
2 is the symmetrically normalized adjacency matrix and D is

the degree matrix. Learnable parameters are thus φ = [Wµ,Wσ,W0].
Decoder Given sampled latent variables, the decoder aims at predicting the con-

nectivities among nodes. The original paper adopts a simple dot-product based pre-
dictor as below,

p(A|Z) =
N

∏
i=1

N

∏
j=1

p(Ai j|zi,z j) (4.37)

p(Ai j|zi,z j) = σ(z⊤i z j), (4.38)

where Ai j denotes the (i, j)-th element and σ(·) is the logistic sigmoid function.
This decoder again assumes conditional independence among all possible edges for
tractability. Note that there are no learnable parameters associated with this decoder.
The only way to improve the performance of the decoder is to learn good latent
representations.

Prior The prior distributions over the latent variables are simply set to indepen-
dent zero-mean Gaussians with unit variances,

56 Jian Tang and Renjie Liao

p(Z) =
N

∏
i=1

N (zi|0,I). (4.39)

This prior is fixed throughout the learning as what typical VAEs do.
Objective & Learning To learn the encoder and the decoder, one typically max-

imize the evidence lower bound (ELBO) as in VAEs,

LELBO = Eqφ (Z|X ,A) [log p(A|Z)]−KL(qφ (Z|X ,A)∥p(Z)), (4.40)

where KL(q∥p) is the Kullback-Leibler divergence between distributions q and p.
Note that we can not directly maximize the log likelihood since the introduction
of latent variables Z induces a high-dimensional integral which is intractable. We
instead maximize the ELBO in Eq. (4.40) which is a lower bound of the log like-
lihood. However, the first expectation term is again intractable. One often resorts
to the Monte Carlo estimation by sampling a few Z from the encoder qφ (Z|X ,A)
and evaluating the term using the samples. To maximize the objective, one can per-
form stochastic gradient descent along with the reparameterization trick (Kingma
and Welling, 2014). Note that the reparameterization trick is necessary since we
need to back-propagate through the sampling in the aforementioned Monte Carlo
estimation term to compute the gradient w.r.t. the parameters of the encoder.

4.3.1.3 Discussion

The VGAE model is popular in the literature mainly due to its simplicity and good
empirical performances. For example, since there are no learnable parameters for
the prior and the decoder, the model is quite light-weight and the learning process
is fast. Moreover, the VGAE model is versatile in way that once we learned a good
encoder, i.e., good latent representations, we can use them for predicting edges (,
link prediction), node attributes, and so on. On the other side, VGAE model is still
limited in the following ways. First, it can not serve as a good generative model for
graphs as what VAEs do for images since the decoder is not learnable. One could
simply design some learnable decoder. However, it is not clear that the goal of learn-
ing good latent representations and generating graphs with good qualities are always
well-aligned. More exploration along this direction would be fruitful. Second, the
independence assumption is exploited for both the encoder and the decoder which
might be very limited. More structural dependence (e.g., auto-regressive) would be
desirable to improve the model capacity. Third, as discussed in the original paper,
the prior may be potentially a poor choice. At last, for link prediction in practice,
one may need to add the weighting of edges vs. non-edges in the decoder term and
carefully tune it since graphs may be very sparse.

4 Graph Neural Networks for Node Classification 57

4.3.2 Deep Graph Infomax

Following Mutual Information Neural Estimation (MINE) (Belghazi et al, 2018) and
Deep Infomax (Hjelm et al, 2018), Deep Graph Infomax (Veličković et al, 2019) is
an unsupervised learning framework that learns graph representations via the prin-
ciple of mutual information maximization.

4.3.2.1 Problem Setup

Following the original paper, we will explain the model under the single-graph
setup, i.e., the node feature matrix X and the graph adjacency matrix A of a single
graph are provided as input. Extensions to other problem setups like transductive
and inductive learning settings will be discussed in Section 4.3.2.3. The goal is to
learn the node representations in an unsupervised way. After node representations
are learned, one can apply some simple linear (logistic regression) classifier on top
of the representations to perform supervised tasks like node classification.

4.3.2.2 Model

~xi

~̃xj

(X,A)

(X̃, Ã)

~hi

~̃
hj

(H,A)

(H̃, Ã)

E

C

E

~s

R
D

D

+

−

Fig. 4.2: The overall process of Deep Graph Infomax. The top path shows how the
positive sample is processed, whereas the bottom shows process corresponding to
the negative sample. Note that the graph representation is shared for both positive
and negative samples. Subgraphs of positive and negative samples do not necessarily
need to be different. Adapted from Figure 1 of (Veličković et al, 2019).

The main idea of the model is to maximize the local mutual information between
a node representation (capturing local graph information) and the graph represen-
tation (capturing global graph information). By doing so, the learned node repre-
sentation should capture the global graph information as much as possible. Let us
denote the graph encoder as ε which could be any GNN discussed before, e.g., a
two-layer GCN. We can obtain all node representations as H = ε(X ,A) where the

58 Jian Tang and Renjie Liao

representation hi of any node i should contain some local information near node i.
Specifically, k-layer GCN should be able to leverage node information that is k-hop
away. To get the global graph information, one could use a readout layer/function
to process all node representations, i.e., s = R(H), where the readout function R
could be some learnable pooling function or simply an average operator.

Objective Given the local node representation hi and the global graph represen-
tation s, the natural next-step is to compute their mutual information. Recall the
definition of mutual information is as follows,

MI(h,s) =
∫ ∫

p(h,s) log
(

p(h,s)
p(h)p(s)

)
dhds. (4.41)

However, maximizing the local mutual information alone is not enough to learn
useful representations as shown in (Hjelm et al, 2018). To develop a more practical
objective, authors in (Veličković et al, 2019) instead use a noise-contrastive type
objective following Deep Infomax (Hjelm et al, 2018),

L =
1

N +M

(
N

∑
i=1

E(X ,A) [logD(hi,s)]+
M

∑
j=1

E(X̃ ,Ã)
[
log
(
1−D(h̃ j,s)

)]
)
. (4.42)

where D is a binary classifier which takes both the node representation hi and the
graph representation s as input and predicts whether the pair (hi,s) comes from the
joint distribution p(h,s) (positive class) or the product of marginals p(hi)p(s) (neg-
ative class). We denote h̃ j as the j-th node representation from the negative sample.
The numbers of positive and negative samples are N and M respectively. We will
explain how to draw positive and negative samples shortly. The overall objective is
thus the negative binary cross-entropy for training a probabilistic classifier. Note that
this objective is the same type of distance as used in generative adversarial networks
(GANs) (Goodfellow et al, 2014b) which is shown to be proportional to the Jensen-
Shannon divergence (Goodfellow et al, 2014b; Nowozin et al, 2016). As verified by
(Hjelm et al, 2018), maximizing the Jensen-Shannon divergence based mutual in-
formation estimator behaves similarly (i.e., they have an approximately monotonic
relationship) to directly maximizing the mutual information. Therefore, maximizing
the objective in Eq. (4.42) is expected to maximize the mutual information. More-
over, the freedom of choosing negative samples makes the method more likely to
learn useful representations than maximizing the vanilla mutual information.

Negative Sampling To generate the positive samples, one can directly sample a
few nodes from the graph to construct the pairs (hi,s). For negative samples, one can
generate them via corrupting the original graph data, denoting as (X̃ , Ã) = C (X ,A).
In practice, one can choose various forms of this corruption function C . For ex-
ample, authors in (Veličković et al, 2019) suggest to keep the adjacency matrix to
be the same and corrupt the node feature X by row-wise shuffling. Other possibili-
ties of the corruption function include randomly sampling subgraphs and applying
Dropout (Srivastava et al, 2014) to node features.

4 Graph Neural Networks for Node Classification 59

Once positive and negative samples were collected, one can learn the representa-
tions via maximizing the objective in Eq. (4.42). We summarize the training process
of Deep Graph Infomax as follows:

1. Sample negative examples via the corruption function (X̃ , Ã)∼ C (X ,A).
2. Compute node representations of positive samples H = {h1, · · · ,hN}= ε(X ,A).
3. Compute node representations of negative samples H̃ = {h̃1, · · · , h̃M}= ε(X̃ , Ã).
4. Compute graph representation via the readout function s = R(H).
5. Update parameters of ε , D , and R via gradient ascent to maximize Eq. (4.42).

4.3.2.3 Discussion

Deep Graph Infomax is an efficient unsupervised representation learning method
for graph-structured data. The implementation of the encoder, the readout, and the
binary cross-entropy type of loss are all straightforward. The mini-batch training
does not necessarily need to store the whole graph since the readout can be ap-
plied to a set of subgraphs as well. Therefore, the method is memory-efficient. Also,
the processing of positive and negative samples can be done in parallel. Moreover,
authors prove that minimizing the cross-entropy type of classification error can be
used to maximize the mutual information under certain conditions, e.g., the readout
function is injective and input feature comes from a finite set. However, the choice
of the corruption function seems to be crucial to ensure satisfying empirical perfor-
mances. There seems no such a universally good corruption function. One needs to
do trial–and-error to obtain a proper one depending on the task/dataset.

4.4 Over-smoothing Problem

Training deep graph neural networks by stacking multiple layers of graph neural
networks usually yields inferior results, which is a common problem observed in
many different graph neural network architectures. This is mainly due to the prob-
lem of over-smoothing, which is first explicitly studied in (Li et al, 2018b). (Li et al,
2018b) showed that the graph convolutional network (Kipf and Welling, 2017b) is
a special case of Laplacian smoothing:

Y = (1− γI)X + γÃrwX , (4.43)

where Ãrw = D̃−1Ã, which defines the transitional probabilities between nodes on
graphs. The GCN corresponds to a special case of Laplacian smoothing with γ = 1
and the symmetric matrix Ãsym = D̃−

1
2 ÃD̃−

1
2 is used. The Laplacian smoothing will

push nodes belonging to the same clusters to take similar representations, which
are beneficial for downstream tasks such as node classification. However, when the
GCNs go deep, the node representations suffer from the problem of over-smoothing,
i.e., all the nodes will have similar representations. As a result, the performance on

60 Jian Tang and Renjie Liao

downstream tasks suffer as well. This phenomenon has later been pointed out by a
few other later work as well such as (Zhao and Akoglu, 2019; Li et al, 2018b; Xu
et al, 2018a; Li et al, 2019c; Rong et al, 2020b).

PairNorm (Zhao and Akoglu, 2019). Next, we will present a method called
PairNorm for alleviating the problem of over-smoothing when GNNs go deep. The
essential idea of PairNorm is to keep the total pairwise squared distance (TPSD)
of node representations unchanged, which is the same as that of the original node
feature X . Let H̃ be the output of the node representations by the graph convolu-
tion, which will be the input of PairNorm, and Ĥ is the output of PairNorm. The
goal of PairNorm is to normalize the H̃ such that after normalization TPSD(Ĥ) =
TPSD(X). In other words,

∑
(i, j)∈E

||Ĥi− Ĥ j||2 + ∑
(i, j)̸∈E

||Ĥi− Ĥ j||2 = ∑
(i, j)∈E

||Xi−X j||2 + ∑
(i, j)̸∈E

||Xi−X j||2.

(4.44)
In practice, instead of measuring the TPSD of original node features X , (Zhao

and Akoglu, 2019) proposed to maintain a constant TPSD value C across different
graph convolutional layers. The value C will be a hyperparameter of the PairNorm
layer, which can be tuned for each data set. To normalize H̃ into Ĥ with a constant
TPSD, we must first calculate the TPSD(H̃). However, this is very computationally
expensive, which is quadratic to the number of nodes N. We notice that the TPSD
can be reformulated as:

TPSD(H̃) = ∑
(i, j)∈[N]

||H̃i− H̃ j||2 = 2N2

(
1
N

N

∑
i=1
||H̃i||22−||

1
N

N

∑
i=1

H̃i||22

)
(4.45)

We can further simply the above equation by substracting the row-wise mean
from each H̃i. In other words, H̃c

i = H̃i − 1
N ∑

N
i=1 H̃i, which denotes the centered

representation. A nice property of centering the node representation is that it will
not change the TPSD and meanwhile push the second term || 1

N ∑
N
i=1 H̃i||22 to zero.

As a result, we have

TPSD(H̃) = TPSD(H̃c) = 2N||H̃c||2F . (4.46)

To summarize, the proposed PairNorm can be divded into two steps: center-and-
scale,

H̃c
i = H̃i−

1
N

N

∑
i=1

H̃i (Center) (4.47)

Ĥi = s · H̃c
i√

1
N ∑

N
i=1 ||H̃c

i ||22
= s
√

N · H̃c
i√

||H̃c||2F
(Scale), (4.48)

4 Graph Neural Networks for Node Classification 61

where s is a hyperparameter determining C. At the end, we have

TPSD(Ĥ) = 2N||Ĥ||2F = 2N ∑
i
||s · H̃c

i√
1
N ∑

N
i=1 ||H̃c

i ||22
||22 = 2N2s2 (4.49)

which is a constant across different graph convolutional layers.

4.5 Summary

In this chapter, we give a comprehensive introduction to different architectures
of graph neural networks for node classification. These neural networks can be
generally classified into two categories including supervised and unsupervised ap-
proaches. For supervised approaches, the main difference among different architec-
tures lie in how to propagate messages between nodes, how to aggregate the mes-
sages from neighbors, and how to combine the aggregated messages from neighbors
with the node representation itself. For the unsupervised approaches, the main dif-
ference comes from designing the objective function. We also discuss a common
problem of training deep graph neural networks—over-smoothing, and introduce a
method to tackle it. In the future, promising directions on graph neural networks in-
clude theoretical analysis for understanding the behaviors of graph neural networks,
and applying them to a variety of fields and domains such as recommender sys-
tems, knowledge graphs, drug and material discovery, computer vision, and natural
language understanding.

Editor’s Notes: Node classification task is one of the most important tasks
in Graph Neural Networks. The node representation learning techniques in-
troduced in this chapter are the corner stone for all other tasks for the rest
of the book, including graph classification task (Chapter 9), link predic-
tion (Chapter 10), graph generation task (Chapter 11), and so on. Familiar
with the learning methodologies and design principles of node representa-
tion learning is the key to deeply understanding other fundamental research
directions like Theoretical analysis (Chapter 5), Scalability (Chapter 6), Ex-
plainability (Chapter 7), and Adversarial Robustness (Chapter 8).

Chapter 5
The Expressive Power of Graph Neural
Networks

Pan Li and Jure Leskovec

Abstract The success of neural networks is based on their strong expressive power
that allows them to approximate complex non-linear mappings from features to
predictions. Since the universal approximation theorem by (Cybenko, 1989), many
studies have proved that feed-forward neural networks can approximate any func-
tion of interest. However, these results have not been applied to graph neural net-
works (GNNs) due to the inductive bias imposed by additional constraints on the
GNN parameter space. New theoretical studies are needed to better understand these
constraints and characterize the expressive power of GNNs.
In this chapter, we will review the recent progress on the expressive power of GNNs
in graph representation learning. We will start by introducing the most widely-used
GNN framework— message passing— and analyze its power and limitations. We
will next introduce some recently proposed techniques to overcome these limita-
tions, such as injecting random attributes, injecting deterministic distance attributes,
and building higher-order GNNs. We will present the key insights of these tech-
niques and highlight their advantages and disadvantages.

5.1 Introduction

Machine learning problems can be abstracted as learning a mapping f ∗ from some
feature space to some target space. The solution to this problem is typically given
by a model fθ that intends to approximate f ∗ via optimizing some parameter θ .
In practice, the ground truth f ∗ is a priori typically unknown. Therefore, one may
expect the model fθ to approximate a rather broad range of f ∗. An estimate of

Pan Li
Department of Computer Science, Purdue University, e-mail: panli@purdue.edu

Jure Leskovec
Department of Computer Science, Stanford University, e-mail: jure@cs.stanford.edu

63
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_5

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:panli@purdue.edu
mailto:jure@cs.stanford.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_5&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_5

64 Pan Li and Jure Leskovec

how broad such a range could be, called the model’s expressive power, provides an
important measure of the model potential. It is desirable to have models with a more
expressive power that may learn more complex mapping functions.

Neural networks (NNs) are well known for their great expressive power. Specifi-
cally, Cybenko (1989) first proved that any continuous function defined over a com-
pact space could be uniformly approximated by neural networks with sigmoid acti-
vation functions and only one hidden layer. Later, this result got generalized to any
squashing activation functions by (Hornik et al, 1989).

Ne
ura

l ne
two

rks

Traditional
machine learning:

SVM, GBDT

Fig. 5.1: Amount of Data vs. Perfor-
mance of different models.

However, these seminal findings are in-
sufficient to explain the current unprece-
dented success of NNs in practice because
their strong expressive power only demon-
strates that the model fθ is able to approx-
imate f ∗ but does not guarantee that the
model obtained via training f̂ indeed ap-
proximates f ∗. Fig. 5.1 illustrates a well-
known curve of Amount of Data vs. Per-
formance of machine learning models (Ng,
2011). NN-based methods may only out-
perform traditional methods given suffi-
cient data. One important reason is that
NNs as machine learning models are still
governed by the fundamental tradeoff be-
tween the data amount and model complex-
ity (Fig. 5.2). Although NNs could be rather expressive, they are likely to overfit the
training examples when paired with more parameters. Therefore, it is necessary for
practice to build NNs that can maintain strong expressive power while constraints
are imposed on their parameters. At the same time, a good theoretical understanding
of the expressive power of NNs with constraints on their parameters is needed.

Model complexity

Optimal model
complexity

Testing error

Training error

Naively improving the expressive power
by increasing model complexity

Improving the expressive power by
injecting inductive bias into the model
while keeping model complexity

Without inductive bias
With inductive bias

Fig. 5.2: Training and testing errors with and without inductive bias can dramatically
affect the expressive power of models.

In practice, constraints on parameters are typically obtained from our prior
knowledge of the data; these are referred to as inductive biases. Some significant

5 The Expressive Power of Graph Neural Networks 65

…

Translation invariance

Translation variance

…

…

RNNs/CNNs share parameters

RNNs/CNNs do not fit this case…
…

Features

Targets

Features

Targets

Fig. 5.3: Illustration of 1-dimensional translation invariance/variance. RNNs/CNNs
use translation invariance to share parameters.

results about the expressive power of NNs with inductive bias have been shown
recently. Yarotsky (2017); Liang and Srikant (2017) have proved that deep neural
networks (DNNs), by stacking multiple hidden layers, can achieve good enough
approximation with significantly fewer parameters than shallow NNs. The archi-
tecture of DNNs leverages the fact that data has typically a hierarchical structure.
DNNs are agnostic to the type of data, while dedicated neural network architec-
tures have been developed to support specific types of data. Recurrent neural net-
works (RNNs) (Hochreiter and Schmidhuber, 1997) or convolution neural networks
(CNNs) (LeCun et al, 1989) were proposed to process time series and images, re-
spectively. In these two types of data, effective patterns typically hold translation
invariance in time and in space, respectively. To match this invariance, RNNs and
CNNs adopt the inductive bias that their parameters have shared across time and
space (Fig. 5.3). The parameter-sharing mechanism works as a constraint on the
parameters and limits the expressive power of RNNs and CNNs. However, RNNs
and CNNs have been shown to have sufficient expressive power to learn transla-
tion invariant functions (Siegelmann and Sontag, 1995; Cohen and Shashua, 2016;
Khrulkov et al, 2018), which leads to the great practical success of RNNs and CNNs
in processing time series and images.

Recently, many studies have focused on a new type of NNs, termed graph neu-
ral networks (GNNs) (Scarselli et al, 2008; Bruna et al, 2014; Kipf and Welling,
2017a; Bronstein et al, 2017; Gilmer et al, 2017; Hamilton et al, 2017b; Battaglia
et al, 2018). These aim to capture the inductive bias of graphs/networks, another
important type of data. Graphs are commonly used to model complex relations and
interactions between multiple elements and have been widely used in machine learn-
ing applications, such as community detection, recommendation systems, molecule
property prediction, and medicine design (Fortunato, 2010; Fouss et al, 2007; Pires
et al, 2015). Compared to time series and images, which are well-structured and rep-
resented by tables or grids, graphs are irregular and thus introduce new challenges.
A fundamental assumption behind machine learning on graphs is that the targets
for prediction should be invariant to the order of nodes of the graph. To match this
assumption, GNNs hold a general inductive bias termed permutation invariance. In
particular, the output given by GNNs should be independent of how the node indices
of a graph are assigned and thus in which order are they processed. GNNs require

66 Pan Li and Jure Leskovec

Feathers

Targets

Permutation Invariance GNNs are built to match
permutation invariance

GNN GNN=

Fig. 5.4: This illustrates how GNNs are designed to maintain permutation invari-
ance.

their parameters to be independent from the node ordering and are shared across the
entire graph (Fig. 5.4). Because of this new parameter sharing mechanism in GNNs,
new theoretical tools are needed to characterize their expressive power.

Analyzing the expressive power of GNNs is challenging, as this problem is
closely related to some long-standing problems in graph theory. To understand this
connection, consider the following example of how a GNN would predict whether a
graph structure corresponds to a valid molecule. The GNN should be able to identify
whether this graph structure is the same, similar, or very different from the graph
structures that are known to correspond to valid molecules. Measuring whether two
graphs have the same structure involves addressing the graph isomorphism prob-
lem, in which no P solutions have yet been found (Helfgott et al, 2017). In addition,
measuring whether two graphs have a similar structure requires contending with the
graph edit distance problem, which is even harder to address than the graph isomor-
phism problem (Lewis et al, 1983).

Great progress has been made recently on characterizing the expressive power of
GNNs, especially on how to match their power with traditional graph algorithms and
how to build more powerful GNNs that overcome the limitation of those algorithms.
We will delve more into these recent efforts further along in this chapter. In par-
ticular, compared to previous introductions (Hamilton, 2020; Sato, 2020), we will
focus on recent key insights and techniques that yield more powerful GNNs. Specifi-
cally, we will introduce standard message-passing GNNs that are able to achieve the
limit of the 1-dimensional Weisfeiler-Lehman test (Weisfeiler and Leman, 1968), a
widely-used algorithm to test for graph isomorphism. We will also discuss a number
of strategies to overcome the limitations of the Weisfeiler-Lehman test — including
attaching random attributes, attaching deterministic distance attributes, and leverag-
ing higher-order structures.

In Section 5.2, we will formulate the graph representation learning problems that
GNNs target. In Section 5.3, we will review the most widely used GNN frame-
work, the message passing neural network, describing the limitations of its expres-
sive power and discussing its efficient implementations. In Section 5.4, we will in-
troduce a number of methods that make GNNs more powerful than the message
passing neural network. In Section 5.5, we will conclude this chapter by discussing
further research directions.

5 The Expressive Power of Graph Neural Networks 67

ℳ -- the space of mappings
that fit the observed examples

𝑋 𝑌
𝑓

ℱ′
𝑓∗ (𝑓′

)ℱ′

ℱ′)ℱ
𝑓∗

ℱ

ℱ′)ℱ
𝑓∗

ℱ
(𝑓

Observed examples

𝑓∗-- the precise mapping function
(𝑓′ -- the learnt model via NNs

ℱ′ -- the space of all
potential mappings

)ℱ′ -- the space of mappings
that may represented by NNs

(a) (b)

ℱ -- the space of all
potential mappings that satisfy
permutation invariance

)ℱ -- the space of mappings
that may represented by GNNs

(c) (d) (𝑓 -- the learnt model via GNNs

ℳ

ℳ

Fig. 5.5: An illustration of the expressive power of NNs and GNNs and their affects
on the performance of learned models. a) Machine learning problems aim to learn
the mapping from the feature space to the target space based on several observed
examples. b) The expressive power of NNs refers to the gap between the two spaces
F and F̂ ′. Although NNs are expressive (F̂ ′ is dense in F), the learned model
f ′ based on NNs may differ significantly from f ∗ due to their overfit of the limited
observed data. c) Suppose f ∗ is known to be permutation invariant, as it works on
graph-structured data. Then, the space of potential mapping functions is reduced
from F ′ to a much smaller space F that only includes permutation invariant func-
tions. If we adopt GNNs, the space of mapping functions that can be approximated
simultaneously reduces to F̂ . The gap between F and F̂ characterizes the ex-
pressive power of GNNs. d) Although GNNs are less expressive than general NNs
(F̂ ⊂ F̂ ′), the learned model based on GNNs f is a much better approximator of
f ∗ as opposed to the one based on NNs f̂ ′. Therefore, for graph-structured data, our
understanding of the expressive power of GNNs, i.e., the gap between F and F̂ , is
much more relevant than that of NNs.

5.2 Graph Representation Learning and Problem Formulation

In this section, we will set up the formal definition of graph representation learning
problems, their fundamental assumption, and their inductive bias. We will also dis-
cuss relationships between different notions of graph representation learning prob-
lems frequently studied in recent literature.

First, we will start by defining graph-structured data.

Definition 5.1. (Graph-structured data) Let G = (V ,E ,X) denote an attributed
graph, where V is the node set, E is the edge set, and X ∈ R|V |×F are the node
attributes. Each row of X , Xv ∈ RF refers to the attributes on the node v ∈ V . In
practice, graphs are usually sparse, i.e., |E | ≪ |V |2. We introduce A ∈ {0,1}|V |×|V |
to denote the adjacency matrix of G such that Auv = 1 iff (u,v) ∈ E. Combining the

68 Pan Li and Jure Leskovec

𝑓 𝒢, 𝑆 should capture the
informative fingerprint of the
graph 𝒢 to represent S for certain
applications (characterized by a
ground-truth mapping 𝑓∗ 𝒢, 𝑆 .

𝒢

𝑆

𝒢

𝑆

𝒢

𝑆
Node classification… Graph classification…

Link prediction…

Fig. 5.6: Graph representation learning problems frequently discussed in literature.

adjacency matrix and node attributes, we may also denote G = (A,X). Moreover, if
G is unattributed with no node attributes, we can assume that all elements in X are
constant. Later, we also use V [G] to denote the entire node set of a particular graph
G .

The goal of graph representation learning is to learn a model by taking graph-
structured data as input and then mapping it so that certain prediction targets are
matched. Different graph representation learning problems may apply to a varying
number of nodes in a graph. For example, for node classification, a prediction is
made for each node, for each link/relation prediction on a pair of nodes, and for
each graph classification or graph property prediction on the entire node set V . We
can unify all these problems as graph representation learning.

Definition 5.2. (Graph representation learning) The feature space is defined as
X := Γ ×S , where Γ is the space of graph-structured data and S includes all
the node subsets of interest, given a graph G ∈ Γ . Then, a point in X can be de-
noted as (G ,S), where S is a subset of nodes that are in G . Later, we call (G ,S) as
a graph representation learning (GRL) example. Each GRL example (G ,S) ∈X is
associated with a target y in the target space Y . Suppose the ground-truth associa-
tion function between features and targets is denoted by f ∗ : X →Y , f ∗(G ,S) = y.
Given a set of training examples Ξ = {(G (i),S(i),y(i))}k

i=1 and a set of testing exam-
ples Ψ = {(G̃ (i), S̃(i), ỹ(i))}k

i=1, a graph representation learning problem is to learn
a function f based on Ξ such that f is close to f ∗ on Ψ .

The above definition is general in the sense that in a GRL example (G ,S)∈X , G
provides both raw and structural features on which some prediction for a node subset
S of interest is to be made. Below, we will further list a few frequently-investigated
learning problems that may be formulated as graph representation learning prob-
lems.

Remark 5.1. (Graph classification problem / Graph-level prediction) The node set S
of interest is the entire node set V [G] by default. The space of graph-structured data

5 The Expressive Power of Graph Neural Networks 69

Γ typically contains multiple graphs. The target space Y contains labels of different
graphs. Later, for graph-level prediction, we will use G to denote a GRL example
instead of (G ,S) for notational simplicity.

Remark 5.2. (Node classification problem / Node-level prediction) In a GRL exam-
ple (G ,S), the S corresponds to one single node of interest. The corresponding G
can be defined in different ways. On the one hand, only the nodes close to S provide
effective features. In this case, G may be set as the induced local subgraph around
S. Different G ’s for different S’s may come from a single graph. On the other hand,
two nodes that are far apart on one graph still hold mutual impact and can be used
as a feature to make a prediction on another graph. In that case, G needs to include
a large portion of a graph or even the entire graph.

Remark 5.3. (Link prediction problem / Node-pair-level prediction) In a GRL ex-
ample (G ,S), S corresponds to a pair of nodes of interest. Similar to the node classi-
fication problem, G for each example may be an induced subgraph around S or the
entire graph. The target space Y contains 0-1 labels that indicate whether there is a
probable link between two nodes. Y may also be generalized to include labels that
reflect the types of links to be predicted.

Next, we will introduce the fundamental assumption used in most graph repre-
sentation learning problems.

Definition 5.3. (Isomorphism) Consider two GRL examples (G (1),S(1)), (G (2),S(2))
∈X . Suppose G (1) = (A(1),X (1)) and G (2) = (A(2),X (2)). If there exists a bijective
mapping π : V [G (1)]→ V [G (2)], i ∈ {1,2}, such that A(1)

uv = A(2)
π(u)π(v), X (1)

u = X (2)
π(u)

and π also gives a bijective mapping between S(1) and S(2), we call that (G (1),S(1))
and (G (2),S(2)) are isomorphic, denoted as (G (1),S(1))∼= (G (2),S(2)). When the par-

ticular bijective mapping π should be highlighted, we use notation (G (1),S(1))
π∼=

(G (2),S(2)). If there is no such a π , we call that they are non-isomorphic, denoted as
(G (1),S(1)) ̸∼= (G (2),S(2)).

Assumption 1 (Fundamental assumption in graph representation learning) Con-
sider a graph representation learning problem with a feature space X and its cor-
responding target space Y . Pick any two GRL examples (G (1),S(1)), (G (2),S(2)) ∈
X . The fundamental assumption says that if (G (1),S(1))∼= (G (2),S(2)), their corre-
sponding targets in Y are the same.

Due to this fundamental assumption, it is natural to introduce the corresponding
permutation invariance as inductive bias that all models of graph representation
learning should satisfy.

Definition 5.4. (Permutation invariance) A model f satisfies permutation invari-
ance if for any (G (1),S(1))∼= (G (2),S(2)), f (G (1),S(1)) = f (G (2),S(2)).

Now we may define the expressive power of a model for graph representation
learning problems.

70 Pan Li and Jure Leskovec

Definition 5.5. (Expressive power) Consider a feature space X of a graph rep-
resentation learning problem and a model f defined on X . Define another space
X (f) as a subspace of the quotient space X / ∼= such that for two GRL exam-
ples (G (1),S(1)), (G (2),S(2)) ∈X (f), f (G (1),S(1)) ̸= f (G (2),S(2)). Then, the size
of X (f) characterizes the expressive power of f . For two models, f (1) and f (2), if
X (f (1))⊃X (f (2)), we say that f (1) is more expressive than f (2).

Remark 5.4. Note that the expressive power in Def. 5.5, characterized by how a
model can distinguish non-isomorphic GRL examples, does not exactly match the
traditional expressive power used for NNs in the sense of functional approxima-
tion. Actually, Def. 5.5 is strictly weaker because distinguishing any non-isomorphic
GRL examples does not necessarily indicate that we can approximate any function
f ∗ defined over X . However, if a model f cannot distinguish two non-isomorphic
features, f is definitely unable to approximate function f ∗ that maps these two ex-
amples to two different targets. Some recent studies have been able to prove some
equivalence between distinguishing non-isomorphic features and permutation in-
variant function approximations under weak assumptions and applying involved
techniques (Chen et al, 2019f; Azizian and Lelarge, 2020). Interested readers may
check these references for more details.

It is trivial to provide the expressive power of a model f for graph representa-
tion learning if f does not satisfy permutation invariance. Without such a constraint,
NNs can approximate all continuous functions (Cybenko, 1989), which include the
continuous functions that distinguish any non-isomorphic GRL examples. There-
fore, the key question we are to discuss in the chapter is: “How to build the most
expressive permutation invariant models, GNNs in particular, for graph representa-
tion learning problems?”

5.3 The Power of Message Passing Graph Neural Networks

5.3.1 Preliminaries: Neural Networks for Sets

We will start by reviewing the NNs with sets (multisets) as their input,since a set
can be viewed as a simplified-version of a graph where all edges are removed. By
definition, the order of elements of a set does not impact the output; models that
encode sets naturally provide an important building block for encoding the graphs.
We term this approach invariant pooling.

Definition 5.6. (Multiset) A multiset is a set where its elements can be repetitive,
meaning that they are present multiple times. In this chapter, we assume by default
that all the sets are multisets and thus allow repetitive elements. In situations where
this is not the case, we will indicate otherwise.

5 The Expressive Power of Graph Neural Networks 71

Definition 5.7. (Invariant pooling) Given a multiset of vectors S = {a1,a2, ...,ak}
where ai ∈ RF and F is an arbitrary constant, an invariant pooling refers to a map-
ping, denoted as q(S), that is invariant to the order of elements in S.

Some widely-used invariant pooling operations include: sum pooling q(S) =
∑

k
i=1 ai, mean pooling q(S) = 1

k ∑
k
i=1 ai and max pooling [q(S)] j = maxi∈[1,F]{ai j}

for all j ∈ [1,F]. Zaheer et al (2017) show that any invariant poolings of a set S can
be approximated by q(S) = φ(∑k

i=1 ψ(ai)), where φ and ψ are functions that may be
approximated by fully connected NNs, provided that ai, i ∈ [k] comes from a count-
able universe. This statement can be generalized to the case where S is a multiset
(Xu et al, 2019d).

5.3.2 Message Passing Graph Neural Networks

Message passing is the most widely-used framework to build GNNs (Gilmer et al,
2017). Given a graph G = (V ,E ,X), the message passing framework encodes each
node v ∈ V with a vector representation hv and keeps updating this node represen-
tation by iteratively collecting representations of its neighbors and applying neural
network layers to perform a non-linear transformation of those collections:

1. Initialize node vector representations as node attributes: h(0)
v ← Xv,∀v ∈ V .

2. Update each node representation based on message passing over the graph
structure. In l-th layer, l = 1,2, ...,L, perform the following steps:

Message: m(l)
vu ←MSG(h(l−1)

v ,h(l−1)
u), ∀(u,v) ∈ E , (5.1)

Aggregation: a(l)v ← AGG({m(l)
vu |u ∈Nv}), ∀v ∈ V , (5.2)

Update: h(l)
v ← UPT(h(l−1)

v ,a(l)v), ∀v ∈ V . (5.3)

where Nv is the set of neighbors of v.

A

C B

E

F

D A

B EC

A
C F A B D A

F

ℎ
(ଵ)

ℎ
(ଶ)

ℎ
()

ℎ
()

ℎி
()

MP-GNN to learn the node embedding of the node A:

…

𝑈𝑃𝑇(…)

𝐴𝐺𝐺(…)

One neural layer

ℎ
(ଶ)

𝑀𝑆𝐺(…)

Fig. 5.7: The computing flow of MP-
GNN to obtain a node representation.

The operations MSG, AGG, and UPT
can be implemented via neural networks.
Typically, MSG is implemented by a feed-
forward NN, e.g., MSG(p,q) = σ(pW1 +
qW2), where W1 and W2 are learnable
weights, and σ(·) is an element-wise non-
linear activation. UPT can be chosen in a
similar way as MSG. AGG differs as its in-
put is a multiset of vectors and thus the or-
der of these vectors should not affect the
output. AGG is typically implemented as an
invariant pooling (Def. 5.7). Each layer k
can have different parameters from other layers. We will denote the GNNs that fol-
low this message passing framework as MP-GNN.

72 Pan Li and Jure Leskovec

MP-GNN produces representations of all the nodes, {h(L)
v |v ∈ V}. Each node

representation is essentially determined by a subtree rooted at this node (Fig. 5.7).
Given a specific graph representation learning problem, for example, classifying a
set of nodes S ⊆ V , we may use the representations of relevant nodes in S to make
the prediction:

ŷS = READOUT({h(L)
v |v ∈ S}). (5.4)

where the READOUT operation is often implemented via another invariant pooling
when |S|>1 plus a feed-forward NN to predict the target. Combining Eqs.equation 11.45-
equation 5.4, MP-GNN builds a GNN model for graph representation learning:

ŷS = fMP−GNN(G ,S). (5.5)

We can show the permutation invariance of MP-GNN by induction over the iter-
ation index l.

Theorem 5.1. (Invariance of MP-GNN) fMP−GNN(·, ·) satisfies permutation invari-
ance (Def. 5.4) as long as the AGG and READOUT operations are invariant pooling
operations (Def. 5.7).

Proof. This can be proved trivially by induction.

MP-GNN by default leverages the inductive bias that the nodes in the graph di-
rectly affect each other only via their connected edges. The mutual effect between
nodes that are not connected by an edge can be captured via paths that connect
these nodes via message passing. Indeed, such inductive bias may not match the
assumptions in a specific application, and MP-GNN may find it hard to capture mu-
tual effect between two far-away nodes. However, the message-passing framework
has several benefits for model implementation and practical deployment. First, it
directly works on the original graph structure and no pre-processing is needed. Sec-
ond, graphs in practice are typically sparse (|E | ≪ |V |2) and thus MP-GNN is able
to scale to very large but sparse graphs. Third, each of the three operations MSG,
AGG, and UPT can be computed in parallel across all nodes and edges, which is
beneficial for parallel computing platforms such as GPUs and map-reduce systems.

Because it is natural and easy to be implemented in practice, most GNN architec-
tures essentially follow the MP-GNN framework by adopting specific MSG, AGG,
and UPT operations. Representative approaches include InteractionNet (Battaglia
et al, 2016), structure2vec (Dai et al, 2016), GCN (Kipf and Welling, 2017a), Graph-
SAGE (Hamilton et al, 2017b), GAT (Veličković et al, 2018), GIN (Xu et al, 2019d),
and many others (Kearnes et al, 2016; Zhang et al, 2018g).

5.3.3 The Expressive Power of MP-GNN

In this section, we will introduce the expressive power of MP-GNN , following the
results proposed in Xu et al (2019d); Morris et al (2019).

5 The Expressive Power of Graph Neural Networks 73

The 1-dimensional Weisfeiler-Lehman test to distinguish (G (1),S(1)) and (G (2),S(2)):

1. Assume each node v in V [G (i)] is initialized with a color C(i,0)
v ← X (i)

v for i = 1,2. If X (i)
v

is a vector, then an injective function is used to map it to a color.
2. For l = 1,2, ..., do

Update node colors: C(i,l)
v ← HASH(C(i,l−1)

v ,{C(i,l−1)
u |u ∈N

(i)
v }), i ∈ {1,2}

(5.6)

where the HASH operation can be viewed as an injective mapping where different tuples
(C(i,l−1)

v ,{C(i,l−1)
u |u ∈N

(i)
v }) are mapped to different labels.

Test: If two multisets {C(1,l)
v |v ∈ S(1)} and {C(2,l)

v |v ∈ S(2)} are not equal,

then return (G (1),S(1)) ̸∼= (G (2),S(2)); else, go back to equation 5.6.

If 1-WL test returns (G (1),S(1)) ̸∼= (G (2),S(2)), we know that (G (1),S(1)) (G (2),S(2)) are not
isomorphic. However, for some non-isomorphic (G (1),S(1)) (G (2),S(2)), the 1-WL test may
not return (G (1),S(1)) ̸∼= (G (2),S(2)) (even with infinitely many iterations). In this case, the 1-
WL test fails to distinguish them. Note that the 1-WL test was originally proposed to test the
isomorphism of two entire graphs, i.e.,, S(i) = V [G (i)] for i ∈ {1,2} (Weisfeiler and Leman,
1968). Here the 1-WL test is further generalized to test the case where S(i) ⊂ V (i), to match
the general graph representation learning problems.

The expressive power we defined (Def. 5.5) is closely related to the graph iso-
morphism problem. This problem is challenging, as no polynomial-time algorithms
have been found for it (Garey, 1979; Garey and Johnson, 2002; Babai, 2016). De-
spite some corner cases (Cai et al, 1992), the Weisfeiler-Lehman (WL) tests of graph
isomorphism (Weisfeiler and Leman, 1968) are a family of effective and computa-
tionally efficient tests that distinguish a broad class of graphs (Babai and Kucera,
1979). Its 1-dimensional form (the 1-WL test), “naive vertex refinement”, is analo-
gous to the neighborhood aggregation in MP-GNN .

They are comparing MP-GNN with the 1-WL test, the node-representation up-
dating procedure Eqs.equation 11.45-equation 5.3 can be viewed as an implemen-
tation of Eq.equation 5.6 and the READOUT operation in Eq.equation 5.4 can
be viewed as a summary of all node representations. Although MP-GNN was
not proposed to perform graph isomorphism testing, the fMP−GNN can be used
for this test: if fMP−GNN(G

(1),S(1)) ̸= fMP−GNN(G
(2),S(2)), then we know that

(G (1),S(1)) ̸∼= (G (2),S(2)). Because of this analogy, the expressive power of MP-
GNN can be measured by the 1-WL test. Formally, we conclude the argument in the
following theorem.

Theorem 5.2. (Lemma 2 in (Xu et al, 2019d), Theorem 1 in (Morris et al, 2019))
Consider two non-isomorphic GRL examples (G (1),S(1)) and (G (2),S(2)). If
fMP−GNN(G

(1),S(1)) ̸= fMP−GNN(G
(2),S(2)), then the 1-WL test also decides

(G (1),S(1)) and (G (2),S(2)) are not isomorphic.

Theorem 5.2 indicates that MP-GNN is at most as powerful as the 1-WL test
in distinguishing different graph-structured features. Here, the 1-WL test is consid-
ered an upper bound (instead of being equal to the expressive power of MP-GNN)

74 Pan Li and Jure Leskovec

88

Step 1: Each node is initialized with
some color according to its attribute
(if no attributes, use the same color).

D

A

C B

E

F

D

A

C B

E

F

The mapping “attributes → colors” is injective.

21

Step 2: Each node will collect the colors
from their neighbors:

Node A: (p,{bby})
Left node E: (b,{py});
Right node E: (b,{pyg}) …

A

C B

E

F

D

A

C B

E

F

D

The mapping “(self-color, set of colors from neighbors) → a new color” is injective

After each iteration , check the set of node colors. Current both graphs have the same set of colors.
We do step 2 again. After two iterations, we may distinguish these two graphs because left B will
get a color that will not appear in the right graph, because currently left B has purple + blue in its
neighborhood while no nodes in the right graph have such neighborhood.

Fig. 5.8: An illustration of steps that distinguish two graphs via the 1-dimensional
Weisfeiler-Lehman test. MP-GNN follows a similar procedure and may also distin-
guish them.

because the updating procedure which aggregates node colors from its neighbors
(Eq.equation 5.6) is injective and can distinguish between the different aggregations
of node colors. This intuition is useful later to design MP-GNN that matches this
upper bound.

Now that the upper bound of the representation power of MP-GNN has been
established, a natural follow-up question is whether there are existing GNNs that
are, in principle, as powerful as the 1-WL test. The answer is yes. As shown by
Theorem 5.3: if the message passing operation (compositing Eqs.equation 11.45-
equation 5.3 together) and the final READOUT (Eq.equation 5.4) are both injective,
then the resulting MP-GNN is as powerful as the 1-WL test.

Theorem 5.3. (Theorem 3 in (Xu et al, 2019d)) After sufficient iterations, MP-GNN
may map any GRL examples (G (1),S(1)) and (G (2),S(2)), that the 1-WL test decides
as non-isomorphic, to different representations if the following two conditions hold:

a) The composition of MSE, AGG and UPT (Eqs.equation 11.45-equation 5.3)
constructs an injective mapping from (h(k−1)

v ,{h(k−1)
u |u ∈Nv}) to h(k)

v .
b) The READOUT (Eq.equation 5.4) is injective.

Although MP-GNN does not surpass the representation power of the 1-WL test,
MP-GNN has important benefits over the 1-WL test from the perspective of ma-
chine learning: node colors and the final decision given by the 1-WL test are dis-
crete (represented as node colors or a “yes/no” decision) and thus cannot capture the
similarity between graph structures. In contrast, a MP-GNN satisfying the criteria in

5 The Expressive Power of Graph Neural Networks 75

Theorem 5.3 generalizes the 1-WL test by learning to represent the graph structures
with vectors in a continuous space. This enables MP-GNN to not only discrimi-
nate between different structures but also to learn to map similar graph structures
to similar representations, thus capturing dependencies between graph structures.
Such learned representations are particularly helpful for generalizations where data
contains noisy edges and the exact matching graph structures are sparse (Yanardag
and Vishwanathan, 2015).

In the next subsection, we will focus on introducing the key design ideas behind
MP-GNN that satisfies the conditions in Theorem 5.3.

5.3.4 MP-GNN with the Power of the 1-WL Test

Xu et al (2019d) introduced the key guidelines to satisfy the conditions in Theo-
rem 5.3. First, to model injective multiset functions for the neighbor aggregation,
the AGG operation (Eq.equation 15.16) is suggested to adopt the sum pooling op-
eration, which is proved to universally represent functions defined over multisets
whose elements are from a countable space (Lemma 5.1).

Lemma 5.1. (Lemma 4 in (Xu et al, 2019d)) Suppose S is a countable universe
of elements. Then there exists a function q : S → Rn such that q(S) = ∑x∈S ψ(x) is
unique for each finite multiset S⊂S , where ψ individually encodes each element in
S . Moreover, any multiset function g can be decomposed as g(S) = φ (∑x∈S ψ(x))
for some function φ .

Remark 5.5. Note that the sum pooling operator is crucial, as some popular invari-
ant pooling operators, such as the mean pooling operator, are not injective multiset
functions. The significance of the sum pooling operation is to record the number
of repetitive elements in a multiset. The mean pooling operation adopted by graph
convolutional network (Kipf and Welling, 2017a) or the softmax-normalization (at-
tention) pooling adopted by graph attention network (Veličković et al, 2018) may
learn the distribution of the elements in a multiset but not the precise counts of the
elements.

Thanks to the universal approximation theorem (Hornik et al, 1989), we can use
multi-layer perceptrons (MLPs) to model and learn ψ and φ in Lemma 5.1 for uni-
versally injective AGG operation. In MP-GNN, we do not even need to explicitly
model ψ and φ as the MSG and UPT operations — (Eqs.equation 11.45 and equa-
tion 5.3) respectfully — have already been implemented via MLPs. Therefore, using
the sum pooling as the AGG operation is sufficient to achieve the most expressive
MP-GNN:

76 Pan Li and Jure Leskovec

Expressive Message: m(k)
vu ←MLP(k−1)

1 (h(k−1)
v ⊕h(k−1)

u), ∀(u,v) ∈ E ,

Expressive Aggregation: a(k)v ← ∑
u∈Nv

m(k)
vu , ∀v ∈ V ,

Expressive Update: h(k)
v ←MLP(k−1)

2 (h(k−1)
v ⊕a(k)v), ∀v ∈ V .

where ⊕ denotes concatenation. Actually, we can even simplify the procedure by
using a single MLP. We can also set m(k)

vu → h(k−1)
u , ∀(u,v) ∈ E without decreasing

the expressive power. Combining all the terms together, Xu et al (2019d) obtains
the simplest update mechanism of node representations that constructs an injective
mapping from (h(k−1)

v ,{h(k)
u |u ∈Nv}) to h(k)

v :

h(k)
v ←MLP(k−1)((1+ ε

(k))h(k−1)
v + ∑

u∈Nv

h(k−1)
u), ∀v ∈ V , (5.7)

where ε(k) is a learnable weight. This updating method, by using a NN-based lan-
guage, is termed the graph isomorphism network (GIN) layer (Xu et al, 2019d).

Lemma 5.2 formally states that MP-GNN that adopts Eq.equation 5.7 may match
the condition a) in Theorem 5.3.

Lemma 5.2. Updating node representations by following Eq.equation 5.7 con-
structs an injective mapping from (h(k−1)

v ,{h(k)
u |u ∈ Nv}) to h(k)

v , if the node at-
tributes X are from a countable space.

Proof. Combine the proof for injectiveness of the sum aggregation with the univer-
sal approximation property of MLP (Hornik et al, 1989).

A similar idea may be adapted to the READOUT operation (Eq.5.4), which also
requires an injective mapping of multisets:

Expressive Inference: ŷS = MLP(∑
v∈S

h(L)
v). (5.8)

Xu et al (2019d) has observed that node representations from earlier iterations may
sometimes generalize better and thus also suggests using the READOUT (a counter-
part to Eq.5.4) from the Jumping Knowledge Network (JK-Net) (Xu et al, 2018a),
though it is not necessary from the perspective of the representation power of MP-
GNN .

Overall, combining the update Eq.equation 5.7 and the READOUT Eq.equation 5.8,
we may achieve an MP-GNN that is as powerful as the 1-WL test. In the next sec-
tion, we introduce several techniques that allow MP-GNN to break the limitation of
the 1-WL test and achieve even stronger expressive power.

5 The Expressive Power of Graph Neural Networks 77

5.4 Graph Neural Networks Architectures that are more
Powerful than 1-WL Test

In the previous section, we characterized the representation power of MP-GNN that
is bounded by the 1-WL test. In other words, if the 1-WL test cannot distinguish two
GRL examples (G (1),S(1)) and (G (2),S(2)), then MP-GNN cannot distinguish them
either. Although the 1-WL test cannot distinguish only a few corner graph structures,
it indeed limits the applicability of GNNs in many real-world applications (You et al,
2019; Chen et al, 2020q; Ying et al, 2020b). In this section, we will introduce several
approaches to overcome the above limitation of MP-GNN.

5.4.1 Limitations of MP-GNN

First, we will review several critical limitations of MP-GNN and the 1-WL test to
gain the intuition for understanding the techniques that build more powerful GNNs.
MP-GNN iteratively updates the representation of each node by aggregating repre-
sentations of its neighbors. The obtained node representation essentially encodes the
subtree rooted at Node v (Fig. 5.7). However, using this rooted subtree to represent
a node may lose useful information, such as:

1. The information about the distance between multiple nodes is lost. For example,
You et al (2019) noticed that MP-GNN has limited power in capturing the po-
sition/location of a given node with respect to another node in the graph. Many
nodes may share similar subtrees, and thus, MP-GNN produces the same rep-
resentation for them although the nodes may be located at different locations in
the graph. This location information of nodes is crucial for the tasks that depend
on multiple nodes, such as link prediction (Liben-Nowell and Kleinberg, 2007),
as two nodes that tend to be connected with a link are typically located close to
each other. An illustrative example is shown in Fig. 5.9.

2. The information about cycles is lost. Particularly, when expanding the subtree of
a node, MP-GNN essentially losses track of the node identities in the subtrees.
An illustrative example is shown in Fig. 5.10. The information about cycles
is crucial in applications such as subgraph matching (Ying et al, 2020b) and
counting (Liu et al, 2020e) because loops frequently appear in the queried sub-
graph patterns of a subgraph matching/counting problem. Chen et al (2020q)
formally proved that MP-GNN is able to count star structures (a particular form
of trees) but cannot count connected subgraphs with three or more nodes that
form cycles.

Theoretically, there is a general class of graph representation learning problems
that MP-GNN will fail to solve due to its limited representation. To show this, we
define a class of graphs, termed attributed regular graphs.

78 Pan Li and Jure Leskovec

? ?
Query: Which one is more
likely the predator of
Pelagic Fish, Lynx or Orca?

Fig. 5.9: A foodweb network example that demonstrates limitations of MP-GNN
(Srinivasan and Ribeiro, 2020a). MP-GNN will associate Lynx and Orca with the
same node representations, i.e., h(i)

Lynx = h(i)
Orca, as these two nodes hold the same

rooted subtree. Note that we do not consider node features. Thus, MP-GNN cannot
predict whether Lynx or Orca is more likely to be the predator of Pelagic Fish (a
link prediction task).

v u

𝐺(ଵ) 𝐺(ଶ)

v.s.

Corresponding subtrees:

=
v u

Fig. 5.10: The node representations h(L)
v and h(L)

u given by MP-GNN are the same,
although they belong to different cycles – 3-cycle and 6-cycle, respectively.

Definition 5.8. (Attributed regular graphs) Consider an attributed graph G =(V ,E ,X).
All nodes in V are partitioned according to their attributes V = ∪k

i=1Vi, such that
two nodes from the same category Vi have the same attributes, while two nodes
from different categories have different attributes. If for any two categories, Vi, Vj,
i, j ∈ [k], for any two nodes u,v ∈ Vi, the number of neighbors of u in Vj and the
number of neighbors of v in Vj are equal, this graph can also be termed attributed
regular graph. Denote Ci as the attribute of nodes in Vi. Also, denote the number
of neighbors in Vj of a node v ∈ Vi as ri j. Then, the configuration of this attributed
regular graph can be represented as a set of tuples Config(G) = {(Ci,C j,ri j)}i, j∈[k].

Note that the definition of attributed regular graphs is similar to k-partite regular
graphs, while attributed regular graphs allow edges connecting nodes from the same
partition. It can be shown that the 1-WL test will color all the nodes of one partition
in the same way. Based on the bound of representation power of MP-GNN (Theo-
rem 5.2), we can obtain the following corollary about the impossibility of MP-GNN
to distinguish GRL examples defined on attributed regular graphs. Fig. 5.11 gives
some examples that illustrate the impossibility. Actually, with sufficient layers (it-
erations), MP-GNN (the 1-WL test) will always transform any attributed graph into

5 The Expressive Power of Graph Neural Networks 79
regular graphs attributed regular graphs

𝒢(#)

𝑆(&) 𝑆(#) 𝑆(&)𝑆(#)

𝒢(&) 𝒢(#) 𝒢(&)

MP-GNN and the 1-WL test may not distinguish 𝒢 # , 𝑆 # , 𝒢 & , 𝑆 & .
Fig. 5.11: A pair of attributed regular graphs G (1), G (2) with the same configuration
and a proper selection of S(1), S(2) : MP-GNN and the 1-WL test fail to distinguish
(G (1),S(1)), (G (2),S(2)).

an attributed regular graph (Arvind et al, 2019) if we view the node representations
obtained by MP-GNN as the node attributes on this transformed graph 1.

Corollary 5.1. Consider two graph-structured features (G (1),S(1)), (G (2),S(2)). If

Config(G (2)), and two multisets of attributes {X (1)
v |v∈ S(1)} and {X (2)

v |v∈ S(2)} are
also equal, then fMP−GNN(G

(1),S(1)) = fMP−GNN(G
(2),S(2)). Therefore, if graph

representation learning problems associate {X (1)
v |v∈ S(1)} and {X (2)

v |v∈ S(2)} with
different targets, MP-GNN does not hold the expressive power to distinguish them
and predict their correct targets.

Proof. The proof is obtained by tracking each iteration of the 1-WL test and per-
forming an induction.

Next, we will introduce several approaches that address the above limitations and
that further improve the expressive power of MP-GNN .

5.4.2 Injecting Random Attributes

The main reason for limitations on the expressive power of MP-GNN is that MP-
GNN does not track node identities; however, different nodes with the same at-
tributes will be initialized with the same vector representations. This condition will
be maintained unless their neighbors propagate different node representations. One
way to improve the expressive power of MP-GNN is to inject each node with a
unique attribute. Given a GRL example (G ,S), where G = (A,X),

gI(G ,S) = (GI ,S), where GI = (A,X⊕ I), (5.9)

where ⊕ is concatenation and I is an identity matrix, this gives each node a unique
one-hot encoding and yields a new attributed graph GI . The composite model

1 Most transformed graphs have one single node per partition. In this case, two graphs that share
the same configuration are isomorphic.

two attributed regular graphs G (1),G (2) share the same configuration, i.e., Config(G (1))=

80 Pan Li and Jure Leskovec

fMP−GNN ◦gI increases expressive power as node identities are attached to the mes-
sages in the message passing framework and the distance and loop information can
be learnt with sufficient iterations of message propagation.

However, the limitation of the above framework is that it is not permutation in-
variant (Def.5.4): given that two isomorphic GRL examples (G (1),S(1))∼=(G (2),S(2)),
gI(G (1),S(1)) and gI(G (2),S(2)) may be not isomorphic any more. Then, the com-
posite model fMP−GNN ◦ gI(G (1),S(1)) may not equal fMP−GNN ◦ gI(G (2),S(2)). As
the obtained model loses the fundamental inductive bias of graph representation
learning, it is hard to be generalized2.

Remark 5.6. Some other approaches may share the same limitation with gI , e.g.,
using the adjacency matrix A (each row of A representing node attributes). However,
Srinivasan and Ribeiro (2020a) argued that node embeddings obtained via matrix
factorization, such as deepwalk (Perozzi et al, 2014) and node2vec (Grover and
Leskovec, 2016), can keep the required invariance and thus are still generalizable.
We will return to this concept in Sec.5.4.2.4.

To overcome the above limitation, different methods have been proposed re-
cently. These models share the following strategy: they first design some additional
random node attributes Z, use them to argue the original dataset, and then learn a
GNN model over the augmented dataset (Fig. 5.13).

The obtained models will be more expressive, as the random node attributes can
be viewed as unique node identities that distinguish nodes. However, if the model
is only trained based on a single GRL example augmented by these random at-
tributes, it cannot keep invariance as discussed above. Instead, the model needs
to be trained over multiple GRL examples augmented by independently injected
random attributes. The new augmented GRL examples have the same target as the
original GRL examples from which they are generated. This training of models over
augmented examples essentially regularizes the permutation variance of the models
and makes them behave almost “permutation invariant.”

Different methods to inject these random attributes may be adopted, but a direct
way is to attach Z to X , i.e., given a graph-structured data (G ,S), where G = (A,X),

gZ(G ,S) = (GZ ,S), where GZ = (A, X̃Z) and X̃Z ← X⊕Z. (5.10)

Note that for each realization Z, the composite model fMP−GNN ◦ gZ is not permu-
tation invariant. Instead, all these approaches make E[fMP−GNN ◦ gZ] permutation
invariant and expect the models to keep invariant in expectation. To match such
invariance in expectation, an approach must satisfy the following proposition.

Proposition 5.1. The following two properties are needed to build a model by in-
jecting random features Z.

2 Recent literature often states that the composite model is not inductive. Inductiveness and gen-
eralization to unobserved examples are related. In the transductive setting, fMP−GNN ◦ gI is less
generalizable than fMP−GNN , although the prediction performance of fMP−GNN ◦gI may be some-
times better than fMP−GNN due to the much stronger expressive power of fMP−GNN ◦gI .

5 The Expressive Power of Graph Neural Networks 81

Fig. 5.12: Injecting random node attributes can improve the expressive power of
GNNs. Different types of random node attributes are adopted in different works.
Some random node attributes contain node positional information (the position of a
node with respect to other nodes in the graph).

1. A sufficient number of Z’s should be sampled during the training stage so that
the model indeed captures permutation invariance in expectation.

2. The randomness in Z should be agnostic to the original node identities.

To satisfy the property 1, a method suggests that for each forward pass to com-
pute fMP−GNN ◦ gZ during the training stage, one Z should be re-sampled once or
multiple times to get enough data argumentation. To satisfy the property 2, four
different types of random Z have been proposed as described next.

5.4.2.1 Relational Pooling - GNN (RP-GNN) (Murphy et al, 2019a)

Murphy et al (2019a) considered randomly assigning an order of nodes as their extra
attributes and proposed the model relational pooling GNN (RP-GNN). We use ZRP
to denote additional node attributes Z used in RP-GNN. Suppose the graph G has
n nodes, ZRP is uniformly sampled from all possible permutation matrices. That
is, randomly pick a bijective mapping (permutation) π : V (G)→V (G), and design
permutation matrix [ZRP]i j = 1 if j = π(i) and [ZRP]i j = 0 otherwise. Then, RP-GNN
adopts the composite model,

fRP−GNN = E[fMP−GNN ◦gZRP]. (5.11)

Theorem 5.4. (Theorem 2.2 (Murphy et al, 2019a)) The RP-GNN fRP−GNN is
strictly more powerful than the original fMP−GNN .

Computing the expectation E[fMP−GNN ◦gZRP] is intractable as one needs to com-
pute fMP−GNN ◦gZRP for all possible permutations π : V (G)→V (G). To overcome
this problem, sampling of ZRP may be needed.

However, as the entire permutation space is too large, uniformly random sam-
pling of a limited number of ZRP may introduce a large variance. To reduce the
potential variance, Murphy et al (2019a) also proposed to sample all π’s that per-
mute only a small subset of nodes instead of the entire set of nodes. More recently,
Chen et al (2020q) further adapted RP-GNN to solve the subgraph counting prob-

⊕

⊕
⊕

⊕

~ ℙ
Types of random attributes Positional information Model & reference

Random permutations No RP-GNN (Murphy et al, 2019)

(Almost uniform) Discrete r.v. No rGIN (Sato et al, 2020)

Distances to random anchor sets Yes PGNN (You et al, 2019)

Graph-convoluted Gaussian r.v. Yes CGNN (Srinivasan & Ribeiro, 2020)

Random signed Laplacian eigenmap Yes LE-GNN (Dwivedi et al, 2020)

random
attributes

original attributes

82 Pan Li and Jure Leskovec

lem. They suggest to use all π’s that permute all the nodes of each connected local
subgraph.

5.4.2.2 Random Graph Isomorphic Network (rGIN) (Sato et al, 2021)

Sato et al (2021) generalized RP-GNN by setting the additional attributes of each
node sampled from an almost uniform discrete probability distribution. The key
difference from RP-GNN is that the additional attributes of two nodes are set to
be independent of each other (while in RP-GNN, one-time random attributes of
different nodes are correlated due to the nature of permutation). We use Zr to denote
Z used in rGIN and [Zr]v to denote the attributes of node v. For example, they set

frGIN = E[fMP−GNN ◦gZr], where [Zr]v ∼ Unif(D) i.i.d. ∀ v ∈ V [G],

where E indicates expectation and D is a discrete space with at least 1/p elements
for some p > 0. Similar to RP-GNN, frGIN can be implemented by sampling only
a few Zr’s for each evaluation of fMP−GNN ◦gZ (indeed, one Zr is sampled per for-
warding evaluation (Sato et al, 2021)).

Theorem 5.5. (Theorem 4.1 (Sato et al, 2021)) Consider a GRL example (G ,v),
where only a single node is contained in the node set of interest. For any graph-
structured features (G ′,v′), where the nodes of G ′ have a bounded maximal degree
and the attributes X come from a finite space, then there exist an MP-GNN , such
that:

1. If (G ′,v′)∼= (G ,v), fMP−GNN ◦gZr(G
′,v′)> 0.5 with high probability.

2. If (G ′,v′) ̸∼= (G ,v), fMP−GNN ◦gZr(G
′,v′)< 0.5 with high probability.

This result can be viewed as a characterization of the expressive power of rGIN.
However, this result is lessened by the fact that almost all nodes of all graphs will
be associated with different representations within two iterations of the 1-WL test
(so is MP-GNN) (Babai and Kucera, 1979). Moreover, the isomorphism problem of
graphs with a bounded degree is known to be in P (Fortin, 1996). Instead, a very
recent work was able to demonstrate the universal approximation of rGIN, which
gives a stronger characterization of the expressive power of rGIN.

Theorem 5.6. (Theorem 4.1 (Abboud et al, 2020)) Consider any invariant mapping
f ∗ : Gn→ R, where Gn contains all graphs with n nodes. Then, there exists a rGIN
fMP−GNN ◦gZr such that

p(| fMP−GNN ◦gZr − f ∗|< ε)> 1−δ , for some given ε > 0, δ ∈ (0,1).

The above RP-GNN and rGIN adopt random attributes that are totally agnostic
to the input data (G ,S). Instead, the next two methods inject random attributes that
leverage the input data. Particularly, these random attributes are related to the po-
sition/location of a node in the graph, which tends to counter the loss of positional
information of nodes in MP-GNN.

5 The Expressive Power of Graph Neural Networks 83

5.4.2.3 Position-aware GNN (PGNN) (You et al, 2019)

You et al (2019) demonstrated that MP-GNN may not capture the position/loca-
tion of a node in the graph, which is critical information for applications such as
link prediction. Therefore, they proposed to use node positional embeddings as ex-
tra attributes. To capture permutation invariance in the sense of expectation, node
positional embeddings are generated based on randomly selected anchor node sets.
We denote the random attributes adopted in PGNN as ZP, which is constructed as
follows. Considering a graph G = (V ,E ,X),

1. Randomly select a few anchor sets (S1,S2, ...,SK), where Sk ⊂ V . Note that the
choice of Sk is agnostic to the node identities: given a k, Sk will include each
node with the same probability.

2. For some u ∈ G, set [ZP]u = (d(u,S1), ...,d(u,SK)) where d(u,Sk), k ∈ [K] is a
distance metric between u and the anchor set Sk.

As the selection of the anchor sets is agnostic to node identities, the obtained ZP still
satisfies the property 2 in Proposition 5.1. Next, we specify the strategy to sample
these anchor sets and the choice of the distance metric. The primary requirement to
select those anchor sets is to keep low distortion of the two distances between nodes,
where one distance is given by the original graph and the other one is given by those
anchor sets. Specifically, distortion measures the faithfulness of the embeddings in
preserving distances when mapping from one metric space to another metric space,
which is defined as follows:

Definition 5.9. Given two metric spaces (V ,d) and (Z ,d′) and a function ZP : V →
Z , ZP is said to have distortion α if ∀u,v∈ V , 1

α
d(u,v)≤ d′([ZP]u, [ZP]v)≤ d(u,v).

Fortunately, Bourgain (1985) showed the existence of a low distortion embedding
that maps from any metric space to the lp metric space:

Theorem 5.7. (Bourgain’s Theorem (Bourgain, 1985)) Given any finite metric
space (V ,d) with |V | = n, there exists an embedding of (V ,d) into RK under any
lp metric, where K = O(log2 n), and the distortion of the embedding is O(logn).

Based on a constructive proof of Theorem 5.7, Linial et al (1995) provide an
algorithm to construct an O(log2 n) dimensional embedding via anchor sets. This
yields the selection of anchor sets and the definition of the distance metric to define
ZP, which are adopted by PGNN (You et al, 2019).

By selecting K = c log2 n, many random sets Si, j ⊂ V , i = 1,2, ..., logn, j =
1,2, ...,c logn, where c is a constant, Si, j is chosen by including each point in V
independently with probability 1

2i . We further define

[ZP]v =
(d(v,S1,1)

k
,

d(v,S1,2)

k
, ...,

d(v,Slogn,c logn)

k

)
(5.12)

where d(v,Si, j) = minu∈Si, j d(v,u). Then, ZP is an embedding method that satisfies
Theorem 5.7.

84 Pan Li and Jure Leskovec

Compared with RP-GNN and rGIN, the random attributes adopted by PGNN
deal specifically with the positional information of a node in graph. Therefore,
PGNN is better for the tasks that are directly related to the positions of nodes,
e.g., link prediction. You et al (2019) did not provide a mathematical character-
ization of the representation power of PGNN. However, the way to establish ZP
allows that for the two nodes u, v, the attributes [ZP]u and [ZP]v by definition are
statistically correlated. As for the example in Fig. 5.9, such correlation gives PGNN
the information that the distance between Lynx and Pelagic Fish is different from
the distance between Orca and Pelagic Fish, and thus may successfully distinguish
(G,{Lynx,Pelagic Fish}) and (G,{Orca,Pelagic Fish}) and making the right link
prediction.

Note that the original PGNN (You et al, 2019) does not use MP-GNN as the
backbone to perform message passing. Instead, PGNN allows message passing from
nodes to anchor sets. As such, this approach is not directly relevant to the expressive
power and is thus out of the scope of this chapter, so we will not discuss it in detail.
Interested readers may refer to the original paper (You et al, 2019).

5.4.2.4 Randomized Matrix Factorization (Srinivasan and Ribeiro,
2020a)(Dwivedi et al, 2020)

Srinivasan and Ribeiro (2020a) recently made an important observation that node
positional embeddings obtained via the factorization of some variants of the adja-
cency matrix A can be used as node attributes as long as certain random perturbation
is allowed. The obtained models still keep permutation invariance in expectation.
Srinivasan and Ribeiro (2020a) argue that a model that is built upon these random
perturbed node positional embeddings is still inductive and holds good general-
ization properties. This significant observation challenges the traditional claim that
models built upon these node positional embeddings are not inductive. A high-level
idea of why this is true is as follows: suppose the SVD decomposition of the adja-
cency matrix A =UΣUT . When we permute the order of nodes, that is, the row and
column orders of A, the row order of U will be changed simultaneously. Therefore,
the models that use U as the node attributes should keep the permutation invariance.
That randomly perturbed factorization is needed because such SVD decomposition
is not unique.

Although Srinivasan and Ribeiro (2020a) proposed this idea, they did not explic-
itly compute the node positional embeddings via matrix factorization. Instead, their
method samples a series of Gaussian random matrices ZG,1,ZG,2, ... and let them
propagate over the graph, e.g., for the two hops,

ZG = ψ(Âψ(ÂZG,1)+ZG,2),

where ψ’s are MLPs and Â indicates some variant of the adjacency matrix. The rows
of ZG essentially give rough node positional embeddings. Then, these obtained node
embeddings are further used as the attributes of nodes in MP-GNN.

5 The Expressive Power of Graph Neural Networks 85

Dwivedi et al (2020) indeed adopted matrix factorization explicitly. They pro-
posed to use the randomly perturbed Laplacian eigenmaps as the additional at-
tributes. Specifically, suppose the normalized Laplacian matrix is defined as

L = I−D−1/2AD−1/2,

where D is the diagonal degree matrix. Denote the eigenvalue decomposition of L
as L = UΣUT . The eigenvalue decomposition is not unique, so we assume that U
can be arbitrarily chosen from all the potential choices. Fortunately, if there are no
multiple eigenvalues, this U is unique for each column up to a ± sign. Then, we
may directly set the extra node attributes as

ZLE =UΓ , where Γii ∼ Unif({−1,1}) i.i.d. ∀i ∈ [|V |], Γi j = 0, ∀i ̸= j, (5.13)

where Γ is a diagonal matrix where diagonal elements are uniformly independently
set as 1 or −1. Here, U can be replaced with a few slices of the columns of U .
Let gZLE denote the operation to concatenate these additional attributes ZLE with
the original node attributes. Then, the overall composite model becomes fMP−GNN ◦
gZLE . The following lemma shows that the permutation invariance of fMP−GNN ◦gZLE

in expectation if the Laplacian matrices hold distinct eigenvalues:

Lemma 5.3. If (G (1),S(1))∼= (G (2),S(2)) and if there are no multiple eigenvalues of
their corresponding normalized Laplacian matrices, then any choice of eigenvalue
decomposition to obtain node embeddings will yield

E(fMP−GNN ◦gZLE (G
(1),S(1))) = E(fMP−GNN ◦gZLE (G

(2),S(2))).

Proof. The proof can be easily seen from the above arguments.

As shown in Lemma 5.3, the composite model keeps permutation invariance
in expectation for most graphs, although it may break invariance in some corner
cases. Regarding the expressive power, ZLE associates different nodes with distinct
attributes because U is an orthogonal matrix by definition. Hence, there must exist
fMP−GNN ◦gZLE that may distinguish any node subsets from the graph:

Theorem 5.8. For any two GRL examples (G ,S(1)), (G ,S(2)) over the same graph
G , even if they are isomorphic, as long as S(1) ̸= S(2), there exists an fMP−GNN such
that fMP−GNN ◦gZLE (G ,S(1)) ̸= fMP−GNN ◦gZLE (G ,S(2)). However, if those two GRL
examples are indeed isomorphic (G ,S(1)) ∼= (G ,S(2)) over the same graph G and
the normalized Laplacian matrix of G has no multiple same-valued eigenvalues,
then E(fMP−GNN ◦gZLE (G ,S(1))) = E(fMP−GNN ◦gZLE (G ,S(2))).

Proof. The proof can be easily seen from the above arguments.

Theorem 5.8 implies the potential of fMP−GNN ◦gZLE to distinguish different node
sets from the same graph. Note that although fMP−GNN ◦ gZLE achieves great rep-
resentation power, it does not always work very well for link prediction in prac-
tice (Dwivedi et al, 2020) when compared with another model SEAL (Zhang and

86 Pan Li and Jure Leskovec

Chen, 2018b) (compare their performance on the COLLAB dataset in (Hu et al,
2020b)). SEAL is based on the deterministic distance attributes that are introduced
in the next subsection. Whether a model is permutation invariant is a much weaker
statement on characterizing the generalization of the model. Actually, when the
model is paired node positional embeddings, the dimension of the parameter space
increases, and thus also negatively impacts the generalization. A comprehensive in-
vestigation of this observation is left for future study.

In the next subsection, we will introduce deterministic node distance attributes,
which provide a different angle to solve the above problem. Distance encoding has
a solid mathematical foundation and provides the theoretical support for many em-
pirically well-behaved models such as SEAL (Zhang and Chen, 2018b) and ID-
GNN (You et al, 2021).

5.4.3 Injecting Deterministic Distance Attributes

In this subsection, we will introduce an approach that boosts the expressive power
of MP-GNN by injecting deterministic distance attributes.

The key motivation behind the deterministic distance attributes is as follows. In
Section 5.4.1, we have shown that MP-GNN is limited in its ability to measure the
distances between different nodes, to count cycles3, and to distinguish attributed
regular graphs. All of these limitations are essentially inherited from the 1-WL
test which does not capture distance information between the nodes. If MP-GNN
is paired with some distance information, then the composite model must achieve
more expressive power. Then, the question is how to inject the distance information
properly.

There are two important pieces of intuition to design such distance attributes.
First, the effective distance information is typically correlated with the tasks. For
example, consider a GRL example (G ,S). If this task is node classification (|S|= 1),
the information of distance from this node to itself (thus the cycles containing this
node) is relevant because it measures the information of the contextual structure. If
the task is link prediction (|S|= 2), the information of distance between the two end
nodes of the link is relevant as two nodes near to each other in the network tend
to be connected by a link. For graph-level prediction (S = V (G)), the information
of distances between any pairs of nodes could be relevant as it can be viewed as a
group of link predictions. Second, besides the distance between the nodes in S, the
distance from S to other nodes in G may also provide useful side-information. Both
two aspects inspire the design of distance attributes.

There have been a few empirically successful GNN models that leverage deter-
ministic distance attributes, although their impact on the expressive power of GNNs

3 Cycles actually carry a special type of distance information, as they describe the length of walks
from one node to itself. If the distance from one node to itself is not measured by the shortest path
distance but by the returning probability of random walk, this distance already contains the cycle
information.

5 The Expressive Power of Graph Neural Networks 87

has not been characterized until very recently (Li et al, 2020e). For link prediction,
Li et al (2016a) first consider annotating the two end-nodes of the link of interest.
These two end-nodes are annotated with one-hot encodings and all other nodes are
annotated by zeros. Such annotations can be transformed into distance information
via GNN message passing. Again for link prediction, Zhang and Chen (2018b) first
sample an enclosing subgraph around the queried link and then annotate each node
in this subgraph with one-hot encodings of the shortest path distances (SPDs) from
this node to the two end-nodes of the link. Note that deciding whether a node is in
the enclosing subgraph around the queries link already gives a distance attribute.
Zhang and Chen (2019) uses a similar idea to perform matrix completion which is
a similar task to link prediction. For graph classification and graph-level property
prediction, Chen et al (2019a) and Maziarka et al (2020a) adopt the SPDs between
two nodes as edge attributes. These edge attributes can be also used as the input of
MSG (Eq.equation 11.45) in MP-GNN. You et al (2021) annotates a node as 1 and
other nodes as 0 to improve MP-GNN in node classification. As our focus is on the
theoretical characterization of the expressive power, we will not go into detail about
these empirically successful works. Interested readers are referred to the relevant
papers.

Remark 5.7. (Comparison between deterministic distance attributes and random at-
tributes) Deterministic distance attributes have some advantages. First, as there is
no randomness in the input attributes, the optimization procedure of the model con-
tains less noise. Hence, the training procedure tends to converge much faster than
the model with random attributes. The model evaluation performance contains much
less noise too. Some empirical evaluation of the convergence of the model training
with random attributes can be found in Abboud et al (2020). Second, a model based
on deterministic distance attributes typically shows better generalization in practice
than the one based on random attributes. Although theoretically a model is permuta-
tion invariant when being trained based on sufficiently many examples with random
attributes (as discussed in Sec.5.4.2), in practice, this could be hard to achieved due
to the high complexity.

Deterministic distance attributes have some disadvantages. First, models that are
paired with deterministic attributes may never achieve the universal approxima-
tion, unless the graph isomorphism problem is in P. However, random attributes
may be universal in the probabilistic sense (e.g., Theorem 5.6). Second, determin-
istic distance attributes typically depend on the information S in a GRL example
(G ,S). This introduces an issue in computation: that is, if there are two GRL ex-
amples (G (1),S(1)) and (G (2),S(2)) sharing the same graph G but with different
node sets of interest S(1) ̸= S(2), they will be attached with different deterministic
distance attributes and hence GNNs have to make inference over them separately.
However, GNNs with random attributes can share intermediate node representations
{h(L)

v |v ∈ V [G]} in Eq.equation 5.4, between the two GRL examples, which saves
intermediate computation.

88 Pan Li and Jure Leskovec

5.4.3.1 Distance Encoding (Li et al, 2020e)

Suppose we aim to make prediction for a GRL example (G ,S). Li et al (2020e)
defined distance encoding ζ (u|S) as an extra node attribute for node u ∈ V [G].

Definition 5.10. For a GRL example (G ,S) where G = (A,X). Distance encoding
ζ (u|S) for node u is defined as follows

ζ (u|S) = ∑
v∈S

MLP(ζ (u|v)) (5.14)

where ζ (u|v) charaterizes a certain distance between u and v. We may choose

ζ (u|v) = g(ℓuv), ℓuv = (1,(W)uv,(W 2)uv, ...,(W k)uv, ...), (5.15)

where W = AD−1 is the random walk matrix and g(·) is a general function that maps
ℓuv to different types of distance measures.

Note that ζ (u|S) depends on the graph structure G , which we omit in our notation
for simplicity. First, setting g(ℓuv) as the first non-zero position in ℓuv gives the
shortest-path-distance (SPD) from v to u. Second, setting g(ℓuv) as follows gives
generalized PageRank scores (Li et al, 2019f):

ζgpr(u|v) = ∑
k≥1

γk(W k)uv = (∑
k≥0

γkW k)uv, γk ∈ R, for all k ∈ Z≥0 . (5.16)

Different choices of {γk|k ∈ Z≥0} yield various distance measures between u and v.

Personalized PageRank scores (Jeh and Widom, 2003): γk = α
k, α ∈ (0,1),

Heat-kernel PageRank scores (Chung, 2007): γk = β
ke−β/k!, β > 0,

Inverse hitting time (Lovász et al, 1993): γk = k.

It is important to see that the above definition of distance encoding satisfies per-
mutation invariance.

Lemma 5.4. For two isomorphic GRL examples (G (1),S(1))
π∼=(G (2),S(2)), if π(u)=

π(v) for u∈V [G (1)] and v∈V [G (2)], their distance encodings are equal ζ (u|S(1))=
ζ (v|S(2)).

Proof. The proof can be easily seen by the definition of distance encoding.

Li et al (2020e) considers using distance encoding as node extra attributes.
Specifically, MP-GNN can be improved by setting X̃v = Xv⊕ ζ (v|S) ,where ⊕ is
the concatenation. The obtained model is termed DE-GNN, denoted as fDE .

DE-GNN has been shown to be more powerful than MP-GNN. Recall that the
fundamental limit of MP-GNN is the 1-WL test for graph representation learn-
ing problems (Theorem 5.2). Corollary 5.1 further indicates that attributed regu-
lar graphs may not be distinguished by MP-GNN under certain scenarios. Li et al

5 The Expressive Power of Graph Neural Networks 89

… …

…

… …

…

𝑆"𝑆#

Left Right

Node classification
for structural-role prediction

… …

…

… …

…
+ distance encoding (use shortest
path distance as an example)

Left Right

DE = 0
DE = 1
DE = 2

? ?

𝜁 𝑆𝑒𝑎𝑙 𝑂𝑟𝑐𝑎, 𝑃𝑒𝑙𝑎𝑔𝑖𝑐 𝐹𝑖𝑠ℎ = {1,1}
𝜁 𝑆𝑒𝑎𝑙 𝐿𝑦𝑛𝑥, 𝑃𝑒𝑙𝑎𝑔𝑖𝑐 𝐹𝑖𝑠ℎ = {1,∞}

Link prediction

+ distance encoding (use shortest
path distance as an example)

Subtrees rooted at the nodes of interest
𝑆"𝑆#

𝑆# 𝑆"

Fig. 5.13: Distance encoding can be used to distinguish non-isomorphic graph-
structured examples. In the example of node classification, we consider classi-
fying nodes based on their roles in their contextual structures, termed structural
roles (Henderson et al, 2012). Nodes in S1 and S2 have different structure roles.
However MP-GNN with two layers will confuse these two nodes; while with dis-
tance encoding, DE-GNN may distinguish them. In the example of link prediction,
although two nodes {Lynx, G} and {Orca, G} are isomorphic (where we ignore the
node identities), distance encoding on the node Seal allows us to distinguish node
pairs {Orca, Pegagic Fish} and {Lynx, Pegagic Fish}.

(2020e) considers the scenario when the graphs are regular and do not have attributes
and proved that DE-GNN can distinguish two GRL examples with high probability,
which is formally stated in the following theorem.

Theorem 5.9. (Theorem 3.3 (Li et al, 2020e)) Consider two GRL examples (G (1),S(1))
and (G (2),S(2)) where G (1) and G (2) are two n-sized unattributed regular graphs,
and |S(1)| = |S(2)| is a constant (independent of n). Suppose G (1) and G (2) are
uniformly independently sampled from all n-sized r-regular graphs where 3 ≤ r <
(2logn)1/2. Then, for any small constant ε > 0, there exists DE-GNN with certain
weights within L≤ ⌈(1

2 +ε) logn
log(r−1)⌉ layers that can distinguish these two examples

with high probability. Specifically, the outputs fDE((G (1),S(1))) ̸= fDE((G (2),S(2)))
with probability 1− o(n−1). The specific form of DE, i.e., g in Eq.equation 5.15,
can be simply chosen as short path distance. The little-o notation here and later are
w.r.t. n.

Theorem 5.9 focuses on the node sets of unattributed regular graphs. We con-
jecture that the statement can be generalized to attributed regular graphs as distinct
attributes can only further improve the distinguishing power of a model. Moreover,

90 Pan Li and Jure Leskovec

the assumption on regularity of graphs is also not crucial because the 1-WL test or
MP-GNN may transform all graphs, attributed or not, into attributed regular graphs
with enough iterations (Arvind et al, 2019).

Of course, DE-GNN may not distinguish any non-isomorphic GRL examples.
Li et al (2020e) introduce the limitation of DE-GNN. Particularly, DE-GNN cannot
distinguish nodes of distance regular graphs with the same intersection arrays, al-
though DE-GNN may distinguish their edges (See Fig. 5.14 later). Li et al (2020e)
also generalize the above results to the case that leverages distance attributes as
edge attributes (to control message aggregation in MP-GNN). Interested readers
can check the details in their original paper.

5.4.3.2 Identity-aware GNN (You et al, 2021)

As a concurrent work with DE-GNN, You et al (2021) studied a special type of
distance encoding to improve the node representations learnt by MP-GNN. Specifi-
cally, when MP-GNN is adopted to compute the representation of node v, You et al
(2021) suggests attaching each node u in the graph with an extra binary attribute
ζID(u|{v}) to indicate the identity of node v where

ζID(u|{v}) =
{

1 if u = v,
0 o.w. (5.17)

MP-GNN that leverages ζID(u|{v}) is termed Identity-aware GNN (ID-GNN).
ζID(u|{v}) is a simple implementation of distance encoding (Eq. equation 5.14)
when the set S contains only one node v. Although ID-GNN does not compute
distance measures as DE-GNN, ID-GNN holds the same representation power as
DE-GNN for node classification, as the distance information from another node u
to the target node v can be learnt by ID-GNN via an extra identity attribute.

Theorem 5.10. For two graph-structured examples (G (1),S(1)) and (G (2),S(2)),
where |S(i)| = 1 for i ∈ {1,2} and G (i) is unattributed, if DE-GNN can distinguish
them with L layers, then ID-GNN requires at most 2L layers to distinguish them.

Proof. ID-GNN needs the first L layers to propagate the identity attribute to capture
distance information and the second L layers to let such information propagate back
to finally be merged into the node representations.

Although ID-GNN adopts a specific type of DE to learn node representations, ID-
GNN was also used to perform graph-level prediction (You et al, 2021). Specifically,
for every node v in the graph G, ID-GNN attaches 1 to this node, 0’s to other nodes
and computes the node representation hv. Iterating over all the nodes, ID-GNN col-
lects all node representations {hv|v ∈ V (G)}. Then, by following Eq.equation 5.4
(S is the entire node set V (G) here), ID-GNN can aggregate the node representa-
tions of all the nodes and further make graph-level predictions. Actually, combining
the statement of Theorem 5.9 and the union bound, Li et al (2020e) indicates the

5 The Expressive Power of Graph Neural Networks 91

a b c d DE = {0, 1}
DE = {1, 1}
DE = {1, 2}
DE = {2, 2}

DE-GNN for |S|=2

a b c d

ID-GNN for |S|=2

Fig. 5.14: ID-GNN v.s. DE-GNN makes predictions for a pair of nodes. Two graphs
are the Shrikhande graph (left) and the 4×4 Rook’s graph (right). ID-GNN (black
nodes attached identities) cannot distinguish node pairs {a,b} and {c,d}. DE-GNN
may learn distinct representations of {a,b} and {c,d}. In these two graphs, each
node is colored with its DE that is a set of SPDs to either node in the target node
sets {a,b} or {c,d} (Eq. equation 5.14). Note that the neighbors of nodes with DE=
{1,1} (dashed boxes) are enclosed by red ellipses which shows that the neighbors
of these two nodes have different DE’s. Hence, after one layer of DE-GNN, the
intermediate representations of nodes with DE= {1,1} are different between these
two graphs. Using another layer, DE-GNN can distinguish the representations of
{a,b} and {c,d}.

expressive power of the above procedure for the entire graph classification problem,
summarized in the following corollary.

Corollary 5.2. (Reproduced from Corollary 3.4 (Li et al, 2020e)) Consider two
GRL examples G (1) and G (2). Suppose G (1) and G (2) are uniformly independently
sampled from all n-sized unattributed r-regular graphs where 3 ≤ r < (2logn)1/2.
Then, ID-GNN with a sufficient number of layers can distinguish these two graphs
with probability 1−o(1). The little-o notation here and later are w.r.t. n.

ID-GNN can be viewed as the simplest version of DE-GNN that achieves the
same expressive power for node-level prediction. However, when the prediction
tasks contain two nodes, i.e., node-pair-level prediction, ID-GNN will be less pow-
erful than DE-GNN.

To make a prediction for a GRL example (G ,S) where |S| = 2, ID-GNN can
adopt two different approaches. First, ID-GNN can attach the extra identity at-
tributes to the two nodes in S separately, learn their representations separately and
combine these two representations to make the final prediction. However, this ap-
proach cannot capture the distance information between the two nodes in S. Instead,
ID-GNN uses an alternative approach. ID-GNN attaches the extra identity attribute
to only one of nodes in S and performs message passing. Then, after a sufficient
number of layers where the extra node identity is propagated from one node to
another in S, the distance information between these two nodes can be captured.
Finally, ID-GNN makes its prediction based on the two node representations in S.
Note that although the second approach captures the distance information between
the two nodes in S, it is still less powerful than DE-GNN. One example is shown in
Fig. 5.14.

92 Pan Li and Jure Leskovec

Up to this point, we have mostly focused on the message passing framework of
GNNs, which leverages the sparsity of real-world graphs. In the next subsection, we
remove the need for sparsity and discuss higher-order GNNs. These GNNs essen-
tially mimic higher-dimensional WL tests and achieve more expressive power.

5.4.4 Higher-order Graph Neural Networks

The final collection of techniques for building GNNs, which overcome the limi-
tation of the 1-WL test, are related to higher-dim WL test. In this subsection, for
notational simplicity, we focus only on graph-level prediction learning problems,
where higher-order GNNs are mostly used.

The family of WL tests forms a hierarchy for the graph isomorphism prob-
lem (Cai et al, 1992). There are different definitions of the higher-dim WL tests.
We follow the terminology adopted in Maron et al (2019a) and introduce two types
of WL tests: the k-forklore WL (k-FWL) test and the k-WL test.

Recall G (i) = {A(i),X (i)}, i ∈ {1,2} . For both G (i)’s, i ∈ {1,2}, do the following steps.

1. For each k-tuple of node set Vj = (v j1 ,v j2 , ...,v jk) ∈ V k, j ∈ [n]k, we initialize Vj with a

color denoted by C(0)
j . These colors satisfy the condition that for two k-tuples, say Vj and

Vj′ , C(0)
j and C(0)

j′ are the same if and only if: (1) Xv ja
= Xv j′a

; (2) v ja = v jb ⇔ v j′a = v j′b
;

and (3) (v ja ,v jb) ∈ E ⇔ (v j′a ,v j′b
) ∈ E for all a,b ∈ [k].

2. k-FWL: For each k-tuple Vj and u∈V , define Nk−FWL(Vj;u) as a k-tuple of k-tuples, such
that Nk−FWL(Vj;u) = ((u,v j2 , ...,v jk),(v j1 ,u, ...,v jk),(v j1 ,v j2 , ...,u)). Then the color of Vi
can be updated via the following mapping.

Update colors: C(l+1)
j ← HASH(C(l)

j ,{(C(l)
j′ |Vj′ ∈ Nk−FWL(Vj;u))}u∈V). (5.18)

k-WL: For each k-tuple Vj and u ∈ V , define Nk−WL(Vj;u) as a set of k-tuples such that
Nk−WL(Vj;u) = {(u,v j2 , ...,v jk),(v j1 ,u, ...,v jk),(v j1 ,v j2 , ...,u)} Then, the color of Vi can
be updated via the following mapping.

Update colors: C(l+1)
j ← HASH(C(l)

j ,∪u∈V {C(l)
j′ |V ′j ∈ Nk−WL(Vj;u)}), (5.19)

where the HASH operations in both cases guarantee an injective mapping with different
inputs yielding different outputs.

3. For each step l, {C(l)
j } j∈[V (G(i))]k is a multi-set. If such multi-sets of the two graphs are

not equal, return G (1) ̸∼= G (2). Otherwise, go to Eq. equation 5.19.

Similar to the 1-WL test, if the k-(F)WL test returns G (1) ̸∼= G (2), then it follows that G (1),
G (2) are not isomorphic. However, the reverse is not true.

Fig. 5.15: Use k-FWL and k-WL to distinguish G (1) and G (2).

The key idea of these higher-dim WL tests is to color every k-tuple of nodes in
the graphs and update these colors by aggregating the colors from other k-tuples that

5 The Expressive Power of Graph Neural Networks 93

share k−1 nodes. The procedures of the k-FWL test and the k-WL test are shown in
Fig. 5.15. Note that they perform aggregation differently, and as such, have different
power to distinguish non-isomorphic graphs. These two types of tests form a nested
hierarchy, as summarized in the following theorem.

Theorem 5.11. (Cai et al, 1992; Grohe and Otto, 2015; Grohe, 2017)

1. The k-FWL test and the k+1-WL test have the same discriminatory power, for
k ≥ 1.

2. The 1-FWL test, the 2-WL test and the 1-WL test have the same discriminatory
power.

3. There are some graphs that the k+ 1-WL test can distinguish while the k-WL
test cannot, for k ≥ 2.

Because of Theorem 5.11, GNNs that are able to capture the power of these
higher-dim WL tests can be strictly more powerful than the 1-WL test. Therefore,
higher-order GNNs have the potential to learn even more complex functions than
MP-GNN.

However, the drawback of these GNNs is their computational complexity. By
the definition of higher-order WL tests, the colors of all k-tuples of nodes need to
be tracked. Correspondingly, higher-order GNNs that mimic higher-order WL tests
need to associate each k-tuple with a vector representation. Therefore, their memory
complexity is at least Ω(|V |k), where |V | is the number of nodes in the graph. The
computational complexity is at least Ω(|V |k+1), which makes these higher-order
GNNs prohibitively expensive for large-scaled graphs.

5.4.4.1 k-WL-induced GNNs (Morris et al, 2019)

Morris et al (2019) first proposed k-GNN by following the k-WL test. Specifically,
k-GNN associates each k-tuple of nodes, denoted by Vj, j ∈ V k, with a vector repre-
sentation that is initialized as h(0)

j . In order to save memory, k-GNN only considers
k-tuples that contain k different nodes and ignores the order of these nodes. There-
fore, each k-tuple reduces to a set of k nodes. With some modification of notation in
this subsection, let V j denote this set of k different nodes. The initial representation
of V j, h(0)

j is chosen as a one-hot encoding such that h(0)
j = h(0)

j′ , if and only if the
subgraphs induced by Vj and Vj′ are isomorphic.

Then, k-GNN follows the following update procedure of these representations:

h(l+1)
j = MLP(h(l)

j ⊕ ∑
V j′ :Nk−GNN(V j)

h(l)
j′), ∀ k-sized node sets Vj, (5.20)

where Nk−GNN(Vj) = {Vj′ | |Vj′ ∩Vj| = k− 1}. Note that Nk−GNN(Vj) defines the
neighbors of Vj differently than Nk−WL (see Eq.equation 5.19), because Vj is now a
k-sized node set instead of a k-tuple.

94 Pan Li and Jure Leskovec

Eq.equation 5.20 has time complexity at least O(|V |k) as the size of Nk−GNN(Vj)
is O(|V |k). Recently, Morris et al (2019) also considers using a local neighbor-
hood of Vj instead of Nk−GNN(Vj). This local neighborhood only includes Vj′ ∈
Nk−GNN(Vj), such that the node in Vj′\Vj is connected to at least one node in Vj.
Morris et al (2020b) demonstrated that a variant of this local version of k-GNN may
be as powerful as the k-WL test, although a deeper architecture with more layers is
needed to match the expressive power.

k-GNN is at most as powerful as the k-WL test. To be more expressive than
MP-GNN, k = 3 is needed. Therefore, the memory complexity is at least Ω(|V |3).
Subsequently, the computational complexity of k-GNN, even for their local version,
is at least Ω(|V |3) per layer.

5.4.4.2 Invariant and equivariant GNNs (Maron et al, 2018, 2019b)

To build higher-order GNNs, every k-tuple needs to be associated with a vector rep-
resentation. Therefore, regardless whether a local or a global neighborhood aggrega-
tion is adopted (Eq.equation 5.20), the benefit of reducing the computation by lever-
aging the sparse graph structure is limited, as it cannot reduce the dominant term
Ω(|V |k). Moreover, to handle a sparse graph structure, these higher-order GNNs
also need random memory access, which introduces additional computational over-
head. Therefore, a line of research into building higher-order GNNs totally ignores
graph sparsity. Graphs are viewed as tensors and NNs take these tensors as input.
The NNs are designed to be invariant to the order of tensor indices.

Many approaches (Maron et al, 2018, 2019a,b; Chen et al, 2019f; Keriven and
Peyré, 2019; Vignac et al, 2020a; Azizian and Lelarge, 2020) adopt this formulation
to build GNNs and analyze their expressive power.

Each k-tuple Vj ∈ V k is associated with a vector representation h(l)
j . We assume

that h(l)
j ∈ R for simplicity. By concatenating the k-tuple’s representations together,

we obtain a k-order tensor:

H ∈ R⊗k|V |, where R⊗k|V | = R
|V |× · · ·× |V |︸ ︷︷ ︸

k times .

Maron et al (2018) investigates linear permutation invariant and equivariant map-
pings defined on R⊗k|V |.

Definition 5.11. Given a bijective mapping π : V → V and H ∈ R⊗k|V |, define
π(H) := H ′, where H ′(π(v1),π(v2),...,π(vk))

= H(v1,v2,...,vk), for all k-tuples (v1,v2, ...,vk)

∈ V k.

Definition 5.12. A mapping g : R⊗k|V |→ R is called invariant, if for any bijective
mapping π : V → V and H ∈ R⊗k|V |, g(H) = g(π(H)).

Definition 5.13. A mapping g : R⊗k|V | → R⊗k|V | is called equivariant, if for any
bijective mapping π : V → V and H ∈ R⊗k|V |, π(g(H)) = g(π(H)).

5 The Expressive Power of Graph Neural Networks 95

Maron et al (2018) showed that the number of the bases needed to represent all
possible linear invariant mappings from R⊗k|V | → R is b(k), where b(k) is the k-
th Bell number. Additionally, the number of bases, needed to represent all possible
linear equivariant mappings from R⊗k|V | → R⊗k′ |V |, is b(k+ k′). To better under-
stand this observation, consider the invariant case with k = 1. In this case, the linear
invariant mapping g : R|V | → R is essentially an invariant pooling (Def.5.7). As
b(1) = 1, the linear invariant mapping g : R|V |→ R only holds one single base —
the sum pooling, i.e., g follows the form g(a) = c⟨1,a⟩, where c is a parameter to
be learned. Consider the equivariant case, where k = 1 and k′ = 1. As b(2) = 2,
the linear equivariant mapping g : R|V |→ R|V | holds two bases, i.e., g has the form
g(a) = (c1I + c211⊤)a, where c1,c2 are parameters to be learned.

Based on the above observations, GNNs can be built by compositing these linear
invariant/equivariant mappings. Learning can be performed via learning the weights
before the above bases. Towards this end, Maron et al (2018, 2019a) has proposed
using these linear invariant/equivariant mappings to build GNNs:

fk−inv = ginv ◦g(L)equ ◦σ ◦g(L−1)
equ ◦σ · · · ◦σ ◦g(1)equ, (5.21)

where ginv is a linear invariant layer R⊗k|V |→ R, g(l)equ’s, l ∈ [L] are linear equivari-
ant layers from R⊗k|V | → R⊗k|V |, and σ is an element-wise non-linear activation
function. It can be shown that fk−inv is an invariant mapping. Maron et al (2018);
Azizian and Lelarge (2020) proved that the connection of fk−inv to the k-WL test
can be summarized with the following theorem.

Theorem 5.12. (Reproduced from (Maron et al, 2018; Azizian and Lelarge, 2020))
For two non-isomorphic graphs G (1) ̸∼= G (2), if the k-WL test can distinguish them,
then there exists fk−inv that can distinguish them.

Maron et al (2019b); Keriven and Peyré (2019) also studied whether the models
fk−inv may universally approximate any permutation invariant function. However,
they were pessimistic in their conclusion since this would require high-order tensors,
k = Ω(n), which can hardly be implemented in practice (Maron et al, 2019b).

Similar to k-GNN, finv is also at most as powerful as the k-WL test. To be more
expressive than MP-GNN, finv should use at least k = 3. Therefore, the memory
complexity is at least Ω(|V |3). Then, the number of bases of the linear equivariant
layer is b(6) = 203. Therefore, the computation at each layer follows that: (1) a
tensor in R⊗3|V | times b(6) many tensors in R⊗6|V | get b(6) many tensors in R⊗3|V |;
(2) these tensors get summed into a single tensor in R⊗3|V |.

5.4.4.3 k-FWL-induced GNNs (Maron et al, 2019a; Chen et al, 2019f)

The higher-order GNNs in previous two subsections match the expressive power of
the k-WL test. According to Theorem 5.11, the k-FWL test holds the same power
as the k+1-WL test, which is strictly more powerful than the k-WL test for k ≥ 2,
while the k-FWL test only needs to track the representations of k-tuples. Therefore,

96 Pan Li and Jure Leskovec

if GNNs can mimic the k-FWL test, they may hold similar memory cost as the GNNs
introduced in the previous two subsections while being more expressive. Maron et al
(2019a); Chen et al (2019f) proposed PPGN and Ring-GNN respectively to match
the k-FWL test.

The key difference between the k-FWL test and the k-WL test is the leverag-
ing of the neighbors of a k-tuple Vj. Note that Nk−FWL(Vj;u) in Eq.equation 5.18
groups the neighboring tuples of Vj into a higher-level tuple, while Nk−WL(Vj;u)
skips grouping them due to the set union operation in Eq.equation 5.19. This yields
the key mechanism in the GNN design to match the k-FWL test: implement the ag-
gregating procedure in the k-FWL test of Eq.equation 5.18 via a product-sum pro-
cedure. Suppose the representation for Vj is h j ∈R. We may design the aggregation
of {(C(l)

j′ |Vj′ ∈ Nk−FWL(Vj;u))}u∈V as

∑
u∈V

∏
V j′∈Nk−FWL(V j ;u)

h j′ .

If we combine all these representations into a tensor H ∈ R⊗k|V |×F , the above oper-
ation can essentially be represented as tensor operation, i.e., define

H ′ := ∑
u∈V

Hu,·,··· ,·⊙H·,u,··· ,·⊙·· ·⊙H·,·,··· ,u, where

[H ′]v j1 ,v j2 ,··· ,v jk
= ∑

u∈V
Hu,v j2 ,··· ,v jk

·Hv j1 ,u,··· ,v jk
· · · · ·Hv j1 ,v j2 ,··· ,u.

Based on the above observation, Maron et al (2019a) built PPGN as follows.
First, for all Vj ∈ V k, initialize h(0)

j ∈ R such that h(0)
j = h(0)

j′ , if and only if: (1)
Xv ja

= Xv j′a
; (2) v ja = v jb ⇔ v j′a = v j′b

; and (3) (v ja ,v j′b
) ∈ E ⇔ (v j′a ,v j′b

) ∈ E , for

all a,b ∈ [k]. Then, combine h(0)
j into a tensor H(0) ∈ R⊗k|V |. Perform the updating

procedure for l = 0,1, ...,L−1:

H(l+1) = H̃(l,0)⊕
[

∑
u∈V

H̃(l,1)
u,·,··· ,·⊙ H̃(l,2)

·,u,··· ,·⊙·· ·⊙ H̃(l,k)
·,·,··· ,u

]
,

where, H̃(l,i) = MLP(l,i)(H(l)). (5.22)

Here, MLPs are imposed at the last dimension of these tensors. MLPs with different
sup-script have different parameters. Finally, perform a READOUT ∑V j∈V k h(L)

j to
obtain the graph representation.

Maron et al (2019a) proved that PPGN, when k = 2, can match the power of the
2-FWL test. Azizian and Lelarge (2020) generalized this result to an arbitrary k.

Theorem 5.13. (Reproduced from (Azizian and Lelarge, 2020)) For two non-isomorphic
graphs G(1) ̸∼=G(2), if the k-FWL test can distinguish them, then there exists a PPGN
that can distinguish them.

5 The Expressive Power of Graph Neural Networks 97

To be more powerful than the 1-WL test, PPGN only needs to set k = 2 and hence
the memory complexity is just Ω(|V |2). Regarding the computation, the product-
sum-type aggregation of PPGN is indeed more complex than finv in Sec.5.4.4.2.
However, when k = 2, Eq.equation 5.22 reduces to the product of two matrices,
which can be efficiently computed in parallel computing units.

5.5 Summary

Graph neural networks have recently achieved unprecedented success across many
domains due to their great expressive power to learn complex functions defined
over graphs and relational data. In this chapter, we provided a systematic study of
the expressive power of GNNs by giving an overview of recent research results in
this field.

We first established that the message passing GNN is at most as powerful as the
1-WL test to distinguish non-isomorphic graphs. The key condition that guaran-
tees to match the limit is an injective updating function of node representations.
Next, we discussed techniques that have been proposed to build more powerful
GNNs. One approach to make message passing GNNs more expressive is to pair
the input graphs with extra attributes. In particular, we discussed two types of extra
attributes — random attributes and deterministic distance attributes. Injecting ran-
dom attributes allows GNNs to distinguish any non-isomorphic graphs, though a
large amount of data augmentation is required to make GNNs approximately invari-
ant. Meanwhile, injecting deterministic distance attributes does not require the same
data augmentation, but the expressive power of the resulting GNNs still holds certain
limitations. Mimicking higher-dimensional WL tests is another way to build more
powerful GNNs. These approaches do not track node representations. Instead, they
update the representation of every k-tuple of nodes (k ≥ 2). Overall, the message
passing GNN is powerful but holds some limits in its expressive power. Different
techniques make GNNs overcome these limits to a different extent while incurring
different types of computational costs.

We would like to list some additional research results on the expressive power
of GNNs that we were not able to cover earlier due to space limitations. Barceló
et al (2019) study the expressive power of GNNs to represent Boolean classifiers,
which is useful to understand how GNNs represent knowledge and logic. Vignac
et al (2020a) propose a structural message passing framework for GNNs, where a
matrix instead of a vector is adopted as the node representation to make GNN more
expressive. Balcilar et al (2021) studied the expressivity of GNNs via the spectral
analysis of GNN-based graph signal transformations. Chen et al (2020k) studies the
effect of non-linearity of GNNs in the message passing procedure on their expres-
sive power, which complements our understanding of many works that suggest a
linear message passing procedure (Wu et al, 2019a; Klicpera et al, 2019a; Chien
et al, 2021).

98 Pan Li and Jure Leskovec

Theoretical characterization of GNNs is an important research direction, where
the analysis of expressive power is only one of its aspects, perhaps the best-studied
up to this point. Machine learning models hold two fundamental blocks, training and
generalization. However, only a few research works have analyzed them (Garg et al,
2020; Liao et al, 2021; Xu et al, 2020c). The authors suggest that future research
on building more expressive GNNs always takes these two blocks into account.
A related, significant question is how to build more expressive GNNs with only a
limited depth and width4. Note that limiting the model depth and width yields the
potential of more efficient GNN training and better generalization. To conclude this
chapter, let us quote Sir Winston Churchill:“Now this is not the end. It is not even the
beginning of the end. But it is, perhaps, the end of the beginning.” We have strong
confidence that the machine learning community will put more effort on theory for
GNNs in the future to match their success and break their encountered difficulties
in real-world applications.

Acknowledgements The authors would like to greatly thank Jiaxuan You and Weihua Hu for
sharing many materials reproduced here. The authors would like to greatly thank Rok Sosič
and Natasha Sharp for commenting on and polishing the manuscript. The authors also grate-
fully acknowledge the support of DARPA under Nos. HR00112190039 (TAMI), N660011924033
(MCS); ARO under Nos. W911NF-16-1-0342 (MURI), W911NF-16-1-0171 (DURIP); NSF under
Nos. OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940 (Expeditions), IIS-2030477
(RAPID), NIH under No. R56LM013365; Stanford Data Science Initiative, Wu Tsai Neuro-
sciences Institute, Chan Zuckerberg Biohub, Amazon, JPMorgan Chase, Docomo, Hitachi, Intel,
JD.com, KDDI, NVIDIA, Dell, Toshiba, Visa, and UnitedHealth Group. J. L. is a Chan Zuckerberg
Biohub investigator.

Editor’s Notes: The theoretical analysis of expressive power reveals how
the architecture of GNNs works and gains its advantage. Hence it provides
support for readers to understand the great success of GNNs in fundamental
graph learning tasks, e.g. link prediction (chapter 10) and graph matching
(chapter 13), various downstream tasks, e.g. recommender system (chapter
19) and natural language processing (chapter 21), as well as its relevance
with other GNNs’ characterizations, e.g. scalability (chapter 6) and robust-
ness (chapter 8). Inspired by these theories, it’s also probably to motivate
the study of preferable GNN models that can break through unsolved chal-
lenges in existing problems, such as graph transformation (chapter 12) and
drug discovery (chapter 24).

4 Loukas (2020) measures the required depth and width of GNNs by viewing them as distributed
algorithms, which does not assume permutation invariance. Instead, here we are talking about the
expressive power that refers to the capability of learning permutation invariant functions.

Chapter 6
Graph Neural Networks: Scalability

Hehuan Ma, Yu Rong, and Junzhou Huang

Abstract Over the past decade, Graph Neural Networks have achieved remarkable
success in modeling complex graph data. Nowadays, graph data is increasing expo-
nentially in both magnitude and volume, e.g., a social network can be constituted
by billions of users and relationships. Such circumstance leads to a crucial question,
how to properly extend the scalability of Graph Neural Networks? There remain
two major challenges while scaling the original implementation of GNN to large
graphs. First, most of the GNN models usually compute the entire adjacency matrix
and node embeddings of the graph, which demands a huge memory space. Second,
training GNN requires recursively updating each node in the graph, which becomes
infeasible and ineffective for large graphs. Current studies propose to tackle these
obstacles mainly from three sampling paradigms: node-wise sampling, which is ex-
ecuted based on the target nodes in the graph; layer-wise sampling, which is im-
plemented on the convolutional layers; and graph-wise sampling, which constructs
sub-graphs for the model inference. In this chapter, we will introduce several repre-
sentative research accordingly.

Hehuan Ma
Department of CSE, University of Texas at Arlington, e-mail: hehuan.ma@mavs.uta.edu

Yu Rong
Tencent AI Lab, e-mail: yu.rong@hotmail.com

Junzhou Huang
Department of CSE, University of Texas at Arlington, e-mail: jzhuang@uta.edu

99
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_6

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:hehuan.ma@mavs.uta.edu
mailto:yu.rong@hotmail.com
mailto:jzhuang@uta.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_6&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_6

100 Hehuan Ma, Yu Rong, and Junzhou Huang

6.1 Introduction

Graph Neural Network (GNN) has gained increasing popularity and obtained re-
markable achievement in many fields, including social network (Freeman, 2000;
Perozzi et al, 2014; Hamilton et al, 2017b; Kipf and Welling, 2017b), bioin-
formatics (Gilmer et al, 2017; Yang et al, 2019b; Ma et al, 2020a), knowledge
graph (Liben-Nowell and Kleinberg, 2007; Hamaguchi et al, 2017; Schlichtkrull
et al, 2018), etc. GNN models are powerful to capture accurate graph structure in-
formation as well as the underlying connections and interactions between nodes (Li
et al, 2016b; Veličković et al, 2018; Xu et al, 2018a, 2019d). Generally, GNN models
are constructed based on the features of the nodes and edges, as well as the adja-
cency matrix of the whole graph. However, since the graph data is growing rapidly
nowadays, the graph size is increasing exponentially too. Recently published graph
benchmark datasets, Open Graph Benchmark (OGB), collects several commonly
used datasets for machine learning on graphs (Weihua Hu, 2020). Table 6.1 is the
statistics of the datasets about node classification tasks. As observed, large-scale
dataset ogbn-papers100M contains over one hundred million nodes and one billion
edges. Even the relatively small dataset ogbn-arxiv still consists of fairly large nodes
and edges.

Table 6.1: The statistics of node classification datasets from OGB (Weihua Hu,
2020).

Scale Name Number of Nodes Number of Edges

Large ogbn-papers100M 111,059,956 1,615,685,872
Medium ogbn-products 2,449,029 61,859,140
Medium ogbn-proteins 132,534 39,561,252
Medium ogbn-mag 1,939,743 21,111,007
Small ogbn-arxiv 169,343 1,166,243

For such large graphs, the original implementation of GNN is not suitable. There
are two main obstacles, 1) large memory requirement, and 2) inefficient gradient
update. First, most of the GNN models need to store the entire adjacent matrices
and the feature matrices in the memory, which demand huge memory consumption.
Moreover, the memory may not be adequate for handling very large graphs. There-
fore, GNN cannot be applied on large graphs directly. Second, during the training
phase of most GNN models, the gradient of each node is updated in every iteration,
which is inefficient and infeasible for large graphs. Such scenario is similar with the
gradient descent versus stochastic gradient descent, while the gradient descent may
take too long to converge on large dataset, and stochastic gradient is introduced to
speed up the process towards an optimum.

In order to tackle these obstacles, recent studies propose to design proper sam-
pling algorithms on large graphs to reduce the computational cost as well as increase

6 Graph Neural Networks: Scalability 101

the scalability. In this chapter, we categorize different sampling methods according
to the underlying algorithms, and introduce typical works accordingly.

6.2 Preliminary

We first briefly introduce some concepts and notations that are used in this chapter.
Given a graph G (V ,E), |V | = n denotes the set of n nodes and |E | = m denotes a
set of m edges. Node u ∈N (v) is the neighborhood of node v, where v ∈ V , and
(u,v) ∈ E . The vanilla GNN architecture can be summarized as:

h(l+1) = σ

(
Ah(l)W (l)

)
,

where A is the normalized adjacency matrix, h(l) represents the embedding of the
node in the graph for layer/depth l, W (l) is the weight matrix of the neural network,
and σ denotes the activation function.

For large-scaled graph learning, the problem is often referred as the node classi-
fication, where each node v is associated with a label y, and the goal is to learn from
the graph and predict the labels of unseen nodes.

6.3 Sampling Paradigms

The concept of sampling aims at selecting a partition of all the samples to represent
the entire sample distribution. Therefore, the sampling algorithm on large graphs
refers to the approach that uses partial graph instead of the full graph to address
target problems. In this chapter, we categorize different sampling algorithms into
three major groups, which are node-wise sampling, layer-wise sampling and graph-
wise sampling.

Node-wise sampling plays a dominant role during the early stage of imple-
menting GCN on large graphs, such as Graph SAmple and aggreGatE (Graph-
SAGE) (Hamilton et al, 2017b) and Variance Reduction Graph Convolutional
Networks (VR-GCN) (Chen et al, 2018d). Later, layer-wise sampling algorithms
are proposed to address the neighborhood expansion problem occurred during
node-wise sampling, e.g., Fast Learning Graph Convolutional Networks (Fast-
GCN) (Chen et al, 2018c) and Adaptive Sampling Graph Convolutional Networks
(ASGCN) (Huang et al, 2018). Moreover, graph-wise sampling paradigms are de-
signed to further improve the efficiency and scalability, e.g., Cluster Graph Convo-
lutional Networks (Cluster-GCN) (Chiang et al, 2019) and Graph SAmpling based
INductive learning meThod (GraphSAINT) (Zeng et al, 2020a). Fig. 6.1 illustrates
a comparison between three sampling paradigms. In the node-wise sampling, the
nodes are sampled based on the target node in the graph. While in the layer-wise
sampling, the nodes are sampled based on the convolutional layers in the GNN

102 Hehuan Ma, Yu Rong, and Junzhou Huang

(a) Node-wise. (b) Layer-wise.

(c) Graph-wise.

Fig. 6.1: Three sampling paradigms toward large-scale GNNs.

models. For the graph-wise sampling, the sub-graphs are sampled from the original
graph, and used for the model inference.

According to these paradigms, two main issues should be addressed while con-
structing large-scale GNNs: 1) how to design efficient sampling algorithms? and 2)
how to guarantee the sampling quality? In recent years, a lot of works have studied
about how to construct large-scale GNNs and how to address the above issues prop-
erly. Fig. 6.2 displays a timeline of certain representative works in this area from the
year 2017 until recent. Each work will be introduced accordingly in this chapter.

Fig. 6.2: Timeline of leading research work toward large-scale GNNs.

Other than these major sampling paradigms, more recent works have attempted
to improve the scalability of large graphs from various perspectives as well. For
example, heterogeneous graph has attracted more and more attention with regards
to the rapid growth of data. Large graphs not only include millions of nodes but
also various data types. How to train GNNs on such large graphs has become a new
domain of interest. Li et al (2019a) proposes a GCN-based Anti-Spam (GAS) model

6 Graph Neural Networks: Scalability 103

to detect spams by considering both homogeneous and heterogeneous graphs. Zhang
et al (2019b) designs a random walk sampling method based on all types of nodes.
Hu et al (2020e) employs the transformer architecture to learn the mutual attention
between nodes, and sample the nodes according to different node types.

6.3.1 Node-wise Sampling

Rather than use all the nodes in the graph, the first approach selects certain nodes
through various sampling algorithms to construct large-scale GNNs. GraphSAGE (Hamil-
ton et al, 2017b) and VR-GCN (Chen et al, 2018d) are two pivotal studies that utilize
such a method.

6.3.1.1 GraphSAGE

At the early stage of GNN development, most work target at the transductive learn-
ing on a fixed-size graph (Kipf and Welling, 2017b, 2016), while the inductive
setting is more practical in many cases. Yang et al (2016b) develops an inductive
learning on graph embeddings, and GraphSAGE Hamilton et al (2017b) extends the
study on large graphs. The overall architecture is illustrated in Fig. 6.3.

Fig. 6.3: Overview of the GraphSAGE architecture. Step 1: sample the neighbor-
hoods of the target node; step 2: aggregate feature information from the neighbors;
step 3: utilize the aggregated information to predict the graph context or label. Fig-
ure excerpted from (Hamilton et al, 2017b).

GraphSAGE can be viewed as an extension of the original Graph Convolutional
Network (GCN) (Kipf and Welling, 2017b). The first extension is the generalized
aggregator function. Given G (V ,E), N (v) is the neighborhood of v, h is the repre-
sentation of the node, the embedding generation at the current (l+1)-th depth from
the target node v ∈ V can be formulated as,

104 Hehuan Ma, Yu Rong, and Junzhou Huang

h(l+1)
N (v) = AGGREGATE l

({
h(l)

u ,∀u ∈N (v)
})

,

Different from the original mean aggregator in GCN, GraphSAGE proposes LSTM
aggregator and Pooling aggregator to aggregate the information from the neigh-
bors. The second extension is that GraphSAGE applies the concatenation function
to combine the information of target node and neighborhoods instead of the sum-
mation function:

h(l+1)
v = σ

(
W (l+1) ·CONCAT

(
h(l)

v ,h(l+1)
N (v)

))
,

where W (l+1) are the weight matrices, and σ is the activation function.
In order to make GNN suitable for the large-scale graphs, GraphSAGE intro-

duces the mini-batch training strategy to reduce the computation cost during the
training phase. Specifically, in each training iteration, only the nodes that are used
by computing the representations in the batch are considered, which significantly
reduces the number of sampled nodes. Take layer 2 in Fig. 6.4(a) as an example,
unlike the full-batch training which takes all 11 nodes into consideration, only 6
nodes are involved for mini-batch training. However, the simple implementation of
mini-batch training strategy suffers the neighborhood expansion problem. As shown
in layer 1 of Fig. 6.4(a), most of the nodes are sampled since the number of sampled
nodes grows exponentially if all the neighbors are sampled at each layer. Thus, all
the nodes are selected eventually if the model contains many layers.

Fig. 6.4: Visual comparison between mini-batch training and fixed-size neighbor
sampling.

To further improve the training efficiency and eliminate the neighborhood expan-
sion problem, GraphSAGE adopts fixed-size neighbor sampling strategy. In specific,
a fixed-size set of neighbor nodes are sampled for each layer for computing, instead
of using the entire neighborhood sets. For example, one can set the fixed-size set as
two nodes, which is illustrated in Fig. 6.4(b), the yellow nodes represent the sampled
nodes, and the blue nodes are the candidate nodes. It is observed that the number of
sampled nodes is significantly reduced, especially for layer 1.

6 Graph Neural Networks: Scalability 105

In summary, GraphSAGE is the first to consider inductive representation learn-
ing on large graphs. It introduces a generalized aggregator, the mini-batch training,
and fixed-size neighbor sampling algorithm to accelerate the training process. How-
ever, fixed-size neighbor sampling strategy can not totally avoid the neighborhood
expansion problem. Also, there is no theoretical guarantees for the sampling quality.

6.3.1.2 VR-GCN

In order to further reduce the size of the sampled nodes, as well as conduct a com-
prehensive theoretical analysis, VR-GCN (Chen et al, 2018d) proposes a Control
Variate Based Estimator. It only samples an arbitrarily small size of the neighbor
nodes by employing historical activations of the nodes. Fig. 6.5 compares the recep-
tive field of one target node using different sampling strategies. For the implementa-
tion of the original GCN (Kipf and Welling, 2017b), the number of sampled nodes is
increased exponentially with the number of layers. With neighbor sampling, the size
of the receptive field is reduced randomly according to the preset sampling number.
Compared with them, VR-GCN utilizes the historical node activations as a control
variate to keep the receptive field small scaled.

Fig. 6.5: Illustration of the receptive field of a single node utilizing different sam-
pling strategies with a two-layer graph convolutional neural network. The red circle
represents the latest activation, and the blue circle indicates the historical activation.
Figure excerpted from (Chen et al, 2018d).

The neighbor sampling (NS) algorithm proposed by GraphSAGE (Hamilton et al,
2017b) can be formulated as:

NS(l)
v := R ∑

u∈ ˆN (l)(v)

Avuh(l)
u , R = N (v)/d(l),

where N (v) represents the neighbor set of node v, d(l) is the sampled size of the
neighbor nodes at layer l, ˆN (l)(v)⊂N (v) is the sampled neighbor set of node v at

106 Hehuan Ma, Yu Rong, and Junzhou Huang

layer l, and A represents the normalized adjacency matrix. Such a method has been
proved to be a biased sampling, and would cause larger variance. The detailed proof
can be found in (Chen et al, 2018d). Such properties result in a larger sample size

ˆN (l)(v)⊂N (v).
To address these issues, VR-GCN proposes Control Variate Based Estimator

(CV Sampler) to maintain all the historical hidden embedding h̄(l)
v of every partici-

pated node. For a better estimation, since the difference between h̄(l)
v and h(l)

v shall
be small if the model weights do not change too fast. CV Sampler is capable of
reducing the variance and obtaining a smaller sample size n̂(l)(v) eventually. Thus,
the feed-forward layer of VR-GCN can be defined as,

H(l+1) = σ

(
A(l)

(
H(l+1)− H̄(l)

)
+AH̄(l)

)
W (l).

A(l) is the sampled normalized adjacency matrix at layer l, H̄(l) = {h̄(l)
1 , · · · , h̄(l)

n }
is the stack of the historical hidden embedding h̄(l), H(l+1) = {h(l+1)

1 , · · · ,h(l+1)
n } is

the embedding of the graph nodes in the (l + 1)-th layer, and W (l) is the learnable
weights matrix. In such a manner, the sampled size of A(l) is greatly reduced com-
pared with GraphSAGE by utilizing the historical hidden embedding h̄(l), which
introduces a more efficient computing method. Moreover, VR-GCN also studies
how to apply the Control Variate Estimator on the dropout model. More details can
be found in the paper.

In summary, VR-GCN first analyzes the variance reduction on node-wise sam-
pling, and successfully reduces the size of the samples. However, the trade-off is
that the additional memory consumption for storing the historical hidden embed-
dings would be very large. Also, the limitation of applying GNNs on large-scale
graphs is that it is not realistic to store the full adjacent matrices or the feature ma-
trices. In VR-GCN, the historical hidden embeddings storage actually increases the
memory cost, which is not helping from this perspective.

6.3.2 Layer-wise Sampling

Since node-wise sampling can only alleviate but not completely solve the neigh-
borhood expansion problem, layer-wise sampling has been studied to address this
obstacle.

6.3.2.1 FastGCN

In order to solve the neighborhood expansion problem, FastGCN (Chen et al, 2018c)
first proposes to understand the GNN from the functional generalization perspective.
The authors point out that training algorithms such as stochastic gradient descent are
implemented according to the additivity of the loss function for independent data

6 Graph Neural Networks: Scalability 107

samples. However, GNN models generally lack sample loss independence. To solve
this problem, FastGCN converts the common graph convolution view to an integral
transform view by introducing a probability measure for each node. Fig. 6.6 shows
the conversion between the traditional graph convolution view and the integral trans-
form view. In the graph convolution view, a fixed number of nodes are sampled in
a bootstrapping manner in each layer, and are connected if there is a connection
exists. Each convolutional layer is responsible for integrating the node embeddings.
The integral transform view is visualized according to the probability measure, and
the integral transform (demonstrated in the yellow triangle form) is used to calculate
the embedding function in the next layer. More details can be found in (Chen et al,
2018c).

Fig. 6.6: Two views of GCN. The circles represent the nodes in the graph, while
the yellow circles indicate the sampled nodes. The lines represent the connection
between nodes.

Formally, given a graph G (V ,E), an inductive graph G ′ with respect to a pos-
sibility space (V ′,F, p) is constructed. In specific, V ′ denotes the sample space of
nodes which are iid samples. The probability measure p defines a sampling distri-
bution, and F can be any event space, e.g., F = 2V ′ . Take node v and u with same
probability measure p, g

(
h(K)(v)

)
as the gradient of the final embedding of node

v, and E as the expectation function, the functional generalization is formulated as,

L = Ev∼p

[
g
(

h(K)(v)
)]

=
∫

g
(

h(K)(v)
)

d p(v).

Moreover, consider sampling tl iid samples u(l)1 , . . . ,u(l)tl ∼ p for each layer l, l =
0, . . . ,K−1, a layer-wise estimation of the loss function is admitted as,

Lt0,t1,...,tK :=
1
tK

tK

∑
i=1

g
(

h(K)
tK

(
u(K)

i

))
,

which proves that FastGCN samples a fixed number of nodes at each layer.

108 Hehuan Ma, Yu Rong, and Junzhou Huang

Furthermore, in order to reduce the sampling variance, FastGCN adopts the im-
portance sampling with respect to the weights in the normalized adjacency matrix.

q(u) = ∥A(:,u)∥2/ ∑
u′∈V

∥∥A
(
:,u′
)∥∥2

, u ∈ V , (6.1)

where A is the normalized adjacency matrix of the graph. Detailed proofs can be
found in (Chen et al, 2018c). According to Equation 6.1, the entire sampling process
is independent for each layer, and the sampling probability keeps the same.

Fig. 6.7: Comparison between full GCN and FastGCN.

Compared with GraphSAGE (Hamilton et al, 2017b), FastGCN is much less
computational costly. Assume tl neighbor nodes are samples for layer l, the neigh-
borhood expansion size is at most the sum of the tl’s for FastGCN, while could be up
to the product of the tl’s for GraphSAGE. Fig. 6.7 illustrates the sampling difference
between Full GCN and FastGCN. In full GCN, the connections are very sparse so
that it has to compute and update all the gradients, while FastGCN only samples a
fixed number of samples at each layer. Therefore, the computational cost is greatly
decreased. On the other hand, FastGCN still retains most of the information accord-
ing to the importance sampling method. The fixed number of nodes are randomly
sampled in each training iteration, thus every node and the corresponding connec-
tions could be selected and fit into the model if the training time is long enough.
Therefore, the information of the entire graph is generally retained.

In summary, FastGCN solves the neighborhood expansion problem according to
the fixed-size layer sampling. Meanwhile, this sample strategy has a quality guaran-
tee. However, since FastGCN samples each layer independently, it failed to capture
the between-layer correlations, which leads to a performance compromise.

6.3.2.2 ASGCN

To better capture the between-layer correlations, ASGCN (Huang et al, 2018) pro-
poses an adaptive layer-wise sampling strategy. In specific, the sampling probability
of lower layers depends on the upper ones. As shown in Fig. 8(a), ASGCN only

6 Graph Neural Networks: Scalability 109

samples nodes from the neighbors of the sampled node (yellow node) to obtain the
better between-layer correlations, while FastGCN utilizes the importance sampling
among all the nodes.

(a) ASGCN vs. FastGCN.

(b) Top-down sampling of ASGCN.

Fig. 6.8: A demonstration of the sampling strategies used in ASGCN.

Meanwhile, the sampling process of ASGCN is performed in a top-down man-
ner. As shown in Fig. 8(b), the sampling process is first conducted in the output
layer, which is the layer 3. Next, the participated nodes of the intermediate layer
are sampled according to the results of the output layer. Such a sampling strategy
captures dense connections between layers.

The sampling probability of lower layers depends on the upper ones. Take
Fig. 6.9 as an illustration, p(u j | vi) is the probability of sampling node u j given
node vi, vi refers to node i in the (l+1)-th layer while u j denotes node j in the l-th
layer, n′ represents the sampled node number in every layer while n is the number of
all the nodes in the graph, q(u j | v1, · · · ,vn′) is the probability of sampling u j given
all the nodes in the current layer, and â(vi,u j) represents the entry of node vi and
u j in the re-normalized adjacency matrix Â. The sampling probability q(u j) can be
written as,

q(u j) =
p(u j | vi)

q(u j | v1 . . .vn′)

p(u j | vi) =
â(vi,u j)

N (vi)
, N (vi) =

n

∑
j=1

â(vi,u j) .

110 Hehuan Ma, Yu Rong, and Junzhou Huang

Fig. 6.9: Network construction example: (a) node-wise sampling; (b) layer-wise
sampling; (c) skip connection implementation. Figure excerpted from (Huang et al,
2018).

To further reduce the sampling variance, ASGCN introduces the explicit vari-
ance reduction to optimize the sampling variance as the final objective. Consider
x(u j) as the node feature of node u j, the optimal sampling probability q∗ (u j) can
be formulated as,

q∗ (u j) =
∑

n′
i=1 p(u j | vi)

∣∣g(x(u j))
∣∣

∑
n
j=1 ∑

n′
i=1 p(u j | vi)

∣∣g(x(v j))
∣∣ , g(x(u j)) =Wgx(u j) . (6.2)

However, simply utilizing the sampler given by Equation 6.2 is not sufficient
to secure a minimal variance. Thus, ASGCN designs a hybrid loss by adding the
variance to the classification loss Lc, as shown in Equation 6.3. In such a manner,
the variance can be trained to achieve the minimal status.

L =
1
n′

n′

∑
i=1

Lc (yi, ȳ(µ̂q (vi)))+λ Varq (µ̂q (vi)) , (6.3)

where yi is the ground-truth label, µ̂q (vi) represents the output hidden embeddings
of node vi, and ȳ(µ̂q (vi)) is the prediction. λ is involved as a trade-off parameter.
The variance reduction term λ Varq (µ̂q (vi)) can also be viewed as a regularization
according to the sampled instances.

ASGCN also proposes a skip connection method to obtain the information across
distant nodes. As shown in Fig. 6.9 (c), the nodes in the (l-1)-th layer theoretically
preserve the second-order proximity (Tang et al, 2015b), which are the 2-hop neigh-
bors for the nodes in the (l+1)-th layer. The sampled nodes will include both 1-hop
and 2-hop neighbors by adding a skip connection between the (l-1)-th layer and the
(l+1)-th layer, which captures the information between distant nodes and facilitates
the model training.

In summary, by introducing the adaptive sampling strategy, ASGCN has gained
better performance as well as equips a better variance control. However, it also
brings in the additional dependence during sampling. Take FastGCN as an example,
it can perform parallel sampling to accelerate the sampling process since each layer
is sampled independently. While in ASGCN, the sampling process is dependent to
the upper layer, thus parallel processing is not applicable.

6 Graph Neural Networks: Scalability 111

6.3.3 Graph-wise Sampling

Fig. 6.10: An illustration of graph-wise sampling on large-scale graph.

Other than layer-wise sampling, the graph-wise sampling strategy is introduced
recently to accomplish efficient training on large-scale graphs. As shown in Fig. 6.10,
a whole graph can be sampled into several sub-graphs and fit into the GNN models,
in order to reduce the computational cost.

6.3.3.1 Cluster-GCN

Cluster-GCN (Chiang et al, 2019) first proposes to extract small graph clusters based
on efficient graph clustering algorithms. The intuition is that the mini-batch algo-
rithm is correlated with the number of links between nodes in one batch. Hence,
Cluster-GCN constructs mini-batch on the sub-graph level, while previous studies
usually construct mini-batch based on the nodes.

Cluster-GCN extracts small clusters based on the following clustering algo-
rithms. A graph G (V ,E) can be devided into c portions by grouping its nodes,
where V = [V1, · · ·Vc]. The extracted sub-graphs can be defined as,

Ḡ = [G1, · · · ,Gc] = [{V1,E1} , · · · ,{Vc,Ec}] .

(Vt ,Et) represents the nodes and the links within the t-th portion, t ∈ (1,c). And the
re-ordered adjacency matrix can be written as,

A = Ā+∆ =

A11 · · · A1c
...

. . .
...

Ac1 · · · Acc

 ; Ā =

A11 · · · 0
...

. . .
...

0 · · · Acc

 ,∆ =

0 · · · A1c
...

. . .
...

Ac1 · · · 0

 .

Different graph clustering algorithms can be used to partition the graph by enabling
more links between nodes within the cluster. The motivation of considering sub-
graph as a batch also follows the nature of graphs, which is that neighbors usually
stay closely with each other.

112 Hehuan Ma, Yu Rong, and Junzhou Huang

Fig. 6.11: Comparison between GraphSAGE and Cluster-GCN. In Cluster-GCN, it
only samples the nodes in each sub-graph.

Obviously, this strategy can avoid the neighbor expansion problem since it only
samples the nodes in the clusters, as shown in Fig. 6.11. For Cluster-GCN, since
there is no connection between the sub-graphs, the nodes in other sub-graphs will
not be sampled when the layer increases. In such a manner, the sampling process
establishes a neighbor expansion control by sampling over the sub-graphs, while in
layer-wise sampling the neighbor expansion control is implemented by fixing the
neighbor sampling size.

However, there still remain two concerns with the vanilla Cluster-GCN. The first
one is that the links between sub-graphs are dismissed, which may fail to capture
important correlations. The second issue is that the clustering algorithm may change
the original distribution of the dataset and introduce some bias. To address these
concerns, the authors propose stochastic multiple partitions scheme to randomly
combine clusters to a batch. In specific, the graph is first clustered into p sub-graphs;
then in each epoch training, a new batch is formed by randomly combine q clusters
(q < p), and the interactions between clusters are included too. Fig. 6.12 visualized
an example when q equals to 2. As observed, the new batch is formed by 2 random
clusters, along with the retained connections between the clusters.

Fig. 6.12: An illustration of stochastic multiple partitions scheme.

6 Graph Neural Networks: Scalability 113

In summary, Cluster-GCN is a practical solution based on the sub-graph batch-
ing. It has good performance and good memory usage, and can alleviate the neigh-
borhood expansion problem in traditional mini-batch training. However, Cluster-
GCN does not analyze the sampling quality, e.g., the bias and variance of this sam-
pling strategy. In addition, the performance is highly correlated to the clustering
algorithm.

6.3.3.2 GraphSAINT

Instead of using clustering algorithms to generate the sub-graphs which may bring in
certain bias or noise, GraphSAINT (Zeng et al, 2020a) proposes to directly sample a
sub-graph for mini-batch training according to sub-graph sampler, and employ a full
GCN on the sub-graph to generate the node embeddings as well as back-propagate
the loss for each node. As shown in Fig. 6.13, sub-graph Gs is constructed from the
original graph G with Nodes 0, 1, 2, 3, 4, 7 included. Next, a full GCN is applied
on these 6 nodes along with the corresponding connections.

Fig. 6.13: An illustration of GraphSAINT training algorithm. The yellow circle in-
dicates the sampled node.

GraphSAINT introduces three sub-graph sampler constructions to form the sub-
graphs, which are node sampler, edge sampler and random walk sampler (Fig. 6.14).
Given graph G (V ,E), node v ∈ V , edge (u,v) ∈ E , the node sampler randomly
samples Vs nodes from V . The edge sampler selects the sub-graph based on the
probability of edges in the original graph G . The random walk sampler picks node
pairs according to the probability that there exists L hops paths from node u to v.

Moreover, GraphSAINT provides comprehensive theoretical analysis on how to
control the bias and variance of the sampler. First, it proposes loss normalization
and aggregation normalization to eliminate the sampling bias.

Loss normalization: Lbatch = ∑
v∈Gs

Lv/λv, λv = |V |pv

Aggregation normalization: a(u,v) = pu,v/pv

114 Hehuan Ma, Yu Rong, and Junzhou Huang

where pv is the probability of a node v ∈ V being sampled, pu,v is the probability
of an edge (u,v) ∈ E being sampled, Lv represents the loss of v in the output layer.
Second, GraphSAINT also proposes to minimize the sampling variance by adjusting
the edge sampling probability by:

pu,v ∝ 1/du +1/dv.

The extensive experiments demonstrate the effectiveness and efficiency of Graph-
SAINT, and prove that GraphSAINT converges fast as well as achieves superior
performance.

In summary, GraphSAINT proposes a highly flexible and extensible frame-
work including the graph sampler strategies and the GNN architectures, as well
as achieves good performance on both accuracy and speed.

6.3.3.3 Overall Comparison of Different Models

Table 6.2 compares and summarizes the characteristics of previously mentioned
models. Paradigm indicates the different sampling paradigms, and Model defers to
the proposed method in each paper. Sampling Strategy shows the sampling theory,
and Variance Reduction denotes whether such analysis is conducted in the paper.
Solved Problem represents the problem that proposed model has addressed, and
Characteristic extracts the features of the model.

Fig. 6.14: An illustration of different samplers.

6 Graph Neural Networks: Scalability 115

Table 6.2: The comparison between different models.

Paradigm Model
Sampling
Strategy

Variance
Reduction

Solved
Problem Characteristics

Node-wise
Sampling

GraphSAGE (Hamil-
ton et al, 2017b)

Random × Inductive
learning

Mini-batch training,
reduce neighborhood
expansion.

VR-GCN (Chen
et al, 2018d)

Random ✓
Neighborhood
expansion

Historical
activations.

Layer-wise
Sampling

FastGCN (Chen
et al, 2018c)

Importance ✓
Neighborhood
expansion

Integral transform
view.

ASGCN (Huang
et al, 2018)

Importance ✓
Between-layer
correlation

Explicit variance
reduction, skip
connection.

Graph-wise
Sampling

Cluster-GCN (Chi-
ang et al, 2019)

Random ✓ Graph batching
Mini-batch on
sub-graph.

GraphSAINT (Zeng
et al, 2020a)

Edge
Probability ✓

Neighborhood
expansion

Variance and bias
control.

6.4 Applications of Large-scale Graph Neural Networks on
Recommendation Systems

Deploying large-scale neural networks in academia has achieved remarkable suc-
cess. Other than the theoretical study on how to expand the GNNs on large graphs,
another crucial problem is how to embed the algorithms into industrial applications.
One of the most conventional applications that demand tremendous data is the rec-
ommendation systems, which learn the user preferences and make predictions for
what the users may interest in. Traditional recommendation algorithms like collabo-
rative filtering are mainly designed according to the user-item interactions(Goldberg
et al, 1992; Koren et al, 2009; Koren, 2009; He et al, 2017b). Such methods are not
capable of the explosive increased web-scale data due to the extreme sparsity. Re-
cently, graph-based deep learning algorithms have gained significant achievements
on improving the prediction performance of recommendation systems by modeling
the graph structures of web-scale data (Zhang et al, 2019b; Shi et al, 2018a; Wang
et al, 2018b). Therefore, utilizing large-scale GNNs for recommendation has be-
come a trend in industry (Ying et al, 2018b; Zhao et al, 2019b; Wang et al, 2020d;
Jin et al, 2020b).

Recommendation systems can be typically categorized into two fields: item-item
recommendation and user-item recommendation. The former one aims to find the
similar items based on a user’s historical interactions; while the later one directly
predicts the user’s preferred items by learning the user behaviors. In this chapter,

116 Hehuan Ma, Yu Rong, and Junzhou Huang

we briefly introduce notable recommendation systems that are implemented on large
graphs for each field.

6.4.1 Item-item Recommendation

PinSage (Ying et al, 2018b) is one of the successful applications in the early stage
of utilizing large-scale GNNs on item-item recommendation systems, which is de-
ployed on Pinterest1. Pinterest is a social media application that shares and discovers
various content. The users mark their interested content with pins and organize them
on the boards. When the users browse the website, Pinterest recommends the poten-
tially interesting content for them. By the year 2018, the Pinterest graph contains 2
billion pins, 1 billion boards, and over 18 billion edges between pins and boards.

In order to scale the training model on such a large graph, Ying et al (2018b)
proposes PinSage, a random-walk-based GCN, to implement node-wise sampling
on Pinterest graph. In specific, a short random walk is used to select a fixed-number
neighborhood of the target node. Fig. 6.15 demonstrates the overall architecture of
PinSage. Take node A as an example, a 2-depth convolution is constructed to gen-
erate the node embedding h(2)

A . The embedding vector h(1)
N (A) of node A’s neighbors

are aggregated by node B, C, and D. Similar process is established to get the 1-hop
neighbors’ embedding h(1)

B , h(1)
C , and h(1)

D . An illustration of all participated nodes
for each node from the input graph is shown at the bottom of Fig. 6.15. In addition,
a L1-normalization is computed to sort the neighbors by their importance (Eksom-
batchai et al, 2018), and a curriculum training strategy is used to further improve the
prediction performance by feeding harder-and-harder examples.

A series of comprehensive experiments that are conducted on Pinterest data, e.g.,
offline experiments, production A/B tests and user studies, have demonstrated the
effectiveness of the proposed method. Moreover, with the adoption of highly effi-
cient MapReduce inference pipeline, the entire process on the whole graph can be
finished within one day.

6.4.2 User-item Recommendation

Unlike item-item recommendation, user-item recommendation systems is more
complex since it aims at predicting the user’s behaviors. Moreover, there remains
more auxiliary information between users and users, items and items, and users and
items, which leads to a heterogeneous graph problem. As shown in Fig. 6.16, there
are various properties of the edges between user-user and item-item, which cannot
be considered as one simple relation, e.g., user searches a word or visits a shop
should be considered with different impacts.

1 https://www.pinterest.com/

https://www.pinterest.com/

6 Graph Neural Networks: Scalability 117

Fig. 6.15: Overview of PinSage architecture. Colored nodes are applied to illustrate
the construction of graph convolutions.

Fig. 6.16: Examples of heterogeneous auxiliary relationships on e-commerce web-
sites.

IntentGC (Zhao et al, 2019b) proposes a GCN-based framework for large-scale
user-item recommendation on e-commerce data. It explores the explicit user prefer-
ences as well as the abundant auxiliary information by graph convolutions and make
predictions. E-commerce data such as Amazon contains billions of users and items,
while the diverse relationships bring in more complexity. Thus, the graph structure
gets larger and more complicated. Moreover, due to the sparsity of user-item graph
network, sampling methods like GraphSAGE may result in a very huge sub-graph.
In order to train efficient graph convolutions, IntentGC designs a faster graph con-
volution mechanism to boost the training, named as IntentNet.

As shown in Fig. 6.17, the bit-wise operation illustrates the traditional way of
node embedding construction in GNN. In specific, consider node v as the target
node, the embedding vector h(l+1)

v is generated by concatenating the neighborhoods’

118 Hehuan Ma, Yu Rong, and Junzhou Huang

Fig. 6.17: Comparison between bit-wise and vector-wise graph convolution.

embeddings h(l)
N (v) and the target itself h(l)

v . Such an operation is able to capture two
types of information: the interactions between target node and its neighborhoods;
and the interactions between different dimensions of the embedding space. How-
ever, in user-item networks, learning the information between different feature di-
mensions may be less informative and unnecessary. Therefore, IntentNet designs a
vector-wise convolution operation as follows:

g(l)v (i) = σ

(
W (l)

v (i,1) ·h(l)
v +W (l)

v (i,2) ·h(l)
N (v)

)
,

h(l+1)
v = σ

(
∑

L
i=1 θ

(l)
i ·g

(l)
v (i)

)
,

where W (l)
v (i,1) and W (l)

v (i,2) are the associated weight matrices for the i-th local
filter. g(l)v (i) represents the operation that learns the interactions between the target
node and its neighbor nodes in a vector-wise manner. Another vector-wise layer is
applied to gather the final embedding vector of the target node for the next convolu-
tional layer. Moreover, the output vector of the last convolutional layer is fed into a
three-layer fully-connected network to further learn the node-level combinatory fea-
tures. Such an operation significantly promotes the training efficiency and reduces
the time complexity.

Extensive experiments are conducted on Taobao and Amazon datasets, which
contain millions to billions of users and items. IntentGC outperforms other baseline
methods, as well as reduces the training time for about two days compared with
GraphSAGE.

6.5 Future Directions

Overall, in recent years, the scalability of GNNs has been extensively studied and
has achieved fruitful results. Fig. 6.18 summarizes the development towards large-
scale GNNs.

6 Graph Neural Networks: Scalability 119

Fig. 6.18: Overall performance comparison of introduced work on large-scale
GNNs.

GraphSAGE is the first to propose sampling on the graph instead of computing
on the whole graph. VR-GCN designs another node sampling algorithm and pro-
vides a comprehensive theoretical analysis, but the efficiency is still limited. Fast-
GCN and ASGCN propose to sample over layers, and both prove the efficiency with
detailed analysis. Cluster-GCN first partitions the graph into sub-graphs to elimi-
nate the neighborhood expansion problem, and boosts the performance of several
benchmarks. GraphSAINT further improves the graph-wise sampling algorithm to
achieve the state-of-the-art classification performance over commonly used bench-
mark datasets. Various industrial applications prove the effectiveness and practica-
bility of large-scale GNNs in the real world.

However, many new open problems arise, e.g., how to balance the trade-off be-
tween variance and bias during sampling; how to deal with complex graph types
such as heterogeneous/dynamic graphs; how to properly design models over com-
plex GNN architectures. Studies toward such directions would improve the devel-
opment of large-scale GNNs.

Editor’s Notes: For graphs of large scale or with rapid expansibility, such
as dynamic graph (chapter 15) and heterogeneous graph (chapter 16), the
scalability characterization of GNNs is of vital importance to determine
whether the algorithm is superior in practice. For example, graph sampling
strategy is especially necessary to ensure computational efficiency in in-
dustrial scenarios, such as recommender system (chapter 19) and urban in-
telligence (chapter 27). With the increasing complexity and scale of the
real problem, the limitation in scalability has been considered almost ev-
erywhere in the study of GNNs. Researchers devoted to graph embedding
(chapter 2), graph structure learning (chapter 14) and self-supervised learn-
ing (chapter 18) put forward very remarkable works to overcome it.

Chapter 7
Interpretability in Graph Neural Networks

Ninghao Liu and Qizhang Feng and Xia Hu

Abstract Interpretable machine learning, or explainable artificial intelligence, is ex-
periencing rapid developments to tackle the opacity issue of deep learning tech-
niques. In graph analysis, motivated by the effectiveness of deep learning, graph
neural networks (GNNs) are becoming increasingly popular in modeling graph data.
Recently, an increasing number of approaches have been proposed to provide ex-
planations for GNNs or to improve GNN interpretability. In this chapter, we offer
a comprehensive survey to summarize these approaches. Specifically, in the first
section, we review the fundamental concepts of interpretability in deep learning. In
the second section, we introduce the post-hoc explanation methods for understand-
ing GNN predictions. In the third section, we introduce the advances of developing
more interpretable models for graph data. In the fourth section, we introduce the
datasets and metrics for evaluating interpretation. Finally, we point out future direc-
tions of the topic.

7.1 Background: Interpretability in Deep Models

Deep learning has become an indispensable tool for a wide range of applications
such as image processing, natural language processing, and speech recognition. De-
spite the success, deep models have been criticized as “black boxes” due to their
complexity in processing information and making decisions. In this section, we in-
troduce the research background of interpretability in deep models, including the

Ninghao Liu
Department of CSE, Texas A&M University, e-mail: nhliu43@tamu.edu

Qizhang Feng
Department of CSE, Texas A&M University, e-mail: qf31@tamu.edu

Xia Hu
Department of CSE, Texas A&M University, e-mail: xiahu@tamu.edu

121
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_7

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:nhliu43@tamu.edu
mailto:qf31@tamu.edu
mailto:xiahu@tamu.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_7&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_7

122 Ninghao Liu and Qizhang Feng and Xia Hu

definition of interpretability/interpretation, the reasons for exploring model inter-
pretation, the methods of obtaining interpretation in traditional deep models, the
opportunities and challenges to achieve interpretability in GNN models.

7.1.1 Definition of Interpretability and Interpretation

There is no unified mathematical definition of interpretability. A commonly used
(nonmathematical) definition of interpretability is given below (Miller, 2019).

Definition 7.1. Interpretability is the degree to which an observer can understand
the cause of a decision.

There are three elements in the above definition: “understand”, “cause”, and “a
decision”. According to different scenarios, it is common that these elements are
re-weighted or even some elements are replaced. First, in the context of machine
learning systems where the role of humans needs to be emphasized, the definition
of interpretability is usually revised to adapt to humans (Kim et al, 2016), where in-
terpretation results that better facilitate human understanding and reasoning habits
are more desirable. Second, from the term “cause” in the definition, it is natural to
think that interpretation studies causality properties in models. While causality is
important in developing certain types of interpretation methods, it is also common
that interpretation is obtained beyond the framework of causal theories. Third, there
is an increasing number of techniques that jump out of the scheme of explaining “a
decision”, and try to understand a broader range of entities such as model compo-
nents (Olah et al, 2018) and data representations.

The interpretation is one mode in which an observer may obtain an understand-
ing of a model or its predictions. A general and widely followed definition is as
below (Montavon et al, 2018).

Definition 7.2. An interpretation is the mapping of an abstract concept into a do-
main that the human can understand.

Typical examples of human-understandable domains include arrays of pixels in im-
ages or words in texts. There are two elements that merit attention in the above defi-
nition: “concept” and “understand”. First, the “concept” to be explained could refer
to different aspects, such as a predicted class (i.e., the logit value of the predicted
class), the perception of a model component, or the meaning of a latent dimension.
Second, in specific scenarios where user experience is important, it is necessary to
transfer raw interpretation to the format that facilitates user comprehension, some-
times even with the cost of sacrificing interpretation accuracy.

It is also worth noting that, in this work, we distinguish between “interpretation”
and “explanation”. Although their differences have not been formally defined, in lit-
eratures, explanation mainly refers to the collection of important features for a given
prediction (e.g., classification or regression) (Montavon et al, 2018). Meanwhile,
“explanation” is more likely to be used if we are studying post-hoc interpretation

7 Interpretability in Graph Neural Networks 123

Interpretation

Interpretation

Improvement

DevelopersEnd Users

Fig. 7.1: Left: Interpretation could benefit user experiences in interaction with
models. Right: Through interpretation, we could identify model behaviors that are
not desirable according to humans, and work on improving the model accord-
ingly (Ribeiro et al, 2016).

or human-understandable interpretation. “Interpretation” usually refers to a broader
range of concepts, especially to emphasize that the model itself is intrinsically in-
terpretable (i.e., the transparency of the model).

7.1.2 The Value of Interpretation

There are several pragmatic reasons that motivate people to study and improve
model interpretability. Depending on who finally benefits from interpretation, we
divide the reasons into model-oriented and user-oriented, as shown in Fig. 7.1.

7.1.2.1 Model-Oriented Reasons

Interpretation is an effective tool to diagnose the defects in models and provide
directions on how to improve. Therefore, after several iterations of model updates,
it is possible to obtain better models with particular properties coming about, and we
could apply these models to our advantage. There are several properties that have
been considered in literatures that are summarized as below.

1. Credibility: A model is regarded as credible if the rationale used behind pre-
dictions is consistent with the well-established domain knowledge. Through
interpretation, we could observe whether the predictions are based on proper
evidences, or they are simply from the exploitation of artifacts in data. By
extracting explanations from a model and making the explanations to match
human-annotated evidences in data, we are able to improve the model’s credi-
bility when making decisions (Du et al, 2019; Wang et al, 2018c).

2. Fairness: Machine learning systems have the risk of amplifying societal stereo-
types if they rely on sensitive attributes, such as race, gender and age, in making
predictions. Through interpretation, we could observe whether the predictions

124 Ninghao Liu and Qizhang Feng and Xia Hu

are based on sensitive features that are required to be avoided in real applica-
tions.

3. Adversarial-Attack Robustness: Adversarial attack refers to adding carefully-
crafted perturbations to input, where the perturbations are almost imperceptible
to humans, but can cause the model to make wrong predictions (Goodfellow
et al, 2015). Robustness against adversarial attacks is an increasingly impor-
tant topic in machine learning security. Recent studies have shown how inter-
pretation could help in discovering new attack schemes and designing defense
strategies (Liu et al, 2020d).

4. Backdoor-Attack Robustness: Backdoor attack refers to injecting malicious
functionality into a model, by either implanting additional modules or poison-
ing training data. The model will behave normally unless it is fed with input
containing patterns that trigger the malicious functionality. Studying model ro-
bustness against backdoor attacks is attracting more interest recently. Recent
research discovers that interpretation could be applied in identifying if a model
has been infected by backdoors (Huang et al, 2019c; Tang et al, 2020a).

7.1.2.2 User-Oriented Reasons

The interpretation could contribute to the construction of interfaces between humans
and machines.

1. Improving User Experiences: By providing intuitive visual information, inter-
pretation could gain user trust, and increase a system’s ease of use. For example,
in healthcare-related applications, if the model could explain to patients how it
makes diagnoses, the patients would be more convinced (Ahmad et al, 2018).
For another example, in a recommender system, providing explanations can
help users to make faster decisions and persuade users to purchase the recom-
mended products (Li et al, 2020c).

2. Facilitating Decision Making: In many applications, a model plays the role as
an assistant, while humans will make the final decision. In this case, interpreta-
tion helps shape human understandings towards instances, thus affecting subse-
quent decision-making processes. For example, in outlier detection, some out-
liers own malicious properties that should be handled with caution, while some
are benign instances that simply happen to be “different”. With interpretation, it
is much easier for human decision-makers to understand whether a given outlier
is malicious or benign.

7.1.3 Traditional Interpretation Methods

In general, there are two categories of techniques in improving model interpretabil-
ity. Some efforts have been paid to build more transparent models, and we are able
to grasp how the models (or parts of the models) work. We call this direction as

7 Interpretability in Graph Neural Networks 125

Fig. 7.2: Illustration of post-hoc interpretation methods. (a): Local approximation
based interpretation. (b): Layer-wise relevance propagation. (c): Explanation based
on perturbation. (d): Explaining the meaning of latent representation dimensions.
(e): Explaining the meaning of neurons in a convolutional neural network via input
generation.

interpretable modeling. Meanwhile, instead of elucidating the internal mechanisms
by which models work, some methods investigate post-hoc interpretation to pro-
vide explanations to models that are already built. In this part, we introduce the
techniques of the two categories. Some of the methods provide motivation for GNN
interpretation which will be introduced in later sections.

7.1.3.1 Post-Hoc Interpretation

The post-hoc interpretation has received a lot of interests in both research and real
applications. Flexibility is one of the advantages of post-hoc interpretation, as it put
less requirement on the model types or structures. In the following paragraphs, we
briefly introduce several commonly used methods. The illustration of the basic idea
behind each of these methods is shown in Fig. 7.2.

The first type of methods to be introduced is approximation-based methods.
Given a function f that is complex to understand and an input instance x∗ ∈Rm, we
could approximate f with a simple and understandable surrogate function h (usually
chosen as a linear function) locally around x∗. Here m is the number of features in
each instance. There are several ways to build h. A straightforward way is based on
the first-order Taylor expansion, where:

f (x)≈ h(x) = f (x∗)+w⊤ · (x−x∗), (7.1)

where w ∈ Rm tells how sensitive the output is to the input features. Typically, w
can be estimated with the gradient (Simonyan et al, 2013), so that w = ∇x f (x∗).
When gradient information is not available, such as in tree-based models, we could

��

f’
f

���������

��������	

��

	

�

�

�

�������������������������������

	

�

�

�

���������������������

��
�������� ��������

��

������������
������������
����������������
������������…

…

��
��

126 Ninghao Liu and Qizhang Feng and Xia Hu

build h through training (Ribeiro et al, 2016). The general idea is that a number of
training instances (xi, f (xi)), 1 ≤ i ≤ n are sampled around x∗, i.e., ∥xi− x∗∥ ≤ ε .
The instances are then used to train h, so that h approximates f around x∗.

Besides directly studying the sensitivity between input and output, there is an-
other type of method called layer-wise relevance propagation (LRP) (Bach et al,
2015). Specifically, LRP redistributes the activation score of output neuron to its
predecessor neurons, which iterates until reaching the input neurons. The redistri-
bution of scores is based on the connection weights between neurons in adjacent
layers. The share received by each input neuron is used as its contribution to the
output.

Another way to understand the importance of a feature xi is to answer questions
like “What would have happened to f , had xi not existed in input?”. If xi is important
for predicting f (x), then removing/weakening it will cause a significant drop in
prediction confidence. This type of method is called the perturbation method (Fong
and Vedaldi, 2017). One of the key challenges in designing perturbation methods is
how to guarantee the input after perturbation is still valid. For example, it is argued
that perturbation on word embedding vectors cannot explain deep language models,
because texts are discrete symbols, and it is hard to identify the meaning of perturbed
embeddings.

Different from the previous methods that focus on explaining prediction results,
there is another type of method that tries to understand how data is represented in-
side a model. We call it representation interpretation. There is no unified definition
for representation interpretation. The design of methods under this category is usu-
ally motivated by the nature of the problem or the properties of data. For example,
in natural language processing, it has been shown that a word embedding could be
understood as the composition of a number of basis word embeddings, where the
basis words constitute a dictionary (Mathew et al, 2020).

Besides understanding predictions and data representations, another interpreta-
tion scheme is to understand the role of model components. A well-known example
is to visualize the visual patterns that maximally activate the target neuron/layer in
a CNN model (Olah et al, 2018). In this way, we understand what kind of visual
signal is detected by the target component. The interpretation is usually obtained
through a generative process, so that the result is understandable to humans.

7.1.3.2 Interpretable Modeling

Interpretable modeling is achieved via incorporating interpretability directly into
the model structures or learning process. It is still an extremely challenging prob-
lem to develop models that are both transparent and could achieve state-of-the-art
performances. Many efforts have been paid to improve the intrinsic interpretability
of deep models. Some details are discussed as below.

A straightforward strategy is to rely on distillation. Specifically, we first build
a complex model (e.g., a deep model) to achieve good performance. Then, we use
another model, which is readily recognized as interpretable, to mimic the predictions

7 Interpretability in Graph Neural Networks 127

of the complex model. The pool of interpretable models includes linear models,
decision trees, rule-based models, etc. This strategy is also called mimic learning.
The interpretable model trained in this way tends to perform better than normal
training, and it is also much easier to understand than the complex model.

Attention models, originally introduced for machine translation tasks, have now
become enormously popular, partially due to their interpretation properties. The in-
tuition behind attention models can be explained using human biological systems,
where we tend to selectively focus on some parts of the input, while ignoring other
irrelevant parts (Xu et al, 2015). By examining attention scores, we could know
which features in the input have been used for making the prediction. This is also
similar to using post-hoc interpretation algorithms that find which input features are
important. The major difference is that attention scores are generated during model
prediction, while post-hoc interpretation is performed after prediction.

Deep models heavily rely on learning effective representations to compress in-
formation for downstream tasks. However, it is hard for humans to understand the
representations as the meanings of different dimensions are unknown. To tackle this
challenge, disentangled representation learning has been proposed. Disentangled
representation learning breaks down features of different meanings and encodes
them as separate dimensions in representations. As a result, we could check each
dimension to understand which factors of input data are encoded. For example, af-
ter learning disentangled representations on 3D-chair images, factors such as chair
leg style, width and azimuth, are separately encoded into different dimensions (Hig-
gins et al, 2017).

7.1.4 Opportunities and Challenges

Despite the major progress made in domains such as vision, language and control,
many defining characteristics of human intelligence remain out of reach for tradi-
tional deep models such as convolutional neural networks (CNNs), recurrent neural
networks (RNNs) and multi-layer perceptrons (MLPs). To look for new model ar-
chitectures, people believe that GNN architectures could lay the foundation for more
interpretable patterns of reasoning (Battaglia et al, 2018). In this part, we discuss the
advantages of GNNs and challenges to be tackled in terms of interpretability.

The GNN architecture is regarded as more interpretable because it facilitates
learning about entities, relations, and rules for composing them. First, entities are
discrete and usually represent high-level concepts or knowledge items, so it is re-
garded as easier for humans to understand than image pixels (tiny granularity) or
word embeddings (latent space vectors). Second, GNN inference propagates infor-
mation through links, so it is easier to find the explicit reasoning path or subgraph
that contributes to the prediction result. Therefore, there is a recent trend of trans-
forming images or text data into graphs, and then applying GNN models for predic-
tions. For example, to build a graph from an image, we can treat objects inside the
image (or different portions within an object) as nodes, and generate links based on

128 Ninghao Liu and Qizhang Feng and Xia Hu

the spatial relations between nodes. Similarly, a document can be transformed into a
graph by discovering concepts (e.g., nouns, named entities) as nodes and extracting
their relations as links through lexical parsing.

Although the graph data format lays a foundation for interpretable modeling,
there are still several challenges that undermine GNN interpretability. First, GNN
still maps nodes and links into embeddings. Therefore, similar to traditional deep
models, GNN also suffers from the opacity of information processing in intermedi-
ate layers. Second, different information propagation paths or subgraphs contribute
differently to the final prediction. GNN does not directly provide the most impor-
tant reasoning paths for its prediction, so post-hoc interpretation methods are still
needed. In the following sections, we will introduce the recent advances in tackling
the above challenges to improve the explainability and interpretability of GNNs.

7.2 Explanation Methods for Graph Neural Networks

In this section, we introduce the post-hoc explanation methods for understand-
ing GNN predictions. Similar to the categorization in Section 7.1.3, we include
approximation-based methods, relevance-propagation-based methods, perturbation-
based methods, and generative methods.

7.2.1 Background

Before introducing the techniques, we first provide the definition of graphs and re-
view the fundamental formulations of a GNN model.

Graphs: In the rest of the chapter, if not specified, the graphs we discuss are
limited to homogeneous graphs.

Definition 7.3. A homogeneous graph is defined as G = (V ,E), where V is the set
of nodes and E is the set of edges between nodes.

Furthermore, let A ∈ Rn×n be the adjacency matrix of G , where n = |V |. For un-
weighted graphs, Ai, j is binary, where Ai, j = 1 means there exists an edge (i, j) ∈ E ,
otherwise Ai, j = 0. For weighted graphs, each edge (i, j) is assigned a weight wi, j,
so Ai, j = wi, j. In some cases, nodes are associated with features, which could be
denoted as X ∈ Rn×m, and Xi,: is the feature vector of node i. The number of fea-
tures for each node is m. In this chapter, unless otherwise stated, we focus on GNN
models on homogeneous graphs.

GNN Fundamentals: Traditional GNNs propagate information via the input
graph’s structure according to the propagation scheme:

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2 H lW l), (7.2)

7 Interpretability in Graph Neural Networks 129

Important Edge

Important Node

Node Feature Vector

Important Feature

Computation graph of node 𝑖
(2 convolution layers)

𝑖

Fig. 7.3: Illustration of explanation result formats. Explanation results for graph
neural networks could be the important nodes, the important edges, the important
features, etc. An explanation method may return multiple types of results.

where H l denotes the embedding matrix at layer l, and W l denotes the trainable
parameters at layer l. Also, Ã = A+ I denotes the adjacency matrix of the graph
after adding the self-loop. The matrix D̃ is the diagonal degree matrix of Ã, i.e.,
D̃i,i = ∑ j Ãi, j. Therefore, D̃−

1
2 ÃD̃−

1
2 normalizes the adjacency matrix. If we only

focus on the embedding update of node i, the GCN propagation scheme could be
rewritten as:

H l+1
i,: = σ(∑

j∈Vi∪{i}

1
ci, j

H l
j,:W

l), (7.3)

where H j,: denotes the j-th row of matrix H, and Vi denotes the neighbors of node
i. Here ci, j is a normalization constant, and 1

ci, j
= (D̃−

1
2 ÃD̃−

1
2)i, j. Therefore, the

embedding of node i at layer l can be seen as aggregating neighbor embeddings
of nodes that are neighbors of node i, followed by some transformations. The em-
beddings in the first layer H0 is usually set as the node features. As the layer goes
deeper, the computation of each node’s embedding will include further nodes. For
example, in a 2-layer GNN, computing the embedding of node i will use the infor-
mation of nodes within the 2-hop neighborhood of node i. The subgraph composed
by these nodes is called the computation graph of node i, as shown in Fig. 7.3.

Target Models: There are two common tasks in graph analysis, i.e., graph-level
predictions and node-level predictions. We use classification tasks as the example. In
graph-level tasks, the model f (G) ∈ RC produces a single prediction for the whole
graph, where C is the number of classes. The prediction score for class c could
be written as f c(G). In node-level tasks, the model f (G) ∈ Rn×C returns a matrix,
where each row is the prediction for a node. Some explanation methods are designed
solely for graph-level tasks, some are for node-level tasks, while some could handle
both scenarios. The computation graphs introduced above are commonly used in
explaining node-level predictions.

130 Ninghao Liu and Qizhang Feng and Xia Hu

Raw Gradient
(SA)

Grad⊙Input

𝑥

𝑓𝑐

SmoothGrad

𝑥

𝑓𝑐

𝑥

𝑓𝑐

0

0

0

𝑆(𝑥)

𝑥

𝑓𝑐

0

IG
= 𝑆(𝑥)

Fig. 7.4: Illustration of several gradient-based explanation methods. Methods rely-
ing on local gradients may suffer from the saturation problem or noises in input,
where a feature’s local sensitivity is not consistent with its overall contribution.
SmoothGrad removes noises in an explanation by averaging multiple explanations
on nearby points. IG is more accurate than Grad⊙ Input in measuring feature con-
tribution.

Interpretation Formats: According to the introduction above, there are several
input modes that could be included in the explanation as shown in Fig. 7.3. Specif-
ically, explanation methods could identify what are the important nodes, important
edges and important features that contribute most to the prediction. Some explana-
tion methods may identify multiple types of input modes simultaneously.

7.2.2 Approximation-Based Explanation

The approximation-based explanation has been widely used to analyze the predic-
tion of models with complex structures. Approximation-based approaches could be
further divided into white-box approximation and black-box approximation. The
white-box approximation uses information inside the model, which includes but is
not limited to gradients, intermediate features, model parameters, etc. The black-box
approximation does not utilize information propagation inside the model. It usually
uses a simple and interpretable model to fit the target model’s decision on an input
instance. Then, the explanation can be easily extracted from the simple model. The
details of commonly used methods for both categories are introduced as below.

7.2.2.1 White-Box Approximation Method

Sensitivity Analysis (SA) Baldassarre and Azizpour (2019) study the impact of a
particular change in an independent variable on a dependent variable. In the context
of explanation, the dependent variable refers to the prediction, while the independent

7 Interpretability in Graph Neural Networks 131

variables refer to the features. The local gradient of the model is commonly used as
sensitivity scores to represent the correlation between the feature and the prediction
result. The sensitivity score is defined as:

S (x) = ∥∇x f (G)∥2 , (7.4)

where G is the input instance graph to be explained, f (G) is the model prediction
function. Here x refers to the feature vector of a node of interest. Node features
with higher sensitivity scores are more important because they can lead to drastic
changes to model decisions.

Although SA is intuitive and straightforward, its effectiveness is still limited.
It assumes input features are mutually independent, and does not necessarily pay
attention to their correlations in the actual decision-making process. Also, sensitivity
analysis only measures the impact of local changes to the decision function f (G),
rather than thoroughly explaining the decision function value itself. Explanation
results provided by sensitivity analysis are usually relatively noisy and challenging
to comprehend. Therefore, some follow-up techniques have been developed trying
to overcome this limitation (as shown in Fig. 7.4).

GuidedBP(Baldassarre and Azizpour, 2019) is similar to SA except that it only
detects the features that positively activate the neurons, with the assumption that
negative gradients may confuse the contribution of important features and makes the
visualizing noisy. To follow this intuition, GuideBP modifies the process of back-
propagation of SA and discards all negative gradients.

Grad⊙ Input Sanchez-Lengeling et al (2020) measures the feature contribution
scores as the element-wise product of the input features and the gradients of decision
function with respect to the features:

S (x) = ∇
⊤
x f (G)⊙x. (7.5)

Therefore, Grad⊙ Input considers not only the feature sensitivity, but also the scale
of feature values. However, the methods mentioned above all suffered from the sat-
uration problem, where the scope of the local gradients is too limited to reflect the
overall contribution of each feature.

Integrated Gradients (IG) Sanchez-Lengeling et al (2020) solve the saturation
problem by aggregating feature contribution along a designed path in input space.
This path starts from a chosen baseline point G ′ and ends at the target input G .
Specifically, the feature contribution is computed as:

S (x) =
(
x−x′

)∫ 1

α=0
∇x f

(
G ′+α

(
G −G ′

))
dα (7.6)

where x′ denotes a feature vector in the baseline point G ′, while x is a feature vector
in the original input G . The choice of baseline G ′ is relatively flexible. A typical
strategy is to use a null graph as the baseline, which has the same topology but its
nodes use “unspecified” categorical features. This is motivated by the application of

132 Ninghao Liu and Qizhang Feng and Xia Hu

IG in explaining image classification models (Sundararajan et al, 2017), where the
baseline is usually chosen as a pure black image or an image with random noises.

The explanations obtained by the above methods usually contain a lot of noises.
Therefore, Smilkov et al (2017) propose SmoothGrad to alleviate the problem.
SmoothGrad averages attributions evaluated on a number of noise-perturbed ver-
sions of the input. This method initially aims at sharpening the saliency maps on
images. Furthermore, Sanchez-Lengeling et al (2020) apply it to the Grad⊙ Input
method by adding Gaussian noise to node and edge features, and averaging multiple
explanations to a smoothed one.

Class Activation Mapping (CAM) (Pope et al, 2019) is an explanation method
that is initially developed for CNNs. This method only works under a specific model
architecture, where the last convolutional layer is followed by a global average pool-
ing (GAP) layer before the final softmax layer. The feature maps (i.e., activations)
in the last convolutional layer are aggregated and re-scaled to the same size as the
input image, so that the activations highlight the important regions in the image. The
idea of CAM can also be adapted to graph neural networks. Specifically, the GAP
layer in a GNN could be defined as averaging the embeddings of all nodes in the last
graph convolution layer: h = 1

n ∑
n
i=1 HL

i,:, where L is the last graph convolution layer.
CAM treats each dimension of the final node embeddings (i.e., HL

:,k) as a feature
map. The logit value for class c is:

f c(G) = ∑
k

wc
k hk (7.7)

where hk denotes the k-th entry of h, wc
k is the GAP-layer weight of k-th feature map

with respect to class c. Therefore, the contribution of node i to the prediction is:

S (i) =
1
n ∑

k
wc

k HL
i,k. (7.8)

Although CAM is simple and efficient, it only works on models with certain struc-
tures, which greatly limits its application scenarios.

Grad-CAM (Pope et al, 2019) combines gradient information with feature maps
to relax the limitation of CAM. While CAM uses the GAP layer to estimate the
weight of each feature map, Grad-CAM employs the gradient of output with respect
to the feature maps to compute the weights, so that:

wc
k =

1
n

n

∑
i=1

∂ f c(G)

∂HL
i,k

, (7.9)

S (i) = ReLU

(
∑
k

wc
k HL

i,k

)
. (7.10)

The ReLU function forces the explanation to focus on the positive influence on the
class of interest. Grad-CAM is equivalent to CAM for GNNs with only one fully-
connected layer before output. Compared to CAM, Grad-CAM can be applied to

7 Interpretability in Graph Neural Networks 133

more GNN architectures, thus avoiding the trade-off between model explainability
and capacity.

7.2.2.2 Black-Box Approximation Methods

Different from white-box approximation methods, black-box approximation meth-
ods manage to bypass the need to obtain internal information of complex models.
The general idea is to use models that are intrinsically interpretable (such as linear
regressions, decision trees) to fit the complex model. Then, we can explain the de-
cision based on the simple models. The fundamental assumption behind this is that:
Given an input instance, the model’s decision boundary within the neighborhood
of that instance can be well approximated by the interpretable model. The major
challenge is how to define the neighborhood space given an input graph which is a
discrete data structure.

We introduce several approaches, including GraphLime (Huang et al, 2020c),
RelEx (Zhang et al, 2020a), and PGM-Explainer (Vu and Thai, 2020). These meth-
ods share a similar procedure: First, a neighborhood space is defined around the
target instance. Second, data points are sampled within this space and their predic-
tions are obtained after being fed into the target model. A training dataset is built,
where each instance-label pair consists of a sampled point and its prediction. Finally,
an interpretable model is trained by using the dataset. The key difference between
these methods lies in two aspects, i.e., the definition of the neighborhood, and the
choice of the interpretable model.

GraphLime is a local explanation method for GNN predictions on graph nodes.
Given the prediction result on a target node vt , GraphLime defines the neighborhood
space as a set of nodes which are in the k-hop neighborhood of the target node in
the input graph:

Vt = {v | distance(vt ,v)≤ k,v ∈ V } , (7.11)

where the k-hop neighborhood refers to the nodes which are within k hops from
the target node. GraphLime collects the features of nodes in Vt as the corpus, and
employs HSIC Lasso (Hilbert-Schmidt independence criterion Lasso) to measure
the independence between features and predictions of the nodes. The top impor-
tant features are selected as the explanation result, so GraphLime cannot provide
explanations based on structural information of the graph.

RelEx defines the neighborhood space as a set of perturbed graphs to the com-
putation graph of the target node. Similar to GraphLime, RelEx explains GNN pre-
dictions on nodes. The computation graph Gt of the target node vt is composed
of the k-hop neighbor nodes around node vt and the edges that connect them.
First, RelEx proposes a BFS sampling strategy to sample multiple perturbed graphs
{G ′t,1,G ′t,2, ...,G ′t,I} from the computation graph. These perturbed graphs are fed into
the original GNN f to build a training set {G ′t,i, f (G ′t,i)}I

i=1. Then, a new GNN f ′ is
trained upon the training set to approximate f . After that, a mask M is trained for
explanation. The mask is applied to the adjacency matrix of Gt . The value of each

134 Ninghao Liu and Qizhang Feng and Xia Hu

mask entry is in [0,1], so it is a soft mask. There are two loss terms for training the
mask: (1) f ′(Gt⊙M) is close to f ′(Gt), (2) the mask M is sparse. The resultant mask
entry values indicate the importance score of edges in Gt , where a higher mask value
means the corresponding edge is more important.

PGM-Explainer applies probabilistic graphical models to explain GNNs. To
find the neighbor instances of the target, PGM-Explainer first randomly selects
nodes to be perturbed from computation graphs. Then, the selected nodes’ features
are set to the mean value among all nodes. After that, PGM-Explainer employs a
pair-wise dependence test to filter out unimportant samples, aiming at reducing the
computational complexity. Finally, a Bayesian network is introduced to fit the pre-
dictions of chosen samples. Therefore, the advantage of PGM-Explainer is that it
illustrates the dependency between features.

7.2.3 Relevance-Propagation Based Explanation

Relevance propagation redistributes the activation score of output neuron to its pre-
decessor neurons, iterating until reaching the input neurons. The core of relevance
propagation methods is about defining a rule for the activation redistribution be-
tween neurons. Relevance propagation has been widely used to explain models in
domains such as computer vision and natural language processing. Recently, some
work has been proposed to explore the possibility of revising relevance propagation
method for GNNs. Some representative approaches include LRP (Layer-wise Rel-
evance Propagation) (Baldassarre and Azizpour, 2019; Schwarzenberg et al, 2019),
GNN-LRP (Schnake et al, 2020), ExcitationBP (Pope et al, 2019).

LRP is first proposed in (Bach et al, 2015) to calculate the contribution of indi-
vidual pixels to the prediction result for an image classifier. The core idea of LRP is
to use back propagation to recursively propagate the relevance scores of high-level
neurons to low-level neurons, up to the input-level feature neurons. The relevance
score of the output neuron is set as the prediction score. The relevance score that
a neuron receives is proportional to its activation value, which follows the intu-
ition that neurons with higher activation tend to contribute more to the prediction.
In (Baldassarre and Azizpour, 2019; Schwarzenberg et al, 2019), the propagation
rule is defined as below:

Rl
i = ∑

j

z+i, j
∑k z+k, j +b+j + ε

Rl+1
j

zi, j = xl
i wi, j

(7.12)

where Rl
i ,R

l+1
j is the relevance score of neuron i in layer l and neuron j in layer

l + 1, respectively. xl
i is the activation of neuron i in layer l. wi, j is the connection

weight. ε prevents the denominator from being zero. This propagation rule only
allows positive activation values. Also, explanations obtained using this method are

7 Interpretability in Graph Neural Networks 135

limited to nodes and node features, where graph edges are excluded. The reason
is that the adjacency matrix is treated as part of the GNN model. Therefore, LRP
is unable to analyze topological information which nevertheless plays an important
role in graph data.

ExcitationBP is a top-down attention model originally developed for CNNs
(Zhang et al, 2018d). It shares a similar idea as LRP. However, ExcitationBP defines
the relevance score as a probability distribution and uses a conditional probability
model to describe the relevance propagation rule.

P(a j) = ∑
i

P(a j | ai)P(ai) (7.13)

where a j is the j-th neuron in the lower layer and ai is the i-th parent neuron of
a j in the higher layer. When the propagation process passes through the activation
function, only non-negative weights are considered and negative weights are set to
zero. To extend ExcitationBP for graph data, new backward propagation schemes
are designed for the softmax classifier, the GAP (global average pooling) layer and
the graph convolutional operator.

GNN-LRP mitigates the weakness of traditional LRP by defining a new prop-
agation rule. Instead of using the adjacency matrix to obtain propagation paths,
GNN-LRP assigns the relevance score to a walk, which refers to a message flow
path in the graph. The relevance score is defined by the T -order Taylor expansion of
the model with respect to the incorporation operator (graph convolutional operator,
linear message function, etc.). The intuition is that the incorporation operator with
greater gradients has a greater influence on the final decision.

7.2.4 Perturbation-Based Approaches

An assumption behind prediction explanations is that important input parts signif-
icantly contribute to the output while unimportant parts have minor influences. It
thus implies that masking out the unimportant parts will have a negligible impact on
the output, and masking out the important parts will have a significant impact. The
goal is to find a mask M to indicate graph component importance. The mask could
be applied to nodes, edges or features in graphs. The mask value can either be binary
Mi ∈ {0,1} or continuous Mi ∈ [0,1]. Some recent perturbation-based approaches
are introduced as below.

GNNExplainer (Ying et al, 2019) is the first perturbation-based explanation
method for GNNs. Given the model’s prediction on a node v, GNNExplainer tries
to find a compact subgraph GS from the computation graph of node v that is most
crucial for the prediction. The problem is defined as maximizing the mutual in-
formation (MI) between the predictions of the original computation graph and the
predictions of the subgraph:

136 Ninghao Liu and Qizhang Feng and Xia Hu

max
GS

MI (Y,(GS,XS)) = H(Y)−H (Y | G = GS,X = XS) , (7.14)

where GS and XS is the subgraph and its nodes’ features. Y is the predicted label
distribution, and its entropy H(Y) is a constant. To solve the optimization problem
above, the authors apply a soft-mask M on adjacency matrix:

min
M
−

C

∑
c=1

1[y = c] logPΦ (Y = y | G = Ac⊙σ(M),X = Xc) , (7.15)

where Ac is the adjacency matrix of the computation graph, Xc is the correspond-
ing feature matrix, and M denotes the trainable parameters. The sigmoid function
projects the mask value in [0,1]. Finally, a subgragh is built by selecting the edges
(and the nodes connected by these edges) corresponding to the high values in M. Be-
sides providing explanations based on graph structures, GNNExplainer could also
offer feature-wise explanations by applying a similar masking learning process on
features. Moreover, regularization techniques could be applied to enforce the expla-
nation to be sparse. As a model-agnostic approach, GNNExplainer is suitable for
any graph-based machine learning tasks and GNN models.

PGExplainer (Luo et al, 2020) shares the same idea with GNNExplainer and
learns a discrete mask applied on edges to explain the predictions. The main idea is
to use a deep neural network to generate edge mask values:

Mi, j = MLPΨ ([zi;z j]) , (7.16)

where Ψ denotes the trainable parameters of the MLP. zi and z j are the embedding
vector for node i and j, respectively. [·; ·] denotes concatenation. Similar to the GN-
NExplainer, the mask generator is trained by maximizing the mutual information
between the original prediction and the new prediction.

GraphMask (Schlichtkrull et al, 2021) also produces the explanation by estimat-
ing the influences of edges. Similar to PGExplainer, GraphMask learns an erasure
function that quantifies the importance of each edge. The erasure function is defined
as:

z(k)u,v = gπ

(
h(k)

u ,h(k)
v ,m(k)

u,v

)
(7.17)

where hu, hv and mu,v refers to the hidden embedding vectors for node u, node v and
the message sent through the edge in graph convolution. π denotes the parameters
of function g. One difference between GraphMask and PGExplainer is that the for-
mer also takes the edge embedding as input. Another difference is that GraphMask
provides the importance estimation for every graph convolution layer, and k indi-
cates the layer that the embedding vectors belong to. Instead of directly erasing the
influences of unimportant edges, the authors then propose to replace the message
sent through unimportant edges as:

m̃(k)
u,v = z(k)u,v ·m(k)

u,v +
(

1− z(k)u,v

)
·b(k), (7.18)

7 Interpretability in Graph Neural Networks 137

where b(k) is trainable. The work shows that a large proportion of edges can be
dropped without deteriorating the model performance.

Causal Screening (Wang et al, 2021) is a model-agnostic post-hoc method that
identifies a subgraph of input as an explanation from the cause-effect standpoint.
Causal Screening exerts causal effect of candidate subgraph as the metric:

S (Gk) = MI (do(G = Gk); ŷ)−MI(do(G = /0); ŷ) (7.19)

where Gk is the candidate subgraph, k is the number of edges and MI is the mu-
tual information. The intervention do(G = Gk) and do(G = /0) means the model
input receives treatment (feeding Gk into the model) and control (feeding /0 into the
model), respectively. ŷ denotes the prediction when feeding the original graph into
the model. Causal Screening uses a greedy algorithm to search for the explanation.
Starting from an empty set, at each step, it adds one edge with the highest causal
effect into the candidate subgraph.

CF-GNNExplainer (Lucic et al, 2021) also proposes to generate counterfactual
explanations for GNNs. Different from previous methods that try to find a sparse
subgraph to preserve the correct prediction, CF-GNNExplainer proposes to find the
minimal number edges to be removed such that the prediction changes. Similar to
GNNExplainer, CF-GNNExplainer employs the soft mask as well. Therefore, it also
suffers from the “introduced evidence” problem (Dabkowski and Gal, 2017), which
means that non-zero or non-one values may introduce unnecessary information or
noises, and thus influence the explanation result.

7.2.5 Generative Explanation

Many methods introduced in previous subsections define the explanation as select-
ing sub-graphs that contains part of nodes, edges or features of the original input.
Recently, XGNN (Yuan et al, 2020b) proposes to obtain explanation by generating
a graph that maximizes the prediction of the given GNN model. Some methods that
share a similar idea have been proposed for computer vision tasks. For example, the
role of a neuron could be understood by finding the input prototypes that maximally
activates the neuron’s activation (Olah et al, 2018). The problem of finding proto-
type samples can be defined as an optimization problem, which can be solved by
gradient ascent. However, this method can not be directly used on GNNs because
the gradient ascent method is not compatible with the discrete and topological na-
ture of graph data. To tackle this problem, XGNN defines graph generation as a
reinforcement learning task.

To be more specific, the generator follows the steps below. First, it randomly
picks one node as the initial graph. Second, given an intermediate graph, the gener-
ator adds a new edge to the graph. This action is carried out in two steps: choosing
the edge’s starting point as well as the end point. XGNN employs another GNN as
the policy to determine the action. The GNN learns nodes features, and two MLPs

138 Ninghao Liu and Qizhang Feng and Xia Hu

then take the learned features as input to predict the possibility of a start point and
an endpoint. The endpoint and the edge between the two points are added to update
the intermediate graph as an action. Finally, it calculates the reward of the action, so
that we can train the generator via policy gradient algorithms. The reward consists
of two terms. The first term is the score of the intermediate graph after feeding it to
the target GNN model. The second one is a regularization term that guarantees the
validity of the intermediate graph. The above steps are executed repeatedly until the
number of action steps reaches the predefined upper limit. As a generative explana-
tion method, XGNN provides a holistic explanation for graph classification. There
could be more generative explanation methods for other graph analysis tasks to be
explored in the future.

7.3 Interpretable Modeling on Graph Neural Networks

Following the introduction in Section 7.1.3.2, we introduce two categories of in-
terpretable modeling approaches, i.e., GNN models with attention mechanism and
disentangled representation learning on graphs.

7.3.1 GNN-Based Attention Models

Attention mechanisms benefit model interpretability by highlighting relevant parts
of the graph for the given task through attention scores. According to the graph
types, we introduce attention models built upon homogeneous graphs and heteroge-
neous graphs, respectively.

7.3.1.1 Attention Models for Homogeneous Graphs

Graph Attention Networks (GATs) enable assigning different weights to different
node embeddings in a neighborhood when aggregating information (Veličković
et al, 2018). Specifically, let hi denote the column-wise embedding of node i, then
the embedding update is written as:

hi
l+1 = σ(∑

j∈Vi∪{i}
αi, jWh j

l), (7.20)

where αi, j is the attention score, and Vi denotes the set of neighbors of node i. Also,
GAT uses a shared parameter matrix W independent of the layer depth. The attention
score is computed as:

αi, j = softmax(ei, j) =
exp(ei, j)

∑k∈Vi∪{i} exp(ei,k)
, (7.21)

7 Interpretability in Graph Neural Networks 139

𝒉𝑙
1 𝒉𝑙+1

1

𝒉𝑙
2

𝒉𝑙
3

𝒉𝑙
4 𝒉𝑙

5

𝛼11

concat/avg

𝒉𝑙
𝑗

𝑊𝒉𝑙
𝑗

𝛼𝑖𝑗

𝑾𝒉𝑙
𝑖

𝑾𝒉𝑙
𝑗

𝒂

softmaxj

Fig. 7.5: Left: An illustration of graph convolution with single head attentions by
node 1 on its neighborhood. Middle: The linear transformation with a shared param-
eter matrix. Right: The attention mechanism employed in (Veličković et al, 2018).

where self-attention mechanism is applied,

ei, j = LeakyReLU(a⊤[Whi
l∥Wh j

l]), (7.22)

where ∥ denotes vector concatenation. In general, the attention mechanism can also
be denoted as ei, j = attn(hi

l ,h
j
l). Therefore, the attention mechanism is a single-

layer neural network parameterized by a weight vector a. The attention score αi, j
shows the importance of node j to node i.

The above mechanism could also be extended with multi-head attention. Specif-
ically, K independent attention mechanisms are executed in parallel, and the results
are concatenated:

hi
l+1 = ∥K

k=1 σ(∑
j∈Vi∪{i}

α
k
i, jW

kh j
l), (7.23)

where αk
i, j is the normalized attention score in the k-th attention mechanism, and W k

is the corresponding parameter matrix.
Besides learning node embeddings, we could also apply attention mechanisms to

learn a low-dimensional embedding for the whole graph (Ling et al, 2021). Suppose
we are working on an information retrieval problem. Given a set of graphs {Gm},
1≤m≤M, and a query q, we want to return the graphs that are most relevant to the
query. The embedding of each graph Gm with respect to q could be computed using
the attention mechanism. In the first step, we could apply normal GNN propagation
rules as introduced in Equation 7.2, to obtain the embeddings of nodes inside each
graph. Let q denote the embedding of the query, and hi,m denote the embedding of
node i in a graph Gm. The embedding of graph Gm with respect to the query can be
computed as:

hq
Gm

=
1
|Gm|

|Gm|
∑
i=1

αi,qhi,m (7.24)

where αi,q = attn(hi,m,q) is the attention score, and attn() is a certain attention func-
tion. Finally, hq

Gm
can be used to compute the similarity of Gm to the query in the

graph retrieval task.

140 Ninghao Liu and Qizhang Feng and Xia Hu

7.3.1.2 Attention Models for Heterogeneous Graphs

A heterogeneous network is a network with multiple types of nodes, links, and even
attributes. The structural heterogeneity and rich semantic information bring chal-
lenges for designing graph neural networks to fuse information.

Definition 7.4. A heterogeneous graph is defined as G = (V ,E ,φ ,ψ), where V is
the set of node objects and E is the set of edges. Each node v ∈ V is associated with
a node type φ(v), and each edge (i, j) ∈ E is associated with an edge type ψ((i, j)).

We introduce how the challenge in embedding could be tackled using Heteroge-
neous graph Attention Network (HAN) (Wang et al, 2019m). Different from tradi-
tional GNNs, information propagation on HAN is conducted based on meta-paths.

Definition 7.5. A meta-path Φ is defined as a path with the form vi1
r1−→ vi2

r2−→
·· · rl−1−−→ vil , abbreviated as vi1vi2 · · ·vil with a composite relation r1 ◦ r2 ◦ · · · ◦ rl−1.

To learn the embedding of node i, we propagate the embeddings from its neighbors
within the meta-path. The set of neighbor nodes is denoted as V Φ

i . Considering
that different types of nodes have different feature spaces, a node embedding is first
projected to the same space h j ′ = Mφih

j. Here Mφi is the transformation matrix for
node type φi. The attention mechanism in HAN is similar to GAT, except that we
need to consider the type of meta-path that is currently sampled. Specifically,

zi,Φ = σ(∑
j∈V Φ

i

α
Φ
i, j h j ′), (7.25)

where the normalized attention score is

α
Φ
i, j = softmax(eΦ

i, j) = softmax(attn(hi′,h j ′;Φ)). (7.26)

Given a set of meta-paths {Φ1, ...,ΦP}, we can obtain a group of node embeddings
denoted as {zi,Φ1 , ...,zi,ΦP}. To fuse embeddings across different meta-paths, an-
other attention algorithm is applied. The fused embedding is computed as:

zi =
P

∑
p=1

βΦp zi,Φp , (7.27)

where the normalized attention score is

βΦp = softmax(wΦp) = softmax(
1
|V | ∑i∈V

q⊤ ·MLP(zi,Φp)), (7.28)

where q is a learnable semantic vector. MLP(·) denotes a one-layer MLP module.
wΦp can be explained as the importance of the meta-path Φp. Besides modeling
heterogeneous types of nodes and edges, HetGNN (Zhang et al, 2019b) extends
the discussion by considering heterogeneity in node attributes (e.g., images, texts,
categorical features).

7 Interpretability in Graph Neural Networks 141

is interested in

as a young father

jobenjoys vacation

Node: Person

Fig. 7.6: Using multiple embeddings to represent the interests of a user. Each em-
bedding segment corresponds to one aspect in data (Liu et al, 2019a).

7.3.2 Disentangled Representation Learning on Graphs

Traditional representation learning is limited in interpretability due to the opacity
of the representation space. Different from manual feature engineering where the
meaning of each resultant feature dimension is specified, the meaning of each di-
mension of the representation space is unknown. Representation learning on graphs
also suffers from this limitation. To tackle this issue, several approaches have been
proposed to enable assigning concrete meanings to different representation dimen-
sions, thus improving the interpretability of representation learning on graphs.

7.3.2.1 Is A Single Vector Enough?

Many existing representation learning methods on graphs focus on learning a sin-
gle embedding for each node. However, for those scenarios where some nodes have
multiple facets, is a single vector enough to represent each node? Solving such a
problem is of great practical value for applications such as recommender systems,
where users could have multiple interests. In this case, we could use multiple em-
beddings to represent each user, and each embedding corresponds to one interest.
An example is shown in Fig. 7.6. Specifically, if hi ∈ RD denotes the embedding
of node i, then hi = [hi,1;hi,2; ...;hi,K], where hi,k ∈ RD/K is the embedding for the
k-th facet. There are two challenges in learning disentangled representations, i.e.,
how to discover the K facets, and how to distinguish the update of different embed-
dings during the training process. The facets could be discovered in an unsupervised
manner by using clustering, where each cluster represents a facet. In the following
parts, we introduce several approaches for learning disentangled node embeddings
on graphs.

142 Ninghao Liu and Qizhang Feng and Xia Hu

P
red

ictio
n

 Layer
Target node

Neighbor nodes

C
lu

sterin
g

/R
o

u
tin

g

Disentangled embedding

Fig. 7.7: The high-level idea of learning the disentangled node embedding for a
target node by using clustering or dynamic routing.

7.3.2.2 Prototypes-Based Soft-Cluster Assignment

We discuss the techniques in the context of recommender system design. Facets
that represent item types are discovered as we learn user and item embeddings.
Here we assume that each item only has one facet, while each user could still have
multiple facets. The embedding of item t is simply ht , while the embedding of
user u is hu = [hu,1;hu,2; ...;hu,K]. Each item t is associated with a one-hot vector
ct = [ct,1,ct,2, ...,ct,K], where ct,k = 1 if t belongs to facet k, and ct,k = 0 otherwise.
Besides node embeddings, we also need to learn a set of prototype embeddings
{mk}K

k=1. The one-hot vector is drawn from the categorical distribution as below:

ct ∼ categorical(softmax([st,1,st,2, ..,st,K])), st,k = cos(ht ,mk)/τ, (7.29)

where τ is a hyper-parameter that scales the cosine similarity. Then, the probability
of observing an edge (u, t) is

p(t|u,ct) ∝

K

∑
k=1

ct,k · similarity(ht ,hu,k). (7.30)

Besides the fundamental learning process introduced above, the variational autoen-
coder framework could also be applied to regularize the learning process (Ma et al,
2019c). The item embeddings and prototype embeddings are jointly updated until
convergence. The embedding of each user hu is determined by aggregating the em-
beddings of interacted items, where hu,k collects embeddings from items that also
belong to facet k. In the learning process, the cluster discovery, node-cluster assign-
ments, and embedding learning are jointly conducted.

7 Interpretability in Graph Neural Networks 143

7.3.2.3 Dynamic Routing Based Clustering

The idea of using dynamic routing for disentangled node representation learning is
motivated by the Capsule Network (Sabour et al, 2017). There are two layers of
capsules, i.e., low-level capsules and high-level capsules. Given a user u, the set of
items that he has interacted with is denoted as Vu. The set of low-level capsules
is {cl

i}, i ∈ Vu, so each capsule is the embedding of an interacted item. The set of
high-level capsules is {ch

k}, 1≤ k ≤ K, where ch
k represents the user’s k-th interest.

The routing logit value bi,k between low-level capsule i and high-level capsule k
is computed as:

bi,k = (ch
k)
⊤ Scl

i , (7.31)

where S is the bilinear mapping matrix. Then, the intermediate embedding for high-
level capsule k is computed as a weighted sum of low-level capsules,

zh
k = ∑

i∈Vu

wi,k Scl
i ,

wi,k =
exp(bi,k)

∑
K
k′=1 exp(bi,k′)

(7.32)

so wi,k can be seen as the attention weights connecting the two capsules. Finally, a
“squash” function is applied to obtain the embedding of high-level capsules:

ch
k = squash(zh

k) =
∥zh

k∥2

1+∥zh
k∥2

zh
k

∥zh
k∥2

. (7.33)

The above steps constitute one iteration of dynamic routing. The routing process is
usually repeated for several iterations to converge. When the routing finishes, the
high-level capsules can be used to represent the user u with multiple interests, to be
fed into subsequent network modules for inference (Li et al, 2019b), as shown in
Fig. 7.7.

7.4 Evaluation of Graph Neural Networks Explanations

In this section, we introduce the setting for evaluating GNN explanations. This in-
cludes the datasets that are commonly used for constructing and explaining GNNs,
as well as the metrics that evaluate different aspects of explanations.

7.4.1 Benchmark Datasets

As more approaches have been proposed for explaining GNNs, a variety of datasets
have been used to assess their effectiveness. As such a research direction is still

144 Ninghao Liu and Qizhang Feng and Xia Hu

in the initial stage of development, a universally accepted benchmark dataset, such
as the COCO dataset for image object detection, has not yet been proposed. Here
we list a number of datasets that have been used for developing GNN explanation
approaches, including synthetic datasets and real-world datasets.

7.4.1.1 Synthetic Datasets

It is difficult to evaluate explanations because there are no ground truths in datasets
to compare with. A strategy to mitigate this problem is to use synthetic datasets.
In this case, motifs designed by humans could be added to data to play the role as
ground truths, and these motifs are assumed to be relevant to the learning task. Some
synthetic graph datasets are listed as below.

• BA-Shapes (Ying et al, 2019): A Barabási-Albert graph with 300 nodes, to
which 80 house-shaped motifs are attached randomly. It is then further aug-
mented by adding 10% random edges.

• BA-Community (Ying et al, 2019): A graph consists of two BA-Shapes, with
node features in different BA-Shapes following different normal distributions
to distinguish them.

• Tree-Cycle (Ying et al, 2019): A graph based on an eight-level balance tree, to
which 80 hexagonal motifs are attached randomly to the tree.

• Tree-Grid (Ying et al, 2019): A graph similar to Tree-Cycle, but with 80 3-by-3
grid motifs instead of the hexagonal motifs.

• Noisy BA-Community, Noisy Tree-Cycle, Noisy Tree-Grid (Lin et al, 2020a):
These four datasets are obtained by adding 40 important and 10 unimportant
node features to the corresponding datasets list above. This design can help to
test a method’s ability to identify important node features.

• BA-2Motifs (Luo et al, 2020): A dataset contains 800 independent graphs that
are obtained by adding either a pentagon motif or a house motif to the base BA
graph. This dataset is designed for graph classification task while previous ones
are for node classification task.

7.4.1.2 Real-World Datasets

Some examples of real-world graph datasets are listed as below.

• MUTAG (Debnath et al, 1991): A dataset consisting of 4,337 molecule graphs
that are labeled mutagenic or non-mutagenic. The nodes and edges in a graph
represent the atoms and chemical bonds. Related studies have shown that
molecules with carbon rings and Nitro group (NO2) may lead to mutagenic
effects. Also, there are several other molecule datasets, such as BBBP, BACE
and TOX21 (Pope et al, 2019).

• REDDIT-BINARY (Yanardag and Vishwanathan, 2015): A online-discussion
interaction dataset. It contains 2,000 graphs, and each of them is labeled as a

7 Interpretability in Graph Neural Networks 145

question-answer based or a discussion based community. The nodes and edges
represent the users and their interactions, respectively.

• Delaney Solubility (Delaney, 2004): A molecule dataset with 1,127 molecule
graphs, and their labels are the water-octanol partition coefficient. This dataset
is usually for graph regression tasks.

• Bitcoin-Alpha, Bitcoin-OTC (Kumar et al, 2016): Two trust-weighted signed
networks. Each of them consists of a graph whose nodes are accounts trading on
the Bitcoin-Alpha or Bitcoin-OTC platform. The nodes are labeled trustworthy
or not according to other members’ ratings.

• MNIST SuperPixel-Graph (Dwivedi et al, 2020): An image dataset in the
form of graphs. Each sample is a graph converted from the corresponding image
in the MNIST dataset. Every node is a super-pixel that represents the intensity
of corresponding region.

7.4.2 Evaluation Metrics

An appropriate evaluation metric is crucial for methods comparison. Explanation
visualization such as heat-map, due to its intuitiveness, has been widely used in
explanation for image and text data. However, it loses this advantage since graph
data is not intuitive to understand. Only experts with the domain knowledge can
make judgment. In this section, we introduce several commonly-used metrics.

• Accuracy is only appropriate for datasets with ground truth. The synthetic
datasets usually contain the ground truth that is defined by the rule they are con-
structed. For example, in molecule datasets, the molecule with NO2 and carbon
ring is mutagenic. Considering that carbon ring also occurs in non-mutagenic
molecule, the NO2 group is considered as ground truth. F1 score and ROC-AUC
are commonly used accuracy metrics. The limitation of the accuracy metrics is
that it is unknown whether the GNN model makes predictions in the same way
as humans (i.e., whether the pre-defined ground truth is really valid).

• Fidelity (Pope et al, 2019) follows the intuition that removing the truly im-
portant features will significantly decrease the model performance. Formally,
fidelity is defined as:

f idelity =
1
N

N

∑
i=1

(
f yi (Gi)− f yi

(
Gi \G ′i

))
(7.34)

where f is the output function target model. Gi is the i-th graph, G ′i is the ex-
planation for it, and Gi \ G ′i represents the perturbed i-th graph in which the
identified explanation is removed.

• Contrastivity (Pope et al, 2019) uses Hamming distance to measure the dif-
ferences between two explanations. These two explanations correspond to the
model’s prediction of one instance for different classes. It is assumed that mod-
els would highlight different features when making predictions for different

146 Ninghao Liu and Qizhang Feng and Xia Hu

classes. The higher the contrastivity, the better the performance of the inter-
preter.

• Sparsity (Pope et al, 2019) is calculated as the ratio of explanation graph size
to input graph size. In some cases, explanations are encouraged to be sparse,
because a good explanation should include only the essential features as far as
possible and discard the irrelevant ones.

• Stability (Sanchez-Lengeling et al, 2020) measures the performance gap of the
interpreter before and after adding noise to the explanation. It suggests that a
good explanation should be robust to slight changes in the input that do not
affect the model’s prediction.

7.5 Future Directions

Interpretation on graph neural networks is an emerging domain. There are still many
challenges to be tackled. In this section, we list several future directions towards
improving the interpretability of graph neural networks.

First, some online applications require real-time responses from models and al-
gorithms. It thus puts forward high requirements on the efficiency of explanation
methods. However, many GNN explanation methods conduct sampling or highly
iterative algorithms to obtain the results, which is time-consuming. Therefore, one
future research direction is how to develop more efficient explanation algorithms
without significantly sacrificing explanation precision.

Second, although more and more methods have been developed for interpreting
GNN models, how to utilize interpretation towards identifying GNN model defects
and improving model properties is still rarely discussed in existing work. Will GNN
models be largely affected by adversarial attacks or backdoor attacks? Can interpre-
tation help us to tackle these issues? How to improve GNN models if they have been
found to be biased or untrustworthy?

Third, besides attention methods and disentangled representation learning, are
there other modeling or training paradigms that could also improve GNN inter-
pretability? In the interpretable machine learning domain, some researchers are in-
terested in providing causal relations between variables, while some others prefer
using logic rules for reasoning. Therefore, how to bring causality into GNN learn-
ing, or how to use incorporate logic reasoning into GNN inference, may be an inter-
esting direction to explore.

Fourth, most existing efforts on interpretable machine learning have been de-
voted to get more accurate interpretation, while the human experience aspect is usu-
ally overlooked. For end-users, friendly interpretation can promote user experience,
and gain their trust to the system. For domain experts without machine learning
background, an intuitive interface helps integrate them into the system improvement
loop. Therefore, another possible direction is how to incorporate human-computer
interaction (HCI) to show explanation in a more user-friendly format, or how to de-
sign better human-computer interfaces to facilitate user interactions with the model.

7 Interpretability in Graph Neural Networks 147

Acknowledgements The work is, in part, supported by NSF (#IIS-1900990, #IIS-1718840, #IIS-
1750074). The views and conclusions contained in this paper are those of the authors and should
not be interpreted as representing any funding agencies.

Editor’s Notes: Similar to the general trend in the machine learning do-
main, explainability has been ever more widely recognized as an important
metric for graph neural networks in addition to those well recognized be-
fore such as effectiveness (Chapter 4), complexity (Chapter 5), efficiency
(Chapter 6), and robustness (Chapter 8). Explainability can not only broadly
influence technique development (e.g., Chapters 9-18) by informing model
developers of useful model details, but also could benefit domain experts in
various application domains (e.g., Chapters 19-27) by providing them with
explanations of predictions.

Chapter 8
Graph Neural Networks: Adversarial
Robustness

Stephan Günnemann

Abstract Graph neural networks have achieved impressive results in various graph
learning tasks and they have found their way into many applications such as molec-
ular property prediction, cancer classification, fraud detection, or knowledge graph
reasoning. With the increasing number of GNN models deployed in scientific ap-
plications, safety-critical environments, or decision-making contexts involving hu-
mans, it is crucial to ensure their reliability. In this chapter, we provide an overview
of the current research on adversarial robustness of GNNs. We introduce the unique
challenges and opportunities that come along with the graph setting and give an
overview of works showing the limitations of classic GNNs via adversarial example
generation. Building upon these insights we introduce and categorize methods that
provide provable robustness guarantees for graph neural networks as well as prin-
ciples for improving robustness of GNNs. We conclude with a discussion of proper
evaluation practices taking robustness into account.

8.1 Motivation

The success story of graph neural networks is astonishing. Within a few years, they
have become a core component of many deep learning applications. Nowadays they
are used in scientific applications such as drug design or medical diagnoses, are
integrated in human-centered applications like fake news detection in social media,
get applied in decision-making tasks, and even are studied in safety-critical environ-
ments like autonomous driving. What unites these domains is their crucial need for
reliable results; misleading predictions are not only unfortunate but indeed might
lead to dramatic consequences – from false conclusions drawn in science to harm
for people. However, can we really trust the predictions resulting from graph neural

Stephan Günnemann
Department of Informatics, Technical University of Munich, e-mail: guennemann@in.tum.de

149
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_8

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:guennemann@in.tum.de
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_8&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_8

150 Stephan Günnemann

networks? What happens when the underlying data is corrupted or even becomes
deliberately manipulated?

Indeed, the vulnerability of classic machine learning models to (deliberate) per-
turbations of the data is well known (Goodfellow et al, 2015): even only slight
changes of the input can lead to wrong predictions. Such instances, for humans
nearly indistinguishable from the original input yet wrongly classified, are also
known as adversarial examples. One of the most well-known and alarming exam-
ples is an image of a stop sign, which is classified as a speed limit sign by a neural
network with only very subtle changes to the input; though, for us as humans it still
clearly looks like a stop sign (Eykholt et al, 2018). Examples like these illustrate
how machine learning models can dramatically fail in the presence of adversarial
perturbations. Consequently, adopting machine learning for safety-critical or sci-
entific application domains is still problematic. To address this shortcoming, many
researchers have started to analyze the robustness of models in domains like images,
natural language, or speech. Only recently, however, GNNs have come into focus.
Here, the first work studying GNNs’ robustness (Zügner et al, 2018) investigates
one of the most prominent tasks, node-level classification, and demonstrated the
susceptibility of GNNs to adversarial perturbations as well (see Figure 8.1). Since
then, the field of adversarial robustness on graphs has been rapidly expanding, with
many works studying diverse tasks and models, and exploring ways to make GNNs
more robust.

Fig. 8.1 The upper left graph
is the original input. On the
right is the graph after per-
forming a small change (e.g.
adding an edge or changing
some node attributes). The
lower part illustrates the pre-
dicted classes for each node
obtained from a GNN. Is it
possible to change the predic-
tions? Are GNNs robust?

node classification via
a graph neural network

[]

[]

[]

[]

.

.

.

.

.

.

.

.

Node
classification

[]

[]

[]

[]

.

.

x
x

.

.

.

.

[].. [].
.

target gets
misclassified

pertur-
bation

target node

To some degree it is surprising that graphs were not in the focus even earlier.
Corrupted data and adversaries are common in many domains where graphs are
analyzed, e.g., social media and e-commerce systems. Take for example a GNN-
based model for detecting fake news in a social network (Monti et al, 2019; Shu et al,
2020). Adversaries have a strong incentive to fool the system in order to avoid being
detected. Similarly, in credit scoring systems, fraudsters try to disguise themselves
by creating fake connections. Thus, robustness is an important concern for graph-
based learning.

It is important to highlight, though, that adversarial robustness is not only a topic
in light of security concerns, where intentional changes, potentially crafted by hu-
mans, are used to try to fool the predictions. Instead, adversarial robustness con-
siders worst-case scenarios in general. Especially in safety-critical or scientific ap-

8 Graph Neural Networks: Adversarial Robustness 151

plications where reliability is key, understanding the robustness of GNNs to worst-
case noise is important, as nature itself might be the adversary. The construction of
gene interaction networks, for example, often leads to corrupted graphs containing
spurious edges (Tian et al, 2017). Thus, to make sure that graph neural networks
work reliably in all these scenarios, we need to investigate robustness under worst-
case/adversarial corruptions of the data.

Moreover, non-robustness of GNNs shows conceptual gaps: while neural net-
works are hypothesized to learn meaningful representations that capture the seman-
tics of the domain and task, a non-robust model clearly violates this property. Since
the small changes leading to an adversarial example do not alter the meaning, a rea-
sonable representation should also not change the prediction. Thus, understanding
adversarial robustness means understanding generalization performance.

Unique Challenges in the Graph Domain

In contrast to other application domains of deep learning, robustness analysis for
graphs is especially challenging for multiple reasons:

1. Complex perturbation space: Changes can manifest in various ways including
perturbations in the graph structure and the node attributes, leading to a vast
space to explore. Importantly, unlike other fields this often means operating in a
discrete data domain such as adding or removing edges, leading to hard discrete
optimization problems as we will see later.

2. Interdependent data: The core feature of GNNs is to exploit the interdependence
between instances, for example, in the form of message passing or graph convo-
lution. Perturbations to the graph structure change the message passing scheme,
modifying how learned representation are propagated. Specifically, changes to
one part of the graph, e.g. one node, might affect many other instances.

3. Notion of similarity: We expect GNN models to be robust to small changes in
the graph. If the graphs are almost indistinguishable, the predictions should be
the same. However, defining the notion of similarity between graphs itself is
a hard problem and unlike, e.g., images, manual inspection by a human is not
practical.

Given these challenges, in the following Section 8.2 we first introduce the prin-
ciple of adversarial attacks on GNNs and highlight some non-robustness results.
In Section 8.3, we give an overview of robustness certificates, providing ways for
proving the reliability of predictions, followed by Section 8.4 where approaches
for improving GNNs’ robustness are introduced. We conclude in Section 8.5 with
discussing aspects of proper evaluation.

152 Stephan Günnemann

8.2 Limitations of Graph Neural Networks: Adversarial
Examples

To understand the (non-)robustness of GNNs, we can try to construct worst-case
perturbations – finding a small change of the data, which in consequence leads to a
strong change in the GNN’s output. This is also known as performing an adversarial
attack and the resulting perturbed data is often called an adversarial example.1 While
random perturbations of the data often have minor effect, specific perturbations, in
contrast, can be dramatic. Accordingly, an attack is often phrased as an optimization
problem with the goal to find a perturbation of the data which maximizes some
attack objective (e.g., maximize the predicted probability of some incorrect class).

8.2.1 Categorization of Adversarial Attacks

Before providing a general definition of adversarial attacks, it is helpful to distin-
guish two very different notions, called poisoning vs. evasion scenarios. The dif-
ference lies in the stage of the learning process in which the data perturbation is
performed. In a poisoning scenario, the perturbation is injected before the training
of the model; the perturbed data, thus, also affects the learning and the final model
we obtain. In contrast, an evasion scenario assumes the model to be given, i.e., al-
ready trained and fixed, and the perturbation is applied to future data during the
application/test phase of the GNN. It is worth to highlight, that for the frequently
considered transductive learning setting of GNNs – where we have no future test
data, but only the given (un)labeled data – a poisoning scenario is the more natural
choice. Though, in principle any combination of learning (transductive vs. induc-
tive) and attack scenario (poisoning vs. evasion) is worth to be studied.

Given this basic distinction, performing a poisoning adversarial attack can be
generally formulated as a bi-level optimization problem

max
Ĝ∈Φ(G)

Oatk(fθ∗(Ĝ)) s.t. θ
∗ = argmin

θ

Ltrain(fθ (Ĝ)) (8.1)

Here Φ(G) denotes the set of all graphs we are treating as indistinguishable to the
given graph G at hand, and Ĝ denotes a specific perturbed graph from this set. For
example, Φ(G) could capture all graphs which differ from G in at most ten edges
or in a few node attributes. The attacker’s goal is to find a graph Ĝ that, when
passed through the GNN fθ∗ , maximizes a specific objective Oatk, e.g., increasing
the predicated probability of a certain class for a specific node. Importantly, in a
poisoning setting, the weights θ ∗ of the GNN are not fixed but learned based on
the perturbed data, leading to the inner optimization problem that corresponds to
the usual training procedure on the (now perturbed) graph. That is, θ ∗ is obtained

1 Again it is worth highlighting that such ‘attacks’ are not always due to human adversaries. Thus,
the terms ‘change’ or ‘perturbation’ might be better suited and have a more neutral connotation.

8 Graph Neural Networks: Adversarial Robustness 153

by minimizing some training loss Ltrain on the graph Ĝ . This nested optimization
makes the problem specifically hard.

To define an evasion attack, the above equation can simply be changed by assum-
ing the parameter θ ∗ to be fixed. Often it is assumed to be given by minimizing the
training loss w.r.t. the given graph G (i.e. θ ∗ = argminθ Ltrain(fθ (G))). This makes
the above scenario a single-level optimization problem.

This general form of an attack enables us to provide a categorization along dif-
ferent aspects and illustrates the space to explore for robustness characteristics of
GNNs in general. While this taxonomy is general, for ease of understanding, it helps
to think about an intentional attacker.

Aspect 1: Property under Investigation (Attacker’s Goal)

What is the robustness property we want to analyze? For example, do we want to
understand how robust the classification of an individual node is? Will it change
when perturbing the data? The property under investigation is modeled via Oatk. It
intuitively represents the attacker’s goal. If Oatk for example measures the difference
between a node’s ground truth label and the currently predicted one, maximizing this
difference in Eq. equation 8.1 tries to enforce a misclassification.

The attacker’s goal is highly task-dependent. The majority of existing works has
focused on the robustness of node-level classification based on GNNs, where we
have to distinguish two scenarios. Works such as (Zügner et al, 2018; Dai et al,
2018a; Wang and Gong, 2019; Wu et al, 2019b; Chen et al, 2020f; Wang et al,
2020c) investigate how the prediction of an individual target node changes under
perturbations – also called local attack. In contrast, Zügner and Günnemann (2019);
Wu et al (2019b); Liu et al (2019c); Ma et al (2020b); Geisler et al (2021); Sun et al
(2020d) have investigated how the overall performance on an entire set of nodes
can drop – called a global attack.2 This seemingly subtle difference between the
two scenarios is crucial: In the latter case one has to find a single perturbed graph
Ĝ ∈Φ(G) which simultaneously changes many predictions, taking into account that
all node-level predictions are indeed done jointly based on one input. In the former
case, for each individual target node vi a different perturbation Ĝi ∈ Φ(G) can be
selected. Both views are reasonable; they simply model different aspects.

Beyond node-level classification, further works have investigated robustness of
graph-level classification (Chen et al, 2020j), link prediction (Chen et al, 2020h; Lin
et al, 2020d), and node embeddings (Bojchevski and Günnemann, 2019; Zhang et al,
2019e). The last one is worth mentioning since it targets an unsupervised learning
setting, aiming to be task-agnostic. Unlike the other examples, the goal is not to
target one specific task but to perturb the quality of the embeddings in general such
that one or multiple downstream tasks are hindered. Since it is not known a priori
which tasks (classification, link prediction, etc.) will be performed based on the

2 Local attacks have also been called targeted attacks, while global ones untargeted. Since this,
however, leads to a name clash with categorizations used in other communities (Carlini and Wag-
ner, 2017) we decided to use local/global here.

154 Stephan Günnemann

node embeddings, defining the objective Oatk is challenging. As a proxy measure,
Bojchevski and Günnemann (2019) for example uses the training loss itself, setting
Oatk = Ltrain.

Aspect 2: The Perturbation Space (Attacker’s Capabilities)

What changes are allowed to the original graph? What do we expect the perturba-
tions to look like? For example, do we want to understand how deleting a few edges
influences the prediction? The space of perturbations under consideration is mod-
eled via Φ(G). It intuitively represents the attacker’s capabilities; what and how
much they are able to manipulate. The complexity of the perturbation space for
graphs represents one of the biggest differences to classical robustness studies and
stretches along two dimensions.

(1) What can be changed? Unique to the graph domain are perturbations of the
graph structure. In this regard, most publications have studied the scenarios of re-
moving or adding edges to the graph (Dai et al, 2018a; Wang and Gong, 2019;
Zügner et al, 2018; Zügner and Günnemann, 2019; Bojchevski and Günnemann,
2019; Zhang et al, 2019e; Zügner et al, 2018; Tang et al, 2020b; Chen et al, 2020f;
Chang et al, 2020b; Ma et al, 2020b; Geisler et al, 2021). Focusing on the node level,
some works (Wang et al, 2020c; Sun et al, 2020d; Geisler et al, 2021) have consid-
ered adding or removing nodes from the graph. Beyond the graph structure, GNN
robustness has also been explored for changes to the node attributes (Zügner et al,
2018; Wu et al, 2019b; Takahashi, 2019) and the labels used in semi-supervised
node classification (Zhang et al, 2020b).

An intriguing aspect of graphs is to investigate how the interdepenence of in-
stances plays a role in robustness. Due to the message passing scheme, changes to
one node might affect (potentially many) other nodes. Often, for example, a node’s
prediction depends on its k-hop neighborhood, intuitively representing the node’s
receptive field. Thus, it is not only important what type of change can be performed
but also where in the graph this can happen. Consider for example Figure 8.1: to
analyze whether the prediction for the highlighted node can change, we are not lim-
ited to perturbing the node’s own attributes and its incident edges but we can also
achieve our aim by perturbing other nodes. Indeed, this reflects real world scenarios
much better since it is likely that an attacker has access to a few nodes only, and
not to the entire data or the target node itself. Put simply, we also have to consider
which nodes can be perturbed. Multiple works (Zügner et al, 2018; Zhang et al,
2019e; Takahashi, 2019) investigate what they call indirect attacks (or sometimes
influencer attacks), specifically analyzing how an individual node’s prediction can
change when only perturbing other parts of the graph while leaving the target node
untouched.

(2) How much can be changed? Typically, adversarial examples are designed to
be nearly indistinguishable to the original input, e.g., changing the pixel values of an
image so that it stays visually the same. Unlike image data, where this can easily be
verified by manual inspection, this is much more challenging in the graph setting.

8 Graph Neural Networks: Adversarial Robustness 155

Technically, the set of perturbations can be defined based on any graph distance
function D measuring the (dis)similarity between graphs. All graphs similar to the
given graph G then define the set Φ(G)= {Ĝ ∈G |D(G , Ĝ)≤∆}, where G denotes
the space of all potential graphs and ∆ the largest acceptable distance.

Defining what are suitable graph distance functions is in itself a challenging
task. Beyond that, computing these distances and using them within the optimiza-
tion problem of Eq. equation 8.1 might be computationally intractable (think, e.g.,
about the graph edit distance which itself is NP-hard to compute). Therefore, exist-
ing works have mainly focused on so called budget constraints, limiting the number
of changes allowed to be performed. Technically, such budgets correspond to the
L0 pseudo-norm between the clean and perturbed data, e.g., relating to the graphs’
adjacency matrix A or its node attributes X .3 To enable more fine-grained control,
often such budget constraints are used locally per node (e.g., limiting the maximal
number of edge deletions per node; ∆ loc

i) as well as globally (e.g., limiting the over-
all number of edge deletions; ∆ glob). For example

Φ(G) = {Ĝ = (Â, X̂) ∈G | ||A− Â||0 ≤ ∆
glob∧∀i : ||Ai− Âi||0 ≤ ∆

loc
i ∧X = X̂},

(8.2)
where the graphs G = (A,X) and Ĝ = (Â, X̂) are assumed to have the same size and
the node attributes, X resp. X̂ , to stay unchanged; Ai denotes the ith row of A.

Beyond these budget constraints, it might be useful to preserve further character-
istics of the data. In particular for real-world networks many patterns such as spe-
cific degree distributions, large clustering coefficients, low diameter, and more are
known to hold (Chakrabarti and Faloutsos, 2006). If two graphs show very different
patterns, it is easy to tell them apart – and a different prediction could be expected.
Therefore, in (Zügner et al, 2018; Zügner and Günnemann, 2019; Lin et al, 2020d)
only perturbed graphs are considered which follow similar power-law behavior in
the degree distribution. Similarly, one can impose constraints on the attributes con-
sidering, e.g., the co-occurrence of specific values.

Aspect 3: Available Information (Attacker’s Knowledge)

What information is available to find a harmful perturbation? What is the attacker’s
knowledge about the system? Considering a human-like adversary, the more knowl-
edge is available, the stronger are the potential attacks.

In general, we have to distinguish between knowledge about the data/graph and
knowledge about the model. For the first, either the full graph could be known or
only parts of it as, e.g., investigated in (Zügner et al, 2018; Dai et al, 2018a; Chang
et al, 2020b; Ma et al, 2020b). While for worst-case analysis we often assume that
the attacker has full knowledge, for practical scenarios it is indeed realistic to assume
that an attacker only observes subsets of the data. For supervised learning settings,

3 This is a similar approach to image data, where often we take a certain radius as measured by,
e.g., an Lp norm around the original input as the allowed perturbation set, assuming that for small
radii the semantic meaning of the input does not change.

156 Stephan Günnemann

the ground-truth labels of the target node(s) could additionally be hidden from the
attacker. The knowledge about the model includes many aspects such as knowledge
about the used GNN architecture, the model’s weights, or whether only the output
predictions or the gradients are known. Given all these variations, the most common
ones are white-box settings, where full information is available, and black-box set-
tings, which usually mean that only the graph and potentially the predicted outputs
are available.

Among the three aspects above, the attacker’s knowledge seems to be the one
which most strongly links to human-like adversaries. It should be highlighted,
though, that worst-case perturbations in general are best reflected by the fully white-
box setting, making it the preferred choice for strong robustness results. If a model
performs robustly in a white-box setting, it will also be robust under the limited
scenarios. Moreover, as we will see in Section 8.2.2.1, the transferability of attacks
implies that knowledge about the model is not really required.

Aspect 4: The Algorithmic View

Besides the above categorization that focuses on the properties of the attack, an-
other, more technical, view can be taken by considering the algorithmic approach
how the (bi-level) optimization problem is solved. In the discussion of the pertur-
bation space we have seen that graph perturbations often relate to the addition/re-
moval of edges or nodes — these are discrete decisions, making Eq. equation 8.1 a
discrete optimization problem. This is in stark contrast to other data domains where
infinitesimal changes are possible. Thus besides adapting gradient-based approxi-
mations, various other techniques can be used to tackle Eq. equation 8.1 for GNNs
such as reinforcement learning (Sun et al, 2020d; Dai et al, 2018a) or spectral ap-
proximations (Bojchevski and Günnemann, 2019; Chang et al, 2020b). Moreover,
the attacker’s knowledge has also implications on the algorithmic choice. In a black-
box setting where, e.g., only the input and output are observed, we cannot use the
true GNN fθ to compute gradients but have to use other principles like first learning
some surrogate model.

8.2.2 The Effect of Perturbations and Some Insights

The above categorization shows that various kinds of adversarial perturbations under
different scenarios can be investigated. Summarizing the different results obtained
in the literature so far, the trend is clear: standard GNNs trained in the standard way
are not robust. In the following, we given an overview of some key insights.

Figure 8.2 illustrates one of the results of the method Nettack as introduced in
(Zügner et al, 2018). Here, local attacks in an evasion setting focusing on graph
structure perturbations are analyzed for a GCN (Kipf and Welling, 2017b). The
figure shows the classification margin, i.e., the difference between the predicted

8 Graph Neural Networks: Adversarial Robustness 157

Fig. 8.2 Performing local
structure attacks on a GCN
model and the Cora ML data
with the Nettack (Zügner et al,
2018) approach. If a node is
below the dashed line it is
misclassified w.r.t. the ground
truth label. As shown, almost
any node’s prediction can be
changed.

Original Nettack Nettack-In. Nettack Nettack-In.

−1.0

−0.5

0.0

0.5

1.0

C
la
ss
ifi
ca
ti
on

m
ar
gi
n

Graph Budget ∆ = bd/2c Budget ∆ = d

m
is
cl
as
si
fie

d
no

de
s

probability of the node’s true class minus the one of the second highest class. The
left column shows the results for the unperturbed graph where most nodes are cor-
rectly classified as illustrated by the predominantly positive classification margin.
The second column shows the result after perturbing the graph based on the pertur-
bation found by Nettack using a global budget of ∆ = ⌊dv/2⌋ and making sure that
no singletons occur where dv is the degree of the node v under attack. Clearly, the
GCN model is not robust: almost every node’s prediction can be changed. Moreover,
the third column shows the impact of indirect attacks. Recall that in these scenarios
the performed perturbations cannot happen at the node we aim to misclassify. Even
in this setting, a large fraction of nodes is vulnerable. The last two columns show
results for an increased budget of ∆ = dv. Not surprisingly, the impact of the attack
becomes even more pronounced.

Considering global attacks in the poisoning setting similar behavior can be ob-
served. For example, when studying the effect of node additions, the work (Sun et al,
2020d) reports a relative drop in accuracy by up to 7 percentage points with a bud-
get of 1% of additional nodes, without changing the connectivity between existing
nodes. For changes to the edge structure, the work (Zügner and Günnemann, 2019)
reports performance drops on the test sets by around 6 to 16 percentage points when
perturbing 5% of the edges. Noteworthy, on one dataset, these perturbations lead to
a GNN obtaining worse performance than a logistic regression baseline operating
only on the node attributes, i.e., ignoring the graph altogether becomes the better
choice.

The following observation from (Zügner and Günnemann, 2019) is important
to highlight: One core factor for the obtained lower performance on the perturbed
graphs are indeed the learned GNN weights. When using the weights θĜ trained on
the perturbed graph Ĝ obtained by the poisoning attack, not only the performance
on Ĝ is low but even the performance on the unperturbed graph G suffers dramat-
ically. Likewise, when applying weights θG trained on the unperturbed graph G to
the graph Ĝ , the classification accuracy barely changes. Thus, the poisoning attack
performed in (Zügner and Günnemann, 2019) indeed derails the training procedure,
i.e., leads to ‘bad’ weights. This result emphasizes the importance of the training
procedure for the performance of graph models. If we are able to find appropriate
weights, even perturbed data might be handled more robustly. We will encounter
this aspect again in Section 8.4.2.

158 Stephan Günnemann

8.2.2.1 Transferability and Patterns

An interesting question to investigate is the adversarial examples’ transferability.
Transferability relates to the fact that a harmful perturbation for one model (e.g. a
GCN) is also harmful for another model (e.g. GAT (Veličković et al, 2018)). Thus,
one can simply reuse one perturbation to fool many models. The transferability of
GNN attacks has been investigated in multiple works (Zügner et al, 2018; Zügner
and Günnemann, 2019; Lin et al, 2020d; Chen et al, 2020f) and seems to hold across
many models. For example, local attacks computed based on Nettack’s GCN-like
surrogate model in an evasion scenario are also harmful for the original GCN and
the Column Network (Pham et al, 2017) model; for evasion and poisoning alike.
Interestingly, the performance gets detoriated even for unsupervised node embed-
dings such as DeepWalk (Perozzi et al, 2014), combined with a subsequent logistic
regression to obtain predictions.

The wide transferability of adversarial perturbations could be an indicator that
they follow general patterns. There seems to be some systematic change of the graph
which hinders many GNN models to perform well. If we can find out what makes,
for example, an edge insertion a strong adversarial change, we can use this knowl-
edge to detect adversarial attacks and/or make graph neural networks more robust
(see Section 8.4). However, it is yet still not fully understood what makes these
adversarial attacks harmful to a variety of models.

In (Zhang et al, 2019b) the predicted categorical distributions over classes for
perturbed and unperturbed instances after performing a Nettack attack has been
analyzed. Inspecting the average KL-divergence of the predicted categorical dis-
tributions of a node and its neighbors, perturbed nodes seem to show higher diver-
gences, i.e., the attacks appear to be aiming to violate the homophily assumption
in the graph. Relatedly, Wu et al (2019b) compared the Jaccard similarity between
adjacent node’s attributes and noticed a change in distribution from the clean and
perturbed graph. The work (Zügner et al, 2020) investigated various graph proper-
ties, including aspects such as node degree, closeness centrality, PageRank (Brin
and Page, 1998) scores, or attribute similarity. They focused on structure attacks
using Nettack, allowing only edge insertions and deletions to the target node.

1 10 100
Node Degree

0.0

0.2

0.4

0.6

0.8

1.0

Baseline

Insert

Remove

1 10 100
Two-hop neighborhood size

0.0

0.2

0.4

0.6

0.8

1.0

0.10 2×10 1

Closeness Centrality

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6
Attribute Similarity

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

.
F
ra

ct
io

n
 o

f
S
a
m

p
le

s

Fig. 8.3: Cumulative distributions of properties of nodes connected to (Insert) or
disconnected from (Remove) the target node by the Nettack method. Baseline is the
distribution in the entire graph.

8 Graph Neural Networks: Adversarial Robustness 159

Figure 8.3 compares the distribution of such a property (e.g. node degree) when
considering all nodes of the unperturbed graph with the distribution of the prop-
erty when considering only the nodes incident to the inserted/removed adversarial
edges. The comparison indicates a statistically significant difference between the
distributions. For example, in Figure 8.3 (left) we can see that the Nettack method
tends to connect a target node to low-degree nodes. This could be due to the degree-
normalization performed in GCN, where low-degree nodes have a higher weight
(i.e., influence) on the aggregation of a node. Likewise, considering nodes incident
to edges removed by the adversary we can observe that the Nettack method tends
to disconnect high-degree nodes from the target node. In Figure 8.3 (second and
third plot) we can see that the attack tends to connect the target node with peripheral
nodes, as evidenced by small two-hop neighborhood size and low closeness cen-
trality of the adversarially connected nodes. In Figure 8.3 (right) we can see that
the adversary tends to connect a target node to other nodes which have dissimilar
attributes. As also shown in other works, the adversary appears to try to counter the
homophily property in the graph – which is not surprising, since the GNN has likely
learned to partly infer a node’s class based on its neighbors.

To understand whether such detected patterns are universal, they can be used
to design attack principles itself — indeed, this even leads to black-box attacks
since the analyzed properties usually relate to the graph only and not the GNN. In
(Zügner et al, 2020) a prediction model was learned estimating the potential impact
of a perturbation on unseen graphs using the above mentioned properties as input
features. While this often resulted in finding effective adversarial perturbations, thus,
highlighting the generality of the regularities uncovered, the attack performance
was not on par with the original Nettack attack. Similarly, in (Ma et al, 2020b)
PageRank-like scores have been used to identify potential harmful perturbations.

8.2.3 Discussion and Future Directions

The aspects along which adversarial attacks on graphs can be studied allow for a
huge variety of scenarios. Only a few of them have been thoroughly investigated
in the literature. One important aspect to consider, for example, is that in real ap-
plications the cost of perturbations differ: while changing node attributes might be
relatively easy, injecting edges might be harder. Thus, designing improved pertur-
bation spaces can make the attack scenarios more realistic and better captures the
robustness properties one might want to ensure. Moreover, many different data do-
mains such as knowledge graphs or temporal graphs need to be investigated.

Importantly, while first steps have been made to understand the patterns that
makes these perturbations harmful, a clear understanding with a sound theoretical
backing is still missing. In this regard, it is also worth repeating that all these studies
have focused on analyzing perturbations obtained by Nettack; other attacks might
potentially lead to very different patterns. This also implies that exploiting the re-
sulting patterns to design more robust GNNs (see Section 8.4.1) is not necessarily

160 Stephan Günnemann

a good solution. Moreover, finding reliable patterns also requires more research on
how to compute adversarial perturbations in a scalable way (Wang and Gong, 2019;
Geisler et al, 2021), since such patterns might be more pronounced on larger graphs.

8.3 Provable Robustness: Certificates for Graph Neural
Networks

Adversarial attack approaches are heuristics to highlight potential vulnerabilities of
a GNN. However, they do not provide formal guarantees on the reliability of the
methods. In particular, an unsuccessful attack does not imply the robustness of the
GNN. It might just be that the attack approach could simply not find an/the adversar-
ial example since it does not solve Eq. equation 8.1 exactly. Attacks, when success-
ful, only provide results about non-robustness. For a safe use of GNNs, however, we
need the opposite: we need principles for provable robustness. These methods pro-
vide so called robustness certificates, giving formal guarantees that no perturbation
regarding a specific perturbation model Φ(G) will change the prediction.

Considering, for example, the task of node-level classification, the problem these
certification approaches are aiming to solve is: Given a graph G , a perturbation set
Φ(G), and a GNN fθ . Verify that the predicted class for node v stays the same for
all Ĝ ∈Φ(G). If this holds, we say that v is certifiably robust w.r.t. Φ(G).

Only few robustness certificates so far have been proposed for GNNs. They can
mainly be categorized into two principles: model-specific and model-agnostic.

8.3.1 Model-Specific Certificates

Model-specific certificates are designed for a specific class of GNN models (e.g., 2-
layer GCNs) and a specific task such as node-level classification. A common theme
is to phrase certification as a constrained optimization problem: Recall that in a
classification task, the final prediction is usually obtained by taking the class with
the largest predicted probability or logit. Let c∗ = argmaxc∈C fθ (G)c denote the
predicted class4 obtained on the unperturbed graph G , where C is the set of classes
and fθ (G)c denotes the logit obtained for class c. This specifically implies, that the
margin fθ (G)c∗ − fθ (G)c between class c∗ and any other class c is positive.

A particularly useful quantity for robustness certification is the worst-case mar-
gin, i.e., the smallest margin possible under any perturbed data Ĝ :

m̂(c∗,c) = min
Ĝ∈Φ(G)

[fθ (Ĝ)c∗ − fθ (Ĝ)c] (8.3)

4 This could either be the predicted class for a specific target node v in case of node-level classi-
fication; or for the entire graph in case of graph-level classification. We drop the dependency on v
since it is not relevant for the discussion. For simplicity, we assume the maximizer c∗ to be unique.

8 Graph Neural Networks: Adversarial Robustness 161

Fig. 8.4: Obtaining robustness certificates via the worst-case margin: The predic-
tion obtained from the unperturbed graph Gi is illustrated with a cross, while the
predictions for the perturbed graphs Φ(Gi) are illustrated around it. The worst-case
margin measures the shortest distance to the decision boundary. If it is positive (see
G1), all predictions are on the same side of the boundary; robustness holds. If it is
negative (see G2), some predictions cross the decision boundary; the class prediction
will change under perturbations, meaning the model is not robust. When using lower
bounds — the shaded regions in the figure — robustness is ensured for positive val-
ues (see G1) since the exact worst-case margin can only be larger. If the lower bound
becomes negative, no statement can be made (see G2 and G3; robustness unknown).
Both G2 and G3 have a negative lower bound, while the (not tractable to compute)
exact worst-case margin differs in sign.

If this term is positive, c can never be the predicted class for node v. And if the
worst-case margin m̂(c∗,c) stays positive for all c ̸= c∗, the prediction is certifiably
robust since the logit for class c∗ is always the largest – for all perturbed graphs in
Φ(G). This idea is illustrated in Figure 8.4.

As shown, obtaining a certificate means solving the (constrained) optimization
problem in Eq. equation 8.3 for every class c. Not surprisingly, however, solving
this optimization problem is usually intractable – for similar reasons as computing
adversarial attacks is hard. So how can we obtain certificates? Just heuristically
solving Eq. equation 8.3 is not helpful since we aim for guarantees.

Lower Bounds on the Worst-Case Margin

The core idea is to obtain tractable lower bounds on the worst-case margin. That is,
we aim to find functions m̂LB that ensure m̂LB(c∗,c) ≤ m̂(c∗,c) and are more effi-
cient to compute. One solution is to consider relaxations of the original constrained
minimization problem, replacing, for example, the model’s nonlinearities and hard
discreteness constraints via their convex relaxation. For example, instead of requir-
ing that an edge is perturbed or not, indicated by the variables e ∈ {0,1}, we can
use e ∈ [0,1]. Intuitively, using such relaxations leads to supersets of the actually
reachable predictions, as visualized in Figure 8.4 with the shaded regions.

�������	�

�	���� 	�

��������
��������

��
������������	����

�� � � � ����������
	����������
���
�����

��

���
�������
����

�
�

�
�
�
�
�
��
�
��
��
	�
��
��

���
���
��

���
���
�

��������
��������

��
������������	����

�
�

�
�
�
�
�
��
�
��
��
	�
��
��

���
���
��

���
���
�

��������
��������

��
������������	����

�
�

�
�
�
�
�
��
�
��
��
	�
��
��

���
���
��

���
���
�

�� ��

���� � ���� � ���� � � � ������

�� � � � ������
	����������
���
������

� �

�����
����
������

���� � �� �����
����
������

162 Stephan Günnemann

Overall, if the lower bound m̂LB stays positive, the robustness certificate holds —
since m̂ is positive by transitivity as well. This is shown in Figure 8.4 for graph G1.
If m̂LB is negative, no statement can be made since it is only a lower bound of the
original worst-case margin m̂, which thus can be positive or negative. Compare the
two graphs G2 and G3 in Figure 8.4: While both have a negative lower bound (i.e.,
both shaded regions cross the decision boundary), their actual worst-case margins m̂
differ. Only for graph G2 the actually reachable predictions (which are not efficiently
computable) also cross the decision boundary. Thus, if the lower bound is negative,
the actual robustness remains unknown – similar to an unsuccessful attack, where
it remains unclear whether the model is actually non-robust or the attack simply
not strong enough. Therefore, besides being efficient to compute, the function m̂LB
should be as close as possible to m̂ to avoid cases where no answer can be given
despite the model being robust.

The above idea, using convex relaxations of the model’s nonlinearities and the
admissible perturbations, is used in the works (Zügner and Günnemann, 2019;
Zügner and Günnemann, 2020) for the class of GCNs and node-level classification.
In (Zügner and Günnemann, 2019), the authors consider perturbations to the node
attributes and obtain lower bounds via a relaxation to a linear program. The work
(Zügner and Günnemann, 2020) considers perturbations in the form of edge dele-
tions and reduces the problem to a jointly constrained bilinear program. Similarly,
also using convex relaxations, Jin et al (2020a) has proposed certificates for graph-
level classification under edge perturbations using GCNs. Beyond GCNs, model-
specific certificates for edge perturbations have also been devised for the class of
GNNs using PageRank diffusion (Bojchevski and Günnemann, 2019), which in-
cludes label/feature propagation and (A)PPNP (Klicpera et al, 2019a). The core idea
of (Bojchevski and Günnemann, 2019) is to treat the problem as a PageRank opti-
mization task which subsequently can be expressed as a Markov decision process.
Using this connection one can indeed show that in scenarios where only local bud-
gets are used (see Section 8.2; Eq. equation 8.2) the derived certificates are exact,
i.e., no lower bound, while we can still compute them in polynomial time w.r.t. the
graph size. In general, all models above consider local and global budget constraints
on the number of changes.

Besides providing certificates, being able to efficiently compute (a differentiable
lower bound on) the worst-case margin as in Eq. equation 8.3 also enables to im-
prove GNN robustness by incorporating the margin during training, i.e. aiming to
make it positive for all nodes. We will discuss this in detail in Section 8.4.2.

Overall, a strong advantage of model-specific certificates is their explicit consid-
eration of the GNN model structure within the margin computation. However, the
white-box nature of these certificates is simultaneously their limitation: The pro-
posed certificates capture only a subset of the existing GNN models and any GNN
yet to be developed likely requires a new certification technique as well. This limi-
tation is tackled by model-agnostic certificates.

8 Graph Neural Networks: Adversarial Robustness 163

8.3.2 Model-Agnostic Certificates

Model-agnostic certificates treat the machine learning model as a black-box. For
example, the work (Bojchevski et al, 2020a) provides certificates for any classifier
operating on discrete data, including GNNs. Most importantly, it is sufficient to con-
sider only the output of the classifier for different samples to obtain the certificate.
This is precisely what makes it particularly appealing for certifying GNNs since it
allows us to sidestep a complex analysis of the message-passing dynamics and the
non-linear interactions between the nodes. So far, model-agnostic certificates are
mainly based on the idea of randomized smoothing (Lecuyer et al, 2019; Cohen
et al, 2019), originally proposed for continuous data. To handle graphs, extensions
to discrete data have been proposed.

The core idea is to base the certificate on a smoothed classifier, which aggregates
the output of the original (base) GNN when applied to randomly perturbed versions
of the input graph G . For example, the smoothed classifier might report the most
likely (majority) class on these randomized samples. While different variants of this
approach are possible, we provide one intuitive setting in the following to convey
the main idea.

Let f : G→ C denote a function (e.g., a GNN) that takes a graph G ∈G as input
and predicts a single class f (G) = c ∈ C as output, e.g. a node’s prediction. Let τ

be a smoothing distribution, also called randomization scheme, that adds random
noise to the input graph. For example, τ might randomly add Bernoulli noise to
the adjacency matrix of G , corresponding to randomly adding or deleting edges.
Technically, τ assigns probability mass/density Pr(τ(G) = Z) to each graph Z ∈
G. We can construct a smoothed (ensemble) classifier g from the base classifier f
as follows:

g(G) = argmax
c∈C

Pr(f (τ(G)) = c) (8.4)

In other words, g(G) returns the most likely class obtained by first randomly per-
turbing the graph G using τ and then classifying the resulting graphs τ(G) with the
base classifier f .

As in Section 8.3.1, the goal is to assess whether the prediction does not change
under perturbations: denoting with c∗ = g(G) the class predicted by the smoothed
classifier on G , we want g(Ĝ) = c∗ for all Ĝ ∈Φ(G). Considering for simplicity the
case of binary classification, this is equivalent to ensure that Pr(f (τ(Ĝ)) = c∗)≥ 0.5
for all Ĝ ∈Φ(G); or short: minĜ∈Φ(G) Pr(f (τ(Ĝ)) = c∗)≥ 0.5.

Since, unsurprisingly, the term is intractable to compute, we refer again to a lower
bound to obtain the certificate:

min
Ĝ∈Φ(G)

min
h∈H f

Pr(h(τ(Ĝ)) = c∗)≤ min
Ĝ∈Φ(G)

Pr(f (τ(Ĝ)) = c∗) (8.5)

Here, H f is the set of all classifiers sharing some properties with f , e.g., often
that the smoothed classifier based on h and f would return the same probability for
G , i.e., Pr(h(τ(G)) = c∗) = Pr(f (τ(G)) = c∗). Since f ∈H f , the inequality holds

164 Stephan Günnemann

trivially. Accordingly, if the left hand side of Eq. equation 8.5 is larger than 0.5,
also the right hand side is guaranteed to be so, implying that G would be certifiably
robust.

What does Eq. equation 8.5 intuitively mean? It aims to find a base classifier h
which minimizes the probability that the perturbed sample Ĝ is assigned to class c∗.
Thus, h represents a kind of worst-case base classifier which, when used within the
smoothed classifier, tries to obtain a different prediction for Ĝ . If even this worst-
case base classifier leads to certifiable robustness (left hand side of Eq. equation 8.5
larger than 0.5), then surely the actual base classifier at hand has well.

The most important part to make this all useful, however, is the following: given
a set of classifiers H f , finding the worst-case classifier h and minimizing over the
perturbation model Φ(G) is often tractable. In some cases, the optima can even
be calculated in closed-form. This shows some interesting relation to the previous
section: There, the intractable minimization over Φ(G) in Eq. equation 8.3 was re-
placed by some tractable lower bound, e.g., via relaxations. Now, by finding a worst-
case classifier h we not only obtain a lower bound but minimization over Φ(G)
becomes often also immediately tractable. Note, however, that in Section 8.3.1 we
obtain a certificate for the base classifier f , while here we obtain a certificate for the
smoothed classifier g.

Putting Model-Agnostic Certificates into Practice

As said, given a set of classifiers H f , finding the worst-case classifier h and min-
imizing over the perturbation model Φ(G) is often tractable. The main compu-
tational challenge in practice lies in determining H f . Let’s consider our previ-
ous example where we enforced all classifiers h to ensure Pr(h(τ(G)) = c∗) =
Pr(f (τ(G)) = c∗). To determine H f , one needs to compute Pr(f (τ(G)) = c∗).
Clearly, doing this exactly is again usually intractable. Instead, the probability can
be estimated using sampling. To ensure a tight approximation, the base classifier has
to be fed a large number of samples from the smoothing distribution. This becomes
increasingly expensive as the size and complexity of the GNN model increases.
Furthermore, the resulting estimates only hold with a certain probability. Accord-
ingly, also the derived guarantees have the same probability, i.e., one obtains only
probabilistic robustness certificates. Despite these practical limitations, randomized
smoothing has become widely popular, as it is often still more efficient than model-
specific certificates.

This general idea of model-agnostic certificates has been investigated for discrete
data in (Lee et al, 2019a; Dvijotham et al, 2020; Bojchevski et al, 2020a; Jia et al,
2020), with the latter two focusing also on graph-related tasks. In (Jia et al, 2020),
the authors investigate the robustness of community detection. In (Bojchevski et al,
2020a), the main focus is on node-level and graph-level classification w.r.t. graph
structure and/or attribute perturbations under global budget constraints. Specifically,
Bojchevski et al (2020a) overcomes critical limitations of the other approaches in
two regards: it explicitly accounts for sparsity in the data as present in many graphs,

8 Graph Neural Networks: Adversarial Robustness 165

and it obtains strong certificates with a dramatically reduced computational com-
plexity. Both aspects are core to making certification useful and possible for graph
data. Since the approach of (Bojchevski et al, 2020a) is agnostic to the underly-
ing classifier – it can be used as long as the input is discrete – it has been applied
to various GNNs including GCN, GAT, (A)PPNP (Klicpera et al, 2019a), RGCN
(Zhu et al, 2019a), and Soft Medoid (Geisler et al, 2020) as well as node-level and
graph-level classification.

8.3.3 Advanced Certification and Discussion

Research on robustness certificates for GNNs is still in a very early stage. As we
have seen in Section 8.2, the space of attacks is vast with different properties to
study and perturbation models to consider. The methods discussed above cover only
a few of these scenarios.

One step forward to more powerful certificates is the work of (Schuchardt et al,
2021). Like in local attacks to individual nodes, existing robustness certificates aim
to certify each prediction independently. Thus, they assume that an adversary can
use different perturbed inputs to attack different predictions. Alternatively, and sim-
ilar to a global attack, the work (Schuchardt et al, 2021) introduces collective ro-
bustness certificates which compute the number of predictions which are simultane-
ously guaranteed to remain stable under perturbation. That is, it exploits the fact that
a GNN simultaneously outputs multiple predictions based on a single shared input.
Given a fixed perturbation budget, using this idea, the number of certifiable predic-
tions can be increased by orders of magnitudes compared to certifying each pre-
diction independently. The work, however, can not handle perturbation models with
edge additions. As mentioned before, both views – local and global – are reasonable
and it depends on the application which robustness guarantee is more relevant.

To cover the full spectrum of GNN applications, surely further certificates for
other scenarios and tasks are required. Specifically, so far, all certificates assume an
evasion attack scenario. It is also worth repeating that in the randomized smoothing
approaches discussed above, we are actually certifying the smoothed (ensemble)
classifier, and not the underlying base classifier. From a practitioner’s point of view
this means that obtaining a single prediction always requires to feed a large amount
of samples through the GNN, leading to a scalability bottleneck which needs to be
tackled in the future.

8.4 Improving Robustness of Graph Neural Networks

As we have established, standard GNNs trained in the usual way are not robust to
even small changes to the graph, thus, using them in sensitive and critical applica-
tions might be risky. Certificates can provide us guarantees about their performance.

166 Stephan Günnemann

However, as a consequence of the non-robustness, the certificates rarely hold for
standard models, i.e., only few predictions can be certified. To tackle this limita-
tion, methods aiming to improve robustness have been investigated, i.e. making the
models less susceptible to perturbations.5 In this regard, three broad, not mutually
exclusive, categories can be identified.

8.4.1 Improving the Graph

One seemingly clear direction to improve robustness is to remove perturbations from
the data, i.e., to revert the performed malicious changes and obtain a more ‘clean’
graph. While this may sound simple, the inherent challenge is that adversarial per-
turbations are usually designed to be imperceptible, which makes their identification
difficult. Still, as seen in Section 8.2.2.1, some patterns might be present.

Works such as (Zhang et al, 2019b) exploit this idea to perform a ‘cleaning’ of
the graph before it is used as input to the GNN, relying on observations that, for
example, the predicted class distribution changes for attacked nodes. Similarly, for
attributed graphs, Wu et al (2019b) removes potential adversarial edges based on
the Jaccard similary between the nodes’ attributes. Such pre-processing steps are
not limited to be ‘attack detection’ approaches that try to spot individual suspicious
nodes are edges; they can also be thought of as a kind of denoising. Indeed, the
work (Entezari et al, 2020) analyzed that perturbations performed by Nettack affect
mainly the high-rank (low-valued) singular components of the graph’s adjacency
matrix. Thus, to improve robustness they compute a low-rank approximation of the
graph which aims to remove the (adversarial) noise in a pre-processing procedure.
The limitation is that the resulting graph becomes dense. Overall, such graph clean-
ing can be used in poisoning as well as evasion scenarios. Note, though, that an
approach that has shown to perform well in one scenario, does not imply the suc-
cess in another.

More generally, while these approaches have shown to be effective in specific
scenarios, one has to be aware of one crucial limitation: the exploited patterns are
often based on specific attacks like Nettack. Thus, the resulting detections might be
limited to certain perturbations and potentially do not generalize to other scenarios.

Improving the graph is not restricted to happen before the training or the infer-
ence step, i.e. we do not need to follow a sequential approach of first cleaning and
then learning a prediction model. Instead, the cleaning can be interwoven with the
learning approach itself. Intuitively speaking, in order to minimize the correspond-
ing training loss, one jointly learns the GNN parameters and also how to clean the
graph itself. The benefit of this joint learning approach is that the specific model and
task at hand can be taken into account, while the conditions enforced on the clean
graph can be rather weak, e.g., only requiring that perturbations should be sparse.

5 In some works, such approaches are called (heuristic) defenses to highlight their increased re-
silience to attacks. Similarly, some works use the term provable defense when referring to certifi-
cates since they provably prevent attacks to be harmful that are within a certified set Φ(G).

8 Graph Neural Networks: Adversarial Robustness 167

Fig. 8.5 Illustration of ro-
bust training: The classifier
corresponding to the orange/-
solid decision boundary is
not robust to perturbations in
Φ1(G): some graphs cross
the boundary and, thus, are
assigned a different class. The
classifier obtained through
robust training (blue/dashed),
assigns the same class to all
graphs in Φ1(G): it is robust
w.r.t. Φ1(G) – but not Φ2(G).

Decision boundary
via default training
Not robust w.r.t. Φ! 𝒢

Decision boundary
via robust training
Robust w.r.t. Φ! 𝒢

Φ! 𝒢
Φ" 𝒢

𝒢

Interestingly, even before the rise of graph neural networks, such joint approaches
have been investigated, e.g., in (Bojchevski et al, 2017) to improve the robustness of
spectral embeddings. For GNNs, such graph structure learning has been proposed in
(Jin et al, 2020e; Luo et al, 2021) where certain properties like low-rank graph struc-
ture and attribute similarity are used to define how the clean graph should preferably
look like.

8.4.2 Improving the Training Procedure

As discussed in Section 8.2.2, one further reason for the non-robustness of GNNs
are the parameters/weights learned during training. Weights resulting from standard
training often lead to models that do not generalize well to slightly perturbed data.
This is illustrated in Figure 8.5 with the orange/solid decision boundary. Note that
the figure shows the input space, i.e., the space of all graphs G; this is in contrast to
Figure 8.4 which shows the predicted probabilities. If we were able to improve our
training procedure to find ‘better’ parameters – taking into account that the data is or
might become potentially perturbed – the robustness of our model would improve
as well. This is illustrated in Figure 8.5 with the blue/dashed decision boundary.
There, all perturbed graphs from Φ1(G) get the same prediction. As seen, in this
regard robustness links to the generalization performance of prediction models in
general.

8.4.2.1 Robust Training

Robust training refers to training procedures that aim at producing models that are
robust to adversarial (and/or other) perturbations. The common theme is to optimize
a worst-case loss (also called robust loss), i.e. the loss achieved under the worst-case
perturbation. Technically, the training objective becomes:

168 Stephan Günnemann

θ
∗ = argmin

θ
max

Ĝ∈Φ(G)
Ltrain(fθ (Ĝ)) (8.6)

where fθ is the GNN with its trainable weights. As shown, we do not evaluate the
loss at the unperturbed graph but instead use the loss achieved in the worst case
(compare this to the standard training where we simply minimize Ltrain(fθ (G))).
The weights are steered to obtain low loss under these worst scenarios as well, thus
obtaining better generalization.

Not surprisingly, solving Eq. equation 8.6 is usually not tractable for the same
reasons as finding attacks and certificates is hard: we have to solve a discrete, highly
complex (minmax) optimization problem. In particular, for training, e.g., via gradi-
ent based approaches, we also need to compute the gradient w.r.t. the inner maxi-
mization. Thus, for feasibility, one usually has to refer to various surrogate objec-
tives, substituting the worst-case loss and the resulting gradient by simpler ones.

Data Augmentation during Training

In this regard, the most naı̈ve approach is to randomly draw samples from the pertur-
bation set Φ(G) during each training iteration. That is, during training the loss and
the gradient are computed w.r.t. these randomly perturbed samples; with different
samples drawn in each training iteration. If the perturbation set, for example, con-
tains graphs where up to x edge deletions are admissible, we would randomly create
graphs with up to x edges dropped out. Such edge dropout has been analyzed in
various works but does not improve adversarial robustness substantially (Dai et al,
2018a; Zügner and Günnemann, 2020); a possible explanation is that the random
samples simply do not represent the worst-case perturbations well.

Thus, more common is the approach of adversarial training (Xu et al, 2019c;
Feng et al, 2019a; Chen et al, 2020i). Here, we do not randomly sample from the
perturbation set, but in each training iteration we create adversarial examples Ĝ and
subsequently compute the gradient w.r.t. these. As these samples are expected to
lead to a higher loss, the result of the inner max-operation in Eq. equation 8.6 is
much better approximated. Instead of perturbing the input graph, the work (Jin and
Zhang, 2019) has investigated a robust training scheme which perturbs the latent
embeddings.

It is interesting to note that adversarial training in its standard form requires la-
beled data since the attack aims to steer towards an incorrect prediction. In the typi-
cal transductive graph-learning tasks, however, large amounts of unlabeled data are
available. As a solution, virtual adversarial training has also been investigated (Deng
et al, 2019; Sun et al, 2020d), operating on the unlabeled data as well. Intuitively,
it treats the currently obtained predictions on the unperturbed graph as the ground
truth, making it a kind of self-supervised learning. The predictions on the perturbed
data should not deviate from the clean predictions, thus enforcing smoothness.

Using (virtual) adversarial training has empirically shown some improvements
in robustness, but not consistently. In particular, to well approximate the max term
in the robust loss of Eq. equation 8.6, we need powerful adversarial attacks, which

8 Graph Neural Networks: Adversarial Robustness 169

are typically costly to compute for graphs (see Section 8.2). Since here attacks need
to be computed in every training iteration, the training process is slowed down sub-
stantially.

Beyond Data Augmentation - Certificate-Based Loss Functions

At the end of the day, the techniques above perform a costly data augmentation dur-
ing training, i.e., they use altered versions of the graph. Besides being computation-
ally expensive, there is no guarantee that the adversarial examples are indeed good
proxies for the max term in Eq. equation 8.6. An alternative approach, e.g., followed
by (Zügner and Günnemann, 2019; Bojchevski and Günnemann, 2019) relies on the
idea of certification as discussed previously. Recall that these techniques compute a
lower bound m̂LB on the worst-case margin. If it is positive, the prediction is robust
for this node/graph. Thus, the lower bound itself acts like a robustness loss Lrob, for
example instantiated as a hinge loss: max(0,δ − m̂LB). If the lower-bound is above
δ , then the loss is zero; if it is smaller, a penalty occurs. Combining this loss func-
tion with, e.g., the usual cross-entropy loss, forces the model not only to obtain good
classification performance but also robustness.

Crucially, Lrob and, thus, the lower bound need to be differentiable since we need
to compute gradients for training. This, indeed, might be challenging since usually
the lower bound itself is still an optimization problem. While in some special cases
the optimization problem is directly differentiable (Bojchevski and Günnemann,
2019), another general idea is to relate to the principle of duality. Recall that the
worst-case margin m̂ (or a potential corresponding lower bound m̂LB) is the result of
a (primal) minimization problem (see Eq. equation 8.3). Based on the principle of
duality, the result of the dual maximization problem provides, as required, a lower
bound to this value. Even more, any feasible solution of the dual problem provides
a lower bound on the optimal solution. Thus, we actually do not need to solve the
dual program. Instead, it is sufficient to compute the objective function of the dual at
any single feasible point to obtain an (even lower, thus looser) lower bound; no op-
timization is required and computing gradients often becomes straightforward. This
principle of duality has been used in (Zügner and Günnemann, 2019) to perform
robust training in an efficient way.

8.4.2.2 Further Training Principles

Robust training is not the only way to obtain ‘better’ GNN weights. In (Tang
et al, 2020b), for example, the idea of transfer learning (besides further architecture
changes; see next section) is exploited. Instead of purely training on a perturbed
target graph, the method adopts clean graphs with artificially injected perturbations
to first learn suitable GNN weights. These weights are later transferred and fine-
tuned to the actual graph at hand. The work (Chen et al, 2020i) exploits smoothing
distillation where one trains on predicted soft labels instead of ground-truth labels

170 Stephan Günnemann

to enhance robustness. The work (Jin et al, 2019b) argues that graph powering en-
hances robustness and proposes to minimize the loss not only on the original graph
but on a set of graphs consisting of the different graph powers. Lastly, the authors
of (You et al, 2021) use a contrastive learning framework using different (graph)
data augmentations. Albeit adversarial robustness is not their focus, they report in-
creased adversarial robustness against the attacks of (Dai et al, 2018a). In general,
changing the loss function or regularization terms leads to different training, though
the effects on robustness for GNNs are not fully understood yet.

8.4.3 Improving the Graph Neural Networks’ Architecture

The final category of methods improving robustness is concerned with designing
novel GNN architectures itself. Architecture engineering is one core component of
neural network research in general, with many advancements in the last years. While
traditionally focusing on improving prediction performance, a likewise important
property becomes the methods’ robustness – both being potentially opposing goals.

8.4.3.1 Adaptively Down-Weighting Edges

Inspired by the idea of graph cleaning as discussed before, a natural idea is to en-
hance the GNN by mechanisms to reduce the impact of perturbed edges. An obvious
choice for this are edge attention principles. However, it is a false conclusion to as-
sume that standard attention-based GNNs like GAT are immediately suitable for
this task. Indeed, as shown in (Tang et al, 2020b; Zhu et al, 2019a) such models are
non-robust. The problem is that these models still assume clean data to be given;
they are not aware that the graph might be perturbed.

Thus, other attention approaches try to incorporate more information in the pro-
cess. In (Tang et al, 2020b) the attention mechanism is enhanced by taking clean
graphs into account for which perturbations have been artificially injected. Since
now ground truth information is available (i.e., which edges are harmful), the atten-
tion can try to learn down-weighing these while retaining the non-perturbed ones.
An alternative idea is used in (Zhu et al, 2019a). Here, the representations of each
node in each layer are no longer represented as vectors but as Gaussian distribution.
They hypothesize that attacked nodes tend to have large variances, thus using this
information within the attention scores. Further attention mechanism considering,
e.g., the model and data uncertainty or the neighboring nodes’ similarity have been
proposed in (Feng et al, 2021; Zhang and Zitnik, 2020).

An alternative to edge attention is to enhance the aggregation used in message
passing. In a GNN message passing step, a node’s embedding is updated by aggre-
gating over its neighbors’ embeddings. In this regard, adversarially inserted edges
add additional data points to the aggregation and therefore perturb the output of the
message passing step. Aggregation functions such as sum, weighted mean, or the

8 Graph Neural Networks: Adversarial Robustness 171

max operation used in standard GNNs can be arbitrarily distorted by only a single
outlier. Thus, inspired by the principle of robust statistics, the work (Geisler et al,
2020) proposes to replace the usual GNN’s aggregation function with a differen-
tiable version of the Medoid, a provably robust aggregation operation. The idea of
enhancing the robustness of the aggregation function used during message passing
has further been investigated in (Wang et al, 2020o; Zhang and Lu, 2020).

Overall, all these methods down-weight the relevance of edges, with one cru-
cial difference to the methods discussed in Section 8.4.1: they are adaptive in the
sense that the relevance of each edge might vary between, e.g., the different lay-
ers of the GNN. Thus, an edge might be excluded/down-weighted in the first layer
but included in the second one, depending on the learned intermediate represen-
tation. This allows a more fine-grained handling of perturbations. In contrast, the
approaches in Section 8.4.1 derive a single cleaned graph that is used in the entire
GNN.

8.4.3.2 Further Approaches

Many further ideas to improve robustness have been proposed, which do not all en-
tirely fit into the before mentioned categories. For example, in (Shanthamallu et al,
2021) a surrogate classifier is trained which does not access the graph structure but
is aimed to be aligned with the predictions of the GNN, both being jointly trained.
Since the final predictor is not using the graph but only the node’s attributes, higher
robustness to structure perturbations is hypothesized. The work (Miller et al, 2019)
proposes to select the training data in specific ways to increase robustness, and Wu
et al (2020d) uses the principle of information bottleneck, an information theoretic
approach to learn representations balancing expressiveness and robustness. Finally,
also randomized smoothing (Section 8.3.2) can be interpreted as a technique to im-
prove adversarial robustness by using an ensemble of predictors on randomized in-
puts.

8.4.4 Discussion and Future Directions

Considering the current state of research, a surprising observation is that robustness
to graph structure perturbations is not well achieved via adversarial training. This
is in stark contrast to, e.g., the image domain where robust training (in the form
of adversarial training) can be considered one of the highly suitable techniques to
improves robustness (Tramer et al, 2020). Focusing on perturbations of the node at-
tributes, in contrast, robust training indeed performs very well as shown in (Zügner
and Günnemann, 2019). Surprisingly, such robust training (targeting attributes) also
improves robustness under graph structure perturbations (Zügner and Günnemann,
2020) – and, even more, outperforms several adversarial training strategies perform-
ing edge dropout. The question remains if structure perturbations have special prop-

172 Stephan Günnemann

erty that diminishes the effect of robust training or whether the generated adversarial
perturbations are not capturing the worst-case; showcasing again the hardness of the
problem. This might also explain why the majority of works have focused on prin-
ciples of weighting/filtering out edges.

In this regard, it is again important to remember that all approaches are typi-
cally designed with a specific perturbation model Φ(G) in mind. Indeed, down-
weighting/filtering edges implicitly assumes that adversarial edges had been added
to the graph. Adversarial edge deletions, in contrast, would require to identify po-
tential edges to (re)add. This quickly becomes intractable due to the large number of
possible edges and has not been investigated so far. Moreover, only a few methods
so far have provided theoretical guarantees on the methods’ robustness behavior.

8.5 Proper Evaluation in the View of Robustness

Progress in the field of GNN robustness requires sound evaluation of the proposed
techniques. Importantly, we have to be aware of the potential trade-off between
prediction performance (e.g., accuracy) and robustness. For example, we can easily
obtain a highly robust classification model by simply always predicting the same
class. Clearly, such a model has no use at all. Thus, the evaluation always involves
two aspects: (1) Evaluation of the prediction performance. For this, one can simply
refer to the established evaluation metrics such as accuracy, precision, recall, or
similar, as known for the various supervised and unsupervised learning tasks. (2)
Evaluation of the robustness performance.

Perturbation set and radius. Regarding the latter, the first noteworthy point is that
robustness always links to a specific perturbation set Φ(.) that defines the perturba-
tions the model should be robust to. To enable a proper evaluation, existing works
therefore usually define some parametric form of the perturbation set, e.g., denoted
Φr(G) where r is the maximal number of changes – the budget – we are allowed to
perform (e.g., maximal number of edges to add). The variable r is often referred to
as the radius. This is because the budget usually coincides with a certain maximal
norm/distance we are willing to accept between graph G and perturbed ones. A gen-
eralization of the above form to consider multiple budgets/radii is straightforward.
Varying the radius enables us to analyze the robustness behavior of the models in de-
tail. Depending on the radius, different robustness results are expected. Specifically,
for a large radius low robustness is expected – or even desired – and accordingly,
the evaluation should also include these cases showing the limits of the models.

Recall that using the methods discussed in Section 8.2 and Section 8.3 together,
we are able to obtain one of the following answers about a prediction’s robustness:
(R) It is robust; the certificate holds since, e.g., the lower bound on the margin
is positive. (NR) It is non-robust; we are able to find an adversarial example. (U)
Unknown; no statement possible since, e.g., the lower bound is negative but the
attack was not successful either.

8 Graph Neural Networks: Adversarial Robustness 173

Figure 8.6 shows such an example analysis providing insights about the robust-
ness properties of a GCN in detail. Here, local attacks and certificates are computed
on standard (left) and robustly (right) trained GCNs for the task of node classifica-
tion. As the result shows, robust training indeed increases the robustness of a GCN
with fewer attacks being successful and more nodes being certifiable.

0 10 20 30

0

50

100

%
 N

o
d
es

Robust (R)

Non-robust (NR)

Unknown (U)

Radius (Allowed Perturbations)
0 10 20 30

0

50

100

%
 N

o
d
es

Robust (R)

Non-robust(NR)

Unknown (U)

Radius (Allowed Perturbations)

Fig. 8.6: Share of nodes which are provably robust (blue; R), non-robust via ad-
versarial example construction (orange; NR), or whose robustness is unknown
(“gap”; U), for increasing perturbation radii. For a given radius, the shares of
(R)+(NR)+(U)= 100%. Left: Standard training; Right: robust training as pro-
posed in (Zügner and Günnemann, 2019). Citeseer data and perturbations of node
attributes.

It is worth highlighting that case (U) – the white gap in Figure 8.6 – occurs
only due to the algorithmic inability to solve the attack/certificate problems exactly.
Thus, case (U) does not give a clear indication about the GNN’s robustness but rather
about the performance of the attack/certificate.6 Given this set-up, in the following
we distinguish between two evaluation directions, which are reflected in frequently
used measures.

Empirical Robustness Evaluation

In an empirical robustness evaluation, we perform an attack on the graph and ob-
serve the effects. Common measures are:

• The drop in performance of the downstream task (e.g., node classification ac-
curacy), monitoring its decrease after the attack. This metric is typically used in
combination with global attacks where a single perturbation is considered that
aims to jointly change multiple predictions (see Section 8.2.1, Aspect 1).

6 A large gap indicates that the attacks/certificates are rather loose. The gap might become smaller
when improved attacks/certificates become available. Thus, attacks/certificates itself can be eval-
uated by analyzing the size of the gap since it shows what the maximal possible improvement
in either direction is (e.g., the true share of robust predictions can never exceed 100%-NR for a
specific radius).

174 Stephan Günnemann

• The attack success rate, measuring how many predictions were successfully
changed by the attack(s). This simply corresponds to the case (NR), the orange
region shown in Fig 8.6. This metric is typically used in combination with local
attacks where for each prediction a different perturbation can be used. Naturally,
the local attacks’ success rate is higher than the overall performance drop due
to the flexibility in picking different perturbations.

• In the case of classification, the classification margin, i.e., the difference be-
tween the predicted probability of the ‘true’ class minus the second-highest
class, and its drop after the attack. See again Figure 8.2 for an example.

The crucial limitation of this evaluation is its dependence on a specific attack
approach. The power of the attack strongly affects the result. Indeed, it can be re-
garded as an optimistic evaluation of robustness since a non-successful attack is
treated as seemingly robust. However, the conclusion is dangerous since a GNN
might only perform well for one type of attack but not another. Thus, the above
metrics rather evaluate the power of the attack but only weakly the robustness of the
model. Interpreting the results has to be done with care. Consequently, when refer-
ring to empirical robustness evaluation, it is imperative to use multiple different and
powerful attack approaches. Indeed, as also discussed in (Tramer et al, 2020), each
robustification principle should come with its own specifically suited attack method
(also called adaptive attack) to showcase its limitations.

Provable Robustness Evaluation

A potentially more suitable direction to analyze the robustness behavior of GNNs
is to consider provable robustness. As discussed above, case (U) corresponds to un-
clear predictions for which no robustness statement can be given. Since we care
about worst-case robustness, we have to assume that these predictions are non-
robust as well. In short: (NR) and (U) should be rare, while case (R) should dom-
inate: the number of certifiably robust predictions. Given this idea, the following
evaluation metrics are often considered:

• Certified ratio: It corresponds to the number of predictions that can be certified
as robust given a specific radius r in relation to the number of all predictions.
Again take note whether for each prediction a different perturbation can be cho-
sen from Φr(G) (local) or only a joint single one (global). Clearly, the global
certified ratio is necessarily (and often significantly) larger than the local one.

• Certified correctness: In cases like classification, a prediction can be correct or
incorrect. If it is correct and can be certified as well, the prediction is called
certified correct. The other, highly undesired, extreme are predictions that are
certified incorrect; they are very reliably misclassified.

• Certified performance: Based on the idea of certified correct predictions we can
also derive a certified version of the original performance metrics, e.g., certified
accuracy. Here, only those predictions are treated as correct for the metric if they
are ‘certified correct’. All other predictions, either incorrect or non-certifiable

8 Graph Neural Networks: Adversarial Robustness 175

are treated as wrong. The certified performance gives a provable lower bound
on the performance of the GNN under any admissible perturbation w.r.t. the
current perturbation set Φr(G) and the given data.

• Certified radius: While the above metrics assume a fixed Φr(G), i.e., a fixed
radius r, we can also take another view. For a specific prediction, the largest
radius r∗ for which the prediction can still be certified as robust is called its
certified radius. Given the certified radius of a single prediction, one can easily
calculate the average certifiable radius over multiple predictions.

Fig. 8.7 Certified ratio of
the smoothed classifier ob-
tained from different GNN
models using the certificate
of (Bojchevski et al, 2020a)
where Φr(G) consists of edge
deletion perturbations. The
model-agnostic nature of the
certificate allows to compare
the robustness across models.

0 2 4 6 8

Delete radius rd

0.0

0.2

0.4

0.6

0.8

1.0

C
er
ti
fie
d
ra
ti
o

GCN
GAT
APPNP
Soft
Medoid
GDC

Figure 8.7 shows the certified ratio for different GNN architectures for the task
of node-classification when perturbing the graph structure. The smoothed classifier
uses 10,000 randomly drawn graphs and the probabilistic certification is based on a
confidence level of α = 0.05 analogously to the set-up in (Geisler et al, 2020). Since
local attacks are considered, the certified ratio is naturally rather low. Still, as shown,
there is a significant difference between the models’ robustness performance.

Provable robustness evaluation provides strong guarantees in the sense that the
evaluation is more pessimistic. E.g. if the certified ratio is high, we know that the
actual GNN can only be better. Note again, however, that we still also implicitly
evaluate the certificate; with new certificates the result might become even better.
Also recall that certificates based on randomized smoothing (Section 8.3.2), eval-
uate the robustness of the smoothed classifier, thus, not providing guarantees for
the base classifier itself. Still, a robust prediction of the smoothed classifier entails
that the base classifier predicts the respective class with a high probability w.r.t. the
randomization scheme.

As it becomes apparent, evaluating robustness is more complex than evaluating
usual prediction performance. To achieve a detailed understanding of the robustness
properties of GNNs it is thus helpful to analyze all aspects introduced above.

8.6 Summary

Along with the increasing relevance of graph neural networks in various application
domains, comes also an increasing demand to ensure their reliability. In this regard,

176 Stephan Günnemann

adversarial robustness plays a central role since perturbed data is omnipresent. As
we have seen, standard GNN architectures and training principles – as predomi-
nantly used in today’s applications – lead to non-robust models, with all the un-
desired consequences included. However, there is hope: First, various principles to
improve robustness of GNNs have started to emerge. The obtained results are al-
ready promising giving a first indication that improved robustness can be achieved
without giving up too much of the GNNs’ prediction performance. Second, robust-
ness certificates provide us ways to even assess certain robustness properties in a
formal way. That is, one does not need to rely on heuristics but instead obtains guar-
antees of the GNN’s behavior. In all these directions, one has just started to explore
the vast possibilities and many challenges still need to be tackled. Thus, in the up-
coming years, various further insights can be expected, pursuing one common goal:
to continue the success story of graph neural networks by enabling their reliable use
in even sensitive and safety-critical domains.

Acknowledgements

A special thanks to my amazing PhD students Aleksandar Bojchevski, Simon
Geisler, Jan Schuchardt, and Daniel Zügner who not only provided valuable feed-
back to this article but also made many of the research results in this field possible.

Editor’s Notes: Adversarial Robustness is one of the hottest topics in Ma-
chine Learning/Deep Learning today. This wave of research starts from the
robustness of Convolutional Neural Networks in computer vision domain
and has rapidly influenced other ML/DL network architectures in other ap-
plications domains like NLP and Graphs. Adversarial robustness of Graph
Neural Networks is a very important research area, which has a fundamen-
tal impact on many other learning tasks, including graph classification task
(Chapter 9), link prediction (Chapter 10), graph generation-related tasks
(Chapter 11 and Chapter 12), graph matching networks (Chapter 13), and
so on. Some chapters (like Chapter 14) can be treated one of potential ways
to help alleviate the effect of adversarial robustness by learning a graph
structure beyond its intrinsic graph structure.

Part III
Frontiers of Graph Neural Networks

Chapter 9
Graph Neural Networks: Graph Classification

Christopher Morris

Abstract Recently, graph neural networks emerged as the leading machine learn-
ing architecture for supervised learning with graph and relational input. This chapter
gives an overview of GNNs for graph classification, i.e., GNNs that learn a graph-
level output. Since GNNs compute node-level representations, pooling layers, i.e.,
layers that learn graph-level representations from node-level representations, are
crucial components for successful graph classification. Hence, we give a thorough
overview of pooling layers. Further, we overview recent research in understand-
ing GNN’s limitations for graph classification and progress in overcoming them.
Finally, we survey some graph classification applications of GNNs and overview
benchmark datasets for empirical evaluation.

9.1 Introduction

Graph-structured data is ubiquitous across application domains ranging from chemo-
and bioinformatics (Barabasi and Oltvai, 2004; Stokes et al, 2020) to image (Si-
monovsky and Komodakis, 2017) and social network analysis (Easley et al, 2012).
To develop successful (supervised) machine learning models in these domains, we
need techniques to exploit the graph structure’s rich information and the feature in-
formation within nodes and edges. In recent years, numerous approaches have been
proposed for (supervised) machine learning with graphs—most notably, approaches
based on graph kernels (Kriege et al, 2020) and, more recently, using graph neural
networks (GNNs), see (Chami et al, 2020; Wu et al, 2021d) for a general overview.
Graph kernels work by predefining a fixed set of features, following a two-step
feature extraction and learning task approach. They first compute a vectorial repre-
sentation of the graph based on predefined features, e.g., small subgraphs, random

Christopher Morris
CERC in Data Science for Real-Time Decision-Making, Polytechnique Montréal, e-mail: chris@
christophermorris.info

179
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_9

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:chris@christophermorris.info
mailto:chris@christophermorris.info
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_9&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_9

180 Christopher Morris

walks, neighborhood information, or a positive semi-definite kernel matrix reflect-
ing pairwise graph similarities. The resulting features or the kernel matrix are then
plugged into a learning algorithm such as a Support Vector Machine. Hence, they
rely on human-made feature engineering.

GNNs promise that they possibly offer better adaption to the learning task at
hand by learning feature extraction and downstream tasks in an end-to-end fashion.
One of the most prominent tasks for GNNs is graph classification or regression, i.e.,
predicting the class labels or target values of a set of graphs, such as properties of
chemical molecules (Wu et al, 2018). Since GNNs learn vectorial representations of
nodes, or node-level representations, for successful graph classification, the pool-
ing layer, i.e., a layer that learns a graph-level from node-level representations, is
crucial. This pooling layer aims to learn, based on the node-level representations,
a vectorial representation that captures the graph structure as a whole. Ideally, one
wants a graph-level representation that captures local patterns, their interaction, and
global patterns. However, the optimal representation should adapt to the given data
distribution. What is more, GNNs for graph classification have recently successfully
been applied to an extensive range of application areas, the most promising being
in pharmaceutical drug research; see (Gaudelet et al, 2020) for a survey. Other im-
portant application areas include fields such as material science (Xie and Grossman,
201f8), process engineering (Schweidtmann et al, 2020), and combinatorial opti-
mization (Cappart et al, 2021), some of which we also survey here.

In the following, we give an overview of GNNs for graph classification. Starting
from the mid-nineties’ classic works, we survey modern works from the current
deep learning era, followed by an in-depth review of recent pooling layers.

Before GNNs emerged as the leading architecture for graph classification, re-
search focused on kernel-based algorithms, so-called graph kernels, which work by
predefining a set of features. Starting from the early 2000s, researchers proposed
a plethora of graph kernels, based on graph features such as shortest-paths (Borg-
wardt et al, 2005), random walks (Kang et al, 2012; Sugiyama and Borgwardt, 2015;
Zhang et al, 2018i), local neighborhood information (Shervashidze et al, 2011a;
Costa and De Grave, 2010; Morris et al, 2017, 2020b), and matchings (Fröhlich
et al, 2005; Woźnica et al, 2010; Kriege and Mutzel, 2012; Johansson and Dub-
hashi, 2015; Kriege et al, 2016; Nikolentzos et al, 2017); see (Kriege et al, 2020;
Borgwardt et al, 2020) for thorough surveys. For a thorough survey on GNNs, e.g.,
see (Hamilton et al, 2017b; Wu et al, 2021d; Chami et al, 2020).

9.2 Graph neural networks for graph classification: Classic
works and modern architectures

In the following, we survey classic and modern works of GNNs for graph classifi-
cation. GNNs layers for graph classification date back to at least the mid-nineties
in chemoinformatics. For example, Kireev (1995) derived GNN-like neural ar-
chitectures to predict chemical molecule properties. The work of (Merkwirth and

9 Graph Neural Networks: Graph Classification 181

Lengauer, 2005) had a similar aim. Gori et al (2005); Scarselli et al (2008) proposed
the original GNN architecture, introducing the general formulation that was later
reintroduced and refined in (Gilmer et al, 2017) by deriving the general message-
passing formulation, most modern GNN architectures can be expressed in, see Sec-
tion 9.2.1.

We divide our overview of modern GNN layers for graph classification into spa-
tial approaches, i.e., ones that are purely based on the graph structure by aggre-
gating local information around each node, and spectral approaches, i.e., ones that
rely on extracting information from the graph’s spectrum. Although this division is
somewhat arbitrary, we stick to it due to historical reasons. Due to the large body of
different GNN layers, we cannot offer a complete survey but focus on representative
and influential works.

9.2.1 Spatial approaches

One of the earliest modern, spatial GNN architectures for graph classification was
presented in (Duvenaud et al, 2015b), focusing on the prediction of chemical
molecules’ properties. Specifically, the authors propose to design a differentiable
variant of the well-known Extended Connectivity Fingerprint (ECFP) (Rogers and
Hahn, 2010) from chemoinformatics, which works similar to the computation of the
WL feature vector. For the computation of their GNN layer, denoted Neural Graph
Fingerprints, Duvenaud et al (2015b) first initialize the feature vector f0(v) of each
node v with features of the corresponding atom, e.g., a one hot-encoding represent-
ing the atom type. In each iteration or layer t, they compute a feature representation
f t(v) for node v as

f t(v) = f t−1(v)+ ∑
w∈N(v)

f t−1(w),

followed by the application of a one-layer perceptron. Here, N(v) denotes the neigh-
borhood of node v, i.e., N(v) = {w ∈ V | (v,w) ∈ E }. Since the ECFP usually com-
putes sparse feature vectors for small molecules, they apply a linear layer followed
by a softmax function, i.e.,

f t(v) = softmax(f t(v) ·Ht),

which they interpret as a sparsification layer, where Ht is the parameter matrix of
the linear layer. The final pooled graph-level representation is computed by sum-
ming over all layers’ features, and the resulting feature is fed into an MLP for the
downstream regression and classification. The above GNN layer is compared to the
ECFP on molecular regression datasets showing good performance.

Dai et al (2016) introducted a simple GNN layer inspired by mean-field infer-
ence. Concretely, given a graph G , the feature f t(v) for node v at layer t is computed
as

182 Christopher Morris

f t(v) = σ(f t−1(v) ·W1 + ∑
w∈N(v)

f t−1(w) ·W2), (9.1)

where W1 and W2 are parameter matrices in Rd×d , which are shared across layers,
and σ(·) is a component-wise non-linearity. The above layer is evaluated on stan-
dard, small-scale benchmark datasets (Kersting et al, 2016) showing good perfor-
mance, similar to classical kernel approaches. Lei et al (2017a) proposed a similar
layer and showed a connection to kernel approaches by deriving the corresponding
kernel space of the learned graph embeddings.

To explicitly support edge labels, e.g., chemical bonds, Simonovsky and Ko-
modakis (2017) introduced Edge-Conditioned Convolution, where a feature for
node v is represented as

f t(v) =
1

|N(v)| ∑
w∈N(v)

F l(l(w,v),W (l)) · f t−1(w)+bl .

Here l(w,v) is the feature (or label) of the edge shared by the nodes v and w. More-
over, F l : Rs→ Rdt×dt−1 is a function, where s denotes the number of components
of the edge features and dt and dt−1 denotes the number of components of the fea-
tures of layer t and (t − 1), respectively, mapping the edge feature to a matrix in
Rdt×dt−1 . Further, the function F l is parameterized by the matrix W , conditioned on
the edge feature l. Finally, bl is a bias term, again conditioned on the edge feature
l. The above layer is applied to graph classification tasks on small-scale, standard
benchmark datasets (Kersting et al, 2016), and point cloud data from the computer
vision.

Building on (Scarselli et al, 2008), Gilmer et al (2017) introduced a general
message-passing framework, unifying most of the proposed GNN architectures so-
far. Specifically, Gilmer et al (2017) replaced the inner sum defined over the neigh-
borhood in the above equations by a general permutation-invariant, differentiable
function, e.g., a neural network, and substituted the outer sum over the previous
and the neighborhood feature representation, e.g., by a column-wise vector concate-
nation or LSTM-style update step. Thus, in full generality a new feature f t(v) is
computed as

f W1
merge

(
f t−1(v), f W2

aggr
(
{{f t−1(w) | w ∈ N(v)}}

))
, (9.2)

where f W1
aggr aggregates over the multi-set of neighborhood features and f W2

merge
merges the node’s representation from step (t − 1) with the computed neighbor-
hood features. Moreover, it is straighfoward to include edge features as well, e.g., by
learning a combined feature representation of the node itself, the neighboring node,
and the corresponding edge feature. Gilmer et al (2017) employed the above ar-
chitecture for regression tasks from quantum chemistry, showing promising perfor-
mance for regression targets computed by expensive numerical simulations (namely,
DFT) (Wu et al, 2018; Ramakrishnan et al, 2014).

9 Graph Neural Networks: Graph Classification 183

Concurrently with (Morris et al, 2020b), Xu et al (2019d) investigated the limits
of currently used GNN architectures, showing that their expressiveness is bounded
by the WL algorithm, a simple heuristic for the graph isomorphism problem. Specif-
ically, they showed that there does not exist a GNN architecture that can distinguish
non-isomorphic graphs that the former algorithm cannot. On the positive side, they
proposed the Graph Isomorphism Network (GIN) layer and showed that there exists
a parameter initialization such that it is as expressive as the WL algorithm. Formally,
given a graph G the feature of node v at layer t is computed as

f t(v) = MLP
(
(1+ ε) · f t−1(v)+ ∑

w∈N(v)
f t−1(w)

)
, (9.3)

where MLP is a standard multi-layer perceptron, and ε is a learnable scalar value.
Xu et al (2019d) used standard sum pooling, see below, and achieved good results
on standard benchmark datasets compared to other standard GNN layers and kernel
approaches Morris et al (2020a).

Xu et al (2018a) investigated how to combine local information at different dis-
tances from the target node. Concretely, they investigated different architectural
design choices for achieving this, e.g., concatenation, max pooling, and LSTM-
style attention, showing mild performance improvements on standard benchmark
datasets. Moreover, they drew some connection to random-walk distributions.

Niepert et al (2016) studied neural architectures for graph classification by ex-
tracting local patterns from graphs. Starting from each vertex, the approach explores
the vertex’s k-hop neighborhood, e.g., by using a breadth-first strategy. Using a
labeling algorithm, e.g., a centrality index, the vertices in this neighborhood are
ordered to transform into a fixed-size vector. Afterwards, a CNN-like neural net-
work followed by an MLP is used to perform the final graph classification. The ap-
proach is compared to graph kernel approaches on standard, small-scale benchmark
datasets (Kersting et al, 2016) showing promising performance.

Corso et al (2020) investigated the effect and limits of neighborhood aggregation
functions. They devised aggregation schemes based on multiple aggregators, e.g.,
sum, mean, minimum, maximum, and standard deviation, together with so-called
degree scalar, which combat negative effects due to a different number of neighbors
between nodes. Specifically, they introduced the scalar

S(d,α) =

(
log(d +1)

δ

)α

, d > 0,α ∈ [−1,1],

where
δ =

1
|train| ∑

i∈train
log(di +1),

and α is a variable parameter. Here, the set train contains all nodes i in the training
set and di denotes its degree, resulting in the aggregation function

184 Christopher Morris

⊕
=

I
S(D,α = 1)

S(D,α =−1)

︸ ︷︷ ︸
scalers

⊗

µ

σ

max
min

︸ ︷︷ ︸
aggregators

.

where⊗ denotes the tensor product. The authors report promising performance over
standard aggregation functions on a wide range of standard benchmark datasets,
improving over some standard GNN layers.

Vignac et al (2020b) extended the expressivity of GNNs, see also Section 9.4, by
using unique node identifiers, generalizing the message-passing scheme proposed
by (Gilmer et al, 2017), see Equation (9.2), by computing and passing matrix fea-
tures instead of vector features. Formally, each node i maintains a matrix Ui in Rn×c,
denoted local context, where the j-th row contains the vectorial representation of
node j of node i. At initialization, each local context Ui is set to 1 in Rn×1, where n
denotes the number of nodes in the given graph. Now at each layer l, similar to the
above message-passing framework, the local context is updated as

where u(l),m(l), and φ are update, message, and aggregation functions, respectively,
to compute the updated local context, and yi j denotes the edge features shared by
node i and j. Moreover, the authors study the expressive power, showing that, in
principle, the above layer can distinguish any non-isomorphic pair of graphs and
propose more scalable alternative variants of the above architecture. Finally, promis-
ing results on standard benchmark datasets are reported.

9.2.2 Spectral approaches

Spectral approaches apply a convolution operator in the spectral domain of the
graph’s Laplacian matrix, either by directly computing the former’s eigendecom-
position or by relying on spectral graph theory, see (Chami et al, 2020; Wang et al,
2018a) for more details. Moreover, they have a solid mathematical foundation stem-
ming from signal processing, see, e.g., (Sandryhaila and Moura, 2013; Shuman et al,
2013).

Formally, let G be an undirected graph on n nodes with adjacency matrix A, then
the graph Laplacian

L = I−D−
1
2 AD−

1
2

of the graph G , where D is the diagonal matrix of node degrees, i.e., Di,i = ∑ j(Ai, j).
Since the graph Laplacian is positive semi-definite, we can factor it as

U (l+1)
i =u(l)

(
U (l)

i ,Ũ (l)
i

)
∈R

n×cl+1 with Ũ (l)
i =φ

({
m(l)(U (l)

i ,U (l)
j ,yi j)

}
j∈N(i)

)
,

9 Graph Neural Networks: Graph Classification 185

L =UΛU⊤,

where U = [u1, . . . ,un] in Rn×n denotes the matrix of eigenvectors, sorted according
to their eigenvalues. Further, the matrix Λ is a diagonal matrix with Λi,i = λi, where
λi denotes the ith eigenvalue. Let x in Rn be a graph signal, i.e., a node feature, then
the graph Fourier transform and its inverse for x is

F(x) =U⊤x and F−1(x̂) =Ux,

respectively, where x̂ = F(x). Hence, formally, the graph Fourier transform is an
orthonormal (linear) transform to the space spanned by the basis of the eigenvectors
in U ; consequently, each element x = ∑i x̂i ·ui.

Based on this observation, spectrum-based methods generalize convolution (e.g.,
on grids) to graphs. Thereto, they learn a convolution filter g. Formally, this can be
expressed as follows:

x∗g =U(U⊤x⊙U⊤g) =U ·diag(U⊤g) ·U⊤x,

where the operator · denotes the elementwise product. If we set gθ = diag(UTg),
the above can be expressed as

x∗gθ =UgθU⊤x.

Then most spectral approaches differ in their implementation of the operator gθ .
For example, Spectral Convolutional Neural Networks (Bruna et al, 2014) set

gθ = Θ t
i, j, which is a set of learnable parameters. Based on this, they proposed the

following spectral GNN layer:

Ht
·, j = σ

(
t

∑
i=1

UΘ
t
i, jU

⊤Ht−1
·,i

)
,

for j in {1,2, . . . , t}. Here, t is the layer index, Ht−1 in Rn×(t−1) is the graph signal,
where H0 =X , i.e., the given graph features, and Θ t

i, j is a diagonal parameter matrix.
However, the above layer suffers from a number of drawbacks: The bases of the
eigenvectors is not permution invariant, the layer cannot be applied to a graph with
a different structure, and the computation of the eigendecomposition is cubic in the
number of nodes. Hence, Henaff et al (2015) proposed more scalable variants of
the above layer by building on a smoothness notion in the spectral domain, which
reduces the numbers of parameters and acts as a regulizer.

To further make the above layer more scalable, Defferrard et al (2016) intro-
duced Chebyshev Spectral CNNs, which approximates gθ by a Chebyshev expan-
sion (Hammond et al, 2011). Namely, they express

gθ =
K

∑
i=0

θiTi(Λ̂),

186 Christopher Morris

where Λ̂ = 2Λ/λmax− I, and λmax denotes the largest eigenvalue of the normalized
Laplacian Λ̂ . The normalization ensures that the eigenvalues of the Laplacian are
in the [−1,1] real interval, which is required by Chebyshev polynomials. Here, Ti
denotes the ith Chebyshev polynomial with T1(x) = x. Alternatively, Levie et al
(2019) used Caley polynomials, and show that Chebyshev Spectral CNNs are a
special case.

Kipf and Welling (2017b) proposed to make Chebyshev Spectral CNNs more
scalable by setting

x∗gθ = θ0x−θ1D−
1
2 AD−

1
2 x.

Further, they improved the generalization ability of the resulting layer by setting
θ = θ0 =−θ1, resulting in

x∗gθ = θ(I+D−
1
2 AD−

1
2)x.

In fact, the above layer can be understood as a spatial GNN, i.e., it is equivalent to
computing a feature

f t(v) = σ

(
∑

w∈N(v)∪v

1√
dvdw

f t−1(w) ·W
)
,

for node v in the given graph G , where dv and dw denote the degrees of node v and w,
respectively. Although the above layer was originally proposed for semi-supervised
node classification, it is now one of the most widely used ones and has been ap-
plied for tasks such as matrix completion (van den Berg et al, 2018), link predic-
tion (Schlichtkrull et al, 2018), and also as a baseline for graph classification (Ying
et al, 2018c).

9.3 Pooling layers: Learning graph-level outputs from node-level
outputs

Since GNNs learn vectorial node representations, using them for graph classification
requires a pooling layer, enabling going from node to graph-level output. Formally, a
pooling layer is a parameterized function that maps a multiset of vectors, i.e., learned
node-level representations, to a single vector, i.e., the graph-level representation.
Arguably, the simplest of such layers are sum, mean, and min or max pooling. That
is, given a graph G and a multiset

M = {{f(v) ∈ Rd | v ∈ V }}

of node-level representations of nodes in the graph G , sum pooling computes

fpool(G) = ∑
f(v)∈M

f(v),

9 Graph Neural Networks: Graph Classification 187

while mean, min, max pooling take the (component-wise) average, minimum, max-
imum over the elements in M, respectively. These four simple pooling layers are
still used in many published GNN architectures, e.g., see (Duvenaud et al, 2015b).
In fact, recent work (Mesquita et al, 2020) showed that more sophisticated layers,
e.g., relying on clustering, see below, do not offer any empirical benefits on many
real-world datasets, especially those from the molecular domain.

9.3.1 Attention-based pooling layers

Simple attention-based pooling became popular in recent years due to its easy im-
plementation and scalability compared to more sophisticated alternatives; see be-
low. For example, Gilmer et al (2017), see above, used a seq2seq architecture for
sets (Vinyals et al, 2016) for pooling purposes in their empirical study. Focusing
on pooling for GNNs, Lee et al (2019b) introduced the SAGPool layer, short for
Self-Attention Graph Pooling method for GNNs, using self-attention. Specifically,
they computed a self-attention score by multiplying the aggregated features of an
arbitrary GNN layer by a matrix Θatt in Rd×1, where d denotes the number of com-
ponents of the node features. For example, computing the self-attention score Z(v)
for the simple layer of Equation (9.1) equates to

Z(v) = σ

(
f t−1(v) ·W1 + ∑

w∈N(v)
f t−1(w) ·W2

)
·Θatt.

The self-attention score Z(v) is subsequently used to select the top-k nodes in the
graph; similarly, to Cangea et al (2018) and (Gao et al, 2018a), see below, omitting
the other nodes, effectively pruning nodes from the graph. Similar attention-based
techniques are proposed in (Huang et al, 2019).

9.3.2 Cluster-based pooling layers

The idea of cluster-based pooling layers is to coarsen the graph, i.e., merging similar
nodes iteratively. One of the earliest uses has been proposed in (Simonovsky and
Komodakis, 2017), see above, where the Graclus clustering algorithm (Dhillon et al,
2007) is used. However, one has the note that the algorithm is parameter-free, i.e., it
does adapt to the learning task at hand.

The arguably most well-known cluster-based pooling layer is DiffPool (Ying
et al, 2018c). The idea of DiffPool is to iteratively coarsen the graph by learn-
ing a soft clustering of nodes, making the otherwise discrete clustering assignment
differentiable. Concretely, at layer t, DiffPool learns a soft cluster assigment S in
[0,1]nt×nt+1 , where nt and nt+1 are the number of nodes at layer t and (t+1), respec-
tively. Each entry Si, j represents the probablity of node i of layer t being clustered

188 Christopher Morris

into node j of layer (t +1). In each iteration, the matrix S is computed by

S = softmax(GNN(At ,Ft)),

where At and Ft are the adjacency matrix and the feature matrix of the clustered
graph at layer t, and the function GNN is an abitrary GNN layer. Finally, in each
layer, the adjacency matrix and the feature matrix are updated as

At+1 = ST AtS and Ft+1 = ST Ft ,

respectively.
Empirically, the authors show that the DiffPool layer boosts standard GNN lay-

ers’ performance, e.g., GraphSage (Hamilton et al, 2017b), on standard, small-scale
benchmark datasets (Morris et al, 2020a). The downside of the above layer is the
added computational cost. The adjacency matrix becomes dense and real-valued af-
ter the first pooling layer, leading to a quadratic cost in the number of nodes for
each GNN layer’s computation. Moreover, the number of clusters has to be chosen
in advance, leading to an increase in hyperparameters.

9.3.3 Other pooling layers

Zhang et al (2018g) proposed a pooling layer based on differentiable sorting, de-
noted SortPooling. That is, given the feature matrix Ft of row-wise node features
after layer t, SortPooling sorts the rows of Ft in a descending fashion. It truncates
the last n− k rows of Ft , or pads with zero rows if n < k for a given graph to unify
the graphs’ size. Formally, the layer can be written down as

F = sort(Ft) followed by Ftrunc = truncate(F,k),

where the function sort sorts the feature matrix Ft row-wise in a descending fashion,
and the functions truncate return the first k of the input matrix. Ties are broken up
using the features from previous layers, 1 to (t− 1). The resulting tensor Ftrunc of
shape k×∑

h
i=1 di, where di denotes the number of features of the ith layer and h

the total number of layers, is reshaped into a tensor of size k(∑h
i=1 di)× 1, row-

wise, followed by a standard 1-D convolution with a filter and step size of ∑
h
i=1 di.

Finally, a sequence of max-pooling and 1-D convolutions are applied to identifiy
local patterns in the sequence.

Similarly, to combat the high computational cost of some pooling layer, e.g.,
DiffPool, Cangea et al (2018) introduced a pooling layer dropping n−⌈nk⌉ nodes
of a graph with n nodes in each layer for k in [0,1). The nodes to be dropped are
choosen according to a projection score against a learnable vector p. Concretly, they
compute the score vector

9 Graph Neural Networks: Graph Classification 189

y =
Ft ·p
∥p∥ and I = top-k(y,k),

where top-k returns top-k indices from a given vector according to y. Finally, the
adjacency At+1 is updated by removing rows and columns that are not in I, while
the updated feature matrix

Ft+1 = (Ft ⊙ tanh(y)).

The authors report slightly lower classification accuracies than the DiffPool layer
on most employed datasets while being much faster in computation time. A similar
approach was presented in (Gao and Ji, 2019).

To derive more expressive graph representations, Murphy et al (2019c,b) propose
relational pooling. To increase the expressive power of GNN layers, they average
over all permutations of a given graph. Formally, let G be a graph, then a represen-
tation

f(G) =
1
|V | ∑

π∈Π

g(Aπ,π , [Fπ , I|V |]) (9.4)

is learned, where Π denotes all possible permutations of the rows and columns of
the adjacency matrix of G , g is a permutation-invariant function, and [·, ·] denotes
column-wise matrix concatenation. Moreover. Aπ,π permutes the rows and columns
of the adjaceny matrix A according to the permutation π in Π , similarly Fπ permutes
the rows of the feature matrix F . The author showed that the above architecture
is more expressive in terms of distinguishing non-isomorphic graphs than the WL
algorithm, and proposed sampling-based techniques to speed up the computation.

Bianchi et al (2020) introduced a pooling layer based on spectral clustering (VON-
LUXBURG, 2007). Thereto, they train a GNN together with an MLP, followed by
a softmax function, against an approximation of a relaxed version of the k-way
normalized Min-cut problem (Shi and Malik, 2000). The resulting cluster assign-
ment matrix S is used in the same way as in Section 9.3.2. The authors evaluated
their approach on standard, small-scale benchmark datasets showing promising per-
formance, especially over the DiffPool layer. For another pooling layer based on
spectral clustering, see (Ma et al, 2019d).

9.4 Limitations of graph neural networks and higher-order
layers for graph classification

In the following, we briefly survey the limitations of GNNs and how their expressive
power is upper-bounded by the Weisfeiler-Leman method (Weisfeiler and Leman,
1968; Weisfeiler, 1976; Grohe, 2017). Concretely, a recent line of works by Morris
et al (2020b); Xu et al (2019d); Maron et al (2019a) connects the power or expressiv-
ity of GNNs to that of the WL algorithm. The results show that GNN architectures
generally do not have more power to distinguish between non-isomorphic graphs

190 Christopher Morris

than the WL. That is, for any graph structure that the WL algorithm cannot dis-
tinguish, any possible GNN with any possible choices of parameters will also not
be able to distinguish it. On the positive side, the second result states that there is a
sequence of parameter initializations such that GNNs have the same power in distin-
guishing non-isomorphic (sub-)graphs as the WL algorithm, see also Equation (9.3).
However, the WL algorithm has many short-comings, see (Arvind et al, 2015; Kiefer
et al, 2015), e.g., it cannot distinguish between cycles of different lengths, an impor-
tant property for chemical molecules, and is not able to distinguish between graphs
with different triangle counts, an important property of social networks.

To address this, many recent works tried to build provable more expressive GNNs
for graph classification. For example, in (Morris et al, 2020b; Maron et al, 2019b,
2018) the authors proposed higher-order GNN architectures that have the same ex-
pressive power as the k-dimensional Weisfeiler-Leman algorithm (k-WL), which is,
as k grows, a more expressive generalization of the WL algorithm. In the following,
we give an overview of such works.

9.4.1 Overcoming limitations

The first GNN architecture that overcame the limitations of the WL algorithm was
proposed in (Morris et al, 2020b). Specifically, they introduced so-called k-GNNs,
which work by learning features over the set of subgraphs on k nodes instead of
vertices by defining a notion of neighborhood between these subgraphs. Formally,
for a given k, they consider all k-element subsets [V]k over V . Let s = {s1, . . . ,sk}
be a k-set in [V]k, then they define the neighborhood of s as

N(s) = {t ∈ [V]k | |s∩ t|= k−1} .

The local neighborhood NL(s) consists of all t in N(s) such that (v,w) in E for the
unique v ∈ s \ t and the unique w ∈ t \ s. The global neighborhood NG(s) then is
defined as N(s)\NL(s).

Based on this neighborhood definition, one can generalize most GNN layers for
vertex embeddings to more expressive subgraph embeddings. Given a graph G , a
feature for a subgraph s can be computed as

f t
k(s) = σ

(
f t−1
k (s) ·W t

1 + ∑
u∈NL(s)∪NG(s)

f t−1
k (u) ·W t

2

)
. (9.5)

The authors resort to sum over the local neighborhood in the experiments for better
scalability and generalization, showing a significant boost over standard GNNs on a
quantum chemistry benchmark dataset (Wu et al, 2018; Ramakrishnan et al, 2014).

The latter approach was refined in (Maron et al, 2019a) and (Morris et al, 2019).
Specifically, based on (Maron et al, 2018), Maron et al (2019a) derived an architec-
ture based on standard matrix multiplication that has at least the same power as the
3-WL. Morris et al (2019) proposed a variant of the k-WL that, unlike the original

9 Graph Neural Networks: Graph Classification 191

algorithm, takes the sparsity of the underlying graph into account. Moreover, they
showed that the derived sparse variant is slightly more powerful than the k-WL in
distinguishing non-isomorphic graphs and proposed a neural architecture with the
same power as the sparse k-WL variant.

An important direction in studying graph representations’ expressive power was
taken by (Chen et al, 2019f). The authors prove that a graph representation can
approximate a function f if and only if it can distinguish all pairs of non-isomorphic
graphs G and H where f (G) ̸= f (H). With that in mind, they established an
equivalence between the set of pairs of graphs a representation can distinguish and
the space of functions it can approximate, further introducing a variation of the 2-
WL.

Bouritsas et al (2020) enhanced the expressivity of GNNs by annotating node
features with subgraph information. Specifically, by fixing a set of predefined, small
subgraphs, they annotated each node with their role, formally their automorphism
type, in these subgraphs, showing promising performance gains on standard bench-
mark datasets for graph classification.

Beaini et al (2020) studied how to incorporate directional information into GNNs.
Finally, You et al (2021) enhanced GNNs by uniquely coloring central vertices and
used two types of message functions to surpass the expressive power of the 1-WL,
while Sato et al (2021) and Abboud et al (2020) use random features to achieve
the same goal and additionally studied the universality properties of their derived
architectures.

9.5 Applications of graph neural networks for graph
classification

In the following, we highlight some application areas of GNNs for graph classifi-
cation, focusing on the molecular domain. One of the most promising applications
of GNNs for graph classification is pharmaceutical drug research, see (Gaudelet
et al, 2020) for an overview. In this direction, a promosing approach was proposed
by (Stokes et al, 2020). They used a form of directed message passing neural net-
works operating on molecular graphs to identify repurposing candidates for antibi-
otic development. Moreover, they validated their predictions in vivo, proposing suit-
able repurposing candidates different from know ones.

Schweidtmann et al (2020) used 2-GNNs, see Equation (9.5), to derive GNN
models for predicting three fuel ignition quality indicators such as the derived cetane
number, the research octane number,and the motor octane number of oxygenated
and non-oxygenated hydrocarbons, indicating that the higher-order layers of Equa-
tion (9.5) provide significant gains over standard GNNs in the molecular learning
domain.

A general principled GNN for the molecular domain, denoted DimeNet, was in-
troduced by (Klicpera et al, 2020). By using an edge-based architecture, they com-
puted a message coefficient between atoms based on their relative positioning in 3D

192 Christopher Morris

space. Concretely, an incoming message to a node is based on the sender’s incoming
meassage as well as the distance between the atoms and the angles of their atomic
bonds. By using this additional information the authors report significant improve-
ments over state-of-the-art GNN models in molecular property prediction tasks .

9.6 Benchmark Datasets

Since most developments for GNNs are driven empirically, i.e., based on evalua-
tions on standard benchmark datasets, meaningful benchmark datasets are crucial
for the development of GNNs in the context of graph classification. Hence, the re-
search community has established several widely used repositories for benchmark
datasets for graph classification. Two such repositories are worth being highlighted
here. First, the TUDataset (Morris et al, 2020a) collection contains over 130 datasets
provided at www.graphlearning.io of various sizes and various areas such as
chemistry, biology, and social networks. Moreover, it provides Python-based data
loaders and baseline implementations of standards graph kernel and GNNs. More-
over, the datasets can be easily accessed from well-known GNN implementation
frameworks such as Deep Graph Library (Wang et al, 2019f), PyTorch Geomet-
ric (Fey and Lenssen, 2019), or Spektral (Grattarola and Alippi, 2020). Secondly,
the OGB (Weihua Hu, 2020) collections contain many large-scale graph classifica-
tion benchmark datasets, e.g., from chemistry and code analysis with data loaders,
prespecified splits, and evaluation protocols. Finally, Wu et al (2018) also provides
many large-scale datasets from chemo- and bioinformatics.

9.7 Summary

We gave an overview of GNNs for graph classification. We surveyed classical and
modern works in this area, distinguishing between spatial and spectral approaches.
Since GNNs compute node-level representations, pooling layers for learning graph-
level representations is crucial for successful graph classification. Hence, we sur-
veyed pooling layers based on attention, clustering, and other approaches to pool-
ing. Moreover, we gave an overview of the limitations of GNNs for graph classifi-
cation and surveyed architectures to overcome these limitations. Finally, we gave an
overview of applications of GNNs and benchmark datasets for their evaluation.

http://www.graphlearning.io

9 Graph Neural Networks: Graph Classification 193

Editor’s Notes: The success of using GNNs in classification tasks is ow-
ing to advanced representation learning (chapter 2) by expressive power of
GNNs (chapter 5). And its performance is limited by the scalability (chap-
ter 6), robustness (chapter 8) and transformation capability (chapter 12) of
algorithm. As one of the most prominent tasks, one can always face classi-
fication in a variety of GNN topic. For example, node classification helps to
evaluate performance of AutoML (chapter17) and self-supervised learning
(chapter 18) methods of GNNs, graph classification can be token as subpart
of adversarial learning in graph generation (chapter 11). Further, there are
many promising applications of GNNs in classification, node or edge based
ones like urban intelligence (chapter 27), graph based ones like protein and
drug prediction (chapter 25).

Chapter 10
Graph Neural Networks: Link Prediction

Muhan Zhang

Abstract Link prediction is an important application of graph neural networks. By
predicting missing or future links between pairs of nodes, link prediction is widely
used in social networks, citation networks, biological networks, recommender sys-
tems, and security, etc. Traditional link prediction methods rely on heuristic node
similarity scores, latent embeddings of nodes, or explicit node features. Graph neu-
ral network (GNN), as a powerful tool for jointly learning from graph structure and
node/edge features, has gradually shown its advantages over traditional methods for
link prediction. In this chapter, we discuss GNNs for link prediction. We first in-
troduce the link prediction problem and review traditional link prediction methods.
Then, we introduce two popular GNN-based link prediction paradigms, node-based
and subgraph-based approaches, and discuss their differences in link representation
power. Finally, we review recent theoretical advancements on GNN-based link pre-
diction and provide several future directions.

10.1 Introduction

Link prediction is the problem of predicting the existence of a link between two
nodes in a network (Liben-Nowell and Kleinberg, 2007). Given the ubiquitous ex-
istence of networks, it has many applications such as friend recommendation in
social networks (Adamic and Adar, 2003), co-authorship prediction in citation net-
works (Shibata et al, 2012), movie recommendation in Netflix (Bennett et al, 2007),
protein interaction prediction in biological networks (Qi et al, 2006), drug response
prediction (Stanfield et al, 2017), metabolic network reconstruction (Oyetunde et al,
2017), hidden terrorist group identification (Al Hasan and Zaki, 2011), knowledge
graph completion (Nickel et al, 2016a), etc.

Muhan Zhang
Institute for Artificial Intelligence, Peking University, e-mail: muhan@pku.edu.cn

195
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_10

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:muhan@pku.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_10&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_10

196 Muhan Zhang

Link prediction has many names in different application domains. The term “link
prediction” often refers to predicting links in homogeneous graphs, where nodes and
links both only have a single type. This is the simplest setting and most link predic-
tion works focus on this setting. Link prediction in bipartite user-item networks is
referred to as matrix completion or recommender systems, where nodes have two
types (user and item) and links can have multiple types corresponding to different
ratings users can give to items. Link prediction in knowledge graphs is often re-
ferred to as knowledge graph completion, where each node is a distinct entity and
links have multiple types corresponding to different relations between entities. In
most cases, a link prediction algorithm designed for the homogeneous graph setting
can be easily generalized to heterogeneous graphs (e.g., bipartite graphs and knowl-
edge graphs) by considering heterogeneous node type and relation type information.

There are mainly three types of traditional link prediction methods: heuris-
tic methods, latent-feature methods, and content-based methods. Heuristic meth-
ods compute heuristic node similarity scores as the likelihood of links (Liben-
Nowell and Kleinberg, 2007). Popular ones include common neighbors (Liben-
Nowell and Kleinberg, 2007), Adamic-Adar (Adamic and Adar, 2003), preferen-
tial attachment (Barabási and Albert, 1999), and Katz index (Katz, 1953). Latent-
feature methods factorize the matrix representations of a network to learn low-
dimensional latent representations/embeddings of nodes. Popular network embed-
ding techniques such as DeepWalk (Perozzi et al, 2014), LINE (Tang et al, 2015b)
and node2vec (Grover and Leskovec, 2016), are also latent-feature methods because
they implicitly factorize some matrix representations of networks too (Qiu et al,
2018). Both heuristic methods and latent-feature methods infer future/missing links
leveraging the existing network topology. Content-based methods, on the contrary,
leverage explicit node attributes/features rather than the graph structure (Lops et al,
2011). It is shown that combining the graph topology with explicit node features
can improve the link prediction performance (Zhao et al, 2017).

By learning from graph topology and node/edge features in a unified way, graph
neural networks (GNNs) recently show superior link prediction performance than
traditional methods (Kipf and Welling, 2016; Zhang and Chen, 2018b; You et al,
2019; Chami et al, 2019; Li et al, 2020e). There are two popular GNN-based link
prediction paradigms: node-based and subgraph-based. Node-based methods first
learn a node representation through a GNN, and then aggregate the pairwise node
representations as link representations for link prediction. An example is (Varia-
tional) Graph AutoEncoder (Kipf and Welling, 2016). Subgraph-based methods first
extract a local subgraph around each target link, and then apply a graph-level GNN
(with pooling) to each subgraph to learn a subgraph representation, which is used as
the target link representation for link prediction. An example is SEAL (Zhang and
Chen, 2018b). We introduce these two types of methods separately in Section 10.3.1
and 10.3.2, and discuss their expressive power differences in Section 10.3.3.

To understand GNNs’ power for link prediction, several theoretical efforts have
been made. The γ-decaying theory (Zhang and Chen, 2018b) unifies existing link
prediction heuristics into a single framework and proves their local approximability,
which justifies using GNNs to “learn” heuristics from the graph structure instead of

10 Graph Neural Networks: Link Prediction 197

using predefined ones. The theoretical analysis of labeling trick (Zhang et al, 2020c)
proves that subgraph-based approaches have a higher link representation power than
node-based approaches by being able to learn most expressive structural representa-
tions of links (Srinivasan and Ribeiro, 2020b) where node-based approaches always
fail. We introduce these theories in Section 20.3.

Finally, by analyzing limitations of existing methods, we provide several future
directions on GNN-based link prediction in Section 20.4.

10.2 Traditional Link Prediction Methods

In this section, we review traditional link prediction methods. They can be cate-
gorized into three classes: heuristic methods, latent-feature methods, and content-
based methods.

10.2.1 Heuristic Methods

Heuristic methods use simple yet effective node similarity scores as the likelihood
of links (Liben-Nowell and Kleinberg, 2007; Lü and Zhou, 2011). We use x and y
to denote the source and target node between which to predict a link. We use Γ (x)
to denote the set of x’s neighbors.

10.2.1.1 Local Heuristics

One simplest heuristic is called common neighbors (CN), which counts the number
of neighbors two nodes share as a measurement of their likelihood of having a link:

fCN(x,y) = |Γ (x)∩Γ (y)|. (10.1)

CN is widely used in social network friend recommendation. It assumes that the
more common friends two people have, the more likely they themselves are also
friends.

Jaccard score measures the proportion of common neighbors instead:

fJaccard(x,y) =
|Γ (x)∩Γ (y)|
|Γ (x)∪Γ (y)| . (10.2)

There is also a famous preferential attachment (PA) heuristic (Barabási and Al-
bert, 1999), which uses the product of node degrees to measure the link likelihood:

fPA(x,y) = |Γ (x)| · |Γ (y)|. (10.3)

198 Muhan Zhang

Fig. 10.1: Illustration of three link prediction heuristics: CN, PA and AA.

PA assumes x is more likely to connect to y if y has a high degree. For example,
in citation networks, a new paper is more likely to cite those papers which already
have a lot of citations. Networks formed by the PA mechanism are called scale-
free networks (Barabási and Albert, 1999), which are important subjects in network
science.

Existing heuristics can be categorized based on the maximum hop of neighbors
needed to calculate the score. CN, Jaccard, and PA are all first-order heuristics,
because they only involve one-hop neighbors of two target nodes. Next we introduce
two second-order heuristics.

The Adamic-Adar (AA) heuristic (Adamic and Adar, 2003) considers the weight
of common neighbors:

fAA(x,y) = ∑
z∈Γ (x)∩Γ (y)

1
log |Γ (z)| , (10.4)

where a high-degree common neighbor z is weighted less (down-weighted by the
reciprocal of log |Γ (z)|). The assumption is that a high degree node connecting to
both x and y is less informative than a low-degree node.

Resource allocation (RA) (Zhou et al, 2009) uses a more aggressive down-
weighting factor:

fRA(x,y) = ∑
z∈Γ (x)∩Γ (y)

1
|Γ (z)| , (10.5)

thus, it favors low-degree common neighbors more.
Both AA and RA are second-order heuristics, as up to two hops of neighbors of x

and y are required to compute the score. Both first-order and second-order heuristics
are local heuristics, as they can all be computed from a local subgraph around the
target link without the need to know the entire network. We illustrate three local
heuristics, CN, PA, and AA, in Figure 10.1.

𝑥

common neighbors (CN):
|𝛤 𝑥 ∩ 𝛤 𝑦 |

preferential attachment (PA):
|𝛤 𝑥 |$|𝛤 𝑦 |

Adamic-Adar (AA):
∑!∈# $ ∩# %

&
'() |# ! |

𝑦 𝑥 𝑦 𝑥 𝑦

10 Graph Neural Networks: Link Prediction 199

10.2.1.2 Global Heuristics

There are also high-order heuristics which require knowing the entire network.
Examples include Katz index (Katz, 1953), rooted PageRank (RPR) (Brin and Page,
2012), and SimRank (SR) (Jeh and Widom, 2002).

Katz index uses a weighted sum of all the walks between x and y where a longer
walk is discounted more:

fKatz(x,y) =
∞

∑
l=1

β
l |walks⟨l⟩(x,y)|. (10.6)

Here β is a decaying factor between 0 and 1, and |walks⟨l⟩(x,y)| counts the length-l
walks between x and y. When we only consider length-2 walks, Katz index reduces
to CN.

Rooted PageRank (RPR) is a generalization of PageRank. It first computes the
stationary distribution πx of a random walker starting from x who randomly moves
to one of its current neighbors with probability α , or returns to x with probability
1−α . Then it uses πx at node y (denoted by [πx]y) to predict link (x,y). When the
network is undirected, a symmetric version of rooted PageRank uses

fRPR(x,y) = [πx]y +[πy]x (10.7)

to predict the link.
The SimRank (SR) score assumes that two nodes are similar if their neighbors

are also similar. It is defined in a recursive way: if x = y, then fSR(x,y) := 1; other-
wise,

fSR(x,y) := γ
∑a∈Γ (x) ∑b∈Γ (y) fSR(a,b)

|Γ (x)| · |Γ (y)| , (10.8)

where γ is a constant between 0 and 1.
High-order heuristics are global heuristics. By computing node similarity from

the entire network, high-order heuristics often have better performance than first-
order and second-order heuristics.

10.2.1.3 Summarization

We summarize the eight introduced heuristics in Table 10.1. For more variants of the
above heuristics, please refer to (Liben-Nowell and Kleinberg, 2007; Lü and Zhou,
2011). Heuristic methods can be regarded as computing predefined graph structure
features located in the observed node and edge structures of the network. Although
effective in many domains, these handcrafted graph structure features have limited
expressivity—they only capture a small subset of all possible structure patterns, and
cannot express general graph structure features underlying different networks. Be-
sides, heuristic methods only work well when the network formation mechanism

200 Muhan Zhang

aligns with the heuristic. There may exist networks with complex formation mech-
anisms which no existing heuristics can capture well. Most heuristics only work for
homogeneous graphs.

Table 10.1: Popular heuristics for link prediction

Name Formula Order

common neighbors |Γ (x)∩Γ (y)| first

Jaccard |Γ (x)∩Γ (y)|
|Γ (x)∪Γ (y)| first

preferential attachment |Γ (x)| · |Γ (y)| first

Adamic-Adar ∑z∈Γ (x)∩Γ (y)
1

log |Γ (z)| second

resource allocation ∑z∈Γ (x)∩Γ (y)
1
|Γ (z)| second

Katz ∑
∞
l=1 β l |walks⟨l⟩(x,y)| high

rooted PageRank [πx]y +[πy]x high

SimRank γ
∑a∈Γ(x)∑b∈Γ(y)score(a,b)

|Γ (x)|·|Γ (y)| high

Notes: Γ (x) denotes the neighbor set of vertex x. β < 1 is a damping factor. |walks⟨l⟩(x,y)| counts
the number of length-l walks between x and y. [πx]y is the stationary distribution probability of y
under the random walk from x with restart, see (Brin and Page, 2012). SimRank score uses a
recursive definition.

10.2.2 Latent-Feature Methods

The second class of traditional link prediction methods is called latent-feature meth-
ods. In some literature, they are also called latent-factor models or embedding meth-
ods. Latent-feature methods compute latent properties or representations of nodes,
often obtained by factorizing a specific matrix derived from the network, such as the
adjacency matrix and the Laplacian matrix. These latent features of nodes are not
explicitly observable—they must be computed from the network through optimiza-
tion. Latent features are also not interpretable. That is, unlike explicit node features
where each feature dimension represents a specific property of nodes, we do not
know what each latent feature dimension describes.

10.2.2.1 Matrix Factorization

One most popular latent feature method is matrix factorization (Koren et al, 2009;
Ahmed et al, 2013), which is originated from the recommender systems literature.
Matrix factorization factorizes the observed adjacency matrix A of the network into

10 Graph Neural Networks: Link Prediction 201

the product of a low-rank latent-embedding matrix Z and its transpose. That is, it
approximately reconstructs the edge between i and j using their k-dimensional latent
embeddings zi and z j:

Âi, j = z⊤i z j, (10.9)

It then minimizes the mean-squared error between the reconstructed adjacency ma-
trix and the true adjacency matrix over the observed edges to learn the latent em-
beddings:

L =
1
|E | ∑

(i, j)∈E
(Ai, j− Âi, j)

2. (10.10)

Finally, we can predict new links by the inner product between nodes’ latent em-
beddings. Variants of matrix factorization include using powers of A (Cangea et al,
2018) and using general node similarity matrices (Ou et al, 2016) to replace the
original adjacency matrix A. If we replace A with the Laplacian matrix L and define
the loss as follows:

L = ∑
(i, j)∈E

∥zi− z j∥2
2, (10.11)

then the nontrivial solution to the above are constructed by the eigenvectors corre-
sponding to the k smallest nonzero eigenvalues of L, which recovers the Laplacian
eigenmap technique (Belkin and Niyogi, 2002) and the solution to spectral cluster-
ing (VONLUXBURG, 2007).

10.2.2.2 Network Embedding

Network embedding methods have gained great popularity in recent years since
the pioneering work DeepWalk (Perozzi et al, 2014). These methods learn low-
dimensional representations (embeddings) for nodes, often based on training a skip-
gram model (Mikolov et al, 2013a) over random-walk-generated node sequences,
so that nodes which often appear nearby each other in a random walk (i.e., nodes
close in the network) will have similar representations. Then, the pairwise node
embeddings are aggregated as link representations for link prediction. Although
not explicitly factorizing a matrix, it is shown in (Qiu et al, 2018) that many net-
work embedding methods, including LINE (Tang et al, 2015b), DeepWalk, and
node2vec (Grover and Leskovec, 2016), implicitly factorize some matrix representa-
tions of the network. Thus, they can also be categorized into latent-feature methods.
For example, DeepWalk approximately factorizes:

log
(

vol(G)
(1

w

w

∑
r=1

(D−1A)r)D−1
)
− log(b), (10.12)

202 Muhan Zhang

where vol(G) is the sum of node degrees, D is the diagonal degree matrix, w is
skip-gram’s window size, and b is a constant. As we can see, DeepWalk essentially
factorizes the log of some high-order normalized adjacency matrices’ sum (up to
w). To intuitively understand this, we can think of the random walk as extending a
node’s neighborhood to w hops away, so that we not only require direct neighbors to
have similar embeddings, but also require nodes reachable from each other through
w steps of random walk to have similar embeddings.

Similarly, the LINE algorithm (Tang et al, 2015b) in its second-order forms im-
plicitly factorizes:

log
(
vol(G)(D−1AD−1)

)
− log(b). (10.13)

Another popular network embedding method, node2vec, which enhances Deep-
Walk with negative sampling and biased random walk, is also shown to implicitly
factorize a matrix. The matrix does not have a closed form due to the use of second-
order (biased) random walk (Qiu et al, 2018).

10.2.2.3 Summarization

We can understand latent-feature methods as extracting low-dimensional node em-
beddings from the graph structure. Traditional matrix factorization methods use the
inner product between node embeddings to predict links. However, we are actually
not restricted to inner product. Instead, we can apply a neural network over an ar-
bitrary aggregation of pairwise node embeddings to learn link representations. For
example, node2vec (Grover and Leskovec, 2016) provides four symmetric aggre-
gation functions (invariant to the order of two nodes): mean, Hadamard product,
absolute difference, and squared difference. If we predict directed links, we can also
use non-symmetric aggregation functions, such as concatenation.

Latent-feature methods can take global properties and long-range effects into
node representations, because all node pairs are used together to optimize a single
objective function, and the final embedding learned for a node can be influenced
by all nodes in the same connected component during the optimization. However,
latent-feature methods cannot capture structural similarities between nodes Ribeiro
et al (2017), i.e., two nodes sharing identical neighborhood structures are not
mapped to similar embeddings. Latent-feature methods also need an extremely large
dimension to express some simple heuristics (Nickel et al, 2014), making them
sometimes have worse performance than heuristic methods. Finally, latent-feature
methods are transductive learning methods—the learned node embeddings cannot
generalize to new nodes or new networks.

There are many latent-feature methods designed for heterogeneous graphs. For
example, the RESCAL model (Nickel et al, 2011) generalizes matrix factorization
to multi-relation graphs, which essentially performs a kind of tensor factorization.
Metapath2vec (Dong et al, 2017) generalizes node2vec to heterogeneous graphs.

10 Graph Neural Networks: Link Prediction 203

10.2.3 Content-Based Methods

Both heuristic methods and latent-feature methods face the cold-start problem. That
is, when a new node joins the network, heuristic methods and latent-feature meth-
ods may not be able to predict its links accurately because it has no or only a few
existing links with other nodes. In this case, content-based methods might help.
Content-based methods leverage explicit content features associated with nodes for
link prediction, which have wide applications in recommender systems (Lops et al,
2011). For example, in citation networks, word distributions can be used as content
features for papers. In social networks, a user’s profile, such as their demographic in-
formation and interests, can be used as their content features (however, their friend-
ship information belongs to graph structure features because it is calculated from the
graph structure). However, content-based methods usually have worse performance
than heuristic and latent-feature methods due to not leveraging the graph structure.
Thus, they are usually used together with the other two types of methods (Koren,
2008; Rendle, 2010; Zhao et al, 2017) to enhance the link prediction performance.

10.3 GNN Methods for Link Prediction

In the last section, we have covered three types of traditional link prediction meth-
ods. In this section, we will talk about GNN methods for link prediction. GNN
methods combine graph structure features and content features by learning them to-
gether in a unified way, leveraging the excellent graph representation learning ability
of GNNs.

There are mainly two GNN-based link prediction paradigms, node-based and
subgraph-based. Node-based methods aggregate the pairwise node representations
learned by a GNN as the link representation. Subgraph-based methods extract a
local subgraph around each link and use the subgraph representation learned by a
GNN as the link representation.

10.3.1 Node-Based Methods

The most straightforward way of using GNNs for link prediction is to treat GNNs
as inductive network embedding methods which learn node embeddings from lo-
cal neighborhood, and then aggregate the pairwise node embeddings of GNNs to
construct link representations. We call these methods node-based methods.

204 Muhan Zhang

10.3.1.1 Graph AutoEncoder

The pioneering work of node-based methods is Graph AutoEncoder (GAE) (Kipf
and Welling, 2016). Given the adjacency matrix A and node feature matrix X of a
graph, GAE (Kipf and Welling, 2016) first uses a GCN (Kipf and Welling, 2017b) to
compute a node representation zi for each node i, and then uses σ(z⊤i z j) to predict
link (i, j):

Âi, j = σ(z⊤i z j), where zi = Zi,:,Z = GCN(X ,A) (10.14)

where Z is the node representation (embedding) matrix output by the GCN with
the ith row of Z being node i’s representation zi, Âi, j is the predicted probability for
link (i, j) and σ is the sigmoid function. If X is not given, GAE can use the one-
hot encoding matrix I instead. The model is trained to minimize the cross entropy
between the reconstructed adjacency matrix and the true adjacency matrix:

L = ∑
i∈V , j∈V

(−Ai, j log Âi, j− (1−Ai, j) log(1− Âi, j)). (10.15)

In practice, the loss of positive edges (Ai, j = 1) is up-weighted by k, where k is the
ratio between negative edges (Ai, j = 0) and positive edges. The purpose is to balance
the positive and negative edges’ contribution to the loss. Otherwise, the loss might
be dominated by negative edges due to the sparsity of practical networks.

10.3.1.2 Variational Graph AutoEncoder

The variational version of GAE is called VGAE, or Variational Graph AutoEn-
coder (Kipf and Welling, 2016). Rather than learning deterministic node embed-
dings zi, VGAE uses two GCNs to learn the mean µi and variance σ2

i of zi, respec-
tively.

VGAE assumes the adjacency matrix A is generated from the latent node embed-
dings Z through p(A|Z), where Z follows a prior distribution p(Z). Similar to GAE,
VGAE uses an inner-product-based link reconstruction model as p(A|Z):

p(A|Z) = ∏
i∈V

∏
j∈V

p(Ai, j|zi,z j), where p(Ai, j = 1|zi,z j) = σ(z⊤i z j). (10.16)

And the prior distribution p(Z) takes a standard Normal distribution:

p(Z) = ∏
i∈V

p(zi) = ∏
i∈V

N (zi|0, I). (10.17)

Given p(A|Z) and p(Z), we may compute the posterior distribution of Z using
Bayes’ rule. However, this distribution is often intractable. Thus, given the adja-
cency matrix A and node feature matrix X , VGAE uses graph neural networks to
approximate the posterior distribution of the node embedding matrix Z:

10 Graph Neural Networks: Link Prediction 205

q(Z|X ,A) = ∏
i∈V

q(zi|X ,A), where q(zi|X ,A) = N (zi|µi,diag(σ2
i)). (10.18)

Here, the mean µi and variance σ2
i of zi are given by two GCNs. Then, VGAE

maximizes the evidence lower bound to learn the GCN parameters:

L = Eq(Z|X ,A)[log p(A|Z)]−KL[q(Z|X ,A)||p(Z)], (10.19)

where KL[q(Z|X ,A)||p(Z)] is the Kullback-Leibler divergence between the approx-
imated posterior and the prior distribution of Z. The evidence lower bound is opti-
mized using the reparameterization trick (Kingma and Welling, 2014). Finally, the
embedding means µi and µ j are used to predict link (i, j) by Âi, j = σ(µ⊤i µ j).

10.3.1.3 Variants of GAE and VGAE

There are many variants of GAE and VGAE. For example, ARGE (Pan et al, 2018)
enhances GAE with an adversarial regularization to regularize the node embeddings
to follow a prior distribution. S-VAE (Davidson et al, 2018) replaces the Normal
distribution in VGAE with a von Mises-Fisher distribution to model data with a hy-
perspherical latent structure. MGAE (Wang et al, 2017a) uses a marginalized graph
autoencoder to reconstruct node features from corrupted ones through a GCN and
applies it to graph clustering.

GAE represents a general class of node-based methods, where a GNN is first used
to learn node embeddings and pairwise node embeddings are aggregated to learn
link representations. In principle, we can replace the GCN used in GAE/VGAE with
any GNN, and replace the inner product z⊤i z j with any aggregation function over
{zi,z j} and feed the aggregated link representation to an MLP to predict the link
(i, j). Following this methodology, we can generalize any GNN designed for learn-
ing node representations to link prediction. For example, HGCN (Chami et al, 2019)
combines hyperbolic graph convolutional neural networks with a Fermi-Dirac de-
coder for aggregating pairwise node embeddings and outputting link probabilities:

p(Ai, j = 1|zi,z j) = [exp(d(zi,z j)− r)/t +1]−1, (10.20)

where d(·, ·) computes the hyperbolic distance and r, t are hyperparameters.
Position-aware GNN (PGNN) (You et al, 2019) aggregates messages only from

some selected anchor nodes during the message passing to capture position informa-
tion of nodes. Then, the inner product between node embeddings are used to predict
links. The PGNN paper also generalizes other GNNs, including GAT (Petar et al,
2018), GIN (Xu et al, 2019d) and GraphSAGE (Hamilton et al, 2017b), to the link
prediction setting based on the inner-product decoder.

Many graph neural networks use link prediction as an objective for training node
embeddings in an unsupervised manner, despite that their final task is still node clas-
sification. For example, after computing the node embeddings, GraphSAGE (Hamil-
ton et al, 2017b) minimize the following objective for each zi to encourage con-

206 Muhan Zhang

nected or nearby nodes to have similar representations:

L(zi) =− log
(
σ(z⊤i z j)

)
− kn ·E j′∼pn log

(
1−σ(z⊤i z j′)

)
, (10.21)

where j is a node co-occurs near i on some fixed-length random walk, pn is the neg-
ative sampling distribution, and kn is the number of negative samples. If we focus on
length-2 random walks, the above loss reduces to a link prediction objective. Com-
pared to the GAE loss in Equation (10.15), the above objective does not consider all
O(n) negative links, but uses negative sampling instead to only consider kn negative
pairs (i, j′) for each positive pair (i, j), thus is more suitable for large graphs.

In the context of recommender systems, there are also many node-based meth-
ods that can be seen as variants of GAE/VGAE. Monti et al (2017) use GNNs to
learn user and item embeddings from their respective nearest-neighbor networks,
and use the inner product between user and item embeddings to predict links. Berg
et al (2017) propose the graph convolutional matrix completion (GC-MC) model
which applies a GNN to the user-item bipartite graph to learn user and item embed-
dings. They use one-hot encoding of node indices as the input node features, and
use the bilinear product between user and item embeddings to predict links. Spec-
tralCF (Zheng et al, 2018a) uses a spectral-GNN on the bipartite graph to learn node
embeddings. The PinSage model (Ying et al, 2018b) uses node content features as
the input node features, and uses the GraphSAGE (Hamilton et al, 2017b) model to
map related items to similar embeddings.

In the context of knowledge graph completion, R-GCN (Relational Graph Con-
volutional Neural Network) (Schlichtkrull et al, 2018) is one representative node-
based method, which considers the relation types by giving different weights to
different relation types during the message passing. SACN (Structure-Aware Con-
volutional Network) (Shang et al, 2019) performs message passing for each relation
type’s induced subgraphs individually and then uses a weighted sum of node em-
beddings from different relation types.

10.3.2 Subgraph-Based Methods

Subgraph-based methods extract a local subgraph around each target link and learn
a subgraph representation through a GNN for link prediction.

10.3.2.1 The SEAL Framework

The pioneering work of subgraph-based methods is SEAL (Zhang and Chen,
2018b). SEAL first extracts an enclosing subgraph for each target link to predict,
and then applies a graph-level GNN (with pooling) to classify whether the subgraph
corresponds to link existence. The enclosing subgraph around a node set is defined
as follows.

10 Graph Neural Networks: Link Prediction 207

Fig. 10.2: Illustration of the SEAL framework. SEAL first extracts enclosing sub-
graphs around target links to predict. It then applies a node labeling to the enclosing
subgraphs to differentiate nodes of different roles within a subgraph. Finally, the
labeled subgraphs are fed into a GNN to learn graph structure features (supervised
heuristics) for link prediction.

Definition 10.1. (Enclosing subgraph) For a graph G = (V ,E), given a set of
nodes S ⊆ V , the h-hop enclosing subgraph for S is the subgraph G h

S induced from
G by the set of nodes ∪ j∈S{i | d(i, j)≤ h}, where d(i, j) is the shortest path distance
between nodes i and j.

In other words, the h-hop enclosing subgraph around a node set S contains nodes
within h hops of any node in S, as well as all the edges between these nodes. In some
literature, it is also called h-hop local/rooted subgraph, or h-hop ego network. In link
prediction tasks, the node set S denotes the two nodes between which to predict a
link. For example, when predicting the link between x and y, S = {x,y} and G h

x,y
denotes the h-hop enclosing subgraph for link (x,y).

The motivation for extracting an enclosing subgraph for each link should be that
SEAL aims to automatically learn graph structure features from the network. Ob-
serving that all first-order heuristics can be computed from the 1-hop enclosing sub-
graph around the target link and all second-order heuristics can be computed from
the 2-hop enclosing subgraph around the target link, SEAL aims to use a GNN to
learn general graph structure features (supervised heuristics) from the extracted h-
hop enclosing subgraphs instead of using predefined heuristics.

After extracting the enclosing subgraph
Gh

x,y, the next step is node labeling. SEAL applies a Double Radius Node Label-
ing (DRNL) to give an integer label to each node in the subgraph as its additional
feature. The purpose is to use different labels to differentiate nodes of different
roles in the enclosing subgraph. For instance, the center nodes x and y are the tar-
get nodes between which the target link is located, thus they are different from the
rest nodes and should be distinguished. Similarly, nodes at different hops w.r.t. x
and y may have different structural importance to the link existence, thus can also
be assigned different labels. As discussed in Section 10.4.2, a proper node labeling
such as DRNL is crucial for the success of subgraph-based link prediction methods,
which makes subgraph-based methods have a higher link representation learning
ability than node-based methods.

D
C

AB

AB

D
C

�

�

Extract enclosing
subgraphs

0 (non-link)

1 (link)

Predict links

common neighbors = 3

Jaccard = 0.6

preferential attachment = 16

Katz ≈ 0.03
……

Learn graph structure features

common neighbors = 0

Jaccard = 0

preferential attachment = 8

Katz ≈ 0.001
……

Graph neural network

�

�

Apply node labeling

208 Muhan Zhang

DRNL works as follows: First, assign label 1 to x and y. Then, for any node i with
radius (d(i,x),d(i,y)) = (1,1), assign label 2. Nodes with radius (1,2) or (2,1) get
label 3. Nodes with radius (1,3) or (3,1) get 4. Nodes with (2,2) get 5. Nodes with
(1,4) or (4,1) get 6. Nodes with (2,3) or (3,2) get 7. So on and so forth. In other
words, DRNL iteratively assigns larger labels to nodes with a larger radius w.r.t. the
two center nodes.

DRNL satisfies the following criteria: 1) The two target nodes x and y always
have the distinct label “1” so that they can be distinguished from the context nodes.
2) Nodes i and j have the same label if and only if their “double radius” are the
same, i.e., i and j have the same distances to (x,y). This way, nodes of the same rel-
ative positions within the subgraph (described by the double radius (d(i,x),d(i,y)))
always have the same label.

DRNL has a closed-form solution for directly mapping (d(i,x),d(i,y)) to labels:

l(i) = 1+min(dx,dy)+(d/2)[(d/2)+(d%2)−1], (10.22)

where dx := d(i,x), dy := d(i,y), d := dx + dy, (d/2) and (d%2) are the integer
quotient and remainder of d divided by 2, respectively. For nodes with d(i,x) = ∞

or d(i,y) = ∞, DRNL gives them a null label 0.
After getting the DRNL labels, SEAL transforms them into one-hot encoding

vectors, or feeds them to an embedding layer to get their embeddings. These new
feature vectors are concatenated with the original node content features (if any) to
form the new node features. SEAL additionally allows concatenating some pre-
trained node embeddings such as node2vec embeddings to node features. How-
ever, as its experimental results show, adding pretrained node embeddings does not
show clear benefits to the final performance (Zhang and Chen, 2018b). Furthermore,
adding pretrained node embeddings makes SEAL lose the inductive learning ability.

Finally, SEAL feeds these enclosing subgraphs as well as their new node feature
vectors into a graph-level GNN, DGCNN (Zhang et al, 2018g), to learn a graph
classification function. The groundtruth of each subgraph is whether the two cen-
ter nodes really have a link. To train this GNN, SEAL randomly samples N exist-
ing links from the network as positive training links, and samples an equal number
of unobserved links (random node pairs) as negative training links. After training,
SEAL applies the trained GNN to new unobserved node pairs’ enclosing subgraphs
to predict their links. The entire SEAL framework is illustrated in Figure 10.2.
SEAL achieves strong performance for link prediction, demonstrating consistently
superior performance than predefined heuristics (Zhang and Chen, 2018b).

10.3.2.2 Variants of SEAL

SEAL inspired many follow-up works. For example, Cai and Ji (2020) propose to
use enclosing subgraphs of different scales to learn scale-invariant models. Li et al
(2020e) propose Distance Encoding (DE) which generalizes DRNL to node classi-
fication and general node set classification problems and theoretically analyzes the

10 Graph Neural Networks: Link Prediction 209

power it brings to GNNs. The line graph link prediction (LGLP) model (Cai et al,
2020c) transforms each enclosing subgraph into its line graph and uses the center
node embedding in the line graph to predict the original link.

SEAL is also generalized to the bipartite graph link prediction problem of rec-
ommender systems (Zhang and Chen, 2019). The model is called Inductive Graph-
based Matrix Completion (IGMC). IGMC also samples an enclosing subgraph
around each target (user, item) pair, but uses a different node labeling scheme. For
each enclosing subgraph, it first gives label 0 and label 1 to the target user and the
target item, respectively. The remaining nodes’ labels are determined based on both
their node types and their distances to the target user and item: if a user-type node’s
shortest path to reach either the target user or the target item has a length k, it will get
a label 2k; if an item-type node’s shortest path to reach the target user or the target
item has a length k, it will get a label 2k+1. This way, the target nodes can always
be distinguished from the context nodes, and users can be distinguished from items
(users always have even labels). Furthermore, nodes of different distances to the
center nodes can be differentiated, too. Finally, the enclosing subgraphs are fed into
a GNN with R-GCN convolution layers to incorporate the edge type information
(each edge type corresponds to a different rating). And the output representations
of the target user and the target item are concatenated as the link representation to
predict the target rating. IGMC is an inductive matrix completion model without
relying on any content features, i.e., the model predicts ratings based only on local
graph structures, and the learned model can transfer to unseen users/items or new
tasks without retraining.

In the context of knowledge graph completion, SEAL is generalized to GraIL
(Graph Inductive Learning) (Teru et al, 2020). It also follows the enclosing subgraph
extraction, node labeling, and GNN prediction framework. For enclosing subgraph
extraction, it extracts the subgraph induced by all the nodes that occur on at least
one path of length at most h+ 1 between the two target nodes. Unlike SEAL, the
enclosing subgraph of GraIL does not include those nodes that are only neighbors
of one target node but are not neighbors of the other target node. This is because for
knowledge graph reasoning, paths connecting two target nodes are of extra impor-
tance than dangling nodes. After extracting the enclosing subgraphs, GraIL applies
DRNL to label the enclosing subgraphs and uses a variant of R-GCN by enhancing
R-GCN with edge attention to output the score for each link to predict.

10.3.3 Comparing Node-Based Methods and Subgraph-Based
Methods

At first glance, both node-based methods and subgraph-based methods learn graph
structure features around target links based on a GNN. However, as we will show,
subgraph-based methods actually have a higher link representation ability than
node-based methods due to modeling the associations between two target nodes.

210 Muhan Zhang

𝑣2

𝑣1

𝑣3

𝑣4 𝑣1

𝑣3

𝑣1

𝑣3𝑣2

𝑣4

𝑣3

𝑣4

𝑣2

Fig. 10.3: The different link representation ability between node-based methods and
subgraph-based methods. In the left graph, nodes v2 and v3 are isomorphic; links
(v1,v2) and (v4,v3) are isomorphic; link (v1,v2) and link (v1,v3) are not isomor-
phic. However, a node-based method cannot differentiate (v1,v2) and (v1,v3). In
the middle graph, when we predict (v1,v2), we label these two nodes differently
from the rest, so that a GNN is aware of the target link when learning v1 and v2’s
representations. Similarly, when predicting (v1,v3), nodes v1 and v3 will be labeled
differently (shown in the right graph). This way, the representation of v2 in the left
graph will be different from the representation of v3 in the right graph, enabling
GNNs to distinguish (v1,v2) and (v1,v3).

We first use an example to show node-based methods’ limitation for detecting
associations between two target nodes. Figure 10.3 left shows a graph we want to
perform link prediction on. In this graph, nodes v2 and v3 are isomorphic (symmetric
to each other), and links (v1,v2) and (v4,v3) are also isomorphic. However, link
(v1,v2) and link (v1,v3) are not isomorphic, as they are not symmetric in the graph.
In fact, v1 is much closer to v2 than v3 in the graph, and shares more common
neighbors with v2. Thus, intuitively we do not want to predict (v1,v2) and (v1,v3)
the same. However, because v2 and v3 are isomorphic, a node-based method will
learn the same node representation for v2 and v3 (due to identical neighborhoods).
Then, because node-based methods aggregate two node representations as a link
representation, they will learn the same link representation for (v1,v2) and (v1,v3)
and subsequently output the same link existence probability for them. This is clearly
not what we want.

The root cause of this issue is that node-based methods compute two node repre-
sentations independently of each other, without considering the relative positions
and associations between the two nodes. For example, although v2 and v3 have dif-
ferent relative positions w.r.t. v1, a GNN for learning v2 and v3’s representations is
unaware of this difference by treating v2 and v3 symmetrically.

With node-based methods, GNNs cannot even learn to count the common
neighbors between two nodes (which is 1 for (v1,v2) and 0 for (v1,v3)), one of
the most fundamental graph structure features for link prediction. This is still be-
cause node-based methods do not consider the other target node when computing
one target node’s representation. For example, when computing the representation
of v1, node-based methods do not care about which is the other target node—no
matter whether the other node has dense connections with it (like v2) or is far away
from it (like v3), node-based methods will learn the same representation for v1. The
failure to model the associations between two target nodes sometimes results in bad
link prediction performance.

10 Graph Neural Networks: Link Prediction 211

Different from node-based methods, subgraph-based methods perform link pre-
diction by extracting an enclosing subgraph around each target link. As we can see,
if we extract 1-hop enclosing subgraphs for both (v1,v2) and (v1,v3), then they are
immediately differentiable due to their different enclosing subgraph structures—the
enclosing subgraph around (v1,v2) is a single connected component, while the en-
closing subgraph around (v1,v3) is composed of two connected components. Most
GNNs can easily assign these two subgraphs different representations.

In addition, the node labeling step in subgraph-based methods also helps model
the associations between the two target nodes. For example, let us assume we do not
extract enclosing subgraphs, but only apply a node labeling to the original graph.
We assume a simplest node labeling which only distinguishes the two target nodes
from the rest nodes by assigning label 1 to the two target nodes and label 0 to the
rest nodes (we call it zero-one labeling trick). Then, when we want to predict link
(v1,v2), we give v1,v2 a different label from those of the rest nodes, as shown by
different colors in Figure 10.3 middle. With v1 and v2 labeled, when a GNN is
computing v2’s representation, it is also “aware” of the source node v1. And when
we want to predict link (v1,v3), we will again give v1,v3 a different label, as shown
in Figure 10.3 right. This way, v2 and v3’s node representations are no longer the
same in the two differently labeled graphs due to the presence of the labeled v1,
and we are able to give different predictions to (v1,v2) and (v1,v3). This method
is called labeling trick (Zhang et al, 2020c). We will discuss it more thoroughly in
Section 10.4.2.

10.4 Theory for Link Prediction

In this section, we will introduce some theoretical developments on GNN-based link
prediction. For subgraph-based methods, one important motivation is to learn super-
vised heuristics (graph structure features) from links’ neighborhoods. Then, an im-
portant question to ask is, how well can GNNs learn existing successful heuristics?
The γ-decaying heuristic theory (Zhang and Chen, 2018b) answers this question.
In Section 10.3.3, we have seen the limitation of node-based methods for modeling
the associations and relationships between two target nodes, and we have also seen
that a simple zero-one node labeling can help solve this problem. Why and how can
such a simple labeling trick achieve such a better link representation learning abil-
ity? What are the general requirements for a node labeling scheme to achieve this
ability? The analysis of labeling trick answers these questions (Zhang et al, 2020c).

10.4.1 γ-Decaying Heuristic Theory

When using GNNs for link prediction, we want to learn graph structure features
useful for predicting links based on message passing. However, it is usually not

212 Muhan Zhang

possible to use very deep message passing layers to aggregate information from the
entire network due to the computation complexity introduced by neighbor explosion
and the issue of oversmoothing (Li et al, 2018b). This is why node-based methods
(such as GAE) only use 1 to 3 message passing layers in practice, and why subgraph-
based methods only extract a small 1-hop or 2-hop local enclosing subgraph around
each link.

The γ-decaying heuristic theory (Zhang and Chen, 2018b) mainly answers how
much structural information useful for link prediction is preserved in local neigh-
borhood of the link, in order to justify applying a GNN only to a local enclos-
ing subgraph in subgraph-based methods. To answer this question, the γ-decaying
heuristic theory studies how well can existing link prediction heuristics be approxi-
mated from local enclosing subgraphs. If all these existing successful heuristics can
be accurately computed or approximated from local enclosing subgraphs, then we
are more confident to use a GNN to learn general graph structure features from these
local subgraphs.

10.4.1.1 Definition of γ-Decaying Heuristics

Firstly, a direct conclusion from the definition of h-hop enclosing subgraphs (Defi-
nition 10.1) is:

Proposition 10.1. Any h-order heuristic score for (x,y) can be accurately calcu-
lated from the h-hop enclosing subgraph G h

x,y around (x,y).

For example, a 1-hop enclosing subgraph contains all the information needed to
calculate any first-order heuristics, while a 2-hop enclosing subgraph contains all the
information needed to calculate any first and second-order heuristics. This indicates
that first and second-order heuristics can be learned from local enclosing subgraphs
based on an expressive GNN. However, how about high-order heuristics? High-
order heuristics usually have better link prediction performance than local ones. To
study high-order heuristics’ local approximability, the γ-decaying heuristic theory
first defines a general formulation of high-order heuristics, namely the γ-decaying
heuristic.

Definition 10.2. (γ-decaying heuristic) A γ-decaying heuristic for link (x,y) has
the following form:

H (x,y) = η

∞

∑
l=1

γ
l f (x,y, l), (10.23)

where γ is a decaying factor between 0 and 1, η is a positive constant or a positive
function of γ which is upper bounded by a constant, f is a nonnegative function of
x,y, l under the given network, and l can be understood as the iteration number.

Next, it proves that under certain conditions, any γ-decaying heuristic can be
approximated from an h-hop enclosing subgraph, and the approximation error de-
creases at least exponentially with h.

10 Graph Neural Networks: Link Prediction 213

satisfies:

• (property 1) f (x,y, l)≤ λ l where λ < 1
γ
; and

• (property 2) f (x,y, l) is calculable from G h
x,y for l = 1,2, · · · ,g(h), where g(h)=

ah+b with a,b ∈ N and a > 0,

then H (x,y) can be approximated from G h
x,y and the approximation error decreases

at least exponentially with h.

Proof. We can approximate such a γ-decaying heuristic by summing over its
first g(h) terms.

H̃ (x,y) := η

g(h)

∑
l=1

γ
l f (x,y, l). (10.24)

The approximation error can be bounded as follows.

The above proof indicates that a smaller γλ leads to a faster decaying speed and a
smaller approximation error. To approximate a γ-decaying heuristic, one just needs
to sum its first few terms calculable from an h-hop enclosing subgraph.

Then, a natural question to ask is which existing high-order heuristics belong to
γ-decaying heuristics that allow local approximations. Surprisingly, the γ-decaying
heuristic theory shows that three most popular high-order heuristics: Katz index,
rooted PageRank and SimRank (listed in Table 10.1) are all γ-decaying heuristics
which satisfy the properties in Theorem 10.1.

To prove these, we need the following lemma first.

Lemma 10.1. Any walk between x and y with length l ≤ 2h+1 is included in G h
x,y.

Proof. Given any walk w = ⟨x,v1, · · · ,vl−1,y⟩ with length l, we will show
that every node vi is included in G h

x,y. Consider any vi. Assume d(vi,x)≥ h+1
and d(vi,y) ≥ h+1. Then, 2h+1 ≥ l = |⟨x,v1, · · · ,vi⟩|+ |⟨vi, · · · ,vl−1,y⟩| ≥
d(vi,x)+d(vi,y)≥ 2h+2, a contradiction. Thus, d(vi,x)≤ h or d(vi,y)≤ h.
By the definition of G h

x,y, vi must be included in G h
x,y.

Next we present the analysis on Katz, rooted PageRank and SimRank.

Theorem 10.1. Given a γ-decaying heuristicH (x,y)=η ∑∞
l=1 γ l f (x,y, l), if f (x,y, l)

satisfies:

|H (x,y)−H̃ (x,y)|=η
∞

∑
l=g(h)+1

γ l f(x,y,l)≤η
∞

∑
l=ah+b+1

γ lλ l=η(γλ)ah+b+1(1−γλ)−1

214 Muhan Zhang

10.4.1.2 Katz index

The Katz index (Katz, 1953) for (x,y) is defined as

Katzx,y =
∞

∑
l=1

β
l |walks⟨l⟩(x,y)|=

∞

∑
l=1

β
l [Al]x,y, (10.25)

where walks⟨l⟩(x,y) is the set of length-l walks between x and y, and Al is the lth

power of the adjacency matrix of the network. Katz index sums over the collection
of all walks between x and y where a walk of length l is damped by β l (0 < β < 1),
giving more weights to shorter walks.

Katz index is directly defined in the form of a γ-decaying heuristic with η =
1,γ = β , and f (x,y, l) = |walks⟨l⟩(x,y)|. According to Lemma 10.1, |walks⟨l⟩(x,y)|
is calculable from G h

x,y for l ≤ 2h+1, thus property 2 in Theorem 10.1 is satisfied.
Now we show when property 1 is satisfied.

Proposition 10.2. For any nodes i, j, [Al]i, j is bounded by dl , where d is the maxi-
mum node degree of the network.

Proof. We prove it by induction. When l = 1, Ai, j ≤ d for any (i, j). Thus the
base case is correct. Now, assume by induction that [Al]i, j ≤ dl for any (i, j),
we have

[Al+1]i, j =
|V |
∑
k=1

[Al]i,kAk, j ≤ dl
|V |
∑
k=1

Ak, j ≤ dld = dl+1.

Taking λ = d, we can see that whenever d < 1/β , the Katz index will satisfy
property 1 in Theorem 10.1. In practice, the damping factor β is often set to very
small values like 5E-4 (Liben-Nowell and Kleinberg, 2007), which implies that Katz
can be very well approximated from the h-hop enclosing subgraph.

10.4.1.3 PageRank

The rooted PageRank for node x calculates the stationary distribution of a random
walker starting at x, who iteratively moves to a random neighbor of its current po-
sition with probability α or returns to x with probability 1−α . Let πx denote the
stationary distribution vector. Let [πx]i denote the probability that the random walker
is at node i under the stationary distribution.

Let P be the transition matrix with Pi, j =
1

|Γ (v j)| if (i, j)∈E and Pi, j = 0 otherwise.

Let ex be a vector with the xth element being 1 and others being 0. The stationary
distribution satisfies

10 Graph Neural Networks: Link Prediction 215

πx = αPπx +(1−α)ex. (10.26)

When used for link prediction, the score for (x,y) is given by [πx]y (or [πx]y +
[πy]x for symmetry). To show that rooted PageRank is a γ-decaying heuristic, we
introduce the inverse P-distance theory (Jeh and Widom, 2003), which states that
[πx]y can be equivalently written as follows:

[πx]y = (1−α) ∑
w:x⇝y

P[w]α len(w), (10.27)

where the summation is taken over all walks w starting at x and ending at y (pos-
sibly touching x and y multiple times). For a walk w = ⟨v0,v1, · · · ,vk⟩, len(w) :=
|⟨v0,v1, · · · ,vk⟩| is the length of the walk. The term P[w] is defined as ∏

k−1
i=0

1
|Γ (vi)| ,

which can be interpreted as the probability of traveling w. Now we have the follow-
ing theorem.

Theorem 10.2. The rooted PageRank heuristic is a γ-decaying heuristic which sat-
isfies the properties in Theorem 10.1.

Proof. We first write [πx]y in the following form.

[πx]y = (1−α)
∞

∑
l=1

∑
w:x⇝y

len(w)=l

P[w]α l . (10.28)

Defining f (x,y, l) :=∑ w:x⇝y
len(w)=l

P[w] leads to the form of a γ-decaying heuristic.

Note that f (x,y, l) is the probability that a random walker starting at x stops at
y with exactly l steps, which satisfies ∑z∈V f (x,z, l) = 1. Thus, f (x,y, l)≤ 1 <
1
α

(property 1). According to Lemma 10.1, f (x,y, l) is also calculable from
G h

x,y for l ≤ 2h+1 (property 2).

10.4.1.4 SimRank

The SimRank score (Jeh and Widom, 2002) is motivated by the intuition that two
nodes are similar if their neighbors are also similar. It is defined in the following
recursive way: if x = y, then s(x,y) := 1; otherwise,

s(x,y) := γ
∑a∈Γ (x) ∑b∈Γ (y) s(a,b)
|Γ (x)| · |Γ (y)| (10.29)

where γ is a constant between 0 and 1. According to (Jeh and Widom, 2002), Sim-
Rank has an equivalent definition:

216 Muhan Zhang

s(x,y) = ∑
w:(x,y)⊸(z,z)

P[w]γ len(w), (10.30)

where w : (x,y)⊸ (z,z) denotes all simultaneous walks such that one walk starts at
x, the other walk starts at y, and they first meet at any vertex z. For a simultaneous
walk w = ⟨(v0,u0), · · · ,(vk,uk)⟩, len(w) = k is the length of the walk. The term P[w]
is similarly defined as ∏

k−1
i=0

1
|Γ (vi)||Γ (ui)| , describing the probability of this walk. Now

we have the following theorem.

Theorem 10.3. SimRank is a γ-decaying heuristic which satisfies the properties in
Theorem 10.1.

Proof. We write s(x,y) as follows.

s(x,y) =
∞

∑
l=1

∑
w:(x,y)⊸(z,z)

len(w)=l

P[w]γ l , (10.31)

Defining f (x,y, l) := ∑w:(x,y)⊸(z,z)
len(w)=l

P[w] reveals that SimRank is a γ-decaying

heuristic. Note that f (x,y, l) ≤ 1 < 1
γ
. It is easy to see that f (x,y, l) is also

calculable from G h
x,y for l ≤ h.

10.4.1.5 Discussion

There exist several other high-order heuristics based on path counting or random
walk (Lü and Zhou, 2011) which can be as well incorporated into the γ-decaying
heuristic framework. Another interesting finding is that first and second-order
heuristics can be unified into this framework too. For example, common neighbors
can be seen as a γ-decaying heuristic with η = γ =1, and f (x,y, l) = |Γ (x)∩Γ (y)|
for l = 1, f (x,y, l) = 0 otherwise.

The above results reveal that most existing link prediction heuristics inherently
share the same γ-decaying heuristic form, and thus can be effectively approximated
from an h-hop enclosing subgraph with exponentially smaller approximation er-
ror. The ubiquity of γ-decaying heuristics is not by accident—it implies that a suc-
cessful link prediction heuristic is better to put exponentially smaller weight on
structures far away from the target, as remote parts of the network intuitively make
little contribution to link existence. The γ-decaying heuristic theory builds the foun-
dation for learning supervised heuristics from local enclosing subgraphs, as they
imply that local enclosing subgraphs already contain enough information to learn
good graph structure features for link prediction which is much desired considering

10 Graph Neural Networks: Link Prediction 217

learning from the entire network is often infeasible. This motivates the proposition
of subgraph-based methods.

To summarize, from small enclosing subgraphs extracted around links, we are
able to accurately calculate first and second-order heuristics, and approximate a
wide range of high-order heuristics with small errors. Therefore, given a sufficiently
expressive GNN, learning from such enclosing subgraphs is expected to achieve
performance at least as good as a wide range of heuristics.

10.4.2 Labeling Trick

In Section 10.3.3, we have briefly discussed the difference between node-based
methods’ and subgraph-based methods’ link representation learning abilities. This
is formalized into the analysis of labeling trick (Zhang et al, 2020c).

10.4.2.1 Structural Representation

We first introduce some preliminary knowledge on structural representation, which
is a core concept in the analysis of labeling trick.

We define a graph to be G = (V ,E ,A), where V = {1,2, . . . ,n} is the set of
n vertices, E ⊆ V × V is the set of edges, and A ∈ Rn×n×k is a 3-dimensional
tensor (we call it adjacency tensor) containing node and edge features. The diagonal
components Ai,i,: denote features of node i, and the off-diagonal components Ai, j,:
denote features of edge (i, j). We further use A ∈ {0,1}n×n to denote the adjacency
matrix of G with Ai, j = 1 iff (i, j) ∈ E. If there are no node/edge features, we let
A= A. Otherwise, A can be regarded as the first slice of A, i.e., A = A:,:,1.

A permutation π is a bijective mapping from {1,2, . . . ,n} to {1,2, . . . ,n}. De-
pending on the context, π(i) can mean assigning a new index to node i ∈ V , or
mapping node i to node π(i) of another graph. All n! possible π’s constitute the
permutation group Πn. For joint prediction tasks over a set of nodes, we use S to
denote the target node set. For example, S = {i, j} if we want to predict the link
between i, j. We define π(S) = {π(i)|i ∈ S}. We further define the permutation of A
as π(A), where π(A)π(i),π(j),: = Ai, j,:.

Next, we define set isomorphism, which generalizes graph isomorphism to arbi-
trary node sets.

Definition 10.3. (Set isomorphism) Given two n-node graphs G = (V ,E ,A), G ′ =
(V ′,E ′,A′), and two node sets S⊆V , S′⊆V ′, we say (S,A) and (S′,A′) are isomor-
phic (denoted by (S,A)≃ (S′,A′)) if ∃π ∈Πn such that S = π(S′) and A= π(A′).

When (V ,A)≃ (V ′,A′), we say two graphs G and G ′ are isomorphic (abbreviated
as A≃ A′ because V = π(V ′) for any π). Note that set isomorphism is more strict
than graph isomorphism, because it not only requires graph isomorphism, but also
requires that the permutation maps a specific node set S to another node set S′.

218 Muhan Zhang

In practice, when S ̸= V , we are often more concerned with the case of A = A′,
where we are to find isomorphic node sets in the same graph (automorphism).
For example, when S = {i},S′ = { j} and (i,A) ≃ (j,A), we say nodes i and j are
isomorphic in graph A (or they have symmetric positions/same structural role within
the graph). An example is v2 and v3 in Figure 10.3 left.

We say a function f defined over the space of (S,A) is permutation invariant
(or invariant for abbreviation) if ∀π ∈Πn, f (S,A) = f (π(S),π(A)). Similarly, f is
permutation equivariant if ∀π ∈Πn, π(f (S,A)) = f (π(S),π(A)).

Now we define structural representation of a node set, following (Srinivasan and
Ribeiro, 2020b; Li et al, 2020e). It assigns a unique representation to each equiva-
lence class of isomorphic node sets.

Definition 10.4. (Most expressive structural representation) Given an invariant
function Γ (·), Γ (S,A) is a most expressive structural representation for (S,A) if
∀S,A,S′,A′, Γ (S,A) = Γ (S′,A′)⇔ (S,A)≃ (S′,A′).

For simplicity, we will briefly use structural representation to denote most expres-
sive structural representation in the rest of this section. We will omit A if it is
clear from context. We call Γ (i,A) a structural node representation for i, and call
Γ ({i, j},A) a structural link representation for (i, j).

Definition 10.4 requires the structural representations of two node sets to be the
same if and only if they are isomorphic. That is, isomorphic node sets always have
the same structural representation, while non-isomorphic node sets always have
different structural representations. This is in contrast to positional node embed-
dings such as DeepWalk (Perozzi et al, 2014) and matrix factorization (Mnih and
Salakhutdinov, 2008), where two isomorphic nodes can have different node embed-
dings (Ribeiro et al, 2017).

So why do we need structural representations? Formally speaking, Srinivasan
and Ribeiro (2020b) prove that any joint prediction task over node sets only requires
most-expressive structural representations of node sets, which are the same for two
node sets if and only if these two node sets are isomorphic. This means, for link pre-
diction tasks, we need to learn the same representation for isomorphic links while
discriminating non-isomorphic links by giving them different representations. Intu-
itively speaking, two links being isomorphic means they should be indistinguishable
from any perspective—if one link exists, the other should exist too, and vice versa.
Therefore, link prediction ultimately requires finding such a structural link repre-
sentation for node pairs which can uniquely identify link isomorphism classes.

According to Figure 10.3 left, node-based methods that directly aggregate two
node representations cannot learn such a valid structural link representation because
they cannot differentiate non-isomorphic links such as (v1,v2) and (v1,v3). One may
wonder whether using one-hot encoding of node indices as the input node features
help node-based methods learn such a structural link representation. Indeed, using
node-discriminating features enables node-based methods to learn different repre-
sentations for (v1,v2) and (v1,v3) in Figure 10.3 left. However, it also loses GNN’s
ability to map isomorphic nodes (such as v2 and v3) and isomorphic links (such
as (v1,v2) and (v4,v3)) to the same representations, since any two nodes already

10 Graph Neural Networks: Link Prediction 219

have different representations from the beginning. This might result in poor gener-
alization ability—two nodes/links may have different final representations even they
share identical neighborhoods.

To ease our analysis, we also define a node-most-expressive GNN, which gives
different representations to all non-isomorphic nodes and gives the same represen-
tation to all isomorphic nodes. In other words, a node-most-expressive GNN learns
structural node representations.

Definition 10.5. (Node-most-expressive GNN) A GNN is node-most-expressive if
it satisfies: ∀i,A, j,A′, GNN(i,A) = GNN(j,A′)⇔ (i,A)≃ (j,A′).

Although a polynomial-time implementation of a node-most-expressive GNN is not
known, practical GNNs based on message passing can still discriminate almost all
non-isomorphic nodes (Babai and Kucera, 1979), thus well approximating its power.

10.4.2.2 Labeling Trick Enables Learning Structural Representations

Now, we are ready to introduce the labeling trick and see how it enables learning
structural representations of node sets. As we have seen in Section 10.4.2, a simple
zero-one labeling trick can help a GNN distinguish non-isomorphic links such as
(v1,v2) and (v1,v3) in Figure 10.3 left. At the same time, isomorphic links, such
as (v1,v2) and (v4,v3), will still have the same representation, since the zero-one
labeled graph for (v1,v2) is still symmetric to the zero-one labeled graph for (v4,v3).
This brings an exclusive advantage over using one-hot encoding of node indices.

Below we give the formal definition of labeling trick, which incorporates the
zero-one labeling trick as one specific form.

Definition 10.6. (Labeling trick) Given (S,A), we stack a labeling tensor L(S) ∈
Rn×n×d in the third dimension of A to get a new A(S) ∈ Rn×n×(k+d), where L satis-
fies: ∀S,A,S′,A′,π ∈ Πn, (1) L(S) = π(L(S

′))⇒ S = π(S′), and (2) S = π(S′),A =

π(A′)⇒ L(S) = π(L(S
′)).

To explain a bit, labeling trick assigns a label vector to each node/edge in graph
A, which constitutes the labeling tensor L(S). By concatenating A and L(S), we get
the adjacency tensor A(S) of the new labeled graph. By definition we can assign
labels to both nodes and edges. For simplicity, here we only consider node labels,
i.e., we let off-diagonal components L(S)i, j,: be all zero.

The labeling tensor L(S) should satisfy two conditions in Definition 10.6. The
first condition requires the target nodes S to have distinct labels from those of the
rest nodes, so that S is distinguishable from others. This is because if a permutation
π preserving node labels exists between nodes of A and A′, then S and S′ must have
distinct labels to guarantee S′ is mapped to S by π . The second condition requires
the labeling function to be permutation equivariant, i.e., when (S,A) and (S′,A′) are
isomorphic under π , the corresponding nodes i∈ S, j∈ S′, i= π(j) must always have
the same label. In other words, the labeling should be consistent across different S.

220 Muhan Zhang

For example, the zero-one labeling is a valid labeling trick by always giving label 1
to nodes in S and 0 otherwise, which is both consistent and S-discriminating. How-
ever, an all-one labeling is not a valid labeling trick, because it cannot distinguish
the target set S.

Now we introduce the main theorem of labeling trick showing that with a valid
labeling trick, a node-most-expressive GNN can learn structural link representations
by aggregating its node representations learned from the labeled graph.

Theorem 10.4. Given a node-most-expressive GNN and an injective set aggrega-
tion function AGG, for any S,A,S′,A′, GNN(S,A(S)) = GNN(S′,A′(S

′))⇔ (S,A)≃
(S′,A′), where GNN(S,A(S)) := AGG({GNN(i,A(S))|i ∈ S}).

The proof of the above theorem can be found in Appendix A of (Zhang et al, 2020c).
Theorem 10.4 implies that AGG({GNN(i,A(S))|i ∈ S}) is a structural represen-
tation for (S,A). Remember that directly aggregating structural node representa-
tions learned from the original graph A does not lead to structural link representa-
tions. Theorem 10.4 shows that aggregating over the structural node representations
learned from the adjacency tensor A(S) of the labeled graph, somewhat surprisingly,
results in a structural representation for S.

The significance of Theorem 10.4 is that it closes the gap between GNN’s node
representation nature and link prediction’s link representation requirement, which
solves the open question raised in (Srinivasan and Ribeiro, 2020b) questioning
node-based GNN methods’ ability of performing link prediction. Although directly
aggregating pairwise node representations learned by GNNs does not lead to struc-
tural link representations, combining GNNs with a labeling trick enables learning
structural link representations.

It can be easily proved that the zero-one labeling, DRNL and Distance Encod-
ing (DE) (Li et al, 2020e) are all valid labeling tricks. This explains subgraph-
based methods’ superior empirical performance than node-based methods (Zhang
and Chen, 2018b; Zhang et al, 2020c).

10.5 Future Directions

In this section, we introduce several important future directions for link prediction:
accelerating subgraph-based methods, designing more powerful labeling tricks, and
understanding when to use one-hot features.

10.5.1 Accelerating Subgraph-Based Methods

One important future direction is to accelerate subgraph-based methods. Although
subgraph-based methods show superior performance than node-based methods both
empirically and theoretically, they also suffer from a huge computation complexity,

10 Graph Neural Networks: Link Prediction 221

which prevent them from being deployed in modern recommendation systems. How
to accelerate subgraph-based methods is thus an important problem to study.

The extra computation complexity of subgraph-based methods comes from their
node labeling step. The reason is that for every link (i, j) to predict, we need to
relabel the graph according to (i, j). The same node v will be labeled differently
depending on which one is the target link, and will be given a different node rep-
resentation by the GNN when it appears in different links’ labeled graphs. This is
different from node-based methods, where we do not relabel the graph and each
node only has a single representation.

In other words, for node-based methods, we only need to apply the GNN to
the whole graph once to compute a representation for each node, while subgraph-
based methods need to repeatedly apply the GNN to differently labeled subgraphs
each corresponding to a different link. Thus, when computing link representations,
subgraph-based methods require re-applying the GNN for each target link. For a
graph with n nodes and m links to predict, node-based methods only need to apply
a GNN O(n) times to get a representation for each node (and then use some sim-
ple aggregation function to get link representations), while subgraph-based methods
need to apply a GNN O(m) times for all links. When m≫ n, subgraph-based meth-
ods have much worse time complexity than node-based methods, which is the price
for learning more expressive link representations.

Is it possible to accelerate subgraph-based methods? One possible way is to sim-
plify the enclosing subgraph extraction process and simplify the GNN architecture.
For example, we may adopt sampling or random walk when extracting the enclosing
subgraphs which might largely reduce the subgraph sizes and avoid hub nodes. It is
interesting to study such simplifications’ influence on performance. Another possi-
ble way is to use distributed and parallel computing techniques. The enclosing sub-
graph extraction process and the GNN computation on a subgraph are completely
independent of each other and are naturally parallelizable. Finally, using multi-stage
ranking techniques could also help. Multi-stage ranking will first use some simple
methods (such as traditional heuristics) to filter out most unlikely links, and use
more powerful methods (such as SEAL) in the later stage to only rank the most
promising links and output the final recommendations/predictions.

Either way, solving the scalability issue of subgraph-based methods can be a
great contribution to the field. That means we can enjoy the superior link prediction
performance of subgraph-based GNN methods without using much more computa-
tion resources, which is expected to extend GNNs to more application domains.

10.5.2 Designing More Powerful Labeling Tricks

Another direction is to design more powerful labeling tricks. Definition 10.6 gives
a general definition of labeling trick. Although any labeling trick satisfying Defi-
nition 10.6 can enable a node-most-expressive GNN to learn structural link repre-
sentations, the real-world performance of different labeling tricks can vary a lot due

222 Muhan Zhang

to the limited expressive power and depths of practical GNNs. Also, some subtle
differences in implementing a labeling trick can also result in large performance
differences. For example, given the two target nodes x and y, when computing the
distance d(i,x) from a node i to x, DRNL will temporarily mask node y and all its
edges, and when computing the distance d(i,y), DRNL will temporarily mask node
x and all its edges (Zhang and Chen, 2018b). The reason for this “masking trick” is
that DRNL aims to use the pure distance between i and x without the influence of
y. If we do not mask y, d(i,x) will be upper bounded by d(i,y)+d(x,y), which ob-
scures the “true distance” between i and x and might hurt the node labels’ ability to
discriminate structurally-different nodes. As shown in Appendix H of (Zhang et al,
2020c), this masking trick can greatly improve the performance. It is thus interest-
ing to study how to design a more powerful labeling trick (not necessarily based on
shortest path distance like DRNL and DE). It should not only distinguish the target
nodes, but also assign diverse but generalizable labels to nodes with different roles
in the subgraph. A further theoretical analysis on the power of different labeling
tricks is also needed.

10.5.3 Understanding When to Use One-Hot Features

Finally, one last important question remaining to be answered is when we should
use the original node features and when we should use one-hot encoding features of
node indices. Although using one-hot features makes it infeasible to learn structural
link representations as discussed in Section 10.4.2, node-based methods using one-
hot features show strong performance on dense networks (Zhang et al, 2020c), out-
performing subgraph-based methods without using one-hot features by large mar-
gins. On the other hand, Kipf and Welling (2017b) show that GAE/VGAE with
one-hot features gives worse performance than using original features. Thus, it is
interesting to study when to use one-hot features and when to use original features
and theoretically understand their representation power differences on networks of
different properties. Srinivasan and Ribeiro (2020b) provide a good analysis con-
necting positional node embeddings (such as DeepWalk) with structural node repre-
sentations, showing that positional node embeddings can be seen as a sample while
the structural node representation can be seen as a distribution. This can serve as
a starting point to study the power of GNNs using one-hot encoding features, as
GNNs using one-hot encoding features can be seen as combining positional node
embeddings with message passing.

10 Graph Neural Networks: Link Prediction 223

Editor’s Notes: Link prediction is the problem of predicting the existence
of a link between two nodes in a network. Hence the techniques are rele-
vant to graph structure learning (chapter 19), which aims to discover useful
graph structure, i.e. links, from data. Scalability property (chapter 6) and
expressiveness power theory (chapter 8) play an important role in apply-
ing and designing link prediction methods. Link prediction also motivates
several downstream tasks in various domains, such as predicting protein-
protein and protein-drug interactions (chapter 25), drug development (chap-
ter 24), recommender systems (chapter 19). Besides, predicting links in
the complex network, including dynamic graphs (chapter 19), knowledge
graphs (chapter 24) and heterogeneous graphs (chapter 26), are also the ex-
tension of link prediction tasks.

Chapter 11
Graph Neural Networks: Graph Generation

Renjie Liao

Abstract In this chapter, we first review a few classic probabilistic models for graph
generation including the Erdős–Rényi model and the stochastic block model. Then
we introduce several representative modern graph generative models that lever-
age deep learning techniques like graph neural networks, variational auto-encoders,
deep auto-regressive models, and generative adversarial networks. At last, we con-
clude the chapter with a discussion on potential future directions.

11.1 Introduction

The study of graph generation revolves around building probabilistic models over
graphs which are also called networks in many scientific disciplines. This problem
has its roots in a branch of mathematics, called random graph theory (Bollobás,
2013), which largely lies at the intersection between the probability theory and the
graph theory. It is also at the core of a new academic field, called network sci-
ence (Barabási, 2013). Historically, researchers in these fields are often interested in
building random graph models (i.e., constructing distributions of graphs using cer-
tain parametric families of distributions) and proving the mathematical properties
of such models. Albeit being an extremely fruitful and successful research direction
that spawns numerous outcomes, these classic models suffer from being too sim-
plistic to capture the complex phenomenon (e.g., highly-clustered, well-connected,
scale-free) that appeared in the real-world graphs.

With the advent of powerful deep learning techniques like graph neural net-
works, we can build more expressive probabilistic models of graphs, i.e., the so-
called deep graph generative models. Such deep models can better capture the com-
plex dependencies within the graph data to generate more realistic graphs and fur-
ther build accurate predictive models. However, the downside is that these models

Renjie Liao
University of Toronto, e-mail: rjliao@cs.toronto.edu

225
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_11

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:rjliao@cs.toronto.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_11&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_11

226 Renjie Liao

are often so complicated that we can rarely analyze their properties in a precise
manner. The recent practices of these models have demonstrated impressive per-
formances in modeling real-world graphs/networks, e.g., social networks, citation
networks, and molecule graphs.

In the following, we first introduce the classic graph generative models in Section
11.2 and then the modern ones that leverage the deep learning techniques in Section
11.3. At last, we conclude the chapter and discuss some promising future directions.

11.2 Classic Graph Generative Models

In this section, we review two popular variants of the classic graph generative mod-
els: the Erdős–Rényi model (Erdős and Rényi, 1960) and the stochastic block model
(Holland et al, 1983). They are often used as handy baselines in many applications
since we have already gained deep understandings of their properties. There are
many other graph generative models like the Watts–Strogatz small-world model
(Watts and Strogatz, 1998) and the Barabási–Albert (BA) preferential attachment
model (Barabási and Albert, 1999). Barabási (2013) provides a thorough survey
on these models and other aspects of network science. In the context of machine
learning, there are also quite a few non-deep-learning graph generative models like
Kronecker graphs (Leskovec et al, 2010). We do not cover these models due to the
space limit.

11.2.1 Erdős–Rényi Model

We first explain one of the most well known random graph models, i.e., Erdős–Rényi
model (Erdős and Rényi, 1960), named after two Hungarian mathematicians Paul
Erdős and Alfréd Rényi. Note that this model has been independently proposed at
around the same time by Edgar Gilbert in (Gilbert, 1959). In the following, we first
describe the model along with its properties and then discuss its limitations.

11.2.1.1 Model

The Erdős–Rényi model has two closely variants, namely, G(n, p) and G(n,m).
G(n,p) Model In the G(n, p) model, we are given n labeled nodes and generate

a graph by randomly connecting an edge linking one node to the other with the
probability p, independently from every other edge. In other words, all

(n
2

)
possible

edges have the equal probability p to be included. Therefore, the probability of
generating a graph with m edges under this model is as below,

p(a graph with n nodes and m edges) = pm(1− p)(
n
2)−m. (11.1)

11 Graph Neural Networks: Graph Generation 227

The parameter p controls the “density” of the graph, i.e., a larger value of p makes
the graph become more likely to contain more edges. When p = 1

2 , the above prob-

ability becomes 1
2
(n

2), i.e., all possible 2(
n
2) graphs are chosen with equal probability.

Due to the independence of the edges in G(n, p), we can easily derive a few
properties from this model.

• The expected number of edges is
(n

2

)
p.

• The degree distribution of any node v is binomial:

p(degree(v) = k) =
(

n
k

)
pk(1− p)n−1−k (11.2)

• If N p is a constant and n→ ∞, the degree distribution of any node v is Poisson:

p(degree(v) = k) =
(np)ke−np

k!
(11.3)

There is an enormous number of more involved properties of this model that has
been proved (e.g., by Erdős and Rényi in the original paper). We list a few others as
below.

• If p > (1+ε) lnn
n , then a graph will almost surely be connected.

• If p < (1+ε) lnn
n , then a graph will almost surely contain isolated vertices, and

thus be disconnected.
• If N p < 1, then a graph will almost surely have no connected components of

size larger than O(log(n)).

Here almost surely means the probability of the event happens with probability 1
(i.e., the set of possible exceptions has zero measure).

G(n,m) Model In the G(n,m) model, we are given n labeled nodes and generate
a graph by uniformly randomly choosing a graph from the set of all graphs with n

nodes and m edges, i.e., the probability of choosing each graph is
((n

2)
m

)−1
. There are

also many important properties associated with the G(n,m) model. In particular, it
is interchangeable with the G(n, p) model provided that m is close to

(n
2

)
p in most

investigations. Chapter 2 of (Bollobás and Béla, 2001) provides a comprehensive
discussion on the relationship between these two models. The G(n, p) model is more
commonly used in practice than the G(n,m) model, partly due to the ease of analysis
brought by the independence of the edges.

11.2.1.2 Discussion

As a seminal work in the random graph theory, the Erdős–Rényi model inspires
much subsequent work to study and generalize this model. However, the assump-
tions of this model, e.g., edges are independent and each edge is equally likely to
be generated, are too strong to capture the properties of the real-world graphs. For
example, the degree distribution of the Erdős–Rényi model has an exponential tail

228 Renjie Liao

which means we rarely see node degrees span a broad range, e.g., several orders
of magnitude. Meanwhile, real-world graphs/networks like the World Wide Web
(WWW) are believed to possess a degree distribution that follows a power law, i.e.,
p(d) ∝ d−γ where d is the degree and the exponent γ is typically between 2 and
3. Essentially, this means that there are many nodes that have small node degrees,
whereas there are a few nodes which have extremely large node degrees (, hubs) in
the real-world graphs like WWW. Therefore, many improved models like the scale-
free networks (Barabási and Albert, 1999) were later proposed, which fit better to
the degree distribution of the real-world graphs.

11.2.2 Stochastic Block Model

Stochastic block models (SBM) are a family of random graphs with clusters of nodes
and are often employed as a canonical model for tasks like community detection
and clustering. It is proposed independently in a few scientific communities, e.g.,
machine learning and statistics (Holland et al, 1983), theoretical computer science
(Bui et al, 1987), and mathematics (Bollobás et al, 2007). It is arguably the simplest
model of a graph with communities/clusters. As a generative model, SBM could
provide ground-truth cluster memberships, which in turn could help benchmark and
understand different clustering/community detection algorithms. In the following,
we first introduce the basics of the model and then discuss its advantages as well as
limitations.

11.2.2.1 Model

We start the introduction by denoting the total number of nodes as n and the number
of communities/clusters as k. A prior probability vector p over the k clusters and
a k× k matrix W with entries in [0,1] are also given. We generate a random graph
following the procedure below:

1. For each node, we generate its community label (an integer from {1, · · · ,k}) by
independently sampling from p.

2. For each pair of nodes, denoting their community labels as i and j, we generate
an edge by independently sampling with probability Wi, j.

Basically, the community assignments of a pair of nodes determine the specific en-
try of W to be used, which in turn indicates how likely we connect this pair of nodes.
We denote such a model as SBM(n,p,W). Note that, if we set Wi, j = q for all com-
munities (i, j), then the corresponding SBM degenerates to the Erdős–Rényi model
G(n,q).

In the context of community detection, people are often interested in recovering
the community label given a random graph drawn from the SBM model. Denoting
the recovered and the ground-truth community labels as X ∈ Rn×1 and Y ∈ Rn×1,

11 Graph Neural Networks: Graph Generation 229

we can define the agreement R between two community labels as,

R(X ,Y) = max
P∈Π

1
n

n

∑
i=1

1 [Xi = (PY)i] , (11.4)

where P is a permutation matrix and Π is the set of all permutation matrices. Xi and
(PY)i are the i-th element of X and PY respectively. In short, the agreement consid-
ers the best possible reshuffle between two sequences of labels. Depending on the
requirement, we could examine the community detection algorithms in the sense
of exact recovery (i.e., cluster assignments are exactly recovered almost surely,
p(R(X ,Y) = 1) = 1) or partial recovery (i.e., at most 1− ε fraction of nodes are
mislabeled almost surely, p(R(X ,Y) ≥ ε) = 1). Researchers have established vari-
ous conditions under which a particular type of recovery is possible for SBM graphs.
For example, for SBMs with W = log(n)Q

n , where Q is a matrix with positive entries
and the same size as W , Abbe and Sandon (2015) shows that the exact recovery
is possible if and only if the minimum Chernoff-Hellinger divergence between any
two columns of diag(p)Q is no less than 1, where diag(p) is a diagonal matrix with
diagonal entries as p.

11.2.2.2 Discussion

Abbe (2017) provides an up-to-date and comprehensive survey on the SBM and
the fundamental limits (from both information-theoretic and computational per-
spectives) for community detection in the SBM. SBM is a more realistic random
graph model for describing graphs with community structures compared to the
Erdős–Rényi model. It also spawns many subsequent variants of block models like
the mixed membership SBM (Airoldi et al, 2008). However, the estimation of SBMs
on real-world graphs is hard since the number of communities is often unknown in
advance and some graphs may not exhibit clear community structures.

11.3 Deep Graph Generative Models

In this section, we review several representative deep graph generative models which
aim at building probabilistic models of graphs using deep neural networks. Based
on the type of deep learning techniques being used, we can roughly divide the cur-
rent literature into three categories: variational autoencoder (VAEs) (Kingma and
Welling, 2014) based methods, deep auto-regressive (Van Oord et al, 2016) meth-
ods, and generative adversarial networks (GANs) (Goodfellow et al, 2014b) based
methods. We introduce all three model classes in the subsequent sections.

230 Renjie Liao

11.3.1 Representing Graphs

We first introduce how a graph is represented in the context of deep graph generative
models. Suppose we are given a graph G = (V ,E) where V is the set of nodes/ver-
tices and E is the set of edges. Conditioning on a specific node ordering π , we can
represent the graph G as an adjacency matrix Aπ where Aπ ∈R|V |×|V |, where |V | is
the size of set V (i.e., the number of nodes). The adjacency matrix not only provides
a convenient representation of graphs on computers but also offers a natural way
to mathematically define a probability distribution over graphs. Here we explicitly
write the node ordering π in the subscript to emphasize that the rows and columns
of A are arranged according to the π . If we change the node ordering from π to π ′,
the adjacency matrix will be permuted (shuffling rows and columns) accordingly,
i.e., Aπ ′ = PAπ P⊤, where the permutation matrix P is constructed based on the pair
of node orderings (π,π ′). In other words, Aπ and Aπ ′ represent the same graph G .
Therefore, a graph G with an adjacency matrix Aπ can be equivalently represented
as a set of adjacency matrices {PAπ P⊤|P∈Π}where Π is the set of all permutation
matrices with size |V |× |V |. Note that, depending on the symmetric structures of
Aπ , there may exist two permutation matrices P1,P2 ∈Π so that P1Aπ P⊤1 = P2Aπ P⊤2 .
Therefore, we remove such redundancies and keep those uniquely permutated ad-
jacency matrices, denoted as A = {PAπ P⊤|P ∈ ΠG }. More precisely, ΠG is the
maximal subset of Π so that P1Aπ P⊤1 ̸= P2Aπ P⊤2 holds for any P1,P2 ∈ ΠG . We
add the subscript G to emphasize that ΠG depends on the given graph G . Note that
there exists a surjective mapping between Π and ΠG . For the ease of notations, we
will drop the subscript of the node ordering and use G ≡A = {PAP⊤|P ∈ ΠG } to
represent a graph from now on.

When considering the node features/attributes X , we can denote the graph struc-
tured data as G ≡ {(PAP⊤,PX)|P ∈ ΠG }1. Note that the rows of X are shuffled
according to P since each row of X corresponds to a node. In our context, we can
assume the maximum number of nodes of all graphs is n. If a graph has fewer nodes
than n, we can add dummy nodes (e.g., with all-zero features) which are isolated to
other nodes to make the size equal n. Therefore, X ∈ Rn×dX and A ∈ Rn×n where
dX is the feature dimension. To simplify the explanation, we do not include the
edge feature. But it is straightforward to modify the following models accordingly
to incorporate edge features.

11.3.2 Variational Auto-Encoder Methods

Due to the great success of VAEs in image generation (Kingma and Welling, 2014;
Rezende et al, 2014), it is natural to extend this framework to graph generation. This

1 Technically, there may exist two permutation matrices P1,P2 ∈ Π so that P1AP⊤1 = P2AP⊤2 and
P1X ̸= P2X . It thus seems to be necessary to define G ≡ {(PAP⊤,PX)|P ∈ Π}. However, as seen
later, we are always interested in distributions of node features that are exchangeable over nodes,
i.e., p(P1X) = p(P2X). Therefore, restricting ourselves to ΠG is sufficient for our exposition.

11 Graph Neural Networks: Graph Generation 231

idea has been explored from different aspects (Kipf and Welling, 2016; Jin et al,
2018a; Simonovsky and Komodakis, 2018; Liu et al, 2018d; Ma et al, 2018; Grover
et al, 2019; Liu et al, 2019b) and is often collectively named as GraphVAE. In the
following, we first highlight the common framework shared by all these methods
and then discuss some important variants.

11.3.2.1 The GraphVAE Family

Similar to vanilla VAEs, every model instance within the GraphVAE family con-
sists of an encoder (i.e., a variational distribution qφ (Z|A,X) parameterized by φ),
a decoder (i.e., a conditional distribution pθ (G |Z) parameterized by θ), and a prior
distribution (i.e., a distribution p(Z) typically with fixed parameters). Before intro-
ducing individual components, we first describe what the latent variables Z are. In
the context of graph generation, we typically assume that each node is associated
with a latent vector. Denoting the latent vector of the i-th node as zi, then Z ∈Rn×dZ

is obtained by stacking {zi} as row vectors. Such latent vectors should summarize
the information of the local subgraphs associated with individual nodes so that we
can decode/generate edges based on them. In other words, any pair of latent vec-
tors (zi,z j) is supposed to be informative to determine whether nodes (i, j) should
be connected. We could further introduce edge latent variables {zi j} to enrich the
model. Again, we do not consider such an option for simplicity since the underlying
modeling technique is roughly the same.

Encoder We first explain how to construct the encoder using a deep neural net-
work. Recall that the input to the encoder is the graph data (A,X). The natural can-
didate to deal with such data is a graph neural network, e.g., a graph convolutional
network (GCN) (Kipf and Welling, 2017b). For example, let us consider a two-layer
GCN as below,

H = Ãσ(ÃXW1)W2, (11.5)

where H ∈Rn×dH are the node representations (each node is associated with a size-
dH row vector). Ã = D−

1
2 (A+ I)D−

1
2 where D is the degree matrix (i.e., a diagonal

matrix of which the entries are the row sum of A+ I). I is the identity matrix. σ is
the nonlinearity which is often chosen to be the rectified linear unit (ReLU) (Nair
and Hinton, 2010). {W1,W2} are the learnable parameters. We can pad a constant to
the input feature dimension so that the bias term is absorbed into the weight matrix.
We adopt this convention for ease of notation.

Relying on the learned node representations H, we can construct the variational
distribution as below,

232 Renjie Liao

qφ (Z|A,X) =
n

∏
i=1

q(zi|A,X) (11.6)

q(zi|A,X) = N (µi,σiI) (11.7)
µ= MLPµ(H) (11.8)

logσ = MLPσ(H). (11.9)

Here we typically assume that the variational distribution q(Z|A,X) is conditionally
node-wise independent for the tractability consideration. µi and σi are the i-th rows
of µ and σ respectively. The learnable parameters φ consist of all parameters of
the two multi-layer perceptrons (MLPs) and the above GCN. Although the approx-
imated variational distribution defined in Eq. (11.6) is simple, it possesses a few
great properties. First, the probability distribution is invariant w.r.t. the permutation
of nodes. Mathematically, it means that given two different permutation matrices
P1,P2 ∈Π , we have

q(P1Z|P1AP⊤1 ,P1X) = q(P2Z|P2AP⊤2 ,P2X) (11.10)

This can be easily verified from the exchangeability of the product of probabilities
and the equivariance property of graph neural networks. Second, the neural net-
works underlying each Gaussian (i.e., “GNN + MLP”) are very powerful so that the
conditional distributions are expressive in capturing the uncertainty of latent vari-
ables. Third, this encoder is computationally cheaper than those which consider the
dependencies among different {zi} (e.g., an autoregressive encoder). It thus pro-
vides a solid baseline for investigating whether a more powerful encoder is needed
in a given problem.

Prior Similar to most VAEs, GraphVAEs often adopt a prior that is fixed during
the learning. For example, a common choice is an node-independent Gaussian as
below,

p(Z) =
n

∏
i=1

p(zi) (11.11)

p(zi) = N (0, I). (11.12)

Again, we could replace this fixed prior with more powerful ones like an autoregres-
sive model at the cost of more computation and/or a time-consuming pre-training
stage. But this prior serves as a good starting point to benchmark more complicated
alternatives, e.g., the normalizing flow based one in (Liu et al, 2019b).

Decoder The aim of a decoder in graph generative models is to construct a prob-
ability distribution over the graph and its feature/attributes conditioned on the latent
variables, i.e., p(G |Z). However, as we discussed previously, we need to consider all
possible node orderings (each corresponds to a permuted adjacency matrix) which
leaves the graph unchanged, i.e.,

p(G |Z) = ∑
P∈ΠG

p(PAP⊤,PX |Z). (11.13)

11 Graph Neural Networks: Graph Generation 233

Recall that ΠG is the maximal subset of the set of all possible permutation matrices
Π so that P1Aπ P⊤1 ̸= P2Aπ P⊤2 holds for any P1,P2 ∈ ΠG . To build such a decoder,
we first construct a probability distribution over adjacency matrix and node feature
matrix. For example, we show a popular and simple construction (Kipf and Welling,
2016) as below,

p(A,X |Z) = ∏
i, j

p(Ai j|Z)
n

∏
i=1

p(xi|Z) (11.14)

p(Ai j|Z) = Bernoulli(Θi j) (11.15)
p(xi|Z) = N (µ̃i, σ̃i) (11.16)

Θi j = MLPΘ ([zi∥z j]) (11.17)
µ̃i = MLPµ̃(zi) (11.18)
σ̃i = MLPσ̃(zi), (11.19)

where we adopt an edge-independent Bernoulli distribution over edges and node-
wise independent Gaussian distribution over node features. [zi∥z j] means concate-
nating zi and z j. xi is the i-th row of node feature matrix X . The first product term
in Eq. (11.14) sums over all n2 possible edges. The learnable parameters consist of
those of three MLPs. This decoder is simple yet powerful. However, given the latent
variables Z, the decoder is not permutation invariant in general, i.e., for any two
different permutation matrices P1 and P2,

p(P1AP⊤1 ,P1X |Z) ̸= p(P2AP⊤2 ,P2X |Z). (11.20)

Note that there are corner cases so that p(P1AP⊤1 ,P1X |Z) = p(P2AP⊤2 ,P2X |Z) holds.
For example, if an adjacency matrix A has certain symmetries, there could exist
a pair of (P1,P2) so that P1AP⊤1 = P2AP⊤2 . But this does not hold for all pairs of
(P1,P2). As a second example, if all Θi j are the same for all (i, j), all µ̃i are the
same for all i, and all σ̃i are the same for all i, then for any two permutation ma-
trices (P1,P2), we have p(P1AP⊤1 ,P1X |Z) = p(P2AP⊤2 ,P2X |Z). Nevertheless, these
two cases happen rarely in practice.

Equipped with the distribution in Eq. (11.14), we can evaluate the terms on the
right hand side of Eq. (11.13). However, the number of permutation matrices in ΠG

can be as large as n! which makes the exact evaluation computationally prohibitive.
There are a few ways in the literature to approximate it. For example, we can just
use the maximum term as below,

p(G |Z) = ∑
P∈ΠG

p(PAP⊤,PX |Z)≈ max
P∈ΠG

p(PAP⊤,PX |Z). (11.21)

Unfortunately, this maximization problem can be interpreted as an integer quadratic
programming which is itself a hard optimization problem. To approximately solve
the matching problem, Simonovsky and Komodakis (2018) exploit a relaxed max-
pooling matching solver (Cho et al, 2014b). On the other hand, there are some
canonical node orderings in certain applications. For example, the simplified molecular-

234 Renjie Liao

input line-entry system (SMILES) string (Weininger, 1988) provides a sequential
ordering of atoms (nodes) of molecule graphs in chemistry. Based on the canoni-
cal node ordering, we can construct the corresponding permutation P̃ and simply
approximate the conditional probability as,

p(G |Z) = ∑
P∈ΠG

p(PAP⊤,PX |Z)≈ p(P̃AP̃⊤, P̃X |Z). (11.22)

Objective The training objective of GraphVAE is similar to regular VAEs, i.e.,
the evidence lower bound (ELBO),

max
θ ,φ

Eqφ (Z|A,X) [log pθ (G |Z)]−KL(qφ (Z|A,X)∥p(Z)) (11.23)

To learn the encoder and the decoder, we need to sample from the encoder to ap-
proximate the expectation in Eq. (11.23) and leverage the reparameterization trick
(Kingma and Welling, 2014) to back-propagate the gradient.

11.3.2.2 Hierarchical and Constrained GraphVAEs

There are many variants derived from the GraphVAE family mentioned above. We
now briefly introduce two important types of variants, i.e., hierarchical GraphVAE
(Jin et al, 2018a) and Constrained GraphVAE (Liu et al, 2018d; Ma et al, 2018).

Hierarchical GraphVAEs One representative work of hierarchical GraphVAEs
is Junction Tree VAEs (Jin et al, 2018a) which aim at modeling the molecule graphs.
The key idea is to build a GraphVAE relying on the hierarchical graph represen-
tations of molecules. In particular, we first apply the tree decomposition to obtain
a junction tree T from the original molecule graph G . A junction tree is a cluster
tree (each node is a set of one or more variables of the original graph) with the run-
ning intersection property (Barber, 2004). It provides a coarsened representation of
the original graph since one node in a junction tree may correspond to a subgraph
with several nodes in the original graph. As shown in Figure 11.1, there are two
graphs corresponding to two levels, i.e., the original molecule graph G (1st level)
and the decomposed junction tree T (2nd level). Since we can efficiently perform
tree decomposition to obtain the junction tree, the tree itself is not a latent variable.
Jin et al (2018a) propose to use Gated Graph Neural Networks (GGNNs) (Li et al,
2016b) as encoders (one for each level) and construct variational posteriors q(ZG |G)
and q(ZT |T) as Gaussians. To decode the molecule graph, we need to perform a
two-level generation process conditioned on the sampled latent variables ZT and
ZG . A junction tree is first generated by a autoregressive decoder which is again
based on GGNNs. Conditioned on the generated tree, Jin et al (2018a) resort to
maximum-a-posterior (MAP) formulation to generate the final molecule graph, i.e.,
finding the compatible subgraphs at each node of the tree so that the overall score
(log-likelihood) of the resultant graph (i.e., replacing each node in the tree with the
chosen subgraph) is maximized. The whole model can be learned similarly to other

11 Graph Neural Networks: Graph Generation 235

Fig. 11.1: Junction Tree VAEs. The junction tree corresponding to the molecule
graph is obtained via the tree decomposition as shown in the top-right. A node/clus-
ter in the junction tree (color-shaded) may correspond to a subgraph in the original
molecule graph. Two GNN-based encoders are applied to the molecular graph and
junction tree respectively to construct the variational posterior distributions over
latent variables ZG and ZT . During the generation, we first generate the junction
tree using an autoregressive decoder and then obtains the final molecule graph via
approximately solving a maximum-a-posterior problem. Adapted from Figure 3 of
(Jin et al, 2018a).

GraphVAEs. This model provides an interesting extension of GraphVAEs to hier-
archical graph generation and demonstrates strong empirical performances. There
are other important application-dependent details which greatly improve efficiency.
For example, we can build a dictionary of chemically valid subgraphs so that each
generation step in the 2nd level decoding generates a subgraph rather than a single
node. Nevertheless, the model design largely relies on the efficiency of the chosen
junction tree algorithm and certain application-dependent properties. It is unclear
how well this model performs on general graphs other than molecules.

236 Renjie Liao

Constrained GraphVAEs In many applications of deep graph generative mod-
els, certain constraints on the generated graphs are preferred. For example, while
generating molecule graphs, the configuration of chemical bonds (edges) must meet
the valence criteria of the atoms (nodes). How to ensure the generated graphs sat-
isfy such constraints is a challenging problem. There are generally two types of
approaches to overcome it in the context of GraphVAEs. The first type is to design
a decoder so that all generated graphs satisfy the constraints by construction. For
example, an autoregressive decoder is often adopted as in (Liu et al, 2018d; Dai
et al, 2018b). At each step, conditioned on the currently generated graph, the model
generates a new node, a new edge, and the node/edge attributes following certain
rules, i.e., ruling out invalid options (those would violate the constraints) like what
GrammarVAEs (Kusner et al, 2017) do. The other type of approach is to treat the
constraints softly. Similar to how constrained optimization problems are converted
to unconstrained ones by adding Lagrangians, Ma et al (2018) propose Lagrangian-
based regularizers to incorporate constraints like valence constraint for molecule
graphs, connectivity constraint, and node compatibility. The benefits of such meth-
ods are that the generation could be much simpler and more efficient since we do not
need a slow autoregressive decoder. Also, the regularization is only applied during
learning and does not bring any overhead in the generation. Of course, the downside
is that the generated graph my not exactly satisfy all constraints since the regular-
ization only acts softly in the optimization.

11.3.3 Deep Autoregressive Methods

Deep autoregressive models like PixelRNNs (Van Oord et al, 2016) and PixelCNNs
(Oord et al, 2016) have achieved tremendous successes in image modeling. There-
fore, it is natural to generalize this type of method to graphs. The shared underlying
idea of these autoregressive models is to characterize the graph generation process
as a sequential decision-making process and make a new decision at each step con-
ditioning on all previously made decisions. For example, as shown in Figure 11.2,
we can first decide whether to add a new node, then decide whether to add a new
edge, so on and so forth. If node/edge labels are considered, we can further sample
from a categorical distribution at each step to specify such labels. The key question
of this class of methods is how to build a probabilistic model so that our current
decision depends on all previous historical choices.

11.3.3.1 GNN-based Autoregressive Model

The first GNN-based autoregressive model was proposed in (Li et al, 2018d) of
which the high-level idea is exactly the same as shown in Figure 11.2. Sup-
pose at time step t − 1, we already generated a partial graph denoted as G t−1 =
(V t−1,E t−1). The corresponding adjacency matrix and node feature matrix are de-

11 Graph Neural Networks: Graph Generation 237

Fig. 11.2: The overview of the deep graph generative model in (Li et al, 2018d).
The graph generation is formulated as a sequential decision-making process. At
each step of the generation, the model needs to decide: 1) whether add a new node
or stop the whole generation; 2) whether add a new edge (one end connected to the
new node) or not; 3) which existing node to connect for the new edge. Adapted from
Figure 1 of (Li et al, 2018d).

noted as (At−1,X t−1). At time step t, the model needs to decide: 1) whether we
add a new node or we stop the generation (denoting the probability as pAddNode);
2) whether we add an edge that links any existing node to the newly added node
(denoting the probability as pAddEdge); 3) choose a existing node to link to the newly
added node (denoting the probability as pNodes). For simplicity, we define pAddNode
to be a Bernoulli distribution. We can extend it to a categorical one if node labels/-
types are considered. pAddEdge is yet another Bernoulli distribution whereas pNodes is
a categorical distribution with size |V t−1| (i.e., its size will change as the generation
goes on).

Message Passing Graph Neural Networks To construct the above probabilities
of decisions, we first build a message passing graph neural network (Scarselli et al,
2008; Li et al, 2016b; Gilmer et al, 2017) to learn node representations. The input
to the GNN at time step t−1 is (At−1,Ht−1) where Ht−1 is the node representation
(one row corresponds to a node). Note that at time 0, since the graph is empty, we
need to generate a new node to start. The generation probability pAddNode will be
output by the model based on some randomly initialized hidden state. If we model
the node labels/types or node features, we can also use them as additional node
representations, e.g., concatenating them with rows of Ht−1.

The one-step message passing is shown as below,

mi j = fMsg(ht−1
i ,ht−1

j) ∀(i, j) ∈ E (11.24)

m̄i = fAgg({mi j|∀ j ∈Ωi}) ∀i ∈ V (11.25)

h̃t−1
i = fUpdate(ht−1

i ,m̄i) ∀i ∈ V , (11.26)

where fMsg, fAgg, and fUpdate are the message function, the aggregation function, and
the node update function respectively. For the message function, we often instantiate
fMsg as an MLP. Note that if edge features are considered, one can incorporate
them as input to fMsg. fAgg could simply be an average or summation operator.
Typical examples of fUpdate include gated recurrent units (GRUs) (Cho et al, 2014a)

Generation steps

Add edge?
(yes/no)

Add edge?
(yes/no)

2

Add node (2)?
(yes/no)

2

Pick node (0) to
add edge (0,2)

Add node (1)?
(yes/no)

Add edge?
(yes/no)

Add edge?
(yes/no)

1 1

0 0

Add node (1)?
(yes/no)

1

Pick node (0) to
add edge (0,1)

0

1

0

1

0

1
0

1

0

2

Add edge?
(yes/no)

1

0

2

0 0

238 Renjie Liao

and long-short term memory (LSTM) (Hochreiter and Schmidhuber, 1997). ht−1
i is

the input node representation at time step t− 1. Ωi denotes the set of neighboring
nodes of the node i. h̃t−1

i is the updated node representation which serves as the
input node representation for the next message passing step. The above message
passing process is typically executed for a fixed number of steps, which is tuned
as a hyperparameter. Note that the generation step t is different from the message
passing step (we deliberately omit its notation to avoid confusion).

Output Probabilities After the message passing process is done, we obtain the
new node representations Ht . Now we can construct the aforementioned output
probabilities as follows,

hG t−1 = fReadOut(Ht) (11.27)
pAddNode = Bernoulli(σ(MLPAddNode(hG t−1))) (11.28)
pAddEdge = Bernoulli(σ(MLPAddEdge(hG t−1 ,hv))) (11.29)

suv = MLPNodes(ht
u,hv) ∀u ∈ V t−1 (11.30)

pNodes = Categorical(softmax(s)). (11.31)

Here we first summarize the graph representation hG t−1 (a vector) by reading out
from the node representation Ht via fReadOut, which could be an average operator
or an attention-based one. Based on hG t−1 , we predict the probability of adding a
new node pAddNode where σ is the sigmoid function. If we decide to add a new
node by sampling 1 from the Bernoulli distribution pAddNode, we denote the new
node as v. We can initialize its representation hv as random features by sampling
either from N (0, I) or learned distribution over node type/label if provided. Then
we compute similarity scores between every existing node u in G t−1 and v as suv. s
is the concatenated vector of all similarity scores. Finally, we normalize the scores
using softmax to form the categorical distribution from which we sample an existing
node to obtain the new edge. By sampling from all these probabilities, we could
either stop the generation or obtain a new graph with a new node and/or a new edge.
We repeat this procedure by carrying on the node representations along with the
generated graphs until the model generates a stop signal from pAddNode.

Training To train the model, we need to maximize the likelihood of the observed
graphs. Recall that we need to consider the permutations that leave the graph un-
changed as discussed in Section 11.3.2.1. For simplicity, we focus on the adjacency
matrix alone following (Li et al, 2018d), i.e., G ≡ {PAP⊤|P ∈ ΠG }, where ΠG is
the maximal subset of Π so that P1AP⊤1 ̸= P2AP⊤2 holds for any P1,P2 ∈ ΠG . The
ideal objective is to maximize the following,

max log p(G) ⇔ max log

(
∑

P∈ΠG

p(PAP⊤)

)
. (11.32)

Here we omit the variables being optimized, i.e., parameters of models defined in
Eq. (11.24) and Eq. (11.27). Note that given a node ordering (corresponding to one
specific permutation matrix P), we have a bijection between a sequence of cor-

11 Graph Neural Networks: Graph Generation 239

rect decisions and an adjacency matrix. In other words, we can equivalently write
p(PAP⊤) as a product of probabilities that are explained in Eq. (11.27). However, the
marginalization inside the logarithmic function on the right hand side is intractable
due to the nearly factorial size of ΠG in practice. Li et al (2018d) propose to ran-
domly sample a few different node orderings as Π̃G and train the model with fol-
lowing approximated objective,

max log

 ∑

P∈Π̃G

p(PAP⊤)

 . (11.33)

Note that this objective is a strict lower bound of the one in Eq. (11.32). If canonical
node orderings like the SMILES ordering for molecule graphs are available, we can
also use that to compute the above objective.

Discussion This model formulates the graph generation as a sequential decision-
making process and provides a GNN-based autoregressive model to construct prob-
abilities of possible decisions at each step. The overall model design is well-
motivated. It also achieves good empirical performances in generating small graphs
like molecules (e.g., less than 40 nodes). However, since the model only generates at
most one new node and one new edge per step, the total number of generation steps
scales with the number of nodes quadratically for dense graphs. It is thus inefficient
to generate moderately large graphs (e.g., with a few hundreds of nodes).

11.3.3.2 Graph Recurrent Neural Networks (GraphRNN)

Graph Recurrent Neural Networks (GraphRNN) (You et al, 2018b) is another deep
autoregressive model which has a similar sequential decision-making formulation
and leverages RNNs to construct the conditional probabilities. We again rely on
the adjacency matrix representation of a graph, i.e., G ≡ {PAP⊤|P ∈ ΠG }. Before
dealing with the permutations, let us assume the node ordering is given so that P= I.

A Simple Variant of GraphRNN GraphRNN starts with an autoregressive de-
composition of the probability of an adjacency matrix as follows,

p(A) =
n

∏
t=1

p(At |A<t), (11.34)

where At is the t-th column of the adjacency matrix A and A<t is a matrix formed
by columns A1,A2, · · · ,At−1. n is the maximum number of nodes. If a graph has
less than n nodes, we pad dummy nodes similarly as discussed in Section 11.3.1.
Then we can construct the conditional probability as an edge-independent Bernoulli
distribution,

240 Renjie Liao

p(At |A<t) = Bernoulli(Θt) =
n

∏
i=1

Θ
1[Ai,t=1]
t,i (1−Θt,i)

1[Ai,t=0] (11.35)

Θt = fout(ht) (11.36)
ht = ftrans(ht−1,At−1), (11.37)

where Θt is a size-n vector of Bernoulli parameters. Θt,i denotes its i-th element. Ai,t
denotes the i-th element of the column vector At . fout could be an MLP which takes
the hidden state ht as input and outputs Θt . ftrans is the RNN cell function which
takes the (t− 1)-th column of the adjacency matrix At−1 and the hidden state ht−1
as input and outputs the current hidden state ht . We can use an LSTM or GRU as
the RNN cell function. Note that the conditioning on A<t is implemented via the
recurrent use of the hidden state in an RNN. The hidden state can be initialized as
zeros or randomly sampled from a standard normal distribution. This model variant
is very simple and can be easily implemented since it only consists of a few common
neural network modules, i.e., an RNN and an MLP.

Full Version of GraphRNN To further improve the model, You et al (2018b)
propose a full version of GraphRNN. The idea is to build a hierarchical RNN so that
the conditional distribution in Eq. (11.34) becomes more expressive. Specifically,
instead of using an edge-independent Bernoulli distribution, we leverage another
autoregressive construction to model the dependencies among entries within one
column of the adjacency matrix as below,

p(At |A<t) =
n

∏
i=1

p(Ai,t |A<i,<t) (11.38)

p(Ai,t |A<i,<t) = sigmoid(gout(h̃i,t)) (11.39)

h̃i,t = gtrans(h̃i−1,t ,A<i,t) (11.40)

h̃0,t = ht (11.41)
ht = ftrans(ht−1,At−1). (11.42)

Here the bottom RNN cell function ftrans still recurrently updates the hidden state
to get ht , thus implementing the conditioning on all previous t− 1 columns of the
adjacency matrix A. To generate individual entries of the t-th column, the top RNN
cell function gtrans takes its own hidden state h̃i−1,t and the already generated t-th
column A as input and updates the hidden state as h̃i,t . The output distribution is a
Bernoulli parameterized by the output of an MLP gout which takes h̃i,t as input. Note
that the initial hidden state h̃0,t of the top RNN is set to the hidden state ht returned
by the bottom RNN.

Objective To train the GraphRNN, we can again resort to the maximum log
likelihood similarly to Section 11.3.3.1. We also need to deal with permutations of
nodes that leave the graph unchanged. Instead of randomly sampling a few orderings
like (Li et al, 2018d), You et al (2018b) propose to use a random-breadth-first-search
ordering. The idea is to first randomly sample a node ordering and then pick the first
node in this ordering as the root. A breadth-first-search (BFS) algorithm is applied

11 Graph Neural Networks: Graph Generation 241

starting from this root node to generate the final node ordering. Let us denote the
corresponding permutation matrix as PBFS. The final objective is,

max log
(

p(PBFSAP⊤BFS)
)
, (11.43)

which is again a strict lower bound of the true log likelihood. Empirical results in
(You et al, 2018b) suggest that this random-BFS ordering provides good perfor-
mances on a few benchmarks.

Discussion The design of the GraphRNN is simple yet effective. The implemen-
tation is straightforward since most of the modules are standard. The simple variant
is more efficient than the previous GNN-based model (Li et al, 2018d) since it gener-
ates multiple edges (corresponding to one column of the adjacency matrix) per step.
Moreover, the simple variant performs comparably with the full version in the ex-
periments. Nevertheless, GraphRNN still has certain limitations. For example, RNN
highly depends on the node ordering since different node orderings would result in
very different hidden states. The sequential ordering could make two nearby (even
neighboring) nodes far away in the generation sequence (i.e., far away in the gen-
eration time step). Typically, hidden states of an RNN that are far away regarding
the generation time step tend to be quite different, thus making it hard for the model
to learn that these nearby nodes should be connected. We call this phenomenon the
sequential ordering bias.

11.3.3.3 Graph Recurrent Attention Networks (GRAN)

Following the line of the work (Li et al, 2018d; You et al, 2018b), Liao et al (2019a)
propose the graph recurrent attention networks (GRAN). It is a GNN-based autore-
gressive model, which greatly improves the previous GNN-based model (Li et al,
2018d) in terms of capacity and efficiency. Furthermore, it alleviates the sequential
ordering bias of GraphRNN (You et al, 2018b). In the following, we introduce the
details of the model.

Model We start with the adjacency matrix representation of graphs, i.e., G ≡
{PAP⊤|P ∈ ΠG }. GRAN aims at directly building a probabilistic model over the
adjacency matrix similarly to GraphRNN. Again, node/edge features are not of pri-
mary interests but can be incorporated without much modification to the model. In
particular, from the perspective of modeling the adjacency matrix, the GNN-based
autoregressive model in (Li et al, 2018d) generates one entry of the adjacency matrix
at a step, whereas GraphRNN (You et al, 2018b) generates one column of entries at
a step. GRAN takes a step further along this line by generating a block of column-
s/rows2 of the adjacency matrix at a step, which greatly improves the generation
speed. Denoting the submatrix with first k rows of the adjacency matrix A as A1:k,:,
we have the following autoregressive decomposition of the probability,

2 Since we are mainly interested in simple graphs, i.e., unweighted, undirected graphs containing
no self-loops or multiple edges, modeling columns or rows makes no difference. We adopt the
row-wise notations to follow the original paper.

242 Renjie Liao

2

1 3

4

6

5

Output distribution on
augmented edges

2

1 3

4

Graph at t-1 step

2

1 3

4

6

5

Adjacency Matrix

Lπ
bt−1

Lπ
bt−2

Graph at t step

Adjacency Matrix

Lπ
bt

Lπ
bt−1

Lπ
bt−2

1
2
3
4

1
2
3
4
5
6

6

5

2

1 3

4
Sampling

new block (node 5, 6)
augmented edges (dashed)

Graph
Recurrent
Attention
Network

Fig. 11.3: The overview of the graph recurrent attention networks (GRAN). At each
step, given an already generated graph, we add a new block of nodes (block size
is 2 and color indicates the membership of individual group in the visualization)
and augmented edges (dashed lines). Then we apply GRAN to this graph to ob-
tain the output distribution over augmented edges (we show an edge-independent
Bernoulli where the line width indicates the probability of generating individual
augmented edges). Finally, we sample from the output distribution to obtain a new
graph. Adapted from Figure 1 of (Liao et al, 2019a).

p(A) =
⌈n/k⌉
∏
t=1

p(A(t−1)k:tk,:|A:(t−1)k,:), (11.44)

where A:(t−1)k,: indicates the adjacency matrix that has been generated before the
t-th step (i.e., t−1 blocks with block size k). We use A(t−1)k:tk,: to denote the to-be-
generated block at t-th time step. Note that this part is a straightforward generaliza-
tion to the autoregressive model of GraphRNNs in Eq. (11.34).

To build the condition probability p(A(t−1)k:tk,:|A:(t−1)k,:), GRAN leverages a
message passing graph neural network. Specifically, denoting the already gener-
ated graph before step t (corresponding to A:(t−1)k,:) as G t−1 = (V t−1,E t−1), we
first initialize every node representation vector with its corresponding row of the
adjacency matrix, i.e., hv = Av,: for all v≤ (t−1)k. Since we assume the maximum
number of nodes is n and pad dummy nodes for graphs with a smaller size, hv is of
size n. At time step t, we are interested in generating a new block of nodes (corre-
sponding to A(t−1)k:tk,:) and their associated edges. For the k new nodes in the t-th
block, since their corresponding rows in the adjacency matrix are initially all zeros,
we give them an arbitrary ordering from 1 to k and use the one-hot-encoding of the
order index as an additional representation to distinguish them, denoting as xu. We
first form a new graph G̃ t = (V t , Ẽ t) by connecting the k new nodes to themselves
(excluding self-loops) and every other nodes in G t−1. We call such edges as the aug-
mented edges, which are shown as the dashed edges in Figure 11.3. In other words,
V t is the union of V t−1 and k new nodes whereas Ẽ t is the union of E t−1 and aug-
mented edges. The core part of GRAN is to construct a probability distribution over
such augmented edges from which we can sample a new graph G t . Note that G t has
the same set of nodes but potentially fewer edges compared to G̃ t . To construct the

11 Graph Neural Networks: Graph Generation 243

probability, we use a GNN with the following one-step message passing process,

mi j = fmsg(hi−h j), ∀(i, j) ∈ Ẽ t (11.45)

h̃i = [hi∥xi], ∀i ∈ V t (11.46)

ai j = sigmoid
(
gatt(h̃i− h̃ j)

)
, ∀(i, j) ∈ Ẽ t (11.47)

h′i = GRU(hi,∑ j∈Ω(i) ai jmi j), ∀i ∈ V t (11.48)

where mi j is the again the message over edge (i, j) and Ωi is the set of neighbor-
ing nodes of node i. The message function fmsg and the attention head gatt could
be MLPs. Note that we set xu to zeros for any node u that is in the already gener-
ated graph G t−1 since the one-hot-encoding is only used to distinguish those newly
added nodes. [a∥b] means concatenating two vectors a and b. The updated node
representation h′i would serve as the input to the next message passing step. We
typically unroll this message passing for a fixed number of steps, which is set as a
hyperparameter. Note that the message passing step is independent of the generation
step. The attention weights ai j depends on the one-hot-encoding xi so that messages
on augmented edges could be weighted differently compared to those on edges be-
longing to E t−1. Based on the final node representations returned by the message
passing, we can construct the output distribution is as follows,

p(A(t−1)k:tk,:|A:(t−1)k,:) =
C

∑
c=1

αc

tK

∏
i=(t−1)k+1

n

∏
j=1

Θc,i, j (11.49)

α = softmax

(
tK

∑
i=(t−1)k+1

n

∑
j=1

MLPα(hR
i −hR

j)

)
(11.50)

Θc,i, j = sigmoid
(
MLPΘ (hR

i −hR
j)
)
. (11.51)

Here we use a mixture of Bernoulli distributions where the mixture coefficients
are α = {α1, · · · ,αC} and the parameters are {Θc,i, j}. Compared to the edge-
independent Bernoulli distribution used in the simple variant of GraphRNN, this
output distribution can capture dependencies among multiple generated edges. Fur-
thermore, it is more efficient to sample compared to the autoregressive distribution
used in the full version of GraphRNN.

Objective To train the model, we also need to deal with permutations in order
to maximize the log likelihood. Similar to the strategy used in (Li et al, 2018d;
You et al, 2018b), Liao et al (2019a) propose to use a set of canonical orderings,
i.e., breadth-first-search (BFS), depth-first-search (DFS), node-degree-descending,
node-degree-ascending, and the k-core ordering. In particular, the BFS and the DFS
ordering start from the node with the largest node degree. The k-core graph decom-
position has been shown to be very useful for modeling cohesive groups in social
networks (Seidman, 1983). The k-core of a graph G is a maximal subgraph that
contains nodes of degree k or more. Cores are nested, i.e., i-core belongs to j-core
if i > j, but they are not necessarily connected subgraphs. Most importantly, the
core decomposition, i.e., all cores ranked based on their orders, can be found in lin-

244 Renjie Liao

ear time (w.r.t. the number of edges) (Batagelj and Zaversnik, 2003). Based on the
largest core number per node, we can uniquely determine a partition of all nodes,
i.e., disjoint sets of nodes which share the same largest core number. We then assign
the core number of each disjoint set by the largest core number of its nodes. Starting
from the set with the largest core number, we rank all nodes within the set in node
degree descending order. Then we move to the second largest core and so on to ob-
tain the final ordering of all nodes. We call this core descending ordering as k-core
node ordering.

Our final training objective is,

max log

 ∑

P∈Π̃G

p(PAP⊤)

 . (11.52)

where Π̃G is the set of permutation matrices corresponding to the above node order-
ings. This is again a strict lower bound of the true log likelihood.

Discussion GRAN improves the previous GNN-based autoregressive model (Li
et al, 2018d) and GraphRNN (You et al, 2018b) in the following ways. First, it gen-
erates a block of rows of the adjacency matrix per step, which is more efficient than
generating an entry per step and then generating a row per step. Second, GRAN
uses a GNN to construct the conditional probability. This helps alleviate the se-
quential ordering bias in GraphRNN since GNN is permutation equivariant, i.e.,
the node ordering would not affect the conditional probability per step. Third, the
output distribution in GRAN is more expressive and more efficient for sampling.
GRAN outperforms previous deep graph generative models in terms of empirical
performances and the sizes of graphs that can be generated (e.g., GRAN can gener-
ate graphs up to 5K nodes). Nevertheless, GRAN still suffers from the fact that the
overall model depends on the particular choices of node orderings. It may be hard
to find good orderings in certain applications. How to build an order-invariant deep
graph generative model would be an interesting open question.

11.3.4 Generative Adversarial Methods

In this part, we review a few methods (De Cao and Kipf, 2018; Bojchevski et al,
2018; You et al, 2018a) that apply the idea of generative adversarial networks (GAN)
(Goodfellow et al, 2014b) in the context of graph generation. Based on how a graph
is represented during training, we roughly divide them into two categories: adja-
cency matrix based and random walks based methods. In the following, we explain
these two types of methods in detail.

11 Graph Neural Networks: Graph Generation 245

11.3.4.1 Adjacency Matrix Based GAN

MolGAN (De Cao and Kipf, 2018) and graph convolutional policy network (GCPN)
(You et al, 2018a) propose a similar GAN-based framework to generate molecule
graphs that satisfy certain chemical properties. Here the graph data is represented
slightly different from previous sections since one needs to specify both node types
(i.e., atom types) and edge types (i.e., chemical bond types). We denote the ad-
jacency matrix3 as A ∈ RN×N×Y where Y is the number of chemical bond types.
Basically, one slice along the 3rd dimension of A gives an adjacency matrix that
characterizes the connectivities among atoms under a specific chemical bond type.
We denote the node type as X ∈ RN×T where T is the number of atom types. The
goal is to generate (A,X) so that it is similar to observed molecule graphs and pos-
sesses certain desirable properties.

Generator

Graph

Molecule

N

N

N

N

N N

T T

z ~ p(z)

Adjacency tensor Sampled

SampledAnnotation matrix

~

~

GCN

GCN

0/1

0/1

Discriminator

Reward network

A<latexit sha1_base64="EMPyu5ASlEpI1qvrJeu1mckhUAU=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUSEuqy4cVnBPrANZTKdtEMnkzBzI5TQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJbe53nrg2IlYPOE24H9GREqFgFK302I8ojoMwu5kNKlW35s5BVolXkCoUaA4qX/1hzNKIK2SSGtPz3AT9jGoUTPJZuZ8anlA2oSPes1TRiBs/myeekXOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLYleMsnr5L2Zc1za979VbVRL+oowSmcwQV4UIcG3EETWsBAwTO8wptjnBfn3flYjK45xc4J/IHz+QOmV5Da</latexit><latexit sha1_base64="EMPyu5ASlEpI1qvrJeu1mckhUAU=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUSEuqy4cVnBPrANZTKdtEMnkzBzI5TQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJbe53nrg2IlYPOE24H9GREqFgFK302I8ojoMwu5kNKlW35s5BVolXkCoUaA4qX/1hzNKIK2SSGtPz3AT9jGoUTPJZuZ8anlA2oSPes1TRiBs/myeekXOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLYleMsnr5L2Zc1za979VbVRL+oowSmcwQV4UIcG3EETWsBAwTO8wptjnBfn3flYjK45xc4J/IHz+QOmV5Da</latexit><latexit sha1_base64="EMPyu5ASlEpI1qvrJeu1mckhUAU=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUSEuqy4cVnBPrANZTKdtEMnkzBzI5TQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJbe53nrg2IlYPOE24H9GREqFgFK302I8ojoMwu5kNKlW35s5BVolXkCoUaA4qX/1hzNKIK2SSGtPz3AT9jGoUTPJZuZ8anlA2oSPes1TRiBs/myeekXOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLYleMsnr5L2Zc1za979VbVRL+oowSmcwQV4UIcG3EETWsBAwTO8wptjnBfn3flYjK45xc4J/IHz+QOmV5Da</latexit><latexit sha1_base64="EMPyu5ASlEpI1qvrJeu1mckhUAU=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUSEuqy4cVnBPrANZTKdtEMnkzBzI5TQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJbe53nrg2IlYPOE24H9GREqFgFK302I8ojoMwu5kNKlW35s5BVolXkCoUaA4qX/1hzNKIK2SSGtPz3AT9jGoUTPJZuZ8anlA2oSPes1TRiBs/myeekXOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLYleMsnr5L2Zc1za979VbVRL+oowSmcwQV4UIcG3EETWsBAwTO8wptjnBfn3flYjK45xc4J/IHz+QOmV5Da</latexit>

X<latexit sha1_base64="k8fMTYMpbcAk1m6rTYMegJsdMOM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOAnCrDcfVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+tkg8JxdWGZEw1vYpJAv190ZGI2NmUWAn84Rm1cvF/7x+iuGNnwmVpMgVW34UppJgTPLzyUhozlDOLKFMC5uVsAnVlKEtqWJL8FZPXiedq7rn1r3761qzUdRRhjM4h0vwoAFNuIMWtIGBgmd4hTfHOC/Ou/OxHC05xc4p/IHz+QPJSpDx</latexit><latexit sha1_base64="k8fMTYMpbcAk1m6rTYMegJsdMOM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOAnCrDcfVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+tkg8JxdWGZEw1vYpJAv190ZGI2NmUWAn84Rm1cvF/7x+iuGNnwmVpMgVW34UppJgTPLzyUhozlDOLKFMC5uVsAnVlKEtqWJL8FZPXiedq7rn1r3761qzUdRRhjM4h0vwoAFNuIMWtIGBgmd4hTfHOC/Ou/OxHC05xc4p/IHz+QPJSpDx</latexit><latexit sha1_base64="k8fMTYMpbcAk1m6rTYMegJsdMOM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOAnCrDcfVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+tkg8JxdWGZEw1vYpJAv190ZGI2NmUWAn84Rm1cvF/7x+iuGNnwmVpMgVW34UppJgTPLzyUhozlDOLKFMC5uVsAnVlKEtqWJL8FZPXiedq7rn1r3761qzUdRRhjM4h0vwoAFNuIMWtIGBgmd4hTfHOC/Ou/OxHC05xc4p/IHz+QPJSpDx</latexit><latexit sha1_base64="k8fMTYMpbcAk1m6rTYMegJsdMOM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOAnCrDcfVmtu3V2ArBOvIDUo0BpWvwajmKURV8gkNabvuQn6GdUomOTzyiA1PKFsSse8b6miETd+tkg8JxdWGZEw1vYpJAv190ZGI2NmUWAn84Rm1cvF/7x+iuGNnwmVpMgVW34UppJgTPLzyUhozlDOLKFMC5uVsAnVlKEtqWJL8FZPXiedq7rn1r3761qzUdRRhjM4h0vwoAFNuIMWtIGBgmd4hTfHOC/Ou/OxHC05xc4p/IHz+QPJSpDx</latexit> X̃<latexit sha1_base64="h5fkkvOPNqe9NI7w0SLn2N2FVmc=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdVlw47KCfUATymQyaYdOJmFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJUs6Udpxva2Nza3tnt7ZX3z84PDq2Txp9lWSS0B5JeCKHAVaUM0F7mmlOh6mkOA44HQSz29IfPFKpWCIe9DylfowngkWMYG2ksd3wYqynQZR7mvGQ5sOiGNtNp+UsgNaJW5EmVOiO7S8vTEgWU6EJx0qNXCfVfo6lZoTTou5liqaYzPCEjgwVOKbKzxfZC3RhlBBFiTRPaLRQf2/kOFZqHgdmskyqVr1S/M8bZTq68XMm0kxTQZaHoowjnaCyCBQySYnmc0MwkcxkRWSKJSba1FU3JbirX14n/auW67Tc++tmp13VUYMzOIdLcKENHbiDLvSAwBM8wyu8WYX1Yr1bH8vRDavaOYU/sD5/ALyelNg=</latexit><latexit sha1_base64="h5fkkvOPNqe9NI7w0SLn2N2FVmc=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdVlw47KCfUATymQyaYdOJmFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJUs6Udpxva2Nza3tnt7ZX3z84PDq2Txp9lWSS0B5JeCKHAVaUM0F7mmlOh6mkOA44HQSz29IfPFKpWCIe9DylfowngkWMYG2ksd3wYqynQZR7mvGQ5sOiGNtNp+UsgNaJW5EmVOiO7S8vTEgWU6EJx0qNXCfVfo6lZoTTou5liqaYzPCEjgwVOKbKzxfZC3RhlBBFiTRPaLRQf2/kOFZqHgdmskyqVr1S/M8bZTq68XMm0kxTQZaHoowjnaCyCBQySYnmc0MwkcxkRWSKJSba1FU3JbirX14n/auW67Tc++tmp13VUYMzOIdLcKENHbiDLvSAwBM8wyu8WYX1Yr1bH8vRDavaOYU/sD5/ALyelNg=</latexit><latexit sha1_base64="h5fkkvOPNqe9NI7w0SLn2N2FVmc=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdVlw47KCfUATymQyaYdOJmFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJUs6Udpxva2Nza3tnt7ZX3z84PDq2Txp9lWSS0B5JeCKHAVaUM0F7mmlOh6mkOA44HQSz29IfPFKpWCIe9DylfowngkWMYG2ksd3wYqynQZR7mvGQ5sOiGNtNp+UsgNaJW5EmVOiO7S8vTEgWU6EJx0qNXCfVfo6lZoTTou5liqaYzPCEjgwVOKbKzxfZC3RhlBBFiTRPaLRQf2/kOFZqHgdmskyqVr1S/M8bZTq68XMm0kxTQZaHoowjnaCyCBQySYnmc0MwkcxkRWSKJSba1FU3JbirX14n/auW67Tc++tmp13VUYMzOIdLcKENHbiDLvSAwBM8wyu8WYX1Yr1bH8vRDavaOYU/sD5/ALyelNg=</latexit><latexit sha1_base64="h5fkkvOPNqe9NI7w0SLn2N2FVmc=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KokIdVlw47KCfUATymQyaYdOJmFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJUs6Udpxva2Nza3tnt7ZX3z84PDq2Txp9lWSS0B5JeCKHAVaUM0F7mmlOh6mkOA44HQSz29IfPFKpWCIe9DylfowngkWMYG2ksd3wYqynQZR7mvGQ5sOiGNtNp+UsgNaJW5EmVOiO7S8vTEgWU6EJx0qNXCfVfo6lZoTTou5liqaYzPCEjgwVOKbKzxfZC3RhlBBFiTRPaLRQf2/kOFZqHgdmskyqVr1S/M8bZTq68XMm0kxTQZaHoowjnaCyCBQySYnmc0MwkcxkRWSKJSba1FU3JbirX14n/auW67Tc++tmp13VUYMzOIdLcKENHbiDLvSAwBM8wyu8WYX1Yr1bH8vRDavaOYU/sD5/ALyelNg=</latexit>

Ã<latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit><latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit><latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit><latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit>

Fig. 11.4: The overview of the MolGAN. We first draw a latent variable Z ∼ p(Z)
and feed it to a generator which produces a probabilistic (continuous) adjacency ma-
trix A and a probabilistic (continuous) node type matrix X . Then we draw a discrete
adjacency matrix Ã∼A and a discrete node type matrix X̃ ∼X , which together spec-
ify a molecule graph. During training, we simultaneously feed the generated graph
to a discriminator and a reward network to obtain the adversarial loss (measuring
how similar the generated and the observed graphs are) and the negative reward
(measuring how likely the generated graphs satisfy the certain chemical constraints).
Adapted from Figure 2 of (De Cao and Kipf, 2018).

Model We now explain the details of MolGAN and then highlight the difference
between GCPN and MolGAN. Similar to regular GANs, MolGAN consists of a
generator Ḡθ (Z) and a discriminator Dφ (A,X). To ensure the generated samples
satisfy desirable chemical properties, MolGAN adopts an additional reward network
Rψ(A,X). The overall pipeline of MolGAN is illustrated in Figure 11.4.

To generate a molecule graph, we first sample a latent variable Z ∈Rd from some
prior, e.g., Z ∼N (0, I). Then we use an MLP to directly map the sampled Z to a
continuous adjacency matrix A and a continuous node type matrix X . The contin-
uous version of the graph data has a natural probabilistic interpretation, i.e., Ai, j,c

3 Note that A is actually a tensor. We slightly abuse the terminology here to ease the exposition.

246 Renjie Liao

means the probability of connecting the atom i and the atom j using the chemical
bond type c, whereas Xi,t means the probability of assigning the t-th atom type to
the i-atom. One can sample a discrete graph data (Ã, X̃) from the continuous ver-
sion, i.e., Ã∼ A and X̃ ∼ X . This sampling procedure can be implemented using the
Gumbel softmax (Jang et al, 2017; Maddison et al, 2017). The discrete adjacency
matrix Ã along with the discrete node type X̃ specify a molecule graph and complete
the generation process.

To evaluate how similar the generated graphs and the observed graphs are, we
need to build a discriminator. Since we are dealing with graphs, the natural can-
didate for a discriminator is a graph neural network, e.g., a graph convolutional
network (GCN) (Kipf and Welling, 2017b). In particular, we use a variant of GCN
(Schlichtkrull et al, 2018) to incorporate multiple edge types. One such graph con-
volutional layer is shown as below,

h′i = tanh

(
fs(hi,xi)+

N

∑
j=1

Y

∑
y=1

Ãi, j,y

|Ωi|
fy(h j,xi)

)
, (11.53)

where hi and h′i are the input and the output node representations of the graph convo-
lutional layer. Ωi is the set of neighboring nodes of the node i. xi is the i-th row of X ,
i.e., the node type vector of the node i. fs and fy are linear transformation functions
that are to be learned. After stacking this type of graph convolution for multiple lay-
ers, we can readout the graph representation using the following attention-weighted
aggregation,

hG = tanh

(
∑

v∈V
sigmoid(MLPatt(hv,xv))⊙ tanh(MLP(hv,xv))

)
, (11.54)

where hv is the node representation returned by the top graph convolutional layer.
Note that MLPatt and MLP are two different instances of MLPs. ⊙ means element-
wise product. We can use the graph representation vector hG to compute the dis-
criminator score Dφ (A,X), i.e., the probability of classifying a graph as positive
(i.e., coming from the data distribution).

Objective Originally, GANs learn the model by performing the minimax opti-
mization as below,

min
θ

max
φ

EA,X∼pdata(A,X)[logDφ (A,X)]+EZ∼p(Z)[log
(
1−Dφ (Ḡθ (Z))

)
],

(11.55)

where the generator aims at fooling the discriminator and the discriminator aims
at correctly classifying the generated samples and the observed samples. To ad-
dress certain issues in training GANs such as the mode collapse and the instability,
Wasserstein GAN (WGAN) (Arjovsky et al, 2017) and its improved version (Gul-
rajani et al, 2017) have been proposed. MolGAN follows the improved WGAN and
uses the following objective to train the discriminator Dφ (A,X),

11 Graph Neural Networks: Graph Generation 247

max
φ

B

∑
i=1
−Dφ (A(i),X (i))+Dφ (Ḡθ (Z(i)))+α

(
∥∇Â(i),X̂(i)Dφ (Â(i), X̂ (i))∥−1

)2
,

(11.56)

where B is the mini-batch size, Z(i) is the i-th sample drawn from the prior, A(i),X (i)

are the i-th graph data drawn from the data distribution, and Â(i), X̂ (i) are their linear
combinations, i.e., (Â(i), X̂ (i)) = ε(A(i),X (i)) + (1− ε)Ḡθ (Z(i)), ε ∼ U (0,1). The
squared term on the right-hand side penalizes the gradient of the discriminator so
that the training becomes more stable. α is a weighting term to balance the regular-
ization and the objective. Moreover, fixing the discriminator, we train the generator
Ḡθ (A,X) by adding the additional constraint-dependent reward,

min
θ

B

∑
i=1

λDφ (Ḡθ (Z(i)))+(1−λ)LRL(Ḡθ (Z(i))), (11.57)

where LRL is the negative reward returned by the reward network Rψ and λ is the
weighting hyperparameter to regulate the trade-off between two losses. The reward
could be some non-differentiable quantities that characterize the chemical proper-
ties of the generated molecules, e.g., how likely the generated molecule is to be
soluble in water. To learn the model with the non-differentiable reward, the deep de-
terministic policy gradient (DDPG) (Lillicrap et al, 2015) is used. The architecture
of the reward network is the same as the discriminator, i.e., a GCN. It is pre-trained
by minimizing the squared error between the predicted reward given by Rψ and an
external software which produces a property score per molecule. The pre-training is
necessary since the external software is typically slow and could significantly delay
the training if it is included in the whole training framework.

Discussion MolGAN demonstrates strong empirical performances on a large
chemical database called QM9 (Ramakrishnan et al, 2014). Similar to other GANs,
the model is likelihood-free and can thus enjoy more flexible and powerful gener-
ators. More importantly, although the generator still depends on the node ordering,
the discriminator and the reward networks are order (permutation) invariant since
they are built from GNNs. Interestingly enough, graph convolutional policy net-
work (GCPN) (You et al, 2018a) solves the same problem using a similar approach.
GCPN has a similar GAN-type of objective and some additional domain-specific
rewards that capture the chemical properties of the molecules. It also learns both a
generator and a discriminator. However, they do not use a reward network to speed
up the reward computation. To deal with the learning of non-differentiable reward,
GCPN leverages the proximal policy optimization (PPO) (Schulman et al, 2017)
method, which empirically performs better than the vanilla policy gradient method.
Another important difference is that GCPN generates the adjacency matrix in an
entry-by-entry autoregressive fashion so that the dependencies among multiple gen-
erated edges are captured whereas MolGAN generates all entries of the adjacency
matrix in parallel conditioned on the latent variable. GCPN also achieves impres-
sive empirical results on another large chemical database called ZINC (Irwin et al,
2012). Nevertheless, there are still limitations with the above models. The discrete

248 Renjie Liao

gradient estimators (e.g., the policy gradient type of methods) could have large vari-
ances, which may slow down the training. Since the domain-specific rewards are
non-differentiable and may be time-consuming to obtain, learning a neural network
based approximated reward function like what MolGAN does is appealing. How-
ever, as reported in MolGAN, pre-training seems to be crucial to make the whole
training successful. More exploration along the line of learning a reward function
would be beneficial to simplify the whole training pipeline. On the other hand, both
methods use some variant of GCNs as the discriminator, which is shown to be in-
sufficient in distinguishing certain graphs4 (Xu et al, 2019d). Therefore, exploring
more powerful discriminators like the Lanczos network (Liao et al, 2019b) that ex-
ploits the spectrum of the graph Laplacian as the input feature would be promising
to further improve the performance of the above methods.

11.3.4.2 Random Walk Based GAN

In contrast to previous methods, NetGAN (Bojchevski et al, 2018) resorts to the
random walk based representations of graphs. The key idea is to map a graph to a
set of random walks and learn a generator and a discriminator in the space of ran-
dom walks. The generator should generate random walks that are similar to those
sampled from the observed graphs, whereas the discriminator should correctly dis-
tinguish whether a random walk comes from the data distribution or the implicit
distribution corresponding to the generator.

Model We start by sampling a set of random walks with fixed length T from
the given graph G using the biased second order random walk sampling strategy
described in (Grover and Leskovec, 2016). We denote a random walk as a sequence
(v1, · · · ,vT) where vi represents one node in G . Note that a random walk may contain
duplicate nodes since it could revisit one node multiple times during the sampling.
We again assume the maximum number of nodes for any graph is N. For any node
vi, we use the one-hot-encoding vector as its node feature. In other words, we can
view a random walk with a sequence along with its features. Therefore, similar to
language models, it is natural to use an RNN as the generator for generating such
random walks. NetGAN exploits an LSTM as the generator of which the initial
hidden state h0 and the memory c0 are computed by feeding a randomly sampled
latent vector (drawn from N (0, I)) to two separate MLPs. Then the LSTM generator
predicts a categorical distribution over all possible nodes and then samples a node.
The one-hot-encoding of the node index is treated as the node representation and
fed to the LSTM generator as the input for the next step. We unroll this LSTM for
T steps to obtain the final length-T random walk. For the discriminator, we can
use another LSTM, which takes a random walk as input and predicts the probability
that a given random walk is sampled from the data distribution. The model is trained
with the same objective as the improved WGAN (Gulrajani et al, 2017).

4 For example, a GCN can not distinguish two triangles versus a six node circle (both have the
same number of nodes and every node has exactly two neighbors) assuming all individual node
features are identical.

11 Graph Neural Networks: Graph Generation 249

Generator
architecture

C0

h0

C1

h1

o1 oT

vT
v2

v1v1

⋯

⋯

⋯

W
dow

n

p1 pN p1 pN

Wup Wup

NetGAN
architecture

Graph

Discrimi-
nator

Dreal Dfake

Generator

Random
walk

Fig. 11.5: The overview of the NetGAN. We first draw a random vector from a fixed
prior N (0, I) and initialized the memory c0 and the hidden state h0 of an LSTM.
Then the LSTM generator generates which node to visit per step and is unrolled for
a fixed number of steps T . The one-hot-encoding of node index is fed to the LSTM
as the input for the next step. The discriminator is another LSTM which performs
a binary classification to predict if a given random walk is sampled from a data
distribution. Adapted from Figure 2 of (Bojchevski et al, 2018).

After training the LSTM generator, we are capable of generating random walks.
However, we need an additional step to construct a graph from a set of generated
random walks. The strategy used by NetGAN is as follows. First, we count the edges
that appeared in the set of random walks to obtain a scoring matrix S, which has the
same size as the adjacency matrix. The (i, j)-th entry of the score matrix Si, j in-
dicates how many times edge (i, j) appears in the set of generated random walks.
Second, for each node i, we sample a neighbor according to the probability Si, j

∑v Si,v
.

We repeat the sampling until node i has at least one neighbor connected and skip if
the edge has already been generated. At last, for any edge (i, j), we perform sam-
pling without replacement according to the probability Si, j

∑u,v Su,v
until the maximum

number of edges is reached.
Discussion The random walk based representations for graphs are novel in the

context of deep graph generative models. Moreover, they could be more scalable
than the adjacency matrix representation since we are not bound by the quadratic
(w.r.t. the number of nodes) complexity. The core modules of the NetGAN are
LSTMs which are efficient in handling sequences and easy to be implemented. Nev-
ertheless, the graph construction from a set of generated random walks seems to be
ad-hoc. There is no theoretical guarantee on how accurate the proposed construc-
tion method is. It may require a large number of sampled random walks in order to
generate a graph with good qualities.

250 Renjie Liao

11.4 Summary

In this chapter, we review a few classic graph generative models and some modern
ones which are constructed based on deep neural networks. From the perspectives
of the model capacity and the empirical performances, e.g., how good the model can
fit observed data, deep graph generative models significantly outperform their clas-
sic counterparts. For example, they could generate molecule graphs which are both
chemically valid and similar to observed ones in terms of certain graph statistics.

Although we have already made impressive progress in recent years, deep gen-
erative models are still in the early stage. Moving forward, there are at least two
main challenges. First, how can we scale these models so that they can handle real-
world graphs like large scale social networks and WWW? It requires not only more
computational resources but also more algorithmic improvements. For example,
building a hierarchical graph generative model would be one promising direction
to boost efficiency and scale. Second, how can we effectively add domain-specific
constraints and/or conditioning on some input information? This question is impor-
tant since many real-world applications require the graph generation to be condi-
tioned on some inputs (e.g., scene graph generations conditioned on input images).
Many graphs in practice come with certain constraints (e.g., chemical validity in the
molecule generation).

Editor’s Notes: Deep learning-based graph generation can be considered as
a downstream task of graph representation learning, where the learned rep-
resentations are usually enforced to follow some probabilistic assumptions.
Hence the techniques in this topic widely enjoy the relevant properties and
theories introduced in the previous chapters, such as scalability (Chapter
6), expressiveness power (Chapter 5), and robustness (Chapter 8). Graph
generation also further motivates its downstream tasks in various interest-
ing, important, yet usually challenging areas such as drug discovery (see
Chapter 24), protein analysis (see Chapter 25), and program synthesis (see
Chapter 22).

Chapter 12
Graph Neural Networks: Graph Transformation

Xiaojie Guo, Shiyu Wang, Liang Zhao

Abstract Many problems regarding structured predictions are encountered in the
process of “transforming” a graph in the source domain into another graph in target
domain, which requires to learn a transformation mapping from the source to target
domains. For example, it is important to study how structural connectivity influences
functional connectivity in brain networks and traffic networks. It is also common to
study how a protein (e.g., a network of atoms) folds, from its primary structure
to tertiary structure. In this chapter, we focus on the transformation problem that
involves graphs in the domain of deep graph neural networks. First, the problem
of graph transformation in the domain of graph neural networks are formalized in
Section 12.1. Considering the entities that are being transformed during the trans-
formation process, the graph transformation problem is further divided into four
categories, namely node-level transformation, edge-level transformation, node-edge
co-transformation, as well as other graph-involved transformations (e.g., sequence-
to-graph transformation and context-to-graph transformation), which are discussed
in Section 12.2 to Section 12.5, respectively. In each subsection, the definition of
each category and their unique challenges are provided. Then, several representa-
tive graph transformation models that address the challenges from different aspects
for each category are introduced.

Xiaojie Guo
Department of Information Science and Technology, , George Mason University, e-mail: xguo7@
gmu.edu

Shiyu Wang
Department of Computer Science, Emory University, e-mail: shiyu.wang@emory.edu

Liang Zhao
Department of Computer Science, Emory University, e-mail: liang.zhao@emory.edu

251
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_12

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:xguo7@gmu.edu
mailto:xguo7@gmu.edu
mailto:shiyu.wang@emory.edu
mailto:liang.zhao@emory.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_12&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_12

252 Xiaojie Guo, Shiyu Wang, Liang Zhao

12.1 Problem Formulation of Graph Transformation

Many problems regarding structured predictions are encountered in the process of
“translating” an input data (e.g., images, texts) into a corresponding output data,
which is to learn a translation mapping from the input domain to the target do-
main. For example, many problems in computer vision can be seen as a “transla-
tion” from an input image into a corresponding output image. Similar applications
can also be found in language translation, where sentences (sequences of words)
in one language are translated into corresponding sentences in another language.
Such a generic translation problem, which is important yet has been extremely dif-
ficult in nature, has attracted rapidly increasing attention in recent years. The con-
ventional data transformation problem typically considers the data under special
topology. For example, an image is a type of grid where each pixel is a node and
each node has connections to its spatial neighbors. Texts are typically considered
as sequences where each node is a word and an edge exists between two contextual
words. Both grids and sequences are special types of graphs. In many practical ap-
plications, it is required to work on data with more flexible structures than grids and
sequences, and hence more powerful translation techniques are required in order
to handle more generic graph-structured data. Thus, there emerges a new problem
named deep graph transformation, the goal of which is to learn the mapping from
the graph in the input domain to the graph in the target domain. The mathematical
problem formulation of the graph is provided in detail as below.

A graph is defined as G (V ,E ,F,E), where V is the set of N nodes, and E ⊆ V ×
V is the set of M edges. ei, j ∈ E is an edge connecting nodes vi, v j ∈V . A graph can
be described in matrix or tensor using its (weighted) adjacency matrix A. If the graph
has node attributes and edge attributes, there are node attribute matrix F ∈ RN×L

where D is the number of node attributes, and edge attribute tensor E ∈ RN×N×K

where K is the number of edge attributes. L is the dimension of node attributes, and
K is the dimension of edge attributes. Based on the definition of graph, we define
the input graphs from the source domain as GS and the output graphs from the target
domain as GS→ GT (Guo et al, 2019c).

Considering the entities that are being transformed during the transformation
process, the graph transformation problem is further divided into three categories,
namely (1) node-level transformation, where only nodes and nodes attributes can
change during translation process; (2) edge-level transformation, where only topol-
ogy or edge attributes can change during translation process; (3) node-edge co-
transformation where both nodes and edges can change during translation process.
There are also some other transformations involving graphs, including sequence-to-
graph transformation, graph-to-sequence transformation and context-to-graph trans-
formation. Although they can be absorbed into the above three types if regarding
sequences as a special case of graphs, we want to separate them out because they
may usually attract different research communities.

12 Graph Neural Networks: Graph Transformation 253

12.2 Node-level Transformation

12.2.1 Definition of Node-level Transformation

Node-level transformation aims to generate or predict the node attributes or node
category of the target graph conditioning on the input graph. It can also be regarded
as a node prediction problem with stochasticity. It requires the node set V or node
attributes F to change while the graph edge set and edge attributes are fixed during
the transformation namely GS(VS,E ,FS,E)→ GT (VT ,E ,FT ,E). Node transforma-
tion has a wide range of real-world applications, such as predicting future states
of a system in the physical domain based on the fixed relations (e.g. gravitational
forces) (Battaglia et al, 2016) among nodes and the traffic speed forecasting on the
road networks (Yu et al, 2018a; Li et al, 2018e). Existing works adopt different
frameworks to model the transformation process.

Generally speaking, the straightforward way in dealing with the node translation
problem is to regard it as the node prediction problem and utilize the conventional
GNNs as encoder to learn the node embedding. Then, based on the node embed-
ding, we can predict the node attributes of the target graphs. While solving the
node transformation problem in specific domains, there come various unique re-
quirements, such as considering the spatial and temporal patterns in the traffic flow
prediction task. Thus, in this section, we focus on introducing three typical node
transformation models in dealing with problems in different areas.

12.2.2 Interaction Networks

Battaglia et al (2016) proposed the interaction network in the task of reasoning about
objects, relations, and physics, which is central to human intelligence, and a key
goal of artificial intelligence. Many physical problems, such as predicting what will
happen next in physical environments or inferring underlying properties of complex
scenes, are challenging because their elements are composed and can influence each
other as a whole system. It is impossible to solve such problems by considering each
object and relation separately. Thus, the node transformation problem can help deal
with this task via modeling the interactions and dynamics of elements in a complex
system. To deal with the node transformation problem that is formalized in this sce-
nario, an interaction network (IN) is proposed, which combines two main powerful
approaches: structured models, simulation, and deep learning. Structured models
are operated as the main component based on the GNNs to exploit the knowledge
of relations among objects. The simulation part is an effective method for approx-
imating dynamical systems, predicting how the elements in a complex system are
influenced by interactions with one another, and by the dynamics of the system.

The overall complex system can be represented as an attributed, directed multi-
graph G , where each node represents an object and the edge represents the rela-

254 Xiaojie Guo, Shiyu Wang, Liang Zhao

tionship between two objects, e.g., a fixed object attached by a spring to a freely
moving mass. To predict the dynamics of a single node (i.e., object), there is an
object-centric function, ht+1

i = fO(ht
i) with the object’s state ht at time t of the ob-

ject vi as the inputs and a future state ht+1
i at next time step as outputs. Assuming

two objects have one directed relationship, the first object vi influences the second
object v j via their interaction. The effect or influence of this interaction, et+1

i, j is pre-
dicted by a relation-centric function, fR, with the object states as well as attributes
of their relationship as inputs. The object updating process is then written as:

et+1
i, j = fR(ht

i,h
t
j,ri); ht+1

i = fO(ht
i,e

t+1
i, j), (12.1)

where ri refers to the interaction effects that node vi receives.
It worth noting that the above operations are for an attributed, directed multi-

graph because the edges/ relations can have attributes, and there can be multiple
distinct relations between two objects (e.g., rigid and magnetic interactions). In
summary, at each step, the interaction effects generated from each relationship is
calculated and then an aggregation function is utilized to summarize all the interac-
tions effects on the relevant objects and update the states of each object.

An IN applies the same fR and fO to every target nodes, respectively, which
makes their relational and object reasoning able to handle variable numbers of arbi-
trarily ordered objects and relations (i.e., graphs with variables sizes). But one addi-
tional constraint must be satisfied to maintain this: the aggregation function must be
commutative and associative over the objects and relations, for example summation
as aggregation function satisfies this, but division would not.

The IN can be included in the framework of Message Passing Neural Network
(MPNN), with the message passing process, aggregation process, and node updat-
ing process. However, different from MPNN models which focus on binary relations
(i.e., there is one edge per pair of nodes), IN can also handle hyper-graph, where the
edges can correspond to n-th order relations by combining n nodes (n ≥ 2). The
IN has shown a strong ability to learn accurate physical simulations and generalize
their training to novel systems with different numbers and configurations of objects
and relations. They could also learn to infer abstract properties of physical systems,
such as potential energy. The IN implementation is the first learnable physics en-
gine that can scale up to real-world problems, and is a promising template for new
AI approaches to reasoning about other physical and mechanical systems, scene
understanding, social perception, hierarchical planning, and analogical reasoning.

12.2.3 Spatio-Temporal Convolution Recurrent Neural Networks

Spatio-temporal forecasting is a crucial task for a learning system that operates in
a dynamic environment. It has a wide range of applications from autonomous ve-
hicles operations, to energy and smart grid optimization, to logistics and supply
chain management. The traffic forecasting on road networks, the core component

12 Graph Neural Networks: Graph Transformation 255

of the intelligent transportation systems, can be formalized as a node transforma-
tion problem, the goal of which is to predict the future traffic speeds (i.e., node
attributes) of a sensor network (i.e., graph) given historic traffic speeds (i.e., his-
tory node attributes). This type of node transformation is unique and challenging
due to the complex spatio-temporal dependencies in a series of graphs and inherent
difficulty in the long term forecasting. To deal with this, each pair-wise spatial cor-
relation between traffic sensors is represented using a directed graph whose nodes
are sensors and edge weights denote proximity between the sensor pairs measured
by the road network distance. Then the dynamics of the traffic flow is modeled as a
diffusion process and the diffusion convolution operation is utilized to capture the
spatial dependency. The overall Diffusion Convolutional Recurrent Neural Network
(DCRNN) integrates diffusion convolution, the sequence to sequence architecture
and the scheduled sampling technique.

Denote the node information (e.g., traffic flow) observed on a graph G as a graph
signal F and let F t represent the graph signal observed at time t, the temporal node
transformation problem aims to learn a mapping from T ′ historical graph signals
to future T graph signals as: [F t−T ′+1, ...,F t ;G]→ [F t+1, ...,F t+T ;G]. The spatial
dependency is modeled by relating node information to a diffusion process, which
is characterized by a random walk on G with restart probability α ∈ [0,1] and a
state transition matrix D−1

O W . Here DO is the out-degree diagonal matrix, and 1.
After many time steps, such Markov process converges to a stationary distribution
P ∈RN×N whose i-th row represents the likelihood of diffusion from node vi. Thus,
a diffusion convolutional layer can be defined as

H:,q = f (
P

∑
p=1

F:,p ⋆G fΘp,q,:,:), q ∈ {1, ...,Q} (12.2)

where the diffusion convolution operation is defined as

F:,p ⋆G fθ =
K−1

∑
k=0

(φk,1(D−1
O W)k +φk,2(D−1

I W T)k)F:,p, p ∈ {1, ...,P} (12.3)

Here the DO and DI refer to the out-degree and in-degree diagonal matrix respec-
tively. P and Q refer to the feature dimension of the input and output node features
at each diffusion convolution layer. The diffusion convolution is defined on both di-
rected and undirected graphs. When applied to undirected graphs, the existing graph
convolution neural networks (GCN) can be considered as a special case of diffusion
convolution network.

To deal with the temporal dependency during the node transformation process,
the recurrent neural networks (RNN) or Gated Recurrent Unit (GRU) can be lever-
aged. For example, by replacing the matrix multiplications in GRU with the diffu-
sion convolution, the Diffusion Convolutional Gated Recurrent Unit (DCGRU) is
defined as

256 Xiaojie Guo, Shiyu Wang, Liang Zhao

rt = σ(Θr ⋆G [F t ,Ht−1]+bt
r) (12.4)

ut = σ(Θu ⋆G [F t ,Ht−1]+bt
u)

Ct = Tanh(σ(Θc ⋆G [F t ,(rt ⊙Ht−1)]+bt
c))

Ht−1 = ut ⊙Ht−1 +(1−ut)⊙Ct ,

where X t and Ht denote the input and output of all the nodes at time t, rt and ut are
reset gate and update gate at time t, respectively. ⋆G denotes the diffusion convolu-
tion defined in equation 12.3. Θr,Θu,Θc are parameters for the corresponding filters
in the diffusion network.

Another typical spatio-temporal graph convolution network for spatial-temporal
node transformation is proposed by (Yu et al, 2018a). This model comprises sev-
eral spatio-temporal convolutional blocks, which are a combination of graph con-
volutional layers and convolutional sequence learning layers, to model spatial and
temporal dependencies. Specifically, the framework consists of two spatio-temporal
convolutional blocks (ST-Conv blocks) and a fully-connected output layer in the
end. Each ST-Conv block contains two temporal gated convolution layers and one
spatial graph convolution layer in the middle. The residual connection and bottle-
neck strategy are applied inside each block. The input sequence of node information
is uniformly processed by ST-Conv blocks to explore spatial and temporal depen-
dencies coherently. Comprehensive features are integrated by an output layer to gen-
erate the final prediction. In contrast to the above mentioned DCGRU, this model is
built completely from convolutional structures to capture both spatial and temporal
patterns without any recurrent neural network; each block is specially designed to
uniformly process structured data with residual connection and bottleneck strategy
inside.

12.3 Edge-level Transformation

12.3.1 Definition of Edge-level Transformation

Edge-level transformation aims to generate the graph topology and edge attributes of
the target graph conditioning on the input graph. It requires the edge set E and edge
attributes E to change while the graph node set and node attributes are fixed during
the transformation: T : GS(V ,ES,F,ES)→ GT (V ,ET ,F,ET). Edge transformation
has a wide range of real-world applications, such as modeling chemical reactions
(You et al, 2018a), protein folding (Anand and Huang, 2018) and malware cyber-
network synthesis (Guo et al, 2018b). For example, in social networks where people
are the nodes and their contacts are the edges, the contact graph among them varies
dramatically across different situations. For example, when the people are organiz-
ing a riot, it is expected that the contact graph to become denser and several special
“hubs” (e.g., key players) may appear. Hence, accurately predicting the contact net-

12 Graph Neural Networks: Graph Transformation 257

work in a target situation is highly beneficial to situational awareness and resource
allocation.

Numerous efforts have been contributed to edge-level graph transformation. Here
we introduce three typical methods in modelling the edge-level graph transforma-
tion problem, including graph transformation generative adversarial networks (GT-
GAN), multi-scale graph transformation networks (Misc-GAN), and graph transfor-
mation policy networks (CTPN).

12.3.2 Graph Transformation Generative Adversarial Networks

Generative Adversarial Network (GANs) is an alternative method for generation
problems. It is designed based on a game theory scenario called the min-max game,
where a discriminator and a generator compete against each other. The generator
generates data from stochastic noise, and the discriminator tries to tell whether it is
real (coming from a training set) or fabricated (from the generator). The absolute
difference between carefully calculated rewards from both networks is minimized
so that both networks learn simultaneously as they try to outperform each other.
GANs can be extended to a conditional model if both the generator and discrimi-
nator are conditioned on some extra auxiliary information, such as class labels or
data from other modalities. Conditional GANs is realized by feeding the conditional
information into the both the discriminator and generator as additional input layer.
In this scenario, when the conditional information is a graph, the conditional GANs
can be utilized to handle graph transformation problem to learn the mapping from
the conditional graph (i.e., input graph) to the target graph (i.e., output graph). Here,
we introduce two typical edge-level graph transformation techniques that are based
on Conditional GANs.

A novel Graph-Translation-Generative Adversarial Networks (GT-GAN) pro-
posed by (Guo et al, 2018b) can successfully implement and learn the mapping
from the input to target graphs. GT-GAN consists of a graph translator T and a
conditional graph discriminator D . The graph translator T is trained to produce
target graphs that cannot be distinguished from “real” ones by our conditional graph
discriminator D . Specifically, the generated target graph GT ′ =T (GS,U) cannot be
distinguished from the real one, GT , based on the current input graph GS. U refers to
the random noises. T and D undergo an adversarial training process based on input
and target graphs by solving the following loss function:

L (T ,D) = EGS,GT∼S [logD(GT |GS)] (12.5)
+EGS∼S [log(1−D(T (GS,U)|GS))],

where S refers to the dataset. T tries to minimize this objective while an adversar-
ial D tries to maximize it, i.e. T ∗= argminT maxD L (T ,D). The graph translator
includes two parts: graph encoder and graph decoder. A graph convolution neural net
(Kawahara et al, 2017) is extended to serve as the graph encoder in order to embed

258 Xiaojie Guo, Shiyu Wang, Liang Zhao

the input graph into node-level representations, while a new graph deconvolution
net is designed as the decoder to generate the target graph. Specifically, the encoder
consists of edge-to-edge and edge-to-node convolution layers, which first extract la-
tent edge-level representations and then node-level representations {Hi}N

i=1, where
Hi ∈RL refers to the latent representation of node vi. The decoder consists of node-
to-edge and edge-to-edge deconvolution layers to first get each edge representation
Êi, j based on Hi and H j, and then finally get edge attribute tensor E based on Ê.
Based on the graph deconvolution above, it is possible to utilize skips to link the
extracted edge latent representations of each layer in the graph encoder with those
in the graph decoder.

Specifically, in the graph translator, the output of the l-th “edge deconvolution”
layer in the decoder is concatenated with the output of the l-th “edge convolution”
layer in the encoder to form joint two channels of feature maps, which are then
input into the (l + 1)-th deconvolution layer. It is worth noting that one key factor
for effective translation is the design of a symmetrical encoder-decoder pair, where
the graph deconvolution is a mirrored reversed way from graph convolution. This
allows skip-connections to directly translate different level’s edge information at
each layer.

The graph discriminator is utilized to distinguish between the “translated” target
graph and the “real” ones based on the input graphs, as this helps to train the gen-
erator in an adversarial way. Technically, this requires the discriminator to accept
two graphs simultaneously as inputs (a real target graph and an input graph or a
generated graph and an input graph) and classify the two graphs as either related or
not. Thus, a conditional graph discriminator (CGD) that leverages the same graph
convolution layers in the encoder is utilized for the graph classification. Specifically,
the input and target graphs are both ingested by the CGD and stacked into a tensor,
which can be considered a 2-channel input. After obtaining the node representa-
tions, the graph-level embedding is computed by summing these node embeddings.
Finally, a softmax layer is implemented to distinguish the input graph-pair from the
real graph or generated graph.

To further handle the situation when the pairing information of the input and
the output is not available, Gao et al (2018b) proposes an Unpaired Graph Trans-
lation Generative Adversarial Nets (UGT-GAN) based on Cycle-GAN (Zhu et al,
2017) and incorporate the same encoder and deconder in GT-GAN to handle the
unpaired graph transformation problems. The cycle consistency loss is utilized and
generalized into graph cycle consistency loss for unpaired graph translation. Specif-
ically, graph cycle consistency adds an opposite direction translator from target to
source domain Tr : GT −→ GS by training the mappings for both directions simulta-
neously, and adding a cycle consistency loss that encourages Tr(T (GS))≈ GS and
T (Tr(GT)) ≈ GT . Combining this loss with adversarial losses on domains GT and
GS yields the full objective for unpaired graph translation.

12 Graph Neural Networks: Graph Transformation 259

12.3.3 Multi-scale Graph Transformation Networks

Many real-world networks typically exhibit hierarchical distribution over graph
communities. For instance, given an author collaborative network, research groups
of well-established and closely collaborated researchers could be identified by the
existing graph clustering methods in the lower-level granularity. While, from a
coarser level, we may find that these research groups constitute large-scale com-
munities, which correspond to various research topics or subjects. Thus, it is neces-
sary to capture the hierarchical community structures over the graphs for edge-level
graph transformation problem. Here, we introduce a graph generation model for
learning the distribution of the graphs, which, however, is formalized as a edge-level
graph transformation problem.

Based on GANs, a multi-scale graph generative model, Misc-GAN, can be uti-
lized to model the underlying distribution of graph structures at different levels of
granularity. Inspired by the success of deep generative models in image translation,
a cycle-consistent adversarial network (CycleGAN) (Zhu et al, 2017) is adopted to
learn the graph structure distribution and then generate a synthetic coarse graph at
each granularity level. Thus, the graph generation task can be realized by ”transfer-
ring” the hierarchical distribution from the graphs in the source domain to a unique
graph in the target domain.

In this framework, the input graph is characterized as several coarse-grained
graphs by aggregating the strongly coupled nodes with a small algebraic distance
to form coarser nodes. Overall, the framework can be separated into three stages.
First, the coarse-grained graphs at K levels of granularity are constructed from the
input graph adjacent matrix AS. The adjacent matrix of the coarse-grained graph
A(k)

S ∈ RN(k)×N(k)
at the k-th layer is defined as follows:

A(k)
S = P(k−1)⊤...P(1)⊤ASP(1)...P(k−1), (12.6)

where A(0)
S = AS and P(k) ∈ RN(k)×N(k)

is a coarse-grained operator for the kth level
and N(k) refers to the number of nodes of the coarse-grained graph at level k. In the
next stage, each coarse-grained graph at each level k will be reconstructed back into
a fine graph adjacent matrix A(k)

T ∈ RN(k)×N(k)
as follows:

A(k)
T = R(1)⊤...R(k−1)⊤A(k)

S R(k−1)...R(1), (12.7)

where R(k) ∈ RN(k)×N(k)
is the reconstruction operator for the kth level. Thus all the

reconstructed fine graphs at each layer are on the same scale. Finally, these graphs
are aggregated into a unique one by a linear function to get the final adjacent matrix
as follows: AT = ∑

K
k=1 wkA(k)

T +bkI, where wk ∈R and bk ∈R are weights and bias.

260 Xiaojie Guo, Shiyu Wang, Liang Zhao

12.3.4 Graph Transformation Policy Networks

Beyond the general framework for edge-level transformation problem, it is neces-
sary to deal with some domain-specific problems which may need to incorporate
some domain knowledge or information into transformation process. For example,
the chemical reaction product prediction problem is a typical edge-level transforma-
tion problem, where the input reactant and reagent molecules can be jointly repre-
sented as input graphs, and the process of generating product molecules (i.e., output
graphs) from reactant molecules can be formulated as a set of edge-level graph
transformations. Formalizing the chemical reaction product prediction problem as a
edge-level transformation problem is beneficial due to two reasons: (1) it can cap-
ture and utilize the molecular graph structure patterns of the input reactants and
reagents(i.e., atom pairs with changing connectivity); and (2) it can automatically
choose from these reactivity patterns a correct set of reaction triples to generate the
desired products.

Do et al (2019) proposed a Graph Transformation Policy Network (GTPN), a
novel generic method that combines the strengths of graph neural networks and re-
inforcement learning, to learn reactions directly from data with minimal chemical
knowledge. The GTPN originally aims to generate the output graph by formaliz-
ing the graph transformation process as a Markov decision process and modifying
the input source graph through several iterations. From the perspective of chemi-
cal reaction side, the process of reaction product prediction can be formulated as
predicting a set of bond changes given the reactant and reagent molecules as input.
A bond change is characterized by the atom pair that holds the bond (where is the
change) and the new bond type (what is the change).

Mathematically, given a graph of reactant molecule as input graph, GS, they pre-
dict a set of reaction triples which transforms GS into a graph of product molecule
GT . This process is modeled as a sequence consisting of tuples like (ζ t ,vt

i,v
t
j,b

t)

where vt
i and vt

j are the selected nodes from node set at step t whose connection
needs to be modified, bt is the new edge type of (vt

i,v
t
j) and ζ t is a binary signal

that indicates the end of the sequence. Generally, at every step of the forward pass,
GTPN performs seven major steps: 1) computing the atom representation vectors
through message passing neural network (MPNN); 2) computing the most possible
K reaction atom pairs; 3) predicting the continuation signal ζ t ; 4) predicting the
reaction atom pair (vt

i,v
t
j); 5) predicting a new bond type bt of this atom pair; 6)

updating the atom representations; and 7) updating the recurrent state.
Specifically, the above iterative process of edge-level transformation is formu-

lated as a Markov Decision Process (MDP) characterized by a tuple (S ,A , fP, fR,Γ),
where S is a set of states, A is a set of actions, fP is a state transition function, fR is
a reward function, and Γ is a discount factor. Thus, the overall model is optimized
via the reinforcement learning. Specifically, a state st ∈ S is a immediate graph
that is generated at the step t, and s0 refers to the input graph. An action at ∈A per-
formed at step t is represented as a tuple (ζ t ,(vt

i,v
t
j,b

t)). The action is composed of
three consecutive sub-actions: predicting ζ t , (vt

i,v
t
j) and bt respectively. In the state

12 Graph Neural Networks: Graph Transformation 261

transition part, If ζ t = 1, the current graph G t is modified based on the reaction
triple (vt

i,v
t
j,b

t) to generate a new intermediate graph G t+1. Regarding the reward,
both immediate rewards and delayed rewards are utilized to encourage the model to
learn the optimal policy faster. At every step t, if the model predicts (ζ t ,(vt

i,v
t
j,b

t))
correctly, it will receive a positive reward for each correct sub-action. Otherwise, a
negative reward is given. After the prediction process has terminated, if the gener-
ated products are exactly the same as the ground-truth products, a positive delayed
reward is also given, otherwise a negative reward.

Different from the encoder-decoder frameworks of GT-GAN, GTPN is a typical
example of reinforcement learning-based graph transformation network, where the
target graph is generated by making modifications on the input graphs in a itera-
tive way. Reinforcement learning (RL) is a commonly used framework for learning
controlling policies and generation process by a computer algorithm, the so-called
agent, through interacting with its environment. The nature of reinforcement learn-
ing methods (i.e.,a sequential generation process) make it a suitable framework for
graph transformation problems which sometime requires the step-by-step edits on
the input graphs to generate the final target output graphs.

12.4 Node-Edge Co-Transformation

12.4.1 Definition of Node-Edge Co-Transformation

Node-edge co-transformation (NECT) aims to generate node and edge attributes of
the target graph conditioned on those of the input graph. It requires that both nodes
and edges can vary during the transformation process between the source graph and
the target graph as follows: GS(VS,ES,FS,ES)→ GT (VT ,ET ,FT ,ET). There are two
categories of techniques used to assimilate the input graph to generate the target
graph embedding-based and editing-based.

Embedding-based NECT usually encodes the source graph into latent represen-
tations using an encoder that contains higher-level information on the input graph
which can then be decoded into the target graph by a decoder (Jin et al, 2020c,
2018c; Kaluza et al, 2018; Maziarka et al, 2020b; Sun and Li, 2019). These meth-
ods are usually based on either conditional VAEs (Sohn et al, 2015) or conditional
GANs (Mirza and Osindero, 2014). Three main techniques will be introduced in this
section, including junction-tree variational auto-encoder, molecule cycle-consistent
adversarial networks and directed acyclic graph transformation networks.

12.4.1.1 Junction-tree Variational Auto-encoder Transformer

The goal of molecule optimization, which is one of the important molecule genera-
tion problems, is to optimize the properties of a given molecule by transforming it

262 Xiaojie Guo, Shiyu Wang, Liang Zhao

into a novel output molecule with optimized properties. The molecule optimization
problem is typically formalized as a NECT problem where the input graph refers to
the initial molecule and the output graph refers to the optimized molecule. Both the
node and edge attributes can change during the transformation process.

The Junction-tree Variational Auto-encoder (JT-VAE) is motivated by the key
challenge of molecule optimization in the domain of drug design, which is to find
target molecules with the desired chemical properties (Jin et al, 2018a). In terms of
the model architecture, JT-VAE extends the VAE (Kingma and Welling, 2014) to
molecular graphs by introducing a suitable encoder and a matching decoder. Under
JT-VAE, each molecule is interpreted as being formalized from subgraphs chosen
from a dictionary of valid components. These components serve as building blocks
when encoding a molecule into a vector representation and decoding latent vectors
back into optimized molecular graphs. The dictionary of components, such as rings,
bonds and individual atoms, is large enough to ensure that a given molecule can
be covered by overlapping clusters without forming cluster cycles. In general, JT-
VAE generates molecular graphs in two phases, by first generating a tree-structured
scaffold over chemical substructures and then combining them into a molecule with
a graph message-passing network.

The latent representation of the input graph G is encoded by a graph message-
passing network (Dai et al, 2016; Gilmer et al, 2017). Here, let xv denote the feature
vector of the vertex v, involving properties of the vertex such as the atom type and
valence. Similarly, each edge (u,v) ∈ E has a feature vector xvu indicating its bond
type. Two hidden vectors νuv and νvu denote the message from u to v and vice versa.
In the encoder, messages are exchanged via loopy belief propagation:

ν
(t)
uv = τ(W g

1 xu +W g
2 xuv +W g

3 ∑
w∈N(u)\v

ν
(t−1)
wu), (12.8)

where vt
uv is the message computed in the t-th iteration, initialized with ν

(0)
uv = 0, τ(·)

is the ReLU function, W g
1 , W g

2 and W g
3 are weights, and N(u) denotes the neighbors

of u. Then, after T iterations, the latent vector of each vertex is generated capturing
its local graphical structure:

hu = τ(Ug
1 xu + ∑

v∈N(u)
Ug

2 ν
(T)
vu), (12.9)

where Ug
1 and Ug

2 are weights. The final graph representation is hG = ∑i hi/|V |,
where |V | is the number of nodes in the graph. The corresponding latent variable
zG can be sampled from N (zG; µG ,σ

2
G) and µG and σ2

G can be calculated from hG

via two separate affine layers.
A junction tree can be represented as (V ,E ,X) whose node set is V =(C1, ...,Cn)

and edge set is E = (E1, ...,En). This junction tree is labeled by the label dictionary
X . Similar to the graph representation, each cluster Ci is represented by a one-hot xi
and each edge (Ci,C j) corresponds to two message vectors vi j and v ji. An arbitrary
leaf node is picked as the root and messages are propagated in two phases:

12 Graph Neural Networks: Graph Transformation 263

si j = ∑
k∈N(i)\ j

vki (12.10)

zi j = σ(W zxi +U zsi j +bz)

rki = σ(W rxi +U rvki +br)

ṽi j = tanh(Wxi +U ∑
k∈N(i)\ j

rki⊙vki)

vi j = (1− zi j)⊙ si j + zi j⊙ ṽi j.

hi, the latent representation of node vi can now be calculated:

hi = τ(W oxi + ∑
k∈N(u)

Uovki) (12.11)

The final tree representation is hTG
= hroot . zTG

is sampled in a similar way as in
the encoding process.

Under the JT-VAE framework, the junction tree is decoded from zTG
using a

tree-structured decoder that traverses the tree from the root and generates nodes in
their depth-first order. During this process, a node receives information from other
nodes, and this information is propagated through message vectors hi j. Formally,
let Ẽ = {(i1, j1), ...,(im, jm)} be the set of edges traversed over the junction tree
(V ,E), where m = 2|E | because each edge is traversed in both directions. The
model visits node it at time t. Let Ẽt be the first t edges in Ẽ . The message is updated
as hit , jt = GRU(xit ,{hk,it}(k,it)∈Ẽt ,k ̸= jt), where xit corresponds to the node features.
The decoder first makes a prediction regarding whether the node it still has children
to be generated, in which the probability is calculated as:

pt = σ(ud · τ(W d
1 xit +W d

2 zTG
+W d

3 ∑
(k,it)∈Ẽt

hk,it)), (12.12)

where ud , W d
1 , W d

2 and W d
3 are weights. Then, when a child node j is generated from

its parent i, its node label is predicted with:

q j = so f tmax(U l · τ(W l
1zTG

+W l
2hi j)), (12.13)

where U l , W l
1 and W l

2 are weights and q j is a distribution over label dictionary X .
The final step of the model is to reproduce a molecular graph G to represent

the predicted junction tree (V̂ , Ê) by assembling the subgraphs together into the
final molecular graph. Let G (TG) be a set of graphs corresponding to the junction
tree TG . Decoding graph Ĝ from the junction tree T̂G = (V̂ , Ê) is a structured
prediction:

Ĝ = arg max
G ′=G (T̂G)

f a(G ′), (12.14)

where f a is a scoring function over candidate graphs. The decoder starts by sampling
the assembly of the root and its neighbors according to their scores, then proceeds to
assemble the neighbors and associated clusters. In terms of scoring the realization
of each neighborhood, let Gi be the subgraph resulting from a particular merging of
cluster Ci in the tree with its neighbors C j, j ∈ NT̂G

(i). Gi is scored as a candidate
subgraph by first deriving a vector representation hGi , and f a

i (Gi) = hGi · zG is the

264 Xiaojie Guo, Shiyu Wang, Liang Zhao

subgraph score. For atoms in Gi, let αv = i if v ∈Ci and αv = j if v ∈C j\Ci to mark
the position of atoms in the junction tree and retrieve messages m̂i, j, summarizing
the subtree under i along the edge (i, j) obtained by the tree encoder. Then the
neural messages can be obtained and aggregated similarly to the encoding step with
parameters:

µ
(t)
uv = τ(W a

1 xu +W a
2 xuv +W a

3 µ̂
(t−1)
uv) (12.15)

µ̃
(t−1)
uv =

{
∑w∈N(u)\v µ

(t−1)
wu αu = αv

m̂αu,αv +∑w∈N(u)\v µ
(t−1)
wu αu ̸= αv,

where W a
1 , W a

2 and W a
3 are weights.

12.4.1.2 Molecule Cycle-Consistent Adversarial Networks

Cycle-consistent adversarial networks, an alternative to achieve embedding-based
NECT, were originally developed to achieve image-to-image transformations. The
aim here is to learn to transform an image from a source domain to a target domain in
the absence of paired examples by using an adversarial loss. To promote the chemi-
cal compound design process, this idea has been borrowed for graph transformation.
For instance, Molecule Cycle-Consistent Adversarial Networks (Mol-CycleGAN)
have been proposed to generate optimized compounds with high structural similar-
ity to the originals (Maziarka et al, 2020b). Given a molecule GX with the desired
molecular properties, Mol-CycleGAN aims to train a model to perform the trans-
formation G : GX → GY and then use this model to optimize the molecules. Here
GY is the set of molecules without the desired molecular properties. In order to rep-
resent the sets GX and GY , this model requires a reversible embedding that allows
both the encoding and decoding of molecules. To achieve this, JT-VAE is employed
to provide the latent space during the training process, during which the distance
between molecules required to calculate the loss function can be defined directly.
Each molecule is represented as a point in latent space, assigned based on the mean
of the variational encoding distribution.

For the implementation, the sets GX and GY must be defined (e.g., inactive/active
molecules), after which the mapping functions G : GX → GY and F : GY → GX are
introduced. The discriminators DX and DY are proposed to force generators F and
G to generate samples from a distribution close to the distributions of GX and GY .
For this process, F , G, DX and DY are modeled by neural networks. This approach
to molecule optimization is designed to (1) take a prior molecule x with no specified
features from set GX and compute its latent space embedding; (2) use generative
neural network G to obtain the embedding of molecule G(x) that has this feature but
is also similar to the original molecule x; and (3) decode the latent space coordinates
given by G(x) to obtain the optimized molecule.

The loss function to train Mol-CycleGAN is:

12 Graph Neural Networks: Graph Transformation 265

L(G,F,DX ,DY) = LGAN(G,DY ,GX ,GY)+LGAN(F,DX ,GY ,GX) (12.16)
+λ1Lcyc(G,F)+λ2Lidentity(G,F),

and G∗,F∗ = argminG,F maxDX ,DY L(G,F,DX ,DY). The adversarial loss is utilized:

LGAN(G,DY ,GX ,GY) =
1
2
E

y∼pGY
data

[(DY (y)−1)2] (12.17)

+
1
2
E

x∼pGX
data

[DY (G(x))2],

which ensures that the generator G (and F) generates samples from a distribution
close to the distribution of GY (or GX), denoted by pGY

data (or pGX
data). The cycle con-

sistency loss

Lcyc(G,F) = E
y∼pGY

data
[∥G(F(y))− y∥1] (12.18)

+E
x∼pGX

data
[∥F(G(x))− x∥1],

reduces the space available to the possible mapping functions such that for a
molecule x from set GX , the GAN cycle constrains the output to a molecule similar
to x. The inclusion of the cyclic component acts as a regularization factor, making
the model more robust. Finally, to ensure that the generated molecule is close to the
original, identity mapping loss is employed:

Lidentity(G,F) = E
y∼pGY

data
[∥F(y)− y∥1] (12.19)

+E
x∼pGX

data
[∥G(x)− x∥1],

which further reduces the space available to the possible mapping functions and
prevents the model from generating molecules that lay far away from the starting
molecule in the latent space of JT-VAE.

12.4.1.3 Directed Acyclic Graph Transformation Networks

Another example of embedding-based NECT is a neural model for learning deep
functions on the space of directed acyclic graphs (DAGs) (Kaluza et al, 2018). Math-
ematically, the neural methodologies developed to handle graph-structured data can
be regarded as function approximation frameworks where both the domain and the
range of the target function can be graph spaces. In the area of interest here, the
embedding and synthesis methodologies are gathered into a single unified frame-
work such that functions can be learned from one graph space onto another graph
space without the need to impose a strong assumption of independence between the
embedding and generative process. Note that only functions in DAG space are con-
sidered here. A general encoder-decoder framework for learning functions from one
DAG space onto another has been developed.

266 Xiaojie Guo, Shiyu Wang, Liang Zhao

Here, RNN is employed to model the function F , denoted as D2DRNN. Specif-
ically, the model consists of an encoder Eα with model parameters α that compute
a fixed-size embedding of the input graph Gin, and a decoder Dβ with parameters
β , using the embedding as input and producing the output graph Ĝout . Alternatively,
the DAG-function can be defined as F(Gin) := Dβ (Eα(Gin)).

The encoder is borrowed from the deep-gated DAG recursive neural network
(DG-DAGRNN) (Amizadeh et al, 2018), which generalizes the stacked recurrent
neural networks (RNNs) on sequences to DAG structures. Each layer of DG-
DAGRNN consists of gated recurrent units (GRUs) (Cho et al, 2014a), which are
repeated for each node vi ∈ Gin. The GRU corresponding to node v contains an ag-
gregated representation of the hidden states of the units regarding its predecessors
π(v). For an aggregation function A:

hv = GRU(xv,h′v), where v′ = A({hu|u ∈ π(v)}). (12.20)

Since the ordering of the nodes is defined by the topological sort of Gin, all the
hidden states hv can be computed with a single forward pass along a layer of DG-
DAGRNN. The encoder contains multiple layers, each of which passes hidden states
to the recurrent units in the subsequent layer corresponding to the same node.

The encoder outputs an embedding Hin = Eα(Gin), which serves as the input of
the DAG decoder. The decoder follows the local-based node-sequential generation
style. Specifically, first, the number of nodes of the target graph is predicted by a
multilayer perceptron (MLP) with a Poisson regressor output layer, which takes the
input graph embedding Hin and outputs the mean of a Poisson distribution describ-
ing the output graph. Whether it is necessary to add an edge eu,vn for all the nodes
u ∈ {v1, ...,vn−1} already in the graph is determined by a module of MLP. Since the
output nodes are generated in their topological order, the edges are directed from
the nodes added earlier to the nodes added later. For each node v, the hidden state
hv is calculated using a similar mechanism to that used in the encoder, after which
they are aggregated and fed to a GRU. The other input for the GRU consists of the
aggregated states of all the sink nodes generated so far. For the first node, the hidden
state is initialized based on the encoder’s output. Then, the output node features are
generated based on its hidden state using another module of MLP. Finally, once the
last node has been generated, the edges are introduced with probability 1 for sinks
in the graph to ensure a connected graph with only one sink node as an output.

12.4.2 Editing-based Node-Edge Co-Transformation

Unlike the encoder-decoder framework, modification-based NECT directly mod-
ifies the input graph iteratively to generate the target graphs (Guo et al, 2019c;
You et al, 2018a; Zhou et al, 2019c). Two methods are generally used to edit the
source graph. One employs a reinforcement-learning agent to sequentially modify
the source graph based on a formulated Markov decision process (You et al, 2018a;

12 Graph Neural Networks: Graph Transformation 267

Zhou et al, 2019c). The modification at each step is selected from a defined action
set that includes ”add node”, ”add edge”, ”remove bonds” and so on. Another is
to update the nodes and edges from the source graph synchronously in a one-shot
manner through the MPNN using several iterations (Guo et al, 2019c).

12.4.2.1 Graph Convolutional Policy Networks

Motivated by the large size of chemical space, which can be an issue when design-
ing molecular structures, graph convolutional policy networks (GCPNs) serve as
useful general graph convolutional network-based models for goal-directed graph
generation through reinforcement learning (RL) (You et al, 2018a). In this model,
the generation process can be guided towards the specific desired objectives, while
restricting the output space based on underlying chemical rules. To achieve goal-
directed generation, three strategies, namely graph representation, reinforcement
learning, and adversarial trainings are adopted. In GCPN, molecules are represented
as molecular graphs, and partially generated molecular graphs can be interpreted as
substructures. GCTN is designed as an RL agent which operates within a chemistry-
aware graph generation environment. A molecule is successively constructed by ei-
ther connecting a new substructure or atom to an existing molecular graph by adding
a bond. GCPN is trained to optimize the domain-specific properties of the source
molecule by applying a policy gradient to optimize it via a reward composed of
molecular property objectives and adversarial loss; it acts in an environment which
incorporates domain-specific rules. The adversarial loss is provided by a GCN-based
discriminator trained jointly on a dataset of example molecules.

An iterative graph generation process is designed and formulated as a general
decision process M = (S ,A ,P,R,γ), where S = {si} is the set of states that com-
prises all possible intermediate and final graphs. A = (ai) is the set of actions
that describe the modifications made to the current graph during each iteration,
P represents the transition dynamics that specify the possible outcomes of carry-
ing out an action p(st+1|st , ...,s0,at), R(st) = rt is a reward function that specifies
the reward after reaching state st and γ is the discount factor. The graph genera-
tion process can now be formulated as (s0,a0,r0, ...,sn,an,rn), and the modifica-
tion of the graph at each time can be described as a state transition distribution:
p(st+1|st , ...,s0) =∑at p(at |st , ...,s0)p(st+1|st , ...,s0,at), where p(at |st , ...,s0) is rep-
resented as a policy network πθ . Note that in this process, the state transition dy-
namics are designed to satisfy the Markov property p(st+1|st , ...s0) = p(st+1|st).

In this model, a distinct, fixed-dimension, homogeneous action space is defined
and amenable to reinforcement learning, where an action is analogous to link pre-
diction. Specifically, a set of scaffold subgraphs {C1, ...,Cs} is first defined based on
the source graph, thus serving as a subgraph vocabulary that contains the subgraphs
to be added into the target graph during graph generation. Define C =∪s

i=1Ci. Given
the modified graph Gt at step t, the corresponding extended graph can be defined as
Gt ∪C. Under this definition, an action can either correspond to connecting a new
subgraph Ci to a node in Gt or connecting existing nodes within graph Gt . GAN is

268 Xiaojie Guo, Shiyu Wang, Liang Zhao

also employed to define the adversarial rewards to ensure that generated molecules
do indeed resemble the originals.

Node embedding is achieved by message passing over each edge type for L layers
through GCN. At the l-th layer of GCN, messages from different edge types are ag-
gregated to calculate the node embedding H(l+1) ∈R(n+c)×k of the next layer, where
n and c are the sizes of Gt and C, respectively, and k is the embedding dimension:

H(l+1) = AGG(ReLU({D̂−
1
2

i ÊiD̂
− 1

2
i H(l)W (l)

i },∀i ∈ (1, ...,b))). (12.21)

Ei is the ith slice of the edge-conditioned adjacency tensor E, and Êi = Ei + I; D̂i =

∑k Êi jk and W (l)
i is the weight matrix for the ith edge type. AGG denotes one of the

aggregation functions from {MEAN,MAX ,SUM,CONTACT}.
The link prediction-based action at ensures each component samples from a pre-

diction distribution governed by the equations below:

at =CONCAT (a f irst ,asecond ,aedge,astop) (12.22)

f f irst(st) = so f tmax(m f (X)), a f irst ∼ f f irst(st) ∈ {0,1}n (12.23)

fsecond(st) = so f tmax(ms(Xa f irst ,X)), asecond ∼ fsecond(st) ∈ {0,1}n+c

fedge(st) = so f tmax(me(Xa f irst ,X)), aedge ∼ fedge(st) ∈ {0,1}b

fstop(st) = so f tmax(mt(AGG(X))), astop ∼ fstop(st) ∈ {0,1}

Here m f , ms, me and m f denote MLP modules.

12.4.2.2 Molecule Deep Q-networks Transformer

In addition to GCPN, molecule deep Q-networks (MolDQN) has also been devel-
oped for molecule optimization under the node-edge co-transformation problem uti-
lizing an editing-based style. This combines domain knowledge of chemistry with
state-of-the-art reinforcement learning techniques (double Q-learning and random-
ized value functions) (Zhou et al, 2019c). In this field, traditional methods usually
employ policy gradients to generate graph representations of molecules, but these
suffer from high variance when estimating the gradient (Gu et al, 2016). In com-
parison, MolDQN is based on value function learning, which is usually more stable
and sample efficient. MolDQN also avoids the need for expert pretraining on some
datasets, which may lead to lower variance but limits the search space considerably.

In the framework proposed here, modifications of molecules are directly defined
to ensure 100% chemical validity. Modification or optimization is performed in a
step-wise fashion, where each step belongs to one of the following three categories:
(1) atom addition, (2) bond addition, and (3) bond removal. Because the molecule
generated depends solely on the molecule being changed and the modification made,
the optimization process can be formulated as a Markov decision process (MDP).

12 Graph Neural Networks: Graph Transformation 269

Specifically, when performing the action atom addition, an empty set of atoms VT
for the target molecule graph is first defined. Then, a valid action is defined as adding
an atom in VT and also a bond between the added atom and the original molecule
wherever possible. When performing the action bond addition, a bond is added be-
tween two atoms in VT . If there is no existing bond between the two atoms, the
actions between them can consist of adding a single, double or triple bond. If there
is already a bond, this action changes the bond type by increasing the index of the
bond type by one or two. When performing the action bond removal, the valid bond
removal action set is defined as the actions that decrease the bond type index of an
existing bond. Possible transitions include: (1) Triple bond→{Double, Single, No}
bond, (2) Double bond→{Single, No} bond, and (3) Single bond→ {No} bond.

Based on the molecule modification MDP defined above, RL aims to find a policy
π that chooses an action for each state that maximizes future rewards. Then, the
decision is made by finding the action a for a state s to maximize the Q function:

Qπ(s,a) = Qπ(m, t,a) = Eπ [
T

∑
n=t

rn], (12.24)

where rn is the reward at step n. The optimal policy can therefore be defined as
π∗(s) = argmaxa Qπ∗(s,a). A neural network is adopted to approximate Q(s,a,θ),
and can be trained by minimizing the loss function:

l(θ) = E[fl(yt −Q(st ,at ;θ))], (12.25)

where yt = rt +maxa Q(st+1,a;θ) is the target value and fl is the Huber loss:

fl(x) =

{
1
2 x2 if |x|< 1
|x|− 1

2 otherwise
(12.26)

In a real-world setting, it is usually desirable for several different properties to be
optimized at the same time. Under the multi-objective RL setting, the environment
will return a vector of rewards at each step t with one reward for each objective. A
“scalar” reward framework is applied to achieve multi-objective optimization, with
the introduction of a user defined weight vector w = [w1,w2, ...,wk]

⊤ ∈ Rk. The
reward is calculated as:

rs,t = w⊤−→rt =
k

∑
i=1

wiri,t . (12.27)

The objective of MDP is to maximize the cumulative scalarized reward.
The Q-learning model (Mnih et al, 2015) is implemented here, incorporating the

improvements gained using double Q-learning (Van Hasselt et al, 2016), with a deep
neural network being used to approximate the Q-function. The input molecule is
converted to a vector, by taking the form of a Morgan fingerprint (Rogers and Hahn,
2010) with the radius of 3 and length of 2048. The number of steps remaining in
the episode is concatenated to the vector and a four-layer fully-connected network

270 Xiaojie Guo, Shiyu Wang, Liang Zhao

with hidden state size of [1024, 512, 128, 32] and ReLU activation is used as the
architecture.

12.4.2.3 Node-Edge Co-evolving Deep Graph Translator

To overcome a number of challenges including, but not limited to, the mutually
dependent translation of the node and edge attributes, asynchronous and iterative
changes in the node and edge attributes during graph translation, and the difficulty of
discovering and enforcing the correct consistency between node attributes and graph
spectra, the Node-Edge Co-evolving Deep Graph Translator (NEC-DGT) has been
developed to achieve so-called multi-attributed graph translation and proven to be a
generalization of the existing topology translation models (Guo et al, 2019c). This is
a node-edge co-evolving deep graph translator that edits the source graph iteratively
through a generation process similar to the MPNN-based adjacency-based one-shot
method for unconditional deep graph generation, with the main difference being
that it takes the graph in the source domain as input rather than the initialized graph
(Guo et al, 2019c).

NEC-DGT employs a multi-block translation architecture to learn the distribu-
tion of the graphs in the target domain, conditioning on the input graphs and con-
textual information. Specifically, the inputs are the node and graph attributes, and
the model outputs are the generated graphs’ node and edge attributes after several
blocks. A skip-connection architecture is implemented across the different blocks to
handle the asynchronous properties of different blocks, ensuring the final translated
results fully utilize various combinations of blocks’ information. The following loss
function is minimized in the work:

LT = L (T (G (E0,F0),C),G (E ′,F ′)), (12.28)

where C corresponds to the contextual information vector, E0, E ′ corresponds to
the edge attribute tensors of the input and target graphs, respectively, and F0, F ′

corresponds to the node attribute tensors of the input and target graphs, respectively.
To jointly handle the various interactions among the nodes and edges, the re-

spective translation paths are considered for each block. For example, in the node
translation path, edges-to-nodes and nodes-to-nodes interactions are considered in
the generation of node attributes. Similarly, ”node to edges” and ”edges-to-edges”
are considered in the generation of edge attributes.

The frequency domain properties of the graph are learned, by which the inter-
actions between node and edge attributes are jointly regularized utilizing a non-
parametric graph Laplacian. Also, shared patterns among the generated nodes and
edges in different blocks are enforced through regularization. Then, the regulariza-
tion term is

R(G (E,F)) =
S

∑
s=0

Rθ (G (ES,FS))+Rθ , (12.29)

12 Graph Neural Networks: Graph Transformation 271

where S corresponds to the number of blocks and θ refers to the overall parameters
in the spectral graph regularization. G (ES,FS) is the generated target graph, where
ES is the generated edge attributes tensor and FS is the node attributes matrix. Then
the total loss function is

L̃ = L (T (G (E0,F0),C),G (E ′,F ′))+βR(G(E,F)). (12.30)

The model is trained by minimizing the MSE of ES with E ′, FS with F ′, enforced
by the regularization. T (·) is the mapping from the input graph to the target graph
learned from the multi-attributed graph translation.

The transformation process is modeled by several stages with each stage gen-
erating an immediate graph. Specifically, for each stage t, there are two options:
node translation paths and edge translation paths. In the node translation path, an
MLP-based influence-function is used to calculate the influence I(t)i on each node
vi from its neighboring nodes. Another MLP-based updating-function is used to up-
date the node attribute as F(t)

i with the input of influence I(t)i . The edge translation
path is constructed in the same way as the node translation path, with each edge
being generated by the influence from its adjacent edges.

12.5 Other Graph-based Transformations

12.5.1 Sequence-to-Graph Transformation

A deep sequence-to-graph transformation aims to generate a target graph GT condi-
tioned on an input sequence X . This problem is often seen in domains such as NLP
(Chen et al, 2018a; Wang et al, 2018g) and time series mining (Liu et al, 2015; Yang
et al, 2020c).

Existing methods (Chen et al, 2018a; Wang et al, 2018g) handle the seman-
tic parsing task by transforming a sequence-to-graph problem into a sequence-to-
sequence problem and utilizing the classical RNN-based encoder-decoder model
to learn this mapping. A neural semantic parsing approach, named Sequence-to-
Action, models semantic parsing as an end-to-end semantic graph generation pro-
cess (Chen et al, 2018a). Given a sentence X = {x1, ...,xm}, the Sequence-to-Action
model generate a sequence of actions Y = {y1, ..,ym} when constructing the cor-
rect semantic graph. A semantic graph consists of nodes (including variables, enti-
ties, and types) and edges (semantic relationships), with universal operations (e.g.,
argmax, argmin, count, sum, and not). To generate a semantic graph, six types of ac-
tions are defined: Add Variable Node, Add Entity Node, Add Type Node, Add Edge,
Operation Function and Argument Action. In this way, the generated parse tree is
represented as a sequence, and the sequence-to-graph problem is transformed into
a sequence-to-sequence problem. The attention-based sequence-to-sequence RNN
model with an encoder and decoder can be utilized, where the encoder converts the
input sequence X to a sequence of context sensitive vectors {b1, ...,bm} using a bidi-

272 Xiaojie Guo, Shiyu Wang, Liang Zhao

rectional RNN and a classical attention-based decoder generates action sequence Y
based on the context sensitive vectors (Bahdanau et al, 2015). The generation of a
parse tree as a sequence of actions is represented (Wang et al, 2018g) and concepts
from the Stack-LSTM neural parsing model are borrowed, producing two non-trivial
improvements, Bi-LSTM subtraction and incremental tree-LSTM, that improve the
process of learning a sequence-to-sequence mapping (Dyer et al, 2015).

Other methods have also been developed to handle the problem of Time Series
Conditional Graph Generation (Liu et al, 2015; Yang et al, 2020c): given an input
multivariate time series, the aim is to infer a target relation graph to model the under-
lying interrelationship between the time series and each node. A novel model of time
series conditioned graph generation-generative adversarial networks (TSGG-GAN)
for time series conditioned graph generation has been proposed that explores the
use of GANs in a conditional setting (Yang et al, 2020c). Specifically, the generator
in a TSGG-GAN adopts a variant of recurrent neural networks known as simple re-
current units (SRU) (Lei et al, 2017b) to extract essential information from the time
series, and uses an MLP to generate the directed weighted graph.

12.5.2 Graph-to-Sequence Transformation

A number of graph-to-sequence encoder-decoder models have been proposed to
handle rich and complex data structures, which are hard for sequence-to-sequence
methods to handle (Gao et al, 2019c; Bastings et al, 2017; Beck et al, 2018; Song
et al, 2018; Xu et al, 2018c). A graph-to-sequence model typically employs a graph-
neural-network-based (GNN-based) encoder and an RNN/Transformer-based de-
coder, with most being designed to tackle tasks such as natural language genera-
tion (NLG), which is an important task in NLP (YILMAZ et al, 2020). Graph-to-
sequence models have the ability to capture the rich structural information of the
input and can also be applied to arbitrary graph-structured data.

Early graph-to-sequence methods and their follow-up works (Bastings et al,
2017; Damonte and Cohen, 2019; Guo et al, 2019e; Marcheggiani et al, 2018; Xu
et al, 2020b,d; Zhang et al, 2020d,c) have mainly used a graph convolutional net-
work (GCN) (Kipf and Welling, 2017b) as the graph encoder, probably because
GCN was the first widely used GNN model that sparked this new wave of research
on GNNs and their applications. Early GNN variants, such as GCN, were not orig-
inally designed to encode information on the edge type and so cannot be directly
applied to the encoding of multi-relational graphs in NLP. Later on, more graph
transformer models (Cai and Lam, 2020; Jin and Gildea, 2020; Koncel-Kedziorski
et al, 2019) were introduced to the graph-to-sequence architecture to handle these
multi-relational graphs. These graph transformer models generally function by ei-
ther replacing the self-attention network in the original transformer with a masked
self-attention network, or explicitly incorporating edge embeddings into the self-
attention network.

12 Graph Neural Networks: Graph Transformation 273

Because edge direction in an NLP graph often encodes critical information re-
garding semantic meanings, capturing bidirectional information in the text is helpful
and has been widely explored in works such as BiLSTM and BERT (Devlin et al,
2019). Some attention has also been devoted to extending the existing GNN models
to handle directed graphs. For example, separate model parameters can be intro-
duced for different edge directions (e.g., incoming/outgoing/self-loop edges) when
conducting neighborhood aggregation (Guo et al, 2019e; Marcheggiani et al, 2018;
Song et al, 2018). A BiLSTM-like strategy has also been proposed to learn the node
embeddings of each direction independently using two separate GNN encoders and
then concatenating the two embeddings for each node to obtain the final node em-
beddings (Xu et al, 2018b,c,d).

In the field of NLP, graphs are usually multi-relational, where the edge type in-
formation is vital for the prediction. Similar to the bidirectional graph encoder in-
troduced above, separate model parameters for different edge types are considered
when encoding edge type information with GNNs (Chen et al, 2018e; Ghosal et al,
2020; Schlichtkrull et al, 2018). However, usually the total number of edge types
is large, leading to non-negligible scalability issues for the above strategies. This
problem can be tackled by converting a multi-relational graph to a Levi graph (Levi,
1942), which is bipartite. To create a Levi graph, all the edges in the original graph
are treated as new nodes and new edges are added to connect the original nodes and
new nodes.

Apart from NLP, graph-to-sequence transformation has been employed in other
fields, for example when modeling complex transitions of an individual user’s ac-
tivities among different healthcare subforums over time and learning how this is
related to his various health conditions (Gao et al, 2019c). By formulating the tran-
sition of user activities as a dynamic graph with multi-attributed nodes, the health
stage inference is formalized as a dynamic graph-to-sequence learning problem and,
hence, a dynamic graph-to-sequence neural network architecture (DynGraph2Seq)
has been proposed (Gao et al, 2019c). This model contains a dynamic graph en-
coder and an interpretable sequence decoder. In the same work, a dynamic graph
hierarchical attention mechanism capable of capturing entire both time-level and
node-level attention is also proposed, providing model transparency throughout the
whole inference process.

12.5.3 Context-to-Graph Transformation

Deep graph generation conditioning on semantic context aims to generate the target
graph GT conditioning on an input semantic context that is usually represented in
the form of additional meta-features. The semantic context can refer to the category,
label, modality, or any additional information that can be intuitively represented as
a vector C. The main issue here is to decide where to concatenate or embed the con-
dition representation into the generation process. As a summary, the conditioning
information can be added in terms of one or more of the following modules: (1)

274 Xiaojie Guo, Shiyu Wang, Liang Zhao

the node state initialization module, (2) the message passing process for MPNN-
based decoding, and (3) the conditional distribution parameterization for sequential
generating.

A novel unified model of graph variational generative adversarial nets has been
proposed, where the conditioning semantic context is input into the node state ini-
tialization module (Yang et al, 2019a). Specifically, the generation process begins
by modeling the embedding Zi of each node with the separate latent distributions,
after which a conditional graph VAE (CGVAE) can be directly constructed by con-
catenating the condition vector C to each node’s latent representation Zi to obtain
the updated node latent representation Ẑi. Thus, the distribution of the individual
edge Ei, j is assumed to be a Bernoulli distribution, which is parameterized by the
value Êi, j and calculated as Êi, j = Sigmoid(f (Ẑi)

⊤ f (Ẑ j)), where f (·) is constructed
using a few fully connected layers. A conditional deep graph generative model that
adds the semantic context information into the initialized latent representations Zi
at the beginning of the decoding process has also been proposed (Li et al, 2018d).

Other researchers have added the context information C into the message passing
module as part of its MPNN-based decoding process (Li et al, 2018f). Specifically,
the decoding process is parameterized as a Markov process and the graph is gen-
erated by iteratively refining and updating the initialized graph. At each step t, an
action is conducted based on the current node’s hidden states Ht = {ht

1, ...,h
t
N}. To

calculate ht
i ∈ Rl (l denotes the length of the representation) for node vi in the in-

termediate graph Gt after each updating of the graph, a message passing network
is utilized with node message propagation. Thus, the context information C ∈ Rk is
added to the operation of the MPNN layer as follows:

ht
i =Wht−1

i +Φ ∑v j∈N(v j)
ht−1

j +ΘC, (12.31)

where W ∈ Rl×l , Θ ∈ Rl×l and Φ ∈ Rk×l are all learnable weights vectors and k
denotes the length of the semantic context vector.

Semantic context has also been considered as one of the inputs for calculating the
conditional distribution parameter at each step during the sequential generating pro-
cess (Jonas, 2019). The aim here is to solve the molecule inverse problem by infer-
ring the chemical structure conditioning on the formula and spectra of a molecule,
which provides a distinguishable fingerprint of its bond structure. The problem is
framed as an MDP and molecules are constructed incrementally one bond at a time
based on a deep neural network, where they learn to imitate a “subisomorphic or-
acle” that knows whether the generated bonds are correct. The context information
(e.g., spectra) is applied in two places. The process begins with an empty edge set
E0 that is sequentially updated to Ek at each step k by adding an edge sampled
from p(ei, j|Ek−1,V ,C). V denotes the node set that is defined in the given molec-
ular formula. The edge set keeps updating until the existing edges satisfy all the
valence constraints of a molecule. The resulting edge set EK then serves as the can-
didate graph. For a given spectrum C, the process is repeated T times, generating
T (potentially different) candidate structures, {E (i)

K }T
i=1. Then based on a spectral

prediction function f (·), the quality of these candidate structures are evaluated by

12 Graph Neural Networks: Graph Transformation 275

measuring how close their predicted spectra are to the condition spectrum C. Finally,
the optimal generated graph is selected according to argmin

i
∥ f (E (i)

K)−C ∥2.

12.6 Summary

In this chapter, we introduce the definitions and techniques for the transforma-
tion problem that involves graphs in the domain of deep graph neural networks.
We provide a formal definition of the general deep graph transformation prob-
lem as well as its four sub-problems, namely node-level transformation, edge-level
transformation,node-edge co-transformation, as well as other graph-involved trans-
formations (e.g., sequence-to-graph transformation and context-to-graph transfor-
mation). For each sub-problem, its unique challenges and several representative
methods are introduced. As an emerging research domain, there are still many
open problems to be solved for future exploration, including but not limited to:
(1) Improved scalability. Existing deep graph transformation models typically have
super-linear time complexity to the number of nodes and cannot scale well to large
networks. Consequentially, most existing works merely focus on small graphs, typi-
cally with dozens to thousands of nodes. It is difficult for them to handle many real-
world networks with millions to billions of nodes, such as the internet of things,
biological neuronal networks, and social networks. (2) Applications in NLP. As
more and more GNN-based works have advanced the development of NLP, graph
transformation is naturally a good fit for addressing some NLP tasks, such as in-
formation extraction and semantic parsing. For example, information extraction can
be formalized into a graph-to-graph problem where the input graph is the depen-
dency graph and the output graph is the information graph. (3) Explainable graph
transformation. When we learn the underlying distribution of the generated target
graphs, learning interpretable representations of graph that expose semantic mean-
ing is very important. For example, it is highly beneficial if we could identify which
latent variable(s) control(s) which specific properties (e.g., molecule mass) of the
target graphs (e.g., molecules). Thus, investigations on the explainable graph trans-
formation process are critical yet unexplored.

Editor’s Notes: Graph transformation is deemed very relevant to graph gen-
eration (see Chapter 11) and can be considered as an extension of the latter.
In many real-world applications, one is usually required to generate graphs
with some condition or control from the users. For example, one may want
to generate molecules under some targeted properties (see Chapters 24 and
25) or programs under some function (see Chapter 22). In addition, graph-
to-graph transformation also has a connection to link prediction (Chapter
10) and node classification (Chapter 4), though the former could be more
challenging since it typically requires simultaneous node-edge prediction,
and possibly also comes with the consideration of stochasticity.

Chapter 13
Graph Neural Networks: Graph Matching

Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

Abstract The problem of graph matching that tries to establish some kind of struc-
tural correspondence between a pair of graph-structured objects is one of the key
challenges in a variety of real-world applications. In general, the graph matching
problem can be classified into two categories: i) the classic graph matching problem
which finds an optimal node-to-node correspondence between nodes of a pair of in-
put graphs and ii) the graph similarity problem which computes a similarity metric
between two graphs. While recent years have witnessed the great success of GNNs
in learning node representations of graphs, there is an increasing interest in explor-
ing GNNs for the graph matching problem in an end-to-end manner. This chapter
focuses on the state of the art of graph matching models based on GNNs. We start
by introducing some backgrounds of the graph matching problem. Then, for each
category of graph matching problem, we provide a formal definition and discuss
state-of-the-art GNN-based models for both the classic graph matching problem
and the graph similarity problem, respectively. Finally, this chapter is concluded by
pointing out some possible future research directions.

Xiang Ling
Department College of Computer Science and Technology, Zhejiang University, e-mail:
lingxiang@zju.edu.cn

Lingfei Wu
JD.COM Silicon Valley Research Center, e-mail: lwu@email.wm.edu

Chunming Wu
Department College of Computer Science and Technology, Zhejiang University, e-mail:
wuchunming@zju.edu.cn

Shouling Ji
Department College of Computer Science and Technology, Zhejiang University, e-mail: sji@
zju.edu.cn

277
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_13

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:lingxiang@zju.edu.cn
mailto:lwu@email.wm.edu
mailto:wuchunming@zju.edu.cn
mailto:sji@zju.edu.cn
mailto:sji@zju.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_13&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_13

278 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

13.1 Introduction

As graphs are natural and ubiquitous representations for describing sophisticated
data structures, the problem of graph matching that tries to establish some kind
of structural correspondence between two input graph-structured objects. The graph
matching problem is one of the key challenges in a variety of research fields, such as
computer vision (Vento and Foggia, 2013), bioinformatics (Elmsallati et al, 2016),
cheminformatics (Koch et al, 2019; Bai et al, 2019b), computer security (Hu et al,
2009; Wang et al, 2019i), source/binary code analysis (Li et al, 2019h; Ling et al,
2021), and social network analysis (Kazemi et al, 2015), to name just as few. In
particular, recent research advances in graph matching have been closely involved
in many real-world applications in the field of computer vision, including visual
tracking (Cai et al, 2014; Wang and Ling, 2017), action recognition (Guo et al,
2018a), pose estimation (Cao et al, 2017, 2019), etc. In addition to the study in
computer vision, graph matching also serves as an important foundation of many
other graph-based research tasks, e.g., node and graph classification tasks (Richiardi
et al, 2013; Bai et al, 2019c; Ok, 2020), graph generation tasks (You et al, 2018b;
Ok, 2020), etc.

In a broad sense, according to different goals of graph matching in a wide vari-
ety of real-world applications, the general graph matching problem can be classified
into two categories (Yan et al, 2016) as follows. The first category is the classic
graph matching problem (Loiola et al, 2007; Yan et al, 2020a) that tries to estab-
lish the node-to-node correspondence (and/or even edge-to-edge correspondence)
between the pair of input graphs. The second category is the graph similarity prob-
lem (Bunke, 1997; Riesen, 2015; Ma et al, 2019a) with the purpose of computing
a similarity score between two input graphs. Both categories have the same inputs
(i.e., a pair of input graphs) but with different outputs, whereby the output of the first
category is mainly formulated as a correspondence matrix while the output of the
second category is usually expressed as a similarity scalar. From the perspective of
outputs, the second graph similarity problem can be viewed as a special case of the
first graph matching problem, as the similarity scalar reflects a more coarse-grained
correspondence representation of graph matching than the correspondence matrix.

Generally, both categories of the graph matching problem are known to be NP-
hard (Loiola et al, 2007; Yan et al, 2020a; Bunke, 1997; Riesen, 2015; Ma et al,
2019a), making both problems computationally infeasible for exact and optimum
solutions in large-scale and real-world settings. Given the great importance and in-
herent difficulty of the graph matching problem, it has been heavily investigated in
theory and practice and a huge number of approximate algorithms based on theo-
retical/empirical knowledge of experts have been proposed to find sub-optimal so-
lutions in an acceptable time. Interested readers are referred to (Loiola et al, 2007;
Yan et al, 2016; Foggia et al, 2014; Riesen, 2015) for a more extensive review, as
these approximation methods are beyond the scope of this chapter. Unfortunately,
despite various approximation methods have been devoted to resolving the graph
matching problem for the past decades, it still suffers from the issue of poor scala-

13 Graph Neural Networks: Graph Matching 279

bility as well as the issue of heavy reliance on expert knowledge, and thus remains
as a challenging and significant research problem for many practitioners.

More recently, GNNs that attempt to adapt deep learning from image to non-
euclidean data (i.e., graphs) have received unprecedented attention to learn infor-
mative representation (e.g., node or (sub)graph, etc.) of graph-structured data in
an end-to-end manner (Kipf and Welling, 2017b; Wu et al, 2021d; Rong et al,
2020c). Hereafter, a surge of GNN models have been presented for learning effective
node embeddings for downstream tasks, such as node classification tasks (Hamil-
ton et al, 2017a; Veličković et al, 2018; Chen et al, 2020m), graph classification
tasks (Ying et al, 2018c; Ma et al, 2019d; Gao and Ji, 2019), graph generation
tasks (Simonovsky and Komodakis, 2018; Samanta et al, 2019; You et al, 2018b) as
so on. The great success of GNN-based models on these application tasks demon-
strates that GNN is a powerful class of deep learning model to better learn the graph
representation for downstream tasks.

Encouraged by the great success of GNN-based models obtained from many
other graph-related tasks, many researchers have started to adopt GNNs for the
graph matching problem and a large number of GNN-based models have been pro-
posed to improve the matching accuracy and efficiency (Zanfir and Sminchisescu,
2018; Rolı́nek et al, 2020; Wang et al, 2019g; Jiang et al, 2019a; Fey et al, 2020; Yu
et al, 2020; Wang et al, 2020j; Bai et al, 2018, 2020b, 2019b; Xiu et al, 2020; Ling
et al, 2020; Zhang, 2020; Wang et al, 2020f; Li et al, 2019h; Wang et al, 2019i).
During the training stage, these models try to learn a mapping between the pair
of input graphs and the ground-truth correspondence in a supervised learning and
thus are more time-efficient during the inference stage than traditional approxima-
tion methods. In this chapter, we walk through the recent advances and develop-
ments of graph matching models based on GNNs. Particularly, we focus on how
to incorporate GNNs into the framework of graph matching/similarity learning and
try to provide a systematic introduction and review of state-of-the-art GNN-based
methods for both categories of the graph matching problem (i.e., the classic graph
matching problem in Section 13.2 and the graph similarity problem in Section 13.3,
respectively).

13.2 Graph Matching Learning

In this section, we start by introducing the first category of the graph matching
problem, i.e., the classic graph matching problem1, and provide a formal definition
of the graph matching problem. Subsequently, we will focus discussion on state-of-
the-art graph matching models based on deep learning as well as more advanced
GNNs in the literature.

1 For simplicity, we represent the classic graph matching problem as the graph matching problem
in the following sections of this chapter.

280 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

13.2.1 Problem Definition

A graph of size n (i.e., numbers of nodes) can be represented as G = (V ,E ,A,X ,E),
in which V = {v1, · · · ,vn} denotes the set of nodes (also known as vertices), E ⊆
V ×V denotes the set of edges, A ∈ {0,1}n×n denotes the adjacency matrix, X ∈
Rn×· denotes the initial feature matrix of nodes, and E ∈Rn×n×· denotes an optional
initial feature matrix of edges.

The purpose of the graph matching problem is to find an optimal node-to-node
correspondence between two input graphs, i.e., G (1) and G (2). Without loss of gen-
erality, we consider the graph matching problem whose two input graphs of equal
size2. In particular, we provide a formal definition of the graph matching problem
in Definition 13.1 as follows and give an example illustration of the node-to-node
correspondence in Fig. 13.1.

Definition 13.1 (Graph Matching Problem). Given a pair of input graphs G (1) =
(V (1),E (1),A(1),X (1),E(1)) and G (2) = (V (2),E (2),A(2),X (2),E(2)) of equal size n,
the graph matching problem is to find a node-to-node correspondence matrix S ∈
{0,1}n×n (i.e., also called assignment matrix and permutation matrix) between the
two graphs G (1) and G (2). Each element Si,a = 1 if and only if the node vi ∈ V (1) in
G (1) corresponds to the node va ∈ V (2) in G (2).

Intuitively, the resulting correspondence matrix S represents the possibility of es-
tablishing a matching relation between any pair of nodes in two graphs. The graph
matching problem is known to be NP-hard and has been investigated by formulating
it as a quadratic assignment problem (QAP) (Loiola et al, 2007; Yan et al, 2016). We
adopt the general form of Lawler’s QAP (Lawler, 1963) with constraints as follows
since it has been widely adopted in literature.

Fig. 13.1 An example illus-
tration of the graph match-
ing problem with two input
graphs, i.e., the left graph G (1)

and the right graph G (2) to be
matched. The red dotted lines
represent the node-to-node
correspondences between the
two graphs.

2 For simplicity, we assume that a pair of input graphs in the graph matching problem have the same
number of nodes, but we can extend the problem to a pair of graphs with different number of nodes
via adding dummy nodes, which is commonly adopted by graph matching literature Krishnapuram
et al (2004).

13 Graph Neural Networks: Graph Matching 281

s∗ = argmax
s

s⊤Ks

s.t. S1n = 1n & S⊤1n = 1n

(13.1)

where s= vec(S)∈ {0,1}n2
is the column-wise vectorized version of the assignment

matrix S and 1n is a column vector of length n whose elements are equal to 1.
Particularly, K ∈ Rn2×n2

is the corresponding second-order affinity matrix in which
each element Ki j,ab measures how well every pair of nodes (vi,v j) ∈ V (1)×V (1)

matches (va,vb)∈ V (2)×V (2) and can be defined as follows (Zhou and De la Torre,
2012).

Kind(i, j),ind(a,b) =

cia if i = j and a = b,

di jab else if A(1)
i, j A(2)

a,b > 0,
0 otherwise.

(13.2)

where ind(·, ·) is a bijection function that maps a pair of nodes to an integer index,
the diagonal element (i.e., cia) encodes the node-to-node (i.e., first-order) affinity
between the node vi ∈ V (1) and the node va ∈ V (2), and the off-diagonal element
(i.e., di jab) encodes the edge-to-edge (i.e., second-order) affinity between the edge
(vi,v j) ∈ E (1) and the edge (va,vb) ∈ E (2).

Another important aspect for the formulation in Equation (13.1) is the constraint,
i.e., S1n = 1n and S⊤1n = 1n. It demands that the matching output of the graph
matching problem, i.e., the correspondence matrix S ∈ {0,1}n×n, should be strictly
constrained as a doubly-stochastic matrix. Formally the correspondence matrix S
is a doubly-stochastic matrix if the summation of each column and each row of it is
1. That is, ∀i, ∑ j Si, j = 1 and ∀ j, ∑i Si, j = 1. Therefore, the resulting correspondence
matrix of the graph matching problem should satisfy the requirement of the doubly-
stochastic matrix.

In general, the main challenge in optimizing and solving Equation (13.1) lies in
how to model the affinity model as well as how to optimize with the constraint for
solutions. Traditional methods mostly utilize pre-defined affinity models with lim-
ited capacity (e.g., Gaussian kernel with Euclid distance Cho et al (2010)) and resort
to different heuristic optimizations (e.g., graduated assignment (Gold and Rangara-
jan, 1996), spectral method (Leordeanu and Hebert, 2005), random walk (Cho et al,
2010), etc.). However, such traditional methods suffer from poor scalability and
inferior performance for large-scale settings as well as a broad of application sce-
narios (Yan et al, 2020a). Recently, studies on the graph matching are starting to
explore the high capacity of deep learning models, which achieve state-of-the-are
performance. In the following subsections, we will first give a brief introduction of
deep learning based graph matching models and then discuss state-of-the-art graph
matching models based on GNNs.

282 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

13.2.2 Deep Learning based Models

Aiming at increasing the matching performance, extensive research interest in lever-
aging high capacity of deep learning models to solve the problem of graph matching
has been ignited since Zanfir and Sminchisescu (2018), which introduces an end-to-
end deep learning framework for the graph matching problem for the first time and
receives the best paper honorable mention award in CVPR 20183.

Deep Graph Matching. In (Zanfir and Sminchisescu, 2018), Zanfir and Sminchis-
escu first relax the graph matching problem of Equation (13.1) with the ℓ2 constraint
as follows.

s∗ = argmax
s

s⊤Ks

s.t. ∥s∥2 = 1
(13.3)

To solve the problem, they attempt to introduce deep learning techniques to
the graph matching and propose an end-to-end training framework with standard
differentiable backpropagation and optimization algorithms. The proposed deep
graph matching framework first uses the existing pre-trained CNN model (i.e.,
VGG-16 (Simonyan and Zisserman, 2014b)) to extract node features (i.e., U (1) and
U (2) ∈ Rn×d) and edge features (i.e., F(1) ∈ Rp×2d and F(2) ∈ Rq×2d) from the pair
of input images in the scenario of computer vision applications. In particular, F(1)

and F(2) are row-wise edge feature matrices with p and q as the number of edges in
each graph, respectively. As each edge attribute is the concatenation of the start and
the end node, the dimension of edge attribute is double 2d the dimension of node.

Next, based on extracted node/edge features, it builds the graph matching affinity
matrix K via a novel factorization method of graph matching (Zhou and De la Torre,
2012) as follows.

K = ⌈vec(Kp)⌋+(G2⊗G1)⌈vec(Ke)⌋(H2⊗H1)
⊤

=
⌈

vec(U (1)U (2)⊤)
⌋
+(G2⊗G1)

⌈
vec(F(1)

ΛF(2))
⌋
(H2⊗H1)

⊤ (13.4)

where ⌈X⌋ denotes a diagonal matrix whose diagonal elements are all X ; ⊗ denotes
the Kronecker product; Gi and Hi (i = {1,2}) are the node-edge incidence matrices
that are recovered from the adjacency matrices A(i), i.e., A(i) = GiH⊤i (i = {1,2});
Kp ∈ Rn×n encodes the node-to-node similarity and is directly obtained from the
product of two node feature matrices, i.e., Kp =U (1)U (2)⊤; Ke ∈ Rp×q encodes the
edge-to-edge similarity and is calculated by Ke = F(1)ΛF(2). It is worth to note
that Λ ∈ R2d×2d is a learnable parameter matrix and thus the built graph matching
affinity matrix K in Equation (13.4) is a learnable affinity model.

Then, with the spectral matching technique (Leordeanu and Hebert, 2005), the
graph matching problem is translated into computing the leading eigenvector s∗
which can be approximated by the power iteration algorithm as follows.

3 https://www.thecvf.com/?page_id=413

https://www.thecvf.com/?page_id=413

13 Graph Neural Networks: Graph Matching 283

sk+1 =
Ksk

∥Ksk∥2
(13.5)

in which s is initialized with s0 = 1 and K is computed from Equation (13.4). It
is also worth to note that the spectral graph matching solver in Equation (13.5) is
differentiable but un-learnable. Because the resulting sk+1 is not a doubly-stochastic
matrix, it employs a bi-stochastic normalization layer to iteratively normalize the
matrix by columns and rows over and over again.

Finally, the whole graph matching model is trained in an end-to-end fashion with
a displacement loss Ldisp which operates the difference between predicted displace-
ment and the ground-truth displacement.

Ldisp =
n

∑
i=0

√
∥di−dgt

i ∥2 + ε and di = ∑
va∈V (2)

(Si,a P(2)
a)−P(1)

i (13.6)

where P(1) and P(2) are coordinates of nodes in both images; the vector of di mea-
sures the pixel offset; dgt

i is the corresponding ground-truth; and ε is a small value
for robust penalty.

Deep Graph Matching via Black-box Combinatorial Solver. Motivated by ad-
vances in incorporating a combinatorial optimization solver into a neural net-
work (Pogancic et al, 2020), Rolı́nek et al (2020) propose an end-to-end neural
network which seamlessly embeds a black-box combinatorial solver, namely BB-
GM, for the graph matching problem. To be specific, given two cost vectors (i.e.,
cv ∈ Rn2

and ce ∈ R|E (1)||E (2)|) for both node-to-node and edge-to-edge correspon-
dences, the graph matching problem is formulated as follows.

GM(cv,ce) = arg min
(sv,se)∈Adm(G (1),G (2))

{cv · sv + ce · se} (13.7)

where GM denotes the black-box combinatorial solver; sv ∈ {0,1}n2
is the indicator

vector of matched nodes; se ∈ {0,1}|E (1)||E (2)| is the indicator vector of matched
edges; Adm(G (1),G (2)) represents a set of all possible matching results between
G (1) and G (2).

By the formulation, the core of the graph matching problem is to construct the
two cost vectors cv and ce. Therefore, BB-GM first employs a pre-trained VGG-16
model to extract node embeddings and learns edge embeddings via SplineCNN (Fey
et al, 2018). Then, based on the learned node embeddings, cv is computed by a
weighted inner product similarity between the pair of node embeddings between
two graphs, along with a learnable neural network based on the graph-level feature
vector. Similarly, ce is also computed by a weighted inner product similarity be-
tween the pair of edge embeddings between two graphs, along with the same neural
network.

284 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

13.2.3 Graph Neural Network based Models

More recently, GNNs have started to be studied to deal with the graph matching
problem. This is because GNNs bring about new opportunities on the tasks over
graph-like data and further improve the model capability taking structural informa-
tion of graphs into account. Besides, GNNs can be easily incorporated with other
deep learning architectures (e.g., CNN, RNN, MLP, etc.) and thus provide an end-
to-end learning framework for the graph matching problem.

Cross-graph Affinity based Graph Matching. Wang et al (2019g) claim that it is
the first work that employs GNNs for deep graph matching learning (as least in com-
puter vision). By exploiting the highly efficient learning capabilities of GNNs that
can update the node embeddings with the structural affinity information between
two graphs, the graph matching problem, i.e., the quadratic assignment problem, is
translated into a linear assignment problem that can be easily solved.

In particular, the authors present the cross-graph affinity based graph match-
ing model with the permutation loss, namely PCA-GM. PCA-GM consists of three
steps. First, to enhance learned node embeddings of individual graph with a stan-
dard message-passing network (i.e., intra-graph convolution network), PCA-GM
further updates node embeddings with an extra cross-graph convolution network,
i.e., CrossGConv which not only aggregates the information from local neighbors,
but also incorporates the information from the similar nodes in the other graph.
Fig. 13.2 illustrates an intuitive comparison between the intra-graph convolution
network and the cross-graph convolution network formulated as follows.

H(1)(k) = CrossGConv
(
Ŝ,H(1)(k−1),H(2)(k−1))

H(2)(k) = CrossGConv
(
Ŝ⊤,H(2)(k−1),H(1)(k−1)) (13.8)

where H(1)(k) and H(2)(k) are the k-layer node embeddings for the graph G (1) and
G (2); k denotes the k-th iteration; Ŝ denotes the predicted assignment matrix which
is computed from shallower node embedding layers; and the initial embeddings,

Fig. 13.2 For one node in
the left graph G (1), the intra-
graph convolution network
only operates on its own
graph, i.e., the purple solid
lines in G (1). However, the
cross-graph convolution net-
work operates on both its own
graph (i.e., the purple solid
lines in G (1)) as well as the
other graph (i.e., blued dashed
lines from all nodes in G (2) to
the node in G (1)).

���������	���
���

13 Graph Neural Networks: Graph Matching 285

i.e., H(1)(0) and H(2)(0), are extracted via a pre-trained VGG-16 network in line
with Zanfir and Sminchisescu (2018).

Second, based on the resulting node embeddings H̃(1) and H̃(2) for both graphs,
PCA-GM computes the node-to-node assignment matrix S by a bi-linear mapping
followed by an exponential function as follows.

S̃ = exp
(H̃(1)Θ H̃(2)⊤

τ

)
(13.9)

where Θ denotes the learnable parameter matrix for the assignment matrix learn-
ing and τ > 0 is a hyper-parameter. As the obtained S̃ ∈ Rn×n does not satisfy the
constraint of the doubly-stochastic matrix, PCA-GM uses the Sinkhorn (Adams and
Zemel, 2011) operation for the relaxed linear assignment problem because it is fully
differentiable and has been proven effective for the final graph matching prediction.

S = Sinkhorn(S̃) (13.10)

Finally, PCA-GM adopts the combinatorial permutation loss that computes the
cross entropy loss between the final predicted permutation S and ground truth per-
mutation Sgt for supervised graph matching learning.

Lperm =− ∑
vi∈V (1),va∈V (2)

Sgt
i,a log(Si,a)+(1−Sgt

i,a) log(1−Si,a) (13.11)

Experiment results in (Wang et al, 2019g) demonstrated that graph matching mod-
els with the permutation loss outperform that with the displacement loss in Equa-
tion (13.6).

Graph Learning–Matching Network. Most prior studies on the graph matching
problem rely on established graphs with fixed structure information, i.e., the edge set
with or without attributes. Differently, Jiang et al (2019a) present a graph learning-
matching network, namely GLMNet, which incorporates the graph structure learn-
ing (i.e., learning the graph structure information) into the general graph matching
learning to build a unified end-to-end model architecture. To be specific, based on
the pair of node feature matrices X (l) = {x(l)1 , · · · ,x(l)n } (l = {1,2}), GLMNet at-
tempts to learn a pair of optimal graph adjacency matrices A(l) (l = {1,2}) for bet-
ter serving for the latter graph matching learning and each element is computed as
follows.

A(l)
i, j = φ(x(l)i ,x(l)j ;θ) =

exp(σ(θ⊤[x(l)i ,x(l)j]))

∑
n
j=1 exp(σ(θ⊤[x(l)i ,x(l)j]))

, l = {1,2} (13.12)

where σ is the activation function, e.g., ReLU; [·, ·] denotes the concatenation oper-
ation; and θ denotes the trainable parameter for the graph structure learning which
is shared for both input graphs.

286 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

Following PCA-GM (Wang et al, 2019g), GLMNet also explores a series of
graph convolution modules to learn informative node embeddings of both input
graphs for the latter affinity matrix learning and matching prediction. Based on the
obtained A(l) and X (l) (l = {1,2}), GLMNet employs the graph smoothing convolu-
tion layer (Kipf and Welling, 2017b), the cross-graph convolution layer Wang et al
(2019g) and the graph sharpening convolution layer (i.e., defined as the counterpart
of Laplacian smoothing in (Kipf and Welling, 2017b)) to further learn and update
their node embeddings i.e., X̃ (l) (l = {1,2}). After that, GLMNet directly computes
the node-to-node assignment matrix S by Equations (13.9) and (13.10), which is
exactly the same as PCA-GM (Wang et al, 2019g) does.

GLMNet adds an extra constraint regularized loss Lcon for better satisfying the per-
mutation constraint, i.e., L = Lperm +λLcon with λ > 0, in which Lcon is defined
as follows.

Lcon = ∑
vi,v j∈V (1)

∑
va,vb∈V (2)

Ui j,abSi,aS j,b

Ui j,ab =

{
1 if i = j,a ̸= b or i ̸= j,a = b;
0 otherwise.

(13.13)

where U ∈ Rn2×n2
represents the conflict relationships of all matches and the opti-

mum correspondence S means ∑

vi,v j∈V (1)
∑

va,vb∈V (2)
Ui j,abSi,aS j,b = 0.

Deep Graph Matching with Consensus. In (Fey et al, 2020), Fey et al also
employ GNNs to learn the graph correspondence as previous work, but addition-
ally introduce a neighborhood consensus Rocco et al (2018) to further refine the
learned correspondence matrix. Firstly, they use common GNN models along with
the Sinkhorm operation to compute an initial correspondence matrix S0 as follows.
Ψθ1 denotes the shared GNN model for both graphs.

H(l) =Ψθ1(X
(l),A(l),E(l)), l = {1,2}

S0 = Sinkhorn(H(1)H(2)⊤)
(13.14)

Then, to reach a neighborhood consensus between the pair of matched nodes,
they refine the initial correspondence matrix S0 via another trainable GNN model
(i.e., Ψθ2) and an MLP model (i.e., φθ3).

O(1) =Ψθ2(In,A(1),E(1))

O(2) =Ψθ2(S
k⊤In,A(2),E(2))

Sk+1
i,a = Sinkhorn

(
Sk

i,a +φθ3(o
(1)
i −o(2)a)

)
(13.15)

where In is the identify matrix and o(1)i − o(2)a is computed as the neighborhood
consensus between the node pair (vi,va) ∈ V (1)×V (2) between two graphs (e.g.,
o(1)i −o(2)a ̸= 0 means a false matching over the neighborhoods of vi and v j). Finally,

In addition to the permutation cross entropy lossLperm defined in Equation (13.11),

13 Graph Neural Networks: Graph Matching 287

SK is obtained after K iterations and the final loss function incorporates both feature
matching loss and neighborhood consensus loss, i.e., L = L init +L re f ine.

L init =− ∑
vi∈V (1)

log
(

S0
i,πgt (i)

)

L re f ine =− ∑
vi∈V (1)

log
(

SK
i,πgt (i)

) (13.16)

where πgt(i) denotes the ground truth correspondence.

Deep Graph Matching with Hungarian Attention. Yu et al (2020) present an
end-to-end deep learning model which is almost identical to Wang et al (2019g),
including a graph embedding layer based on GNNs, an affinity learning layer (i.e.,
Equations (13.9) and (13.10)), and the permutation loss (i.e., Equation (13.11)).
However, they improve the model with two main contributing aspects. The first as-
pect is adopting a novel node/edge embedding operation (i.e., CIE) to replace the
commonly used GCN operation that simply updates node embeddings while ig-
nores the rich edge attributes. Since the edge information provides a crucial role
in determining the graph matching result, CIE updates both node and edge embed-
ding simultaneously by a channel-wise updating function in a multi-head fashion.
Interested readers are referred to Section 3.2 in (Yu et al, 2020). Another aspect is a
novel loss function. As the previously used permutation loss is prone to overfitting,
the authors devise a novel loss function that introduces a Hungarian attention Z into
the permutation loss as follows.

Z = Attention(Hungarian(S),Sgt)

Lhung =− ∑
vi∈V (1),va∈V (2)

Zi,a

(
Sgt

i,a log(Si,a)+(1−Sgt
i,a) log(1−Si,a)

)
(13.17)

where Hungarian denotes a black-box Hungarian algorithm and the role of Z is like
a mask that attempts to focus more on those mismatched node pairs and focus less
on node pairs that are matched exactly.

Graph Matching with Assignment Graph. Differently, Wang et al (2020j) refor-
mulate the graph matching problem as the problem of selecting reliable nodes in
the constructed assignment graph (Cho et al, 2010) in which each node represents a
potential node-to-node correspondence. The formal definition of assignment graph
is given in Definition 13.2 and one example is illustrated in Fig. 13.3.

Definition 13.2 (Assignment Graph). Given two graphs G (1)=(V (1),E (1),X (1),E(1))
and G (2)=(V (2),E (2),X (2),E(2)), an assignment graph G (A)=(V (A),E (A),X (A),E(A))

is constructed as follows. G (A) takes each candidate correspondence (v(1)i ,v(2)a) ∈
V (1)×V (2) between two graphs as a node via ∈ V (A) and link an edge between a
pair of nodes v(A)ia ,v(A)jb ∈ V (A) (i.e., (v(A)ia ,v(A)jb) ∈ E (A)) if and only if both edges i.e.,

(v(1)i ,v(1)j) ∈ E (1) and (v(2)a ,v(2)b) ∈ E (2), exist in its original graph. Optionally, for

288 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

Fig. 13.3: Example illustration of building an assignment graph G (A) from the pair
of graphs G (1) and G (2).

node attributes X (A) and edge attributes E(A), each of them could be obtained by
concatenating attributes of the pair of nodes or edges in the original graph, respec-
tively.

With the constructed assignment graph G (A), the reformulated problem of select-
ing reliable nodes in G (A) is quite similar to binary node classification tasks Kipf and
Welling (2017b) that classify nodes into positive or negative (i.e., meaning matched
or un-matched). To solve the problem, the authors propose a fully learnable model
based on GNNs which takes the G (A) as input, iteratively learns node embeddings
over graph structural information and predicts a label for each node in G (A) as out-
put. Besides, the model is trained with a similar loss function to (Jiang et al, 2019a).

13.3 Graph Similarity Learning

In this section, we will first introduce the second category of the general graph
matching problem – the graph similarity problem. Then, we will provide an ex-
tensive discussion and analysis of state-of-the-art graph similarity learning models
based on GNNs.

13.3.1 Problem Definition

Learning a similarity metric between an arbitrary pair of graph-structured objects
is one of the fundamental problems in a variety of applications, ranging from sim-
ilar graph searching in databases (Yan and Han, 2002), to binary function analy-
sis (Li et al, 2019h), unknown malware detection (Wang et al, 2019i), semantic code
retrieval (Ling et al, 2021), etc. According to different application backgrounds,
the similarity metric can be defined by different measures of structural similarity,
such as graph edit distance (GED) (Riesen, 2015), maximum common subgraph
(MCS) (Bunke, 1997; Bai et al, 2020c), or even more coarse binary similarity (i.e.,

��

��

�� ��

��

�	

��

���	

��

���	

����

���	

�

� �

�

�

� 	

�

13 Graph Neural Networks: Graph Matching 289

similar or not) (Ling et al, 2021). As GED is equivalent to the problem of MCS
under a fitness function (Bunke, 1997), in this section, we mainly consider the GED
computation and focus more on state-of-the-art graph similarity learning models
based on GNNs.

Basically, the graph similarity problem intends to compute a similarity score be-
tween a pair of graphs, which indicates how similar the pair of graphs is. In the
following Definition 13.3, the general graph similarity problem is defined.

Definition 13.3 (Graph Similarity Problem). Given two input graphs G (1) and
G (2), the purpose of graph similarity problem is to produce a similarity score s
between G (1) and G (2). In line with the notations in Section 13.2.1, the G (1) =
(V (1),E (1),A(1),X (1)) is represented as set of n nodes vi ∈ V (1) with a feature ma-
trix X (1) ∈ Rn×d , edges (vi,v j) ∈ E (1) formulating an adjacency matrix A(1). Simi-
larly, G (2) = (V (2),E (2),A(2),X (2) is represented as set of m nodes va ∈ V (2) with a
feature matrix X (2) ∈ Rm×d , edges (va,vb) ∈ E (2) formulating an adjacency matrix
A(2).

For the similarity score s, if s ∈ R, the graph similarity problem can be considered
as the graph-graph regression tasks. On the other hand, if s ∈ {−1,1}, the problem
can be considered as the graph-graph classification tasks.

Particularly, the computation of GED (Riesen, 2015; Bai et al, 2019b) (some-
times normalized in [0,1]) is a typical case of graph-graph regression tasks. To be
specific, GED is formulated as the cost of the shortest sequence of edit operations
over nodes or edges which have to undertake to transform one graph into another
graph, in which an edit operation can be an insertion or a deletion of a node or an
edge. In Fig. 13.4, We give an illustration of GED computation.

Similar to the classic graph matching problem, the computation of GED is also
a well-studied NP-hard problem. Although there is a rich body of work (Hart et al,
1968; Zeng et al, 2009; Riesen et al, 2007) that attempts to find sub-optimal so-
lutions in polynomial time via a variety of heuristics (Riesen et al, 2007; Riesen,
2015), these heuristic methods still suffer from the poor scalability (e.g., large search
space or excessive memory) and heavy reliance on expert knowledge (e.g., various
heuristics based on different application cases). Currently, learning-based models
which incorporate GNNs into an end-to-end learning framework for graph similar-
ity learning are gradually becoming more and more available, demonstrating the

Fig. 13.4 Illustration of com-
puting the GED score between
G (1) and G (2). Since G (1) can
be transform into in G (2) by
deleting the edge (v2,v3) or
G (2) can be transformed into
in G (1) by inserting the edge
(vb,vc), the GED between
two graphs is 1.

inserting one edge

�

� �

�

�

� �

�

deleting one edge

290 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

superiority by traditional heuristic methods in both effectiveness and efficiency. In
two following subsections, we will discuss state-of-the-art GNN-based graph simi-
larity models for graph-graph regression tasks and graph-graph classification tasks,
respectively.

13.3.2 Graph-Graph Regression Tasks

As mentioned above, the graph-graph regression task refers to computing a similar-
ity score between a pair of graphs and we focus on the graph similarity learning on
GED in this subsection.

Graph Similarity Learning with Convolutional Set Matching. Aiming at accel-
erating the graph similarity computation while preserving a good performance, Bai
et al (2018) first turn the computation of GED into a learning problem rather than
approximation methods with combinatorial search, and then propose an end-to-end
framework, namely GSimCNN, for the graph similarity learning. For GSimCNN
in (Bai et al, 2018) (or GraphSim in (Bai et al, 2020b)4), it is probably the first work
that applies both GNNs and CNNs for the task of GED computation and consists of
three steps in general. First, GSimCNN employs multiple layers of standard GCNs
to generate the node embedding vector for each node in the pair of graphs. Second,
in each layer of GCNs, GSimCNN uses the BFS node-ordering scheme (You et al,
2018b) to re-order the node embeddings and compute the inner product between the
re-ordered node embeddings in two graphs to generate a node-to-node similarity
matrix. Finally, after padding or resizing resulting node-to-node similarity matrices
into square matrices, the authors transform the task of graph similarity computation
into an image processing problem and explore standard CNNs and MLPs for the fi-
nal graph similarity prediction. GSimCNN is trained with a mean squared error loss
function based on predicted similarity scores and the corresponding ground-truth
scores.

Graph Similarity Learning with Graph-Level Interaction. Soon after, Bai et al
present another GNN-based model, called SimGNN, for graph similarity learning.
In SimGNN, it takes not only node-level interactions but also graph-level interac-
tions as considerations for jointly learning the graph similarity score. For the node-
level similarity between two graphs, it first adopts a similar approach like GSim-
CNN to generate the node-to-node similarity matrix, and then extract a histogram
feature vector from the matrix as the node-level comparison information. For the
graph-level similarity between two graphs, SimGNN first employs a simple graph
pooling model via an attention mechanism to generate one graph-level embedding
vector for each graph (hG (1) and hG (2)) and then adopts a trainable neural tensor net-
work (NTN) (Socher et al, 2013) to model the relationship between the two graph-

4 It seems that the model architecture of GSimCNN in (Bai et al, 2018) is the same as that of
GraphSim in (Bai et al, 2020b), which evaluates the model with additional datasets and similarity
metrics (i.e., both GED and MCS).

13 Graph Neural Networks: Graph Matching 291

level embedding vectors as follows.

NTN(hG (1) ,hG (2)) = σ

(
h⊤

G (1)W
[1:K]hG (2) +V

[hG (1)

hG (2)

]
+b
)

(13.18)

where σ is the activation function and [
·
·] denotes the concatenation operation.

In addition, W [1:K], V and b are parameters in NTN to be learned and K is a
hyper-parameter which determines the length of the graph-level similarity vector
calculated by NTN. Finally, to compute the similarity score between two graphs,
SimGNN concatenates two similarity vectors from the node level and the graph
level along with a small MLP network for prediction.

Graph Similarity Learning based on Hierarchical Clustering. In (Xiu et al,
2020), Xiu et al argue that if two graphs are similar, their corresponding compact
graphs should be similar with each other and conversely if two graphs are dissim-
ilar, their corresponding compact graphs should also be dissimilar. They believe
that, for the input pair of graphs, different views in regard to different pairs of com-
pact graphs can provide different scales of similarity information between two input
graphs and thus benefit the graph similarity computation. To this end, a hierarchical
graph matching network (HGMN) (Xiu et al, 2020) is presented to learn the graph
similarity from a multi-scale view. Concretely, HGMN first employs multiple stages
of hierarchical graph clustering to successively generate more compact graphs with
initial node embeddings to provide a multi-scale view of differences between two
graphs for subsequent model learning. Then, with the pairs of compact graphs in
different stages, HGMN computes the final graph similarity score by adopting a
GraphSim-like model (Bai et al, 2020b), including node embeddings update via
GCNs, similarity matrices generation and prediction via CNNs. However, in order
to ensure permutation invariance of generated similarity matrices, HGMN devises a
different node-ordering scheme based on earth mover distance(EMD) (Rubner et al,
1998) rather than BFS node-order method in (Bai et al, 2020b). According to the
EMD distance, HGMN first aligns nodes for both input graphs in each stage and
then produces the corresponding similarity matrix in the aligned order.

Graph Similarity Learning with Node-Graph Interaction. To learn richer in-
teraction features between a pair of input graphs for computing the graph similar-
ity in an end-to-end fashion, Ling et al propose a multi-level graph matching net-
work (MGMN) (Ling et al, 2020) which consists of a siamese graph neural network
(SGNN) and a novel node-graph matching network (NGMN). To learn graph-level
interactions between two graphs, SGNN first utilizes a multi-layer of GCNs with the
siamese network to generate node embeddings H(l) = {h(l)

i }
{n,m}
i=1 ∈R{n,m}×d for all

nodes in graph G(l), l = {1,2} and then aggregates a corresponding graph-level em-
bedding vector for each graph. On the other hand, to learn cross-level interaction
features between two graphs, NGMN further employs a node-graph matching layer
to update node embeddings with learned cross-level interactions between node em-
beddings of a graph and a corresponding graph-level embedding of the other whole

292 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

graph. Taking a node vi ∈ V (1) in G (1) as an example, NGMN first computes an at-
tentive graph-level embedding vector hi,att

G(2) for G (2) by weighted averaging all node

embeddings in G (2) based on the corresponding cross-graph attention coefficient
towards vi as follows.

hi,att
G(2) = ∑

v j∈V (2)

αi, jh
(2)
j , where αi, j = cosine(h(1)

i ,h(2)
j) ∀v j ∈ V (2)

(13.19)

where att in the superscript of hi,att
G(2) means it is an attentive graph-level embedding

vector of G(2) in terms of the node vi in G (1).
Then, to update the node embedding of vi with cross-graph interactions, NGMN

learns similarity feature vector between the node embedding (i.e., h(1)
i) and the at-

tentive graph-level embedding vector (i.e., hi,att
G(2)) via a multi-perspective matching

function. After performing the above node-graph matching layer over all nodes for
both graphs, NGMN aggregates a corresponding graph-level embedding vector for
each graph. The full model MGMN concatenates the two aggregated graph-level
embeddings from both SGNN and NGMN for each graph and feed those concate-
nated embeddings into a final small prediction network for the graph similarity com-
putation.

Graph Similarity Learning based on GRAPH-BERT. As previous studies on the
graph similarity learning are mostly trained in a supervised manner and cannot guar-
antee the basic properties (e.g., triangle inequality) of the graph similarity metric
like GED, Zhang introduces a novel training framework of GB-DISTANCE (Zhang,
2020) based on GRAPH-BERT (Zhang et al, 2020a). First, GB-DISTANCE adapts
the pre-trained GRAPH-BERT model to update node embeddings and further ag-
gregate a graph-level representation embedding of vector hG (i) for the graph G (i).
Then, GB-DISTANCE computes the graph similarity di, j between the pair of graphs
(G (i),G (j)) with several fully connected layers as follows.

d(G (i),G (j)) = 1− exp
(
−FC

(
(hG (i) −hG (j))∗∗2

))
(13.20)

where FC denotes the employed fully connected layers and (·) ∗ ∗2 denotes the
element-wise square of the input vector. In (Zhang, 2020), GB-DISTANCE con-
siders a scenario that inputs a set of m graphs (i.e., {G (i)}m

i=1) and outputs the
similarity between any pair of graphs, i.e., a similarity matrix D = {Di, j}i, j=m

i, j=1 =
{

d(G (i),G (j))
}i, j=m

i, j=1 ∈ Rm×m, and formulates the graph similarity problem in a su-
pervised or semi-supervised settings as follows.

min∥M⊙ (D− D̂)∥p with Mi, j =

1 if Di, j is labeled
α if Di, j is unlabeled ∧ i ̸= j
β if i = j

s.t.Di, j ≤ Di,k +Dk, j, ∀i, j,k ∈ {1, · · · ,m}

(13.21)

13 Graph Neural Networks: Graph Matching 293

where ∥·∥p denotes the Lp norm; D̂ denotes the ground-truth similarity matrix; M is
a mask matrix for the semi-supervised learning with two hyper-parameters α and β ;
the constraint of Di, j ≤ Di,k +Dk, j, ∀i, j,k ∈ {1, · · · ,m} tries to ensure the triangle
inequality of graph similarity metrics. To optimize the model with such constraints,
GB-DISTANCE devises a two-phase training algorithm with the constrained metric
refining methods.

Graph Similarity Computation based on A*. It is obviously observed that all
these aforementioned approaches directly compute the GED similarity score be-
tween two graphs, however, failing to produce the edit path, which can explic-
itly express the sequence of edit operations for transforming one graph into the
other graph. To output the edit path like the traditional A* (Hart et al, 1968;
Riesen et al, 2007) algorithm, Wang et al propose a graph similarity learning model
GENN-A* (Wang et al, 2020f) which incorporates the existing solution of A* with
a learnable GENN model based on GNNs. A* (Hart et al, 1968; Riesen et al, 2007)
is a tree-searching algorithm which explores the space of all possible node/edge
mappings between two graphs as an ordered search tree and further expands succes-
sors of a node p in the search tree by the minimum induced edit cost g(p)+ h(p),
in which g(p) is the cost of current partial edit path induced so far and h(p) is
the estimated cost of edit path between the remaining un-matched sub-graphs. Be-
cause of the poor scalability of A*, GENN-A* thus replaces the heuristics with a
learning-based model (i.e., GENN) to predict h(p). GENN is almost the same as
SimGNN (Bai et al, 2019b) with the removal of the histogram module and is used
to predict a normalized GED score s(p) ∈ (0,1) between the remaining un-matched
sub-graphs. After that, the h(p) is obtained as follows where n̂ and m̂ denote the
numbers of nodes of the un-matched sub-graphs.

h(p) =−0.5(n̂+ m̂) log(s(p)) (13.22)

13.3.3 Graph-Graph Classification Tasks

In addition to the computation of GED, learning a binary label s ∈ {−1,1} (i.e.,
similar or not) between a pair of graphs can be view as a task of the graph-graph
classification learning5 and has been widely studied in many real-world applica-
tions, including binary code analysis, source code analysis, malware detection, etc.

Graph Similarity Learning via Cross-graph Matching. In the scenario of de-
tecting whether two binary functions are similar or not, Li et al present a message-
passing based graph matching network (GMN) (Li et al, 2019h) to learn a similarity
label between the two control-flow graphs (CFGs) which represent two input bi-
nary functions. In particular, GMN employs a similar cross-graph matching network

5 The termed graph-graph classification learning is totally different from the general graph classifi-
cation task (Ying et al, 2018c; Ma et al, 2019d) that only predicts a label for one input graph rather
than a pair of input graphs.

294 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

based on standard message-passing GNNs to iteratively generate more discrimina-
tive node embeddings (e.g., H(l) = {h(l)

i }vi∈V (l) , l = {1,2}) for two input graphs.
Intuitively, it updates the node embeddings of one input graphs by incorporating the
attentive association information of another through a soft attention, which is similar
to the cross-graph convolution network introduced in Equation (13.8) and Fig. 13.2.
Subsequently, in order to calculate the similarity score, GMN adopts an aggrega-
tion operation (Li et al, 2016b) as follows to output a graph-level embedding vector
(i.e., hG(l) , l = {1,2}) for each graph and applies an existing similarity function
for the final similarity prediction, i.e., s(hG(1) ,hG(2)) = fs(hG(1) ,hG(2)), where fs can
be an arbitrary existing similarity function such as Euclidean, cosine or Hamming
similarity function.

hG(l) = MLPθ1

(
∑

vi∈V (l)

σ
(

MLPθ2(h
(l)
i)
)
⊙MLPθ3(h

(l)
i)
)
, l = {1,2} (13.23)

where σ denotes the activation function; ⊙ denotes the element-wise multiplication
operation; MLPθ1, MLPθ2, MLPθ3 are MLP networks to be trained. Based on dif-
ferent supervisions of training samples (e.g., the ground-truth binary label between
two graphs or relative similarity among three graphs), GMN adopts two margin-
based loss functions, i.e., the pair loss function and the triplet loss function. As for
different similarity functions fs employed, the formulation of the corresponding loss
function is quite different. Thus, we refer interested readers for the loss functions
to (Li et al, 2019h).

malware threats, a heterogeneous graph matching network (MatchGNet) frame-
work (Wang et al, 2019i) is proposed for unknown malware detection. To better
represent programs (e.g., benign or malicious) in enterprise systems and capture in-
teraction relationships between system entities (e.g., files, processes, sockets, etc.), a
heterogeneous invariant graph is constructed for each program. Therefore, the mal-
ware detection problem is equivalent to detecting whether two representation graphs
(i.e., the graph of the input program and the graph of the existing benign program)
are similar or not. Due to the heterogeneity of the invariant graph, MatchGNet em-
ploys a hierarchical attention graph neural encoder (HAGNE)-based GNN to learn
a graph-level embedding vector for each program. Particularly, HAGNE first identi-
fies path-relevant sets of neighbors via meta-paths (Sun et al, 2011) and then updates
node embeddings by aggregating the entities under each path-relevant neighbor set.
The graph-level embedding over all the meta-paths is computed by a weighted sum-
marization of all embeddings of meta-paths. Finally, MatchGNet directly calculates
the cosine similarity between the two graph-level embedding vector as the final pre-
dicted label for malware detection.

Graph Similarity Learning on Heterogeneous Graphs. Motivated by ever-growing

13 Graph Neural Networks: Graph Matching 295

13.4 Summary

In this chapter, we have introduced the general graph matching learning, whereby
objective functions are formulated for establishing an optimal node-to-node corre-
spondence matrix between two graphs for the classic graph matching problem and
computing a similarity metric between two graphs for the graph similarity problem,
respectively. In particular, we have thoroughly analyzed and discussed state-of-the-
art GNN-based graph matching models and graph similarity models. In the future,
for better graph matching learning, some directions we believe are requiring more
efforts:

• Fined-grained cross-graph features. For the graph matching problem which
inputs the pair of graphs, interaction features between two graphs are funda-
mental and key features in both the graph matching learning and the graph sim-
ilarity learning. Although several existing methods (Li et al, 2019h; Ling et al,
2020) have been devoted to learning interacted features between two graphs for
better representation learning, these models have caused non-negligible extra
computational overhead. Better fined-grained cross-graph feature learning with
efficient algorithms could make a new state of the art.

• Semi-supervised learning and un-supervised learning. Because of the com-
plexity of graphs in the real-world application scenarios, it is common to train
the model in a semi-supervised setting or even in an un-supervised setting. Mak-
ing full use of relationships between existing graphs and, if possible, the other
data that is not directly relevant to the graph matching problem could further
promote the development of graph matching/similarity learning in more practi-
cal applications.

• Vulnerability and robustness. Although adversarial attacks have been exten-
sively studied for image classification tasks (Goodfellow et al, 2015; Ling et al,
2019) and node/graph classification tasks (Zügner et al, 2018; Dai et al, 2018a),
there is currently only one preliminary work (Zhang et al, 2020f) that studies
adversarial attacks on the graph matching problem. Therefore, studying the vul-
nerability of the state-of-the-art graph matching/similarity models and further
building more robust models is a highly challenging problem.

Editor’s Notes: Graph Matching Networks is an emerging research topic recently
and have drawn significant number of interests in both research community and in-
dustrial community due to its broad range of application domains such as computer
vision (Chapter 20), Natural Language Processing (Chapter 21), Program Analysis
(Chapter 22), Anomaly Detection (Chapter 26). Graph Matching Networks is built
on graph node representation learning (Chapter 4) but focuses more on the interac-
tion of two graphs from low-level nodes to high-level graphs. It has tight connection
with link prediction (Chapter 10) and self-supervised learning (Chapter 18), where
graph matching could be formulated as one of the sub-tasks for these graph learn-
ing tasks. Obviously, adversarial robustness (Chapter 8) could have direct impact of
graph matching networks, which has recently been extensively studied as well.

Chapter 14
Graph Neural Networks: Graph Structure
Learning

Yu Chen and Lingfei Wu

Abstract Due to the excellent expressive power of Graph Neural Networks (GNNs)
on modeling graph-structure data, GNNs have achieved great success in various
applications such as Natural Language Processing, Computer Vision, recommender
systems, drug discovery and so on. However, the great success of GNNs relies on
the quality and availability of graph-structured data which can either be noisy or
unavailable. The problem of graph structure learning aims to discover useful graph
structures from data, which can help solve the above issue. This chapter attempts
to provide a comprehensive introduction of graph structure learning through the
lens of both traditional machine learning and GNNs. After reading this chapter,
readers will learn how this problem has been tackled from different perspectives,
for different purposes, via different techniques, as well as its great potential when
combined with GNNs. Readers will also learn promising future directions in this
research area.

14.1 Introduction

Recent years have seen a significantly increasing amount of interest in Graph Neu-
ral Networks (GNNs) (Kipf and Welling, 2017b; Bronstein et al, 2017; Gilmer
et al, 2017; Hamilton et al, 2017b; Li et al, 2016b) with a wide range of appli-
cations in Natural Language Processing (Bastings et al, 2017; Chen et al, 2020p),
Computer Vision (Norcliffe-Brown et al, 2018), recommender systems (Ying et al,
2018b), drug discovery (You et al, 2018a) and so on. GNN’s powerful ability in
learning expressive graph representations relies on the quality and availability of
graph-structured data. However, this poses some challenges for graph representation

Yu Chen
Facebook AI, e-mail: hugochan2013@gmail.com

Lingfei Wu
JD.COM Silicon Valley Research Center, e-mail: lwu@email.wm.edu

297
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_14

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:hugochan2013@gmail.com
mailto:lwu@email.wm.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_14&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_14

298 Yu Chen and Lingfei Wu

learning with GNNs. On the one hand, in some scenarios where the graph structure
is already available, most of the GNN-based approaches assume that the given graph
topology is perfect, which does not necessarily hold true because i) the real-word
graph topology is often noisy or incomplete due to the inevitably error-prone data
measurement or collection; and ii) the intrinsic graph topology might merely repre-
sent physical connections (e.g the chemical bonds in molecule), and fail to capture
abstract or implicit relationships among vertices which can be beneficial for certain
downstream prediction task. On the other hand, in many real-world applications
such as those in Natural Language Processing or Computer Vision, the graph rep-
resentation of the data (e.g., text graph for textual data or scene graph for images)
might be unavailable. Early practice of GNNs (Bastings et al, 2017; Xu et al, 2018d)
heavily relied on manual graph construction which requires extensive human effort
and domain expertise for obtaining a reasonably performant graph topology during
the data preprocessing stage.

In order to tackle the above challenges, graph structure learning aims to dis-
cover useful graph structures from data for better graph representation learning with
GNNs. Recent attempts (Chen et al, 2020m,o; Liu et al, 2021; Franceschi et al,
2019; Ma et al, 2019b; Elinas et al, 2020; Velickovic et al, 2020; Johnson et al,
2020) focus on joint learning of graph structures and representations without re-
sorting to human effort or domain expertise. Different sets of techniques have been
developed for learning discrete graph structures and weighted graph structures for
GNNs. More broadly speaking, graph structure learning has been widely studied in
the literature of traditional machine learning in both unsupervised learning and su-
pervised learning settings (Kalofolias, 2016; Kumar et al, 2019a; Berger et al, 2020;
Bojchevski et al, 2017; Zheng et al, 2018b; Yu et al, 2019a; Li et al, 2020a). Besides,
graph structure learning is also closely related to important problems such as graph
generation (You et al, 2018a; Shi et al, 2019a), graph adversarial defenses (Zhang
and Zitnik, 2020; Entezari et al, 2020; Jin et al, 2020a,e) and transformer mod-
els (Vaswani et al, 2017).

This chapter is organized as follows. We will first introduce how graph structure
learning has been studied in the literature of traditional machine learning, prior to
the recent surge of GNNs (section 14.2). We will introduce existing works on both
unsupervised graph structure learning (section 14.2.1) and supervised graph struc-
ture learning (section 14.2.2). Readers will later see how some of the introduced
techniques originally developed for traditional graph structure learning have been
revisited and improve graph structure learning for GNNs. Then we will move to
our main focus of this chapter which is graph structure learning for GNNs in sec-
tion 14.3. This part will cover various topics including joint graph structure and
representation learning for both unweighted and weighted graphs (section 14.3.1),
and the connections to other problems such as graph generation, graph adversarial
defenses and transformers (section 14.3.2). We will highlight some future directions
in section 24.5 including robust graph structure learning, scalable graph structure
learning, graph structure learning for heterogeneous graphs, and transferable graph
structure learning. We will summarize this chapter in section 14.5.

14 Graph Neural Networks: Graph Structure Learning 299

14.2 Traditional Graph Structure Learning

Graph structure learning has been widely studied from different perspectives in the
literature of traditional machine learning, prior to the recent surge of Graph Neural
Networks. Before we move to the recent achievements of graph structure learning
in the field of Graph Neural Networks, which is the main focus of this chapter,
in this section, we will first examine this challenging problem through the lens of
traditional machine learning.

14.2.1 Unsupervised Graph Structure Learning

The task of unsupervised graph structure learning aims to directly learn a graph
structure from a set of data points in an unsupervised manner. The learned graph
structure may be later consumed by subsequent machine learning methods for var-
ious prediction tasks. The most important benefit of this kind of approaches is that
they do not require labeled data such as ground-truth graph structures for super-
vision, which could be expensive to obtain. However, because the graph structure
learning process does not consider any particular downstream prediction task on the
data, the learned graph structure might be sub-optimal for the downstream task.

14.2.1.1 Graph Structure Learning from Smooth Signals

Graph structure learning has been extensively studied in the literature of Graph Sig-
nal Processing (GSP). It is often referred to as the graph learning problem in the lit-
erature whose goal is to learn the topological structure from smooth signals defined
on the graph in an unsupervised manner. These graph learning techniques (Jebara
et al, 2009; Lake and Tenenbaum, 2010; Kalofolias, 2016; Kumar et al, 2019a; Kang
et al, 2019; Kumar et al, 2020; Bai et al, 2020a) typically operate by solving an opti-
mization problem with certain prior constraints on the properties (e.g., smoothness,
sparsity) of graphs. Here, we introduce some representative prior constraints defined
on graphs which have been widely used for solving the graph learning problem.

Before introducing the specific graph learning techniques, we first provide the
formal definition of a graph and graph signals. Consider a graph G = {V ,E } with
the vertex set V of cardinality n and edge set E , its adjacency matrix A ∈ Rn×n

governs its topological structure where Ai, j > 0 indicates there is an edge connecting
vertex i and j and Ai, j is the edge weight. Given an adjacency matrix A, we can
further obtain the graph Laplacian matrix L = D− A where Di,i = ∑ j Ai, j is the
degree matrix whose off-diagonal entries are all zero.

A graph signal is defined as a function that assigns a scalar value to each vertex
of a graph. We can further define multi-channel signals X ∈ Rn×d on a graph that
assigns a d dimensional vector to each vertex, and each column of the feature matrix

300 Yu Chen and Lingfei Wu

X can be considered as a graph signal. Let Xi ∈ Rd denote the graph signal defined
on the i-th vertex.
Fitness. Early works (Wang and Zhang, 2007; Daitch et al, 2009) on graph learning
utilized the neighborhood information of each data point for graph construction by
assuming that each data point can be optimally reconstructed using a linear com-
bination of its neighbors. Wang and Zhang (2007) proposed to learn a graph with
normalized degrees by minimizing the following objective,

∑
i
||Xi−∑

j
Ai, jX j||2 (14.1)

where ∑ j Ai, j = 1, Ai, j ≥ 0.
Similarly, Daitch et al (2009) proposed to minimize a measure of fitness that

computes a weighted sum of the squared distance from each vertex to the weighted
average of its neighbors, formulated as follows:

∑
i
||Di,iXi−∑

j
Ai, jX j||2 = ||LX ||2F (14.2)

where ||M||F = (∑i, j M2
i, j)

1/2 is the Frobenius norm.
Smoothness. Smoothness is another widely adopted assumption on natural graph
signals. Given a set of graph signals X ∈ Rn×d defined on an undirected weighted
graph with an adjacency matrix A ∈ Rn×n, the smoothness of the graph signals is
usually measured by the Dirichlet energy (Belkin and Niyogi, 2002),

Ω(A,X) =
1
2 ∑

i, j
Ai, j||Xi−X j||2 = tr(X⊤LX) (14.3)

where L is the Laplacian matrix and tr(·) denotes the trace of a matrix. Lake and
Tenenbaum (2010); Kalofolias (2016) proposed to learn a graph by minimizing
Ω(A,X) which forces neighboring vertices to have similar features, thus enforcing
graph signals to change smoothly on the learned graph. Notably, solely minimizing
the above smoothness loss can lead to the trivial solution A = 0.
Connectivity and Sparsity. In order to avoid the trivial solution caused by solely
minimizing the smoothness loss, Kalofolias (2016) imposed additional constraints
on the learned graph,

−α 1⃗⊤log(A⃗1)+β ||A||2F (14.4)

where the first term penalizes the formation of disconnected graphs via the logarith-
mic barrier, and the second term controls sparsity by penalizing large degrees due
to the first term. Note that 1⃗ denotes the all-ones vector. As a result, this improves
the overall connectivity of the graph, without compromising sparsity.

Similarly, Dong et al (2016) proposed to solve the following optimization prob-
lem:

14 Graph Neural Networks: Graph Structure Learning 301

min
L∈Rn×n,Y∈Rn×p

||X−Y ||2F +α tr(Y⊤LY)+β ||L||2F

s.t. tr(L) = n,

Li, j = L j,i ≤ 0, i ̸= j,

L · 1⃗ = 0⃗

(14.5)

which is equivalent to finding jointly the graph Laplacian L and Y (i.e., a “noise-
less” version of the zero-mean observation X), such that Y is close to X , and in the
meantime Y is smooth on the sparse graph. Note that the first constraint acts as a
normalization factor and permits to avoid trivial solutions, and the second and third
constraints guarantee that the learned L is a valid Laplacian matrix that is positive
semidefinite.

Ying et al (2020a) aimed to learn a sparse graph under Laplacian constrained
Gaussian graphical model, and proposed a nonconvex penalized maximum likeli-
hood method by solving a sequence of weighted l1-norm regularized sub-problems.
Maretic et al (2017) proposed to learn a sparse graph signal model by alternating
between a signal sparse coding and a graph update step.

In order to reduce the computational complexity of solving the optimization
problem, many approximation techniques (Daitch et al, 2009; Kalofolias and Per-
raudin, 2019; Berger et al, 2020) have been explored. Dong et al (2019) provided a
good literature review on learning graphs from data from a GSP perspective.

14.2.1.2 Spectral Clustering via Graph Structure Learning

Graph structure learning has also been studied in the field of clustering analysis.
For example, in order to improve the robustness of spectral clustering methods for
noisy input data, Bojchevski et al (2017) assumed that the observed graph A can be
decomposed into the corrupted graph Ac and the good (i.e., clean) graph Ag, and it
is beneficial to only perform the spectral clustering on the clean graph. They hence
proposed to jointly perform the spectral clustering and the decomposition of the ob-
served graph, and adopted a highly efficient block coordinate-descent (alternating)
optimization scheme to approximate the objective function. Huang et al (2019b)
proposed a multi-view learning model which simultaneously conducts multi-view
clustering and learns similarity relationships between data points in kernel spaces.

14.2.2 Supervised Graph Structure Learning

The task of supervised graph structure learning aims to learn a graph structure from
data in a supervised manner. They may or may not consider a particular downstream
prediction task during the model training phase.

302 Yu Chen and Lingfei Wu

14.2.2.1 Relational Inference for Interacting Systems

Relational inference for interacting systems aims to study how objects in com-
plex systems interact. Early works considered a fixed or fully-connected interaction
graph (Battaglia et al, 2016; van Steenkiste et al, 2018) while modeling the interac-
tion dynamics among objects. Sukhbaatar et al (2016) proposed a neural model to
learn continuous communication among a dynamically changing set of agents where
the communication graph changes over time as agents move, enter and exit the envi-
ronment. Recent efforts (Kipf et al, 2018; Li et al, 2020a) have been made to simul-
taneously infer the latent interaction graph and model the interaction dynamics. Kipf
et al (2018) proposed a variational autoencoder (VAE) (Kingma and Welling, 2014)
based approach which learns to infer the interaction graph structure and model the
interaction dynamics among physical objects simultaneously from their observed
trajectories in an unsupervised manner. The discrete latent code of VAE represents
edge connections of the latent interaction graph, and both the encoder and decoder
take the form of a GNN to model the interaction dynamics among objects. Because
the latent distribution of VAE is discrete, the authors adopted a continuous relax-
ation in order to use the reparameterization trick (Kingma et al, 2014). While Kipf
et al (2018) focused on inferring a static interaction graph, Li et al (2020a) designed
a dynamic mechanism to evolve the latent interaction graph adaptively over time. A
Gated Recurrent Unit (GRU) (Cho et al, 2014a) was applied to capture the history
information and adjust the prior interaction graph.

14.2.2.2 Structure Learning in Bayesian Networks

A Bayesian network (BN) is a Probabilistic Graphical Model (PGM) which en-
codes conditional dependencies between random variables via a directed acyclic
graph (DAG), where each random variable is represented as a node in DAG. The
problem of learning the BN structure is important yet challenging in Bayesian net-
works research. Most existing works on BN learning focus on score-based learn-
ing of DAGs, and aim to find a DAG with the maximal score where a score indi-
cates how well any candidate DAG is supported by the observed data (and any prior
knowledge). Early works treat BN learning as a combinatorial optimization problem
which is NP-hard due to the intractable search space of DAGs scaling superexpo-
nentially with the number of nodes. Some efficient methods have been proposed
for exact BN learning via dynamic programming (Koivisto and Sood, 2004; Silan-
der and Myllymäki, 2006) or integer programming (Jaakkola et al, 2010; Cussens,
2011). Recently, Zheng et al (2018b) proposed to formulate the traditional combi-
natorial optimization problem into a purely continuous optimization problem over
real matrices with a smooth equality constraint ensuring acyclicity of the graph. The
resulting problem can hence be efficiently solved by standard numerical algorithms.
A follow-up work (Yu et al, 2019a) leveraged the expressive power of GNNs, and
proposed a variational autoencoder (VAE) based deep generative model with a vari-

14 Graph Neural Networks: Graph Structure Learning 303

ant of the structural constraint to learn the DAG. The VAE was parameterized by a
GNN that can naturally handle both discrete and vector-valued random variables.

14.3 Graph Structure Learning for Graph Neural Networks

Graph structure learning has recently been revisited in the field of GNNs so as to
handle the scenarios where the graph-structured data is noisy or unavailable. Recent
attempts in this line of research mainly focus on joint learning of graph structures
and representations without resorting to human effort or domain expertise. fig. 14.1
shows the overview of graph structure learning for GNNs. Besides, we see several
important problems being actively studied (including graph generation, graph ad-
versarial defenses and transformer models) in recent years which are closely related
to graph structure learning for GNNs. We will discuss their connections and differ-
ences in this section.

Graph Structure Learning for
Graph Neural Networks

Learning Discrete Graph
Structures

Variational Inference

Bilevel Optimization

Reinforcement Learning

Learning Weighted Graph
Structures

Graph Similarity Metric
Learning Techniques

Node Embedding Based
Similarity Metric Learning

Structure-aware Similarity
Metric Learning

Graph Sparsification
Techniques

KNN-style Sparsification

Epsilon-neighborhood
Sparsification

Graph Regularization
Techniques

Smoothness

Connectivity

Sparsity

Combining Intrinsic Graph Structures
and Implicit Graph Structures

Learning Paradigms

Joint Learning of Graph
Structures and Representations

Adaptive Learning of Graph
Structures and Representations

Iterative Learning of Graph
Structures and Representations

Fig. 14.1: The overview of graph structure learning for GNNs.

304 Yu Chen and Lingfei Wu

14.3.1 Joint Graph Structure and Representation Learning

In recent practice of GNNs, joint graph structure and representation learning has
drawn a growing attention. This line of research aims to jointly optimize the graph
structure and GNN parameters toward the downstream prediction task in an end-
to-end manner, and can be roughly categorized into two groups: learning discrete
graph structures and learning weighted adjacency matrices. The first kind of ap-
proaches (Chen et al, 2018e; Ma et al, 2019b; Zhang et al, 2019d; Elinas et al,
2020; Pal et al, 2020; Stanic et al, 2021; Franceschi et al, 2019; Kazi et al, 2020)
operate by sampling a discrete graph structure (i.e., corresponding to a binary ad-
jacency matrix) from the learned probabilistic adjacency matrix, and then feeding
the graph to a subsequent GNN in order to obtain the task prediction. Because the
sampling operation breaks the differentiability of the whole learning system, tech-
niques such as variational inference (Hoffman et al, 2013) or Reinforcement Learn-
ing (Williams, 1992) are applied to optimize the learning system. Considering that
discrete graph structure learning often has the optimization difficulty introduced by
the non-differentiable sampling operation and it is hence difficult to learn weights on
edges, the other kind of approaches (Chen et al, 2020m; Li et al, 2018c; Chen et al,
2020o; Huang et al, 2020a; Liu et al, 2019b, 2021; Norcliffe-Brown et al, 2018)
focuses on learning the weighted (and usually sparse) adjacency matrix associated
to a weighted graph which will be later consumed by a subsequent GNN for the
prediction task. We will discuss these two types of approaches in great detail next.
Before discussing different techniques for joint graph structure and representation
learning, let’s first formulate the joint graph structure and representation learning
problem.

14.3.1.1 Problem Formulation

Let the graph G = (V ,E) be represented as a set of n nodes vi ∈ V with an initial
node feature matrix X ∈Rd×n, and a set of m edges (vi,v j)∈ E (binary or weighted)
formulating an initial noisy adjacency matrix A(0) ∈Rn×n. Given a noisy graph input
G := {A(0),X} or only a node feature matrix X ∈Rd×n, the joint graph structure and
representation learning problem we consider aims to produce an optimized graph
G ∗ := {A(∗),X} and its corresponding node embeddings Z = f (G ∗,θ)∈Rh×n, with
respect to certain downstream prediction task. Here, we denote f as a GNN and θ

as its model parameters.

14.3.1.2 Learning Discrete Graph Structures

In order to deal with the issue of uncertainty on graphs, many of the existing works
on learning discrete graph structures regard the graph structure as a random variable
where a discrete graph structure can be sampled from certain probabilistic adja-
cency matrix. They usually leverage various techniques such as variational infer-

14 Graph Neural Networks: Graph Structure Learning 305

ence (Chen et al, 2018e; Ma et al, 2019b; Zhang et al, 2019d; Elinas et al, 2020; Pal
et al, 2020; Stanic et al, 2021), bilevel optimization (Franceschi et al, 2019), and Re-
inforcement Learning (Kazi et al, 2020) to jointly optimize the graph structure and
GNN parameters. Notably, they are often limited to the transductive learning setting
where the node features and graph structure are fully observed during both the train-
ing and inference stages. In this section, we introduce some representative works on
this topic and show how they approach the problem from different perspectives.

Franceschi et al (2019) proposed to jointly learn a discrete probability distribu-
tion on the edges of the graph and the parameters of GNNs by treating the task as a
bilevel optimization problem Colson et al (2007), formulated as,

min
θ⃗∈H N

EA∼Ber(⃗θ)[F(wθ ,A)]

such that wθ = argminw EA∼Ber(⃗θ)[L(w,A)]
(14.6)

where H N denotes the convex hull of the set of all adjacency matrices for N nodes,
and L(w,A) and F(wθ ,A) are both task-specific loss functions measuring the differ-
ence between GNN predictions and ground-truth labels which are computed on a
training set and validation set, respectively. Each edge (i.e., node pair) of the graph
is independently modeled as a Bernoulli random variable, and an adjacency matrix
A ∼ Ber(⃗θ) can thus be sampled from the graph structure distribution parameterized
by θ⃗ . The outer objective (i.e., the first objective) aims to find an optimal discrete
graph structure given a GCN and the inner objective (i.e., the second objective) aims
to find the optimal parameters wθ of a GCN given a graph. The authors approxi-
mately solved the above challenging bilevel problem with hypergradient descent.

Considering that real-word graphs are often noisy, Ma et al (2019b) viewed the
node features, graph structure and node labels as random variables, and modeled the
joint distribution of them with a flexible generative model for the graph-based semi-
supervised learning problem. Inspired by random graph models from the network
science field (Newman, 2010), they assumed that the graph is generated based on
node features and labels, and thus factored the joint distribution as the following:

p(X ,Y,G) = p
θ⃗
(G|X ,Y)p

θ⃗
(Y |X)p(X) (14.7)

where X , Y and G are random variables corresponding to the node features, labels
and graph structure, and θ⃗ are learnable model parameters. Note that the condi-
tional probabilities p

θ⃗(G|X ,Y) and p
θ⃗(Y |X) can be any flexible parametric families of

distributions as long as they are differentiable almost everywhere w.r.t. θ⃗ . In the
paper, p

θ⃗(G|X ,Y) is instantiated with either latent space model (LSM) (Hoff et al,
2002) or stochastic block models (SBM) (Holland et al, 1983). During the inference
stage, in order to infer the missing node labels denoted as Ymiss, the authors lever-
aged the recent advances in scalable variational inference (Kingma and Welling,
2014; Kingma et al, 2014) to approximate the posterior distribution p

θ⃗(Ymiss|X ,Yobs,G)

via a recognition model q
φ⃗(Ymiss|X ,Yobs,G) parameterized by φ⃗ where Yobs denotes the

306 Yu Chen and Lingfei Wu

observed node labels. In the paper, q
φ⃗(Ymiss|X ,Yobs,G) is instantiated with a GNN. The

model parameters θ⃗ and φ⃗ are jointly optimized by maximizing the Evidence Lower
Bound (Bishop, 2006) of the observed data (Yobs,G) conditioned on X .

Elinas et al (2020) aimed to maximize the posterior over the binary adjacency
matrix given the observed data (i.e., node features X and observed node labels Y o),
formulated as,

p(A|X ,Y o) ∝ p
θ⃗(Y o|X ,A)p(A) (14.8)

where p
θ⃗(Y o|X ,A) is a conditional likelihood which can be further factorized follow-

ing the conditional independence assumption,

p
θ⃗(Y o|X ,A) = ∏

yi∈Y o
p

θ⃗(yi|X ,A)

p
θ⃗(yi|X ,A) = Cat(yi |⃗πi)

(14.9)

where Cat(yi |⃗πi) denotes a categorical distribution, and is the i-th row of a probabil-
ity matrix Π ∈ RN×C modeled by a GCN, namely, Π = GCN(X ,A, θ⃗). As for the
prior distribution over the graph p(A), the authors considered the following form,

p(A) = ∏
i, j

p(Ai, j)

p(Ai, j) = Bern(Ai, j|ρo
i, j)

(14.10)

where Bern(Ai, j|ρo
i, j) is a Bernoulli distribution over the adjacency matrix Ai, j with

parameter ρo
i, j. In the paper, ρo

i, j = ρ1Ai, j +ρ2(1−Ai, j) was constructed to encode
the degree of belief on the absence and presence of observed links with hyperpa-
rameters 0 < ρ1,ρ2 < 0. Note that Ai, j is the observed graph structure which can
potentially be perturbed. If there is no input graph available, a KNN graph can be
employed. Given the above formulations, the authors developed a stochastic varia-
tional inference algorithm by leveraging the reparameterization trick (Kingma et al,
2014) and Concrete distributions techniques (Maddison et al, 2017; Jang et al, 2017)
to optimize the graph posterior p(A|X ,Y o) and the GCN parameters θ⃗ jointly.

Kazi et al (2020) designed a probabilistic graph generator whose underlying
probability distribution is computed based on pair-wise node similarity, formulated
as,

pi, j = e−t||Xi−X j || (14.11)

where t is a temperature parameter, and Xi is the node embedding of node vi. Given
the above edge probability distribution, they adopted the Gumbel-Top-k trick (Kool
et al, 2019) to sample an unweighted KNN graph which would be fed into a GNN-
based prediction network. Note that the sampling operation breaks the differentia-
bility of the model, the authors thus exploited Reinforcement Learning to reward
edges involved in a correct classification and penalize edges which led to misclassi-
fication.

14 Graph Neural Networks: Graph Structure Learning 307

14.3.1.3 Learning Weighted Graph Structures

Unlike the kind of graph structure learning approaches focusing on learning a dis-
crete graph structure (i.e., binary adjacency matrix) for the GNN, there is a class of
approaches instead focusing on learning a weighted graph structure (i.e., weighted
adjacency matrix). In comparison with learning a discrete graph structure, learning
a weighted graph structure has several advantages. Firstly, optimizing a weighted
adjacency matrix is much more tractable than optimizing a binary adjacency matrix
because the former can be easily achieved by SGD techniques (Bottou, 1998) or
even convex optimization techniques (Boyd et al, 2004) while the later often has to
resort to more challenging techniques such as variational inference (Hoffman et al,
2013), Reinforcement Learning (Williams, 1992) and combinatorial optimization
techniques (Korte et al, 2011) due to its non-differentiability. Secondly, a weighted
adjacency matrix is able to encode richer information on edges compared to a binary
adjacency matrix, which could benefit the subsequent graph representation learning.
For example, the widely used Graph Attention Network (GAT) (Veličković et al,
2018) essentially aims to learn edge weights for the input binary adjacency matrix
which benefit the subsequent message passing operations. In this subsection, we
will first introduce some common graph similarity metric learning techniques as
well as graph sparsification techniques widely used in existing works for learning
a sparse weighted graph by considering pair-wise node similarity in the embedding
space. Some representative graph regularization techniques will be later introduced
for controlling the quality of the learned graph structure. We will then discuss the
importance of combining both of the intrinsic graph structures and learned implicit
graph structures for better learning performance. Finally, we will cover some im-
portant learning paradigms for the joint learning of graph structures and graph rep-
resentations that have been successfully adopted by existing works.

Graph Similarity Metric Learning Techniques

As introduced in section 14.2.1.1, prior works on unsupervised graph structure
learning from smooth signals also aim to learn a weighted adjacency matrix from
data. Nevertheless, they are incapable of handling inductive learning setting where
there are unseen graphs or nodes in the inference phase. This is because they of-
ten learn by directly optimizing an adjacency matrix based on certain prior con-
straints on the graph properties. Many works on discrete graph structure learning
(section 14.3.1.2) have trouble conducting inductive learning as well on account of
the similar reason.

Inspired by the success of attention-based techniques (Vaswani et al, 2017;
Veličković et al, 2018) for modeling relationships among objects, many recent
works in the literature cast graph structure learning as similarity metric learning
defined upon the node embedding space assuming that the node attributes more or
less contain useful information for inferring the implicit topological structure of the
graph. One biggest advantage of this strategy is that the learned similarity metric

308 Yu Chen and Lingfei Wu

function can be later applied to an unseen set of node embeddings to infer a graph
structure, thus enabling inductive graph structure learning.

For data deployed in non-Euclidean domains such as graph data, the Euclidean
distance is not necessarily the optimal metric for measuring node similarity. Com-
mon options for metric learning include cosine similarity (Nguyen and Bai, 2010),
radial basis function (RBF) kernel (Yeung and Chang, 2007) and attention mech-
anisms (Bahdanau et al, 2015; Vaswani et al, 2017). In general, according to the
types of raw information sources needed, we group the similarity metric learning
functions into two categories: Node Embedding Based Similarity Metric Learning
and Structure-aware Similarity Metric Learning. Next, we will introduce some rep-
resentative metric learning functions from both categories which have been success-
fully adopted in prior works on graph structure learning for GNNs.

Node Embedding Based Similarity Metric Learning

Node embedding based similarity metric learning functions are designed to learn a
pair-wise node similarity matrix based on node embeddings which ideally encode
important semantic meanings of the nodes for graph structure learning.

Attention-based Similarity Metric Functions Most similarity metric functions
proposed so far are based on the attention mechanism Bahdanau et al (2015);
Vaswani et al (2017). Norcliffe-Brown et al (2018) adopted a simple metric function
which computes the dot product between any pair of node embeddings (eq. (14.12)).
Given its limited learning capacity, it might have difficulty learning an optimal graph
structure.

Si, j = v⃗⊤i v⃗ j (14.12)

where S ∈ Rn×n is a node similarity matrix, and v⃗i is the vector representation of
node vi.

To enrich the learning capacity of dot product, Chen et al (2020n) proposed a
modified dot product by introducing learnable parameters, formulated as follows:

Si, j = (⃗vi⊙ u⃗)⊤v⃗ j (14.13)

where ⊙ denotes element-wise multiplication, and u⃗ is a non-negative trainable
weight vector which learns to highlight different dimensions of the node embed-
dings. Note that the output similarity matrix S is asymmetric.

Chen et al (2020o) proposed a more expressive version of dot product by intro-
ducing a weight matrix, formulated as follows:

Si, j = ReLU(Wv⃗i)
⊤ReLU(Wv⃗ j) (14.14)

where W is a d×d weight matrix, and ReLU(x) = max(0,x) is a rectified linear unit
(ReLU) (Nair and Hinton, 2010) which is used here to enforce the sparsity of the
output similarity matrix.

Similar to (Chen et al, 2020o), On et al (2020) introduced a learnable mapping
function to node embeddings before computing the dot product, and applied a ReLU

14 Graph Neural Networks: Graph Structure Learning 309

function to enforce sparsity, formulated as follows:

Si, j = ReLU(f (⃗vi)
⊤ f (⃗v j)) (14.15)

where f : R→ R is a single-layer feed-forward network without non-linear activa-
tion.

Besides using ReLU to enforce sparsity, Yang et al (2018c) applied the square
operation to stabilize training, and the row-normalization operation to obtain a nor-
malized similarity matrix, formulated as follows:

Si, j =
(ReLU((W1⃗vi)

⊤W2⃗v j +b)2

∑k (ReLU((W1⃗vk)⊤W2⃗v j +b)2 (14.16)

where W1 and W2 are d×d weight matrices, and b is a scalar parameter.
Unlike Chen et al (2020o) that applied the same linear transformation to node

embeddings, Huang et al (2020a) applied different linear transformations to the two
node embeddings when computing the pair-wise node similarity, formulated as fol-
lows:

Si, j = softmax((W1⃗vi)
⊤W2⃗v j) (14.17)

where W1 and W2 are d× d weight matrices, and softmax(⃗z)i =
ezi

∑ j ez j is applied to

obtain a row-normalized similarity matrix.
Velickovic et al (2020) aimed at graph structure learning in a temporal setting

where the implicit graph structure to be learned changes over time. At each time
step t, they first computed the pair-wise node similarity a(t)i, j using the same attention
mechanism as in (Huang et al, 2020a), and based on that, they further obtained an
“aggregated” adjacency matrix S(t)i, j by deriving a new edge for node i by choosing
node j with the maximal a⃗i j. The whole process is formulated as follows:

a(t)i, j = softmax((W1⃗v(t)i)⊤W2⃗v(t)j)

S̃(t)i, j = µ
(t)
i S̃(t−1)

i, j +(1−µ
(t)
i)I

j=argmaxk(a
(t)
i,k)

S(t)i, j = S̃(t)i, j ∨ S̃(t)j,i

(14.18)

where µ
(t)
i is a learnable binary gating mask, ∨ denotes logical disjunction between

the two operands to enforce symmetry, and W1 and W2 are d× d weight matrices.
Because the argmax operation makes the whole learning system non-differentiable,
the authors provided the ground-truth graph structures for supervision at each time
step.

Cosine-based Similarity Metric Functions Chen et al (2020m) proposed a multi-
head weighted cosine similarity function which aims at capturing pair-wise node
similarity from multiple perspectives, formulated as follows:

310 Yu Chen and Lingfei Wu

Sp
i, j = cos(w⃗p⊙ v⃗i, w⃗p⊙ v⃗ j)

Si, j =
1
m

m

∑
p=1

Sp
i j

(14.19)

where w⃗p is a learnable weight vector associated to the p-th perspective, and has the
same dimension as the node embeddings. Intuitively, Sp

i, j computes the pair-wise
cosine similarity for the p-th perspective where each perspective considers one part
of the semantics captured in the embeddings. Moreover, as observed in (Vaswani
et al, 2017; Veličković et al, 2018), employing multi-head learners is able to stabilize
the learning process and increase the learning capacity.

Kernel-based Similarity Metric Functions Besides attention-based and cosine-
based similarity metric functions, researchers also explored to apply kernel-based
metric functions for graph structure learning. Li et al (2018c) applied a Gaussian
kernel to the distance between any pair of node embeddings, formulated as follows:

d(⃗vi, v⃗ j) =
√

(⃗vi− v⃗ j)⊤M(⃗vi− v⃗ j)

S(⃗vi, v⃗ j) =
−d(⃗vi, v⃗ j)

2σ2

(14.20)

where σ is a scalar hyperparameter which determines the width of the Gaussian
kernel, and d(⃗vi, v⃗ j) computes the Mahalanobis distance between the two node em-
beddings v⃗i and v⃗ j. Notably, M is the covariance matrix of the node embeddings
distribution if we assume all the node embeddings of the graph are drawn from
the same distribution. If we set M = I, the Mahalanobis distance reduces to the
Euclidean distance. To make M a symmetric and positive semi-definite matrix, the
authors let M =WW⊤ where W is a d×d learnable weight matrix. We can also re-
gard W as the transform basis to the space where we measure the Euclidean distance
between two vectors.

Similarly, Henaff et al (2015) first computed the Euclidean distance between
any pair of node embeddings, and then applied a Gaussian Kernel or a self-tuning
diffusion kernel (Zelnik-Manor and Perona, 2004), formulated as follows:

d(⃗vi, v⃗ j) =
√

(⃗vi− v⃗ j)⊤(⃗vi− v⃗ j)

S(⃗vi, v⃗ j) =
−d(⃗vi, v⃗ j)

σ2

Slocal(⃗vi, v⃗ j) =
−d(⃗vi, v⃗ j)

σiσ j

(14.21)

where Slocal(⃗vi, v⃗ j) defines a self-tuning diffusion kernel whose variance is locally
adapted around each node. Specifically, σi is computed as the distance d(⃗vi, v⃗ik)
corresponding to the k-th nearest neighbor ik of node i.

14 Graph Neural Networks: Graph Structure Learning 311

Structure-aware Similarity Metric Learning

When learning implicit graph structures from data, it might be beneficial to utilize
the intrinsic graph structures as well if they are available.

Utilizing Intrinsic Edge Embeddings for Similarity Metric Learning Inspired
by recent works on structure-aware transformers (Zhu et al, 2019b; Cai and Lam,
2020) which brought the intrinsic graph structure to the self-attention mechanism in
the transformer architecture, some works designed structure-aware similarity metric
functions which additionally consider the edge embeddings of the intrinsic graph.
Liu et al (2019b) introduced a structure-aware attention mechanism as the following:

Sl
i, j = softmax(⃗u⊤tanh(W [⃗hl

i ,⃗h
l
j, v⃗i, v⃗ j, e⃗i, j])) (14.22)

where v⃗i denotes the node attributes for node i, e⃗i, j represents the edge attributes
between node i and j, h⃗l

i is the vector representation of node i in the l-th GNN layer,
and u⃗ and W are trainable weight vector and weight matrix, respecitively.

Similarly, Liu et al (2021) proposed a structure-aware global attention mecha-
nism for learning pair-wise node similarity, formulated as follows,

Si, j =
ReLU(W Qv⃗i)

⊤(ReLU(W K v⃗i)+ReLU(W R⃗ei, j))√
d

(14.23)

where e⃗i, j ∈ Rde is the embedding of the edge connecting node i and j, W Q,W K ∈
Rd×dv , W R ∈ Rd×de are learnable weight matrices, and d, dv and de are the dimen-
sions of hidden vectors, node embeddings and edge embeddings, respectively.

Utilizing Intrinsic Edge Connectivity Information for Similarity Metric Learn-
ing In the case where only the edge connectivity information is available in the in-
trinsic graph, Jiang et al (2019b) proposed a masked attention mechanism for graph
structure learning, formulated as follows,

Si, j =
Ai, j exp(ReLU(⃗u⊤ |⃗vi− v⃗ j|))

∑k Ai,k exp(ReLU(⃗u⊤ |⃗vi− v⃗k|))
(14.24)

where Ai, j is the adjacency matrix of the intrinsic graph and u⃗ is a weight vec-
tor with the same dimension as node embeddings v⃗i. This idea of using masked
attention to incorporate the initial graph topology shares the same spirit with the
GAT (Veličković et al, 2018) model.

Graph Sparsification Techniques

The aforementioned similarity metric learning functions all return a weighted ad-
jacency matrix associated to a fully-connected graph. A fully-connected graph is
not only computationally expensive but also might introduce noise such as unim-
portant edges. In real-word applications, most graph structures are much more

312 Yu Chen and Lingfei Wu

sparse. Therefore, it can be beneficial to explicitly enforce sparsity to the learned
graph structure. Besides applying the ReLU function in the similarity metric func-
tions (Chen et al, 2020o; On et al, 2020; Yang et al, 2018c; Liu et al, 2021; Jiang
et al, 2019b), various graph sparsification techniques have been adopted to enhance
the sparsity of the learned graph structure.

Norcliffe-Brown et al (2018); Klicpera et al (2019b); Chen et al (2020o,n); Yu
et al (2021a) adopted a KNN style sparsification operation to obtain a sparse ad-
jacency matrix from the node similarity matrix computed by the similarity metric
learning function, formulated as follows:

Ai,: = topk(Si,:) (14.25)

where topk is a KNN-style operation. Specifically, for each node, only the K nearest
neighbors (including itself) and the associated similarity scores are kept, and the
remaining similarity scores are masked off.

Klicpera et al (2019b); Chen et al (2020m) enforced a sparse adjacency matrix
by considering only the ε-neighborhood for each node, formulated as follows:

Ai, j =

{
Si, j Si, j > ε

0 otherwise (14.26)

where those elements in S which are smaller than a non-negative threshold ε are all
masked off (i.e., set to zero).

Graph Regularization Techniques

As discussed earlier, many works in the field of Graph Signal Processing typically
learn the graph structure from data by directly optimizing the adjacency matrix to
minimize the constraints defined based on certain graph properties, without con-
sidering any downstream tasks. On the contrary, many works on graph structure
learning for GNNs aim to optimize a similarity metric learning function (for learn-
ing graph structures) toward the downstream prediction task. However, they do not
explicitly enforce the learned graph structure to have some common properties (e.g.,
smoothness) presented in real-word graphs.

Chen et al (2020m) proposed to optimize the graph structures by minimizing a
hybrid loss function combining both the task prediction loss and the graph regular-
ization loss. They explored three types of graph regularization losses which pose
constrains on the smoothness, connectivity and sparsity of the learned graph.

Smoothness The smoothness property assumes neighboring nodes to have similar
features.

Ω(A,X) =
1

2n2 ∑
i, j

Ai, j||Xi−X j||2 =
1
n2 tr(X⊤LX) (14.27)

where tr(·) denotes the trace of a matrix, L=D−A is the graph Laplacian, and Di,i =

∑ j Ai, j is the degree matrix. As can be seen, minimizing Ω(A,X) forces adjacent

14 Graph Neural Networks: Graph Structure Learning 313

nodes to have similar features, thus enforcing smoothness of the graph signals on
the graph associated with A. However, solely minimizing the smoothness loss will
result in the trivial solution A = 0. We might also want to pose other constraints to
the graph.

Connectivity The following equation penalizes the formation of disconnected
graphs via the logarithmic barrier.

−1
n

1⃗⊤log(A⃗1) (14.28)

where n is the number of nodes.

Sparsity The following equation controls sparsity by penalizing large degrees.

1
n2 ||A||

2
F (14.29)

where || · ||F denotes the Frobenius norm of a matrix.
In practice, solely minimizing one type of graph regularization losses might not

be desirable. For instance, solely minimizing the smoothness loss will result in the
trivial solution A = 0. Therefore, it could be beneficial to balance the trade-off
among different types of desired graph properties by computing a linear combi-
nation of the various graph regularization losses, formulated as follows:

α

n2 tr(X⊤LX)+
−β

n
1⃗⊤log(A⃗1)+

γ

n2 ||A||
2
F (14.30)

where α , β and γ are all non-negative hyperparameters for controlling the smooth-
ness, connectivity and sparsity of the learned graph.

Besides the above graph regularization techniques, other prior assumptions such
as neighboring nodes tend to share the same label (Yang et al, 2019c) and learned
implicit adjacency matrix should be close to the intrinsic adjacency matrix (Jiang
et al, 2019b) have been adopted in the literature.

Combining Intrinsic Graph Structures and Implicit Graph Structures

Recall that one of the most important motivations for graph structure learning is
that the intrinsic graph structure (if it is available) might be error-prone (e.g., noisy
or incomplete) and sub-optimal for the downstream prediction task. However, the
intrinsic graph typically still carries rich and useful information regarding the opti-
mal graph structure for the downstream task. Hence, it could be harmful to totally
discard the intrinsic graph structure.

A few recent works (Li et al, 2018c; Chen et al, 2020m; Liu et al, 2021) proposed
to combine the learned implicit graph structure with the intrinsic graph structure for
better downstream prediction performance. The rationales are as follows. First of
all, they assume that the optimized graph structure is potentially a “shift” (e.g., sub-

314 Yu Chen and Lingfei Wu

structures) from the intrinsic graph structure, and the similarity metric function is in-
tended to learn such a “shift” which is supplementary to the intrinsic graph structure.
Secondly, incorporating the intrinsic graph structure can help accelerate the training
process and increase the training stability considering there is no prior knowledge
on the similarity metric, the trainable parameters are randomly initialized, and thus
it may take long to converge.

Different ways for combining intrinsic and implicit graph structures have been
proposed. For instance, Li et al (2018c); Chen et al (2020m) proposed to compute a
linear combination of the normalized graph Laplacian of the intrinsic graph structure
and the normalized adjacency matrix of the implicit graph structure, formulated as
follows:

Ã = λL(0)+(1−λ) f (A) (14.31)

where L(0) is the normalized graph Laplacian matrix, f (A) is the normalized adja-
cency matrix associated to the learned implicit graph structure, and λ is a hyperpa-
rameter controlling the trade-off between the intrinsic and implicit graph structures.
Note that f : Rn×n→ Rn×n can be arbitrary normalization operations such as graph
Laplacian operation and row-normalization operation. Liu et al (2021) proposed a
hybrid message passing mechanism for GNNs which fuses the two aggregated node
vectors from the intrinsic graph and the learned implicit graph, respectively, and
then feed the fused vector to a GRU (Cho et al, 2014a) to update node embeddings.

Learning Paradigms

Most existing methods for graph structure learning for GNNs consist of two key
learning components: graph structure learning (i.e., similarity metric learning) and
graph representation learning (i.e., GNN module), and the ultimate goal is to learn
the optimized graph structures and representations with respect to certain down-
stream prediction task. How to optimize the two separate learning components to-
ward the same ultimate goal becomes an important question?

Joint Learning of Graph Structures and Representations

The most straightforward strategy is to jointly optimize the whole learning system
in an end-to-end manner toward the downstream prediction task which provides
certain form of supervision, as illustrated in fig. 14.2. Jiang et al (2019b); Yang et al
(2019c); Chen et al (2020m) designed a hybrid loss function combining both the task
prediction loss and the graph regularization loss, namely, L =Lpred+LG . The aim
of introducing the graph regularization loss is to bring some prior knowledge to the
graph properties (e.g., smoothness, sparsity) as we discussed above so as to enforce
learning more meaningful graph structures and alleviate the potential overfitting
issue.

14 Graph Neural Networks: Graph Structure Learning 315

Fig. 14.2: Joint learning paradigm.

Adaptive Learning of Graph Structures and Representations

Fig. 14.3: Adaptive learning paradigm.

It is common practice to sequentially stack multiple GNN layers so as to cap-
ture long-range dependencies in a graph. As a result, the graph representations up-
dated by one GNN layer will be consumed by the next GNN layer as the initial
graph representations. Since input graph representations to each GNN layer are
transformed by the previous GNN layer, one may naturally think whether the in-
put graph structure to each GNN layer should be adaptively adjusted to reflect the
changes of the graph representations, as illustrated in fig. 14.3. One such example
is the GAT (Veličković et al, 2018) model which adatptively reweights the impor-
tance of neighboring node embeddings by applying the self-attention mechanism to
the previously updated node embeddings when performing neighborhood aggrega-
tion at each GAT layer. However, the GAT model does not update the connectivity
information of the intrinsic graph. In the literature of graph structure learning for
GNNs, some methods (Yang et al, 2018c; Liu et al, 2019b; Huang et al, 2020a;
Saire and Ramı́rez Rivera, 2019) also operate by adaptively learning a graph struc-
ture for every GNN layer based on the updated graph representations produced by

316 Yu Chen and Lingfei Wu

the previous GNN layer. And the whole learning system is usually jointly optimized
in an end-to-end manner toward the downstream prediction task.

Iterative Learning of Graph Structures and Representations

Fig. 14.4: Iterative learning paradigm.

Both of aforementioned joint learning and adaptive learning paradigms aim to
learn a graph structure by applying a similarity metric function to the graph rep-
resentations in a one-shot effort. Even though the adaptive learning paradigm aims
to learn a graph structure at each GNN layer based on the updated graph represen-
tations, the graph structure learning procedure at each GNN layer is still one-shot.
One big limitation of such a one-shot graph structure learning paradigm is that the
quality of the learned graph structure heavily relies on the quality of the graph rep-
resentations. Most existing methods assume that raw node features capture a good
amount of information about the graph topology, which unfortunately is not always
the case. Thus, it can be challenging to learn good implicit graph structures from
the raw node features which do not contain adequate information about the graph
topology.

Chen et al (2020m) proposed a novel end-to-end graph learning framework,
dubbed as IDGL, for jointly and iteratively learning graph structures and represen-
tations. As illustrated in fig. 14.4, the IDGL framework operates by learning a better
graph structure based on better graph representations, and in the meantime, learning
better graph representations based on a better graph structure in an iterative manner.
More specifically, the IDGL framework iteratively searches for an implicit graph
structure that augments the intrinsic graph structure (if not available, a KNN graph
is used) which is optimized for the downstream prediction task. And this iterative

14 Graph Neural Networks: Graph Structure Learning 317

learning procedure dynamically stops when the learned graph structure approaches
close enough to the optimized graph (with respect to the downstream task) according
to certain stopping criterion (i.e., the difference between learned adjacency matrices
at consecutive iterations are smaller than certain threshold). At each iteration, a hy-
brid loss combining both the task prediction loss and the graph regularization loss
is added to the overall loss. After all iterations, the overall loss is back-propagated
through all previous iterations to update model parameters.

This iterative learning paradigm for repeatedly refining the graph structure and
graph representations has a few advantages. On the one hand, even when the raw
node features do not contain adequate information for learning implicit relation-
ships among nodes, the node embeddings learned by the graph representation learn-
ing component could ideally provide useful information for learning a better graph
structure because these node embeddings are optimized toward the downstream
task. On the other hand, the newly learned graph structure could be a better graph
input for the graph representation learning component to learn better node embed-
dings.

14.3.2 Connections to Other Problems

Graph structure learning for GNNs has interesting connections to a few important
problems. Thinking about these connections might spur further research in those
areas.

14.3.2.1 Graph Structure Learning as Graph Generation

The task of graph generation focuses on generating realistic and meaningful graphs.
The early works of graph generation formalized the problem as a stochastic gen-
eration process, and proposed various random graph models for generating a pre-
selected family of graphs such as ER graphs (Erdős and Rényi, 1959), small-world
networks (Watts and Strogatz, 1998), and scale-free graphs (Albert and Barabási,
2002). However, these approaches typically make certain simplified and carefully-
designed apriori assumptions on graph properties, and thus in general have limited
modeling capacity on complex graph structures. Recent attempts focus on building
deep generative models for graphs by leveraging RNN You et al (2018b), VAE (Jin
et al, 2018a), GAN (Wang et al, 2018a), flow-based techniques (Shi et al, 2019a) and
other specially designed models (You et al, 2018a). And GNNs are usually adopted
by these models as a powerful graph encoder.

Even though the graph generation task and the graph structure learning task
both focus on learning graphs from data, they have essentially different goals and
methodologies. Firstly, the graph generation task aims to generate new graphs where
both nodes and edges are added to together construct a meaningful graph. However
the graph structure learning task aims to learn a graph structure given a set of node

318 Yu Chen and Lingfei Wu

attributes. Secondly, generative models for graphs typically operate by learning the
distribution from the observed set of graphs, and generating more realistic graphs
by sampling from the learned graph distribution. But graph structure learning meth-
ods typically operate by learning the pair-wise relationships among the given set
of nodes, and based on that, building the graph topology. It will be an interesting
research direction to study how the two tasks can help each other.

14.3.2.2 Graph Structure Learning for Graph Adversarial Defenses

Recent studies (Dai et al, 2018a; Zügner et al, 2018) have shown that GNNs are
vulnerable to carefully-crafted perturbations (a.k.a adversarial attacks), e.g., small
deliberate perturbations in graph structures and node/edge attributes. Researchers
working on building robust GNNs found graph structure learning a powerful tool
against topology attacks. Given an initial graph whose topology might become un-
reliable because of adversarial attacks, they leveraged graph structure learning tech-
niques to recover the intrinsic graph topology from the poisoned graph.

For instance, assuming that adversarial attacks are likely to violate some intrinsic
graph properties (e.g., low-rank and sparsity), Jin et al (2020e) proposed to jointly
learn the GNN model and the “clean” graph structure from the perturbed graph
by optimizing some hybrid loss combining both the task prediction loss and the
graph regularization loss. In order to restore the structure of the perturbed graph,
Zhang and Zitnik (2020) designed a message-passing scheme that can detect fake
edges, block them and then attend to true, unperturbed edges. In order to address
the noise brought by the task-irrelevant information on real-life large graphs, Zheng
et al (2020b) introduced a supervised graph sparsification technique to remove po-
tentially task-irrelevant edges from input graphs. Chen et al (2020d) proposed a
Label-Aware GCN (LAGCN) framework which can refine the graph structure (i.e.,
filtering distracting neighbors and adding valuable neighbors for each node) before
the training of GCN.

There are many connections between graph adversarial defenses and graph struc-
ture learning. On the one hand, graph structure learning is partially motivated by im-
proving potentially error-prone (e.g., noisy or incomplete) input graphs for GNNs,
which share the similar spirit with graph adversarial defenses. On the other hand,
the task of graph adversarial defenses can benefit from graph structure learning tech-
niques as evidenced by some recent works.

However, there is a key difference between their problem settings. The graph
adversarial defenses task deals with the setting where the initial graph structure is
available, but potentially poisoned by adversarial attacks. And the graph structure
learning task aims to handle both the scenarios where the input graph structure is
available or unavailable. Even when the input graph structure is available, one can
still improve it by “denoising” the graph structure or augmenting the graph structure
with an implicit graph structure which captures implicit relationships among nodes.

14 Graph Neural Networks: Graph Structure Learning 319

14.3.2.3 Understanding Transformers from a Graph Learning Perspective

Transformer models (Vaswani et al, 2017) have been widely used as a powerful
alternative to Recurrent Neural Networks, especially in the Natural Language Pro-
cessing field. Recent studies (Choi et al, 2020) have shown the close connection be-
tween transformer models and GNNs. By nature, transformer models aim to learn
a self-attention matrix between every pair of objects, which can be thought as an
adjacency matrix associated with a fully-connected graph containing each object as
a node. Therefore, one can claim that transformer models also perform some sort
of joint graph structure and representation learning, even though these models typi-
cally do not consider any initial graph topology and do not control the quality of the
learned fully-connected graph. Recently, many variants of the so-called graph trans-
formers (Zhu et al, 2019b; Yao et al, 2020; Koncel-Kedziorski et al, 2019; Wang
et al, 2020k; Cai and Lam, 2020) have been developed to combine the benefits of
both GNNs and transformers.

14.4 Future Directions

In this section, we will introduce some advanced topics of graph structure learning
for GNNs and highlight some promising future directions.

14.4.1 Robust Graph Structure Learning

Although one of the major motivations of developing graph structure learning tech-
niques for GNNs is to handle noisy or incomplete input graphs, robustness does not
lie in the heart of most existing graph structure learning techniques. Most of exist-
ing works did not evaluate the robustness of their approaches to noisy initial graphs.
Recent works showed that random edge addition or deletion attacks significantly
downgraded the downstream task performance (Franceschi et al, 2019; Chen et al,
2020m). Moreover, most existing works admit that the initial graph structure (if
provided) might be noisy and thus unreliable for graph representation learning, but
they still assume that node features are reliable for graph structure learning, which
is often not true in real-world scenarios. Therefore, it is challenging yet rewarding to
explore robust graph structure learning techniques for data with noisy initial graph
structures and noisy node attributes.

320 Yu Chen and Lingfei Wu

14.4.2 Scalable Graph Structure Learning

Most existing graph structure learning techniques need to model the pair-wise re-
lationships among all the nodes in order to discover the hidden graph structure.
Therefore, their time complexity is at least O(n2) where n is the number of graph
nodes. This can be very expensive and even intractable for large-scale graphs (e.g.,
social networks) in real word. Recently, Chen et al (2020m) proposed a scalable
graph structure learning approach by leveraging the anchor-based approximation
technique to avoid explicitly computing the pair-wise node similarity, and achieved
linear complexity in both computational time and memory consumption with respect
to the number of graph nodes. In order to improve the scalability of transformer
models, different kinds of approximation techniques have also been developed in
recent works (Tsai et al, 2019; Katharopoulos et al, 2020; Choromanski et al, 2021;
Peng et al, 2021; Shen et al, 2021; Wang et al, 2020g). Considering the close connec-
tions between graph structure learning for GNNs and transformers, we believe there
are many opportunities in building scalable graph structure learning techniques for
GNNs.

14.4.3 Graph Structure Learning for Heterogeneous Graphs

Most existing graph structure learning works focus on learning homogeneous graph
structures from data. In comparison with homogeneous graphs, heterogeneous
graphs are able to carry on richer information on node types and edge types, and
occur frequently in real-world graph-related applications. Graph structure learning
for heterogeneous graphs is supposed to be more challenging because more types
of information (e.g., node types, edge types) are expected to be learned from data.
Some recent attempts (Yun et al, 2019; Zhao et al, 2021) have been made to learn
graph structures from heterogeneous graphs.

14.5 Summary

In this chapter, we explored and discussed graph structure learning from multiple
perspectives. We first reviewed the existing works on graph structure learning in the
literature of traditional machine learning, including both unsupervised graph struc-
ture learning and supervised graph structure learning. As for unsupervised graph
structure learning, we mainly looked into some representative techniques devel-
oped from the Graph Signal Processing community. We also introduced some recent
works on clustering analysis that leveraged graph structure learning techniques. As
for supervised graph structure learning, we introduced how this problem was studied
in the research on modeling interacting systems and Bayesian Networks. The main
focus of this chapter is on introducing recent advances in graph structure learning

14 Graph Neural Networks: Graph Structure Learning 321

for GNNs. We motivated graph structure learning in the GNN field by discussing the
scenarios where the graph-structured data is noisy or unavailable. We then moved
on to introduce recent research progress in joint graph structure and representa-
tion learning, including learning discrete graph structures and learning weighted
graph structures. The connections and differences between graph structure learning
and other important problems such as graph generation, graph adversarial defenses
and transformer models were also discussed. We then highlighted several remain-
ing challenges and future directions in the research of graph structure learning for
GNNs.

Editor’s Notes: Graph Structure Learning is a fast-emerging research topic
and have seen a significant number of interests in recent years. The key
idea is to learn an optimized graph structure in order to generate a bet-
ter node representation (Chapter 4) and a more robust node representation
(Chapter 8). Obviously, the graph structure learning could be expensive if
the common pair-wise learning approach is adopted and thus the scalability
issue could be a real major concern (Chapter 6). Meanwhile, it has tight
connection with graph generation (Chapter 11) and self-supervised learn-
ing (Chapter 18), since they all consider partially how to modify/leverage
graph structure. This chapter can be applicable to a broad range of appli-
cation domains such as recommendation system (Chapter 19), computer
vision (Chapter 20), Natural Language Processing (Chapter 21), Program
Analysis (Chapter 22), and so on.

Chapter 15
Dynamic Graph Neural Networks

Seyed Mehran Kazemi

Abstract The world around us is composed of entities that interact and form re-
lations with each other. This makes graphs an essential data representation and a
crucial building-block for machine learning applications; the nodes of the graph
correspond to entities and the edges correspond to interactions and relations. The
entities and relations may evolve; e.g., new entities may appear, entity properties
may change, and new relations may be formed between two entities. This gives rise
to dynamic graphs. In applications where dynamic graphs arise, there often exists
important information within the evolution of the graph, and modeling and exploit-
ing such information is crucial in achieving high predictive performance. In this
chapter, we characterize various categories of dynamic graph modeling problems.
Then we describe some of the prominent extensions of graph neural networks to dy-
namic graphs that have been proposed in the literature. We conclude by reviewing
three notable applications of dynamic graph neural networks namely skeleton-based
human activity recognition, traffic forecasting, and temporal knowledge graph com-
pletion.

15.1 Introduction

Traditionally, machine learning models were developed to make predictions about
entities (or objects or examples) given only their features and irrespective of their
connections with the other entities in the data. Examples of such prediction tasks
include predicting the political party a social network user supports given their other
features, predicting the topic of a publication given its text, predicting the type of
the object in an image given the image pixels, and predicting the traffic in a road (or
road segment) given historical traffic data in that road.

Seyed Mehran Kazemi
Borealis AI, e-mail: mehran.kazemi@borealisai.com

323
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_15

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:mehran.kazemi@borealisai.com
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_15&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_15

324 Seyed Mehran Kazemi

In many applications, there exist relationships between the entities that can be
exploited to make better predictions about them. As a few examples, social network
users that are close friends or family members are more likely to support the same
political party, two publications by the same author are more likely to have the same
topic, two images taken from the same website (or uploaded to social media by
the same user) are more likely to have similar objects in them, and two roads that
are connected are more likely to have similar traffic volumes. The data for these
applications can be represented in the form of a graph where nodes correspond to
entities and edges correspond to the relationships between these entities.

Graphs arise naturally in many real-world applications including recommender
systems, biology, social networks, ontologies, knowledge graphs, and computational
finance. In some domains the graph is static, i.e. the graph structure and the node fea-
tures are fixed over time. In other domains, the graph changes over time. In a social
network, for example, new edges are added when people make new friends, exist-
ing edges are removed when people stop being friends, and node features change
as people change their attributes, e.g., when they change their career assuming that
career is one of the node features. In this chapter, we focus on the domains where
the graph is dynamic and changes over time.

In applications where dynamic graphs arise, modeling the evolution of the graph
is often crucial in making accurate predictions. Over the years, several classes of
machine learning models have been developed that capture the structure and the
evolution of dynamic graphs. Among these classes, extensions of graph neural net-
works (GNNs) (Scarselli et al, 2008; Kipf and Welling, 2017b) to dynamic graphs
have recently found success in several domains and they have become one of the
essential tools in the machine learning toolbox. In this chapter, we review the GNN
approaches for dynamic graphs and provide several application domains where dy-
namic GNNs have provided striking results. The chapter is not meant to be a full
survey of the literature but rather a description of the common techniques for apply-
ing GNNs to dynamic graphs. For a comprehensive survey of representation learn-
ing approaches for dynamic graphs we refer the reader to (Kazemi et al, 2020), and
for a more specialized survey of GNN-based approaches to dynamic graphs we refer
the reader to (Skarding et al, 2020).

The rest of the chapter is organized as follows. In Section 15.2, we define the no-
tation that will be used throughout the chapter and provide the necessary background
to follow the rest of the chapter. In Section 15.3, we describe different types of dy-
namic graphs and different prediction problems on these graphs. In Section 15.4, we
review several approaches for applying GNNs on dynamic graphs. In Section 15.5,
we review some of the applications of dynamic GNNs. Finally, Section 15.6 sum-
marizes and concludes the chapter.

15 Dynamic Graph Neural Networks 325

15.2 Background and Notation

In this section, we define our notation and provide the background required to follow
the rest of the chapter.

We use lowercase letters z to denote scalars, bold lowercase letters z to denote
vectors and uppercase letters Z to denote matrices. zi denotes the i element of z,
Zi denotes a column vector corresponding to the i row of Z, and Zi, j denotes the
element at the i row and j column of Z. z denotes the transpose of z and Z denotes
the transpose of Z. (zz′) ∈ Rd+d′ corresponds to the concatenation of z ∈ Rd and
z′ ∈ Rd′ . We use to represent an identity matrix. We use ⊙ to denote element-
wise (Hadamard) product. We represent a sequence as [e1,e2, . . . ,ek] and a set as
{e1,e2, . . . ,ek} where eis represent the elements in the sequence or set.

In this chapter, we mainly consider attributed graphs. We represent an attributed
graph as G = (V,A,X) where V = {v1,v2, . . . ,vn} is the set of vertices (aka nodes),
n = |V | denotes the number of nodes, A ∈ Rn×n is an adjacency matrix, and X ∈
Rn×d is a feature matrix where Xi represents the features associated with the i node
vi and d denotes the number of features. If there exists no edge between vi and v j,
then Ai, j = 0; otherwise, Ai, j ∈ R+ represents the weight of the edge where R+

represents positive real numbers.
If G is unweighted, then the range of A is {0,1} (i.e. A ∈ {0,1}n×n). G is undi-

rected if the edges have no directions; it is directed if the edges have directions.
For an undirected graph, A is symmetric (i.e. A = A). For each edge Ai, j > 0 of
a directed graph, we call vi the source and v j the target of the edge. If G is multi-
relational with a set R = {r1, . . . ,rm} of relations, then the graph has m adjacency
matrices where the i adjacency matrix represents the existence of the i relation ri
between the nodes.

15.2.1 Graph Neural Networks

In this chapter, we use the term Graph Neural Network (GNN) to refer to the general
class of neural networks that operate on graphs through message-passing between
the nodes. Here, we provide a brief description of GNNs.

Let G = (V,A,X) be a static attributed graph. A GNN is a function f : Rn×n×
Rn×d→Rn×d′ that takes G (or more specifically A and X) as input and provides as
output a matrix Z ∈ Rn×d′ where Zi ∈ Rd′ corresponds to a hidden representation
for the i node vi. This hidden representation is called the node embedding. Provid-
ing a node embedding for each node vi can be viewed as dimensionality reduction
where the information from vi’s initial features as well as the information from its
connectivity to other nodes and the features of these nodes are captured in a vector
Zi. This vector can be used to make informed predictions about vi. In what follows,
we describe two example GNNs namely graph convolutions networks and graph
attention networks for undirected graphs.

326 Seyed Mehran Kazemi

Graph Convolutional Networks: Graph convolutional networks (GCNs) (Kipf
and Welling, 2017b) stack multiple layers of graph convolution. The l layer of GCN
for an undirected graph G = (V,A,X) can be formulated as follows:

Z(l) = σ(D−
1
2 ÃD−

1
2 Z(l−1)W (l)) (15.1)

where Ã=A+ corresponds to the adjacency matrix with self-loops, D is a diagonal
degree matrix with Di,i = Ãi1 (1 represents a column vector of ones) and Di, j =

0 for i ̸= j, D−
1
2 ÃD−

1
2 corresponds to a row and column normalization of Ã,

Z(l) ∈ Rn×d(l) and Z(l−1) ∈ Rn×d(l−1)
represent the node embeddings in layer l and

(l−1) respectively with Z(0) =X , W (l) ∈Rd(l−1)×d(l) represents the weight matrix
at layer l, and σ is an activation function.

The l layer of a GCN model can be described in terms of the following steps.
First, it applies a linear projection to the node embeddings Z(l−1) using the weight
matrix W (l), then for each node vi it computes a weighted sum of the projected em-
beddings of vi and its neighbors where the weights for the weighted sum are speci-
fied according to D−

1
2 ÃD−

1
2 , and finally it applies a non-linearity to the weighted

sums and updates the node embeddings. Notice that in a L-layer GCN, the embed-
ding for each node is computed based on its L-hop neighborhood (i.e. based on the
nodes that are at most L hops away from it).

Graph Attention Networks: Instead of fixing the weights when computing a
weighted sum of the neighbors, attention-based GNNs replace D−

1
2 ÃD−

1
2 in equa-

tion 15.1 with an attention matrix Â(l) ∈ Rn×n such that:

Z(l) = σ(Â(l)Z(l−1)W (l)) (15.2)

Â
(l)
i, j =

E
(l)
i, j

∑k E
(l)
i,k

, E
(l)
i, j = Ãi, j exp

(
α(Z

(l−1)
i ,Z

(l−1)
j ;θ

(l))
)

(15.3)

where α : Rd(l−1) ×Rd(l−1) → R is a function with parameters θ (l) that computes
attention weights for pairs of nodes. Here, Ã acts as a mask that ensures E(l)

i, j = 0

(and consequently Â
(l)
i, j = 0) if vi and v j are not connected. The exp function in the

computation of E(l)
i, j and the normalization

E
(l)
i, j

∑k E
(l)
i,k

correspond to a (masked) soft-

max function of the attention weights. Different attention-based GNNs can be con-
structed with different choices of α . In graph attention networks (GATs) (Veličković
et al, 2018), θ (l) ∈ R2d(l) and α is defined as follows:

α(Z
(l−1)
i ,Z

(l−1)
j ;θ

(l)) = σ
(
θ
(l)(W (l)Z

(l−1)
i ||W (l)Z

(l−1)
j)

)
(15.4)

where σ is an activation function. The formulation in equation 15.2 corresponds to
a single-head attention-based GNN. A multi-head attention-based GNN computes
multiple attention matrices Â(l,1), . . . ,Â(l,β) using equation 15.3 but with differ-

15 Dynamic Graph Neural Networks 327

ent weights θ (l,1), . . . ,θ (l,β) and W (l,1), . . . ,W (l,β) and then replaces equation 15.2
with:

Z(l) = σ(Â(l,1)Z(l−1)W (l,1) || . . . || Â(l,β)Z(l−1)W (l,β)) (15.5)

where β is the number of heads. Each head may learn to aggregate the neighbors
differently and extract different information.

15.2.2 Sequence Models

Over the years, several models have been proposed that operate on sequences. In
this chapter, we are mainly interested in neural sequence models that take as input a
sequence [x(1),x(2), . . . ,x(τ)] of observations where x(t) ∈Rd for all t ∈ {1, . . . ,τ},
and produce as output hidden representations [h(1),h(2), . . . ,h(τ)] where h(t) ∈ Rd′

for all t ∈ {1, . . . ,τ}. Here, τ represents the length of the sequence or the timestamp
for the last element in the sequence. Each hidden representation h(t) is a sequence
embedding capturing information from the first t observations. Providing a sequence
embedding for a given sequence can be viewed as dimensionality reduction where
the information from the first t observations in the sequence is captured in a single
vector h(t) which can be used to make informed predictions about the sequence. In
what follows, we describe recurrent neural networks, Transformers, and convolu-
tional neural networks for sequence modeling.

Recurrent Neural Networks: Recurrent neural networks (RNNs) (Elman, 1990)
and its variants have achieved impressive results on a range of sequence modeling
problems. The core principle of the RNN is that its output is a function of the current
data point as well as a representation of the previous inputs. Vanilla RNNs consume
the input sequence one by one and provides embeddings using the following equa-
tion (applied sequentially for t in [1, . . . ,τ]):

h(t) = RNN(x(t),h(t−1)) = σ(W (i)x(t)+W (h)h(t−1)+b) (15.6)

where W (.)s and b are the model parameters, h(t) is the hidden state corresponding
to the embedding of the first t observations, and x(t) is the t observation. One may
initialize h(0) = 0, where 0 is a vector of 0s, or let h(0) be learned during training.
Training vanilla RNNs is typically difficult due to gradient vanishing and exploding.

Long short term memory (LSTMs) (Hochreiter and Schmidhuber, 1997) (and
gated recurrent units (GRUs) (Cho et al, 2014a)) alleviate the training problem of
vanilla RNNs through gating mechanism and additive operations. An LSTM model
consumes the input sequence one by one and provides embeddings using the fol-
lowing equations:

328 Seyed Mehran Kazemi

LS
TM

 C
el

l𝐡(0)

𝐜(0)

LS
TM

 C
el

l𝐡(1)

𝐜(1)

𝐡(2)

𝐜(2)

LS
TM

 C
el

l𝐡(𝑇−1)

𝐜(𝑇−1)
…

…

𝐡(1) 𝐡(2) 𝐡(𝑇)…

𝐱(1) 𝐱(2) 𝐱(𝑇)

𝐡(𝑇)

𝐜(𝑇)

Fig. 15.1: An LSTM model taking as input a sequence x(1),x(2), . . . ,x(τ) and pro-
ducing hidden representations h(1),h(2), . . . ,h(τ) as output. Equations 15.7-15.11
describe the operations in LSTM Cells.

i(t) = σ

(
W (ii)x(t)+W (ih)h(t−1)+b(i)

)
(15.7)

f (t) = σ

(
W (f i)x(t)+W (f h)h(t−1)+b(f)

)
(15.8)

c(t) = f (t)⊙c(t−1)+ i(t)⊙Tanh
(
W (ci)x(t)+W (ch)h(t−1)+b(c)

)
(15.9)

o(t) = σ

(
W (oi)x(t)+W (oh)h(t−1)+b(o)

)
(15.10)

h(t) = o(t)⊙Tanh
(
c(t)
)

(15.11)

Here i(t), f (t), and o(t) represent the input, forget and output gates respectively,
c(t) is the memory cell, h(t) is the hidden state corresponding to the embedding of
the sequence until t observation, σ is an activation function (typically Sigmoid),
Tanh represents the hyperbolic tangent function, and W (..)s and b(.)s are weight
matrices and vectors. Similar to vanilla RNNs, one may initialize h(0) = c(0) = 0 or
let them be vectors with learnable parameters. Figure 15.1 shows an overview of an
LSTM model.

A bidirectional RNN (BiRNN) (Schuster and Paliwal, 1997) is a combination of
two RNNs one consuming the input sequence [x(1),x(2), . . . ,x(τ)] in the forward
direction and producing hidden representations [

−→
h (1),

−→
h (2), . . . ,

−→
h (τ)] as output,

and the other consuming the input sequence backwards (i.e. [x(τ),x(τ−1), . . . ,x(1)])
and producing hidden representations [

←−
h (τ),

←−
h (τ−1), . . . ,

←−
h (1)] as output. These two

hidden representations are then concatenated producing a single hidden representa-
tion h(t) = (

−→
h (t)←−h (t)). Note that in RNNs, h(t) is computed only based on obser-

vations at or before t whereas in BiRNNs, h(t) is computed based on observations
at, before, or after t. BiLSTMs Graves et al (2005) are a specific version of BiRNNs
where the RNN is an LSTM.

Transformers: Consuming the input sequence one by one makes RNNs not
amenable to parallelization. It also makes capturing long-range dependencies dif-
ficult. To solve these issues, the Transformer model Vaswani et al (2017) allows

15 Dynamic Graph Neural Networks 329

processing a sequence as a whole. The central operation in Transformer models is
the self-attention mechanism. Let H(l−1) be an embedding matrix in layer (l− 1)
such that its t row H

(l−1)
t represents the embedding of the first t observations. The

self-attention mechanism at each layer l can be described similar to equation 15.2
and equation 15.3 for attention-based GNNs by defining Ã in equation 15.3 as a
lower triangular matrix where Ãi, j = 1 if i≤ j and Ãi, j = 0 otherwise, replacing Z(l)

and Z(l−1) with H(l) and H(l−1), and defining the α function in equation 15.3 as
follows:

α(H
(l−1)
t ,H

(l−1)
t ′ ;θ

(l)) =
QtKt ′√

d(k)
,Q=W (l,Q)H(l−1),K =W (l,K)H(l−1)

(15.12)
where θ l = {W (l,Q),W (l,K)} are the weights with W (l,Q),W (l,K) ∈ Rd(l−1)×d(k) .
The matrices Q and K are called the query and key matrices1. Qt and Kt ′ represent
column vectors corresponding to the t and t ′ th row of Q and K, respectively. After
L layers, the hidden representations H(L) contain the sequence embeddings with
H

(L)
t corresponding to the embedding of the first t observations (denoted as h(t) for

RNNs). The lower-triangular matrix Ã ensures that the embedding H
(L)
t is computed

based only on the observations at and before the t observation. One may define Ã as
a matrix of all 1s to allow H

(L)
t to be computed based on the observations at, before,

and after the t observation (similar to BiRNNs).
In equation 15.12, the embeddings are updated based on an aggregation of the

embeddings from the previous timestamps, but the order of these embeddings is not
modeled explicitly. To enable taking the order into account, the embeddings in the
Transformer model are initialized as H(0)

t =x(t)+p(t) or H(0)
t =(x(t) || p(t)) where

H
(0)
t is the t row of H(0), x(t) is the t observation, and p(t) is a positional encoding

capturing information about the position of the observation in the sequence. In the
original work, the positional encodings are defined as follows:

p
(t)
2i = sin(t/100002i/d), p

(t)
2i+1 = sin(t/100002i/d +π/2) (15.13)

Note that p(t) is constant and does not change during training.
Convolutional Neural Networks: Convolutional neural networks (CNNs) (Le Cun

et al, 1989) have revolutionized many computer vision applications. Originally,
CNNs were proposed for 2D signals such as images. They were later used for 1D
signals such as sequences and time-series. Here, we describe 1D CNNs. We start
with describing 1D convolutions. Let H ∈ Rn×d be a matrix and F ∈ Ru×d be a
convolution filter. Applying the filter F on H produces a vector h′ ∈ Rn−u+1 as
follows:

h′i =
u

∑
j=1

d

∑
k=1

Hi+ j−1,kF j,k (15.14)

1 For readers familiar with Transformers, in our description the values matrix corresponds to the
multiplication of the embedding matrix with the weight matrix W (l) in equation 15.2.

330 Seyed Mehran Kazemi

0.1 -0.2 1.1 0.2

0.9 -0.8 1.0 1.0

0.2 0.3 0.4 0.5

0.6 -0.6 0.5 -0.5

1.1 1.2 2.1 2.2

0.0 0.0 1.0 1.2

Input

0.4 0.0 1.0 0.4

0.0 -1.2 3.2 0.5

Filter 1

-1.2 0.8 0.0 0.0

0.0 0.0 -3.2 0.5

Filter 2

5.88 -2.98

2.93 -2.75

2.75 -1.85

6.92 -6.82

7.22 -2.96

Result

(-1.2)(0.9)+(-0.8)(0.8)+(0.0)(1.0)+(0.0)(1.0)
+ (0.0)(0.2)+(0.0)(0.3)+(-3.2)(0.4)+(0.5)(0.5)
= -2.75

Fig. 15.2: An example of a 1D convolution operation with two convolution filters.

It is also possible to produce a vector h′ ∈ Rn (i.e. a vector whose dimension is the
same as the first dimension of H) by padding H with zeros. Having d′ convolution
filters, one can generate d′ vectors as in equation 15.14 and stack them to generate a
matrix H ′ ∈ R(n−u+1)×d′ (or H ′ ∈ Rn×d′). Figure 15.2 provides an example of 1D
convolution.

The 1D convolution operation in equation 15.14 is the main building block of
the 1D CNNs. Similar to equation 15.12, let us assume H(l−1) represents the em-
beddings in the l layer with H

(0)
t = x(t) where H

(0)
t represents the t row of H(0)

and x(t) is the t observation. 1D CNN models apply multiple convolution filters to
H(l−1) as described above and produce a matrix to which activation and (some-
times) pooling operations are applied to produce H(l). The convolution filters are
the learnable parameters of the model. Hereafter, we use the term CNN to refer to
the general family of 1D convolutional neural networks.

15.2.3 Encoder-Decoder Framework and Model Training

A deep neural network model can typically be decomposed into an encoder and a de-
coder module. The encoder module takes the input and provides vector-representations
(or embeddings), and the decoder module takes the embeddings and provides pre-
dictions. The GNNs and sequence models described in Sections 15.2.1 and 15.2.2
correspond to the encoder modules of a full model; they provide node embeddings
Z and sequence embeddings H , respectively. The decoder is typically task-specific.
As an example, for a node classification task, the decoder can be a feed-forward neu-
ral network applied on a node embedding Zi provided by the encoder, followed by a
softmax function. Such a decoder provides as output a vector ŷ ∈R|C| where C rep-
resents the classes, |C| represents the number of classes, and ŷ j shows the probabil-
ity of the node belonging to the j class. A similar decoder can be used for sequence
classification. As another example, for a link prediction problem, the decoder can
take as input the embeddings for two nodes, take the sigmoid of a dot-product of the
two node embeddings, and use the produced number as the probability of an edge
existing between the two nodes.

The parameters of a model are learned through optimization by minimizing a
task-specific loss function. For a classification task, for instance, we typically as-

15 Dynamic Graph Neural Networks 331

sume having access to a set of ground-truth labels Y where Yi, j = 1 if the i example
belongs to the j class and Yi, j = 0 otherwise. We learn the parameters of the model
by minimizing (e.g., using stochastic gradient descent) the cross entropy loss de-
fined as follows:

L =− 1
|Yi, j|∑i

∑
j
Yi, jlog(Ŷi, j) (15.15)

where |Yi, j| denotes the number of rows in Yi, j corresponding to the number of
labeled examples, and Ŷi, j is the probability of the i example belonging to the j
class according to the model. For other tasks, one may use other appropriate loss
functions.

15.3 Categories of Dynamic Graphs

Different applications give rise to different types of dynamic graphs and different
prediction problems. Before commencing the model development, it is crucial to
identify the type of dynamic graph and its static and evolving parts, and have a clear
understanding of the prediction problem. In what follows, we describe some general
categories of dynamic graphs, their evolution types, and some common prediction
problems for them.

15.3.1 Discrete vs. Continues

As pointed out in (Kazemi et al, 2020), dynamic graphs can be divided into discrete-
time and continuous-time categories. Here, we describe the two categories and point
out how discrete-time can be considered a specific case of continuous-time dynamic
graphs.

A discrete-time dynamic graph (DTDG) is a sequence [G(1),G(2), . . . ,G(τ)] of
graph snapshots where each G(t) = (V (t),A(t),X(t)) has vertices V (t), adjacency
matrix A(t) and feature matrix X(t). DTDGs mainly appear in applications where
(sensory) data is captured at regularly-spaced intervals.

Example 15.1. Figure 15.3 shows three snapshots of an example DTDG. In the first
snapshot, there are three nodes. In the next snapshot, a new node v4 is added and a
connection is formed between this node and v2. Furthermore, the features of v1 are
updated. In the third snapshot, a new edge has been added between v3 and v4.

A special type of DTDGs is the spatio-temporal graphs where a set of entities are
spatially (i.e. in terms of closeness in space) and temporally correlated and data is
captured at regularly-spaced intervals. An example of such a spatio-temporal graph
is traffic data in a city or a region where traffic statistics at each road are computed at
regularly-spaced intervals; the traffic at a particular road at time t is correlated with

332 Seyed Mehran Kazemi

𝑣1 𝑣2

𝑣3

First Snapshot

𝑣1 𝑣2

𝑣3 𝑣4

𝑣1 𝑣2

𝑣3 𝑣4

𝒱 (1) = {𝑣1, 𝑣2, 𝑣3}

𝐴(1) =
0 1 0
1 0 1
0 1 0

, 𝑋(1)=
0.1 1
0.2 1
0.2 2

…

𝒱 (2) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}

𝐴(2) =

0 1
1 0

0 0
1 1

0 1
0 1

0 0
0 0

, 𝑋(2)=

0.1
0.2

2
1

0.2
0.5

2
1

𝒱 (3)= {𝑣1, 𝑣2, 𝑣3, 𝑣4}

𝐴(3) =

0 1
1 0

0 0
1 1

0 1
0 1

0 1
1 0

, 𝑋(3)=

0.1
0.2

2
1

0.2
0.5

2
1

Second Snapshot Third Snapshot

Fig. 15.3: Three snapshots of an example DTDG. In the first snapshot, there are 3
nodes. In the second snapshot, a new node v4 is added and a connection is formed
between this node and v2. Moreover, the features of v1 are updated. In the third
snapshot, a new edge has been added between v3 and v4.

the traffic at the roads connected to it at time t (spatial correlation) as well as the
traffic at these roads and the ones connected to it at previous timestamps (temporal
correlation). In this example, the nodes in each G(t) may represent roads (or road
segments), the adjacency matrix A(t) may represent how the roads are connected,
and the feature matrix X(t) may represent the traffic statistics in each road at time t.

A continuous-time dynamic graph (CTDG) is a pair (G(t0),O) where G(t0) =
(V (t0),A(t0),X(t0)) is a static graph2 representing an initial state at time t0 and O is
a sequence of temporal observations/events. Each observation is a tuple of the form
(event type,event, timestamp) where event type can be a node or edge addition,
node or edge deletion, node feature update, etc., event represents the actual event
that happened, and timestamp is the time at which the event occurred.

Example 15.2. An example of a CTDG is a pair (G(t0),O) where G(t0) is the graph
in the first snapshot of Figure 15.3 and the observations are as follows:

O = [(add node,v4,20-05-2020),(add edge,(v2,v4),21-05-2020),
(Feature update,(v1, [0.1,2]),28-05-2020),(add edge,(v3,v4),04-06-2020)]

where, e.g., (add node,v4,20-05-2020) is an observation corresponding to a new
node v4 being added to the graph at time 20-05-2020.

At any point t ≥ t0 in time, a snapshot G(t) (corresponding to a static graph) can
be obtained from a CTDG by updating G(t0) sequentially according to the obser-
vations O that occurred before (or at) time t. In some cases, multiple edges may
have been added between two nodes giving rise to multi-graphs; one may aggre-
gate the edges to convert the multi-graph into a simple graph if required. Therefore,
a DTDG can be viewed as a special case of a CTDG where only some regularly
spaced snapshots of the CTDG are available.

2 Note that we can have V (t0) = {} corresponding to a graph with no nodes. We can also have
A

(t0)
i, j = 0 for all i, j corresponding to a graph with no edges.

15 Dynamic Graph Neural Networks 333

Example 15.3. For the CTDG in Example 15.2, assume t0 = 01-05-2020 and we
only observe the state of the graph on the first day of each month (01-05-2020, 01-
06-2020 and 01-07-2020 for this example). In this case, the CTDG will reduce to
the DTDG snapshots in Figure 15.3.

15.3.2 Types of Evolution

For both DTDGs and CTDGs, various parts of the graph may change and evolve.
Here, we describe some of the main types of evolution. As a running example, we
use a dynamic graph corresponding to a social network where the nodes represent
users and the edges represent connections such as friendship.

Node addition/deletion: In our running example, new users may join the plat-
form resulting in new nodes being added to the graph, and some users may leave the
platform resulting in some nodes being removed from the graph.

Feature update: Users may have multiple features such as age, country of resi-
dence, occupation, etc. These features may change over time as users become older,
move to a new country, or change their occupation.

Edge addition/deletion: As time goes by, some users become friends resulting
in new edges and some people stop being friends resulting in some edges being
removed from the graph. As pointed out in (Trivedi et al, 2019), the observations
corresponding to events between two nodes may be categorized into association
and communication events. The former corresponds to events that lead to structural
changes in the graph and result in a long-lasting flow of information between the
nodes (e.g., the formation of new friendships in social networks). The latter cor-
responds to events that result in a temporary flow of information between nodes
(e.g., the exchange of messages in a social network). These two event categories
typically evolve at different rates and one may model them differently, especially in
applications where they are both present.

Edge weight updates: The adjacency matrix corresponding to the friendships
may be weighted where the weights represent the strength of the friendships (e.g.,
computed based on the duration of friendship or other features). In this case, the
strength of the friendships may change over time resulting in edge weight updates.

Relation updates: The edges between the users may be labeled where the label
indicates the type of the connection, e.g., friendship, engagement, and siblings. In
this case, the relation between two users may change over time (e.g., it may change
from friendship to engagement). One may see relation update as a special case of
edge evolution where one edge is deleted and another edge is added (e.g., the friend-
ship edge is removed and an engagement edge is added).

334 Seyed Mehran Kazemi

15.3.3 Prediction Problems, Interpolation, and Extrapolation

We review four types of prediction problems for dynamic graphs: node classifica-
tion/regression, graph classification, link prediction, and time prediction. Some of
these problems can be studied under two settings: interpolation and extrapolation.
They can also be studied under a transductive or inductive prediction setting. In
what follows, we will describe each prediction problem. We let be a (discrete-time
or continuous-time) dynamic graph containing information in a time interval [t0,τ].

Node classification/regression: Let V (t) = {v1, . . . ,vn} represent the nodes in at
time t. Node classification at time t is the problem of classifying a node vi ∈V (t) into
a predefined set of classes C. Node regression at time t is the problem of predicting
a continuous feature for a node vi ∈ V (t). In the extrapolation setting, we make
predictions about a future state (i.e. t ≥ τ) and the predictions are made based on
the observations before or at t (e.g., forecasting the weather for the upcoming days).
In the interpolation setting, t0 ≤ t ≤ τ and the predictions are made based on all the
observations (e.g., filling the missing values).

Graph classification: Let {1, 2, . . . , k} be a set of dynamic graphs. Graph clas-
sification is the problem of classifying each dynamic graph i into a predefined set of
classes C.

Link prediction: Link prediction is the problem of predicting new links between
the nodes of a dynamic graph. In the case of interpolation, the goal is to predict if
there was an edge between two nodes vi and v j at timestamp t0 ≤ t ≤ τ (or a time
interval between t0 and τ), assuming that vi and v j are in at time t. The interpolation
problem is also known as the completion problem and can be used to predict missing
links. In the case of extrapolation, the goal is to predict if there is going to be an
edge between two nodes vi and v j at a timestamp t > τ (or a time interval after τ)
assuming that vi and v j are in the at time τ .

Time prediction: Time prediction is the problem of predicting when an event
happened or when it will happen. In the case of interpolation (sometimes called
temporal scoping), the goal is to predict the time t0 ≤ t ≤ τ when an event occurred
(e.g., when two nodes vi and v j started or ended their connection). In the extrapola-
tion case (sometimes called time to event prediction), the goal is to predict the time
t > τ when an event will happen (e.g., when a connection will be formed between
vi and v j).

Transductive vs. Inductive: The above problem definitions for node classifi-
cation/regression, link prediction, and time prediction correspond to a transductive
setting in which at the test time, predictions are to be made for entities already ob-
served during training. In the inductive setting, information about previously unseen
entities (or entirely new graphs) is provided at the test time and predictions are to
be made for these entities (see (Hamilton et al, 2017b; Xu et al, 2020a; Albooyeh
et al, 2020) for examples). The graph classification task is inductive by nature as it
requires making predictions for previously unseen graphs at the test time.

15 Dynamic Graph Neural Networks 335

15.4 Modeling Dynamic Graphs with Graph Neural Networks

In Section 15.2.1, we described how applying a GNN on a static graph G provides an
embedding matrix Z ∈ Rn×d′ where n is the number of nodes, d′ is the embedding
dimension, and Zi represents the embedding for the i entity vi and can be used to
make predictions about it. For dynamic graphs, we wish to extend GNNs to obtain
embeddings Z(t) ∈ Rnt×d′ for any timestamp t, where nt is the number of nodes in
the graph at time t and Z

(t)
i captures the information about the i entity at time t. In

this section, we review several such extensions of GNNs. We mainly describe the
encoder part of the models for dynamic graphs as the decoder and the loss functions
can be defined similarly to Section 15.2.3.

15.4.1 Conversion to Static Graphs

A simple but sometimes effective approach for applying GNNs on dynamic graphs
is to first convert the dynamic graph into a static graph and then apply a GNN on the
resulting static graph. The main benefits of this approach include simplicity as well
as enabling the use of a wealth of GNN models and techniques for static graphs.
One disadvantage with this approach, however, is the potential loss of information.
In what follows, we describe two conversion approaches.

Temporal aggregation: We start with describing temporal aggregation for a par-
ticular type of dynamic graphs and then explain how it extends to more general
cases. Consider a DTDG [G(1),G(2), . . . ,G(τ)] where each G(t) = (V (t),A(t),X(t))
such that V (1) = · · ·=V (τ) =V and X(1) = · · ·=X(τ) =X (i.e. the nodes and their
features are fixed over time and only the adjacency matrix evolves). Note that in this
case, the adjacency matrices have the same shape. One way to convert this DTDG
into a static graph is through a weighted aggregation of the adjacency matrices as
follows:

A(agg) =
τ

∑
t=1

φ(t,τ)A(t) (15.16)

where φ : R×R→R provides the weight for the t adjacency matrix as a function of
t and τ . For extrapolation problems, a common choice for φ is φ(t,τ)= exp(−θ(τ−
t)) corresponding to exponentially decaying the importance of the older adjacency
matrices (Yao et al, 2016). Here, θ is a hyperparameter controlling how fast the
importance decays. For interpolation problems where a prediction is to be made for
a timestamp 1 ≤ t ′ ≤ τ , one may define the function as φ(t, t ′) = exp(−θ |t ′− t|)
corresponding to exponentially decaying the importance of the adjacency matrices
as they move further away from t ′. Through this aggregation, one can convert the
DTDG above into a static graph G = (V,A(agg),X) and subsequently apply a static
GNN model on it to make predictions. It is important to note that the aggregated
adjacency matrix is weighted (i.e. A(agg) ∈ Rn×n) so one can only use the GNN
models that can handle weighted graphs.

336 Seyed Mehran Kazemi

𝑣1
(1)

𝑣2
(1)

𝑣3
(1)

𝑣1
(2)

𝑣2
(2)

𝑣3
(2)

𝑣4
(2)

𝑣1
(3)

𝑣2
(3)

𝑣3
(3)

𝑣4
(3)

First Snapshot Second Snapshot Third Snapshot

Fig. 15.4: An example of converting a DTDG into a static graph through temporal
unrolling. Solid lines represent the edges in the graph at different timestamps and
dashed lines represent the added edges. In this example, each node is connected
to the node corresponding to the same entity only in the previous timestamp (i.e.
ω = 1).

In the case where node features also evolve, one may use a similar aggregation as
in equation 15.16 and compute X(agg) based on [X(1),X(2), . . . ,X(τ)]. In the case
where nodes are added and removed, one possible way of aggregation is as follows.
Let V (s) = {v | v ∈ V (1) ∪ ·· · ∪V (τ)} represent the set of all the nodes that existed
throughout time. We can expand every A(t) to a matrix in R|V (s)|×|V (s)| where the
values for the rows and columns corresponding to any node v ̸∈V (t) are all 0s. The
feature vectors can be expanded similarly. Then, equation 15.16 can be applied on
the expanded adjacency and feature matrices. A similar aggregation can be done for
CTDGs by first converting it into a DTDG (see Section 15.3.1) and then applying
equation 15.16.

Example 15.4. Consider a DTDG with the three snapshots in Figure 15.3. We let
V (s) = {v1,v2,v3,v4}, add a row and a column of zeros to A(1), and add a row of
zeros to X(1). Then, we use equation 15.16 with some value of θ to compute A(agg)

and X(agg). Then we apply a GNN on the aggregated graph.

Temporal unrolling: Another way of converting a dynamic graph into a static
graph is unrolling the dynamic graph and connecting the nodes corresponding to
the same object across time. Consider a DTDG [G(1),G(2), . . . ,G(τ)] and let G(t) =
(V (t),A(t),X(t)) for t ∈ {1, . . . ,τ}. Let G(s) = (V (s),A(s),X(s)) represent the static
graph to be generated from the DTDG. We let V (s) = {v(t) | v ∈V (t), t ∈ {1, . . . ,τ}}.
That is, every node v ∈ V (t) at every timestamp t ∈ {1, . . . ,τ} becomes a new node
named v(t) in V (s) (so |V (s)| = ∑

τ
t=1 |V (t)|). Note that this is different from the way

we constructed V (s) for temporal aggregation: here every node at every timestamp
becomes a node in V (s) whereas in temporal aggregation we took a union of the
nodes across timestamps. For every node v(t) ∈ V (s), we let the features of v(t) in
X(s) to be the same as its features in X(t). If two nodes vi,v j ∈ V (t) are connected
according to A(t), we connect the corresponding nodes in A(s). We also connect
each node v(t) to v(t

′) for t ′ ∈ {max(1, t −ω), . . . , t − 1} so a node corresponding
to an entity at time t becomes connected to the nodes corresponding to the same

15 Dynamic Graph Neural Networks 337

entity at the previous ω timestamps, where ω is a hyperparameter. One may assign
different weights to these temporal edges in A(s) based on the difference between t
and t ′ (e.g., exponentially decaying the weight). Having constructed the static graph
G(s), one may apply a GNN model on it and, e.g., use the resulting embedding
for v(t)s (i.e. the nodes corresponding to the t timestamp of the DTDG) to make
predictions about the nodes.

Example 15.5. Figure 15.4 provides an example of temporal unrolling for the DTDG
in Figure 15.3 with ω = 1. The graph has 11 nodes overall and so A(s) ∈R11×11. The
node features are set according to the ones in Figure 15.3, e.g., the feature values
for v(2)1 are 0.1 and 2.

15.4.2 Graph Neural Networks for DTDGs

One natural way of developing models for DTDGs is by combining GNNs with
sequence models; the GNN captures the information within the node connections
and the sequence model captures the information within their evolution. A large
number of the works on dynamic graphs in the literature follow this approach – see,
e.g., (Seo et al, 2018; Manessi et al, 2020; Xu et al, 2019a). Here, we describe some
generic ways of combining GNNs with sequence models.

GNN-RNN: Let be a DTDG with a sequence [G(1), . . . ,G(τ)] of snapshots where
G(t) = (V (t),A(t),X(t)) for each t ∈ {1, . . . ,τ}. Suppose we want to obtain node em-
beddings at some time t ≤ τ based on the observations at or before t. For simplicity,
let us assume V (1) = V (2) = · · · = V (τ) = V , i.e. the nodes are the same through-
out time (in cases where the nodes change, one may use a similar strategy as in
Example 15.4).

We can apply a GNN to each of the G(t)s and obtain a hidden representation
matrix Z(t) whose rows correspond to node embeddings. Then, for the i node vi, we
obtain a sequence of embeddings [Z

(1)
i ,Z

(2)
i , . . . ,Z

(τ)
i]. These embeddings do not

yet contain temporal information. To incorporate the temporal aspect of the DTDG
into the embeddings and obtain a temporal embedding for vi at time t, we can feed
the sequence [Z

(1)
i ,Z

(2)
i , . . . ,Z

(t)
i] into an RNN model defined in equation 27.1 by

replacing x(t) with Z
(t)
i and using the hidden representation of the RNN model as

the temporal node embedding for vi. The temporal embedding for other nodes can be
obtained similarly by feeding their sequence of embeddings produced by the GNN
model to the same RNN model. The following formulae describe a variant of the
GNN-RNN model where the GNN is a GCN (defined in equation 15.1), the RNN is
an LSTM model, and the LSTM operations are applied to all nodes embeddings at
the same time (the formulae are applied sequentially for t in [1,2, . . . ,τ]).

338 Seyed Mehran Kazemi

Z(t) = GCN(X(t),A(t)) (15.17)

I(t) = σ

(
Z(t)W (ii)+H(t−1)W (ih)+b(i)

)
(15.18)

F (t) = σ

(
Z(t)W (f i)+H(t−1)W (f h)+b(f)

)
(15.19)

C(t) = F (t)⊙C(t−1)+I(t)⊙Tanh
(
Z(t)W (ci)+H(t−1)W (ch)+b(c)

)
(15.20)

O(t) = σ

(
Z(t)W (oi)+H(t−1)W (oh)+b(o)

)
(15.21)

H(t) =O(t)⊙Tanh
(
C(t)

)
(15.22)

where, similar to equations 15.7-15.11, I(t), F (t), and O(t) represent the input, for-
get and output gates for the nodes respectively, C(t) is the memory cell, H(t) is the
hidden state corresponding to the node embeddings for the first t observation, and
W (..)s and b(.)s are weight matrices and vectors. In the above formulae, when we
add a matrix Z(t)W (.i)+H(t−1)W (.h) with a bias vector b(.), we assume the bias
vector b(.) as added to every row of the matrix. H(0) and C(0) can be initialized with
zeros or learned from the data. H(t) corresponds to the temporal node embeddings
at time t and can be used to make predictions about them. We can summarize the
equations above into:

Z(t) = GCN(X(t),A(t)) (15.23)

H(t),C(t) = LST M(Z(t),H(t−1),C(t−1)) (15.24)

In a similar way, one can construct other variations of the GNN-RNN model such as
GCN-GRU, GAT-LSTM, GAT-RNN, etc. Figure 15.5 provides an overview of the
GCN-LSTM model.

RNN-GNN: In cases where the graph structure is fixed through time (i.e. A(1) =
· · · = A(τ) = A) and only node features change, instead of first applying a GNN
model and then applying a sequence model to obtain temporal node embeddings,
one may apply the sequence model first to capture the temporal evolution of the
node features and then apply a GNN model to capture the correlations between the
nodes. We can create different variations of this generic model by using different
GNN and sequence models (e.g., LSTM-GCN, LSTM-GAT, GRU-GCN, etc.). The
formulation for a LSTM-GCN model is as follows:

H(t),C(t) = LST M(X(t),H(t−1),C(t−1)) (15.25)

Z(t) = GCN(H(t),A) (15.26)

with Z(t) containing the temporal node embeddings at time t. Note that RNN-GNN
is only appropriate if the the adjacency matrix is fixed over time; otherwise, RNN-
GNN fails to capture the information within the evolution of the graph structure.

GNN-BiRNN and BiRNN-GNN: In the case of GNN-RNN and RNN-GNN,
the obtained node embeddings H(t) contain information about the observations at

15 Dynamic Graph Neural Networks 339

LS
TM

 C
el

l𝐻(0)

𝐶(0)

LS
TM

 C
el

l𝐻(1)

𝐶(1)

𝐻(2)

𝐶(2)

LS
TM

 C
el

l𝐻(𝑇−1)

𝐶(𝑇−1)
…

…

𝐻(1) 𝐻(2) 𝐻(𝑇)…

𝒢(1)

𝑍(2) 𝑍(𝑇)

𝐻(𝑇)

𝐶(𝑇)

𝒢(2) 𝒢(𝑇)

GCN GCN GCN

𝑍(1)

Fig. 15.5: The GCN-LSTM model taking a sequence G(1),G(2), . . . ,G(τ) as input
and producing hidden representations H(1),H(2), . . . ,H(τ) as output. The opera-
tions in LSTM Cells are described in equations 15.18-15.22. The GCN modules
have shared parameters.

or before time t. This is appropriate for extrapolation problems. For interpolation
problems (e.g., when we want to predict missing links between edges at a timestamp
t ≤ τ), however, we may want to use the observations before, at, or after time t. One
possible way of achieving this is by combining a GNN with a BiRNN so that the
BiRNN provides information from not only the observations at or before time t but
also after time t.

GNN-Transformer: Combining GNNs with Transformers can be done in a sim-
ilar way as in GNN-RNNs. We apply a GNN to each of the G(t)s and obtain a
hidden representation matrix Z(t) whose rows correspond to node embeddings.
Then for the i entity vi, we create a matrix H(0,i) such that H(0,i)

t = Z
(t)
i + p(t)

(or H
(0,i)
t = Z

(t)
i p(t)) where p(t) is the positional encoding vector for position t.

That is, the t row of H(0,i) contains the embedding Z
(t)
i of vi obtained by apply-

ing the GCN model on G(t), plus the positional encoding. The 0 superscript in
H(0,i) shows that H(0,i) corresponds to the input of a Transformer model in the
0 layer. Once we have H(0,i), we can apply an L-layer Transformer model (see
equations 15.2, 15.3 and 15.12) to obtain H(L,i) where H

(L,i)
t corresponds to the

temporal embedding of vi at time t. For extrapolation, the matrix Ã in equation 15.3
is a lower triangular matrix with Ãi, j = 1 if i≤ j and 0 otherwise; for interpolation,
Ã is a matrix of all 1s. The GCN-Transformer variant of the GNN-Transformer
model can be described using the following equations:

340 Seyed Mehran Kazemi

Z(t) = GCN(X(t), A(t)) f or t ∈ {1,2, . . . ,τ} (15.27)

H
(0,i)
t =Z

(t)
i +p(t) f or t ∈ {1,2, . . . ,τ}, i ∈ {1,2, . . . , |V |} (15.28)

H(L,i) = Trans f ormer(H(0,i), Ã) f or i ∈ {1,2, . . . , |V |} (15.29)

GNN-CNN: In a similar way as GNN-RNN and GNN-Transformer, one can
combine GNNs with CNNs where the GNN provides [Z(1),Z(2), . . . ,Z(t)], then the
embeddings [Z(1)

i ,Z
(2)
i , . . . ,Z

(t)
i] for each node vi are stacked into a matrix H(0,i)

similar to the GNN-Transformer model, and then a 1D CNN model is applied on
H(0,i) (see Section 15.2.2) to provide the final node embeddings.

Creating Deeper Models: Consider the GCN-LSTM model in Figure 15.5. The
output of the GCN module is a sequence [Z(1),Z(2), . . . ,Z(τ)] and the outputs of the
LSTM module is a sequence of hidden representation matrices [H(1),H(2), . . . ,H(τ)].
Let us call the output of the GCN module as [Z(1,1),Z(1,2), . . . ,Z(1,τ)] and the
output of the LSTM module as [H(1,1),H(1,2), . . . ,H(1,τ)] where the added su-
perscript 1 indicates that these are the hidden representations created at layer 1.
One may consider each H(1, t) as the new node features for the nodes in G(t) and
run a GCN module (with separate parameters from the initial GCN) again to ob-
tain [Z(2,1),Z(2,2), . . . ,Z(2,τ)]. Then, another LSTM module may operate on these
matrices to produce [H(2,1),H(2,2), . . . ,H(2,τ)]. Stacking L of these GCN-LSTM
blocks produces [H(L,1),H(L,2), . . . ,H(L,τ)] as output. These hidden matrices can
then be used for making predictions about the nodes. The l layer of this model can
be formulated as below (the formulae are applied sequentially for t in [1, . . . ,τ]):

Z(l, t) = GCN(H(l−1, t),A(t)) (15.30)

H(l, t),C(l, t) = LST M(Z(l, t),H(l, t−1),C(l, t−1)) (15.31)

where H(0,t) = X(t) for t ∈ {1, . . . ,τ}. The above two equations define what is
called a GCN-LSTM block. Other blocks can be constructed using similar combina-
tions.

15.4.3 Graph Neural Networks for CTDGs

Recently, developing models that operate on CTDGs without converting them to
DTDGs (or converting them to static graphs) has been the subject of several studies.
One class of models for CTDGs is based on extensions of the sequence models
described in Section 15.2.2, especially RNNs. The general idea behind these models
is to consume the observations sequentially and update the embedding of a node
whenever a new observation is made about that node (or, in some works, about one
of its neighbors). Before describing GNN-based approaches for CTDGs, we briefly
describe some of the RNN-based models for CTDGs.

Consider a CTDG with G(t0) = (V (t0),A(t0),X(t0)) with A
(t0)
i, j = 0 for all i, j (i.e.

no initial edges) and observations O whose only type is edge additions. Since the

15 Dynamic Graph Neural Networks 341

only observation types are edge additions, for this CTDG, the nodes and their fea-
tures are fixed over time. Let Z(t−) represent the node embeddings right before time
t (initially, Z(t0) =X(t0) or Z(t0) =X(t0)W where W is a weight matrix with learn-
able parameters). Upon making an observation (AddEdge,(vi,v j), t) corresponding
to a new directed edge between two nodes vi,v j ∈V , the model developed in (Kumar
et al, 2019b) updates the embeddings for vi and v j as follows:

Z
(t)
i = RNNsource((Z

(t−)
j || ∆ ti || f), Z(t−)

i) (15.32)

Z
(t)
j = RNNtarget((Z

(t−)
i || ∆ t j || f), Z(t−)

j) (15.33)

where RNNsource and RNNtarget are two RNNs with different weights3, ∆ ti and ∆ t j
represent the time elapsed since vi’s and v j’s previous interactions respectively4, f
represents a vector of features corresponding to edge features (if any), || indicates
concatenation, and Z

(t)
i and Z

(t)
j represent the updated embeddings at time t. The

first RNN takes as input a new observation (Z
(t−)
j || ∆ ti || f) and the previous

hidden state of a node Z
(t−)
i and provides an updated representation (similarly for

the second RNN). Besides learning a temporal embedding Z(t) as described above,
in (Kumar et al, 2019b) another embedding vector is also learned for each entity
that is fixed over time and captures the static features of the nodes. The two embed-
dings are then concatenated to produce the final embedding that is used for making
predictions.

In Trivedi et al (2017), a similar strategy is followed to develop a model for
CTDGs with multi-relational graphs in which two custom RNNs update the node
embeddings for the source and target nodes once a new labeled edge is observed
between them. In Trivedi et al (2019), a model is developed that is similar to
the above models but closer in nature to GNNs. Upon making an observation
(AddEdge,(vi,v j), t), the node embedding for vi is updated as follows (and simi-
larly for v j):

Z
(t)
i = RNN((zN (v j)∆ ti), Z

(t−)
i) (15.34)

where zN (v j) is an embedding that is computed based on a custom attention-
weighted aggregation of the embeddings of v j and its neighbors at time t, and ∆ ti is
defined similarly as in equation 15.32. Unlike equation 15.32 where the RNN up-
dates the embedding of vi based on the embedding of v j alone, in equation 15.34
the embedding of vi is updated based on an aggregation of the embeddings from the
first-order neighborhood of v j which makes it close in nature to GNNs.

Many of the existing RNN-based approaches for CTDGs only compute the node
embeddings based on their immediate neighboring nodes (or nodes that are 1-hop

3 The reason for using two RNNs is to allow the source and target nodes of a directed graph to be
updated differently upon making the observation (AddEdge,(vi,v j), t). If the graph is undirected,
one may use a single RNN.
4 If this is the first interaction of vi (or v j), then ∆ ti (or ∆ t j) can be the time elapsed since t0.

342 Seyed Mehran Kazemi

away from them) and do not take into account the nodes that are multi-hops away.
We now describe a GNN-based model for CTDGs named temporal graph attention
networks (TGAT) and developed in (Xu et al, 2020a) that computes node embed-
dings based on the k-hop neighborhood of the nodes (i.e. based on the nodes that
are at most k hops away). Being a GNN-based model, TGAT can learn embeddings
for new nodes that are added to a graph and can be used for inductive settings where
at the test time, predictions are to be made for previously unseen nodes.

Similar to the Transformer model, TGAT removes the recurrence and instead
relies on self-attention and an extension of positional encoding to continuous time
encoding named Time2Vec. In Time2Vec (Kazemi et al, 2019), time t (or a delta of
time as in equation 15.32 and equation 15.34) is represented as a vector z(t) defined
as follows:

z
(t)
i =

{
ωit +ϕi, if i = 0.
sin(ωit +ϕi), if 1≤ i≤ k.

(15.35)

where ω and ϕ are vectors with learnable parameters. TGAT uses a specific case of
Time2Vec where the linear term is removed and the parameters ϕ are fixed to 0s and
π

2 s similar to equation 15.13. We refer the reader to Kazemi et al (2019); Xu et al
(2020a) for theoretical and practical motivations of such a time encoding.

Now we describe how TGAT computes node embeddings. For a node vi and
timestamp t, let N

(t)
i represent the set of nodes that interacted with vi at or before

time t and the timestamps for the interaction. Each element of N
(t)

i is of the form
(v j, tk) where tk ≤ t. The l layer of TGAT computes the embedding h(t,l,i) for vi at
time t in layer l using the following steps:

1. For any node vi, h(t,0,i) (corresponding to the embedding of vi in the 0 layer in
time t) is assumed to be equal to Xi for any value of t.

2. A matrix K(t,l,i) with |N (t)
i | rows is created such that for each (v j, tk) ∈N

(t)
i ,

K(t,l,i) has a row (h(tk,l−1, j) || z(t−tk)) where h(tk,l−1, j) corresponds to the em-
bedding of v j in layer (l−1) at the time tk of its interaction with vi and z(t−tk)

is an encoding for the delta time (t − tk) as in equation 15.35. Note that each
h(tk,l−1, j) is computed recursively using the same steps outlined here.

3. A vector q(t,l,i) is computed as (h(t,l−1,i)z(0)) where h(t,l−1,i) is the embedding
of vi at time t in layer (l− 1) and z(0) is an encoding for a delta of time equal
to 0 as in equation 15.35.

4. q(t,l,i) is used to determine how much vi should attend to each row of K(t,l,i)

corresponding to the representation of its neighbors5. Attention weights a(t,l,i)

are computed using equation 15.12 where the j element of a(t,l,i) is computed
as a(t,l,i)

j = α(q(t,l,i),K
(t,l,i)
j ;θ (l)).

5. Having the attention weights, a representation h̃(t,l,i) is computed for vi using
equation 15.2 where the attention matrix Â(l) is replaced with the attention
vector a(t,l,i).

5 For simplicity, here we describe a single-head attention-based GNN version of TGAT; in the
original work, a multi-head version is used (see equation 15.5 for details.)

15 Dynamic Graph Neural Networks 343

6. Finally, h(t,l,i) = FF(l)(h(t,l−1,i)h̃(t,l,i)) computes the representation for node vi
at time t in layer l where FF(l) is a feed-forward neural network in layer l.

An L-layer TGAT model computes node embeddings based on the L-hop neigh-
borhood of a node.

Suppose we run a 2-layer TGAT model on a temporal graph where vi interacted
with v j at time t1 < t and v j interacted with vk at time t2 < t1. The embedding h(t,2,i)

is computed based on the embedding h(t1,1, j) which is itself computed based on the
embedding h(t2,0,k). Since we are now at 0 layer, h(t2,0,k) in TGAT is approximated
with Xk thus ignoring the interactions vk has had before time t2. This may be sub-
optimal if vk has had important interactions before t2 as these interactions are not
reflected on h(t1,1, j) and hence not reflected on h(t,2,i). In (Rossi et al, 2020), this
problem is remedied by using a recurrent model (similar to those introduced at the
beginning of this subsection) that provides node embeddings at any time based on
their previous local interactions, and initializing h(t,0,i)s with these embeddings.

15.5 Applications

In this chapter, we provide some examples of real-world problems that have been
formulated as predictions over dynamic graphs and modeled using GNNs. In partic-
ular, we review applications in computer vision, traffic forecasting, and knowledge
graphs. This is by no means a comprehensive list; other application domains include
recommendation systems Song et al (2019a), physical simulation of object trajecto-
ries Kipf et al (2018), social network analysis Min et al (2021), automated software
bug triaging Wu et al (2021a), and many more.

15.5.1 Skeleton-based Human Activity Recognition

Human activity recognition from videos is a well-studied problem in computer vi-
sion with several applications. Given a video of a human, the goal is to classify
the activity performed by the human in the video into a pre-defined set of classes
such as walking, running, dancing, etc. One possible approach for this problem is
to make predictions based on the human body skeleton as the skeleton conveys im-
portant information for human action recognition. In this subsection, we provide a
dynamic graph formulation of this problem and a modeling approach based mainly
on (a simplified version of) the approach of (Yan et al, 2018a).

Let us begin with formulating the skeleton-based activity recognition problem as
reasoning over a dynamic graph. A video is a sequence of frames and each frame
can be converted into a set of n nodes corresponding to the key points in the skeleton
using computer vision techniques (see, e.g., (Cao et al, 2017)). These n nodes each
have a feature vector representing their (2D or 3D) coordinates in the image frame.
The human body specifies how these key points are connected to each other. With

344 Seyed Mehran Kazemi

0

12

3

4

5

6

7

8

9

10

11

12

13

14 15
16 17

0

12

34

5

6

7

8

9

10

11

12

13

14 15
16 17

0

12

3

4

5

6

7
8

9

10

11

12

13

14 15
16

17

…

(1) (2) … (T)

Fig. 15.6: The human skeleton represented as a graph for each snapshot of a video.
The nodes represent the key points and the edges represent connections between
these key points. The t graph corresponds to the human skeleton obtained from the
t frame of a video.

this description, we can formulate the problem as reasoning over a DTDG consisting
of a sequence [G(1),G(2), . . . ,G(τ)] of graphs where each G(t) = (V (t),A(t),X(t))
corresponds to the t frame of a video with V (t) representing the set of key points in
the t frame, A(t) representing their connections, and X(t) representing their features.
An example is provided in Figure 15.6. One may notice that V (1) = · · ·=V (τ) =V
and A(1) = · · ·=A(τ) =A, i.e. the nodes and the adjacency matrices remain fixed
throughout the sequence because they correspond to the key points and how they
are connected in the human body. For instance, in the graphs of Figure 15.6, the
node numbered as 3 is always connected to the nodes numbered as 2 and 4. The
feature matrices X(t), however, keep changing as the coordinates of the key points
change in different frames. The activity recognition can now be cast as classifying
a dynamic graph into a set of predefined classes C.

The approach employed in (Yan et al, 2018a) is to convert the above DTDG into
a static graph through temporal unrolling (see Section 15.4.1). In the static graph,
the node corresponding to a key point at time t is connected to other key points at
time t according to the human body (or, in other words, according to A(t)) as well
as the nodes representing the same key point and its neighbors in the previous ω

timestamps. Once a static graph is constructed, a GNN can be applied to obtain em-
beddings for every joint at every timestamp. Since activity recognition corresponds
to graph classification in this formulation, the decoder may consist of a (max, mean,
or another type of) pooling layer on the node embeddings to obtain a graph em-
bedding followed by a feed-forward network and a softmax layer to make class
predictions.

In the l layer of the GNN in (Yan et al, 2018a), the adjacency matrix is multiplied
element-wise to a mask matrix M (l) with learnable parameters (i.e. A⊙M (l) is
used as the adjacency matrix). M (l) can be considered a data-independent attention
map that learns weights for the edges in A. The goal of M (l) is to learn which
connections are more important for activity recognition. Multiplying by M (l) only
allows for changing the weight of the edges in A but it cannot add new edges.
Connecting the key points according to the human body may arguably not be the

15 Dynamic Graph Neural Networks 345

best choice as, e.g., the connection between the hands is important in recognizing
the clapping activity. In (Li et al, 2019e), the adjacency is summed with two other
matrices B(l) and C(l) (i.e. A+B(l)+C(l) is used as the adjacency) where B(l)

is a data-independent attention matrix similar to M (l) and C(l) is a data-dependent
attention matrix. Adding two matrices B(l) and C(l) to A allows for not only chang-
ing the edge weights in A but also adding new edges.

Instead of converting the dynamic graph to a static graph through temporal un-
rolling and applying a GNN on the static graph as in the previous two works, in Shi
et al (2019b), (among other changes) a GNN-CNN model is used. One can use
other combinations of a GNN and a sequence model (e.g., GNN-RNN) to obtain
embeddings for joints at different timestamps. Note that activity recognition is not
an extrapolation problem (i.e. the goal is not to predict the future based on the past).
Therefore, to obtain the joint embeddings at time t, one may use information not
only from G(t ′) where t ′ ≤ t but also from timestamps t ′ > t. This can be done by
using, e.g., a GNN-BiRNN model (see Section 15.4.2).

15.5.2 Traffic Forecasting

For urban traffic control, traffic forecasting plays a paramount role. To predict the
future traffic of a road, one needs to consider two important factors: spatial depen-
dence and temporal dependence. The traffics in different roads are spatially depen-
dent on each other as future traffic in one road depends on the traffic in the roads
that are connected to it. The spatial dependence is a function of the topology of the
road networks. There is also temporal dependence for each road because the traffic
volume on a road at any time depends on the traffic volume at the previous times.
There are also periodic patterns as, e.g., the traffic in a road may be similar at the
same times of the day or at the same times of the week.

Early approaches for traffic forecasting mainly focused on temporal dependen-
cies and ignored the spatial dependencies (Fu et al, 2016). Later approaches aimed
at capturing spatial dependencies using convolutional neural networks (CNNs) (Yu
et al, 2017b), but CNNs are typically restricted to grid structures. To enable captur-
ing both spatial and temporal dependencies, several recent works have formulated
traffic forecasting as reasoning over a dynamic graph (DTDGs in particular).

We first start by formulating traffic forecasting as a reasoning problem over a
dynamic graph. One possible formulation is to consider a node for each road seg-
ment and connect two nodes if their corresponding road segments intersect with
each other. The node features are the traffic flow variables (e.g., speed, volume, and
density). The edges can be directed, e.g., to show the flow of the traffic in one-way
roads, or undirected, showing that traffic flows in both directions. The structure of
the graph can also change over time as, e.g., some road segments or some intersec-
tions may get (temporarily) closed. One may record the traffic flow variables and
the state of the roads and intersections at regularly-spaced time intervals resulting
in a DTDG. Alternatively, one may record the variables at different (asynchronous)

346 Seyed Mehran Kazemi

time intervals resulting in a CTDG. The prediction problem is a node regression
problem as we require to predict the traffic flow for the nodes, and it is an extrapo-
lation problem as we need to predict the future state of the flow. The problem can
be studied under a transductive setting where a model is trained based on the traffic
data in a region and tested for making predictions about the same region. It can also
be studied under an inductive setting where a model is trained based on the traffic
data in multiple regions and is tested on new regions.

In (Zhao et al, 2019c), a model is proposed for transductive traffic forecasting
in which the problem is formulated as reasoning over a DTDG with a sequence
[G(1),G(2), . . . ,G(τ)] of snapshots. The graph structure is considered to be fixed (i.e.
no changes in road or intersection conditions) but the node features, corresponding
to traffic flow features, change over time. The proposed model is a GCN-GRU model
(see Section 15.4.2) where the GCN captures the spatial dependencies and the GRU
captures the temporal dependencies. At any time t, the model provides a hidden
representation matrix H(t) based on the information at or before t; the rows of this
matrix correspond to the node embeddings. These embeddings can then be used to
make predictions about the traffic flow in the next timestamp(s). Assuming Ŷ (t+1)

represents the predictions for the next timestamp and Y (t+1) represents the ground
truth, the model is trained by minimizing an L2-regularized sum of the absolute
errors ||Ŷ (t+1)−Y (t+1)||.

As explained in Section 15.2.2, RNN-based models (e.g., the GCN-GRU model
above) typically require sequential computations and are not amenable to paral-
lelization. In (Yu et al, 2018a), the temporal dependencies are captured using CNNs
instead of RNNs. The proposed model contains multiple blocks of CNN-GNN-CNN
where the GNN is a generalization of GCNs to multi-dimensional tensors and the
CNNs are gated.

The two works described so far consider the adjacency matrix to be fixed in dif-
ferent timestamps. As explained earlier, however, the adjacency matrix may change
over time, e.g., due to accidents and roadblocks. In (Diao et al, 2019), the change
in the adjacency matrix is taken into account through estimating the change in the
topology of the roads based on the short-term traffic data.

15.5.3 Temporal Knowledge Graph Completion

Knowledge graphs (KGs) are databases of facts. A KG contains a set of facts in the
form of triples (vi,r j,vk) where vi and vk are called the subject and object entities
and r j is a relation. A KG can be viewed as a directed multi-relational graph with
nodes V = {v1, . . . ,vn}, relations R = {r1, . . . ,rm}, and m adjacency matrices where
the j adjacency matrix corresponds to the relations of type r j between the nodes
according to the triples.

A temporal knowledge graph (TKG) contains a set of temporal facts. Each fact
may be associated with a single timestamp indicating the time when the event spec-
ified by the fact occurred, or a time interval indicating the start and end timestamps.

15 Dynamic Graph Neural Networks 347

The facts with a single timestamp typically represent communication events and the
facts with a time interval typically represent associative events (see Section 15.3.2)6.
Here, we focus on facts with a single timestamp for which a TKG can be defined as a
set of quadruples of the form (vi,r j,vk, t) where t indicates the time when (vi,r j,vk)
occurred. Depending on the granularity of the timestamps, one may think of a TKG
as a DTDG or a CTDG.

TKG completion is the problem of learning models based on the existing tempo-
ral facts in a TKG to answer queries of the type (vi,r j,?, t) (or (?,r j,vk, t)) where the
correct answer is an entity v ∈ V such that (vi,r j,v, t) (or (v,r j,vk, t)) has not been
observed during training. It is mainly an interpolation problem as queries are to be
answered at a timestamp t based on the past, present, and future facts. Currently, the
majority of the models for TKG completion are not based on GNNs (e.g., see (Goel
et al, 2020; Garcı́a-Durán et al, 2018; Dasgupta et al, 2018; Lacroix et al, 2020)).
Here, we describe a GNN-based approach that is mainly based on the work in (Wu
et al, 2020b).

Since TKGs correspond to multi-relational graphs, to develop a GNN-based
model that operates on a TKG we first need a relational GNN. Here, we describe
a model named relational graph convolution network (RGCN) (Schlichtkrull et al,
2018) but other relational GNN models can also be used (see, e.g., (Vashishth et al,
2020)). Whereas GCN projects all neighbors of a node using the same weight ma-
trix (see Section 15.2.1), RGCN applies relation-specific projections. Let R̂ be a a
set of relations that includes every relation in R = {r1, . . . ,rm} as well as a self-loop
relation r0 where each node has the relation r0 only with itself. As is common in
directed graphs (see, e.g., (Marcheggiani and Titov, 2017)) and specially for multi-
relational graphs (see, e.g., (Kazemi and Poole, 2018)), for each relation r j ∈ R we
also add an auxiliary relation r−1

j to R̂ where vi has relation r−1
j with vk if and only

if vk has relation r j with vi. The l layer of an RGCN model can then be described as
follows:

Z(l) = σ
(
∑
r∈R̂

D(r)−1
A(r)Z(l−1)W (l,r)) (15.36)

where A(r) ∈Rn×n represents the adjacency matrix corresponding to relation r, D(r)

is the degree matrix of A(r) with D(r)
i,i representing the number of incoming relations

of type r for the i node, D(r)−1
is a normalization term7, W (l,r) is a relation-specific

weight matrix for layer l, Z(l−1) represents the node embeddings in the (l-1) layer,
and Z(l) represents the updated node embeddings in the l layer. If initial features
X are provided as input, Z(0) can be set to X . Otherwise, Z(0) can either be set as
1-hot encodings where Z

(0)
i is a vector whose elements are all zeros except in the

6 This, however, is not always true as one may break a fact such as (vi,LivedIn,v j) with a time
interval [2010,2015] (meaning from 2010 until 2015) into a fact (vi,StartedLivingIn,v j) with a
timestamp of 2010 and another fact (vi,EndedLivingIn,v j) with a timestamp of 2015.
7 One needs to handle the cases where D(r)

i,i = 0 to avoid numerical issues.

348 Seyed Mehran Kazemi

i position where it is 1, or it can be randomly initialized and then learned from the
data.

In (Wu et al, 2020b), a TKG is formulated as a DTDG consisting of a sequence
of snapshots [G(1),G(2), . . . ,G(τ)] of multi-relational graphs. Each G(t) contains the
same set of entities V and relations R (corresponding to all the entities and relations
in the TKG) and contains the triples (vi,r j,vk, t) from the TKG that occurred at time
t. Then, RGCN-BiGRU and RGCN-Transformer models are developed (see Sec-
tion 15.4.2) that operate on the DTDG formulation of the TKG where the RGCN
model provides the node embeddings at every timestamp and the BiGRU and Trans-
former models aggregate the temporal information. Note that in each G(t) there may
be several nodes with no incoming and outgoing edges (and also no features since
TKGs typically do not have node features). RGCN does not learn a representation
for these nodes as there exists no information about them in G(t). To handle this,
special BiGRU and Transformer models are developed in (Wu et al, 2020b) that
handle missing values.

The RGCN-BiGRU and RGCN-Transformer models provide node embeddings
H(t) at any timestamp t. To answer a query such as (vi,r j,?, t), one can compute the
plausibility score of (vi,r j,vk, t) for every vk ∈V and select the entity that achieves
the highest score. A common approach to find the score for an entity vk for the above
query is to use the TransE decoder Bordes et al (2013) according to which the score
is −||H(t)

i +R j−H
(t)
k || where H

(t)
i and H

(t)
k correspond to the node embeddings

for vi and vk at time t (provided by the RGCN) and R is a matrix with learnable
parameters which has m = |R| rows each corresponding to an embedding for a re-
lation. TransE and its extensions are known to make unrealistic assumptions about
the types and properties of the relations Kazemi and Poole (2018), so, alternatively,
one may use other decoders that has been developed within the knowledge graph
embedding community (e.g., the models in (Kazemi and Poole, 2018; Trouillon
et al, 2016)).

When the timestamps in the TKG are discrete and there are not many of them,
one can use a similar approach as above to answer queries of the form (vi,r j,vk,?)
through finding the score for every t in the set of discrete timestamps and selecting
the one that achieves the highest score (see, e.g., (Leblay and Chekol, 2018)). Time
prediction for TKGs has been also studied in an extrapolation setting where the goal
is to predict when an event is going to happen in the future. This has been mainly
done using temporal point processes as decoders (see, e.g., (Trivedi et al, 2017,
2019)).

15.6 Summary

Graph-based techniques are emerging as leading approaches in the industry for ap-
plication domains with relational information. Among these techniques, graph neu-
ral networks (GNNs) are currently among the top-performing approaches. While
GNNs and other graph-based techniques were initially developed mainly for static

15 Dynamic Graph Neural Networks 349

graphs, extending these approaches to dynamic graphs has been the subject of sev-
eral recent studies and has found success in several important areas. In this chapter,
we reviewed the techniques for applying GNNs to dynamic graphs. We also re-
viewed some of the applications of dynamic GNNs in different domains including
computer vision, traffic forecasting, and knowledge graphs.

Editor’s Notes: In the universe, the only thing unchanged is “change” it-
self, so do networks. Hence extending techniques for simple, static net-
works to those for dynamic ones is inevitably the trend while this domain
is progressing. While there is a fast-increasing research body for dynamic
networks in recent years, much more efforts are needed in order for sub-
stantial progress in the key issues such as scalability and validity discussed
in Chapter 5 and other chapters. Extensions of the techniques in Chapters
9-18 are also needed. Many real-world applications radically speaking, re-
quires to consider dynamic network, such as recommender system (Chapter
19) and urban intelligence (Chapter 27). So they could also benefit from the
technique advancement toward dynamic networks.

Chapter 16
Heterogeneous Graph Neural Networks

Chuan Shi

Abstract Heterogeneous graphs (HGs) also called heterogeneous information net-
works (HINs) have become ubiquitous in real-world scenarios. Recently, employing
graph neural networks (GNNs) to heterogeneous graphs, known as heterogeneous
graph neural networks (HGNNs) which aim to learn embedding in low-dimensional
space while preserving heterogeneous structure and semantic for downstream tasks,
has drawn considerable attention. This chapter will first give a brief review of the
recent development on HG embedding, then introduce typical methods from the
perspective of shallow and deep models, especially HGNNs. Finally, it will point
out future research directions for HGNNs.

16.1 Introduction to HGNNs

Heterogeneous graphs (HGs) (Sun and Han, 2013), which compose different types
of entities and relations, also known as heterogeneous information networks (HINs),
are ubiquitous in real-world scenarios, ranging from bibliographic networks, social
networks to recommender systems. For example, as shown in Fig. 16.1 (a), a biblio-
graphic network can be represented by a HG, which consists of four types of entities
(author, paper, venue, and term) and three types of relations (author-write-paper,
paper-contain-term and conference-publish-paper); and these basic relations can be
further derived for more complex semantics (e.g., author-write-paper-contain-item).
It has been well recognized that HG is a powerful model that embraces rich seman-
tic and structural information. Therefore, researches on HG have been experiencing
tremendous growth in data mining and machine learning, many of which have suc-
cessful applications such as recommendation (Shi et al, 2018a; Hu et al, 2018a), text

Chuan Shi
School of Computer Science, Beijing University of Posts and Telecommunications, e-mail:
shichuan@bupt.edu.cn

351
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_16

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:shichuan@bupt.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_16&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_16

352 Chuan Shi

analysis (Linmei et al, 2019; Hu et al, 2020a), and cybersecurity (Hu et al, 2019b;
Hou et al, 2017).

Due to the ubiquity of HGs, how to learn embedding of HGs is a key re-
search problem in various graph analysis applications, e.g., node/graph classifica-
tion (Dong et al, 2017; Fu et al, 2017), and node clustering (Li et al, 2019g). Tradi-
tionally, matrix factorization methods (Newman, 2006b) generate latent features in
HGs. However, the computational cost of decomposing a large-scale matrix is usu-
ally very expensive, and also suffers from its statistical performance drawback (Shi
et al, 2016; Cui et al, 2018). To address this challenge, heterogeneous graph embed-
ding, aiming to learn a function that maps input space into lower-dimensional space
while preserving heterogeneous structure and semantic, has drawn considerable at-
tention in recent years.

Although there have been ample studies of embedding technology on homoge-
neous graphs (Cui et al, 2018) which consist of only one type of nodes and edges,
these techniques cannot be directly applicable to HGs due to heterogeneity. Specif-
ically, (1) the structure in HGs is usually semantic dependent, e.g., meta-path struc-
ture (Dong et al, 2017) can be very different when considering different types of
relations; (2) different types of nodes and edges have different attributes located in
different feature spaces; (3) HGs are usually application dependent, which may need
sufficient domain knowledge for meta-path/meta-graph selection.

To tackle the above issues, various HG embedding methods have been proposed
(Chen et al, 2018b; Hu et al, 2019a; Dong et al, 2017; Fu et al, 2017; Wang et al,
2019m; Shi et al, 2018a; Wang et al, 2020n). From the technical perspective, we
divide the widely used models in HG embedding into two categories: shallow mod-
els and deep models. In summary, shallow models initialize the node embeddings
randomly, then learn the node embeddings through optimizing some well-designed
objective functions to preserve heterogeneous structures and semantics. Deep model
aims to use deep neural networks (DNNs) to learn embedding from node attributes
or interactions, where heterogeneous graph neural networks (HGNNs) stand out and
will be the focus of this chapter. And there have demonstrated the success of HG
embedding techniques deployed in real-world applications including recommender
systems (Shi et al, 2018a; Hu et al, 2018a; Wang et al, 2020n), malware detection
systems (Hou et al, 2017; Fan et al, 2018; Ye et al, 2019a), and healthcare systems
(Cao et al, 2020; Hosseini et al, 2018).

The remainder of this chapter is organized as follows. In Sect. 27.1, we first
introduce basic concepts in HGs, then discuss unique challenges of HG embedding
due to the heterogeneity and give a brief review of the recent development on HG
embedding. In Sect. 24.2 and 20.3, we categorize and introduce HG embedding in
details according to the shallow and deep models. In Sect. 20.4, we further review
pros and cons of the models introduced above. Finally, Sect. 20.5 forecasts the future
research directions for HGNNs.

16 Heterogeneous Graph Neural Networks 353

Fig. 16.1: An illustrative example of a heterogeneous graph (Wang et al, 2020l).
(a) A bibliographic graph including four types of entities (i.e., author, paper, venue
and term) and three types of relations (i.e., publish, contain and write). (b) Network
schema of the bibliographic graph. (c) Two meta-paths (i.e., author-paper-author
and paper-term-paper). (d) A meta-graph used in the bibliographic graph.

16.1.1 Basic Concepts of Heterogeneous Graphs

In this section, we will first formally introduce basic concepts in HGs and illustrate
the symbols used throughout this chapter. HG is a graph consisting of different types
of entities (i.e., nodes) and/or different types of relations (i.e., edges), which can be
defined as follows.

Definition 16.1. Heterogeneous Graph (or Heterogeneous Information Network)
(Sun and Han, 2013). A HG is defined as a graph G = {V ,E }, in which V and
E represent the node set and the edge set, respectively. Each node v ∈ V and
each edge e ∈ E are associated with their mapping function φ(v) : V → A and
ϕ(e) : E →R. A and R denote the node type set and edge type set, respectively,
where |A |+ |R|> 2. The network schema for G is defined as S = (A ,R), which
can be seen as a meta template of a heterogeneous graph G = {V ,E } with the
node type mapping function φ(v) : V → A and the edge type mapping function
ϕ(e) : E → R. The network schema is a graph defined over node types A , with
edges as relation types from R.

HG not only provides graph structure of data association, but also portrays
higher-level semantics. An example of HG is illustrated in Fig. 16.1 (a), which
consists of four node types (author, paper, venue, and term) and three edge types
(author-write-paper, paper-contain-term, and conference-publish-paper), and Fig.
16.1 (b) illustrates the network schema. To formulate semantics of higher-order re-
lationships among entities, meta-path (Sun et al, 2011) is further proposed whose
definition is given below.

Definition 16.2. Meta-path (Sun et al, 2011). A meta-path p is based on network

schema S , which is denoted as p = N1
R1−→ N2

R2−→ ·· · Rl−→ Nl+1 (simplified to

(a) An example of HIN (c) Meta-path

(b) Network Schema (d) Meta-graph

Author Paper Venue Term

Publish
Contain
Write APA APCPA

354 Chuan Shi

N1N2 · · ·Nl+1) with node types N1,N2, · · · ,Nl+1 ∈N and edge types R1,R2, · · ·Rl ∈
R.

Note that different meta-paths describe semantic relationships in different views.
For example, the meta-path APA indicates the co-author relationship and APCPA
represents the co-conference relation. Both of them can be used to formulate the
relatedness over authors. Although meta-path can be used to depict the relatedness
over entities, it fails to capture a more complex relationship, such as motifs (Milo
et al, 2002). To address this challenge, meta-graph (Huang et al, 2016b) is proposed
to use a directed acyclic graph of entity and relation types to capture more complex
relationships between entities, defined as follows.

Definition 16.3. Meta-graph (Huang et al, 2016b). A meta-graph T can be seen
as a directed acyclic graph (DAG) composed of multiple meta-paths with common
nodes. Formally, meta-graph is defined as T = (VT ,ET), where VT is a set of
nodes and ET is a set of edges. For any node v ∈ VT ,φ(v) ∈ A ; for any edge
e ∈ ET ,ϕ(e) ∈R.

An example meta-graph is shown in Fig. 16.1 (d), which can be regarded as
the combination of meta-path APA and APCPA, reflecting high-order similarity of
two nodes. Note that a meta-graph can be symmetric or asymmetric (Zhang et al,
2020g). To learn embeddings of HG, we formalize the problem of heterogeneous
graph embedding.

Definition 16.4. Heterogeneous Graph Embedding (Shi et al, 2016). Heteroge-
neous graph embedding aims to learn a function Φ : V →Rd that embeds the nodes
v ∈ V in HG into low-dimensional Euclidean space with d≪ |V |.

16.1.2 Challenges of HG Embedding

Different from homogeneous graph embedding (Cui et al, 2018), where the basic
problem is preserving structure and property in node embedding (Cui et al, 2018).
Due to the heterogeneity, HG embedding imposes more challenges, which are illus-
trated below.

Complex Structure (the complex HG structure caused by multiple types of
nodes and edges). In a homogeneous graph, the fundamental structure can be con-
sidered as first-order, second-order, and even higher-order structures (Tang et al,
2015b). All these structures are well defined and have good intuition. However, the
structure in HGs will dramatically change depending on the selected relations. Let’s
still take the academic graph in Fig. 16.1 (a) as an example, the neighbors of one
paper will be authors with the “write” relation; while with “contain” relation, the
neighbors become terms. Complicating things further, the combination of these re-
lations, which can be considered as higher-order structures in HGs, will result in
different and more complicated structures. Therefore, how to efficiently and effec-
tively preserve these complex structures is of great challenge in HG embedding,

16 Heterogeneous Graph Neural Networks 355

Fig. 16.2: Heterogeneous graph embedding tree classification diagram.

while current efforts have been made towards the meta-path structure (Dong et al,
2017) and meta-graph structure (Zhang et al, 2018b).

Heterogeneous Attributes (the fusion problem caused by the heterogeneity of
attributes). Since nodes and edges in a homogeneous graph have the same type, each
dimension of the node or edge attributes has the same meaning. In this situation,
node can directly fuse attributes of its neighbors. However, in HGs, the attributes
of different types of nodes and edges may have different meanings (Zhang et al,
2019b; Wang et al, 2019m). For example, the attributes of author can be research
fields, while paper may use keywords as attributes. Therefore, how to overcome
the heterogeneity of attributes and effectively fuse the attributes of neighbors poses
another challenge in HG embedding.

Application Dependent. HG is closely related to the real-world applications,
while many practical problems remain unsolved. For example, constructing an ap-
propriate HG may require sufficient domain knowledge in a real-world application.
Also, meta-path and/or meta-graph are widely used to capture the structure of HGs.
However, unlike homogeneous graph, where the structure (e.g., the first-order and
second-order structure) is well defined, meta-path selection may also need prior
knowledge. Furthermore, to better facilitate the real-world applications, we usu-
ally need to elaborately encode side information (e.g., node attributes) (Wang et al,
2019m; Zhang et al, 2019b) or more advanced domain knowledge (Shi et al, 2018a;
Chen and Sun, 2017) to HG embedding process.

16.1.3 Brief Overview of Current Development

Most of early works on graph data are based on high-dimensional sparse vectors
for matrix analysis. However, the sparsity of the graph in reality and its growing
scale have created serious challenges for such methods. A more effective way is
to map nodes to latent space and use low-dimensional vectors to represent them.
Therefore, they can be more flexibly applied to different data mining tasks, i.e.,
graph embedding.

There has been a lot of works dedicated to homogeneous graph embedding (Cui
et al, 2018). These works are mainly based on deep models and combined with graph
properties to learn embeddings of nodes or edges. For instance, DeepWalk (Perozzi

356 Chuan Shi

et al, 2014) combines random walk and skip-gram model; LINE (Tang et al, 2015b)
utilizes first-order and second-order similarity to learn distinguished node embed-
ding for large-scale graphs; SDNE (Wang et al, 2016) uses deep auto-encoders to
extract non-linear characteristics of graph structure. In addition to structural infor-
mation, many methods further use the content of nodes or other auxiliary informa-
tion (such as text, images, and tags) to learn more accurate and meaningful node
embeddings. Some survey papers comprehensively summarize the work in this area
(Cui et al, 2018; Hamilton et al, 2017c).

Due to the heterogeneity, embedding techniques for homogeneous graphs can-
not be directly applicable to HGs. Therefore, researchers have begun to explore
HG embedding methods, which emerge in recent years but develop rapidly. From
the technical perspective, we summarize the widely used techniques (or models) in
HG embedding, which can be generally divided into two categories: shallow mod-
els and deep models, as shown in Fig. 16.2. Specifically, shallows model mainly
rely on meta-paths to simplify the complex structure of HGs, which can be classi-
fied into decomposition-based and random walk-based. Decomposition-based tech-
niques Chen et al (2018b); Xu et al (2017b); Shi et al (2018b,c); Matsuno and Mu-
rata (2018); Tang et al (2015a); Gui et al (2016) decompose complex heteroge-
neous structure into several simpler homogeneous structures; while random walk-
based (Dong et al, 2017; Hussein et al, 2018) methods utilize meta-path-guided ran-
dom walk to preserve specific first-order and high-order structures. In order to take
full advantage of heterogeneous structures and attributes, deep models are three-
fold: message passing-based (HGNNs), encoder-decoder-based and adversarial-
based methods. Message passing mechanism, i.e., the core idea of graph neural net-
works (GNNs), seamlessly integrates structure and attribute information. HGNNs
inherit the message passing mechanism and design suitable aggregation functions
to capture rich semantic in HGs (Wang et al, 2019m; Fu et al, 2020; Hong et al,
2020b; Zhang et al, 2019b; Cen et al, 2019; Zhao et al, 2020b; Zhu et al, 2019d;
Schlichtkrull et al, 2018). The remaining encoder-decoder-based (Tu et al, 2018;
Chang et al, 2015; Zhang et al, 2019c; Chen and Sun, 2017) and adversarial-based
(Hu et al, 2018a; Zhao et al, 2020c) techniques employ encoder-decoder framework
or adversarial learning to preserve complex attribute and structural information of
HGs. In the following sections, we will introduce representative works of their sub-
categories in detail and compare their pros and cons.

16.2 Shallow Models

Early HG embedding methods focus on employing shallow models. They first ini-
tialize node embeddings randomly, then learn node embeddings through optimizing
some well-designed objective functions. We divide the shallow model into two cat-
egories: decomposition-based and random walk-based.

16 Heterogeneous Graph Neural Networks 357

Fig. 16.3: An illustrative example of the proposed meta-path-guided random walk
in HERec (Shi et al, 2018a). HERec first perform random walks guided by some
selected meta-paths, then filter node sequences not with the user type or item type.

16.2.1 Decomposition-based Methods

To cope with the challenges brought by heterogeneity, decomposition-based tech-
niques (Chen et al, 2018b; Xu et al, 2017b; Shi et al, 2018b,c; Matsuno and Murata,
2018; Tang et al, 2015a; Gui et al, 2016) decompose HG into several simpler sub-
graphs and preserve the proximity of nodes in each sub-graph, finally merge the
information to achieve the effect of divide and conquer.

Specifically, HERec (Shi et al, 2018a) aims to learn embeddings of users and
items under different meta-paths and fuses them for recommendation. It first finds
the co-occurrence of users and items based on the meta-path-guided random walks
on user-item HG, as shown in Fig. 16.3. Then it uses node2vec (Grover and
Leskovec, 2016) to learn preliminary embeddings from the co-occurrence sequences
of users and items. Because embeddings under different meta-paths contain differ-
ent semantic information, for better recommendation performance, HERec designs
a fusion function to unify the multiple embeddings:

g(hp
u) =

1
|P|

P

∑
p=1

(W php
u +bp), (16.1)

where hp
u is the embedding of user node u in meta-path p. P denotes the set of meta-

paths. The fusion of item embeddings is similar to users. Finally, a prediction layer
is used to predict the items that users prefer. HERec optimizes the graph embedding
and recommendation objective jointly.

As another example, EOE is proposed to learn embeddings for coupled HGs,
which consist of two different but related subgraphs. It divides the edges in HG
into intra-graph edges and inter-graph edges. Intra-graph edge connects two nodes
with the same type, and inter-graph edge connects two nodes with different types.
To capture the heterogeneity in inter-graph edge, EOE (Xu et al, 2017b) uses the
relation-specific matrix Mr to calculate the similarity between two nodes, which can
be formulated as:

358 Chuan Shi

Fig. 16.4 The architecture
of metapath2vec (Dong et al,
2017). Node sequence is
generated under the meta-
path PAP. It projects the
embedding of the center node,
e.g., p2 into latent space and
maximizes the probability of
its meta-path-based context
nodes, e.g., p1, p3, a1 and a2,
appearing.

Sr(vi,v j) =
1

1+ exp
{
−h⊤i Mrh j

} . (16.2)

Similarly, PME (Chen et al, 2018b) decomposes HG into some bipartite graphs
according to the types of edges and projects each bipartite graph into a relation-
specific semantic space. PTE (Tang et al, 2015a) divides the documents into word-
word graph, word-document graph and word-label graph. Then it uses LINE (Tang
et al, 2015b) to learn the shared node embeddings for each sub-graph. HEBE (Gui
et al, 2016) samples a series of subgraphs from a HG and preserves the proximity
between the center node and its subgraph.

The above-mentioned two-step framework of decomposition and fusion, as a
transition product from homogeneous networks to HGs, is often used in the early
attempt of HG embedding. Later, researchers gradually realized that extracting ho-
mogeneous graphs from HGs would irreversibly lose information carried by hetero-
geneous neighbors, and began to explore HG embedding methods that truly adapted
to heterogeneous structure.

16.2.2 Random Walk-based Methods

Random walk, which generates some node sequences in a graph, is often used to
describe the reachability between nodes. Therefore, it is widely used in graph rep-
resentation learning to sample neighbor relationships of nodes and capture local
structure in the graph (Grover and Leskovec, 2016). In homogeneous graphs, the
node type is single and random walk can walk along any path. While in HGs, due to
the type constraints of nodes and edges, meta-path-guided random walk is usually
adopted, so that the generated node sequence contains not only the structural infor-
mation, but also the semantic information. Through preserving the node sequence
structure, node embedding can preserve both first-order and high-order proximity
(Dong et al, 2017). A representative work is metapath2vec (Dong et al, 2017), which
uses meta-path-guided random walk to capture semantic information of two nodes,
e.g., the co-author relationship in academic graph as shown in Fig. 16.4.

Metapath2vec (Dong et al, 2017) mainly uses meta-path-guided random walk to
generate heterogeneous node sequences with rich semantic, then it designs a het-

	𝑝!

	𝑎!

	𝑝"

	𝑎"

	𝑝#

Input

CenterNode

Project Output

Prob. that 	𝑝! appears

Prob. that 	𝑝" appears

16 Heterogeneous Graph Neural Networks 359

erogeneous skip-gram technique to preserve the proximity between node v and its
context nodes, i.e., neighbors in the random walk sequences:

argmax
θ

∑
v∈V

∑
t∈N

∑
ct∈Ct (v)

log p(ct |v;θ), (16.3)

where Ct(v) represents the context nodes of node v with type t. p(ct |v;θ) denotes
the heterogeneous similarity function on node v and its context neighbors ct :

p(ct |v;θ) =
ehct ·hv

∑ṽ∈V ehṽ·hv
. (16.4)

From the diagram shown in Fig. 16.4, Eq. (16.4) needs to calculate similarity
between center node and its neighbors. Then Mikolov et al (2013b) introduces a
negative sampling strategy to reduce the computation. Hence, Eq. (16.4) can be
approximated as:

logσ(hct ·hv)+
Q

∑
q=1

Eṽq∼P(ṽ) [logσ (−hṽq ·hv)] , (16.5)

where σ(·) is the sigmoid function, and P(ṽ) is the distribution in which the negative
node ṽq is sampled for Q times. Through the strategy of negative sampling, the
time complexity is greatly reduced. However, when choosing the negative samples,
metapath2vec does not consider the types of nodes, i.e., different types of nodes
are from the same distribution P(ṽ). Thus it further designs metapath2vec++, which
samples negative nodes of the same type as the central node, i.e., ṽq

t ∼ P(ṽt). The
formulation can be rewritten as:

logσ(hct ·hv)+
Q

∑
q=1

Eṽq
t ∼P(ṽt)

[
logσ

(
−hṽq

t
·hv

)]
. (16.6)

After minimizing the objective function, metapath2vec and metapath2vec++ can
capture both structural information and semantic information effectively and effi-
ciently.

Based on metapath2vec, a series of variants have been proposed. Spacey (He
et al, 2019) designs a heterogeneous spacey random walk to unify different meta-
paths with a second-order hyper-matrix to control transition probability among dif-
ferent node types. JUST (Hussein et al, 2018) proposes a random walk method with
Jump and Stay strategies, which can flexibly choose to change or maintain the type
of the next node in the random walk without meta-path. BHIN2vec (Lee et al, 2019e)
proposes an extended skip-gram technique to balance the various types of relations.
It treats heterogeneous graph embedding as multiple relation-based tasks, and bal-
ances the influence of different relations on node embeddings by adjusting the train-
ing ratio of different tasks. HHNE (Wang et al, 2019n) conducts meta-path-guided
random walk in hyperbolic space (Helgason, 1979), where the similarity between
nodes can be measured using hyperbolic distance. In this way, some properties of

360 Chuan Shi

HGs, e.g., hierarchical and power-law structure, can be naturally reflected in learned
node embeddings.

16.3 Deep Models

In recent years, deep neural networks (DNNs) have achieved great success in the
fields of computer vision and natural language processing. Some works have also
begun to use deep models to learn embedding from node attributes or interactions
among nodes in HGs. Compared with shallow models, deep models can better cap-
ture the non-linear relationship, which can be roughly divided into three categories:
message passing-based, encoder-decoder-based and adversarial-based.

16.3.1 Message Passing-based Methods (HGNNs)

Graph neural networks (GNNs) have emerged recently. Its core idea is the message
passing mechanism, which aggregates neighborhood information and transmits it as
messages to neighbor nodes. Different from GNNs that can directly fuse attributes
of neighbors to update node embeddings, due to different types of nodes and edges,
HGNNs need to overcome the heterogeneity of attributes and design effective fusion
methods to utilize neighborhood information. Therefore, the key component is to
design a suitable aggregation function, which can capture semantic and structural
information of HGs (Wang et al, 2019m; Fu et al, 2020; Hong et al, 2020b; Zhang
et al, 2019b; Cen et al, 2019; Zhao et al, 2020b; Zhu et al, 2019d; Schlichtkrull et al,
2018).

Unsupervised HGNNs. Unsupervised HGNNs aim to learn node embeddings
with good generalization. To this end, they always utilize interactions among dif-
ferent types of attributes to capture the potential commonalities. HetGNN (Zhang
et al, 2019b) is the representative work of unsupervised HGNNs. It consists of three
parts: content aggregation, neighbor aggregation, and type aggregation. Content ag-
gregation is designed to learn fused embeddings from different node contents, such
as images, text, or attributes:

f1(v) =
∑i∈Cv [

−−−→
LST M{FC (hi)}⊕

←−−−
LST M{FC (hi)}]

|Cv|
, (16.7)

where Cv is the type of node v’s attributes. hi is the i-th attributes of node v. A bi-
directional Long Short-Term Memory (Bi-LSTM) (Huang et al, 2015) is used to fuse
the embeddings learned by multiple attribute encoder FC . Neighbor aggregation
aims to aggregate the nodes with same type by using a Bi-LSTM to capture the
position information:

16 Heterogeneous Graph Neural Networks 361

f t
2(v) =

∑v′∈Nt (v)
[
−−−→
LST M{ f1(v

′
)}⊕←−−−LST M{ f1(v

′
)}]

|Nt(v)|
, (16.8)

where Nt(v) is the first-order neighbors of node v with type t. Type aggregation uses
an attention mechanism to mix the embeddings of different types and produces the
final node embeddings.

hv = α
v,v f1(v)+ ∑

t∈Ov

α
v,t f t

2(v). (16.9)

where hv is the final embedding of node v, and Ov denotes the set of node types. Fi-
nally, a heterogeneous skip-gram loss is used as the unsupervised graph context loss
to update node embeddings. Through these three aggregation methods, HetGNN
can preserve the heterogeneity of both graph structures and node attributes.

Other unsupervised methods capture either heterogeneity of node attributes or
heterogeneity of graph structures. HNE (Chang et al, 2015) is proposed to learn em-
beddings for the cross-model data in HGs, but it ignores the various types of edges.
SHNE (Zhang et al, 2019c) focuses on capturing semantic information of nodes by
designing a deep semantic encoder with gated recurrent units (GRU) (Chung et al,
2014). Although it uses heterogeneous skip-gram to preserve the heterogeneity of
graph, SHNE is designed specifically for text data. Cen proposes GATNE (Cen et al,
2019), which aims to learn node embeddings in multiplex graph, i.e., a heteroge-
neous graph with different types of edges. Compared with HetGNN, GATNE pays
more attention to distinguishing different edge relationships between node pairs.

Semi-supervised HGNNs. Different from unsupervised HGNNs, semi-supervised
HGNNs aim to learn task-specific node embeddings in an end-to-end manner. For
this reason, they prefer to use the attention mechanism to capture the most relevant
structural and attribute information to the task. Wang (Wang et al, 2019m) propose
heterogeneous graph attention network (HAN), which uses a hierarchical attention
mechanism to capture both node and semantic importance. The architecture of HAN
is shown in Fig. 16.5.

It consists of three parts: node-level attention, semantic-level attention, and pre-
diction. Node-level attention aims to utilize the self-attention mechanism (Vaswani
et al, 2017) to learn importances of neighbors in a certain meta-path:

α
m
i j =

exp(σ(aT
m · [h

′
i∥h

′
j]))

∑k∈N m
i

exp(σ(aT
m · [h

′
i∥h

′
k]))

, (16.10)

where N m
i is the neighbors of node vi in meta-path m, αm

i j is the weight of node v j
to node vi under meta-path m. The node-level aggregation is defined as:

hm
i = σ

 ∑

j∈N m
i

α
m
i j ·h j

 , (16.11)

362 Chuan Shi

Fig. 16.5: The architecture of HAN (Wang et al, 2019m). The whole model can
be divided into three parts: Node-Level Attention aims to learn the importance of
neighbors’ features. Semantic-Level Attention aims to learn the importance of dif-
ferent meta-paths. Prediction layer utilizes the labeled nodes to update node embed-
dings.

where hm
i denotes the learned embedding of node i based on meta-path m. Because

different meta-paths capture different semantic information of HG, a semantic-level
attention mechanism is designed to calculated the importance of meta-paths. Given
a set of meta-paths {m0,m1, · · · ,mP}, after feeding node features into node-level
attention, it has P semantic-specific node embeddings {Hm0 ,Hm1 , · · · ,HmP}. To ef-
fectively aggregate different semantic embeddings, HAN designs a semantic-level
attention mechanism:

wmi =
1
|V | ∑i∈V

qT · tanh(W ·hm
i +b), (16.12)

where W ∈ Rd′×d and b ∈ Rd′×1 denote the weight matrix and bias of the MLP,
respectively. q ∈Rd′×1 is the semantic-level attention vector. In order to prevent the
node embeddings from being too large, HAN uses the softmax function to normalize
wmi . Hence, the semantic-level aggregation is defined as:

H =
P

∑
i=1

βmi ·Hmi , (16.13)

where βmi denotes the normalized wmi , which represents the semantic importance.
H ∈ RN×d denotes the final node embeddings. Finally, a task-specific layer is used
to fine-tune node embeddings with a small number of labels and the embeddings H
can be used in downstream tasks, such as node clustering and link prediction. HAN
is the first to extend GNNs to the heterogeneous graph and design a hierarchical
attention mechanism, which can capture both structural and semantic information.

16 Heterogeneous Graph Neural Networks 363

Subsequently, a series of attention-based HGNNs was proposed (Fu et al, 2020;
Hong et al, 2020b; Hu et al, 2020e). MAGNN (Fu et al, 2020) designs intra-metapath
aggregation and inter-metapath aggregation. The former samples some meta-path
instances surrounding the target node and uses an attention layer to learn the impor-
tance of different instances, and the latter aims to learn the importance of different
meta-paths. HetSANN (Hong et al, 2020b) and HGT (Hu et al, 2020e) treat one
type of node as query to calculate the importance of other types of nodes around it,
through which the method can not only capture interactions among different types
of nodes, but also assign different weights to neighbors during aggregation.

In addition, there are some HGNNs that focus on other issues. NSHE (Zhao et al,
2020b) proposes to incorporate network schema, instead of meta-path, in aggregat-
ing neighborhood information. GTN (Yun et al, 2019) aims to automatically identify
the useful meta-paths and high-order edges in the process of learning node embed-
dings. RSHN (Zhu et al, 2019d) uses both original node graph and coarsened line
graph to design a relation-structure aware HGNN. RGCN (Schlichtkrull et al, 2018)
uses multiple weight matrices to project the node embeddings into different relation
spaces, thus capturing the heterogeneity of the graph.

Compared with shallow models, HGNNs have an obvious advantage that they
have the ability of inductive learning, i.e., learning embeddings for out-of-sample
nodes. Besides, HGNNs need smaller memory space because they only need to store
model parameters. These two reasons are important for the real-world applications.
However, they still suffer from the huge time costing in inferencing and retraining.

16.3.2 Encoder-decoder-based Methods

Encoder-decoder-based techniques aim to employ some neural networks as encoder
to learn embedding from node attributes and design a decoder to preserve some
properties of the graphs (Tu et al, 2018; Chang et al, 2015; Zhang et al, 2019c; Chen
and Sun, 2017; Zhang et al, 2018a; Park et al, 2019).

For example, DHNE (Tu et al, 2018) proposes hyper-path-based random walk to
preserve both structural information and indecomposability of hyper-graphs. Specif-
ically, it designs a novel deep model to produce a non-linear tuple-wise similarity
function while capturing the local and global structures of a given HG. As shown
in Fig. 16.6, taking a hyperedge with three nodes a,b and c as an example. The first
layer of DHNE is an autoencoder, which is used to learn latent embeddings and pre-
serve the second-order structures of graph (Tang et al, 2015b). The second layer is
a fully connected layer with embedding concatenated:

L = σ(Waha⊕Wbhb⊕Wchc), (16.14)

where L denotes the embedding of the hyperedge; ha,hb and hc ∈ Rd×1 are the
embeddings of node a, b and c learn by the autoencoder. Wa,Wb and Wc ∈Rd′×d are
the transformation matrices for different node types. Finally, the third layer is used

364 Chuan Shi

Fig. 16.6: The framework of DHNE (Tu et al, 2018). DHNE learns embeddings
for nodes in heterogeneous hypernetworks, which can simultaneously address inde-
composable hyperedges while preserving rich structural information.

to calculate the indecomposability of hyperedge:

S = σ(W ·L+b), (16.15)

where S denote the indecomposability of hyperedge; W ∈R1×3d′ and b∈R1×1 are
the weight matrix and bias, respectively. A higher value of S means these nodes
are from the existing hyperedges, otherwise it should be small.

Similarly, HNE (Chang et al, 2015) focuses on multi-modal heterogeneous graph.
It uses CNN and autoencoder to learn embedding from images and texts, respec-
tively. Then it uses the embedding to predict whether there is an edge between the
images and texts. Camel (Zhang et al, 2018a) uses GRU as an encoder to learn paper
embedding from the abstracts. A skip-gram objective function is used to preserve
the local structures of the graphs.

16.3.3 Adversarial-based Methods

Adversarial-based techniques utilize the game between generator and discriminator
to learn robust node embedding. In homogeneous graph, the adversarial-based tech-
niques only consider the structural information, for example, GraphGAN (Wang
et al, 2018a) uses Breadth First Search when generating virtual nodes. In a HG, the
discriminator and generator are designed to be relation-aware, which captures the
rich semantics on HGs. HeGAN (Hu et al, 2018a) is the first to use GAN in HG em-
bedding. It incorporates the multiple relations into the generator and discriminator,
so that the heterogeneity of a given graph can be considered.

As shown in Fig. 16.7 (c), HeGAN mainly consists of two competing players,
the discriminator and the generator. Given a node, the generator attempts to produce

16 Heterogeneous Graph Neural Networks 365

Fig. 16.7: Overview of HeGAN (Hu et al, 2018a). (a) A toy HG for bibliographic
data. (b) Comparison between HeGAN and previous works. (c) The framework of
HeGAN for adversarial learning on HGs.

fake samples associated with the given node to feed into the discriminator, whereas
the discriminator tries to improve its parameterization to separate the fake samples
from the real ones actually connected to the given node. The better trained discrimi-
nator would then force the generator to produce better fake samples, and the process
is repeated. During such iterations, both the generator and discriminator receive mu-
tual, positive reinforcement. While this setup may appear similar to previous efforts
(Cai et al, 2018c; Dai et al, 2018c; Pan et al, 2018) on GAN-based network embed-
ding, HeGAN employs two major novelties to address the challenges of adversarial
learning on HINs.

First, existing studies only leverage GAN to distinguish whether a node is real
or fake w.r.t. structural connections to a given node, without accounting for the het-
erogeneity in HINs. For example, given a paper p2, they treat nodes a2, a4 as real,
whereas a1, a3 are fake simply based on the topology of the HIN shown in Fig. 16.7
(a). However, a2 and a4 are connected to p2 for different reasons: a2 writes p2 and
a4 only views p2. Thus, they miss out on valuable semantics carried by HGs, un-
able to differentiate a2 and a4 even though they play distinct semantic roles. Given
a paper p2 as well as a relation, say, write/written, HeGAN introduces a relation-
aware discriminator to tell apart a2 and a4. Formally, relation-aware discriminator
C(ev | u,r;θC) evaluates the connectivity between the pair of nodes u and v w.r.t. a
relation r:

C(ev | u,r;θ
C) =

1
1+ exp(−eC⊤

u MC
r ev)

, (16.16)

where ev ∈ Rd×1 is the input embedding of the sample v, eu ∈ Rd×1 is the learnable
embedding of node u, and MC

r ∈ Rd×d is a learnable relation matrix for relation r.
Second, existing studies are limited in sample generation in both effectiveness

and efficiency. They typically model the distribution of nodes using some form of
softmax over all nodes in the original graph. In terms of effectiveness, their fake
samples are constrained to the nodes in the graph, whereas the most representative
fake samples may fall “in between” the existing nodes in the embedding space. For
example, given a paper p2, they can only choose fake samples from V , such as

366 Chuan Shi

a1 and a3. However, both may not be adequately similar to real samples such as
a2. Towards a better sample generation, we introduce a generalized generator that
can produce latent nodes such as a′ shown in Fig. 16.7 (c), where it is possible
that a′ /∈ V . In particular, the generalized generator leverage the following Gaussian
distribution:

N (eG⊤
u MG

r ,σ
2I), (16.17)

where eG
u ∈ Rd×1 and MG

r ∈ Rd×d denote the node embedding of u ∈ V and the
relation matrix of r ∈R for the generator.

Except for HeGAN, MV-ACM (Zhao et al, 2020c) uses GAN to generate the
complementary views by computing the similarity of nodes in different views. Over-
all, adversarial-based methods prefer to utilize the negative samples to enhance the
robustness of embeddings. But the choice of negative samples has a huge influence
on the performance, thus leading higher variances.

16.4 Review

Based on the above representative work of the shallow and deep models, it can be
found that the shallow models mainly focus on the structure of HGs, and rarely
use additional information such as attributes. One of the possible reasons is that
shallow models are hard to depict the relationship between additional and struc-
tural information. The learning ability of DNNs supports modeling of this complex
relationship. For example, message passing-based techniques are good at encod-
ing structures and attributes simultaneously, and integrate different semantic infor-
mation. Compared with message passing-based techniques, encoder-decoder-based
techniques are weak in fusing information due to the lack of messaging mechanism.
But they are more flexible to introduce different objective functions through differ-
ent decoders. Adversarial-based methods prefer to utilize the negative samples to
enhance the robustness of embeddings. But the choice of negative samples has a
huge influence on the performance, thus leading higher variances (Hu et al, 2019a).

However, shallow and deep models each have their own pros and cons. Shallow
models lack non-linear representation capability, but are efficient and easy to par-
allelize. Specially, the complexity of random walk technique consists of two parts:
random walk and skip-gram, both of which are linear with the number of nodes. De-
composition technique needs to divide HGs into sub-graphs according to the type
of edges, so the complexity is linear with the number of edges, which is higher
than random walk. Deep models have stronger representation capability, but they
are easier to fit noise and have higher time and space complexity. Additionally, the
cumbersome hyperparameter adjustment of deep models is also criticized. But with
the popularity of deep learning, deep models, especially HGNNs, have become the
main research direction in HG embedding.

16 Heterogeneous Graph Neural Networks 367

16.5 Future Directions

HGNNs have made great progress in recent years, which clearly shows that it is a
powerful and promising graph analysis paradigm. In this section, we discuss addi-
tional issues/challenges and explore a series of possible future research directions.

16.5.1 Structures and Properties Preservation

The basic success of HGNNs builds on the HG structure preservation. This also
motivates many HGNNs to exploit different HG structures, where the most typical
one is meta-path (Dong et al, 2017; Shi et al, 2016). Following this line, meta-graph
structure is naturally considered (Zhang et al, 2018b). However, HG is far more than
these structures. Selecting the most appropriate meta-path is still very challenging in
the real world. An improper meta-path will fundamentally hinder the performance
of HGNNs. Whether we can explore other techniques, e.g., motif (Zhao et al, 2019a;
Huang et al, 2016b) or network schema (Zhao et al, 2020b) to capture HG structure
is worth pursuing. Moreover, if we rethink the goal of traditional graph embedding,
i.e., replacing structure information with the distance/similarity in a metric space, a
research direction to explore is whether we can design HGNNs which can naturally
learn such distance/similarity rather than using pre-defined meta-path/meta-graph.

As mentioned before, many current HGNNs mainly take the structures into ac-
count. However, some properties, which usually provide additional useful infor-
mation to model HGs, have not been fully considered. One typical property is the
dynamics of HG, i.e., a real-world HG always evolves over time. Despite that the
incremental learning on dynamic HG is proposed (Wang et al, 2020m), dynamic
heterogeneous graph embedding is still facing big challenges. For example, Bian
et al (2019) is only proposed with a shallow model, which greatly limits its embed-
ding ability. How can we learn dynamic heterogeneous graph embedding in HGNNs
framework is worth pursuing. The other property is the uncertainty of HG, i.e., the
generation of HG is usually multi-faceted and the node in a HG contains different
semantics. Traditionally, learning a vector embedding usually cannot well capture
such uncertainty. Gaussian distribution may innately represent the uncertainty prop-
erty (Kipf and Welling, 2016; Zhu et al, 2018), which is largely ignored by current
HGNNs. This suggests a huge potential direction for improving HGNNs.

16.5.2 Deeper Exploration

We have witnessed the great success and large impact of GNNs, where most of the
existing GNNs are proposed for homogeneous graph (Kipf and Welling, 2017b;
Veličković et al, 2018). Recently, HGNNs have attracted considerable attention
(Wang et al, 2019m; Zhang et al, 2019b; Fu et al, 2020; Cen et al, 2019).

368 Chuan Shi

One natural question may arise that what is the essential difference between
GNNs and HGNNs. More theoretical analysis on HGNNs is seriously lacking. For
example, it is well accepted that the GNNs suffer from over-smoothing problem (Li
et al, 2018b), so will HGNNs also have such a problem? If the answer is yes, what
factor causes the over-smoothing problem in HGNNs since they usually contain
multiple aggregation strategies (Wang et al, 2019m; Zhang et al, 2019b).

In addition to theoretical analysis, new technique design is also important. One
of the most important directions is the self-supervised learning. It uses the pre-
text tasks to train neural networks, thus reducing the dependence on manual la-
bels (Liu et al, 2020f). Considering the actual demand that label is insufficient,
self-supervised learning can greatly benefit the unsupervised and semi-supervised
learning, and has shown remarkable performance on homogeneous graph embed-
ding (Veličković et al, 2018; Sun et al, 2020c). Therefore, exploring self-supervised
learning on HGNNs is expected to further facilitate the development of this area.

Another important direction is the pre-training of HGNNs (Hu et al, 2020d; Qiu
et al, 2020a). Nowadays, HGNNs are designed independently, i.e., the proposed
method usually works well for certain tasks, but the transfer ability across differ-
ent tasks is ill-considered. When dealing with a new HG or task, we have to train
HGNNs from scratch, which is time-consuming and requires a large amount of la-
bels. In this situation, if there is a well pre-trained HGNN with strong generaliza-
tion that can be fine-tuned with few labels, the time and label consumption can be
reduced.

16.5.3 Reliability

Except for properties and techniques in HGs, we are also concerned about ethical
issues in HGNNs, such as fairness, robustness, and interpretability. Considering that
most methods are black boxes, making HGNNa reliable is an important future work.

Fairness. The embeddings learned by methods are sometimes highly related to
certain attributes, e.g., age or gender, which may amplify societal stereotypes in the
prediction results (Du et al, 2020). Therefore, learning fair or de-biased embeddings
is an important research direction. There are some researches on the fairness of
homogeneous graph embedding (Bose and Hamilton, 2019; Rahman et al, 2019).
However, the fairness of HGNNs is still an unsolved problem, which is an important
research direction in the future.

Robustness. Also, the robustness of HGNNs, especially the adversarial attack-
ing, is always an important problem (Madry et al, 2017). Since many real-world
applications are built based on HGs, the robustness of HGNNs becomes an urgent
yet unsolved problem. What is the weakness of HGNNs and how to enhance it to
improve the robustness need to be further studied.

Interpretability. Moreover, in some risk-aware scenarios, e.g., fraud detection
(Hu et al, 2019b) and bio-medicine (Cao et al, 2020), the explanation of mod-
els or embeddings is important. A significant advantage of HG is that it contains

16 Heterogeneous Graph Neural Networks 369

rich semantics, which may provide eminent insight to promote the explanation of
HGNNs. Besides, the emerging disentangled learning (Siddharth et al, 2017; Ma
et al, 2019c), which divides the embedding into different latent spaces to improve
the interpretability, can also be considered.

16.5.4 Applications

Many HG-based applications have stepped into the era of graph embedding. There
have demonstrated the strong performance of HGNNs on E-commerce and cyber-
security. Exploring more capacity of HGNNs on other areas holds great potential in
the future. For example, in software engineering area, there are complex relations
among test sample, requisition form, and problem form, which can be naturally
modeled as HGs. Therefore, HGNNs are expected to open up broad prospects for
these new areas and become a promising analytical tool. Another area is the bio-
logical system, which can also be naturally modeled as a HG. A typical biological
system contains many types of objects, e.g., Gene Expression, Chemical, Pheno-
type, and Microbe. There are also multiple relations between Gene Expression and
Phenotype (Tsuyuzaki and Nikaido, 2017). HG structure has been applied to bio-
logical system as an analytical tool, implying that HGNNs are expected to provide
more promising results.

In addition, since the complexity of HGNNs are relatively large and the tech-
niques are difficult to parallelize, it is difficult to apply the existing HGNNs to
large-scale industrial scenarios. For example, the number of nodes in E-commerce
recommendation may reach one billion (Zhao et al, 2019b). Therefore, successful
technique deployment in various applications while resolving the scalability and
efficiency challenges will be very promising.

Editor’s Notes: The concept of the heterogeneous graph is essentially orig-
inated from the data mining domain. Although heterogeneous graphs can
usually be formulated as attributed graphs (Chapter 4), the research fo-
cus of the former is typically the frequent combinatorial patterns of node
types in a subgraph (usually a path). Heterogeneous graphs represent a wide
range of real-world applications which usually consist of multiple, hetero-
geneous data sources. For example, in recommender systems introduced
in Chapter 19, we have both the “user” node and “item” node as well as
higher-order patterns formed by multi-node types. Similarly, molecules and
proteins as well as many networks in Natural Language Processing and Pro-
gram Analysis can also be considered as heterogeneous graphs (see Chap-
ters 21,22,24,25).

Chapter 17
Graph Neural Networks: AutoML

Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

Abstract Graph neural networks (GNNs) are efficient deep learning tools to analyze
networked data. Being widely applied in graph analysis tasks, the rapid evolution of
GNNs has led to a growing number of novel architectures. In practice, both neural
architecture construction and training hyperparameter tuning are crucial to the node
representation learning and the final model performance. However, as the graph data
characteristics vary significantly in the real-world systems, given a specific scenario,
rich human expertise and tremendous laborious trials are required to identify a suit-
able GNN architecture and training hyperparameters. Recently, automated machine
learning (AutoML) has shown its potential in finding the optimal solutions automat-
ically for machine learning applications. While releasing the burden of the manual
tuning process, AutoML could guarantee access of the optimal solution without ex-
tensive expert experience. Motivated from the previous successes of AutoML, there
have been some preliminary automated GNN (AutoGNN) frameworks developed
to tackle the problems of GNN neural architecture search (GNN-NAS) and train-
ing hyperparameter tuning. This chapter presents a comprehensive and up-to-date
review of AutoGNN in terms of two perspectives, namely search space and search
algorithm. Specifically, we mainly focus on the GNN-NAS problem and present the

Kaixiong Zhou
Department of Computer Science and Engineering, Texas A&M University, e-mail: zkxiong@
tamu.edu

Zirui Liu
Department of Computer Science and Engineering, Texas A&M University, e-mail:
tradigrada@tamu.edu

Keyu Duan
Department of Computer Science and Engineering, Texas A&M University, e-mail: k.duan@
tamu.edu

Xia Hu
Department of Computer Science and Engineering, Texas A&M University, e-mail: hu@cse.
tamu.edu

371
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_17

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:zkxiong@tamu.edu
mailto:zkxiong@tamu.edu
mailto:tradigrada@tamu.edu
mailto:k.duan@tamu.edu
mailto:k.duan@tamu.edu
mailto:hu@cse.tamu.edu
mailto:hu@cse.tamu.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_17&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_17

372 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

state-of-the-art techniques in these two perspectives. We further discuss the open
problems related to the existing methods for future research.

17.1 Background

Graph neural networks (GNNs) have made substantial progress in integrating deep
learning approaches to analyze graph-structured data collected from various do-
mains, such as social networks (Ying et al, 2018b; Huang et al, 2019d; Monti et al,
2017; He et al, 2020), academic networks (Yang et al, 2016b; Kipf and Welling,
2017b; Gao et al, 2018a), and biochemical modular graphs (Zitnik and Leskovec,
2017; Aynaz Taheri, 2018; Gilmer et al, 2017; Jiang and Balaprakash, 2020). Fol-
lowing the common message passing strategy, GNNs apply spatial graph convolu-
tional layer to learn a node’s embedding representation via aggregating the repre-
sentations of its neighbors and combining them to the node itself. A GNN archi-
tecture is then constructed by the stacking of multiple such layers and their inter-
layer skip connections, where the elementary operations of a layer (e.g., aggrega-
tion & combination functions) and the concrete inter-layer connections are specified
specifically in each design. To adapt to different real-world applications, a variety of
GNN architectures have been explored, including GCN (Kipf and Welling, 2017b),
GraphSAGE (Hamilton et al, 2017b), GAT (Veličković et al, 2018), SGC (Wu et al,
2019a), JKNet (Xu et al, 2018a), and GCNII (Chen et al, 2020l). They vary in how
to aggregate the neighborhood information (e.g., mean aggregation in GCN versus
neighbor attention learning in GAT) and the choices of skip connections (e.g., none
connection in GCN versus initial connection in GCNII).

Despite the significant success of GNNs, their empirical implementations are
usually accompanied with careful architecture engineering and training hyperpa-
rameter tuning, aiming to adapt to the different types of graph-structured data.
Based on the researcher’s prior knowledge and trial-and-error tuning processes, a
GNN architecture is instantiated from its model space specifically and evaluated in
each graph analysis task. For example, considering the underlying model Graph-
SAGE (Hamilton et al, 2017b), the various-size architectures determined by the
different hidden units are applied respectively for citation networks and protein-
protein interaction graphs. Furthermore, the optimal skip connection mechanisms
in JKNet architectures (Xu et al, 2018a) vary with the real-world tasks. Except the
architecture engineering, the training hyperparameters play important roles in the
final model performance, including learning rate, weight decay, and epoch num-
bers. In the open repositories, their hyperparameters are manually manipulated to
get the desired model performances. The tedious selections of GNN architectures
and training hyperparameters not only burden data scientists, but also make it dif-
ficult for beginners to access the high-performance solutions quickly for their tasks
on hand.

Automated machine learning (AutoML) has emerged as a prevailing research to
liberate the community from the time-consuming manual tuning processes (Chen

17 Graph Neural Networks: AutoML 373

et al, 2021). Given any task and based on the predefined search space, AutoML
aims at automatically optimizing the machine learning solutions (or denoted with
the term designs), including neural architecture search (NAS) and automated hyper-
parameter tuning (AutoHPT). While NAS targets the optimization of architecture-
related parameters (e.g., the layer number and hidden units), AutoHPT indicates the
selections of training-related parameters (e.g., the learning rate and weight decay).
They are the sub-fields of AutoML. It has been widely reported that the novel neu-
ral architectures discovered by NAS outperform the human-designed ones in many
machine learning applications, including image classification (Zoph and Le, 2016;
Zoph et al, 2018; Liu et al, 2017b; Pham et al, 2018; Jin et al, 2019a; Luo et al, 2018;
Liu et al, 2018b,c; Xie et al, 2019a; Kandasamy et al, 2018), semantic image seg-
mentation (Chenxi Liu, 2019), and image generation (Wang and Huan, 2019; Gong
et al, 2019). Dating back to 1900’s (Kohavi and John, 1995), it has been commonly
acknowledged that AutoHPT could improve over the default training setting (Feurer
and Hutter, 2019; Chen et al, 2021). Motivated by the previous successful applica-
tions of AutoML, there have been some recent efforts on conjoining the researches
of AutoML and GNNs (Gao et al, 2020b; Zhou et al, 2019a; You et al, 2020a;
Ding et al, 2020a; Zhao et al, 2020a,g; Nunes and Pappa, 2020; Li and King, 2020;
Shi et al, 2020; Jiang and Balaprakash, 2020). They generally define the automated
GNN (AutoGNN) as an optimization problem and formulate their own working
pipelines from three perspectives, as shown in Figure 17.1, the search space, search
algorithm, and performance estimation strategy. The search space consists of a large
volume of candidate designs, including GNN architectures and the training hyper-
parameters. On top of the search space, several heuristic search algorithms are pro-
posed to solve the NP-complete optimization problem by iteratively approximating
the well-performing designs, including random search (You et al, 2020a). The ob-
jective of performance estimation is to accurately estimate the task performance of
every candidate design explored at each step. Once the search progress terminates,
the best neural architecture accompanied with the suitable training hyperparameters
is returned to be evaluated on the downstream machine learning task.

In this chapter, we will organize the existing efforts and illustrate AutoGNN
framework with the following sections: notations, problem definition, and chal-
lenges of AutoGNN (in Sections 17.1.1, 17.1.2, and 17.1.3), search space (in Sec-
tion 17.2), and search algorithm (in Section 17.3). We then present the open prob-
lems for future research in Section 17.4. Specially, since the community’s interests
mainly focus on discovering the powerful GNN architecture, we pay more attentions
to GNN-NAS in this chapter.

17.1.1 Notations of AutoGNN

Following the previous expressions (You et al, 2020a), we use the term “design”
to refer to an available solution of the optimization problem in AutoGNN. A de-
sign consists of a concrete GNN architecture and a specific set of training hy-

374 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

Fig. 17.1: Illustration of a general framework for AutoGNN. The search space con-
sists of plenty of designs, including GNN architectures and the training hyperparam-
eters. At each step, the search algorithm samples a candidate design from the search
space and estimates its model performance on the downstream task. Once the search
progress terminates, the best design accompanied with the highest performance on
the validation set is returned and exploited for the real-world system.

perparameters. Specifically, the design is characterized by multiple dimensions,
including architecture dimensions (e.g., the layer number, skip connections, ag-
gregation, and combination functions) and hyperparameter dimensions (e.g., the
learning rate and weight decay). Along each design dimension, there is a se-
ries of different elementary options provided to support the automated architec-
ture engineering or training hyperparameter tuning. For example, we could have
candidates {SUM,MEAN,MAX} at the aggregation function dimension, and use
{1e-4,5e-4,1e-3,5e-3,0.01,0.1} at the learning rate dimension. Given the series
of candidate options along each dimension, the search space in AutoGNN is con-
structed by Cartesian product of all the design dimensions. A design is instanti-
ated by assigning concrete values to these dimensions, such as a GNN architecture
with the aggregation function of MEAN and learning rate of 1e-3. Note that GNN-
NAS and AutoHPT explore in the search spaces consisted of expansive GNN archi-
tectures and hyperparameter combinations, respectively; AutoGNN optimizes in a
more comprehensive search space containing both of them.

17 Graph Neural Networks: AutoML 375

17.1.2 Problem Definition of AutoGNN

Before diving into detailed techniques, we examine the essence of AutoGNN by
formally defining its optimization problem. To be specific, let F be the search space.
Let Dtrain and Dvalid be the training and validation sets, respectively. Let M be the
performance evaluation metric of a design in any given graph analysis task, e.g., F1
score or accuracy in the node classification task. The objective of AutoGNN is to
find the optimal design f ∗ ∈F in terms of M evaluated on the validation set Dvalid.
Formally, AutoGNN requires solving the following bi-level optimization problem:

f ∗ = argmax f∈F M(f (θ ∗);Dvalid),

s.t. θ
∗ = argminθ L(f (θ);Dtrain).

(17.1)

where θ ∗ denotes the optimized trainable weights of design f and L denotes the loss
function. For each design, AutoGNN will first optimize its associated weights θ by
minimizing the loss on the training set through gradient descent, and then evaluates
it on the validation set to decide whether this design is the optimal one. By solving
the above optimization problem, AutoGNN automates the architecture engineering
and training hyperparameter tuning procedure, and pushes GNN designs to exam-
ine a broad scope of candidate solutions. However, it is well known that such the
bi-level optimization problem is NP-complete (Chen et al, 2021), thereby it would
be extremely time-consuming for searching and evaluating the well-performing de-
signs on large graphs with massive nodes and edges. Fortunately, there have been
some heuristic search techniques proposed to locate the local optimal design (e.g.,
CNN or RNN architecture) as close as possible to the global one in the applications
of image classification and natural language processing, including reinforcement
learning (RL) (Zoph and Le, 2016; Zoph et al, 2018; Pham et al, 2018; Cai et al,
2018a; Baker et al, 2016), evolutionary methods (Liu et al, 2017b; Real et al, 2017;
Miikkulainen et al, 2019; Xie and Yuille, 2017; Real et al, 2019), and Bayesian op-
timization (Jin et al, 2019a). They iteratively explore the next design and update the
search algorithm based on the performance feedback of the new design, in order to
move toward the global optimal solution. Compared with the previous efforts, the
characteristics of AutoGNN problem could be viewed from two aspects: the search
space and search algorithms tailored to identify the optimal design of GNN. In the
following sections, we list the challenge details and the existing AutoGNN work.

17.1.3 Challenges in AutoGNN

The direct application of existing AutoML frameworks to automate GNN designs is
non-trivial, due to the two major challenges as follows.

First, the search space of AutoGNN is significantly different from the ones in the
AutoML literature. Taking NAS applied in discovering CNN architectures (Zoph
and Le, 2016) as an example, the search space of convolution operation is mainly

376 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

specified by the convolutional kernel size. In contrast, considering the message-
passing based graph convolution, the search space of spatial graph convolution is
constructed by multiple key architecture dimensions, including aggregation, com-
bination, and embedding activation functions. With the growing number of GNN
model variants, it is important to formulate a good search space being both ex-
pressive and compact. On the one hand, the search space should cover the impor-
tant architecture dimensions to subsume the existing human-designed architectures
and adapt to a series of diverse graph analysis tasks. On the other hand, the search
space should be compact by excluding the non-general dimensions and incorporat-
ing modest ranges of options along each dimension, in order to save the search time
cost.

Second, the search algorithm should be tailored to discover the well-performing
design efficiently based on the special search space in AutoGNN. The search con-
troller determines how to iteratively explore the search space and update the search
algorithm according to the performance feedbacks of sampled designs. A good con-
troller needs to balance the trade-off between exploration and exploitation during
the search progress, in order to avoid the premature sub-optimal region and quickly
discover the well-performing designs, respectively. However, the previous search
algorithms may be inefficient to the application of GNN-NAS. Specially, one of the
key properties in GNN architectures is that the model performance may vary sig-
nificantly with a slight modification along an architecture dimension. For example,
it has been theoretically and empirically demonstrated that the graph classification
accuracy could be improved by simply replacing the max pooling with summa-
tion in the aggregation function dimension of GNN (Xu et al, 2019d). The previ-
ous RL-based methods sample and evaluate the whole architecture at each search
step. It would be hard for the search algorithms to learn the following relationship
towards exploring better GNN: which part of the architecture dimension modifica-
tions improves or degrades the model performance. Another challenging problem is
the surge of new graph analysis tasks, which requires huge computation resources to
optimize GNN architectures. Instead of searching the optimal GNN from scratch, it
is crucial to transfer the well-performing architectures discovered before to the new
task to save the expensive computation cost.

17.2 Search Space

In this section, we summarize the search spaces in literature. As shown in Fig-
ure 17.2, the search spaces of designs in AutoGNN are differentiated according to
GNN architectures and training hyperparameters, whose details are listed as below.

17 Graph Neural Networks: AutoML 377

17.2.1 Architecture Search Space

Considering the existing AutoGNN frameworks (Gao et al, 2020b; Zhou et al,
2019a), GNN model is commonly implemented based on the spatial graph convolu-
tion mechanism. To be specific, the spatial graph convolution takes the input graph
as a computation graph and learns node embeddings by passing messages along
edges. A node embedding is updated recursively by aggregating the embedding rep-
resentations of its neighbors and combining them to the node itself. Formally, the
k-th spatial graph convolutional layer of GNN could be expressed as:

h(k)
i = AGGREGATE({a(k)i j W (k)x(k−1)

j : j ∈N (i)}),
x(k)i = ACT(COMBINE(W (k)x(k−1)

i ,h(k)
i)).

(17.2)

x(k)i denotes the embedding vector of node vi at the k-th layer. N (i) denotes the set
of neighbors adjacent to node vi. W (k) denotes the trainable weight matrix used to
project node embeddings. a(k)i j denotes the message-passing weight along edge con-
necting nodes vi and v j, which is determined by normalized graph adjacency ma-
trix or learned from attention mechanism. Function AGGREGATE, such as mean,
max, and sum pooling, is used to aggregate neighbor representations. Function
COMBINE is used to combine neighbor embedding h(k)

i as well as node embed-
ding x(k−1)

i from the last layer. Finally, function ACT (e.g., ReLU) is used to add
non-linearity to the embedding learning.

As shown in Figure 17.2, GNN architecture consists of several graph convolu-
tional layers defined in Eq. equation 17.2, and may incorporate skip connection be-
tween any two arbitrary layers similar to residual CNN (He et al, 2016a). Following
the previous definitions in NAS, we use the term “micro-architecture” to represent
a graph convolutional layer, including the specifications of hidden units and graph
convolutional functions; we use the term “macro-architecture” to represent network
topology, including the choices of layer depth, inter-layer skip connections, and
pre/post-processing layers. The architecture search space contains a large volume
of diverse GNN architectures, which could be categorized into the search spaces of
micro-architectures as well as macro-architectures.

17.2.1.1 Micro-architecture Search Space

According to Eq. equation 17.2 and as shown in Figure 17.2, the micro-architecture
of a graph convolutional layer is characterized by the following five architecture
dimensions:

• Hidden units: Trainable matrix W (k) ∈ Rd(k−1)×d(k) maps node embeddings to
a new space and learns to extract the informative features. d(k) is the number
of hidden units and plays key role in the task performance. In the GNN-NAS

378 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

Fig. 17.2: Illustration of a comprehensive search space, which consists of micro-
architecture, macro-architecture, and training hyperpameter search spaces. Each
space is characterized by multiple dimensions, such as hidden units, propagation
function, etc, in the micro-architecture search space. Each dimension provides a se-
ries of candidate options, and the search space is constructed by Cartesian product
of all its dimensions. A discrete point in the comprehensive search space represents
a specific design, which adopts one option at each dimension.

frameworks of GraphNAS (Gao et al, 2020b) and AGNN (Zhou et al, 2019a),
d(k) is usually selected from set {4,8,16,32,64,128,256}.

• Propagation function: It determines the message-passing weight a(k)i j to spec-
ify how node embeddings are propagated upon the input graph structure. In
a wide variety of GNN models (Kipf and Welling, 2017b; Wu et al, 2019a;
Hamilton et al, 2017b; Ding et al, 2020a), a(k)i j is defined by the correspond-

ing element from the normalized adjacency matrix: D̃−
1
2 ÃD̃−

1
2 or D̃−1Ã, where

Ã is the self-loop graph adjacency matrix and D̃ is its degree matrix, respec-
tively. Note that the real-world graph-structured data could be both complex
and noisy (Lee et al, 2019c), which leads to the inefficient neighbor aggregation.
GAT (Veličković et al, 2018) applies attention mechanism to compute a(k)i j to at-
tend on relevant neighbors. Based on the existing GNN-NAS frameworks (Gao
et al, 2020b; Zhou et al, 2019a; Ding et al, 2020a), we list the common choices
of propagation functions in Table 17.1.

• Aggregation function: Depending on the input graph structure, a proper ap-
plication of aggregation function is important to learn the informative neighbor
distribution (Xu et al, 2019d). For example, a mean pooling function takes the
average of neighbors, while a max pooling only preserves the significant one.
The aggregation function is usually selected from set {SUM,MEAN,MAX}.

• Combination function: It is used to combine neighbor embedding h(k)
i and

projected embedding W (k)x(k−1)
i of the node itself. Examples of combination

17 Graph Neural Networks: AutoML 379

function include sum and multiple layer perceptron (MLP), etc. While the sum
operation simply adds the two embeddings, MLP further applies linear mapping
based upon the summation or concatenation of these two embeddings.

• Activation function: The candidate activation function is usually selected from
{Sigmoid, Tanh, ReLU, Linear, Softplus, LeakyReLU,ReLU6, ELU}.

Given the above five architecture dimensions and their associated candidate op-
tions, the micro-architecture search space is constructed by their Cartesian product.
Each discrete point in the micro-architecture search space corresponds to a concrete
micro-architecture, e.g., a graph convolutional layer with {Hidden units: 64, Propa-
gation function: GAT, aggregation function: SUM, combination function: MLP, Ac-
tivation function: ReLU}. By providing the extensive candidate options along each
dimension, the micro-architecture search space covers most of layer implementa-
tions in the state-of-the-art models, such as Chebyshev (Defferrard et al, 2016),
GCN (Kipf and Welling, 2017b), GAT (Veličković et al, 2018), and LGCN (Gao
et al, 2018a).

Table 17.1: Propagation function candidates to compute weight a(k)i j if nodes vi and

v j are connected; otherwise a(k)i j = 0. Symbol || denotes the concatenation operation,

a, al and ar denote trainable vectors, and W (k)
G is a trainable matrix.

Propagation Types Propagation functions Equations

Normalized adjacency
Ã 1

D̃−
1
2 ÃD̃−

1
2 1√

|N (i)||N (j)|
D̃−1Ã 1

|N (i)|
GAT LeakyReLU(a⊤(W (k)x(k−1)

i ||W (k)x(k−1)
j))

Attention mechanism
SYM-GAT a(k)i j +a(k)ji based on GAT

COS a⊤(W (k)x(k−1)
i ||W (k)x(k−1)

j)

LINEAR tanh(a⊤l W (k)x(k−1)
i +a⊤r W (k)x(k−1)

i)

GERE-LINEAR W (k)
G tanh(W (k)x(k−1)

i +W (k)x(k−1)
i)

17.2.1.2 Macro-architecture Search Space

Besides the micro-architecture, another architectural level of GNN is its macro-
architecture as shown in Figure 17.2, i.e., the network topology. The macro-architecture
of GNN specifies the numbers of graph convolutional layers as well as pre/post-
processing layers, and the choices of skip connections (You et al, 2020a; Li et al,
2018b, 2019c). We list the details of these four architecture dimensions in the fol-
lowing.

380 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

• Graph convolutional layer depth: The direct stacking of multiple layers is
commonly adopted to improve the reception fields of nodes. Let lgc denote the
number of graph convolutional layers. lgc is usually selected from range [2,10].

• Pre-processing layer depth: In real-world applications, the length of nodes’
input features may be too large and leads to costly computation in hidden fea-
ture learning. The feature pre-processing is included in search space (You et al,
2020a) for the first time and conducted by MLP, whose layer number is denoted
as lpre. lpre is sampled from candidates {0,1,2,3}.

• Post-processing layer depth: Similarly, the post-processing layers of MLP are
applied to project hidden embeddings into task-specific space, e.g., the embed-
ding space with dimensions the same as class labels in the node classification
task. Let lpost denote the layer number with examples {0,1,2,3}.

• Skip connections: Following the residual deep CNNs in computer vision and
the recent deep GNNs, skip connections have been incorporated in the search
space of GNN-NAS frameworks (You et al, 2020a; Zhao et al, 2020g,a). To
be specific, at layer l, the embeddings of up to l− 1 previous layers could be
sampled and combined to the current layer’s output, leading to 2k−1 possible
decisions at layer k. For the prior node embeddings that are connected to the
current output, there have been a series of candidate options developed to com-
bine them, namely {SUM,CAT,MAX,LSTM}. Specially, option SUM, CAT
or MAX adds, concatenates or element-wisely max pools these connected em-
beddings. LSTM uses an attention mechanism to compute the importance score
of each layer, and then obtain the weighted average of the connected embed-
dings (Xu et al, 2018a).

The entire architecture space is constructed by Cartesian product of the micro and
macro-architecture search spaces, which is totally characterized by the nine archi-
tecture dimensions. It could be extremely huge and comprehensive to subsume the
recent residual GNN models, such as JKNet (Xu et al, 2018a) and deeperGCN (Li
et al, 2018b).

17.2.2 Training Hyperparameter Search Space

The training hyperparameters have significant impacts on the task performances of
GNN architectures, and have been explored in AutoGNN frameworks (You et al,
2020a; Shi et al, 2020). We summarize four important dimensions of training hy-
perparameters in the following and show them in Figure 17.2.

• Dropout rate: At the beginning of each graph convolutional layer or pre/post-
processing layer, a proper dropout rate is crucial to avoid the over-fitting issue.
The widely-used examples are {False,0.05,0.1,0.2,0.3,0.4,0.5,0.6}.

• Batch normalization: It is applied after graph convolutional layer or pre/post-
processing layer to normalize node embeddings of the whole graph or a batch (Zhou
et al, 2020d; Zhao and Akoglu, 2019; Ioffe and Szegedy, 2015). The candidate

17 Graph Neural Networks: AutoML 381

normalization techniques include {False,BatchNorm (Io f f eandSzegedy, 2015),
PairNorm (ZhaoandAkoglu, 2019),DGN (Zhouet al, 2020d),
NodeNorm (Zhouet al, 2020c),GraphNorm (Caiet al, 2020d)}.

• Learning rate: While a larger learning rate leads to a premature suboptimal
solution, a smaller one will make the optimization process converge slowly.
The candidate learning rates are {1e-4,5e-4,1e-3,5e-3,0.01,0.1}.

• Training epoch: According to the common practice (You et al, 2020a; Kipf and
Welling, 2017b), the training epoch examples are {100,200,400,500,1000}.

17.2.3 Efficient Search Space

Given the micro-architecture, macro-architecture, and training hyperparameters
search spaces, in the practical systems, the applied search space is formulated by
Cartesian product of any combination of them. Although a large search space sub-
sumes the diverse GNN architectures and training environments to adapt to the dif-
ferent graph analysis tasks, it would be time-consuming to explore the optimal de-
sign. To make the search progress efficient, there are two mainstream simplifying
search spaces applied in the existing AutoGNN frameworks.

• Focus on GNN-NAS: Instead of fully tuning the training hyperparameters,
most of AutoGNN (or GNN-NAS) frameworks (Gao et al, 2020b; Zhou et al,
2019a; Zhao et al, 2020a,g; Ding et al, 2020a; Nunes and Pappa, 2020; Li and
King, 2020; Jiang and Balaprakash, 2020) focus on tackling the problem of dis-
covering the well-performing GNN architectures. Comparing with AutoHPT,
it is commonly acknowledged that a novel architecture discovered from GNN-
NAS is more important and challenging to the research community, which could
motivate the data scientist to improve GNN model paradigms in the future. In
GNN-NAS, the search space is thus reduced to the one containing only the neu-
ral architecture variants.

• Simplify architecture search space: Even in GNN-NAS, the plenty of archi-
tecture dimensions and their associated candidate options still make the search
space complex. Based on the prior knowledge about the impacts of different
modules on model performances, one would prefer to explore only along the
crucial architecture dimensions in the practical systems. For example, it is found
that the simplified search space (Zhao et al, 2020a) characterized by aggregation
function and skip connections could generate the high-performance GNN archi-
tectures comparable to ones from the comprehensive search spaces (Gao et al,
2020b; Zhou et al, 2019a). Specially, since the decision cardinality of skip con-
nections increases exponentially with layers, the simplified search space even
only explores the skip connections in the last layer similar to JKNet (Xu et al,
2018a). In another simplified search space, the model-specific architecture di-
mensions are excluded and pre-defined based on expert experiences, including
the hidden units, propagation function, and combination function.

382 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

17.3 Search Algorithms

Many different search strategies can be used to explore the search space in Au-
toGNN, including random search, evolutionary methods, RL, and differentiable
search methods. In this section, we will introduce the basic concepts of these search
algorithms and how to utilize them to explore candidate designs.

17.3.1 Random Search

Given a search space, random search randomly samples the various designs with
equal probability. The random search is the most basic approach, yet it is quite ef-
fective in practice. In addition to serve as a baseline in AutoGNN works (Zhou et al,
2019a; Gao et al, 2020b), random search is the standard benchmark for compar-
ing the effectiveness of different candidate options along a dimension in the search
space (You et al, 2020a). Specially, suppose the dimension to be evaluated is batch
normalization, whose candidate examples are given by {False, BatchNorm}. To
comprehensively compare the effectiveness of these two options, a series of diverse
designs are randomly sampled from the search space, where the batch normalization
is reset to False and BatchNorm in each design, respectively. Each pair of designs
(referred to Normalization=False and Normalization=BatchNorm) are compared in
terms of their model performances on a downstream graph analysis task. It is found
that the designs with Normalization=BatchNorm generally rank higher than the oth-
ers, which indicates the benefit of including BatchNorm in the model design.

17.3.2 Evolutionary Search

Evolutionary methods evolve a population of designs, i.e., the set of different GNN
architectures and training hyperparameters. In every evolution step, at least one de-
sign from the population is sampled and serves as a parent to generate a new child
design by applying mutations to it. In the context of AutoGNN, the design muta-
tions are local operations, such as changing the aggregation function from MAX to
SUM, altering the hidden units, and altering a specific training hyperparameter. Af-
ter training the child design, its performance is evaluated on the validation set. The
superior design will be added to the population. Specifically, Shi et al (2020) pro-
poses to select two parent designs and then crossover them along some dimensions.
To generate the diverse child designs, Shi et al (2020) further mutates the above
crossover designs.

17 Graph Neural Networks: AutoML 383

17.3.3 Reinforcement Learning Based Search

RL (Silver et al, 2014; Sutton and Barto, 2018) is a learning paradigm concerned
with how agents ought to take actions in an environment to maximize the reward.
In the context of AutoGNN, the agent is the so-called “controller”, which tries to
generate promising designs. The generation of design can be regarded as the con-
troller’s action. The controller’s reward is often defined as the model performance
of generated design on the validation set, such as validation accuracy for the node
classification task. The controller is trained in a loop as shown in Figure 17.3: the
controller first samples a candidate design and trains it to convergence to measure
its performance on the task of desire. Note that the controller is usually realized by
RNN, which generates the design of GNN architecture and training hyperparam-
eters as a string of variable strength. The controller then uses the performance as
a guiding signal to update itself toward finding the more promising design in the
future search progress.

Fig. 17.3: A illustration of reinforcement learning based search algorithm. The con-
troller (upper block) generates a GNN architecture (lower block) and tests it on the
validation dataset. By treating the architecture as a string with variable length, the
controller usually applies RNN to sequentially sample options in the different di-
mensions (e.g., combination, aggregation, and propagation functions) to formulate
the final GNN architecture. The validation performance is then used as feedback to
train the controller. Note that the architecture dimensions here are just used for the
illustration purpose. Please refer to Section 17.2 for a complete introduction of the
search space.

384 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

The existing RL-based AutoGNN frameworks target at the sub-field problem
of GNN-NAS. Generally, in RL-based GNN-NAS, there are two sets of trainable
parameters: the parameters of the controller, denoted by ω , and the parameters of a
GNN architecture, denoted by θ . The training procedure consists of two interleaving
phases, which alternatively solves the bi-level optimization problem as shown in
Eq. equation 17.1. The first phase trains θ on the training data set Dtrain with a fixed
number of epochs using standard back-propagation. The second phase trains ω to
learn to sample high-performance GNN architectures evaluated on the validation
set Dvalid . These two phases are alternated during the training. Specifically, in the
first phase, the controller proposes a GNN architecture f and performs gradient
descent on θ to minimize the loss function L (f (θ);Dtrain), which is computed on
the batches of training data. In the second phase, the optimized parameter θ ∗ is fixed
to update the controller parameters ω , aiming to maximize the expected reward:

ω
∗ = argmaxω E f∼π(f ;ω)[R(f (θ ∗);Dvalid)]. (17.3)

Here, π(f ;ω) is the controller’s policy parameterized by ω to sample and generate
GNN architecture f . The reward R(f (θ ∗);Dvalid) is the model performance defined
by the task of desire, such as the accuracy for the node classification task. Further-
more, the reward is computed on the validation set, rather than on the training set,
to encourage the controller to select architectures that generalize well. In most of
the existing work, the gradient of the expected reward E f∼π(f ;ω)[R(f (θ ∗);Dvalid)]
with respect to ω is computed using REINFORCE rule (Sutton et al, 2000).

Considering GNN-NAS efforts in literature, RL-based search algorithms differ
in how they represent and train the controller. GraphNAS uses an RNN controller to
sequentially sample from the multiple architecture dimensions and generate a string
that encodes a GNN architecture (Gao et al, 2020b). Based on the expected reward
signaling the quality of the whole architecture, the RNN controller has to optimize
the sampling policies along all the dimensions. AGNN (Zhou et al, 2019a) is moti-
vated by an observation that the minor modification to an architecture dimension can
lead to abrupt change in performance. For example, the graph classification accuracy
of GNN may be significantly improved by only changing the choice of aggregation
function from MAX to SUM (Xu et al, 2019d). Based on this observation, AGNN
proposes a more efficient controller consisted of a series of RNN sub-controllers,
each corresponding to an independent architecture dimension. At each step, AGNN
only applies one of the RNN sub-controllers to sample new options from the cor-
responding dimension, and uses these options to mutate the best architecture found
so far. By evaluating such a slightly-mutated design, the RNN sub-controller can
exclude the noises generated from the other architecture dimension modifications,
and better trains the sampling policy of its own dimension.

17 Graph Neural Networks: AutoML 385

17.3.4 Differentiable Search

There are several candidate options along each architecture dimension. For exam-
ple, for the aggregation function at a particular layer, we have the option of apply-
ing either a SUM, a MEAN, or a MAX pooling. The common search approaches in
GNN-NAS, such as random search, evolutionary algorithms, and RL-based search
methods, treat selecting the best option as a black-box optimization problem over
a discrete domain. At each search step, they sample and evaluate a single architec-
ture from the discrete architecture search space. However, such the search process
towards well-performing GNNs will be very time-consuming since the number of
possible models is extremely large. Differentiable search algorithms relax the dis-
crete search space to be continuous, which can be optimized efficiently by gradient
descent. Specifically, for each architecture dimension, the differentiable search al-
gorithms usually relax the hard choice from the candidate set into a continuous dis-
tribution, where each option is assigned with a probability. One example for illus-
trating the differentiable search along the aggregation function dimension is shown
in Figure 17.4. At the k-th layer, the node embedding output of aggregation function
can be decomposed and expressed as:

h(k)
i =

∑m αmom(x
(k−1)
j : j ∈N (i)∪{i}),

or

αmom(x
(k−1)
j : j ∈N (i)∪{i}), m∼ p(αm),

s.t. ∑
m

αm = 1.

(17.4)

om represents the m-th aggregation function option, and αm is the sampling prob-
ability associated with the corresponding option. The probability distribution along
a dimension is regularized to have the sum of one. The architecture distribution is
then formulated by the union probability distribution of all the dimensions. At each
search step, as shown in Eq.equation 17.4 (with the example of the aggregation
function dimension), the real operation of a dimension in a new architecture could
be generated by two different ways: weighted option combination and option sam-
pling. For the case of weighted option combination, the real operation is represented
by the weighted average of all candidate options. For the other case, the real opera-
tion is instead sampled from the probability distribution p(αm) of the corresponding
architecture dimension. In both cases, the adopted options are scaled by their sam-
pling probabilities to support the architecture distribution optimization by gradient
descent. The architecture distribution is then updated directly by backpropagating
the training loss at each training step. During the testing, the discrete architecture
can be obtained by retaining the strongest candidate with the highest probability αm
along each dimension. In contrast to black-box optimization, gradient-based opti-
mization is significantly more data efficient, and hence greatly speeds up the search
process.

386 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

Fig. 17.4: One example for illustrating the differentiable search for the aggregation
function. At a search step, the aggregation function is given by the weighted combi-
nation of the three candidates, or instead realized by one sampled option (e.g., MAX
scaled with probability α2). Once the search progress terminates, the option with the
highest probability (e.g., MAX with solid arrow) is used in the final architecture to
be evaluated on testing set.

Compared with RL-based search, differentiable search based algorithm is less
popular in the GNN-NAS literature. PDNAS (Zhao et al, 2020g) relaxes the discrete
search space into a continuous one by employing the Gumbel-sigmoid, enabling op-
timization via gradient descent. POSE focuses on searching the propagation func-
tion, whose discrete search space is relaxed by a softmax approximation.

17.3.5 Efficient Performance Estimation

To solve the bi-level optimization problem of AutoGNN, all the above search al-
gorithms share a common two-stage working pipeline: sampling a new design and
adjusting the search algorithm based on the performance estimation of the new de-
sign at each step. Once the search progress terminates, the optimal design with the
highest model performance will be treated as the desired solution to the concerned
optimization problem. Therefore, an accurate performance estimation strategy is
crucial to AutoGNN framework. The simplest way of performance estimation is to
perform a standard training for each generated design, and then obtain the model
performance on the split validation set. However, such an intuitive strategy is com-
putationally expensive given the long search progress and massive graph datasets.

Parameter sharing is one of the efficient strategies to reduce the cost of perfor-
mance estimation, which avoids training from scratch for each design. Parameter
sharing is first proposed in ENAS (Pham et al, 2018) to force all designs to share
weights to improve efficiency. A new design could be immediately estimated by
reusing the weights well trained before. However, such a strategy cannot be di-
rectly adopted in GNN-NAS since the GNN architectures in search space may have
weights with different dimensions or shapes. To tackle the challenge, recent work

17 Graph Neural Networks: AutoML 387

modified the parameter sharing strategy to customize for GNNs. GraphNAS (Gao
et al, 2020b) categorizes and stores the optimized weights based on their shapes,
and applies the one with the same shape to the new design. After parameter shar-
ing, AGNN (Zhou et al, 2019a) further uses a few training epochs to fully adapt the
transferred weights to the new design. In the differentiable GNN-NAS frameworks,
the parameter sharing is conducted naturally between GNN architectures sharing
the common computation options (Zhao et al, 2020g; Ding et al, 2020a).

17.4 Future Directions

We have reviewed various search spaces and search algorithms. Although some ini-
tial AutoGNN efforts have been paid, compared with the rapid development of Au-
toML in computer vision, AutoGNN is still in the preliminary research stage. In this
section, we discuss several future directions, especially for research on GNN-NAS.

• Search space. The design of architecture search space is the most important
portion in GNN-NAS framework. An appropriate search space should be com-
prehensive by covering the key architecture dimensions and their state-of-the-
art primitive options to guarantee the performance of searched architecture for
any given task. Besides, the search space should be compact by incorporating
a moderate number of powerful options to make the search progress efficient.
However, most of the existing architecture search spaces are constructed based
on vanilla GCN and GAT, failing to consider the recent GNN developments. For
example, graph pooling (Ying et al, 2018c; Gao and Ji, 2019; Lee et al, 2019b;
Zhou et al, 2020e) has attracted increasing research interests to enable encoding
the graph structures hierarchically. Based on the wide variety of pooling algo-
rithms, the corresponding hierarchical GNN architectures gradually shrink the
graph size and enhance the neighborhood reception field, empirically improving
the downstream graph analysis tasks. Furthermore, a series of novel graph con-
volution mechanisms have been proposed from different perspectives, such as
neighbor-sampling methods to accelerate computation (Hamilton et al, 2017b;
Chen et al, 2018c; Zeng et al, 2020a), and PageRank based graph convolutions
to extend neighborhood size (Klicpera et al, 2019a,a; Bojchevski et al, 2020b).
With the development in GNN community, it is crucial to update the search
space to subsume the state-of-the-art models.

• Deep graph neural networks. All the existing search spaces are implemented
with shallow GNN architectures, i.e., the number of graph convolutional lay-
ers lgc ≤ 10. Unlike the widely adopted deep neural networks (e.g., CNNs and
transformers) in computer vision and natural language processing, GNN archi-
tectures are usually limited with less than 3 layers (Kipf and Welling, 2017b;
Veličković et al, 2018). As the layer number increases, the node representations
will converge to indistinguishable vectors due to the recursive neighborhood
aggregation and non-linear activation (Li et al, 2018b; Oono and Suzuki, 2020).
Such phenomenon is recognized as the over-smoothing issue (NT and Maehara,

388 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

2019), which prevents the construction of deep GNNs from modeling the de-
pendencies to high-order neighbors. Recently, many efforts have been proposed
to relieve the over-smoothing issue and construct deep GNNs, including em-
bedding normalization (Zhao and Akoglu, 2019; Zhou et al, 2020d; Ioffe and
Szegedy, 2015), residual connection (Li et al, 2019c, 2018b; Chen et al, 2020l;
Klicpera et al, 2019a), and random data augmentation (Rong et al, 2020b; Feng
et al, 2020). However, most of them only achieve comparable or even worse
performance compared to their corresponding shallow models. By incorporat-
ing these new techniques into the search space, GNN-NAS could effectively
combine them and identify the novel deep GNN model, which unleashes the
deep learning power for graph analytics.

• Applications to emerging graph analysis tasks. One limitation of GNN-NAS
frameworks in literature is that they are usually evaluated on a few bench-
mark datasets, such as Cora, Citeseer, and Pubmed for node classification (Yang
et al, 2016b). However, the graph-structured data is ubiquitous, and the novel
graph analysis tasks are always emerging in real-world applications, such as
property prediction of biochemical molecules (i.e., graph classification) (Zitnik
and Leskovec, 2017; Aynaz Taheri, 2018; Gilmer et al, 2017; Jiang and Bal-
aprakash, 2020), item/friend recommendation in social networks (i.e., link pre-
diction) (Ying et al, 2018b; Monti et al, 2017; He et al, 2020), and circuit design
(i.e., graph generation) (Wang et al, 2020b; Li et al, 2020h; Zhang et al, 2019d).
The surge of novel tasks poses significant challenges for the future search of
well-performing architectures in GNN-NAS, due to the diverse data character-
istics and objectives of tasks and the expensive searching cost. On one hand,
since the new tasks may do not resemble any of the existing benchmarks, the
search space has to be re-constructed by considering their specific data charac-
teristics. For example, in the knowledge graph with informative edge attributes,
the micro-architecture search space needs to incorporate edge-aware graph con-
volutional layers to guarantee a desired model performance (Schlichtkrull et al,
2018; Shang et al, 2019). On the other hand, if the new tasks are similar to the
existing ones, the search algorithms could re-exploit the best architectures dis-
covered before to accelerate the search progress in the new tasks. For example,
one can simply initialize the search progress with these sophisticated archi-
tectures and uses several epochs to explore the potentially good ones within a
small region. Especially for the massive graphs with a large volume of nodes
and edges, the reuse of well-performing architectures from similar tasks could
significantly save the computation cost. The research challenge is how to quan-
tify the similarities between the different graph-structured data.

17 Graph Neural Networks: AutoML 389

Acknowledgements

This work is, in part, supported by NSF (#IIS-1750074 and #IIS-1718840). The
views, opinions, and/or findings contained in this paper are those of the authors and
should not be interpreted as representing any funding agencies.

Editor’s Notes: Automated graph neural networks introduce automated
machine learning to tackle the problem of GNN neural architecture search
and hyperparameter search. Hence, this chapter is orthogonal to most of the
other chapters in this book, which generally depend on expert experience
to design specific models and tune hyperparameters. Neural architecture
search space contains the components of manually designed models, such
as kinds of aggregators introduced in chapter 4 and chapter 5. Automated
graph neural networks support common graph analysis tasks, such as node
classification (chapter 4), graph classification (chapter 9), and link predic-
tion (chapter 10).

Chapter 18
Graph Neural Networks: Self-supervised
Learning

Yu Wang, Wei Jin, and Tyler Derr

Abstract Although deep learning has achieved state-of-the-art performance across
numerous domains, these models generally require large annotated datasets to reach
their full potential and avoid overfitting. However, obtaining such datasets can have
high associated costs or even be impossible to procure. Self-supervised learning
(SSL) seeks to create and utilize specific pretext tasks on unlabeled data to aid in
alleviating this fundamental limitation of deep learning models. Although initially
applied in the image and text domains, recent interest has been in leveraging SSL
in the graph domain to improve the performance of graph neural networks (GNNs).
For node-level tasks, GNNs can inherently incorporate unlabeled node data through
the neighborhood aggregation unlike in the image or text domains; but they can
still benefit by applying novel pretext tasks to encode richer information and nu-
merous such methods have recently been developed. For GNNs solving graph-level
tasks, applying SSL methods is more aligned with other traditional domains, but still
presents unique challenges and has been the focus of a few works. In this chapter,
we summarize recent developments in applying SSL to GNNs categorizing them
via the different training strategies and types of data used to construct their pretext
tasks, and finally discuss open challenges for future directions.

Yu Wang
Department of Electrical Engineering and Computer Science, Vanderbilt University, e-mail:
yu.wang.1@vanderbilt.edu

Wei Jin
Department of Computer Science and Engineering, Michigan State University, e-mail: jinwei2@
msu.edu

Tyler Derr
Department of Electrical Engineering and Computer Science, Vanderbilt University, e-mail:
tyler.derr@vanderbilt.edu

391
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_18

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:yu.wang.1@vanderbilt.edu
mailto:jinwei2@msu.edu
mailto:jinwei2@msu.edu
mailto:tyler.derr@vanderbilt.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_18&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_18

392 Yu Wang, Wei Jin, and Tyler Derr

18.1 Introduction

Recent years have witnessed the great success of applying deep learning in numer-
ous fields. However, the superior performance of deep learning heavily depends
on the quality of the supervision provided by the labeled data and collecting a
large amount of high-quality labeled data tends to be time-intensive and resource-
expensive (Hu et al, 2020c; Zitnik and Leskovec, 2017). Therefore, to alleviate the
demand for massive labeled data and provide sufficient supervision, self-supervised
learning (SSL) has been introduced. Specifically, SSL designs domain-specific pre-
text tasks that leverage extra supervision from unlabeled data to train deep learning
models and learn better representations for downstream tasks. In computer vision,
various pretext tasks have been studied, e.g., predicting relative locations of image
patches (Noroozi and Favaro, 2016) and identifying augmented images generated
from image processing techniques such as cropping, rotating and resizing (Shorten
and Khoshgoftaar, 2019). In natural language processing, self-supervised learning
has also been heavily utilized, e.g., predicting the masked word in BERT (Devlin
et al, 2019).

Simultaneously, graph representation learning has emerged as a powerful strat-
egy for analyzing graph-structured data over the past few years (Hamilton, 2020).
As the generalization of deep learning to the graph domain, Graph Neural Networks
(GNNs) has become one promising paradigm due to their efficiency and strong per-
formance in real-world applications (You et al, 2021; Zitnik and Leskovec, 2017).
However, the vanilla GNN model (i.e., Graph Convolutional Network (Kipf and
Welling, 2017b)) and even more advanced existing GNNs (Hamilton et al, 2017b;
Xu et al, 2019d, 2018a) are mostly established in a semi-supervised or supervised
manner, which still requires high-cost label annotation. Additionally, these GNN
models may not take full advantage of the abundant information in unlabeled data,
such as the graph topology and node attributes. Hence, SSL can be naturally har-
nessed for GNNs to gain additional supervision and thoroughly exploit the informa-
tion in the unlabeled data.

Compared with grid-based data such as images or text (Zhang et al, 2020e),
graph-structured data is far more complex due to its highly irregular topology,
involved intrinsic interactions and abundant domain-specific semantics (Wu et al,
2021d). Different from images and text where the entire structure represents a single
entity or expresses a single semantic meaning, each node in the graph is an individ-
ual instance with its own features and positioned in its own local context. Further-
more, these individual instances are inherently related with each other, which forms
diverse local structures that encode even more complex information to be discovered
and analyzed. While such complexity engenders tremendous challenges in analyz-
ing graph-structured data, the substantial and diverse information contained in the
node features, node labels, local/global graph structures, and their interactions and
combinations provide golden opportunities to design self-supervised pretext tasks.

Embracing the challenges and opportunities to study self-supervised learning
in GNNs, the works (Hu et al, 2020c, 2019c; Jin et al, 2020d; You et al, 2020c)
have been the first research that systematically design and compare different self-

18 Graph Neural Networks: Self-supervised Learning 393

supervised pretext tasks in GNNs. For example, the works (Hu et al, 2019c; You
et al, 2020c) design pretext tasks to encode the topological properties of a node
such as centrality, clustering coefficient, and its graph partitioning assignment, or
to encode the attributes of a node such as individual features and clustering assign-
ments in embeddings output by GNNs. The work (Jin et al, 2020d) designs pretext
tasks to align the pairwise feature similarity or the topological distance between
two nodes in the graph with the closeness of two nodes in the embedding space.
Apart from the supervision information employed in creating pretext tasks, design-
ing effective training strategies and selecting reasonable loss functions are another
crucial components in incorporating SSL into GNNs. Two frequently used training
strategies that equip GNNs with SSL are 1) pre-training GNNs through complet-
ing pretext task(s) and then fine-tuning the GNNs on downstream task(s), and 2)
jointly training GNNs on both pretext and downstream tasks (Jin et al, 2020d; You
et al, 2020c). There are also few works (Chen et al, 2020c; Sun et al, 2020c) ap-
plying the idea of self-training in incorporating SSL into GNNs. In addition, loss
functions are selected to be tailored for purposes of specific pretext tasks, which in-
cludes classification-based tasks (cross-entropy loss), regression-based tasks (mean
squared error loss) and contrastive-based tasks (contrastive loss).

In view of the substantial progress made in the field of graph neural networks
and the significant potential of self-supervised learning, this chapter aims to present
a systematic and comprehensive review on applying self-supervised learning into
graph neural networks. The rest of the chapter is organized as follows. Section 18.2
first introduces self-supervised learning and pretext tasks, and then summarizes fre-
quently used self-supervised methods from the image and text domains. In Sec-
tion 18.3, we introduce the training strategies that are used to incorporate SSL
into GNNs and categorize the pretext tasks that have been developed for GNNs.
Section 18.4 and 18.5 present detailed summaries of numerous representative SSL
methods that have been developed for node-level and graph-level pretext tasks.
Thereafter, in Section 18.6 we discuss representative SSL methods that are devel-
oped using both node-level and graph-level supervision, which we refer to as node-
graph-level pretext tasks. Section 18.7 collects and reinforces the major results and
the insightful discoveries in prior sections. Concluding remarks and future forecasts
on the development of SSL in GNNs are provided in Section 18.8.

18.2 Self-supervised Learning

Supervised learning is the machine learning task of training a model that maps an
input to an output based on the ground-truth input-output pairs provided by a la-
beled dataset. Good performance of supervised learning requires a decent amount
of labeled data (especially when using deep learning models), which are expen-
sive to manually collect. Conversely, self-supervised learning generates supervisory
signals from unlabeled data and then trains the model based on the generated super-
visory signals. The task used for training the model based on the generative signal is

394 Yu Wang, Wei Jin, and Tyler Derr

referred to as the pretext task. In comparison, the task whose ultimate performance
we care about the most and expect our model to solve is referred to as the down-
stream task. To guarantee the performance benefits from self-supervised learning,
pretext tasks should be carefully designed such that completing them encourages
the model to have the similar or complementary understanding as completing down-
stream tasks. Self-supervised learning initially originated to solve tasks in image and
text domains. The following part focuses on introducing self-supervised learning in
these two fields with the specific emphasis on different pretext tasks.

In computer vision (CV), many ideas have been proposed for self-supervised rep-
resentation learning on image data. A common example is that we expect that small
distortion on an image does not affect its original semantic meaning or geometric
forms. The idea to create surrogate training datasets with unlabeled image patches
by first sampling patches from different images at varying positions and then distort-
ing patches by applying a variety of random transformations are proposed in (Doso-
vitskiy et al, 2014). The pretext task is to discriminate between patches distorted
from the same image or from different images. Rotation of an entire image is an-
other effective and inexpensive way to modify an input image without changing
semantic content (Gidaris et al, 2018). Each input image is first rotated by a mul-
tiple of 90 degrees at random. The model is then trained to predict which rotation
has been applied. However, instead of performing pretext tasks on an entire image,
the local patches could also be extracted to construct the pretext tasks. Examples of
methods using this technique include predicting the relative position between two
random patches from one image (Doersch et al, 2015) and designing a jigsaw puz-
zle game to place nine shuffled patches back to the original locations (Noroozi and
Favaro, 2016). More pretext tasks such as colorization, autoencoder, and contrastive
predictive coding have also been introduced and effectively utilized (Oord et al,
2018; Vincent et al, 2008; Zhang et al, 2016d).

While computer vision has achieved amazing progress on self-supervised learn-
ing in recent years, self-supervised learning has been heavily utilized in natural lan-
guage processing (NLP) research for quite a while. Word2vec (Mikolov et al, 2013b)
is the first work that popularized the SSL ideas in the NLP field. Center word pre-
diction and neighbor word prediction are two pretext tasks in Word2vec where the
model is given a small chunk of the text and asked to predict the center word in that
text or vice versa. BERT (Devlin et al, 2019) is another famous pre-trained model
in NLP where two pretest tasks are to recover randomly masked words in a text or
to classify whether two sentences can come one after another or not. Similar works
have also been introduced, such as having the pretext task classify whether a pair
of sentences are in the correct order (Lan et al, 2020), or a pretext task that first
randomly shuffles the ordering of sentences and then seeks to recover the original
ordering (Lewis et al, 2020).

Compared with the difficulty of data acquisition encountered in image and text
domains, machine learning in the graph domain faces even more challenges in ac-
quiring high-quality labeled data. For example, for molecular graphs it can be ex-
tremely expensive to perform the necessary laboratory experiments to label some
molecules (Rong et al, 2020a), and in a social network obtaining ground-truth labels

18 Graph Neural Networks: Self-supervised Learning 395

for individual users may require large-scale surveys or be unable to be released due
to privacy agreements/concerns (Chen et al, 2020a). Therefore, the success achieved
by applying SSL in CV and NLP naturally leads the question as to whether SSL
can be effectively applied in the graph domain. Given that graph neural network is
among the most powerful paradigms for graph representation learning, in follow-
ing sections we will mainly focus on introducing self-supervised learning within
the framework of graph neural networks and highlighting/summarizing these recent
advancements.

18.3 Applying SSL to Graph Neural Networks: Categorizing
Training Strategies, Loss Functions and Pretext Tasks

When seeking to apply self-supervised learning to GNNs, the major decisions to
be made are how to construct the pretext tasks, which includes what information to
leverage from the unlabeled data, what loss function to use, and what training strat-
egy to use for effectively improving the GNN’s performance. Hence, in this section
we will first mathematically formalize the graph neural network with self-supervised
learning and then discuss each of the above. More specifically, we will introduce
three training strategies, three loss functions that are frequently employed in the cur-
rent literature, and categorize current state-of-the-art pretext tasks for GNNs based
on the type of information they leverage for constructing the pretext task.

Given an undirected attributed graph G = {V ,E ,X}, where V = {v1, ...,v|V |}
represents the vertex set with |V | vertices, E represents the edge set and ei j =(vi,v j)

is an edge between node vi and v j, X ∈ R|V |×d represents the feature matrix and
xi = X [i, :]⊤ ∈ Rd is the d-dimensional feature vector of the node vi. A ∈ R|V |×|V |
is the adjacency matrix where Ai j = 1 if ei j ∈ E and Ai j = 0 if ei j /∈ E . We denote
any GNN-based feature extractor as fθ : R|V |×d×R|V |×|V |→R|V |×d′ parametrized
by θ , which takes any node feature matrix X and the graph adjacency matrix A
and outputs the d′-dimensional representation for each node ZGNN = fθ (X ,A) ∈
R|V |×d′ , which is further fed into any permutation invariant function READOUT :
R|V |×d′ → Rd′ to obtain the graph embeddings zGNN,G = READOUT(fθ (X ,A)) ∈
Rd′ . More specifically, we note that here θ represents the parameters encoded in
the corresponding network architectures of the GNN (Hamilton et al, 2017b; Kipf
and Welling, 2017b; Petar et al, 2018; Xu et al, 2019d, 2018a). Considering the
transductive semi-supervised tasks where we are provided with the labeled node
set Vl ⊂ V , the labeled graph G , the associated node label matrix Ysup ∈ R|Vl |×l ,
and the graph label ysup,G ∈Rl with label dimension l, we aim to classify nodes and
graphs. The node and graph representations output by GNNs are firstly processed by
the extra adaptation layer hθsup parametrized by the supervised adaptation parameter
θsup to obtain the predicted l-dimensional node label Zsup ∈ R|V |×l and graph label
zsup,G ∈ Rl by Eq. equation 18.1-equation 18.2. Then the model parameters θ in
GNN-based extractor fθ and the parameters θsup in adaptation layer hθsup are learned

396 Yu Wang, Wei Jin, and Tyler Derr

by optimizing the supervised loss calculated between the output/predicted label and
the true label for labeled nodes and the labeled graph, which can be formulated as:

Zsup = hθsup(fθ (X ,A)) (18.1)

zsup,G = hθsup(READOUT(fθ (X ,A))) (18.2)

θ
∗,θ ∗sup = arg min

θ ,θsup
Lsup(θ ,θsup) =

arg min
θ ,θsup

1
|Vl | ∑

vi∈Vl

ℓsup(zsup,i,ysup,i)

︸ ︷︷ ︸
Node supervised task

arg min
θ ,θsup

ℓsup(zsup,G ,ysup,G)

︸ ︷︷ ︸
Graph supervised task

, (18.3)

where Lsup is the total supervised loss function and ℓsup is the supervised loss
function for each example, ysup,i = Ysup[i, :]⊤ indicates the true label for node vi
in node supervised task and ysup,G indicates the true label for graph G in graph
supervised task. Their corresponding predicted label distributions are denoted as
zsup,i = Zsup[i, :]⊤ and zsup,G . θ ,θsup are parameters to be optimized for any GNN
model and the extra adaptation layer for the supervised downstream task, respec-
tively. Note that for ease of notation, we assume the above graph supervised task
is operated only on one graph but the above framework can be easily adapted to
supervised tasks on multiple graphs.

18.3.1 Training Strategies

In this chapter, we view SSL as the process of designing a specific pretext task and
learning the model on the pretext task. In this sense, SSL can either be used as
unsupervised pre-training or be integrated with semi-supervised learning.

The model capability of extracting features for completing pretext and down-
stream tasks is improved through optimizing the model parameters θ ,θssl, and θsup,
where θssl denotes the parameters of the adaptation layer for the pretext task. In-
spired by relevant discussions (Hu et al, 2019c; Jin et al, 2020d; Sun et al, 2020c;
You et al, 2020b,c), we summarize three possible training strategies that are pop-
ular in the literature to train GNNs in the self-supervised setting as self-training,
pre-training with fine-tuning, and joint training.

18 Graph Neural Networks: Self-supervised Learning 397

18.3.1.1 Self-training

Self-training is a strategy that leverages the supervision information in the train-
ing process generated by the model itself (Li et al, 2018b; Riloff, 1996). A typical
self-training pipeline begins with first training the model over the labeled data, then
generating pseudo labels to unlabeled samples that have highly confident predic-
tions, and including them into the labeled data in the next round of training. In this
way, the pretext task is the same as the downstream task by utilizing the pseudo
labels for some of the originally unlabeled data. A detailed overview is presented in
Fig. 18.1 where the prediction results are re-utilized to augment the training data in
the next iteration as done in (Sun et al, 2020c).

Fig. 18.1: An overview of GNNs with SSL using self-training.

18.3.1.2 Pre-training and Fine-tuning

A common strategy to utilize features learned from completing pretext tasks in-
cludes applying the optimized parameters from self-supervision as initialization for
fine-tuning in downstream tasks. This strategy consists of two stages: pre-training
on the self-supervised pretext tasks and fine-tuning on the downstream tasks. The
overview of this two-stage optimization strategy is given in Fig. 18.2.

The whole model consists of one shared GNN-based feature extractor and two
adaptation modules, one for the pretext task and one for the downstream task. In the
pre-training process, the model is trained with the self-supervised pretext task(s) as:

Zssl = hθssl(fθ (X ,A)), (18.4)

zssl,G = hθssl(READOUT(fθ (X ,A))), (18.5)

398 Yu Wang, Wei Jin, and Tyler Derr

θ
∗,θ ∗ssl = argmin

θ ,θssl
Lssl(θ ,θssl) =

arg min
θ ,θssl

1
|V | ∑

vi∈V
ℓssl(zssl,i,yssl,i)

︸ ︷︷ ︸
Node pretext tasks

arg min
θ ,θssl

ℓssl(zssl,G ,yssl,G)

︸ ︷︷ ︸
Graph pretext tasks

, (18.6)

where θssl denotes the parameters of the adaptation layer hθssl for the pretext
tasks, ℓssl is the self-supervised loss function for each example, and Lssl is the
total loss function of completing the self-supervised task. In node pretext tasks,
zssl,i = Zssl[i, :]⊤ and yssl,i = Yssl[i, :]⊤, which are the self-supervised predicted and
true label(s) for the node vi, respectively. In graph pretext tasks, zssl,G and yssl,G are
the self-supervised predicted and true label(s) for the graph G , respectively. Then, in
the fine-tuning process, the feature extractor fθ is trained by completing downstream
tasks in Eq. equation 18.1-equation 18.3 with the pre-trained θ ∗ as the initialization.
Note that to utilize the pre-trained node/graph representations the fine-tuning pro-
cess can also be replaced by training a linear classifier (e.g., Logistic Regression
(Peng et al, 2020; Veličković et al, 2019; You et al, 2020b; Zhu et al, 2020c)).

Fig. 18.2: An overview of GNNs with SSL using pre-training and fine-tuning.

18.3.1.3 Joint Training

Another natural idea to harness self-supervised learning for graph neural networks is
to combine losses of completing pretext task(s) and downstream task(s) and jointly
train the model. The overview of the joint training is shown in Fig. 18.3.

The joint training consists of two components: feature extraction by a GNN and
adaption processes for both the pretext tasks and downstream tasks. In the feature
extraction process, a GNN takes the graph adjacency matrix A and the feature ma-

18 Graph Neural Networks: Self-supervised Learning 399

trix X as input and outputs the node embeddings ZGNN and/or graph embeddings
zGNN,G . In the adaptation procedure, the extracted node and graph embeddings are
further transformed to complete pretext and downstream tasks via hθssl and hθsup ,
respectively. We then jointly optimize the pretext and downstream task losses as:

Zsup = hθsup(fθ (X ,A)), Zssl = hθssl(fθ (X ,A)), (18.7)

zsup,G = hθsup(READOUT(fθ (X ,A))), zssl,G = hθssl(READOUT(fθ (X ,A))),
(18.8)

θ
∗,θ ∗sup,θ

∗
ssl =

arg min
θ ,θsup,θssl

1
|V | ∑

vi∈V
(α1ℓsup(zsup,i,ysup,i)+α2ℓssl(zssl,i,yssl,i))

︸ ︷︷ ︸
Node pretext tasks

arg min
θ ,θsup,θssl

α1ℓsup(zsup,G ,ysup,G)+α2ℓssl(zssl,G ,yssl,G)

︸ ︷︷ ︸
Graph pretext tasks

,

(18.9)
where α1,α2 ∈R> 0 are the weights for combining the supervised loss ℓsup and the
self-supervised loss ℓssl.

Fig. 18.3: An overview of GNNs with SSL using joint training.

18.3.2 Loss Functions

A loss function is used to evaluate the performance of how well the algorithm mod-
els the data. Generally, in GNNs with self-supervised learning, the loss function for
the pretext task has three forms, which are classification loss, regression loss and
contrastive learning loss. Note that the loss functions we discuss here are only for
the pretext tasks rather than downstream tasks.

400 Yu Wang, Wei Jin, and Tyler Derr

18.3.2.1 Classification and Regression Loss

In completing classification-based pretext tasks such as node clustering where node
embeddings are expected to encode the assignment information of the clusters, the
objective for the pretext is to minimize the following loss function:

Lssl =

1
|V | ∑

vi∈V
ℓCE(zssl,i,yssl,i)

︸ ︷︷ ︸
Node pretext tasks

=− 1
|V | ∑vi∈V ∑

L
j=11(yssl,i j = 1) log(z̃ssl,i j)

ℓCE(zssl,G ,yssl,G)︸ ︷︷ ︸
Graph pretext tasks

=−∑
L
j=11(yssl,G j = 1) log(z̃ssl,G j)

,

(18.10)
where ℓCE indicates the cross entropy function, zssl,i and zssl,G represents the pre-
dicted label distribution of node vi and graph G for the pretext task, and their cor-
responding class probability distribution z̃ssl,i and z̃ssl,G are calculated by softmax
normalization, respectively. For example, z̃ssl,i j is the probability of node vi belong-
ing to class j. Since every node vi has its own pseudo label (i.e., yssl,i) in completing
pretext tasks, we can consider all the nodes V in the graph compared to only the
labeled set of nodes Vl as before in downstream tasks.

In completing regression-based pretext tasks, such as feature completion, the
mean squared error loss is typically used as the loss function:

Lssl =

1
|V | ∑

vi∈V
ℓMSE(zssl,i,yssl,i)

︸ ︷︷ ︸
Node pretext tasks

= 1
|V | ∑vi∈V ||zssl,i−yssl,i||2

ℓMSE(zssl,G ,yssl,G)︸ ︷︷ ︸
Graph pretext tasks

= ||zssl,G −yssl,G ||2
, (18.11)

where the objective is minimizing the distance from our learned embedding to yssl,i
which represents any ground-truth value of node vi, such as the original attribute in
the feature completion or other values of node vi.

18.3.2.2 Contrastive Learning Loss

Inspired by the significant progress achieved by employing the contrastive learning
in natural language processing and computer vision (Le-Khac et al, 2020), recent
studies (Hassani and Khasahmadi, 2020; Veličković et al, 2019; You et al, 2020b;
Zhu et al, 2020c, 2021) propose similar contrastive frameworks to enable SSL in
GNNs. The general goal of contrastive learning in GNNs is to train GNN-based en-
coders such that the agreement of representations between similar graph instances
(e.g., multiple views generated from the same instance) is maximized while the
agreement between dissimilar graph instances (e.g., multiple views generated from
different instances) is minimized. Such maximization and minimization of agree-

18 Graph Neural Networks: Self-supervised Learning 401

Fig. 18.4: An overview of GNNs with SSL using contrastive learning.

ments between different views of instances is typically formalized as maximizing
the mutual information I (Z1

ssl,Z
2
ssl) between representations Z1

ssl and Z2
ssl under two

different views as:
max
θ ,θssl

I (Z1
ssl,Z

2
ssl), (18.12)

where Z1
ssl,Z

2
ssl correspond to representations output from any GNN-based encoder

followed by an adaptation layer hθssl under two different graph views G 1,G 2.
In order to computationally estimate and maximize the mutual information that

is originally intractable to be exactly computed in most cases (Belghazi et al, 2018;
Gabrié et al, 2019; Paninski, 2003; Xie et al, 2021), multiple estimators to eval-
uate the lower bounds to the mutual information are derived, including normal-
ized temperature-scaled cross-entropy (NT-Xent) (Chen et al, 2020l), Donsker-
Varadhan representation of the KL-divergence (Donsker and Varadhan, 1976),
noise-contrastive estimation (InfoNCE) gutmann2010noise, Jensen-Shannon esti-
mator (Nowozin et al, 2016). For simplicity, here we only present one frequently
used mutual information estimator NT-Xent, which is formalized as:

Lssl =
1
|P+| ∑

(i, j)∈P+

ℓNT-Xent(Z1
ssl,Z

2
ssl,P

−)

=− 1
|P+| ∑

(i, j)∈P+

log
exp(D(z1

ssl,i,z
2
ssl, j))

∑

k∈{ j∪P−i }
exp(D(z1

ssl,i,z
2
ssl,k))

(18.13)

where D(z1
ssl,i,z

2
ssl, j)) =

sim(z1
ssl,i,z

2
ssl, j)

τ
is a learnable discriminator parametrized with

the similarity function (i.e., cosine similarity) and the temperature factor τ , P+

represents the set of all pairs of positive samples while P− =
⋃

(i, j)∈P+ P−
i repre-

sents all sets of negative samples. Especially P−
i contains all negative samples of

the sample i. Note that we can contrast both node representations, graph represen-
tations and node-graph representations under different views. Therefore, z1

ssl is not
limited to the node embeddings, but could refer to the embeddings of both node and

402 Yu Wang, Wei Jin, and Tyler Derr

graph under the first graph view G 1. Thus, i, j,k could refer to both node and graph
samples.

Fig. 18.5: A categorization of pretext tasks in self-supervised learning.1

18.3.3 Pretext Tasks

Pretext tasks are constructed by leveraging different types of supervision informa-
tion coming from different components of graphs. Based on the components that
generate the supervision information, pretext tasks that are prevalent in the litera-
ture are categorized into node-level, graph-level and node-graph level. In completing
node-level and graph-level pretext tasks, three types of information can be lever-
aged: graph structure, node features, or hybrid, where the latter combines the infor-

1 Additional summary details and the corresponding code links for these methods can be found at
https://github.com/NDS-VU/GNN-SSL-Chapter.

https://github.com/NDS-VU/GNN-SSL-chapter

18 Graph Neural Networks: Self-supervised Learning 403

mation from node features, graph structure, and even information from the known
training labels (as presented in (Jin et al, 2020d)). We summarize the categorization
of pretext tasks as a tree where each leaf node represents a specific type of pretext
tasks in Fig. 18.5 while also including the corresponding references. In the next
three sections, we give detailed explanations about each of these pretext tasks and
summarize the majority of existing methods.

18.4 Node-level SSL Pretext Tasks

For node-level pretext tasks, methods have been developed to use easily-accessible
data to generate pseudo labels for each node or relationships for each pair of nodes.
In this way, the GNNs are then trained to be predictive of the pseudo labels or to keep
the equivalence between the node embeddings and the original node relationships.

18.4.1 Structure-based Pretext Tasks

Different nodes have different structure properties in graph topology, which can be
measured by the node degree, centrality, node partition, etc. Thus, for structure-
based pretext tasks at the node-level, we expect to align node embeddings extracted
from the GNNs with their structure properties, in an attempt to ensure this informa-
tion is preserved while GNNs learn the node embeddings.

Since degree is the most fundamental topological property, Jin et al (2020d) de-
signs the pretext task to recover the node degree from the node embeddings as fol-
lows:

Lssl =
1
|V | ∑

vi∈V
ℓMSE(zssl,i, di) (18.14)

where di represents the degree of node i and zssl,i = Zssl[i, :]⊤ denotes the self-
supervised GNN embeddings of node i. It should be noted that this pretext task
can be generalized to harness any structural property in the node level.

Node centrality measures the importance of nodes based on their structure roles
in the whole graph (Newman, 2018). Hu et al (2019c) designs a pretext task to have
GNNs estimate the rank scores of node centrality. The specific centrality measures
considered are eigencentrality, betweenness, closeness, and subgraph centrality. For
a node pair (u,v) and a centrality score s, with relative order Rs

u,v = 1(su > sv)

where Rs
u,v = 1 if su > sv and Ru,v = 0 if su ≤ sv, a decoder Drank

s for centrality score
s estimates its rank score by Sv = Drank

s (zGNN,v). The probability of estimated rank
order is defined by the sigmoid function R̃s

u,v =
exp(Su−Sv)

1+exp(Su−Sv)
. Then predicting the

relative order between pairs of nodes could be formalized as a binary classification
problem with the loss:

404 Yu Wang, Wei Jin, and Tyler Derr

Lssl =−∑
s

∑
u,v∈V

(Rs
u,v log R̃s

u,v +(1−Rs
u,v) log(1− R̃s

u,v)). (18.15)

Different from peer works, Hu et al (2019c) does not consider any node feature but
instead extract the node features directly from the graph topology, which includes:
(1) degree that defines the local importance of a node; (2) core-number that defines
the connectivity of the subgraph around a node; (3) collective influence that defines
the neighborhood importance of a node; and (4) local clustering coefficient, which
defines the connectivity of 1-hop neighborhood of a node. Then, the four features
(after min-max normalization) are concatenated with a nonlinear transformation and
fed into the GNN where (Hu et al, 2019c) uses the pretext tasks: centrality ranking,
clustering recovery and edge prediction. Another innovative idea in (Hu et al, 2019c)
is to choose a fix-tune boundary in the middle layer of GNNs. The GNN blocks
below this boundary are fixed, while the ones above the boundary are fine-tuned. For
downstream tasks that are closely related to the pre-trained tasks, a higher boundary
is used.

Another important node-level structural property is the partition each node be-
longs after performing a graph partitioning method. In (You et al, 2020c), the pretext
task is to train the GNNs to encode the node partition information. Graph partition-
ing is to partition the nodes of a graph into different groups such that the number
of edges between each group is minimized. Given the node set V , the edge set E ,
and a preset number of partitions p ∈ [1, |V |], a graph partitioning algorithm (e.g.,
(Karypis and Kumar, 1995) as used in (You et al, 2020c)) will output a set of nodes
{Vpar1 , ...,Vparp |Vpari ⊂ V , i = 1, ..., p}. Then the classification loss is set exactly the
same as:

Lssl =−
1
|V | ∑

vi∈V
ℓCE(zssl,i,yssl,i) (18.16)

where zssl,i denotes the embedding of node vi and assuming that the partitioning
label is a one-hot encoding yssl,i ∈ Rp with k-th entry as 1 and others as 0 if vi ∈
Vpark , i = 1, ..., |V |,∃k ∈ [1, p].

18.4.2 Feature-based Pretext Tasks

Node features are another important information that can be leveraged to provide ex-
tra supervision. Since the state-of-the-art GNNs suffer from over-smoothing (Chen
et al, 2020c), the original feature information is partially lost after fed into the
GNNs. In order to reduce the information loss in node embeddings, the pretext task
in (Hu et al, 2020c; Jin et al, 2020d; Manessi and Rozza, 2020; Wang et al, 2017a;
You et al, 2020c) is to first mask node features and let the GNN predict those fea-
tures. More specifically, they randomly mask input node features by replacing them
with special mask indicators and then apply GNNs to obtain the corresponding node
embeddings. Finally a linear model is applied on top of embeddings to predict the
corresponding masked node features. Assuming the set of nodes that are masked is

18 Graph Neural Networks: Self-supervised Learning 405

Vm, then the self-supervised regression loss to reconstruct these masked features is:

Lssl =
1
|Vm| ∑

vi∈Vm

ℓMSE(zssl,i,xi) (18.17)

To handle the high sparsity of the node features, it is beneficial to first perform
feature dimensionality reduction on X (such as principal component analysis (PCA)
used in (Jin et al, 2020d)). Additionally, instead of reconstructing node features,
node embeddings could also be reconstructed from their corrupted version, such as
in (Manessi and Rozza, 2020).

Contrary to the graph partitioning where nodes are grouped by the graph topol-
ogy, in graph clustering the clusters of nodes are discovered based on their fea-
tures (You et al, 2020c). In this way the pretext task can be designed to recover the
node clustering assignment. Given the node set V , the feature matrix X , and a preset
number of clusters p ∈ [1, |V |] (or without if the clustering algorithm automatically
learns the number of clusters) as input, the clustering algorithm will output a set of
node clusters {Vclu1 , . . . ,Vclup |Vclui ⊂ V , i = 1, ..., p} and assuming for node vi, the
partitioning label is a one-hot encoding yssl,i ∈ Rp with k-th entry as 1 and others
as 0 if vi ∈ Vcluk , i = 1, ..., |V |,∃k ∈ [1, p]. Then the loss is the same as Eq. equa-
tion 18.16.

Instead of focusing on individual nodes, pretext tasks have also been developed
based on the relationship between pairs of nodes (Jin et al, 2021, 2020d). The basic
idea is to retain the node pairwise feature similarity in the node embeddings from
GNNs. Suppose Ts,Td denote the sets of node pairs having the highest and the
lowest similarity:

Ts = {(vi,v j)| sim(xi,x j) in top-B of {sim(xi,xb)}B
b=1\sim(xi,xi),∀vi ∈ V }, (18.18)

Td = {(vi,v j)| sim(xi,x j) in bottom-B of {sim(xi,xb)}B
b=1\sim(xi,xi),∀vi ∈ V }, (18.19)

where sim(xi,x j) measures the cosine similarity of features between two nodes vi,v j
and B is the number of top/bottom pairs selected for each node. Then the pretext task
is to optimize the following regression loss:

Lssl =
1

|Ts∪Td | ∑
(vi,v j)∈Ts∪Td

ℓMSE
(

fw(|zGNN,i− zGNN, j|),sim(xi,x j)
)
, (18.20)

where fw is a function mapping the difference between two node embeddings from
GNNs to a scalar representing the similarity between them.

406 Yu Wang, Wei Jin, and Tyler Derr

18.4.3 Hybrid Pretext Tasks

Instead of employing only the topology or only the feature information as the extra
supervision, some pretext tasks combine them together as the hybrid supervision, or
even utilize information from the known training labels.

A contrastive framework for unsupervised graph representation learning, GRACE,
where two correlated graph views are generated by randomly performing corrup-
tion on attributes (masking node features) and topology (removing or adding graph
edges) is proposed in (Zhu et al, 2020c). Then the GNNs are trained using a con-
trastive loss to maximize the agreement between node embeddings in these two
views. In each iteration two graph views G 1 = {A1,X1} and G 2 = {A2,X2} are
generated randomly according to the possible augmentation functions from an input
graph G = {A,X}.

The objective is to maximize the similarity of the same nodes in different views of
the graph while minimizing the similarity of different nodes in the same or different
views of the graph. Thus, if we denote the node embeddings in the two views as
Z1

GNN = fθ (X1,A1),Z2
GNN = fθ (X2,A2), then the contrastive NT-Xent loss is:

Lssl =
1
|P+| ∑

(v1
i ,v

2
i)∈P+

ℓNT-Xent(Z1
GNN,Z

2
GNN,P

−), (18.21)

where P+ includes positive pairs of (v1
i ,v

2
i) where v1

i ,v
2
i correspond to the same

node in different views, while P− =
⋃

(v1
i ,v

2
i)∈P+ P−

v1
i

represents all sets of negative

samples with P−
v1

i
containing nodes different from vi in the same view (intra-view

negative pairs) or the other view (inter-view negative pairs).
More specifically, in the above, the two graph corruptions are removing edges

and masking node features. In removing edges, a random masking matrix M ∈
{0,1}|V |×|V | is randomly sampled whose entry is drawn from a Bernoulli distri-
bution Mi j ∼B(1− pr) if Ai j = 1 for the original graph. pr is the probability of
each edge being removed. The resulting matrix can be computed as A′ = A⊙M
creating the adjacency matrix of graph view G

′
from G .

In masking node features, a random vector m ∈ {0,1}d is utilized, where each
dimension of m is independently drawn from a Bernoulli distribution with probabil-
ity 1− pm and d is the dimension of the node features X . Then, the generated node
features X ′ for graph view G

′
from G is computed by:

X ′ = [x1⊙m;x2⊙m; · · · ;x|V |⊙m], (18.22)

where [;] is the concatenation operator. Moreover, a modified version of the GRACE
is proposed in (Zhu et al, 2021) where the whole contrastive procedure is the same as
GRACE except that the graph augmentation is adaptively performed based on the
importance of nodes and edges. Specifically, the probability of removing an edge
between nodes vi,v j should reflect the importance of the edge (vi,v j) such that the
augmentation function is more likely to corrupt unimportant edges while keeping

18 Graph Neural Networks: Self-supervised Learning 407

important connective structures intact in augmented views. Similarly the feature
dimensions frequently appearing in influential nodes are seen as important and so
are masked with lower probability.

The observation made in (Chen et al, 2020b) that nodes with further topological
distance to the labeled nodes are more likely to be misclassified indicates the un-
even distribution of the ability of GNNs to embed node features in the whole graph.
However, existing graph contrastive learning methods ignore this uneven distribu-
tion, which motivates Chen et al (2020b) to propose the distance-wise graph con-
trastive learning (DwGCL) method that can adaptively augment the graph topology,
sample the positive and negative pairs, and maximize the mutual information. The
topology information gain (TIG) is calculated based on Group PageRank and node
features to describe the task information effectiveness that the node obtains from
labeled nodes along the graph topology. By ranking the performance of GNNs on
nodes according to their TIG values with/without contrastive learning, it is found
that contrastive learning mainly improves the performance on nodes that are topo-
logically far away from the labeled nodes. Based on the above finding, Chen et al
(2020b) propose to: 1) perturb the graph topology by augmenting nodes according
to their TIG value; 2) sampling the positive and negative pairs considering local/-
global topology distance and node embedding distance; and 3) assigning different
weights to nodes in the self-supervised loss based on their TIG rankings. Results
demonstrate the performance improvement of this distance-wise graph contrastive
learning over the typical contrastive learning approach.

Another special supervision information to exploit is the prediction results of
the model itself. Sun et al (2020c) leverages the multi-stage training framework
to utilize the information of the pseudo labels generated by predictions in the next
rounds of training. The multi-stage training algorithm repeatedly adds the most con-
fident predictions of each class to the label set and re-utilizes these pseudo labeled
data to train the GNNs. Furthermore, a self-checking mechanism based on Deep-
Cluster (Caron et al, 2018) is proposed to guarantee the precision of labeled data.
Assuming that the cluster assignment for node vi is ci ∈ {0,1}p (here the number of
clusters is assumed to equal to the number of predefined classes p in the downstream
classification task) and the centroid matrix C ∈ Rd′×p represents the feature of each
cluster, then we obtain the cluster assignment ci for each node vi by optimizing:

min
C

1
V ∑

vi∈V
min

ci∈{0,1}p
||zGNN,i−Cci||22, s.t. cT

i 1p = 1. (18.23)

After applying DeepCluster to group nodes into multiple clusters, an aligning
mechanism is used to assign nodes in each cluster to their corresponding class de-
fined by downstream tasks. For each cluster k ∈ [1, p] in unlabeled data, the compu-
tation of aligning mechanism is:

ck = argmin
m
||κk−µm||2, (18.24)

408 Yu Wang, Wei Jin, and Tyler Derr

where µm denotes the centroid of class m in labeled data, κk denotes the centroid
of cluster k in unlabeled data and ck represents the aligned class that has the clos-
est distance to the centroid κk of the cluster k among all centroids of classes in the
original labeled data. Note that the self-checking can be directly performed by com-
paring the distance of each unlabeled node to centroids of classes in labeled data.
However, directly checking in this naı̈ve way is very time-consuming.

18.5 Graph-level SSL Pretext Tasks

After having just presented the node-level SSL pretext tasks, in this section we focus
on the graph-level SSL pretext tasks where we desire the node embeddings coming
from the GNNs to encode information of graph-level properties.

18.5.1 Structure-based Pretext Tasks

As the counterpart of the nodes in the graph, the edges encode abundant information
of the graph, which can also be leveraged as an extra supervision to design pretext
tasks. The pretext task in (Zhu et al, 2020a) is to recover the graph topology, i.e.,
predict edges, after randomly removing edges in the graph. After node embeddings
zGNN,i is obtained for each node vi, the probability of the edge between any pair of
nodes vi, v j is calculated by their feature similarity as follows:

A′i j = sigmoid(zGNN,i(zGNN, j)
⊤), (18.25)

and the weighted cross-entropy loss is used during training, which is defined as:

Lssl =− ∑
vi,v j∈V

W (Ai j logA′i j)+(1−Ai j) log(1−A′i j), (18.26)

where W is the weight hyperparameter used for balancing two classes; which are
node pairs having an edge and node pairs without an edge between them.

As it is known that unclean graph structure usually impedes the applicability of
GNNs (Cosmo et al, 2020; Jang et al, 2019). A method that trains the GNNs by
downstream supervised tasks based on the cleaned graph structure reconstructed
from completing a self-supervised pretext task is introduced in (Fatemi et al, 2021).
The self-supervised pretext task aims to train a separate GNN to denoise the cor-
rupted node feature X̂ generated by either randomly zeroing some dimensions of
the original node feature X when having binary features or by adding independent
Gaussian noise when X is continuous. Two methods are used to generate the initial
graph adjacency matrix Ã. The first method Full Parametrization (FP) treats every
entry in Ã as a parameter and directly optimizes its |V |2 parameters by denoising the
corrupted feature X̂ . The second method MLP-kNN considers a mapping function

18 Graph Neural Networks: Self-supervised Learning 409

kNN(MLP(X)), where a multilayer perceptron (i.e., MLP(·)) updates the original
node features and kNN(·) produces a sparse matrix by selecting top-k similar nodes
to each node and adds edges between them. Then, the generated initial adjacency
matrix Ã is normalized and symmetrized into a new adjacency matrix A as follows:

A = D−
1
2

P̃(Ã)+ P̃(Ã)⊤

2
D−

1
2 , (18.27)

where P̃ is a function with a non-negative range to ensure the positivity of every
entry in A. In MLP-kNN method, P̃ is the element-wise ReLU function. However,
the ReLU function could result in the gradient flow problem in the FP method, thus
the element-wise ELU function followed by an addition of 1 to avoid the problem
of gradient flow is used instead. Next, a separate GNN-based encoder takes noisy
node features X̂ and the new normalized adjacency matrix A as input and output the
updated node features Ẑ = GNN(X̂ ,A). The parameters in FP and MLP-kNN used
for generating the initial adjacency matrix Ã is optimized by:

Lssl =
1
|Vm| ∑

vi∈Vm

ℓMSE(xi, ẑi), (18.28)

where ẑi = Ẑ[i, :]⊤ is the noisy embedding vector of the node vi obtained by the
separate GNN-based encoder. The optimized parameters in FP and MLP-kNN leads
to the generation of more cleaned graph adjacency matrix, which in turn results in
the better performance in the downstream tasks.

In addition to the graph edges and the adjacency matrix, topological distance
between nodes is another important global structural property in graph. The pretext
task in (Peng et al, 2020) is to recover the topological distance between nodes. More
specifically, they leverage the shortest path length between nodes denoted as pi j
between nodes vi and v j, but this could be replaced with any other distance measure.
Then, they define the set C k

i as all the nodes having the shortest path distance of
length k from node vi. More formally, this is defined as:

Ci = C 1
i ∪C 2

i ∪·· ·∪C δi
i , C k

i = {v j|di j = k}, k = 1,2, · · · ,δi, (18.29)

where δi is the upper bound of the hop count from other nodes to vi, di j is the length
of the path pi j, and Ci is the union of all the k-hop shortest path neighbor sets Ck

i .
Based on these sets, one-hot encodings di j ∈Rδi are created for pairs of nodes vi,v j,
where v j ∈ Ci, according to their distance di j. Then, the GNN model is guided to
extract node embeddings that encode node topological distance as follows:

Lssl = ∑
vi∈V

∑
v j∈Ci

ℓCE(fw(|zGNN,i− zGNN, j|),di j), (18.30)

where fw is a function mapping the difference between two node embeddings to
the probabilities of pairs of nodes belonging to the corresponding category of the
topological distance. Since the number of the categories depends on the upper bound

410 Yu Wang, Wei Jin, and Tyler Derr

of the hop count (topological distance) but precisely determining this upper bound
is time-consuming for a big graph, it is assumed that the number of hops (distance)
is under control based on small-world phenomenon (Newman, 2018) and is further
divided into several major categories that clearly discriminates the dissimilarity and
partly tolerates the similarity. Experiments demonstrate that dividing the topological
distance into four categories: C 1

i ,C
2
i ,C

3
i ,C

k
i (k ≥ 4) achieves the best performance

(i.e., δi=4). Another problem is that the number of nodes that are close to the focal
node vi is much less than the nodes that are further away (i.e., the magnitude of C δi

i
will be significantly larger than other sets). To circumvent this imbalance problem,
node pairs are sampled with an adaptive ratio.

Network motifs are recurrent and statistically significant subgraphs of a larger
graph and (Zhang et al, 2020f) designs a pretext task to train a GNN encoder that can
automatically extract graph motifs. The learned motifs are further leveraged to gen-
erate informative subgraphs used in graph-subgraph contrastive learning. Firstly, a
GNN-based encoder fθ and a m-slot embedding table {m1, ...,mm} denoting m clus-
ter centers of m motifs are initialized. Then, a node affinity matrix U ∈ R|V |×|V | is
calculated by softmax normalization on the embedding similarity D(zGNN,i,zGNN, j)
between nodes i, j as in Eq. equation 18.13. Afterwards, spectral clustering (VON-
LUXBURG, 2007) is performed on U to generate different groups, within which
nG connected components that have more than three nodes are collected as the sam-
pled subgraphs from the graph G and their embeddings are calculated by apply-
ing READOUT function. For each subgraph, its cosine similarity to each of the m
motifs is calculated to obtain a similarity metric S ∈ Rm×nG . To produce semantic-
meaningful subgraphs that are close to motifs, the top 10% most similar subgraphs
to each motif are selected based on the similarity metric S and are collected into a
set G top. The affinity values in U between pairs of nodes in each of these subgraphs
are increased by optimizing the loss:

L1 =−
1
|G top|

|G top|
∑
i=1

∑
(v j ,vk)∈G top

i

U [j,k]. (18.31)

The optimization of the above loss forces nodes in motif-like subgraphs to be more
likely to be grouped together in spectral clustering, which leads to more subgraph
samples aligned with the motifs. Next, the embedding table of motifs is optimized
based on the sampled subgraphs. The assignment matrix Q ∈ Rm×nG is found by
maximizing similarities between embeddings and its assigned motif:

max
Q

Tr(QTS)− 1
λ

∑
i, j

Q[i, j] logQ[i, j], (18.32)

where the second term controlled by hyperparameter λ is to avoid all representa-
tions collapsing into a single cluster center. After the cluster assignment matrix Q is
obtained, the GNN-based encoder and the motif embedding table are trained, which
is equivalent to a supervised m-class classification problem with labels Q and the
prediction distribution S̃ obtained by applying a column-wise softmax normaliza-

18 Graph Neural Networks: Self-supervised Learning 411

tion with temperature τ:

L2 =−
1

nG

nG

∑
i=1

ℓCE(qi, s̃i), (18.33)

where qi = Q[:, i] and s̃i = S̃[:, i] denote the assignment distribution and predicted
distribution for the subgraph i, respectively. Optimizing Eq. equation 18.33 jointly
enhances the ability of GNN encoder to extract subgraphs that are similar to mo-
tifs and improves the embeddings of motifs. The last step is to train the GNN-
based encoder by a classification task where subgraphs are reassigned back to their
corresponding graphs. Note that the subgraphs are generated by the Motif-guided
extractor, which is more likely to capture higher-level semantic information com-
pared with randomly sampled subgraphs. The whole framework is trained jointly
by weighted combining L1,L2 and the contrastive loss.

Aside from the network motifs, other subgraph structures can be leveraged to
provide extra supervision in designing pretext tasks. In (Qiu et al, 2020a), an r-ego
network for a certain vertex is defined as the subgraph induced by nodes that have
shortest path with length shorter than r. Then a random walk with restart is initiated
at ego vertex vi and the subgraph induced by nodes that are visited during the random
walk starting at vi are used as the augmented version of the r-ego network. First, two
augmented r-ego networks centered around vertex vi are obtained by performing the
random walk twice (i.e., Gi and G +

i), which are defined as a positive pair since they
come from the same r-ego network. In comparison, a negative pair corresponds to
two subgraphs augmented from different r-ego networks (e.g., one coming from vi
and another coming from v j resulting in random walk induced subgraphs Gi and G j,
respectively). Based on the above defined positive and negative subgraph pairs, a
contrastive loss is set up to optimize the GNNs as follows:

Lssl =
1
|P+| ∑

(Gi,G
+
i)∈P+

ℓNT-Xent(Z1
ssl,Z

2
ssl,P

−), (18.34)

where Z1
ssl,Z

2
ssl denotes the GNN-based graph embeddings and specifically here the

two different views are the same Z1
ssl = Z2

ssl. P+ contains positive pairs of sub-
graphs (Gi,G

+
i) sampled by random walk starting at the same ego vertex vi in the

same graph while P− =
⋃

(Gi,G
+
i)∈P+ P−

Gi
represents all sets of negative samples.

Specifically P−
Gi

represents subgraphs sampled by random walk starting at either
different ego vertex from vi in G or directly sampled by random walk in different
graphs from G .

Although Graph Attention Network (GAT) (Petar et al, 2018) achieves perfor-
mance improvements over the original GCN (Kipf and Welling, 2017b), there is
little understanding of what graph attention learns. To this end, Kim and Oh (2021)
proposes a specific pretext task to leverage the edge information to supervise what
graph attention learns:

412 Yu Wang, Wei Jin, and Tyler Derr

Lssl =
1

|E ∪E −| ∑
(j,i)∈E∪E−

1
(
(j, i) ∈ E

)
· log χi j +1

(
(j, i) ∈ E −

)
log(1−χi j),

(18.35)
where E is the set of edges, E − is the sampled set of node pairs without edges,
and χi j is the edge probability between node i, j calculated from their embeddings.
Based on two primary edge attentions, the GAT attention (shortly as GO) (Petar
et al, 2018) and the dot-product attention (shortly as DP) (Luong et al, 2015), two
advanced attention mechanisms, SuperGATSD (Scaled Dot-product, shortly as SD)
and SuperGATMX (Mixed GO and DP, shortly as MX) are proposed:

ei j,SD = ei j,DP/
√

F , χi j,SD = σ(ei j,SD), (18.36)

ei j,MX = ei j,GO ·σ(ei j,DP), χi j,MX = σ(ei j,DP), (18.37)

where σ denotes the sigmoid function taking the edge weight ei j and calculating the
edge probability χi j. SuperGATSD divides the dot-product of edge ei j,DP by a square
root of dimension as Transformer (Vaswani et al, 2017) to prevent some large values
from dominating the entire attention after softmax. SuperGATMX multiplies GO and
DP attention with sigmoid, which is motivated by the gating mechanism of Gated
Recurrent Units (GRUs) (Cho et al, 2014a). Since DP attention with the sigmoid
denotes the edge probability, multiplying σ(ei j,DP) in calculating ei j,MX can softly
drop neighbors that are not likely linked while implicitly assigning importance to
the remaining nodes. ei j,DP,ei j,GO are the weight of edge (i, j) used to calculate the
GO and DP attention. Results disclose several insightful discovers including the GO
attention learns label-agreement better than DP, whereas DP predicts edge presence
better than GO, and the performance of the attention mechanism is not fixed but
depends on homophily and average degree of the specific graph.

The topological information can also be generated manually for designing pretext
tasks. Gao et al (2021) proposes to encode the transformation information between
two different graph topologies in the representations of nodes obtained by GNNs.
First, they transform the original graph adjacency matrix A into Â by randomly
adding or removing edges from the original edge set. Then, by feeding the original
and transformed graph topology and the node feature matrix into any GNN-based
encoder, the feature representation ZGNN, ẐGNN before and after topology transfor-
mation are calculated and their difference ∆Z ∈ RN×F ′ is defined as:

∆Z = ẐGNN−ZGNN = [∆zGNN,1, ...,∆zGNN,N]
⊤ = [ẑGNN,1− zGNN,1, ..., ẑGNN,N − zGNN,N]

⊤.
(18.38)

Next they predict the topology transformation between node vi and v j through the
node-wise feature difference ∆Z by constructing the edge representation as:

ei j =
exp(−(∆zi−∆z j)⊙ (∆zi−∆z j))

||exp(−(∆zi−∆z j)⊙ (∆zi−∆z j))||
, (18.39)

where ⊙ denotes the Hardamard product. This edge representation ei j is then fed
into an MLP for the prediction of the topological transformation, which includes

18 Graph Neural Networks: Self-supervised Learning 413

four classes: edge addition, edge deletion, keeping disconnection and keeping con-
nection between each pair of nodes. Thus, the GNN-based encoder is trained by:

Lssl =
1
|V |2 ∑

vi,v j∈V
ℓCE(MLP(ei j), ti j) (18.40)

where we denote the topological transformation category between nodes vi and v j
as one-hot encoding ti j ∈ R4.

18.5.2 Feature-based Pretext Tasks

Typically, graphs do not come with any feature information and here the graph-level
features refer to the graph embeddings obtained after applying a pooling layer on
all node embeddings from GNNs.

GraphCL (You et al, 2020b) designs the pretext task to first augment graphs
by four different augmentations including node dropping, edge perturbation, at-
tribute masking and subgraph extraction and then maximize the mutual information
of the graph embeddings between different augmented views generated from the
same original graph while also minimizing the mutual information of the graph em-
beddings between different augmented views generated from different graphs. The
graph embeddings Zssl are obtained through any permutational-invariant READ-
OUT function on node embeddings followed by applying an adaptation layer. Then
the mutual information is maximized by optimizing the following NT-Xent con-
trastive loss:

Lssl =
1
|P+| ∑

(Gi,G j)∈P+

ℓNT-Xent(Z1
ssl,Z

2
ssl,P

−), (18.41)

where Z1
ssl,Z

2
ssl represent graph embeddings under two different views. The view

could be the original view without any augmentation or the one generated from ap-
plying four different augmentations. P+ contains positive pairs of graphs (Gi,G j)
augmented from the same original graph while P− =

⋃
(Gi,G j)∈P+ P−

Gi
represents

all sets of negative samples. Specifically P−
Gi

contains graphs augmented from the
graph different from Gi. Numerical results demonstrate that the augmentation of
edge perturbations benefits social networks but hurts biochemical molecules. Ap-
plying attribute masking achieves better performance in denser graphs. Node drop-
ping and subgraph extraction are generally beneficial across all datasets.

414 Yu Wang, Wei Jin, and Tyler Derr

Fig. 18.6: An example of a context and r-neighborhood graph.

18.5.3 Hybrid Pretext Tasks

One way to use the information of the training nodes in designing pretext tasks is
developed in (Hu et al, 2020c) where the context concept is raised. The goal of this
work is to pre-train a GNN so that it maps nodes appearing in similar graph structure
contexts to nearby embeddings. For every node vi, the r-hop neighborhood of vi
contains all nodes and edges that are at most r-hops away from vi in the graph. The
context graph of vi is a subgraph between r1-hops and r2-hops away from node vi.
It is required that r1 < r so that some nodes are shared between the neighborhood
and the context graph, which is referred to as context anchor nodes. Examples of
neighborhood and context graphs are shown in Fig. 18.6. Two GNN encoders are set
up: the main GNN encoder is to get the node embedding zr

GNN,i based on their r-hop
neighborhood node features and the context GNN is to get the node embeddings
of every other node in the context anchor node set, which are then averaged to
get the node context embedding ci. Then Hu et al (2020c) used negative sampling
to jointly learn the main GNN and the context GNN. In the optimization process,
positive samples refer to the situation when the center node of the context and the
neighborhood graphs is the same while the negative samples refer to the situation
when the center nodes of the context and the neighborhood graphs are different. The
learning objective is a binary classification of whether a particular neighborhood and
a particular context graph have the same center node and the negative likelihood loss
is used as follows:

Lssl =−(
1
|K | ∑

(vi,v j)∈K
(yi log(σ((zr

GNN,i)
⊤c j))+(1−yi) log(1−σ((zr

GNN,i)
⊤c j))))

(18.42)
where yi = 1 for the positive sample where i= j while yi = 0 for the negative sample
where i ̸= j, with K denoting the set of positive and negative pairs, and σ is the
sigmoid function computing the probability.

18 Graph Neural Networks: Self-supervised Learning 415

Similar idea to employ the context concept in completing pretext tasks is also
proposed in (Jin et al, 2020d). Specifically, the context here is defined as:

yic =
|ΓVl (vi,c)|+ |ΓVu(vi,c)|
|ΓVl (vi)|+ |ΓVu(vi)|

,c = 1, ..., l, (18.43)

where Vu and Vl denote the unlabeled and labeled node set, ΓVu(vi) denotes the
unlabeled nodes that are adjacency to node vi, ΓVu(vi,c) denotes the unlabeled nodes
that have been assigned class c and are adjacency to node vi, NVl (vi) denotes the
labeled nodes that are adjacency to node vi, ΓVl (vi,c) denotes the labeled nodes that
are adjacency to node vi and of class c. To generate labels for the unlabeled nodes so
as to calculate the context vector yi for each node vi, label propagation (LP) (ZHU,
2002) or the iterative classification algorithm (ICA) (Neville and Jensen, 2000) is
used to construct pseudo labels for unlabeled nodes in Vu. Then the pretext task is
approached by optimizing the following loss function:

Lssl =
1
|V | ∑

vi∈V
ℓCE(zssl,i,yi), (18.44)

The main issue of the above pretext task is the error caused by generating la-
bels from LP or ICA. The paper (Jin et al, 2020d) further proposed two methods
to improve the above pretext task. The first method is to replace the procedure of
assigning labels of unlabeled nodes based on only one method such as LP or ICA
with assigning labels by ensembling results from multiple different methods. Their
second method treats the initial labeling from LP or ICA as noisy labels, and then
leverages an iterative approach (Han et al, 2019) to improve the context vectors,
which leads to significant improvements based on this correction phase.

One previous pretext task is to recover the topological distance between nodes.
However, calculating the distance of the shortest path for all pairs of nodes even
after the sampling is time-consuming. Therefore, Jin (Jin et al, 2020d) replaces the
pairwise distance between nodes with the distance between nodes and their corre-
sponding clusters. For each cluster, a fixed set of anchor/center nodes is established.
For each node, its distance to this set of anchor nodes is calculated. The pretext task
is to extract node features that encode the information of this node2cluster distance.
Suppose k clusters are obtained by applying the METIS graph partitioning algo-
rithm (Karypis and Kumar, 1998) and the node with the highest degree is assumed
to be the center of the corresponding cluster, then each node vi will have a clus-
ter distance vector di ∈ Rk and the distance-to-cluster pretext task is completed by
optimizing:

Lssl =
1
|V | ∑

vi∈V
ℓMSE(zssl,i,di), (18.45)

Aside from the graph topology and the node features, the distribution of the train-
ing nodes and their training labels are another valuable source of information for
designing pretext tasks. One of the pretext tasks in (Jin et al, 2020d) is to require
the node embeddings output by GNNs to encode the information of the topological

416 Yu Wang, Wei Jin, and Tyler Derr

distance from any node to the training nodes. Assuming that the total number of
classes is p and for class c ∈ {1, ..., p} and the node vi ∈ V , the average, minimum
and maximum shortest path length from vi to all labeled nodes in class c is calcu-
lated and denoted as di ∈ R3p, then the objective is to optimize the same regression
loss as defined in Eq. equation 18.45

The generating process of networks encodes abundant information for design-
ing pretext tasks. Hu et al (2020d) propose the GPT-GNN framework for generative
pre-training of GNNs. This framework performs attribute and edge generation to
enable the pre-trained model to capture the inherent dependency between node at-
tributes and graph structure. Assuming that the likelihood over this graph by this
GNN model is p(G ;θ) which represents how the nodes in G are attributed and
connected, GPT-GNN aims to pre-train the GNN model by maximizing the graph
likelihood, i.e., θ ∗ = maxθ p(G ;θ). Given a permutated order, the log likelihood is
factorized autoregressively - generating one node per iteration as:

log pθ (X ,E) =
|V |
∑
i=1

log pθ (xi,Ei|X<i,E<i) (18.46)

For all nodes that are generated before the node i, their attributes X<i, and the edges
between these nodes E<i are used to generate a new node vi, including both its at-
tribute xi and its connections with existing nodes Ei. Instead of directly assuming
that xi,Ei are independent, they devise a dependency-aware factorization mecha-
nism to maintain the dependency between node attributes and edge existence. The
generation process can be decomposed into two coupled parts: (1) generating node
attributes given the observed edges, and (2) generating the remaining edges given
the observed edges and the generated node attributes. For computing the loss of
attribute generation, the generated node feature matrix X is corrupted by masking
some dimensions to obtain the corrupted version X̂Attr and further fed together with
the generated edges into GNNs to get the embeddings ẐAttr

GNN. Then, the decoder
DecAttr(·) is specified, which takes ẐAttr

GNN as input and outputs the predicted attributes
DecAttr(ẐAttr

GNN). The attribute generation loss is:

L Attr
ssl =

1
|V | ∑

vi∈V
ℓMSE(DecAttr(ẑAttr

GNN,i),xi), (18.47)

where ẑAttr
GNN,i = ẐAttr

GNN[i, :]
⊤ denotes the decoded embedding of node vi. For com-

puting the loss of edge reconstruction, the original generated node feature matrix X
is directly fed together with the generated edges into GNNs to get the embeddings
ZEdge

GNN. Then the contrastive NT-Xent loss is calculated:

L Edge
ssl =

1
|P+| ∑

(vi,v j)∈P+

ℓNT-Xent(Z
Edge
GNN,Z

Edge
GNN,P

−), (18.48)

18 Graph Neural Networks: Self-supervised Learning 417

represents all sets of negative samples and P−vi
contains all nodes that are not directly

linked with node vi. Note here two views are set equal, i.e., Z1 = Z2 = ZEdge
GNN.

18.6 Node-graph-level SSL Pretext Tasks

All the above pretext tasks are designed based on either the node or the graph level
supervision. However, there is another final line of research combining these two
sources of supervision to design pretext tasks, which we summarize in this section.

Veličković et al (2019) proposed to maximize the mutual information between
representations of high-level graphs and low-level patches. In each iteration, a nega-
tive sample X̂ , Â is generated by corrupting the graph through shuffling node features
and removing edges. Then a GNN-based encoder is applied to extract node repre-
sentations ZGNN and ẐGNN, which are also named as the local patch representations.
The local patch representations are further fed into an injective readout function to
get the global graph representations zGNN,G = READOUT(ZGNN). Then the mutual
information between ZGNN and zGNN,G is maximized by minimizing the following
loss function:

Lssl =
1

|P+|+ |P−|
(|P+|

∑
i=1

E(X ,A)[logσ(z⊤GNN,iWzGNN,G)] (18.49)

+
|P−|
∑
j=1

E(X̂ ,Â)[log(1−σ(z̃⊤GNN,iWzGNN,G))]
)
,

where |P+| and |P−| are the number of the positive and negative pairs, σ stands
for any nonlinear activation function and PReLU is used in (Veličković et al, 2019),
z⊤GNN,iWzGNN,G calculates the weighted similarity between the patch representation
centered at node vi and the graph representation. A linear classifier is followed up
to classify nodes after the above contrastive pretext task.

Similar to (Veličković et al, 2019) where the mutual information between the
patch representations and the graph representations is maximized, Hassani and
Khasahmadi (2020) proposed another framework of contrasting the node represen-
tations of one view and the graph representations of another view. The first view is
the original graph and the second view is generated by a graph diffusion matrix. The
heat and personalized PageRank (PPR) diffusion matrix are considered, which are:

Sheat = exp(tAD−1− t), (18.50)

SPPR = α(In− (1−β)D−1/2AD−1/2)−1, (18.51)

where β denotes teleport probability, t is the diffusion time, and D is the diago-
nal degree matrix. After D is obtained, two different GNN encoders followed by a

whereP+containspositivepairsofconnected nodes(vi,vj)whileP−=
⋃
(vi,vj)∈P+P−

vi

418 Yu Wang, Wei Jin, and Tyler Derr

shared projection head are applied on nodes in the original graph adjacency matrix
and the generated diffusion matrix to get two different node embeddings Z1

GNN and
Z2

GNN. Two different graph embeddings z1
GNN,G and z2

GNN,G are further obtained by
applying a graph pooling function to the node representations (before the projec-
tion head) and followed by another shared projection head. The mutual information
between nodes and graphs in different views is maximized through:

Lssl =−
1
|V | ∑

vi∈V
(MI(z1

GNN,i,z
2
GNN,G)+MI(z2

GNN,i,z
1
GNN,G)), (18.52)

where the MI represents the mutual information estimator and four estimators are
explored, which are noise-contrastive estimator, Jensen-Shannon estimator, normal-
ized temperature-scaled cross-entropy, and Donsker-Varadhan representation of the
KL-divergence. Note that the mutual information in Eq. equation 18.52 is averaged
over all graphs in the original work (Hassani and Khasahmadi, 2020). Addition-
ally, their results demonstrate that Jensen-Shannon estimator achieves better results
across all graph classification tasks, whereas in the node classification task, noise
contrastive estimation achieves better results. They also discover that increasing the
number of views does not increase the performance on downstream tasks.

18.7 Discussion

Existing methods employing self-supervision to graph neural networks achieve per-
formance improvements and numerous insightful results are also discovered in the
meantime. While most of the self-supervised pretext tasks are helpful for the down-
stream tasks, there are still a fair proportion of pretext tasks that bring weak im-
provement or even fail to boost the performance (Gao et al, 2021; Jin et al, 2020d;
Manessi and Rozza, 2020; You et al, 2020c). This is either because these pretext
tasks are highly unrelated to the primary task, i.e., the encoded features useful for
pretext tasks are useless or even harmful (Manessi and Rozza, 2020) for down-
stream tasks or because the information learned from completing pretext tasks can
already be learned from completing downstream tasks by GNNs (Jin et al, 2020d).
Besides, the strength of the performance improvement depends on the specific GNN
architecture used for completing pretext and downstream tasks. The improvements
are more significant for basic GNNs such as GCN, GAT, and GIN while less for
more advanced GNNs such as GMNN (You et al, 2020c). Furthermore, one pretext
task is not universally the best across multiple datasets (Gao et al, 2021; Manessi
and Rozza, 2020). Therefore, whether a self-supervised pretext task helps GNNs in
the standard target performance is determined by first whether the dataset allows
the GNNs to extract extra feature information through completing pretext tasks,
and second whether the extra self-supervised information complement, contradict
to or has already been covered by information extracted from existing architec-
ture (You et al, 2020c). Numerous works focus on applying contrastive learning

18 Graph Neural Networks: Self-supervised Learning 419

as a form of self-supervised learning (Chen et al, 2020b; Hassani and Khasahmadi,
2020; Veličković et al, 2019; You et al, 2020b; Zhu et al, 2021). Generally they find
that while composing different augmentations benefits the performance (You et al,
2020b), increasing the number of views generated from the same graph augmenta-
tion technique to more than two cause no further improvement (Hassani and Khasah-
madi, 2020), which is different from visual representation learning. Moreover, the
beneficial combinations of augmentations are data-specific because of the highly
heterogeneous nature of the graph-structured data and harder contrastive tasks are
more helpful than overly simple ones (You et al, 2020b). Therefore, designing viable
pretext tasks requires domain specific knowledge and should be targeted towards
specific types of networks, GNN architectures and downstream tasks.

18.8 Summary

In this chapter, we provided a systemic, categorical and comprehensive overview on
the recent works leveraging self-supervised learning in graph neural networks. De-
spite recent successes achieved by applying self-supervised learning in the text and
image domains, self-supervised learning applied to the graph domain, especially
for graph neural networks, is still in its emerging stage. Several promising direc-
tions could be pursued to further advance this field. First, although a large surge of
research focuses on designing effective pretext tasks boosting the performance of
graph neural networks, few works focus on visualizing, interpreting and explaining
the underlying reason causing such beneficial performance improvements. Deeply
understanding the intrinsic mechanism as to why and how SSL helps GNNs could
help us design more powerful pretext tasks. Second, similar to the work defining
the architectural design space for GNNs to quickly query the best GNN design
for a novel task on a novel dataset (You et al, 2020a), we should collect and clas-
sify various pretext tasks and create a design space for SSL in GNNs. This allows
for transferring the best designs of pretext tasks across different downstream tasks,
GNN architectures and datasets. We hope that this chapter can shed some light on
the main ideas of applying self-supervised learning to graph neural networks and
related applications in order to encourage progress in the field.

420 Yu Wang, Wei Jin, and Tyler Derr

Editor’s Notes: Although methods introduced in the previous chapter
(chapter 4, 5, 6, 15, and 16) have achieved state-of-the-art performances in
corresponding tasks, they require large annotated datasets. Self-supervised
learning seeks to create and utilize pretext labels on unlabeled data. Pre-
text tasks are relevant to traditional graph analysis tasks, such as node-level
tasks (chapter 4) and graph level tasks (chapter 9), while pretext tasks use
pseudo labels. The development of self-supervised GNN is of great signif-
icance to domains where labeled data are difficult to obtain, such as drug
development (chapter 24). Besides, domains that have accumulated a large
number of unlabeled data sets, such as computer vision (chapter 20) and
natural language processing (chapter 21), also benefit from self-supervised
learning.

Part IV
Broad and Emerging Applications with

Graph Neural Networks

Chapter 19
Graph Neural Networks in Modern
Recommender Systems

Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Abstract Graph is an expressive and powerful data structure that is widely applica-
ble, due to its flexibility and effectiveness in modeling and representing graph struc-
ture data. It has been more and more popular in various fields, including biology,
finance, transportation, social network, among many others. Recommender system,
one of the most successful commercial applications of the artificial intelligence,
whose user-item interactions can naturally fit into graph structure data, also receives
much attention in applying graph neural networks (GNNs). We first summarize the
most recent advancements of GNNs, especially in the recommender systems. Then
we share our two case studies, dynamic GNN learning and device-cloud collabora-
tive Learning for GNNs. We finalize with discussions regarding the future directions
of GNNs in practice.

19.1 Graph Neural Networks for Recommender System in
Practice

19.1.1 Introduction

The Introduction of GNNs Graph has a long history originated from the Seven
Bridges of Königsberg problem in 1736 (Biggs et al, 1986). It is flexible to model

Yunfei Chu,
DAMO Academy, Alibaba Group, e-mail: fay.cyf@alibaba-inc.com

Jiangchao Yao
DAMO Academy, Alibaba Group, e-mail: jiangchao.yjc@alibaba-inc.com

Chang Zhou
DAMO Academy, Alibaba Group, e-mail: ericzhou.zc@alibaba-inc.com

Hongxia Yang
DAMO Academy, Alibaba Group, e-mail: yang.yhx@alibaba-inc.com

423
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_19

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:fay.cyf@alibaba-inc.com
mailto:jiangchao.yjc@alibaba-inc.com
mailto:ericzhou.zc@alibaba-inc.com
mailto:yang.yhx@alibaba-inc.com
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_19&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_19

424 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

complex relationships among individuals, which makes it a ubiquitous data struc-
ture widely applied in numerous fields, e.g., biology, finance, transportation, social
network, recommender systems.

Despite there are traditional topics of extracting deterministic information in
graph theory like shortest path, connected components, local clustering, graph iso-
morphism, and etc., machine learning applications for graph data focus more on
predicting the missing parts or future dynamics. Among these applications, the most
typical research problems studied in recent year, are predicting whether there exists
or will emerge an edge between two nodes (link prediction), and inferring node-level
or graph-level labels (node/graph classification).

The recent progress in deep learning leads to a booming learning paradigm called
representation learning, which also becomes the de facto standard in solving graph
machine learning problems. The idea of graph representation learning is to encode
graph primitives as real-valued vectors in the same metric space, which are then
involved in downstream applications. The encoder takes as input the original graph
such as node attributes vector and graph adjacency matrix in an end-to-end fash-
ion, rather than traditional methods that require extracting heuristic features such as
betweenness centrality, pagerank value, number of closed triangles.

Next, we summarize recent graph node representation techniques in a unified
framework and focus only on the link prediction task. We illustrate several repre-
sentative approaches in recent literature from a node-centric perspective, since the
node-centric view can naturally fit into scalable message passing implementations
that are originally popular in graph mining community (Malewicz et al, 2010; Y.Low
et al, 2012) and then borrowed to GNNs community (Wang et al, 2019f; Zhu et al,
2019c).

For a graph G = (V ,E) with adjacency matrix A, a standard graph neural net-
work model has the following components.

• An ego-network extractor EGO that extracts a local subgraph around the node
v. This local subgraph is also referred to as the receptive field of v which is then
used by the node encoder.

• An encoder ENC that maps each node v ∈ V into a vector in a metric space
Rd . The encoder takes as input the ego-network of v, as well as any node/edge
representation in EGO(v). A similarity function is defined on Rd to measure
how close two nodes appear to be.

• A learning objective L . We do not discuss node classification here and only
focus on unsupervised node representation learning. The objective can be re-
constructing the adjacency matrix A, transformations of A, or any sampled form
of A and its transformations.

Random Walk-style

Early graph representation learning approaches (Perozzi et al, 2014; Tang et al,
2015b; Cao et al, 2015; Zhou et al, 2017; Ou et al, 2016; Grover and Leskovec,
2016) in deep learning era are inspired by word2vec (Mikolov et al, 2013b), an ef-
ficient word embedding method in natural language processing community. These

19 Graph Neural Networks in Modern Recommender Systems 425

methods do not need any neighborhood for encoding, where EGO plays as an iden-
tity mapping. The encoder ENC takes as the node id in the graph and assigns a
trainable vector to each node.

The very different part of these methods is the learning objective. Approaches
like Deepwalk, LINE, Node2vec use different random walk strategies to create pos-
itive node pairs (u,v) as the training example, and estimate the probability of visiting
v given u, p(v|u), as a multinomial distribution,

p(v|u) = exp(sim(u,v))
∑v′ exp(sim(u,v′))

,

where sim is a similarity function. They exploit an approximated Noise Constrained
Estimation (NCE) loss (Gutmann and Hyvärinen, 2010), known as skip gram with
negative sampling originated in word2vec as the following, to reduce the high com-
putation cost,

logσ(sim(u,v))+ kEv′∼qneg log(1−σ(sim(u,v′))).

qneg is a proposed negative distribution, which impacts the variation of the optimiza-
tion target (Yang et al, 2020d). Note that this formula can be also approximated with
sampled softmax (Bengio and Senécal, 2008; Jean et al, 2014), which in our expe-
rience performs better in top-k recommendation tasks as the node number becomes
extremely large (Zhou et al, 2020a).

These learning objectives have connections with traditional node proximity mea-
surements in graph mining community. GraRep (Cao et al, 2015), APP (Zhou et al,
2017) borrows the idea from (Levy and Goldberg, 2014) and point out these random
walk based method are equivalent to preserving their corresponding transformations
of the adjacency matrix A, such as personalized pagerank.

Matrix Factorization-style

HOPE (Ou et al, 2016) provides a generalized matrix form of other types of node
proximity measurement, e.g., katz, adamic-adar, and adopts matrix factorization to
learn embedding that preserve these proximity. NetMF (Qiu et al, 2018) unifies
several classic graph embedding methods in the framework of matrix factorization,
provides connections between the deepwalk-like approaches and the theory of graph
Laplacian.

GNN-style

Graph neural network (Kipf and Welling, 2017b; Scarselli et al, 2008) provides
an end-to-end semi-supervised learning paradigm that was previously modeled via
label propagations. It can also be used to learn node representations in an unsu-
pervised manner like the above graph embedding methods. GNN-like approaches
for unsupervised learning, compared to deepwalk-like methods, are more power-
ful in capturing local structural, e.g., have at most the power of WL-test (Xu et al,

426 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

2019d). The downstream link prediction task that requires local-structural aware
representation or cooperation with node features may benefit more from GNN-style
approaches.

The EGO operator collects and constructs the receptive field of each node. For
GCN (Kipf and Welling, 2017b), a full k-layer neighborhood is required for each
node, making it hard to work for large graphs which usually follow power-law de-
gree distribution. GraphSage (Hamilton et al, 2017b) instead samples a fixed-size
neighborhood in each layer, mitigates this problem and can scale to large graphs.
LCGNN (Qiu et al, 2021) samples a local cluster around each node by short random-
walks with theoretical guarantee.

Then different kinds of Aggregation functions are proposed within this receptive
field. GraphSage investigates several neighborhood aggregation alternatives, includ-
ing mean/max pooling, LSTM. GAT (Veličković et al, 2018) utilizes self-attention
to perform the aggregation, which shows stable and superior performance in many
graph benchmarks. GIN (Xu et al, 2019d) has a slightly different aggregation func-
tion, whose discriminative/representational power is proved to be equal to the power
of the WL test. As link prediction task may also consider structural similarity be-
tween two nodes besides their distance, this local structural preserving method may
achieve good performance for networks that have obvious local structural patterns.

The learning objectives of GNN-style approaches are similar with those in ran-
dom walk style ones.

Introduction of Modern Recommender System

Recommender system, one of the most successful commercial applications of the
artificial intelligence, whose user-item interactions can naturally fit into graph struc-
ture data, also receives much attention to applying GNNs. We now give a brief in-
troduction about the problem settings, the classic methods in recommender systems.

The user-item relationships are the most typical form of recommender systems,
e.g., news recommendation, e-commerce recommendation, video recommendation.
Although recommender systems are eventually optimizing for a complex ecosystem
of multi-sided participants (Abdollahpouri et al, 2020), i.e., the users, the platform
and the content provider, we only focus on how the platform will maximize the
user-side utility in this chapter.

In a user-item recommender system S with recommender algorithm A , U is
the user set and I is the item set. At timestamp t, a user u ∈ U visits S , a list
of items Iu,t is produced by A . u takes positive actions, e.g., click, buy, play, on
parts of the items in Iu,t , referred to as I +

u,t , while performing the corresponding
negative actions on the others, e.g., not click, not buy, not play, referred to as I −u,t .

The basic data collected from an industrial recommender system, can be de-
scribed as

DS ,A = {(t,I +
u,t ,I

−
u,t)|u ∈U , t}. (19.1)

19 Graph Neural Networks in Modern Recommender Systems 427

The short-term objective 1 of an algorithm in modern recommender systems, can be
summarized as

A = argmax
A

∑
u,t

Utility(I +
u,t), (19.2)

in which the Utility function could be considered as maximizing click through rate,
GMV, or a mixture of multiple objectives (Ribeiro et al, 2014; McNee et al, 2006).

A modern commercial recommender system, especially for those with over mil-
lions of end-users and items, has adopted a multi-stage modeling pipeline as the
tradeoff between the business goals and the efficiency given the constraints of lim-
ited computing resources. Different stages have different simplifications of the data
organization and objectives, which many research papers do not put in a clear way.

In the following, we first review several simplifications of the industrial recom-
mendation problem setting, that are clean enough for the research community. Then
we describe the multi-stage pipeline and the problem in each stage, review clas-
sic methods to handle the problem and revisit how GNNs are applied in existing
methods, trying to give an objective view about these methods.

Simplifications of the collected data.

• Impression bias. The user feedback data generated under algorithm A , has
a bias towards estimating the oracle user preference. This critical and unique
problem for recommender system, is usually not considered, especially for the
early works.

• Negative feedback. |L −
u,t |, the number of negative behaviors in one display, is

orders of magnitude larger than |L +
u,t |, and very few dataset has collected nega-

tive feedback. Most of the well-known papers in the research community ignore
those true negative user feedback, instead, they simulate negative feedback by
sampling from a proposal distribution, which is not the ground truth and the
metrics designed over the simulated feedback may not reveal true performance.

• Temporal information. Early studies prefer a static view of recommendation,
which eliminates the temporal information of t in the user behavior sequences.

Multi-stage model pipeline in modern recommender systems.

• Retrieval Phase. This phase is also referred to as candidate generation or recall
phase. It narrows down the collection of relevant items from billions to hundreds
via efficient similarity-based learning, indexing, and searching. To prevent from
sticking into dead loops caused by fitting the exposure distribution, retrieval
phase has to independently provide sufficient diversity for different downstream
purposes or strategies, while retaining the accuracy. As the candidate set is in
extremely large size, approaches in the recall phase are usually in the form
of point-wise modeling that is simple to build sophisticated index and perform

1 We indicate the short-term objective as the objective in the sense of each request response. Here
we do not consider further impacts on the ecosystem brought by an algorithm.

428 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Table 19.1: Data simplifications in different settings

Setting / Phase in Pipeline Data Simplification

Matrix Completion / Retrieval Phase DS = {L +
u |u ∈U }

Click Through Rate Prediction / Rank Phase DS = {(L +
u ,L −

u)|u ∈U }
Sequential Recommendation / Retrieval Phase DS = {(t,L +

u,t)|u ∈U , t}

efficient retrieval. The most widely used measurement for this phase is the top-k
hit ratio.

• Rank Phase. The problem space is quite different from those in the retrieval
phase, since rank phase needs to give precise comparison within a much smaller
subspace, instead of recalling as many as good items from the entire item candi-
dates set. Restricted to a small number of candidates, it is capable of exploiting
more complex methods over the user-item interaction in acceptable response
time.

• Re-rank Phase. Considering the effects studied in the discrete choice model (Train,
1986), the relationships among the displayed items may have significant im-
pacts on the user behavior. This poses opportunities to consider from the combi-
national optimization perspective, i.e., how to chose a combination of the subset
which maximizes the whole utilities of the recommendation list.

The above stages can be adjusted according to different characteristics of the recom-
mendation scenario. For example, if the candidate set is at hundreds or thousands,
recall phase is not necessarily required as the computation power is usually enough
to cover such rank-all operation at once. The re-rank phase is also not necessary if
the item number per request is few.

We summarize in Table 19.1 the different data simplifications made in different
problem settings with their corresponding pipeline stages.

19.1.2 Classic Approaches to Predict User-Item Preference

The fundamental ability required by Recommender System is to predict the possi-
bility that a user will take actions on a specific displayed item, which we refer to as
the point-wise preference estimation, p(item|user). Now we review several classic
approaches in dealing with the cleanest setting of Matrix Completion in Table 19.1.

The user-item iteraction matrix perspective of data organization DS = {L +
u |u∈

U } is M = {Mu,i|u ∈U , i ∈I }, where each row Mu = L +
u . The famous Collabo-

rative Filtering methods in recommendation can be categorized into neighborhood-
based one and model-based one.

19 Graph Neural Networks in Modern Recommender Systems 429

Neighborhood-based Approaches

Item-based collaborative filtering first identifies a set of similar items for each of the
items that the user has clicked/purchased/rated, and then recommends top-N items
by aggregating the similarities. User-based CF, on the other hand, identifies similar
users and then performs aggregation on their clicked items.

The key part in Neighborhood-based Approaches is the definition of the similar-
ity metric. Take item-based CF as an example, top-k heuristic approaches calculate
item-item similarity from the user-item interaction matrix M, e.g., pearson corre-
lation, cosine similarity. Storing |I |x|I | similarity score pairs is intractable. In-
stead, to help produce a top-k recommendation list efficiently, neighborhood-based
k-nearest-neighbor CF usually memorizes top few similar items for each item, re-
sulting in a sparse similarity matrix C. Despite the heuristics, SLIM (Ning and
Karypis, 2011) learns such sparse similarity by reconstructing M via MC with zero
diagonal and sparse constraints in C.

One draw back of storing only the sparse similarity is that, it cannot identify
less-similar relationships which restricts its downstream applications.

Model-based Approaches

Model-based methods learn similarity functions between user and item by optimiz-
ing an objective function. Matrix Factorization, the prior of which is that the user-
behavior matrix is low-rank, i.e., all users’ tastes can be described by linear com-
binations of a few style latent factors. The prediction for a user’s preference on an
item can be calculated as the dot product of the corresponding user and item factor.

19.1.3 Item Recommendation in user-item Recommender Systems:
a Bipartite Graph Perspective

The matrix completion setting also has an equivalent form in bipartite graph,

G = (V ,E), (19.3)

where V = U ∪I , i.e., the union of the user set U and the item set I , and
E = {(u, i)|i ∈I +

u , u ∈U }, i.e., the collection of the edges between u and his/her
clicked i. Then the point-wise user-item preference estimation can be viewed as a
link prediction task in this user-item interaction bipartite graph.

Heuristic graph mining approaches, which fall into the category of neighborhood-
based CF, are widely used in the retrieval phase. We can calculate user-item similar-
ity by performing graph mining tasks like Common Neighbors, Adar (Adamic and
Adar, 2003), Katz (Katz, 1953), Personalized PageRank (Haveliwala, 2002), over
the original bipartite graph, or calculate item-item similarity on its induced item-
item correlation graph (Zhou et al, 2017; Wang et al, 2018b) which are then used in
the final user preference aggregation.

430 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Graph embedding techniques for industrial recommender system are first ex-
plored in (Zhou et al, 2017) and its successor with side information support (Wang
et al, 2018b). They construct an item correlation graph of billions of edges from
user-item click sequences organized by sessions. Then a deepwalk-style graph em-
bedding method is applied to calculate the item representations, which then provides
item-item similarities in the retrieval phase. Though it’s shown in (Zhou et al, 2017)
that embedding based method has advantage in scenarios where the top-k heuristics
cannot provide any item-pair similarity, it’s still debatable whether the similarity
given by graph embedding methods can outperform carefully designed heuristic
ones when all the top-k similar item can be retrieved.

We also note that, graph embedding techniques can be regarded as matrix factor-
ization for a transformation of the graph adjacency matrix A, as discussed in earlier
sections. That means, theoretically the difference between graph embedding tech-
niques and the basic matrix factorization are their priors, i.e., what matrix is assumed
to be the best to factorize. Factorization of the transformations of A indicates to fit
an evolved system in the future while traditional MF methods are factorizing the
current static system.

Graph neural networks for industrial recommender system are first studied
in (Ying et al, 2018b), whose backend model is a variant of GraphSage. PinSage
computes the L1 normalized visit counts of nodes during random walks started
from a given node v, and the top-k counted nodes are regarded as v’s receptive field.
Weighted aggregation is performed among the nodes according to their normalized
counts. As GraphSage-like approaches do not suffer from too large neighborhood,
PinSage is scalable to web-scale recommender system with millions of users and
items. It adopts a triplet loss, instead of NCE-variants that are usually used in other
papers.

We want to discuss more about the choice of negative examples in representa-
tion learning based recommender models, including GNNs, in the retrieval phase.
As retrieval phase aims to retrieve the k most relevant items from the entire item
space, it’s crucial to keep an item’s global position far from all irrelevant items.
In an industrial system with an extremely large candidate set, we find the perfor-
mance of any representation-based model very sensitive to the choice of negative
samples and the loss function. Though there seems a trend in mixing all kinds of
hand-crafted hard examples (Ying et al, 2018b; Huang et al, 2020b; Grbovic and
Cheng, 2018) in binary cross entropy loss or triplet loss, unfortunately, it has even
no theoretical support that can lead us to the right direction. In practice, we find
it a good choice to apply sampled softmax (Jean et al, 2014; Bengio and Senécal,
2008), InfoNCE (Zhou et al, 2020a) in the retrieval phase with an extremely large
candidate set, where the latter has also an effect of debiasing.

GNNs are a useful tool to incorporate with relational features of user and item.
KGCN (Wang et al, 2019e) enhances the item representation by performing ag-
gregations among its corresponding entity neighborhood in a knowledge graph.
KGNN-LS (Wang et al, 2019c) further poses a label smoothness assumption, which
posits that similar items in the knowledge graph are likely to have similar user pref-
erence. It adds a regularization term to help learn such a personalized weighted

19 Graph Neural Networks in Modern Recommender Systems 431

knowledge graph. KGAT (Wang et al, 2019j) shares a generally similar idea with
KGCN. The only main difference is an auxiliary loss for knowledge graph recon-
struction.

Despite there are many more paper discussing about how to fuse external knowl-
edge, relationships of other entities, which all argue it’s beneficial for downstream
recommendation tasks, one should seriously consider whether its system needs such
external knowledge or it will introduce more noises than benefits.

19.2 Case Study 1: Dynamic Graph Neural Networks Learning

19.2.1 Dynamic Sequential Graph

In a recommender, we can obtain a list of user-item interaction tuples E = {(u, i, t)}
observed in a time window, where the user u ∈ U interacts with an item i ∈ I
associated with an timestamp t ∈ R+. For a user u ∈U (or an item i ∈I) at time
t, we define the 1-depth dynamic sequential subgraph of user u (or item i) at time
t as a set of interactions of user u (or item i) before time t in chronological order,
denoted by G

(1)
u,t = {(u, i,τ)|τ < t,(u, i,τ) ∈ E } (or G

(1)
i,t = {(u, i,τ)|τ < t,(u, i,τ) ∈

E }). Given the k-depth dynamic sequential subgraphs G
(k)
i,t for i ∈ I (or G

(k)
u,t for

u ∈U), we define the (k+1)-depth dynamic sequential subgraph of user u (or item
i) at time t as a set of k-depth dynamic sequential subgraphs that user u (or item
i) interacts in chronological order with its 1-depth dynamic sequential subgraphs,
G

(k+1)
u,t = {G (k)

i,τ |τ < t,(u, i,τ) ∈ E }∪G
(1)
u,t (or G

(k+1)
i,t = {G (k)

u,τ |τ < t,(u, i,τ) ∈ E }∪
G

(1)
i,t). The illustration of DSG is shown in Figure 19.1. We define the historical

behavior sequence of user u (or item i) at time t as a sequence of interacted items
(or users) in chronological order, denoted by Su,t = {(i,τ)|τ < t,(u, i,τ) ∈ E } (or
Si,t = {(u,τ)|τ < t,(u, i,τ) ∈ E }).

…
…

!"#$%&

…

………

…… …

…

Emma

Lucy Anna

t3

t1

t2

(a) Dynamic sequential graphs in recommendation. (b) An example of a user’s 3-depth DSG.

G(3)
u0,t0

G(2)
i1,t1

G(1)
u1,t2

u0

Su0,t0

Si1,t1

i1

u1

target user

candidate item

Fig. 19.1: Illustration of Dynamic Sequential Graph. DSG is a heterogeneous time-
evolving dynamic graph combining the high-hop connectivity in graphs and the
temporal dependency in sequences. DSG is constructed from bottom to top recur-
sively.

432 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

19.2.2 DSGL: Dynamic Sequential Graph Learning

19.2.2.1 Overview

 Embedding Layer

Time-aware
Seq ENC

Time-aware
Seq ENC

Time-aware
Seq ENC

Time-aware
Seq ENC

Time-aware
Seq ENC

Concatenate

Layer 3

Layer 2

Layer 1

Layer 2

Layer 1

User 3-depth DSG Item 2-depth DSG

Query Query Query Query Query

2-nd ATT

Time Feature

2-nd ATT 2-nd ATT 2-nd ATT 2-nd ATT

Layer Combination Layer Combination

Aggregation

MLP

ftime

x
(1)
u,t

x
(2)
u,t

x
(3)
u,t

x
(1)
i,t

x
(2)
i,t

Loss

x̂u,t x̂i,t

G(2)
i,tG(3)

u,t

Fig. 19.2: Framework of the proposed DSGL method. DSGL constructs DSGs for
the target user u (left) and the candidate item i (right) respectively. Their representa-
tions are refined with multiple aggregation layers, each of which consists of a time-
aware sequence encoding layer and a second-order graph attention layer. DSGL gets
the final representations via layer combination followed by an MLP-based predic-
tion layer. Modules of the same color share the same set of parameters.

Based on the constructed user-item interaction DSG, we propose the edge learn-
ing model named Dynamic Sequential Graph Learning (DSGL), as illustrated in
Figure 19.2. The basic idea of DSGL is to perform graph convolution iteratively on
the DSGs for the target user and the candidate item on their corresponding devices,
by aggregating the embeddings of neighbors as the new representation of a target
node. The aggregator consists of two parts: (1) the time-aware sequence encoding
that encodes the behavior sequence with time information and temporal dependency
captured; and (2) the second-order graph attention that activates the related behavior
in the sequence to eliminate noisy information. Besides the above two components,
we also propose an embedding layer that initializes user, item, and time embed-
dings, a layer combination module that combines the embeddings of multiple layers
to achieve final representations, and a prediction layer that outputs the prediction
score.

19 Graph Neural Networks in Modern Recommender Systems 433

19.2.2.2 Embedding Layer

There are four groups of inputs in the proposed DSGL: the target user u, the candi-
date item i, the k-depth DSGs of the target user G k

u,t and (k-1)-depth DSGs of the can-
didate item G k−1

i,t . For each field of discrete features, such as age, gender,category,
brand, and ID, we represent it as an embedding matrix. By concatenating all fields
of features, we have the node feature of items, denoted by fitem ∈ Rdi . Similarly,
fuser ∈ Rdu represents the concatenated embedding vectors of fields in the category
of user. As for the interaction timestamp in DSG, we compute the time intervals
between the interaction time and its parent interaction time as time decays. Given
a historical behavior sequence Su,t of user u at the timestamp t, each interaction
(u, i,τ) ∈ Su,t corresponds to a time decay ∆(u,i,τ) = t − τ . Following (Li et al,
2020g), we transform the continuous time decay values to discrete features by map-
ping them to a series of buckets with the ranges [b0,b1), [b1,b2), . . . , [bl ,bl+1), where
the base b is a hyper-parameter. Then by performing the embedding lookup opera-
tion, the time decay embedding can be obtained, denoted by ftime ∈ Rdt .

19.2.2.3 Time-Aware Sequence Encoding

The nodes at each layer of DSGs are in time order, which reflects the time-varying
preference of users as well as the popularity evolution of items. Thus we perform
sequence modeling as a part of GNN to capture the dynamics of the interaction se-
quences. We design a time-aware sequential encoder to utilize the time information
explicitly. For each interaction (u, i, t), we have the historical behavior sequence Su,t
of user u and Si,t of item i. For sequence Su,t , by feeding each interacted item along
with the time decay in the sequence into the embedding layer, the behavior embed-
ding sequence is formed with the combined feature sequence, as {ei,τ |(i,τ)∈Su,t},
where ei,τ = [fitemi ; ftimeτ

] ∈ Rdi+dt is the embedding of item i in the sequence. Sim-
ilarly, for sequence Si,t , we have the embedding sequence as {eu,τ |(u,τ) ∈ Si,t},
where eu,τ = [fuseru ; ftimeτ

] ∈ Rdu+dt . We take the obtained embedding as the zero-
layer of inputs in the time-aware sequence encoder, i.e., x(0)u,t = eu,t and x(0)i,t = ei,t .
For ease of notation, we will drop the superscript in the rest of the following two
subsections.

In the time-aware sequence encoding, we infer the hidden state of each node in
the behavior sequence step by step in a RNN-based manner. Given the behavior
sequences Su,t and Si,t , we represent j-th item’s hidden states and inputs in the
sequence Su,t as hitem j and xitem j , and j-th user’s hidden states and inputs in the
sequence Si,t as huser j and xuser j . The forward formulas are

hitem j = Hitem(hitem j−1 ,xitem j); huser j = Huser(huser j−1 ,xuser j). (19.4)

where Huser(·, ·) and Hitem(·, ·) represent the encoding functions specific to user and
item, respectively. We adopt the long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) as the encoder instead of the Transformer (Vaswani et al, 2017),

434 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

since LSTM can utilize time feature to control the information to be propagated
with the time decay feature as inputs. After the time-aware sequence encoding, we
obtain the corresponding hidden states sequence of historical behavior sequence
Su,t of user u and Si,t of item i. The time-aware sequence encoding functions can
be represented as:

LSTMitem({xi,τ |(i,τ) ∈Su,t}) = {hi,τ |(i,τ) ∈Su,t};
LSTMuser({xu,τ |(u,τ) ∈Si,t}) = {hu,τ |(u,τ) ∈Si,t}.

(19.5)

19.2.2.4 Second-Order Graph Attention

In practice, there may exist noisy neighbors, whose interest or audience is irrele-
vant to the target node. To eliminate the noise brought by the unreliable nodes, we
propose an attention mechanism to activate related nodes in the behavior sequence.
Traditional graph attention mechanism, like GAT (Veličković et al, 2018), computes
attention weights between the central node and the neighbor nodes, which indicate
the importance of each neighbor node to the central node. Although they perform
well on the node classification task, they may increase noise diffusion for recom-
mendation when there exists an unreliable connection.

To address the above problem, we propose a graph attention mechanism that uses
both the parent node of the central node and the central node itself to build the query
and takes the neighbor nodes as the key and value. Since we use the parent node of
the central node to enhance the expressive power of the query, which is connected
to the key node with two hops, we name it second-order graph attention. The parent
node of the central node can be seen as a complement when the central node is
unreliable, thus improving the robustness.

Following the scaled dot-product attention (Vaswani et al, 2017), the attention
function is defined as

Attention(Q,K,V) =
softmax(QK⊤)√

d
V (19.6)

where Q, K and V represent the query, key and value, respectively, and d is the
dimension of K and Q. The multi-head attention is defined as follows:

MultiHead(Q,K,V) = [head1;head2; . . . ;headh]WO (19.7)

headi = Attention(QWQi ,KWKi ,VWVi) (19.8)

where weights WQ, WK , WV and WO are trained parameters.
Given the behavior hidden states sequence {hi,τ |(i,τ) ∈Su,t} and {hu,τ |(u,τ) ∈

Si,t} after the time-aware sequence encoding, we represents the attention process
as:

19 Graph Neural Networks in Modern Recommender Systems 435

xu,t = ATTitem({hi,τ |(i,τ) ∈Su,t});xi,t = ATTuser({hu,τ |(u,τ) ∈Si,t}). (19.9)

19.2.2.5 Aggregation and Layer Combination

The core idea of GCN is to learn representation for nodes by performing convolution
over their neighborhood. In DSGL, we stack the time-aware sequence encoding and
the second-order graph attention, and the aggregator can be represented as:

x(k+1)
u,t = ATTitem(LSTMitem({x(k)i,t |i ∈Su,t}));

x(k+1)
i,t = ATTuser(LSTMuser({x(k)u,t |i ∈Si,t})).

(19.10)

Different from traditional GCN models that use the last layer as the final node rep-
resentation, inspired by (He et al, 2020), we combine the embeddings obtained at
each layer to form the final representation of a user (an item):

x̂u,t =
1
ku

ku

∑
k=1

x(k)u,t ; x̂i,t =
1
ki

ki

∑
k=1

x(k)i,t , (19.11)

where Ku and Ki denote the numbers of DSGL layers for user u and item i, respec-
tively.

19.2.3 Model Prediction

Given an interaction triplet (u, i, t), we can predict the possibility of the user inter-
acting with the item as:

ŷ = F (u, i,G (k)
u,t ,G

(k−1)
i,t ;Θ) = MLP([eu,t ;ei,t ; x̂u,t ; x̂i,t]) (19.12)

where MLP(·) represents the MLP layer and Θ denotes the network parameters. We
adopt the cross-entropy loss function:

L =− ∑
(u,i,t,y)∈D

[y log ŷ+(1− y) log(1− ŷ)] (19.13)

where D is the set of training samples, and y ∈ {0,1} denotes the real label. The
algorithm procedure is presented in Algorithm 1.

436 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Algorithm 2 The algorithm of DSGL.
Input:

The training set D = {(u, i, t,y)}; User set U ; Item set I ; Interaction set E ; Depths ku,ki;
Number of epochs E.

Output: Network parameters Θ .
1: Initialize input feature fuseru of user u ∈U and fitemi of item i ∈I ;
2: for e← 1 to E do
3: for (u, i, t,y) ∈D do
4: Construct DSGs G

(ku)
u,t , G

(ki)
i,t for user u and item i from E ;

5: for (v, j,τ) ∈ G
(ku)
u,t

⋃
G

(ki)
i,t do

6: Obtain the behavior sequence Sv,τ and S j,τ ;

7: x(0)v,τ ← ev,τ ; x(0)j,τ ← e j,τ ;
8: for k← 1 to ku do
9: x(k)v,τ ← ATTitem(LSTMitem({x(k−1)

j,τ |i ∈Sv,τ}));
10: end for
11: for k← 1 to ki do
12: x(k)j,τ ← ATTuser(LSTMuser({x(k−1)

v,τ |i ∈S j,τ}));
13: end for
14: end for
15: x̂u,t ← 1

ku
∑

ku
k=1 x(k)u,t ; x̂i,t ← 1

ki
∑

ki
k=1 x(k)i,t ;

16: ŷu,i,t ←MLP([eu,t ;ei,t ; x̂u,t ; x̂i,t]);
17: Update the parameters Θ by optimizing Eq.19.13;
18: end for
19: end for=0

19.2.4 Experiments and Discussions

We evaluate our methods on the real-world Amazon product datasets2, and use
five subsets. The widely used metrics for the CTR prediction task, i.e., AUC (the
area under the ROC curve) and Logloss, are adopted. The compared recommen-
dation methods can be grouped into five categories, including conventional meth-
ods (SVD++ (Koren, 2008) and PNN (Qu et al, 2016)), sequential methods with
user behaviors (GRU4Rec (Hidasi et al, 2015), CASER (Tang and Wang, 2018),
ATRANK (Zhou et al, 2018a) and DIN (Zhou et al, 2018b)), sequential methods
with user and item behaviors (Topo-LSTM (Wang et al, 2017b), TIEN (Li et al,
2020g) and DIB (Guo et al, 2019a)), static-graph-based methods (NGCF (Wang
et al, 2019k) and LightGCN (He et al, 2020)), and dynamic-graph-based method
(SR-GNN (Wu et al, 2019c)).

19.2.4.1 Performance Comparison

To demonstrate the performance of the proposed model, we compare DSGL with
the state-of-the-art recommendation methods. We find that DSGL consistently out-

2 http://snap.stanford.edu/data/amazon/productGraph/

19 Graph Neural Networks in Modern Recommender Systems 437

performs all other baselines, demonstrating its effectiveness. The sequential models
outperform the conventional methods by a large margin, proving the effectiveness of
capturing temporal dependency in recommendation. The sequential methods which
model both user behaviors and item behaviors outperform the methods that only use
the user behavior sequences, which verifies the importance of both user- and item-
side behavior information. The performance of the static-graph-based methods, in-
cluding LightGCN and NGCF, are not competitive. The reasons are two folds. First,
these methods ignore the new interactions in the testing set in the inference phase.
Second, since they do not model the temporal dependency of interactions, they
cannot capture the evolving interests, degrading the performances compared with
sequential models. The session-graph-based method SR-GNN outperforms static-
graph-based methods, because SR-GNN incorporates all the interacted items before
the current moment into graphs dynamically. However, it underperforms the se-
quential methods. One possible reason could be that the ratio of repeated items in
the sequences is low in the Amazon datasets, and the transitions of items are not
complex enough to be modeled as graphs.

19.2.4.2 Effectiveness of Graph Structure and Layer Combination

To show the effectiveness of the graph structure and layer combination, we compare
the performance of DSGL and its variant DSGL w/o LC that uses the last layer
instead of the combined layer as the final representation w.r.t different numbers
of layers. Focusing on DSGL with layer combination, the performance gradually
improves with the increase of layers. We attribute the improvement to the collab-
orative information carried by the second-order and third-order connectivity in the
graph structure. Comparing DSGL and DSGL w/o LC, we find that removing the
layer combination degrades the performance largely, which demonstrates the effec-
tiveness of layer combination.

19.2.4.3 Effectiveness of Time-Aware Sequence Encoding

In DSGL, we perform time-aware sequence encoding to preserve both the order of
behaviors and the time information. Thus, we design ablation experiments to study
how the temporal dependency and time information in DSGL contributes to the
final performance. To evaluate the role of time information, we test the removal of
time feature only of the item bahavior (i.e., DSGL w/o time in UBH), of the user
behavior (i.e., DSGL w/o time in IBH), and of both behaviors (i.e., DSGL w/o
time). To evaluate the contribution of the behavior order, we test the removal of
the sequence encoding module while retaining time information (i.e., DSGL w/o
Seq ENC) and the removal of the time-aware sequence encoding (i.e., DSGL w/o
TA Seq ENC). From the comparison, we find that DSGL outperforms DSGL w/o
TA Seq ENC by a significant margin, demonstrating the efficacy of the time-aware
sequence encoding layer. Comparing DSGL w/o time, DSGL w/o time in UBH and

438 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

DSGL w/o time in IBH with the default DSGL, we observe that removing the time
information on either user or item behavior side will cause performance degradation.
DSGL outperforms DSGL w/o Seq ENC, confirming the importance of temporal
dependency carried by the historical behavior sequence.

19.2.4.4 Effectiveness of Second-Order Graph Attention

In DSGL, we propose a second-order graph attention to eliminate noise from unre-
liable neighbors. To justify its rationality, we explore different choices here. We test
the performance without graph attention (i.e., DSGL w/o ATT). We also replace the
second-order graph attention with the traditional graph attention (i.e., DSGL-GAT).
Note that the attention function in DSGL-GAT here is the same as the one in DSGL,
and the only difference is the query. DSGL-GAT takes the central node as the query.
From the results, we have the following observations:

• The best setting in all cases is adopting the second-order graph attention (i.e., the
current design of DSGL). Replacing it with GAT drops the performance, demon-
strating the effectiveness of second-order attention in activating related neighbors
and eliminating the noise from reliable neighbors.

• Removing the attention mechanism (i.e., DSGL w/o ATT), the performance de-
grades largely, worse than DSGL with traditional graph attention. In some cases,
the performance is even not as good as the best baseline. The observation demon-
strates the necessity to introduce the attention mechanism in GNN-based recom-
mendation methods due to the inevitable noise in the multi-hop neighborhood.

19.3 Case Study 2: Device-Cloud Collaborative Learning for
Graph Neural Networks

19.3.1 The proposed framework

Recently, several works (Sun et al, 2020e; Cai et al, 2020a; Gong et al, 2020; Yang
et al, 2019e; Lin et al, 2020e; Niu et al, 2020) have explored the on-device comput-
ing advantages in recommender systems. This drives the development of on-device
GNNs, e.g., DSGL in the previous section. However, these early works either only
consider the cloud modeling, or on-device inference, or the aggregation of the tem-
poral on-device training pieces to handle the privacy constraint. Little has explored
the device modeling and the cloud modeling jointly to benefit both sides for GNNs.
To bridge this gap, we introduce a Device-Cloud Collaborative Learning framework
as shown in Figure 23.2. Given a recommendation dataset {(xn,yn)}n=1,...,N , we tar-
get to learn a GNN-based mapping function f : xn→ yn on the cloud side. Here, xn is
the graph feature that contains all available candidate features and user context, yn is
the user implicit feedback (click or not) to the corresponding candidate and N is the

19 Graph Neural Networks in Modern Recommender Systems 439

MetaPatch

 
Candidates

Feedback

Ranking

MoMoDistill

All
Samples

Model-over-Models
Distillation

Cloud Device

… …

……
Optimize

Fig. 19.3: The general DCCL framework for recommendation. The cloud side is
responsible to learn the centralized cloud GNN model via the model-over-models
distillation from the personalized on-device GNN models. The device receives the
cloud GNN model to conduct the on-device personalization. We propose MoMoDis-
till and MetaPatch to instantiate each side respectively.

sample number. On the device side, each device (indexed by m) has its own local
dataset,

{
(x(m)

n ,y(m)
n)
}

n=1,...,N(m)
. We add a few parameter-efficient patches (Yuan

et al, 2020a) to the cloud GNN model f (freezing its parameters on the device side)
for each device to build a new GNN f (m) : x(m)

n → y(m)
n . In the following, we will

present the practical challenges in the deployment and our solutions.

19.3.1.1 MetaPatch for On-device Personalization

Although the device hardware has been greatly improved in the recent years, it is
still resource-constrained to learn a complete big model on the device. Meanwhile,
only finetuning last few layers is performance-limited due to the feature basis of
the pretrained layers. Fortunately, some previous works have demonstrated that it is
possible to achieve the comparable performance as the whole network finetuning via
patch learning (Cai et al, 2020b; Yuan et al, 2020a; Houlsby et al, 2019). Inspired
by these works, we insert the model patches on basis of the cloud model f for on-
device personalization. Formally, the output of the l-th layer attached with one patch
on the m-th device is expressed as

f (m)
l (·) = fl(·)+h(m)

l (·)◦ fl(·), (19.14)

where LHS of Eq.19.14 is the sum of the original fl(·) and the patch response of
fl(·). Here, h(m)

l (·) is the trainable patch function and ◦ denotes the function com-
position that treats the output of the previous function as the input. Note that, the
model patch could have different neural architectures. Here, we do not explore its
variants but specify the same bottleneck architecture like (Houlsby et al, 2019).

Nevertheless, we empirically find that the parameter space of multiple patches is
still relatively too large and easily overfits the sparse local samples. To overcome

440 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

this issue, we propose MetaPatch to reduce the parameter space. It is a kind of meta
learning methods to generate parameters (Ha et al, 2017; Jia et al, 2016). Concretely,
assume the parameters of each patch are denoted by θ

(m)
l (flatten all parameters in

the patch into a vector). Then, we can deduce the following decomposition

θ
(m)
l =Θl ∗ θ̂

(m), (19.15)

where Θl is the globally shared parameter basis (freezing it on the device and learned
in the cloud) and θ̂ (m) is the surrogate tunable parameter vector to generate each
patch parameter θ

(m)
l in the device-GNN-model f (m). To facilitate the understand-

ing, we term θ̂ (m) as the metapatch parameter. In this paper, we keep the number of
patch parameters is greatly less than that of the metapatch parameters to be learned
for personalization. Note that, regarding the pretraining of Θl , we leave the discus-
sion in the following section to avoid the clutter, since it is learned on the cloud
side. According to Eq. 19.15, we implement the patch parameter generation via the
metapatch parameter θ̂ (m) instead of directly learning θ (m). To learn the metapatch
parameter, we can leverage the local dataset to minimize the following loss function.

min
θ̂ (m)

ℓ(y, ỹ)
∣∣
ỹ= f (m)(x), (19.16)

where ℓ is the pointwise cross-entropy loss, f (m)(·) = f (m)
L (·)◦· · · f (m)

l (·) · · ·◦ f (m)
1 (·)

and L is the number of total layers. After training the device specific parameter θ̂ (m)

by Eq. 19.16, we can use Eq. 19.15 to generate all patches, and then insert them
into the cloud GNN model f via Eq. 19.14 to get the final personalized GNN model
f (m), which will provide the on-device personalized recommendation.

19.3.1.2 MoMoDistill to Enhance the Cloud Modeling

The conventional incremental training of the centralized cloud model follows the
“model-over-data” paradigm. That is, when the new training samples are collected
from devices, we directly perform the incremental learning based on the model
trained in the early sample collection. The objective is formulated as follows,

min
W f

ℓ(y, ŷ)
∣∣
ŷ= f (x), (19.17)

where Wf is the network parameter of the cloud GNN model f to be trained. This is
an independent perspective without considering the device modeling. However, the
on-device personalization actually can be more powerful than the centralized cloud
model to handle the corresponding local samples. Thus, the guidance from the on-
device models could be a meaningful prior to help the cloud modeling. Inspired
by this, we propose a “model-over-models” paradigm to simultaneously learn from
data and aggregate the knowledge from on-device models, to enhance the training of
the centralized cloud model. Formally, the objective with the distillation procedure

19 Graph Neural Networks in Modern Recommender Systems 441

on the samples from all devices is defined as,

min
W f

ℓ(y, ŷ)+β KL(ỹ, ŷ)
∣∣
ŷ= f (x),ỹ= f (m)(x), (19.18)

where β is the hyperparameter to balance the distillation and “model-over-data”
learning. Note that, the feasibility of the distillation in Eq. 19.18 critically depends
on the patch mechanism in the previous section, since it allows us to input the meta-
patch parameters like features with only loading the other parameters of f (m) in one
time. Otherwise, we will suffer from the engineering issue of reloading numerous
checkpoints frequently, which is almost impossible for current frameworks.

In MetaPatch, we introduce the global parameter basis {Θl} (simplified by Θ) to
reduce the parameter space on the device. Regarding its training, we empirically find
that coupled learning with Wf easily falls into undesirable local optimal, since they
play different roles in terms of their semantics. Therefore, we resort to a progressive
optimization strategy, that is, first optimize f based on Eq. 19.18, and then distill the
knowledge for the parameter basis Θ with the learned f . For the second step, we de-
sign an auxiliary component by considering the heterogeneous characteristics of the
metapatches from all devices and the cold-start issue at the beginning. Concretely,
given the dataset {(x,y,u(I(x)), θ̂ (I(x)))}n=1,...,N , where I maps the sample index to
the device index and u ⊂ x is the user profile features (e.g., age, gender, purchase
level, etc) of the corresponding device, we define the following auxiliary encoder,

U(θ̂ ,u) =W (1)tanh(W (2)
θ̂ +W (3)u), (19.19)

where W (1), W (2), W (3) are tunable projection matrices. Here, we use We denoting
the collection {W (1),W (2),W (3)} for simplicity. To learn the global parameter basis,
we replace θ̂ by U(θ̂ ,u) to simulate Eq. 19.15 to generate the model patch, i.e., Θ ∗
U(θ̂ ,u), since actually θ̂ is too heterogeneous to be directly used. Then, combining
Θ ∗U(θ̂ ,u) with f learned in the first distillation step, we can form a new proxy
device model f̂ (m) (different from f (m) in the patch generation). Here, we leverage
such a proxy f̂ (m) to directly distill the knowledge from the true f (m) collected from
devices, which optimizes Θ and the parameters of the auxiliary encoder,

min
(Θ , We)

ℓ(y, ŷ)+β KL(ỹ, ŷ)
∣∣
ŷ= f̂ (m)(x),ỹ= f (m)(x), (19.20)

Eq. 19.18 and Eq. 19.20 progressively help learn the centralized cloud model and the
global parameter basis. We specially term this progressive distillation mechanism as
MoMoDistill to emphasize our “model-over-models” paradigm different from the
conventional “model-over-data” incremental training on the cloud side. Finally, in
Algorithm 3, we summarize the complete procedure of DCCL.

442 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Algorithm 3 Device-Cloud Collaborative Learning for GNNs
Pretrain the cloud GNN model f , and then learn the global parameter basis Θ based on Eq. 19.20
by setting θ̂ as 0.

while lifecycle do Send f and Θ to devices.
Device(f , Θ): ▷ MetaPatch
1) Accumulate the local data into batches
2) On-device personalization via Eq.19.16
3) If time > threshold: upload personalized GNN model f (m)

4) Else: return the step 1).
Recycle all model patches {θ̂ (m)}.
Cloud({θ̂ (m)}): ▷ MoMoDistill
1) Optimize the cloud GNN model f based on Eq.19.18
2) Learn the parameter basis Θ by Eq.19.20

19.3.2 Experiments and Discussions

To demonstrate the effectiveness of the proposed framework, we conduct a range
of experiments on three recommendation datasets Amazon, Movielens-1M and
Taobao. Generally, all these three datasets are user interactive history in sequence
format, and the last user interacted item is cut out as test sample. For each last in-
teracted item, we randomly sample 100 items that do not appear in the user history.
We compare our framework with some classical cloud models, namely, the conven-
tional methods MF (Koren et al, 2009) and FM (Rendle, 2010), deep learning-based
methods NeuMF (He et al, 2017b) and DeepFM (Guo et al, 2017), and sequence-
based methods SASRec (Kang and McAuley, 2018) and DIN (Zhou et al, 2018b).
For the whole experiments, we implement our model on the basis of DIN, where
we insert the model patches in the last second fully-connected layer and the first
two fully-connected layers after the feature embedding layer. In all comparisons,
we term MetaPatch as DCCL-e, and MoMoDistill as DCCL-m, since the whole
framework resembles EM iterations. The default method to compare the baselines
is named DCCL, which indicates that it goes through both on-device personaliza-
tion and the “model-over-models” distillation. The performance are measured by
HitRate, NDCG and macro-AUC.

19.3.2.1 How is the performance of DCCL compared with the SOTAs?

To demonstrate the effectiveness of DCCL, we conduct the experiments on Ama-
zon, Movielens and Taobao to compare to a range of baselines. Aligned with the
popular experimental settings (He et al, 2017b; Zhou et al, 2018b), the last inter-
active item of each user on three datasets is left for evaluation and all items before
the last one are used for training. For DCCL, we split the training data into two
parts on average according to the temporal order: one part is for the pretraining

19 Graph Neural Networks in Modern Recommender Systems 443

of the backbone (DIN) and the other part is for the training of DCCL. In the ex-
periments, we conduct one-round DCCL-e and DCCL-m. Finally, the DCCL-m is
used to compare with the six representative models. We find that the deep learning
based methods NeuMF and DeepFM usually outperform the conventional methods
MF and FM, and the sequence-based methods SASRec and DIN consistently out-
perform previous non-sequence-based methods. Our DCCL builds upon on the best
baseline DIN and further improves its results. Specifically, DCCL shows about 2%
or more improvements in terms of NDCG@10, and at least 1% improvements in
terms of HitRate@10 on all three datasets. The performances on both small and
large datasets confirm the superiority of our DCCL.

19.3.2.2 Whether on-device personalization benefits to the cloud model?

In this section, we target to demonstrate that how on-device personalization via
MetaPatch (abbreviated as DCCl-e) can improve the recommendation performance
from different levels of users compared with the centralized cloud model. Consid-
ering the data scale and the availability of the context information for visualization,
only the Taobao dataset is used to conduct this experiment. To validate the per-
formance of DCCL-e in the fine-grained granularity, we sort the users based on
their sample numbers and then partition them into 20 groups on average along the
sorted user axis (see the statistic of the sample number w.r.t. the user in the ap-
pendix). After on-device model personalization, we calculate the performance for
each group based on the personalized models. Here, the macro-AUC metric is used,
which equally treats the users in the group instead of the group AUC in (Zhou et al,
2018b).

We use DIN as baseline and pretrain it on the Taobao Dataset of the first 20
days. Then, we test the model in the data of the remaining 10 days. For DCCL-e,
we first pretrain DIN on the Taobao Dataset of the first 10 days, and then insert
the patches into the pretrained DIN same as previous settings. Finally, we perform
the on-device personalization in the subsequent 10 days. Similarly, we test DCCL-e
on the data of the last 10 days. The evaluation is respectively conducted in the 20
groups. According to the results, we find that with the increase of the group index
number, the performance approximately decreases. This is because the users in the
group of larger indices are more like the long-tailed users based on our partition, and
their patterns are easily ignored or even sacrificed by the centralized cloud model.
In comparison, DCCL-e shows the consistent improvement over DIN on all groups,
and especially can achieve a large improvement in long-tailed user groups.

19.3.2.3 The iterative characteristics of the multi-round DCCL.

To illustrate the convergence property of DCCL, we conduct the experiments on the
Taobao dataset in different device-cloud interaction temporal intervals. Concretely,
we specify every 2, 5, 10 days interactions between device and cloud, and respec-

444 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

tively trace the performance of each round evaluated on the last click of each user.
According to the results, we observe that frequent interactions achieve much better
performance than the infrequent counterparts. We speculate that, as MeatPatch and
MoMoDistill could promote each other at every round, the advantages in perfor-
mance have been continuously strengthened with more frequent interactions. How-
ever, the side effect is we have to frequently update the on-device models, which
may introduce other uncertain crash risks. Thus, in the real-world scenarios, we
need to make a trade-off between performance and the interaction interval.

19.3.2.4 Ablation Study of DCCL

For the first study, we given the results of the one-round DCCL on the Taobao
dataset and compare with DIN. From the results, we can observe the progressive
improvement after DCCL-e and DCCL-m, and DCCL-m acquires more benefit than
DCCL-e in terms of the improvement. The revenue behind DCCL-e is MetaPatch
customizes a personalized model for each user to improve their recommendation ex-
perience once new behavior logs are collected on device, without the delayed update
from the centralized cloud server. The further improvements from DCCL-m confirm
the necessity of MoMoDistill to re-calibrate the backbone and the parameter basis
in a long term. However, if we conduct the experiments without our two modules,
the model performance is as DIN, which is not better than DCCL.

For the second ablation study, we explore the effect of the model patches in dif-
ferent layer junctions. In previous sections, we insert two patches (1st Junction, 2nd
Junction) in the two fully-connected layers respectively after the feature embedding
layer, and one patch (3rd Junction) to the layer before the last softmax transforma-
tion layer. In this experiment, we validate their effectiveness by only keep each of
them in one-round DCCL. Compared with the full model, we can find that removing
the model patch would decrease the performance. The results suggest the patches in
the 1st and 2nd junctions are more effective than the one in the 3rd junction.

19.4 Future Directions

Certainly, we have witnessed the arising trends for GNNs to be applied in various
areas. We believe the following directions should be paid more attention for GNNs
to have wider impacts in big data areas, especially in search, recommendation or
advertisement.

• There is still a lot to understand about GNNs, but there were quite a few im-
portant results about how they work (Loukas, 2020; Xu et al, 2019d; Oono and
Suzuki, 2020). Future research works of GNNs should balance between techni-
cal simplicity, high practical impact, and far-reaching theoretical insights.

• It is also great to see how GNNs can be applied for other real-world tasks (Wei
et al, 2019; Wang et al, 2019a; Paliwal et al, 2020; Shi et al, 2019a; Jiang and

19 Graph Neural Networks in Modern Recommender Systems 445

Balaprakash, 2020; Chen et al, 2020o). For example, we see applications in fix-
ing bugs in Javascript, game playing, answering IQ-like tests, optimization of
TensorFlow computational graphs, molecule generation, and question genera-
tion in dialogue systems, among many others.

• It will become popular to see GNNs applied for knowledge graph reasoning
(Ren et al, 2020; Ye et al, 2019b). A knowledge graph is a structured way to
represent facts where nodes and edges actually bear some semantic meaning,
such as the name of the actor or act of playing in movies.

• Recently there are new perspectives on how we should approach learning graph
representations, especially considering the balance between local and global
information. For example, Deng et al (2020) presents a way to improve run-
ning time and accuracy in node classification problem for any unsupervised
embedding method. Chen et al (2019c) shows that if one replaces a non-linear
neighborhood aggregation function with its linear counterpart, which includes
degrees of the neighbors and the propagated graph attributes, then the perfor-
mance of the model does not decrease. This is aligned with previous statements
that many graph data sets are trivial for classification and raises a question of
the proper validation framework for this task.

• Algorithmic works of GNNs should be integrated with system design more
closely, to empower end-to-end solutions for users to address their scenarios
by taking graph into deep learning frameworks. It should allow pluggable oper-
ators to adapt to the fast development of GNN community and excels in graph
building and sampling. As an independent and portable system, the interfaces
of AliGraph (Zhu et al, 2019c) can be integrated with any tensor engine that is
used for expressing neural network models. By co-designing the flexible Grem-
lin like interfaces for both graph query and sampling, users can customize data
accessing pattern freely. Moreover, AliGraph also shows excellent performance
and scalability.

Editor’s Notes: Recommender system is one of the hottest topics in both
research and industrial communities due to its huge value in a number of
commercial businesses such as Amazon, Facebook, LinkedIn, and so on.
Since user-item interactions, user-user interaction and item-item similarity
can naturally formulate into graph structure data, various graph represen-
tation learning techniques (GNN Methods in Chapter 4, GNN Scalability
in Chapter 6, Graph Structure Learning in Chapter 14, Dynamic GNNs in
Chapter 15, and Heterogeneous GNNs in Chapter 16) can serve a strong set
of algorithmic foundations in applying GNNs for developing an effective
and efficient modern recommendation system.

Chapter 20
Graph Neural Networks in Computer Vision

Siliang Tang, Wenqiao Zhang, Zongshen Mu, Kai Shen, Juncheng Li, Jiacheng Li
and Lingfei Wu

Abstract Recently Graph Neural Networks (GNNs) have been incorporated into
many Computer Vision (CV) models. They not only bring performance improve-
ment to many CV-related tasks but also provide more explainable decomposition to
these CV models. This chapter provides a comprehensive overview of how GNNs
are applied to various CV tasks, ranging from single image classification to cross-
media understanding. It also provides a discussion of this rapidly growing field from
a frontier perspective.

Siliang Tang,
College of Computer Science and Technology, Zhejiang University e-mail: siliang@zju.
edu.cn

Wenqiao Zhang,
College of Computer Science and Technology, Zhejiang University, e-mail: wenqiaozhang@
zju.edu.cn

Zongshen Mu,
College of Computer Science and Technology, Zhejiang University, e-mail: zongshen@zju.
edu.cn

Kai Shen,
College of Computer Science and Technology, Zhejiang University, e-mail: shenkai@zju.
edu.cn

Juncheng Li,
College of Computer Science and Technology, Zhejiang University, e-mail: junchengli@zju.
edu.cn

Jiacheng Li,
College of Computer Science and Technology, Zhejiang University, e-mail: lijiacheng@zju.
edu.cn

Lingfei Wu
JD.COM Silicon Valley Research Center, e-mail: lwu@email.wm.edu

447
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_20

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:siliang@zju.edu.cn
mailto:siliang@zju.edu.cn
mailto:wenqiaozhang@zju.edu.cn
mailto:wenqiaozhang@zju.edu.cn
mailto:zongshen@zju.edu.cn
mailto:zongshen@zju.edu.cn
mailto:shenkai@zju.edu.cn
mailto:shenkai@zju.edu.cn
mailto:junchengli@zju.edu.cn
mailto:junchengli@zju.edu.cn
mailto:lijiacheng@zju.edu.cn
mailto:lijiacheng@zju.edu.cn
mailto:lwu@email.wm.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_20&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_20

448 Authors Suppressed Due to Excessive Length

20.1 Introduction

Recent years have seen great success of Convolutional Neural Network (CNN) in
Computer Vision (CV). However, most of these methods lack the fine-grained anal-
ysis of relationships among the visual data (e.g., relation visual regions, adjacent
video frames). For example, an image can be represented as a spatial map while the
regions in an image are often spatially and semantically dependent. Similarly, video
can be represented as spatio-temporal graphs, where each node in the graph repre-
sents a region of interest in the video and the edges capture relationships between
such regions. These edges can describe the relations and capture the interdepen-
dence between nodes in the visual data. Such fine-grained dependencies are critical
to perceiving, understanding, and reasoning the visual data. Therefore, graph neural
networks can be naturally utilized to extract patterns from these graphs to facilitate
the corresponding computer vision tasks.

This chapter introduces the graph neural network model in various computer
vision tasks, including specific tasks for image, video and cross-media (cross-
modal) (Zhuang et al, 2017). For each task, this chapter demonstrates how graph
neural networks can be adapted to and improve the aforementioned computer vision
tasks with representative algorithms.

Ultimately, to provide a frontier perspective, we also introduce some other dis-
tinctive GNN modeling methods and application scenarios on the subfield.

20.2 Representing Vision as Graphs

In this section, we introduce the representation of visual graph G V = {V ,E }. We
focus on how to construct nodes V = {v1,v2, ...,vN} and edges (or relations) E =
{e1,e2, ...,eM} in the visual graph.

20.2.1 Visual Node representation

Nodes are essential entities in a graph. There are three kinds of methods to represent
the node of the image X ∈ Rh×w×c or the video X ∈ Rf×h×w×c, where (h,w) is the
resolution of the original image, c is the number of channels, and f is the number of
frames.

Firstly, it is possible to split the image or the frame of the video into regular
grids referring to Fig. 20.1, each of which is the (p,p) resolution of the image patch
(Dosovitskiy et al, 2021; Han et al, 2020). Then each grid servers as the vertex of
the visual graph and apply neural networks to get its embedding.

Secondly, some pre-processed structures like Fig. 20.2 can be directly borrowed
for vertex representation. For example, by object detection framework like Faster
R-CNN (Ren et al, 2015) or YOLO (Heimer et al, 2019), visual regions in the first

20 Graph Neural Networks in Computer Vision 449

Fig. 20.1: Split an image into fixed-size patches and view as vertexes

column of the figure, have been processed and can be thought of as vertexes in the
graph. We map different regions to the same dimensional features and feed them to
the next training step. Like the middle column of the figure, scene graph generation
models (Xu et al, 2017a; Li et al, 2019i) not only achieve visual detection but also
aim to parse an image into a semantic graph which consists of objects and their
semantic relationships, where it is tractable to get vertexes and edges to deploy
downstream tasks in the image or video. In the last one, human joints linked by
skeletons naturally form a graph and learn human action patterns (Jain et al, 2016b;
Yan et al, 2018a)

Fig. 20.2: Pre-processed visual graph examples

At last, some works utilize semantic information to represent visual vertexes. Li
and Gupta (2018) assigns pixels with similar features to the same vertex, which is
soft and likely groups pixels into coherent regions. Pixel features in the group are
further aggregated to form a single vertex feature as Fig. 20.3. Using convolutions
to learn densely-distributed, low-level patterns, Wu et al (2020a) processes the input
image with several convolution blocks and treat these features from various filters as
vertexes to learn more sparsely-distributed, higher-order semantic concepts. A point
cloud is a set of 3D points recorded by LiDAR scans. Te et al (2018) and Landrieu
and Simonovsky (2018) aggregate k-nearest neighbor to form superpoint (or vertex)
and build their relations by ConvGNNs to explore the topological structure and ‘see’
the surrounding environment.

450 Authors Suppressed Due to Excessive Length

Fig. 20.3: Grouping similar pixels as vertexes (different colors)

20.2.2 Visual Edge representation

Edges depict the relations of nodes and play an important role in graph neural net-
works.For a 2D image, the nodes in the image can be linked with different spatial
relations. For a clip of video stacked by continuous frames, it adds temporal rela-
tions between frames besides spatial ones within the frame. On the one hand, these
relations can be fixed by predefined rules to train GNNs, referred to as static rela-
tions. Learning to learn relations (thought of as dynamic relations) attracts more and
more attention on the other hand.

20.2.2.1 Spatial Edges

To capture spatial relations is the key step in the image or video. For static methods,
generating scene graphs (Xu et al, 2017a) and human skeletons (Jain et al, 2016b)
are natural to choose edges between nodes in the visual graph described in the Fig.
20.2. Recently, some works (Bajaj et al, 2019; Liu et al, 2020g) use fully-connected
graph (every vertex is linked with other ones) to model the relations among vi-
sual nodes and compute union region of them to represent edge features. Further-
more, self-attention mechanism (Yun et al, 2019; Yang et al, 2019f) are introduced
to learn the relations among visual nodes, whose main idea is inspired by trans-
former (Vaswani et al, 2017) in NLP. When edges are represented, we can choose
either spectral-based or spatial-based GNNs for applications (Zhou et al, 2018c; Wu
et al, 2021d).

Fig. 20.4: A spatial-temporal graph by extracting nodes from each frame and allow-
ing directed edges between nodes in neighbouring frames

20 Graph Neural Networks in Computer Vision 451

20.2.2.2 Temporal Edges

To understand the video, the model not only builds spatial relations in a frame but
also captures temporal connections among frames. A series of methods (Yuan et al,
2017; Shen et al, 2020; Zhang et al, 2020h) compute each node in the current frame
with near frames by semantic similarity methods like k-Nearest Neighbors to con-
struct temporal relations among frames. Especially, as you can see in the Fig. 20.4,
Jabri et al (2020) represent video as a graph using a Markov chain and learn a ran-
dom walk among nodes by dynamic adjustment, where nodes are image patches, and
edges are affinities (in some feature space) between nodes of neighboring frames.
Zhang et al (2020g) use regions as visual vertexes and evaluate the IoU (Intersection
of Union) of nodes among frames to represent the weight edges.

20.3 Case Study 1: Image

20.3.1 Object Detection

Object detection is a fundamental and challenging problem in computer vision,
which received great and lasting attention in recent years. Given a natural image,
the object detection task seeks to locate the visual object instances from certain cat-
egories (e.g. humans, animals, or trees). Generally speaking, object detection can
be grouped into two categories (Liu et al, 2020b): 1) generic object detection and 2)
salient object detection. The first class aims to detect unlimited instances of objects
in the digital image and predict their class attributes from some pre-defined cate-
gories. The goal of the second type is to detect the most salient instance. In recent
years deep learning-based methods have achieved tremendous success in this field,
such as Faster-RCNN (Ren et al, 2015), YOLO (Heimer et al, 2019), and etc. Most
of the early methods and their follow-ups (Ren et al, 2015; He et al, 2017a) usu-
ally adopt the region selection module to extract the region features and predict the
active probability for each candidate region. Although they are demonstrated suc-
cessful, they mostly treat the recognition of each candidate region separately, thus
leading to nonnegligible performance drops when facing the nontypical and non-
ideal occasions, such as heavy long-tail data distributions and plenty of confusing
categories (Xu et al, 2019b). The graph neural network (GNN) is introduced to ef-
fectively address this troublesome challenge by modeling the correlations between
regions explicitly and leveraging them to achieve better performance. In this section,
we will present one typical case SGRN (Xu et al, 2019b) to discuss this promising
direction.

The SGRN can be simply divided into two modules: 1) sparse graph learner
which learns the graph structure explicitly during the training and 2) the spatial-
aware graph embedding module which leverages the learned graph structure infor-
mation and obtains the graph representation. To make it clear, we denote the graph

452 Authors Suppressed Due to Excessive Length

as G (V ,E), where V is the vertex set and E is the edge set. The image is I . And
we formulate the regions as R = {fi}nI

i=1, fi ∈ Rd for a specific image I , where d
is the region feature’s dimension. We will discuss these two parts and omit other
details.

Unlike previous attempts in close fields which build category-to-category graph
(Dai et al, 2017; Niepert et al, 2016), the SGRN treats the candidate regions R as
graph nodes V and constructs dynamic graph G on top of them. Technically, they
project the region features into the latent space z by:

zi = φ(fi) (20.1)

where φ is the two fully-connected layers with ReLU activation, zi ∈Rl and l is the
latent dimension.

The region graph is constructed by latent representation z as follows:

Si, j = ziz⊤j (20.2)

where S ∈ Rnr×nr . It is not proper to reserve all relations between region pairs since
there are many negative (i.e., background) samples among the region proposals,
which may affect the down task’s performance. If we use the dense matrix S as the
graph adjacency matrix, the graph will be fully-connected, which leads to computa-
tion burden or performance drop since most existing GNN methods work worse on
fully-connected graphs (Sun et al, 2019). To solve this issue, the SGRN adopt KNN
to make the graph sparse (Chen et al, 2020n,o). In other words, for the learned sim-
ilarity matrix Si ∈ RNr , they only keep the K nearest neighbors (including itself) as
well as the associated similarity scores (i.e., they mask off the remaining similarity
scores). The learned graph adjacency is denoted as:

A = KNN(S) (20.3)

The node’s initial embedding is obtained by the pre-trained visual classifier. We
omit the details and simply denote it as X = {xi}nr

i=1. The SGRN introduces a spatial-
aware graph reasoning module to learn the spatial-aware node embedding. Formally,
they introduce a patch of operator adapted by graph convolutional network (GCN)
with learnable gaussian kernels, given by:

f ′k(i) = ∑
j∈N (i)

ωk(µ(i, j))x jAi, j (20.4)

where N (i) denotes the neighborhood of node i, µ(i, j) is the distance of node i, j
calculated by the center of them in a polar coordinate system, and ωk() is the k−th
gaussian kernel. Then the K kernels’ results are concatenated together and projected
to the latent space as follows:

hi = g([f ′1(i); f ′2(i); ...; f ′K(i)]) (20.5)

20 Graph Neural Networks in Computer Vision 453

where g(·) denotes the projection with non-linearity. Finally, hi is combined with
the original visual region feature fi to enhance classification and regression perfor-
mance.

20.3.2 Image Classification

Inspired by the success of deep learning techniques, significant improvement has
been made in the image classification field, such as ResNet (He et al, 2016a). How-
ever, the CNN-based models are limited in modeling relations between samples. The
graph neural network is introduced to image classification, which aims to model the
fine-grained region correlations to enhance classification performance (Hong et al,
2020a), combining labeled and unlabeled image instances for semi-supervised im-
age classification (Luo et al, 2016; Satorras and Estrach, 2018). In this section, we
will present a typical case for semi-supervised image classification to show the ef-
fectiveness of GNN.

We denote the data samples as (xi,yi) ∈ T , where xi is the image and yi ∈ RK

is the image label. For semi-supervised setting, the T is divided into labeled part
Tlabeled and unlabeled part Tunlabeld . We assume that there are Nl labeled samples
and Nu unlabeled samples, respectively. The proposed GNN is dynamic and multi-
layer, which means for each layer, it will learn the graph topology from the previous
layer’s the node embedding and learn the new embedding on top of it. Thus, we
denote the layer number as M and only present the detailed graph construction and
graph embedding techniques of layer k. Technically, they construct the graph for
the image set and formulate the posterior prediction task as message passing with
graph neural network. They cast the samples as graph G (V ,E), whose nodes set
is the image set consisting of both labeled and unlabeled data. The edge set E is
constructed during training.

First, they denote the initial node representation as X = {xi}nl+nu
i=1 as follows:

xi
0 = (φ(xi),h(yi)) (20.6)

where φ() is the convolutional neural network and h() is the one-hot label encoding.
Note that for unlabeled data, they replace the h() with the uniform distribution over
the K-simplex.

Second, the graph topology is learned by current layer’s node embedding denoted
as xk. The distance matrix modeling the distance in the embedding space between
nodes is denoted as S given by:

Sk
i, j = ϕ(xi,x j) (20.7)

where ϕ is a parametrized symmetric function as follows:

ϕ(a,b) = MLP(abs(a−b)) (20.8)

454 Authors Suppressed Due to Excessive Length

where MLP() is a multilayer perceptron network and abs() is the absolute function.
Then the adjacency matrix A is calculated by normalizing the row of S using softmax
operation.

Then a GNN layer is adapted to encode the graph nodes with learned topology A.
The GNN layer receives the node embedding matrix xk and outputs the aggregated
node representation xk+1 as:

xk+1
l = ρ(∑

B∈A
Bxk

θ
k
B,l), l = d1...dk+1 (20.9)

where {θ k
1 ,,θ

k
|A|} are trainable parameters, and ρ() is non-linear activate function

(leaky ReLU here).
The graph neural network is effective in modeling the unstructured data’s cor-

relation. In this work, the GNN explicitly exploits the relation between samples,
especially the labeled and unlabeled data, contributing to few-shot image classifica-
tion challenges.

20.4 Case Study 2: Video

20.4.1 Video Action Recognition

Action recognition in video is a highly active area of research, which plays a crucial
role in video understanding. Given a video as input, the task of action recognition
is to recognize the action appearing in the video and predict the action category.
Over the past few years, modeling the spatio-temporal nature of video has been the
core of research in the field of video understanding and action recognition. Early
approaches of activity recognition such as Hand-crafted Improved Dense Trajec-
tory(iDT) (Wang and Schmid, 2013), two-Stream ConvNets (Simonyan and Zisser-
man, 2014a), C3D (Tran et al, 2015), and I3D (Carreira and Zisserman, 2017) have
focused on using spatio-temporal appearance features. To better model longer-term
temporal information, researchers also attempted to model the video as an ordered
frame sequence using Recurrent Neural Networks (RNNs) (Yue-Hei Ng et al, 2015;
Donahue et al, 2015; Li et al, 2017b). However, these conventional deep learning
approaches only focus on extracting features from the whole scenes and are unable
to model the relationships between different object instances in space and time. For
example, to recognize the action in the video corresponds to “opening a book”, the
temporal dynamics of objects and human-object and object-object interactions are
crucial. We need to temporally link book regions across time to capture the shape of
the book and how it changes over time.

To capture relations between objects across time, several deep models (Chen
et al, 2019d; Herzig et al, 2019; Wang and Gupta, 2018; Wang et al, 2018e) have
been recently introduced that represent the video as spatial-temporal graph and
leverage recently proposed graph neural networks. These methods take dense ob-

20 Graph Neural Networks in Computer Vision 455

ject proposals as graph nodes and learn the relations between them. In this section,
we take the framework proposed in (Wang and Gupta, 2018) as one example to
demonstrate how graph neural networks can be applied to action recognition task.

As illustrated in Fig 20.5, the model takes a long clip of video frames as in-
put and forwards them to a 3D Convolutional Neural Network to get a feature map
I ∈Rt×h×w×d , where t represents the temporal dimension, h×w represents the spa-
tial dimensions and d represents the channel number. Then the model adopts the
Region Proposal Network (RPN) (Ren et al, 2015) to extract the object bounding
boxes followed by RoIAlign (He et al, 2017a) extracting d-dimension feature for
each object proposal. The output n object proposals aggregated over t frames are
corresponding to n nodes in the building graphs. There are mainly two types of
graphs: Similarity Graph and Spatial-Temporal Graph.

X RoIAlign Graph
Convolutions

Building Graphs

Pooling Over n nodes

Pooling Over t×h×w nodes

1×d

1×d
Classification

t×h×w×d Feature

n×d

Fig. 20.5: Overview of the GNN-based model for Video Action Recognition.

The similarity graph is constructed to measure the similarity between objects. In
this graph, pairs of semantically related objects are connected. Formally, the pair-
wise similarity between every two nodes can be represented as:

F(xi,x j) = φ(xi)
⊤

φ
′
(x j) (20.10)

where φ and φ
′

represent two different transformations of the original features.
After computing the similarity matrix, the normalized edge values Asim

i j from
node i to node j can be defined as:

Asim
i j =

expF(xi,x j)

∑
n
j=1 expF(xi,x j)

(20.11)

456 Authors Suppressed Due to Excessive Length

The spatial-temporal graph is proposed to encode the relative spatial and tempo-
ral relations between objects, where objects in nearby locations in space and time
are connected together. The normalized edge values of the spatial-temporal graph
can be formulated as:

A f ront
i j =

σi j

∑
n
j=1 σi j

(20.12)

where G f ront represents the forward graph which connects objects from frame t to
frame t + 1, and σi j represents the value of Intersection Over Unions (IoUs) between
object i in frame t and object j in frame t + 1. The backward graph Aback can be
computed in a similar way. Then, the Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2017b) is applied to update features of each object node. One layer of
graph convolutions can be represented as:

Z = AXW (20.13)

where A represents one of the adjacency matrix (Asim, A f ront , or Aback), X represents
the node features, and W is the weight matrix of the GCN.

The updated node features after graph convolutions are forwarded to an average
pooling layer to obtain the global graph representation. Then, the graph representa-
tion and pooled video representation are concatenated together for video classifica-
tion.

20.4.2 Temporal Action Localization

Temporal action localization is the task of training a model to predict the bound-
aries and categories of action instances in untrimmed videos. Most existing meth-
ods (Chao et al, 2018; Gao et al, 2017; Lin et al, 2017; Shou et al, 2017, 2016; Zeng
et al, 2019) tackle temporal action localization in a two-stage pipeline: they first gen-
erate a set of 1D temporal proposals and then perform classification and temporal
boundary regression on each proposal individually. However, these methods process
each proposal separately, failing to leverage the semantic relations between propos-
als. To model the proposal-proposal relations in the video, graph neural networks are
then adopted to facilitate the recognition of each proposal instance. P-GCN (Zeng
et al, 2019) is recently proposed method to exploit the proposal-proposal relations
using Graph Convolutional Networks. P-GCN first constructs an action proposal
graph, where each proposal is represented as a node and their relations between two
proposals as an edge. Then P-GCN performs reasoning over the proposal graph us-
ing GCN to model the relations among different proposals and update their represen-
tations. Finally, the updated node representations are used to refine their boundaries
and classification scores based on the established proposal-proposal dependencies.

20 Graph Neural Networks in Computer Vision 457

20.5 Other Related Work: Cross-media

Graph-structured data widely exists in different modal data (images, videos, texts),
and is used in existing cross-media tasks (e.g., visual caption, visual question an-
swer, cross-media retrieval). In other words, using of graph structure data and GNN
rationally can effectively improve the performance of cross-media tasks.

20.5.1 Visual Caption

Visual caption aims at building a system that automatically generates a natural lan-
guage description of a given image or video. The problem of image captioning is
interesting not only because it has important practical applications, such as helping
visually impaired people see, but also because it is regarded as a grand challenge
for vision understanding. The typical solutions of visual captioning are inspired
by machine translation and equivalent to translating an image to a text. In these
methods (Li et al, 2017d; Lu et al, 2017a; Ding et al, 2019b), Convolutional Neu-
ral Network (CNN) or Region-based CNN (R-CNN) is usually exploited to encode
an image and a decoder of Recurrent Neural Network (RNN) w/ or w/o attention
mechanism is utilized to generate the sentence. However, a common issue not fully
studied is how visual relationships should be leveraged in view that the mutual corre-
lations or interactions between objects are the natural basis for describing an image.

Faster R-CNN

on

wearing

Attention
Mechanism

Mean Pooling

ො𝑣𝑡

ℎ𝑡−1
2

LSTM

LSTM

𝑤𝑡−1

𝑤𝑡

ҧ𝑣

ℎ𝑡
1

Semantic Graph

Spatial Graph

GCN

GCN

Fig. 20.6: Framework of GCN-LSTM.

In recent years, Yao et al (2018) presented Graph Convolutional Networks plus
Long Short-Term Memory (GCN-LSTM) architecture, which explores visual rela-
tionship for boosting image captioning. As shown in Fig. 20.6, they study the prob-
lem from the viewpoint of modeling mutual interactions between objects/regions to
enrich region-level representations that are feed into sentence decoder. Specifically,

458 Authors Suppressed Due to Excessive Length

they build two kinds of visual relationships, i.e., semantic and spatial correlations,
on the detected regions, and devised Graph Convolutions on the region-level rep-
resentations with visual relationships to learn more powerful representations. Such
relation-aware region-level representations are then input into attention LSTM for
sentence generation.

Then, Yang et al (2019g) presented a novel Scene Graph Auto-Encoder (SGAE)
for image captioning. This captioning pipeline contains two step: 1) extracting the
scene graph for an image and using GCN to encode the corresponding scene graph,
then decoding the sentence by the recoding representation; 2) incorporating the im-
age scene graph to the captioning model. They also use GCNs to encode the visual
scene graph . Given the representation of visual scene graph, they introduce joint vi-
sual and language memory to choose appropriate representation to generate image
description.

20.5.2 Visual Question Answering

Visual Question Answering (VQA) aims at building a system that automatically an-
swers natural language questions about visual information. It is a challenging task
that involves mutual understanding and reasoning across different modalities. In the
past few years, benefiting from the rapid developments of deep learning, the pre-
vailing image and video question methods (Shah et al, 2019; Zhang et al, 2019g; Yu
et al, 2017a) prefer to represent the visual and linguistic modalities in a common la-
tent subspace, use the encoder-decoder framework and attention mechanism, which
has made remarkable progress.

Fig. 20.7: GNN-based Visual QA.

However, the aforementioned methods also have not considered the graph infor-
mation in the VQA task. Recently, Zhang et al (2019a) investigates an alternative
approach inspired by conventional QA systems that operate on knowledge graphs.
Specifically, as shown in Fig. 20.7, they investigate the use of scene graphs derived
from images, then naturally encode information on graphs and perform structured
reasoning for Visual QA. The experimental results demonstrate that scene graphs,

dog

boy

in

shirt

filed

on

dog

boy

in

shirt

filed

on

Image

Question

What is the boy doing?
Global Feature

Scene Graph

Update Edges

dog

boy

in

shirt

filed

on

Update Nodes

Answer

20 Graph Neural Networks in Computer Vision 459

even automatically generated by machines, can definitively benefit Visual QA if
paired with appropriate models like GNNs. In other words, leveraging scene graphs
largely increases the Visual QA accuracy on questions related to counting, object
presence and attributes, and multi-object relationships.

Another work (Li et al, 2019d) presents the Relation-aware Graph Attention Net-
work (ReGAT), a novel framework for VQA, to model multi-type object relations
with question adaptive attention mechanism. A Faster R-CNN is used to generate a
set of object region proposals, and a question encoder is used for question embed-
ding. The convolutional and bounding-box features of each region are then injected
into the relation encoder to learn the relation-aware, question-adaptive, region-level
representations from the image. These relation-aware visual features and the ques-
tion embeddings are then fed into a multimodal fusion module to produce a joint
representation, which is used in the answer prediction module to generate an an-
swer.

20.5.3 Cross-Media Retrieval

Image-text retrieval task has become a popular cross-media research topic in re-
cent years. It aims to retrieve the most similar samples from the database in an-
other modality. The key challenge here is how to match the cross-modal data by
understanding their contents and measuring their semantic similarity. Many ap-
proaches (Faghri et al, 2017; Gu et al, 2018; Huang et al, 2017b) have been pro-
posed. They often use global representations or local to express the whole image
and sentence. Then, a metric is devised to measure the similarity of a couple of
features in different modalities. However, the above methods lose sight of the re-
lationships between objects in multi-modal data, which is also the key point for
image-text retrieval.

Fig. 20.8: Overview of dual-path neural network for Image-text retrieval.

The students

are listening to

the class.

Text

Image

Graph Structure Graph Conv

ReLU FC

Hand-crafted

features

NN features

Joint-trained

features
Feature Vector

FC FC

Similarity

estimation

Text Input

Image Input

460 Authors Suppressed Due to Excessive Length

To utilize the graph data in image and text better, as shown in Fig. 20.8, Yu
et al (2018b) proposes a novel cross-modal retrieval model named dual-path neu-
ral network with graph convolutional network. This network takes both irregular
graph-structured textual representations and regular vector-structured visual repre-
sentations into consideration to jointly learn coupled feature and common latent
semantic space.

In addition, Wang et al (2020i) extract objects and relationships from the image
and text to form the visual scene graph and text scene graph, and design a so-called
Scene Graph Matching (SGM) model, where two tailored graph encoders encode
the visual scene graph and text scene graph into the feature graph. After that, both
object-level and relationship-level features are learned in each graph, and the two
feature graphs corresponding to two modalities can be finally matched at two levels
more plausibly.

20.6 Frontiers for Graph Neural Networks on Computer Vision

In this section, we introduce the frontiers for GNNs on Computer Vision. We focus
on the advanced modeling methods of GNN for Computer Vision and their applica-
tions in a broader area of the subfield.

20.6.1 Advanced Graph Neural Networks for Computer Vision

The main idea of the GNN modeling method on CV is to represent visual informa-
tion as a graph. It is common to represent pixels, object bounding boxes, or image
frames as nodes and further build a homogeneous graph to model their relations.
Despite this kind of method, there are also some new ideas for GNN modeling.

Considering the specific task nature, some works try to represent different forms
of visual information in the graph.

• Person Feature Patches Yan et al (2019); Yang et al (2020b); Yan et al (2020b)
build spatial and temporal graphs for person re-identification (Re-ID). They
horizontally partition each person feature map into patches and use the patches
as the nodes of the graph. GCN is further used to modeling the relation of body
parts across frames.

• Irregular Clustering Regions Liu et al (2020h) introduce the bipartite GNN
for mammogram mass detection. It first leverages kNN forward mapping to
partition an image feature map into irregular regions. Then the features in an
irregular region are further integrated as a node. The bipartite node sets are con-
structed by cross-view images respectively, while the bipartite edge learns to
model both inherent cross-view geometric constraints and appearance similari-
ties.

20 Graph Neural Networks in Computer Vision 461

• NAS Cells Lin et al (2020c) proposed graph-guided Neural Architecture
Search (NAS) algorithms. The proposed models represent an operation cell as
a node and apply the GCNs to model the relationship of cells in network archi-
tecture search.

20.6.2 Broader Area of Graph Neural Networks on Computer
Vision

In this subsection, we introduce some other application scenarios of GNNs on CV,
including but not limited to the following:

• Point Cloud Analysis Point Cloud Analysis aims to recognize a set of points
in a coordinate system. Each point is represented by its three coordinates with
some other features. In order to utilize CNN, the early works (Chen et al, 2017;
Yan et al, 2018b; Yang et al, 2018a; Zhou and Tuzel, 2018) convert a point cloud
to a regular grid such as image and voxel. Recently, a series of works (Chen
et al, 2020g; Lin et al, 2020f; Xu et al, 2020e; Shi and Rajkumar, 2020; Shu et al,
2019) use a graph representation to preserve the irregularity of a point cloud.
GCN plays a similar role as CNN in image processing for aggregating local
information. Chen et al (2020g) develops a hierarchical graph network structure
for 3D object detection on point clouds. Lin et al (2020f) proposes a learnable
GCN kernel and a 3D graph max pooling with a receptive field of K nearest
neighboring nodes. Xu et al (2020e) proposes a Coverage-Aware Grid Query
and a Grid Context Aggregation to accelerate 3D scene segmentation. Shi and
Rajkumar (2020) designs a Point-GNN with an auto-registration mechanism to
detect multiple objects in a single shot.

• Low Resource Learning Low-resource learning models the ability of learn-
ing from a very small amount of data or transferring from prior. Some works
leverage GNN to incorporate structural information for the low-resource image
classification. Wang et al (2018f); Kampffmeyer et al (2019) use knowledge
graphs as extra information to guide zero-short image classification. Each node
corresponds to an object category and takes the word embeddings of nodes as
input for predicting the classifier of different categories. Except for the knowl-
edge graph, the similarity between images in the dataset is also helpful for the
few-shot learning. Garcia and Bruna (2017); Liu et al (2018e); Kim et al (2019)
set up similarity metrics and further modeling the few-shot learning problem as
a label propagating or edge-labeling problem.

• Face Recognition Wang et al (2019p) formulates the face clustering task as
a link prediction problem. It utilizes the GCN to infer the likelihood of link-
age between pairs in the face sub-graphs. Yang et al (2019d) proposes a
proposal-detection-segmentation framework for face clustering on an affinity
graph. Zhang et al (2020b) propose a global-local GCN to perform label cleans-
ing for face recognition.

462 Authors Suppressed Due to Excessive Length

• Miscellaneous We also introduce some distinctive GNN applications on the
subfield. Wei et al (2020) proposes a view-GCN to recognizes 3D shape
through its projected 2D images. Wald et al (2020) extends the concept of scene
graph to the 3D indoor scene. Ulutan et al (2020) leverage GCNs to reason the
interactions between humans and objects. Cucurull et al (2019) predicts fashion
compatibility between two items by formulating an edge prediction problem.
Sun et al (2020b) builds a social behavior graph from a video and uses GNNs
to propagate social interaction information for trajectory prediction. Zhang et al
(2020i) builds a vision and language relation graph to alleviate the hallucination
problem in the grounded video description task.

20.7 Summary

This chapter shows that GNN is a promising and fast-developing research field
that offers exciting opportunities in computer vision techniques. Nevertheless, it
also presents some challenges. For example, graphs are often related to real scenar-
ios, while the aforementioned GNNs lack interpretability, especially the decision-
making problems (e.g., medical diagnostic model) in the computer vision field.
However, compared to other black-box models (e.g., CNN), interpretability for
graph-based deep learning is even more challenging since graph nodes and edges
are often heavily interconnected. Thus, a further direction worth exploring is how to
improve the interpretability and robustness of GNN for computer vision tasks.

Editor’s Notes: Convolutional Neural Network has achieved huge success
in computer vision domain. However, recent years have seen the rise of re-
lational machine learning like GNNs and Transformers to modeling more
fine-grained correlations in both images and videos. Certainly, graph struc-
ture learning techniques in Chapter 14 becomes very important for con-
structing an optimized graph from an image or a video and learning node
representations on this learnt implicit graph. Dynamic GNNs in Chapter
15 will play an important role when coping with a video. GNN Methods
in Chapter 4 and GNN Scalability in Chapter 6 are then another two basic
building blocks for the use of GNNs for CV. This chapter is also highly
correlated with the Chapter 21 (GNN for NLP) since vision and language is
a fast-growing research area and multi-modality data is widely used today.

Chapter 21
Graph Neural Networks in Natural Language
Processing

Bang Liu, Lingfei Wu

Abstract Natural language processing (NLP) and understanding aim to read from
unformatted text to accomplish different tasks. While word embeddings learned by
deep neural networks are widely used, the underlying linguistic and semantic struc-
tures of text pieces cannot be fully exploited in these representations. Graph is a
natural way to capture the connections between different text pieces, such as enti-
ties, sentences, and documents. To overcome the limits in vector space models, re-
searchers combine deep learning models with graph-structured representations for
various tasks in NLP and text mining. Such combinations help to make full use of
both the structural information in text and the representation learning ability of deep
neural networks. In this chapter, we introduce the various graph representations that
are extensively used in NLP, and show how different NLP tasks can be tackled from
a graph perspective. We summarize recent research works on graph-based NLP, and
discuss two case studies related to graph-based text clustering, matching, and multi-
hop machine reading comprehension in detail. Finally, we provide a synthesis about
the important open problems of this subfield.

21.1 Introduction

Language serves as a cornerstone of human cognition. Enable machines to under-
stand natural language is at the very heart of machine intelligence. Natural language
processing (NLP) concerns with the interaction between machines and human lan-
guages. It is a critical subfield of computer science, linguistics, and artificial intel-
ligence (AI). Ever since the early research about machine translation in the 1950s

Bang Liu
Department of Computer Science and Operations Research, University of Montreal, e-mail:
bang.liu@umontreal.ca

Lingfei Wu
JD.COM Silicon Valley Research Center, e-mail: lwu@email.wm.edu

463
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_21

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:bang.liu@umontreal.ca
mailto:lwu@email.wm.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_21&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_21

464 Bang Liu, Lingfei Wu

until nowadays, NLP has been playing an essential role in the research of machine
learning and artificial intelligence.

NLP has a wide range of applications in the life and business of modern society.
Critical NLP applications include but not limited to: machine translation applica-
tions that aim to translate text or speech from a source language to another tar-
get language (e.g., Google Translation, Yandex Translate); chatbots or virtual assis-
tants that conduct an on-line chat conversation with a human agent (e.g., Apple Siri,
Microsoft Cortana, Amazon Alexa); search engines for information retrieval (e.g.,
Google, Baidu, Bing); question answering (QA) and machine reading comprehen-
sion in different fields and applications (e.g., open-domain question answering in
search engines, medical question answering); knowledge graphs and ontologies that
extract and represent knowledge from multi-sources to improve various applications
(e.g., DBpedia (Bizer et al, 2009), Google Knowledge Graph); and recommender
systems in E-commerce based on text analysis (e.g., E-commerce recommendation
in Alibaba and Amazon). Therefore, AI breakthroughs in NLP are big for business.

Two crucial research problems lie at the core of NLP: i) how to represent natural
language texts in a format that computers can read; and ii) how to compute based
on the input format to understand the input text pieces. We observe that researchers’
ideas on representing and modeling text keep evolving during the long history of
NLP development.

Up to the 1980s, most NLP systems were symbolic-based. Different text pieces
were considered as symbols, and the models for various NLP tasks were imple-
mented based on complex sets of hand-written rules. For example, classic rule-based
machine translation (RBMT) involves a host of rules defined by linguists in gram-
mar books. Such systems include Systran, Reverso, Prompt, and LOGOS (Hutchins,
1995). Rule-based approaches with symbolic representations are fast, accurate, and
explainable. However, acquiring the rules for different tasks is difficult and needs
extensive expert efforts.

Starting in the late 1980s, statistical machine learning algorithms brought revolu-
tion to NLP research. In statistical NLP systems, usually a piece of text is considered
as a bag of its words, disregarding grammar and even word order but keeping multi-
plicity (Manning and Schutze, 1999). Many of the notable early successes occurred
in machine translation due to statistical models were developed. Statistical systems
were able to take advantage of multilingual textual corpora. However, it is hard to
model the semantic structure and information of human language by simply consid-
ering the text as a bag of words.

Since the early 2010s, the field of NLP has shifted to neural networks and deep
learning, where word embeddings techniques such as Word2Vec (Mikolov T, 2013)
or GloVe (Pennington et al, 2014) were developed to represent words as fixed vec-
tors. We have also witnessed an increase in end-to-end learning for tasks such as
question answering. Besides, by representing text as a sequence of word embedding
vectors, different neural network architectures, such as vanilla recurrent neural net-
works (Pascanu et al, 2013), Long Short-Term Memory (LSTM) networks (Greff
et al, 2016), or convolutional neural networks (Dos Santos and Gatti, 2014), were

21 Graph Neural Networks in Natural Language Processing 465

applied to model text. Deep learning has brought a new revolution in NLP, greatly
improving the performance of various tasks.

In 2018, Google introduced a neural network-based technique for NLP pre-
training called Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al, 2019). This model has enabled many NLP tasks to achieve superhu-
man performance in different benchmarks and has spawned a series of follow-up
studies on pre-training large-scale language models (Qiu et al, 2020b). In such ap-
proaches, the representations of words are contextual sensitive vectors. By taking the
contextual information into account, we can model the polysemy of words. How-
ever, large-scale pre-trained language models require massive consumption of data
and computing resources. Besides, existing neural network-based models lack ex-
plainability or transparency, which can be a major drawback in health, education,
and finance domains.

Along with the evolving history of text representations and computational mod-
els, from symbolic representations to contextual-sensitive embeddings, we can see
an increase of semantical and structural information in text modeling. A key ques-
tion is: how to further improve the representation of various text pieces and the
computational models for different NLP tasks? We argue that representing text as
graphs and applying graph neural networks to NLP applications is a highly promis-
ing research direction. Graphs are of great significance to NLP research. The reasons
are multi-aspect, which will be illustrated in the following.

First, our world consists of things and the relations between them. The ability to
draw logical conclusions about how different things are related to one another, or
so-called relational reasoning, is central to both human and machine intelligence. In
NLP, understanding human language also requires modeling different text pieces
and reasoning over their relations. Graph provides a unified format to represent
things and the relations between them. By modeling text as graphs, we can char-
acterize the syntactic and semantic structures of different texts and perform explain-
able reasoning and inference over such representations.

Second, the structure of languages is intrinsically compositional, hierarchical,
and flexible. From corpus to documents, paraphrases, sentences, phrases, and words,
different text pieces form a hierarchical semantic structure, in which a higher-level
semantic unit (e.g., a sentence) can be further decomposed into more fine-grained
units (e.g., phrases and words). Such structural nature of human languages can be
characterized by tree structures. Furthermore, due to the flexibility of languages, the
same meaning can be expressed in different sentences, such as active and passive
voices. However, we can unify the representation of varying sentences by seman-
tic graphs like Abstract Meaning Representation (AMR) (Schneider et al, 2015) to
make NLP models more robust.

Last but not least, graphs have always been extensively utilized and formed an
essential part of NLP applications ranging from syntax-based machine translation,
knowledge graph-based question answering, abstract meaning representation for
common sense reasoning tasks, and so on. On the other hand, with the vigorous
research on graph neural networks, the recent research trend of combining graph
neural networks and NLP has become more and more prosperous. Moreover, by uti-

466 Bang Liu, Lingfei Wu

lizing the general representation ability of graphs, we can incorporate multi-modal
information (e.g., images or videos) to NLP, integrating different signals, modeling
the world contexts and dynamics, and jointly learning multi-tasks.

In this chapter, we present a brief overview of the status of graphs in NLP. We
will introduce and categorize different graph representations adopted and show how
NLP tasks can be mapped onto graph-based problems and solved by graph neural
network-based approaches in Sec. 21.2. After that, we will discuss two case studies.
The first case study in Sec. 21.3 introduces graph-based text clustering and match-
ing for hot events discovery and organization. The second one in Sec. 21.4 presents
graph-based multi-hop machine reading comprehension. We then provide a syn-
thesis about the important open problems of this subfield in Sec. 22.7. Finally, we
conclude this chapter in Sec. 21.6.

Concurrently, a few very recent survey and tutorials (Wu et al, 2021c,b; Vashishth
et al, 2019) aim to comprehensively introduce the historical and modern develop-
ments of machine learning (especially deep learning) on graphs for NLP. In addi-
tion, a recent released Graph4NLP library 1 is the first and an easy-to-use library at
the intersection of Deep Learning on Graphs and Natural Language Processing. It
provides both full implementations of state-of-the-art models for data scientists and
also flexible interfaces to build customized models for researchers and developers
with whole-pipeline support.

21.2 Modeling Text as Graphs

In this section, we will provide an overview of different graph representations in
NLP. After that, we will discuss how different NLP tasks can be tackled from a
graph perspective.

21.2.1 Graph Representations in Natural Language Processing

Various graph representations have been proposed for text modeling. Based on the
different types of graph nodes and edges, a majority of existing works can be gen-
eralized into five categories: text graphs, syntactic graphs, semantic graphs, knowl-
edge graphs, and hybrid graphs.

Text graphs use words, sentences, paragraphs, or documents as nodes and estab-
lish edges by word co-occurrence, location, or text similarities. Rousseau and Vazir-
giannis (2013); Rousseau et al (2015) represented a document as graph-of-word,
where nodes represent unique terms and directed edges represent co-occurrences
between the terms within a fixed-size sliding window. Wang et al (2011) connected
terms with syntactic dependencies. Schenker et al (2003) connected two words by

1 Graph4NLP library can be accessed via this link https://github.com/graph4ai/
graph4nlp.

https://github.com/graph4ai/graph4nlp
https://github.com/graph4ai/graph4nlp

21 Graph Neural Networks in Natural Language Processing 467

a directed edge if one word immediately precedes another word in the document
title, body, or link. The edges are categorized by the three different types of linking.
Balinsky et al (2011); Mihalcea and Tarau (2004); Erkan and Radev (2004) con-
nected sentences if they near to each other, share at least one common keyword, or
the sentence similarity is above a threshold. Page et al (1999) connected web docu-
ments by hyperlinks. Putra and Tokunaga (2017) constructed directed graphs of sen-
tences for text coherence evaluation. It utilized sentence similarities as weights and
connects sentences with various constraints about sentence similarity or location.
Text graphs can be established quickly, but they can not characterize the syntactic
or semantic structure of sentences or documents.

Syntactic graphs (or trees) emphasize the syntactical dependencies between
words in a sentence. Such structural representations of sentences are achieved by
parsing, which constructs the syntactic structure of a sentence according to a formal
grammar. Constituency parsing tree and dependency parsing graph are two types
of syntactic representations of sentences that use different grammars (Jurafsky,
2000). Based on syntactic analysis, documents can also be structured. For exam-
ple, Leskovec et al (2004) extracted subject-predicate-object triples from text based
on syntactic analysis and merges them to form a directed graph. The graph was fur-
ther normalized by utilizing WordNet (Miller, 1995) to merge triples belonging to
the same semantic pattern.

While syntactic graphs show the grammatical structure of text pieces, seman-
tic graphs aim to represent the meaning being conveyed. A model of semantics
could help disambiguate the meaning of a sentence when multiple interpretations
are valid. Abstract Meaning Representation (AMR) graphs (Banarescu et al, 2013)
are rooted, labeled, directed, acyclic graphs (DAGs), comprising whole sentences.
Sentences that are similar in meaning will be assigned the same AMR, even if they
are not identically worded. In this way, AMR graphs abstract away from syntactic
representations. The nodes in an AMR graph are AMR concepts, which are either
English words, PropBank framesets (Kingsbury and Palmer, 2002), or special key-
words. The edges are approximately 100 relations, including frame arguments fol-
lowing PropBank conventions, semantic relations, quantities, date-entities, lists, and
so on.

Knowledge graphs (KGs) are graphs of data intended to accumulate and convey
knowledge of the real world. The nodes of a KG represent entities of interest, and
the edges represent relations between these entities (Hogan et al, 2020). Prominent
examples of KGs include DBpedia (Bizer et al, 2009), Freebase (Bollacker et al,
2007), Wikidata (Vrandečić and Krötzsch, 2014) and YAGO (Hoffart et al, 2011),
covering various domains. KGs are broadly applied for commercial use-cases, such
as web search in Bing (Shrivastava, 2017) and Google (Singhal, 2012), commerce
recommendation in Airbnb (Chang, 2018) and Amazon (Krishnan, 2018), and social
networks like Facebook (Noy et al, 2019) and LinkedIn (He et al, 2016b). There are
also graph representations that connect terms in a document to real-world entities or
concepts based on KGs such as DBpedia (Bizer et al, 2009) and WordNet (Miller,
1995). For example, Hensman (2004) identifies the semantic roles in a sentence with

468 Bang Liu, Lingfei Wu

WordNet and VerbNet, and combines these semantic roles with a set of syntactic
rules to construct a concept graph.

Hybrid graphs contain multiple types of nodes and edges to integrate hetero-
geneous information. In this way, the various text attributes and relations can be
jointly utilized for NLP tasks. Rink et al (2010) utilized sentences as nodes and en-
codes lexical, syntactic, and semantic relations in edges. Jiang et al (2010) extracted
tokens, syntactic structure nodes, semantic nodes and so on from each sentence and
link them by different types of edges. Baker and Ellsworth (2017) built a sentence
graph based on Frame Semantics and Construction Grammar.

21.2.2 Tackling Natural Language Processing Tasks from a Graph
Perspective

Understanding natural language is essentially understanding different textual ele-
ments and their relationships. Therefore, we can tackle different NLP tasks from
a graph perspective based on the different representations we have introduced. In
recent years, many research works apply graph neural networks (Wu et al, 2021d)
to solve NLP problems. A majority of them are actually solving the following prob-
lems: node classification, link prediction, graph classification, graph matching, com-
munity detection, graph-to-text generation, and reasoning over graphs.

For tasks focusing on assigning labels to words or phrases, they can be mod-
eled as node classification. Cetoli et al (2017) showed that dependency trees play a
positive role for named entity recognition by using a graph convolutional network
(GCN) (Kipf and Welling, 2017b) to boost the results of a bidirectional LSTM. In
(Gui et al, 2019), a GNN-based approach was proposed to alleviate the word ambi-
guity in Chinese NER. Lexicons are used to construct the graph and provide word-
level features. Yao et al (2019) proposed a text classification method termed Text
Graph Convolutional Networks. It builds a heterogeneous word document graph for
a whole corpus and turns document classification into a node classification problem.

In addition to node classification, predicting the relationships between two el-
ements is also an essential problem in NLP research, especially for knowledge
graphs. Zhang and Chen (2018b) proposed a novel link prediction framework to
simultaneously learn from local enclosing subgraphs, embeddings, and attributes
based on graph neural networks. Rossi et al (2021) presented an extensive com-
parative analysis on link prediction models based on KG embeddings. They found
that the graph structural features play paramount effects on the effectiveness of link
prediction models. Guo et al (2019d) introduced the Attention Guided Graph Con-
volutional Networks (AGGCNs) for relation extraction tasks. The model operates
directly on the full dependency trees and learns to distill the useful information
from them in an end-to-end fashion.

Graph classification techniques are applied to text classification problems to uti-
lize the intrinsic structure of texts. In (Peng et al, 2018), a graph-CNN based deep
learning model was proposed for text classification. It first converts texts to graph-

21 Graph Neural Networks in Natural Language Processing 469

of-words and then utilizes graph convolution operations to convolve the word graph.
Huang et al (2019a); Zhang et al (2020d) proposed graph-based methods for text
classification, where each text owns its structural graph and text level word interac-
tions can be learned.

For NLP tasks involving a pair of text, graph matching techniques can be applied
to incorporate the structural information of a text. Liu et al (2019a) proposed the
Concept Interaction Graph to represent an article as a graph of concepts. It then
matches a pair of articles by comparing the sentences that enclose the same concept
node through a series of encoding techniques and aggregate the matching signals
through a graph convolutional network. Haghighi et al (2005) represented sentences
as directed graphs extracted from a dependency parser and develops a learned graph
matching approach to approximating textual entailment. Xu et al (2019e) formu-
lated the KB-alignment task as a graph matching problem, and proposed a graph
attention-based approach. It first matches all entities in two KGs, and then jointly
models the local matching information to derive a graph-level matching vector.

Community detection provides a means of coarse-graining the complex interac-
tions or relations between nodes, which is suitable for text clustering problems. For
example, Liu et al (2017a, 2020a) described a news content organization system
at Tencent which discovers events from vast streams of breaking news and evolves
news story structures in an online fashion. They constructed a keyword graph and
applied community detection over it to perform coarse-grained keyword-based text
clustering. After that, they further constructed a document graph for each coarse-
grained clusters, and applied community detection again to get fine-grained event-
level document clusters.

The task of graph-to-text generation aims at producing sentences that preserve
the meaning of input graphs (Song et al, 2020b). Koncel-Kedziorski et al (2019)
introduced a graph transforming encoder which can leverage the relational struc-
ture of knowledge graphs and generate text from them. Wang et al (2020k); Song
et al (2018) proposed graph-to-sequence models (Graph Transformer) to generate
natural language texts from AMR graphs. Alon et al (2019a) leveraged the syntactic
structure of programming languages to encode source code and generate text.

Last but not least, reasoning over graphs plays a key role in multi-hop ques-
tion answering (QA), knowledge-based QA, and conversational QA tasks. Ding
et al (2019a) presented a framework CogQA to tackle multi-hop machine reading
problem at scale. The reasoning process is organized as a cognitive graph, reaching
entity-level explainability. Tu et al (2019) represented documents as a heterogeneous
graph and employ GNN-based message passing algorithms to accumulate evidence
on the proposed graph to solve the multi-hop reading comprehension problem across
multiple documents. Fang et al (2020) created a hierarchical graph by constructing
nodes on different levels of granularity (questions, paragraphs, sentences, entities),
and proposed Hierarchical Graph Network (HGN) for multi-hop QA. Chen et al
(2020n) dynamically constructed a question and conversation history aware context
graph at each conversation turn and utilized a Recurrent Graph Neural Network and
a flow mechanism to capture the conversational flow in a dialog.

470 Bang Liu, Lingfei Wu

Fig. 21.1: The story tree of “2016 U.S. presidential election”. Figure credit: Liu et al
(2020a).

In the following, we will present two case studies to illustrate how graphs and
graph neural networks can be applied to different NLP tasks with more details.

21.3 Case Study 1: Graph-based Text Clustering and Matching

In this case study, we will describe the Story Forest intelligent news organization
system designed for fine-grained hot event discovery and organization from web-
scale breaking news (Liu et al, 2017a, 2020a). Story Forest has been deployed in the
Tencent QQ Browser, a mobile application that serves more than 110 million daily
active users. Specifically, we will see how a number of graph representations are
utilized for fine-grained document clustering and document pair matching and how
GNN contributes to the system.

21.3.1 Graph-based Clustering for Hot Events Discovery and
Organization

In the fast-paced modern society, tremendous volumes of news articles are con-
stantly being generated by different media providers, leading to information explo-
sion. In the meantime, the large quantities of daily news stories that can cover differ-
ent subjects and contain redundant or overlapping data are becoming increasingly
difficult for readers to digest. Many news app users feel that they are overwhelmed
by extremely repetitive information about a variety of current hot events while still
struggling to get information about the events in which they are genuinely interested.
Besides, search engines conduct document retrieval on the basis of user-entered re-
quests. They do not, however, provide users with a natural way to view trending
topics or breaking news.

21 Graph Neural Networks in Natural Language Processing 471

Preprocessing Documents

1. Document filtering
2. Word segmentation

w
w

w

w

w

w

w

w

Community 1Community 2

w d e sKeyword Document Event Story

Tree 1
s

e

e

Tree 2
s

e e

Tree 2
s

e

e

e

e

e

Time

e
e

e

e eStory 1

Story 2

Recommend

w
w

w

w

w

w

w

w

Keyword Graph

Keyword Extraction

Prepare Data

1. Extract a variety of
 word features
2. Classify whether each
 word is a keyword

Construct Keyword Graph

Construct or update
keyword graph by
keyword co-occurrence in
new incoming
documents.

Split Keyword Graph

Keyword Graph

1. Identify changed part
 of keyword graph
2. Community detection
3. Filtering out small
 sub-graphs

Grow Story Forest

1. Compare new events
 with existing story
 nodes
2. Merge same events, or
 insert events to stories

Find Related Story

Grow Stories

1. Identify candidate
 stories
2. Find most related story
3. If no related story,
 create a new story

Second Layer Clustering

1. Doc-pair relationship
 classification
2. Construct doc graph
3. Community detection
 on doc graph

First Layer Clustering

Cluster Events

Cluster new documents
by keyword communities.

e
e e e

e e
e

d
d d

d

d
d

t Topic

KeywordsDocuments

Event 1
Event 2 Topic 1 Topic 2

w
w

w

w

w

w

w

w

EventX

Fig. 21.2: An overview of the system architecture of Story Forest. Figure credit: Liu
et al (2020a).

In (Liu et al, 2017a, 2020a), a novel news organization system named Story For-
est was proposed to address the aforementioned challenges. The key idea of the
Story Forest system is that, instead of providing users a list of web articles based on
input queries, it proposes the concept of “event” and “story”, and propose to orga-
nize tremendous of news articles into story trees to organize and track evolving hot
events, revealing the relationships between them and reduce the redundancies. An
event is a set of news articles reporting the same piece of real-world breaking news.
And a story is a tree of related events that report a series of evolving real-world
breaking news.

Figure 21.1 presents an example of a story tree, which showcases the story of
“2016 U.S. presidential election”. There are 20 nodes in the story tree. Each node
indicates an event in the U.S. election in 2016, and each edge represents a temporal
development relationship or a logical connection between two breaking news events.
For example, event 1 is talking about Trump becomes a presidential candidate, and
event 20 says Donald Trump is elected president. The index number on each node
represents the event sequence over the timeline. The story tree contains 6 paths,
where the main path 1→ 20 captures the process of the presidential election, the
branch 3→ 6 describes Hilary’s health conditions, the branch 7→ 13 is focusing
on the television debates, 14→ 18 are about “mail door” investigation, etc. As we
can see, users can easily understand the logic of news reports and learn the key facts
quickly by modeling the evolutionary and logical structure of a story into a story
tree.

472 Bang Liu, Lingfei Wu

The story trees are constructed from web-scale news articles by the Story Forest
system. The system’s architecture is shown in Fig. 21.2. It consists primarily of four
components: preprocessing, keyword graph construction, clustering documents to
events, and growing story trees with events. The overall process is split into eight
stages. First, a range of NLP and machine learning tools will be used to process the
input news document stream, including document filtering and word segmentation.
Then the system extracts keywords, construct/update the co-occurrence graph of
keywords, and divide the graph into sub-graphs. After that, it utilizes EventX, a
graph-based fine-grained clustering algorithm to cluster documents into fine-grained
events. Finally, the story trees (formed previously) are updated by either inserting
each discovered event into an existing story tree at the right place or creating a new
story tree if the event does not belong to any current story.

We can observe from Fig. 21.2 that a variety of text graphs are utilized in
the Story Forest system. Specifically, the EventX clustering algorithm is based on
two types of text graphs: keyword co-occurrence graph and document relation-
ship graph. The keyword co-occurrence graph connects two keywords if they co-
occurred for more than n times in a news corpus, where n is a hyperparameter. On
the other hand, the document relationship graph connects document pairs based on
whether two documents are talking about the same event. Based on such two types
of text graphs, EventX can accurately extract fine-grained document clusters, where
each cluster contains a set of documents that focus on the same event.

In particular, EventX performs two-layer graph-based clustering to extract events.
The first layer performs community detection over the constructed keyword co-
occurrence graph to split it into sub-graphs, where each sub-graph the keywords for
a specific topic. The intuition for this step is that keywords related to a common topic
usually will frequently appear in documents belonging to that topic. For example,
documents belonging to the topic “2016 U.S. presidential election” will often men-
tion keywords such as “Donald Trump”, “Hillary Clinton”, “election”, and so on.
Therefore, highly correlated keywords will be linked to each other and form dense
subgraphs, whereas keywords that are not highly related will have sparse or no links.
The goal here is to extract dense keyword subgraphs linked to various topics. After
obtaining the keyword subgraphs (or communities), we can assign each document
to its most correlated keyword subgraph by calculating their TF-IDF similarity. At
this point, we have grouped documents by topics in the first layer clustering.

In the second layer, EventX constructs a document relationship graph for each
topic obtained in the first layer. Specifically, a binary classifier will be applied to
each pair of documents in a topic to detect whether two documents are talking about
the same event. If yes, we connect the pair of documents. In this way, the set of
documents in a topic turn into a document relationship graph. After that, the same
community detection algorithm in the first layer will be applied to the document
relationship graph, splitting it into sub-graphs where each sub-graph now represents
a fine-grained event instead of a coarse-grained topic. Since the number of news
articles belonging to each topic is significantly less after the first-layer document
clustering, the graph-based clustering on the second layer is highly efficient, making
it applicable for real-world applications. After extracting fine-grained events, we can

21 Graph Neural Networks in Natural Language Processing 473

Fig. 21.3 An example to
show a piece of text and its
Concept Interaction Graph
representation. Figure credit:
Liu et al (2019a)

Text: Concept Interaction Graph:

[1] Rick asks Morty to travel with him
 in the universe.
[2] Morty doesn't want to go as Rick always
 brings him dangerous experiences.
[3] However, the destination of this journey
 is the Candy Planet, which is an fascinating
 place that attracts Morty.
[4] The planet is full of delicious candies.
[5] Summer wishes to travel with Rick.
[6] However, Rick doesn't like to travel with Summer.

Rick
Morty

Rick
Summer

Morty
Candy
Planet

[1, 2] [5, 6]

[3, 4]

update the story trees by inserting an event to its related story or creating a new story
tree if it doesn’t belong to any existing stories. We refer to (Liu et al, 2020a) for more
details about the Story Forest system.

21.3.2 Long Document Matching with Graph Decomposition and
Convolution

During the construction of the document relationship graph in the Story Forest sys-
tem, a fundamental problem is determining whether two news articles are talking
about the same event. It is a problem of semantic matching, which is a core research
problem that lies at the core of many NLP applications, including search engines,
recommender systems, news systems, etc. However, previous research about se-
mantic matching is mainly designed for matching sentence pairs (Wan et al, 2016;
Pang et al, 2016), e.g., for paraphrase identification, answer selection in question-
answering, and so on. Due to the long length of news articles, such methods are not
suitable and do not perform well on document matching (Liu et al, 2019a).

To solve this challenge, Liu et al (2019a) presented a divide-and-conquer strategy
to align a pair of documents and shift deep text comprehension away from the cur-
rently dominant sequential modeling of language elements and toward a new level
of graphical document representation that is better suited to longer articles. Specif-
ically, Liu et al (2019a) proposed the Concept Interaction Graph (CIG) as a way to
view a document as a weighted graph of concepts, with each concept node being
either a keyword or a group of closely related keywords. Furthermore, two con-
cept nodes will be connected by a weighted edge which indicates their interaction
strength.

As a toy example, Fig. 21.3 shows how to convert a document into a Concept In-
teraction Graph (CIG). First, we extract keywords such as Rick, Morty, and Summer
from the document using standard keyword extraction algorithms, e.g., TextRank
(Mihalcea and Tarau, 2004). Second, similar to what we have done in the Story For-
est system, we can group keywords into sub-graphs by community detection. Each
keyword community turns into a “concept” in the document. After extracting con-
cepts, we attach each sentence in the document to its most related concept node by
calculating the similarities between a sentence and each concept. In Fig. 21.3, sen-

474 Bang Liu, Lingfei Wu

Construct KeyGraph
by Word Co-occurrence

w

w w

w

w

w

w

w

w

w

w

w

w

w

w

w

w w

w

w

w

w

w

w

w

w

w

w

w

w

Document Pair KeyGraph

Concepts

Doc A

Doc B

Detect Concepts
 by Community Detection

Assign Sentences
 by Similarities

S1 S2

Concept 1

S1 S2

Concept 2

S1 S2

Concept 3

S1 S2

Concept 4

S1 S2

Concept 5

Concepts
with

sentences

Get Edge Weights
by Vertex Similarities

3
5

4

2
1

Concept
Interaction

Graph

Siamese
Encoder

Context Layer Contex Layer

Matching Layer

Sentences 1 Sentences 2

Vertex Feature

Term-based
Feature
Extractor

Sentence 1, Sentence 2

Feature Extractor

Vertex Feature

CIG with vertex features

vertex
features

Result

(a) Representation (b) Encoding (c) Transformation (d) Aggregation

Input

GCN Layers

Aggregation Layer

transformed
features

Siamese
matching

Term-based
matching

Siamese
matching

…

Term-based
matching

Global
matching

Concatenate

Classify

Fig. 21.4: An overview of our approach for constructing the Concept Interaction
Graph (CIG) from a pair of documents and classifying it by Graph Convolutional
Networks. Figure credit: Liu et al (2019a).

tences 5 and 6 are mainly talking about the relationship between Rick and Summer,
and are thus attached to the concept (Rick, Summer). Similarly, we can attach other
sentences to nodes, decomposing the content of a document into a number of con-
cepts. To construct edges, we represent each node’s sentence set as a concatenation
of the sentences attached to it and measure the edge weight between any two nodes
as the TF-IDF similarity between their sentence sets to create edges that show the
correlation between different concepts. An edge will be removed if its weight is be-
low a threshold. For a pair of documents, the process of converting them into a CIG
is similar. The only differences are that the keywords are from both documents, and
each concept node will have two sets of sentences from the two documents. As a re-
sult, we have represented the original document (or document pair) with a graph of
key concepts, each with a (or a pair of) sentence subset(s), as well as the interaction
topology among them.

The CIG representation of a document pair decomposes its content into multi-
ple parts. Next, we need to match the two documents based on such representation.
Fig. 21.4 illustrates the process of matching a pair of long documents. The matching
process consists of four steps: a) preprocessing the input document pair and trans-
form it into a CIG; b) matching the sentences from two documents over each node
to get local matching features; c) structurally transforming local matching features
by graph convolutional layers; and d) aggregating all the local matching features to
get the final result.

Specifically, for the local matching on each concept node, the inputs are the two
sets of sentences from two documents. As each node only contains a small portion
of the document sentences, the long text matching problems transform into short
text matching on a number of concept nodes. In (Liu et al, 2019a), two different
matching models are utilized: i) similarity-based matching, which calculate a vari-
ety of text similarities between two set of sentences; ii) Siamese matching, which
utilizes a Siamese neural network (Mueller and Thyagarajan, 2016) to encode the

21 Graph Neural Networks in Natural Language Processing 475

two sentence sets and get a local matching vector. After getting local matching re-
sults, the next question is: how to get an overall matching score? Liu et al (2019a)
aggregates the local matching vectors into a final matching score for the pair of ar-
ticles by utilizing the ability of the graph convolutional network filters (Kipf and
Welling, 2017b) to capture the patterns exhibited in the CIG at multiple scales. In
particular, the local matching vectors of the concept nodes are transformed by multi-
layer GCN layers to take the interaction structure between nodes (or concepts in two
documents) into consideration. After getting the transformed feature vectors, they
are aggregated by mean pooling to get a global matching vector. Finally, the global
matching vector will be fed into a classifier (e.g., a feed-forward neural network) to
get the final matching label or score. The local matching module, global aggregation
module, and the final classification module are trained end-to-end.

In (Liu et al, 2019a), extensive evaluations were performed to test the perfor-
mance of the proposed approach for document matching. A key discovery made
by (Liu et al, 2019a) is that the graph convolution operation significantly improves
the performance of matching, demonstrating the effect of applying graph neural
networks to the proposed text graph representation. The structural transformation
on the matching vectors via GCN can efficiently capture the semantic interactions
between sentences, and the transformed matching vectors better capture the seman-
tic distance over each concept node by integrating the information of its neighbor
nodes.

21.4 Case Study 2: Graph-based Multi-Hop Reading
Comprehension

In this case study, we further introduce how graph neural networks can be applied to
machine reading comprehension in NLP. Machine reading comprehension (MRC)
aims to teach machines to read and understand unstructured text like a human. It is a
challenging task in artificial intelligence and has great potential in various enterprise
applications. We will see that by representing text as a graph and applying graph
neural networks to it, we can mimic the reasoning process of human beings and
achieve significant improvements for MRC tasks.

Suppose we have access to a Wikipedia search engine, which can be utilized
to retrieve the introductory paragraph para[x] of an entity x. How can we answer
the question “Who is the director of the 2003 film which has scenes in it filmed
at the Quality Cafe in Los Angeles?” with the search engine? Naturally, we will
start with pay attention to related entities such as “Quality Cafe”, look up relevant
introductions through Wikipedia, and quickly locate “Old School” and “Gone in
60 Seconds” when it comes to Hollywood movies. By continuing to inquire about
the introduction of the two movies, we further found their director. The last step
is to determine which director it is. This requires us to analyze the semantics and
qualifiers of the sentence. After knowing that the movie is in 2003, we can make the
final judgment: “Todd Phillips” is the answer we want. Figure 21.5 illustrates such

476 Bang Liu, Lingfei Wu

jietang@tsinghua.edu.cn

We propose a new CogQA framework for
multi-hop question answering in web-scale
documents. Founded on the dual process the-
ory in cognitive science, the framework grad-

in an iterative
implicit extrac-

explicit rea-
module (System 2). While giving ac-

curate answers, our framework further pro-
vides explainable reasoning paths. Specifi-

based on BERT
and graph neural network (GNN) efficiently
handles millions of documents for multi-hop
reasoning questions in the HotpotQA fullwiki

score of
34.9 on the leaderboard, compared to 23.6 of

Deep learning models have made significant
strides in machine reading comprehension and
even outperformed human on single paragraph

estion answering (QA) benchmarks including
Devlin et al., 2018;

). However, to cross the
chasm of reading comprehension ability between
machine and human, three main challenges lie

Reasoning ability. As revealed by ad-
odels for

ers in sen-
tences matched by the question, which does not
involve complex reasoning. Therefore, multi-hop
QA becomes the next frontier to conquer (Yang

Explainability. Explicit rea-

4XDOLW\�&DIH
�MD]]�FOXE�

/RV�$QJHOHV4XDOLW\�&DIH��GLQHU�

2OG�6FKRRO��ƉOP� *RQH�LQ����6HFRQGV

4XHVWLRQ��:KR�LV�WKH�GLUHFWRU�RI�WKH������ƉOP�ZKLFK�KDV�VFHQHV�
LQ�LW�ƉOPHG�DW�WKH�4XDOLW\�&DIH�LQ�/RV�$QJHOHV"

4XDOLW\�&DIH�ZDV�D�
KLVWRULFDO�

UHVWDXUDQW�DQG�
MD]]�FOXEŏ

ORFDWLRQ�IHDWXUHG�LQ�D�QXPEHU�RI�
+ROO\ZRRG�ƉOPV��LQFOXGLQJ��2OG�

6FKRROŊ��ŉ*RQH�LQ����
6HFRQGVŊŏ

2OG�6FKRRO�LV�D������
$PHULFDQ�FRPHG\�ƉOPŏ�

GLUHFWHG�E\�
7RGG�3KLOOLSV�

*RQH�LQ����6HFRQGV�LV�D�
�����$PHULFDQ�DFWLRQ�KHLVW�

ƉOPŏ
GLUHFWHG�E\�'RPLQLF�6HQD�

/RV�$QJHOHV�
RƋFLDOO\�WKH�&LW\�
RI�/RV�$QJHOHV�
DQG�RIWHQ�NQRZQ�
E\�LWV�LQLWLDOV�
/�$�����

7RGG�
3KLOOLSV

'RPLQLF�
6HQD

��KRS

��KRS

FRUUHFW�
DQVZHU

��KRS

Figure 1: An example of cognitive graph for multi-hop
QA. Each hop node corresponds to an entity (e.g., “Los
Angeles”) followed by its introductory paragraph. The
circles mean ans nodes, answer candidates to the ques-
tion. Cognitive graph mimics human reasoning pro-
cess. Edges are built when calling an entity to “mind”.
The solid black edges are the correct reasoning path.

means unordered and sentence-level explainabil-
ity, yet humans can interpret answers with step by
step solutions, indicating an ordered and entity-
level explainability. 3) Scalability. For any prac-
tically useful QA system, scalability is indis-
pensable. Existing QA systems based on ma-
chine comprehension generally follow retrieval-
extraction framework in DrQA (Chen et al., 2017),
reducing the scope of sources to a few paragraphs
by pre-retrieval. This framework is a simple com-
promise between single paragraph QA and scal-
able information retrieval, compared to human’s
ability to breeze through reasoning with knowl-
edge in massive-capacity memory (Wang et al.,
2003).

Fig. 21.5: An example of cognitive graph for multi-hop QA. Each hop node cor-
responds to an entity (e.g., “Los Angeles”) followed by its introductory paragraph.
The circles mean ans nodes, answer candidates to the question. Cognitive graph
mimics human reasoning process. Edges are built when calling an entity to “mind”.
The solid black edges are the correct reasoning path. Figure credit: Ding et al
(2019a).

process. Answering the aforementioned question requires multi-hop reasoning over
different information, that is so-called multi-hop question answering.

In fact, “pay attention to related entities quickly” and “analyze the meaning of
sentences for inference” are two different thinking processes. In cognition, the well-
known “dual process theory” (Kahneman, 2011) believes that human cognition is
divided into two systems. System 1 is an implicit, unconscious and intuitive think-
ing system. Its operation relies on experience and association. System 2 performs
explicit, conscious and controllable reasoning process. This system uses knowledge
in working memory to perform slow but reliable logical reasoning. System 2 is the
embodiment of human advanced intelligence.

Guided by the dual process theory, the Cognitive Graph QA (CogQA) framework
was proposed in (Ding et al, 2019a). It adopts a directed graph structure, named
cognitive graph, to perform step-by-step deduction and exploration in the cognitive
process of multi-hop question answering. Figure 21.5 presents the cognitive graph
for answering the previously mentioned question. Denote the graph as G , each node
in G represents an entity or possible answer x, also interchangeably denoted as node
x. The solid black edges are the correct reasoning path to answer the question. The
cognitive graph is constructed by an extraction module that acts like System 1. It

21 Graph Neural Networks in Natural Language Processing 477

takes the introductory paragraph para[x] of entity x as input, and outputs answer
candidates (i.e., ans nodes) and useful next-hop entities (i.e., hop nodes) from the
paragraph. These new nodes gradually expand G , forming an explicit graph struc-
ture for System 2 reasoning module. During the expansion of G , the new nodes or
existing nodes with new incoming edges bring new clue about the answer. Such
nodes are referred as frontier nodes. For clue, it is a form-flexible concept, refer-
ring to information from predecessors for guiding System 1 to better extract spans.
To perform neural network-based reasoning over G instead of rule-based, System 1
also summarizes para[x] into an initial hidden representation vector when extract-
ing spans, and System 2 updates all paragraphs’ hidden vectors X based on graph
structure as reasoning results for downstream prediction.

The procedure of the framework CogQA is as follows. First, the cognitive graph
G is initialized with the entities mentioned in the input question Q, and the entities
are marked as initial frontier nodes. After initialization, a node x is popped from
frontier nodes, and then a two-stage iterative process is conducted with two models
S1 and S2 mimicking System 1 and System 2, respectively. In the first stage, the
System 1 module in CoQA extracts question-relevant entities, answers candidates
from paragraphs, and encodes their semantic information. Extracted entities are or-
ganized as a cognitive graph, which resembles the working memory. Specifically,
given x, CogQA collects clues[x,G] from predecessor nodes of x, where the clues
can be sentences where x is mentioned. It further fetches introductory paragraph
para[x] in Wikipedia database W if any. After that, S1 generates sem[x,Q,clues],
which is the initial Xx (i.e., the embedding of x). If x is a hop node, then S1 finds hop
(e.g., entities) and answer spans in para[x]. For each hop span y, if y /∈ G and y∈W ,
then create a a new hop node for y and add it to G . If y ∈ G but edge(x,y) /∈ G , then
add a new edge (x,y) to G and mark node y as a frontier node, as it needs to be
revisited with new information. For each answer span y, a new answer node y and
edge (x,y) will be added to G . In the second stage, System 2 conducts the reason-
ing procedure over the graph and collects clues to guide System 1 to better extract
next-hop entities. In particular, the hidden representation X of all paragraphs will be
updated by S2. The above process is iterated until there is no frontier node in the
cognitive graph (i.e., all possible answers are found) or the graph is large enough.
Then the final answer is chosen with a predictor F based on the reasoning results
X from System 2.

The CogQA framework can be implemented as the system in Fig. 21.6. It utilizes
BERT (Devlin et al, 2019) as System 1 and GNN as System 2. For clues clues[x,G],
they are the sentences in paragraphs of x’s predecessor nodes, from which x is ex-
tracted. We can observe from Fig. 21.6 that the input to BERT is the concatenation
of the question, the clues passed from predecessor nodes, and the introductory para-
graph of x. Based on these inputs, BERT outputs hop spans and answer spans, as
well as uses the output at position 0 as sem[x,Q,clues].

For System 2, CogQA utilizes a variant of GNN to update the hidden representa-
tions of all nodes. For each node x, its initial representation Xx ∈ Rh is the semantic
vector sem[x,Q,clues] from System 1 (i.e., BERT). The updating formula of the
GNN layers are as follows:

478 Bang Liu, Lingfei Wu

2696

Ques
<latexit sha1_base64="1EWxMOFjDRT37bRb7ZlgcYDiw9o=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3bpZhN2N0IJ/QtePCji1T/kzX/jps1Bqw8GHu/NMDMvSATXxnW/nNLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6l/vdR1Sax/LBzBL0IzqWPOSMmlxqpaiH1Zpbdxcgf4lXkBoUaA6rn4NRzNIIpWGCat333MT4GVWGM4HzyiDVmFA2pWPsWypphNrPFrfOyZlVRiSMlS1pyEL9OZHRSOtZFNjOiJqJXvVy8T+vn5rwxs+4TFKDki0XhakgJib542TEFTIjZpZQpri9lbAJVZQZG0/FhuCtvvyXdC7q3mXdbV3VGrdFHGU4gVM4Bw+uoQH30IQ2MJjAE7zAqxM5z86b875sLTnFzDH8gvPxDRWcjkI=</latexit>

System 1 (BERT)
E[CLS]

<latexit sha1_base64="ETVqKsXMMWfH5TnGJ4hkR7zGnZE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY/FInjwUNF+yHYp2TTbhibZJckKZemv8OJBEa/+HG/+G9N2D9r6YODx3gwz88KEM21c99sprKyurW8UN0tb2zu7e+X9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4ag+9dtPVGkWywczTmgg8ECyiBFsrPR43cv8+u19MOmVK27VnQEtEy8nFcjR6JW/uv2YpIJKQzjW2vfcxAQZVoYRTielbqppgskID6hvqcSC6iCbHTxBJ1bpoyhWtqRBM/X3RIaF1mMR2k6BzVAvelPxP89PTXQZZEwmqaGSzBdFKUcmRtPvUZ8pSgwfW4KJYvZWRIZYYWJsRiUbgrf48jJpnVU9t+rdnVdqV3kcRTiCYzgFDy6gBjfQgCYQEPAMr/DmKOfFeXc+5q0FJ585hD9wPn8AQkCQCg==</latexit><latexit sha1_base64="ETVqKsXMMWfH5TnGJ4hkR7zGnZE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY/FInjwUNF+yHYp2TTbhibZJckKZemv8OJBEa/+HG/+G9N2D9r6YODx3gwz88KEM21c99sprKyurW8UN0tb2zu7e+X9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4ag+9dtPVGkWywczTmgg8ECyiBFsrPR43cv8+u19MOmVK27VnQEtEy8nFcjR6JW/uv2YpIJKQzjW2vfcxAQZVoYRTielbqppgskID6hvqcSC6iCbHTxBJ1bpoyhWtqRBM/X3RIaF1mMR2k6BzVAvelPxP89PTXQZZEwmqaGSzBdFKUcmRtPvUZ8pSgwfW4KJYvZWRIZYYWJsRiUbgrf48jJpnVU9t+rdnVdqV3kcRTiCYzgFDy6gBjfQgCYQEPAMr/DmKOfFeXc+5q0FJ585hD9wPn8AQkCQCg==</latexit><latexit sha1_base64="ETVqKsXMMWfH5TnGJ4hkR7zGnZE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY/FInjwUNF+yHYp2TTbhibZJckKZemv8OJBEa/+HG/+G9N2D9r6YODx3gwz88KEM21c99sprKyurW8UN0tb2zu7e+X9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4ag+9dtPVGkWywczTmgg8ECyiBFsrPR43cv8+u19MOmVK27VnQEtEy8nFcjR6JW/uv2YpIJKQzjW2vfcxAQZVoYRTielbqppgskID6hvqcSC6iCbHTxBJ1bpoyhWtqRBM/X3RIaF1mMR2k6BzVAvelPxP89PTXQZZEwmqaGSzBdFKUcmRtPvUZ8pSgwfW4KJYvZWRIZYYWJsRiUbgrf48jJpnVU9t+rdnVdqV3kcRTiCYzgFDy6gBjfQgCYQEPAMr/DmKOfFeXc+5q0FJ585hD9wPn8AQkCQCg==</latexit><latexit sha1_base64="ETVqKsXMMWfH5TnGJ4hkR7zGnZE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY/FInjwUNF+yHYp2TTbhibZJckKZemv8OJBEa/+HG/+G9N2D9r6YODx3gwz88KEM21c99sprKyurW8UN0tb2zu7e+X9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4ag+9dtPVGkWywczTmgg8ECyiBFsrPR43cv8+u19MOmVK27VnQEtEy8nFcjR6JW/uv2YpIJKQzjW2vfcxAQZVoYRTielbqppgskID6hvqcSC6iCbHTxBJ1bpoyhWtqRBM/X3RIaF1mMR2k6BzVAvelPxP89PTXQZZEwmqaGSzBdFKUcmRtPvUZ8pSgwfW4KJYvZWRIZYYWJsRiUbgrf48jJpnVU9t+rdnVdqV3kcRTiCYzgFDy6gBjfQgCYQEPAMr/DmKOfFeXc+5q0FJ585hD9wPn8AQkCQCg==</latexit>

E1
<latexit sha1_base64="Bi34J8SYWq1KLtBcT2QBNyIgAIM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiCB4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++4lrI2L1iJOE+xEdKhEKRtFKD7d9r1+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVD236t1fVurXeRxFOIFTOAcPalCHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC9741t</latexit><latexit sha1_base64="Bi34J8SYWq1KLtBcT2QBNyIgAIM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiCB4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++4lrI2L1iJOE+xEdKhEKRtFKD7d9r1+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVD236t1fVurXeRxFOIFTOAcPalCHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC9741t</latexit><latexit sha1_base64="Bi34J8SYWq1KLtBcT2QBNyIgAIM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiCB4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++4lrI2L1iJOE+xEdKhEKRtFKD7d9r1+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVD236t1fVurXeRxFOIFTOAcPalCHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC9741t</latexit><latexit sha1_base64="Bi34J8SYWq1KLtBcT2QBNyIgAIM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiCB4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++4lrI2L1iJOE+xEdKhEKRtFKD7d9r1+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVD236t1fVurXeRxFOIFTOAcPalCHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC9741t</latexit>

E[SEP]
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

… EN
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E�
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T0
<latexit sha1_base64="X93JYNB4Gt2WCA50tQLVi297OSU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK/YI2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY9kwkwT9iA4lDzmjxkqPjb7bL1fcqjsHWSVeTiqQo94vf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m586JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEN37GZZIalGyxKEwFMTGZ/U0GXCEzYmIJZYrbWwkbUUWZsemUbAje8surpHVR9S6r7sNVpXabx1GEEziFc/DgGmpwD3VoAoMhPMMrvDnCeXHenY9Fa8HJZ47hD5zPH9PvjX0=</latexit>

T1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T[SEP]
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

TN
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T �
i

<latexit sha1_base64="ycagfIhPAcq9SuB1/HItSluEld4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0lU0GPRi8cK/YI2lM120y7d3YTdjVBC/4IXD4p49Q9589+4SXPQ1gcDj/dmmJkXxJxp47rfTmltfWNzq7xd2dnd2z+oHh51dJQoQtsk4pHqBVhTziRtG2Y47cWKYhFw2g2m95nffaJKs0i2zCymvsBjyUJGsMmk1pCdD6s1t+7mQKvEK0gNCjSH1a/BKCKJoNIQjrXue25s/BQrwwin88og0TTGZIrHtG+pxIJqP81vnaMzq4xQGClb0qBc/T2RYqH1TAS2U2Az0cteJv7n9RMT3vopk3FiqCSLRWHCkYlQ9jgaMUWJ4TNLMFHM3orIBCtMjI2nYkPwll9eJZ3LundVdx+va427Io4ynMApXIAHN9CAB2hCGwhM4Ble4c0Rzovz7nwsWktOMXMMf+B8/gCLgo3n</latexit>

T �
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

… …

[CLS] Tok1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

[SEP]
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

… TokN
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Tok�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

…

Question + clues[x,G] Paragraph[x]

Hop span

x
<latexit sha1_base64="T81e0FN4eiLN0l7csieDRUgh6Jc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix68diC/YA2lM120q7dbMLuRiyhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveRcWtX5arN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD5uOM/g==</latexit>

Prev2
<latexit sha1_base64="NHajn1S7d4tKGHbUVsWnUGCMXZ0=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cKthbaUDbbSbt2sxt2N4US+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MOFMG8/7dgpr6xubW8Xt0s7u3v5B+fCopWWqKDap5FK1Q6KRM4FNwwzHdqKQxCHHx3B0O/Mfx6g0k+LBTBIMYjIQLGKUGCu1GgrHvVqvXPGq3hzuKvFzUoEcjV75q9uXNI1RGMqJ1h3fS0yQEWUY5TgtdVONCaEjMsCOpYLEqINsfu3UPbNK342ksiWMO1d/T2Qk1noSh7YzJmaol72Z+J/XSU10HWRMJKlBQReLopS7Rrqz190+U0gNn1hCqGL2VpcOiSLU2IBKNgR/+eVV0qpV/Yuqd39Zqd/kcRThBE7hHHy4gjrcQQOaQOEJnuEV3hzpvDjvzseiteDkM8fwB87nDz1RjuY=</latexit>

Next
<latexit sha1_base64="/04fUx5CbtNJGNPyUDBDQPloL60=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxZNUsB/QhrLZTtulu5uwuxFL6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwpgzbTzv2ymsrK6tbxQ3S1vbO7t75f2Dpo4SRbFBIx6pdkg0ciaxYZjh2I4VEhFybIXjm8xvPaLSLJIPZhJjIMhQsgGjxGTSHT6ZXrniVb0Z3GXi56QCOeq98le3H9FEoDSUE607vhebICXKMMpxWuomGmNCx2SIHUslEaiDdHbr1D2xSt8dRMqWNO5M/T2REqH1RIS2UxAz0oteJv7ndRIzuApSJuPEoKTzRYOEuyZys8fdPlNIDZ9YQqhi9laXjogi1Nh4SjYEf/HlZdI8q/rnVe/+olK7zuMowhEcwyn4cAk1uIU6NIDCCJ7hFd4c4bw4787HvLXg5DOH8AfO5w8XCo5D</latexit> Ans

<latexit sha1_base64="EzJauHCFVmw9rVYLAt7MIeB3Ps8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uJa6V664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Njt1Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2RC8xZeXSfOs6p1X3fuLSu0mj6MIR3AMp+DBJdTgDurQAAYDeIZXeHOE8+K8Ox/z1oKTzxzCHzifPzNjjbw=</latexit>

T �
j

<latexit sha1_base64="8WPqCaIDG188Dswr9/97u5Grotk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9m1gh6LXjxW6Be0S8mm2TY2yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMviDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7jK/80SVZpFsmmlMfYFHkoWMYJNJzcHj+aBccavuHGiVeDmpQI7GoPzVH0YkEVQawrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYslVhQ7afzW2fozCpDFEbKljRorv6eSLHQeioC2ymwGetlLxP/83qJCW/8lMk4MVSSxaIw4chEKHscDZmixPCpJZgoZm9FZIwVJsbGU7IheMsvr5L2ZdWrVd2Hq0r9No+jCCdwChfgwTXU4R4a0AICY3iGV3hzhPPivDsfi9aCk88cwx84nz+NB43o</latexit>

T �
k

<latexit sha1_base64="6Ps7j3DCjP4TdyO7DF0/yE/WYZQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0lU0GPRi8cK/YI2lM120y7d3YTdjVBC/4IXD4p49Q9589+4SXPQ1gcDj/dmmJkXxJxp47rfTmltfWNzq7xd2dnd2z+oHh51dJQoQtsk4pHqBVhTziRtG2Y47cWKYhFw2g2m95nffaJKs0i2zCymvsBjyUJGsMmk1nB6PqzW3LqbA60SryA1KNAcVr8Go4gkgkpDONa677mx8VOsDCOcziuDRNMYkyke076lEguq/TS/dY7OrDJCYaRsSYNy9fdEioXWMxHYToHNRC97mfif109MeOunTMaJoZIsFoUJRyZC2eNoxBQlhs8swUQxeysiE6wwMTaeig3BW355lXQu695V3X28rjXuijjKcAKncAEe3EADHqAJbSAwgWd4hTdHOC/Ou/OxaC05xcwx/IHz+QOOjI3p</latexit>

T �
M

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

…

E�
M

<latexit sha1_base64="nta34gE+XG+4LV5XUqH2RD7n1o0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ6KokKeiyK4EWoYNpCG8pmu2mX7m7C7kYoob/BiwdFvPqDvPlv3LQ5aOuDgcd7M8zMCxPOtHHdb2dpeWV1bb20Ud7c2t7ZreztN3WcKkJ9EvNYtUOsKWeS+oYZTtuJoliEnLbC0U3ut56o0iyWj2ac0EDggWQRI9hYyb/t3Z+Ue5WqW3OnQIvEK0gVCjR6la9uPyapoNIQjrXueG5iggwrwwink3I31TTBZIQHtGOpxILqIJseO0HHVumjKFa2pEFT9fdEhoXWYxHaToHNUM97ufif10lNdBVkTCapoZLMFkUpRyZG+eeozxQlho8twUQxeysiQ6wwMTafPARv/uVF0jyreec19+GiWr8u4ijBIRzBKXhwCXW4gwb4QIDBM7zCmyOdF+fd+Zi1LjnFzAH8gfP5A383jdA=</latexit>

Tok�M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

…

� �� �
<latexit sha1_base64="i4jo7GwtGwKoN3YeH1gvlbskDwc=">AAACBHicbVC7TsMwFHXKq5RXgLFLRIXEVCWlEoyVWBiLRB9SE1WOc9NadZzIdpCqKAMLv8LCAEKsfAQbf4PTZoCWI1k+OudeX9/jJ4xKZdvfRmVjc2t7p7pb29s/ODwyj0/6Mk4FgR6JWSyGPpbAKIeeoorBMBGAI5/BwJ/dFP7gAYSkMb9X8wS8CE84DSnBSktjs+6mPADhC0wgc6cyKW6nZScqz8dmw27aC1jrxClJA5Xojs0vN4hJGgFXhGEpR45+x8uwUJQwyGtuKkEPmOEJjDTlOALpZYslcutcK4EVxkIfrqyF+rsjw5GU88jXlRFWU7nqFeJ/3ihV4bWXUZ6kCjhZDgpTZqnYKhKxAiqAKDbXBBNB9V8tMsU6EKVzq+kQnNWV10m/1XQum/Zdu9Fpl3FUUR2doQvkoCvUQbeoi3qIoEf0jF7Rm/FkvBjvxseytGKUPafoD4zPHyWfmFs=</latexit>

� �� �
<latexit sha1_base64="Q2q815ab42RF67VFAub46kmu5lk=">AAACBHicbVC7TsMwFHXKq5RXgLFLRIXEVCWlEoyVWBiLRB9SE1WOc9NadZzIdpCqKAMLv8LCAEKsfAQbf4PTZoCWI1k+OudeX9/jJ4xKZdvfRmVjc2t7p7pb29s/ODwyj0/6Mk4FgR6JWSyGPpbAKIeeoorBMBGAI5/BwJ/dFP7gAYSkMb9X8wS8CE84DSnBSktjs+6mPADhC0wgc6cyKe6WbScqz8dmw27aC1jrxClJA5Xojs0vN4hJGgFXhGEpR45+x8uwUJQwyGtuKkEPmOEJjDTlOALpZYslcutcK4EVxkIfrqyF+rsjw5GU88jXlRFWU7nqFeJ/3ihV4bWXUZ6kCjhZDgpTZqnYKhKxAiqAKDbXBBNB9V8tMsU6EKVzq+kQnNWV10m/1XQum/Zdu9Fpl3FUUR2doQvkoCvUQbeoi3qIoEf0jF7Rm/FkvBjvxseytGKUPafoD4zPHyQXmFo=</latexit>

� �� �
<latexit sha1_base64="WkmkOQqV4y/G2CwEGjey+GFekFc=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGi7osuHFZwT6gM5RMeqcNzWSGJCOUobjxV9y4UMStX+HOvzHTzkJbD4Qczrn3JvcECWdKO863VVpZXVvfKG9WtrZ3dvfs/YO2ilNJoUVjHstuQBRwJqClmebQTSSQKODQCcY3ud95AKlYLO71JAE/IkPBQkaJNlLfPvJiYweSUMi8kUry+9JJ9HTat6tOzZkBLxO3IFVUoNm3v7xBTNMIhKacKNVzzRw/I1IzymFa8VIFZv6YDKFnqCARKD+brTDFp0YZ4DCW5giNZ+rvjoxESk2iwFRGRI/UopeL/3m9VIfXfsZEkmoQdP5QmHKsY5zngQdMAtV8Ygihkpm/YjoiJg9tUquYENzFlZdJ+7zmXtScu3q1US/iKKNjdILOkIuuUAPdoiZqIYoe0TN6RW/Wk/VivVsf89KSVfQcoj+wPn8A712XuA==</latexit>

… …

|Name of entity “Next”| |Possible answer “Ans”|
� �� �

<latexit sha1_base64="WkmkOQqV4y/G2CwEGjey+GFekFc=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGi7osuHFZwT6gM5RMeqcNzWSGJCOUobjxV9y4UMStX+HOvzHTzkJbD4Qczrn3JvcECWdKO863VVpZXVvfKG9WtrZ3dvfs/YO2ilNJoUVjHstuQBRwJqClmebQTSSQKODQCcY3ud95AKlYLO71JAE/IkPBQkaJNlLfPvJiYweSUMi8kUry+9JJ9HTat6tOzZkBLxO3IFVUoNm3v7xBTNMIhKacKNVzzRw/I1IzymFa8VIFZv6YDKFnqCARKD+brTDFp0YZ4DCW5giNZ+rvjoxESk2iwFRGRI/UopeL/3m9VIfXfsZEkmoQdP5QmHKsY5zngQdMAtV8Ygihkpm/YjoiJg9tUquYENzFlZdJ+7zmXtScu3q1US/iKKNjdILOkIuuUAPdoiZqIYoe0TN6RW/Wk/VivVsf89KSVfQcoj+wPn8A712XuA==</latexit>

Ans span

sem[x,Q, clues]

Prev1
<latexit sha1_base64="puK58MFBvgD1nt+jWdz8pL4eOOM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt2kw27m0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6m/mtMSrNZfxoJgn6ER3EPOSMGis16wrHPa9XrrhVdw6ySrycVCBHvVf+6vYlSyOMDRNU647nJsbPqDKcCZyWuqnGhLIRHWDH0phGqP1sfu2UnFmlT0KpbMWGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhPe+BmPk9RgzBaLwlQQI8nsddLnCpkRE0soU9zeStiQKsqMDahkQ/CWX14lzYuqd1l1H64qtds8jiKcwCmcgwfXUIN7qEMDGDzBM7zCmyOdF+fd+Vi0Fpx85hj+wPn8ATvNjuU=</latexit>

+
<latexit sha1_base64="26BDQsRl0AvWjqpXxBRvcak+khY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSIIQklU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+Oyura+sbm4Wt4vbO7t5+6eCwqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3dRvPaHSPJYPZpygH9GB5CFn1Fipft4rld2KOwNZJl5OypCj1it9dfsxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bHTohp1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IQ3fsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRtCN7iy8ukeVHxLitu/apcvc3jKMAxnMAZeHANVbiHGjSAAcIzvMKb8+i8OO/Ox7x1xclnjuAPnM8fci+MsQ==</latexit>

X[Prev2]
<latexit sha1_base64="34xctzRhXynC5MRSN2gEdH2p5uw=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgqiRV0GXRjcsK9gFpCJPppB06mYSZSbGE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkDAqlW1/G5WNza3tnepubW//4PDIPK73ZJwKTLo4ZrEYBEgSRjnpKqoYGSSCoChgpB9M7wq/PyNC0pg/qnlCvAiNOQ0pRkpLvlkfRkhNgjAb5G5HkJnf8nyzYTftBax14pSkASU6vvk1HMU4jQhXmCEpXcdOlJchoShmJK8NU0kShKdoTFxNOYqI9LJF9tw618rICmOhH1fWQv29kaFIynkU6MkiqVz1CvE/z01VeONllCepIhwvD4Ups1RsFUVYIyoIVmyuCcKC6qwWniCBsNJ11XQJzuqX10mv1XQum/bDVaN9W9ZRhVM4gwtw4BracA8d6AKGJ3iGV3gzcuPFeDc+lqMVo9w5gT8wPn8A/ZyUZQ==</latexit>

X[Prev1]
<latexit sha1_base64="TXQJqDIeE3FAztKM5jG5ip1FY+c=">AAAB+3icbVBNS8NAFHypX7V+xXr0slgETyVRQY9FLx4r2FpoQ9hsN+3SzSbsbool5K948aCIV/+IN/+NmzYHbR1YGGbe481OkHCmtON8W5W19Y3Nrep2bWd3b//APqx3VZxKQjsk5rHsBVhRzgTtaKY57SWS4ijg9DGY3Bb+45RKxWLxoGcJ9SI8EixkBGsj+XZ9EGE9DsKsl/fbkk591/PthtN05kCrxC1JA0q0fftrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bKnBElZfNs+fo1ChDFMbSPKHRXP29keFIqVkUmMkiqVr2CvE/r5/q8NrLmEhSTQVZHApTjnSMiiLQkElKNJ8ZgolkJisiYywx0aauminBXf7yKumeN92LpnN/2WjdlHVU4RhO4AxcuIIW3EEbOkDgCZ7hFd6s3Hqx3q2PxWjFKneO4A+szx/8F5Rk</latexit>

y
<latexit sha1_base64="cs1Q9fet/6GNtc+Tzw/y6WCTX8Y=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0Io/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHkyXoR3QoecgZNVZqZP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03Mf6EKsOZwGmpl2pMKBvTIXYtlTRC7U/mh07JmVUGJIyVLWnIXP09MaGR1lkU2M6ImpFe9mbif143NeGNP+EySQ1KtlgUpoKYmMy+JgOukBmRWUKZ4vZWwkZUUWZsNiUbgrf88ippXVS9y6rbuKrUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kD6GeM/w==</latexit>

Results of The
Step of

Visiting xX[x]
<latexit sha1_base64="TklOcwpA1D9+YieOLHI872SLYNc=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkVdFl047KCfcB0KJk004ZmkjHJFMvQ73DjQhG3fow7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg5bWqaK0CaRXKpOiDXlTNCmYYbTTqIojkNO2+HoNvfbY6o0k+LBTBIaxHggWMQINlYKujE2wzDKOlP/KehVqm7NnQEtE68gVSjQ6FW+un1J0pgKQzjW2vfcxAQZVoYRTqflbqppgskID6hvqcAx1UE2Cz1Fp1bpo0gq+4RBM/X3RoZjrSdxaCfzkHrRy8X/PD810XWQMZGkhgoyPxSlHBmJ8gZQnylKDJ9YgoliNisiQ6wwMbansi3BW/zyMmmd17yLmnt/Wa3fFHWU4BhO4Aw8uII63EEDmkDgEZ7hFd6csfPivDsf89EVp9g5gj9wPn8AFqCSTA==</latexit>

�

<latexit sha1_base64="GG7zAfyyjzEFCkqaqZiId0lVt+4=">AAACHHicbVDLSsNAFJ3UV62vqks3wSK4Kkkr6LLgxmUF+4CmlMnkJh06mYSZG6GEfogbf8WNC0XcuBD8G6ePRW09zMDhnHvvzD1+KrhGx/mxChubW9s7xd3S3v7B4VH5+KStk0wxaLFEJKrrUw2CS2ghRwHdVAGNfQEdf3Q79TuPoDRP5AOOU+jHNJI85IyikQbluicgRC8veT5EXOZU8EhCMCl53uyADJY0xaMhVgflilN1ZrDXibsgFbJAc1D+8oKEZTFIZIJq3XOdFPs5VciZADM305BSNqIR9AyVNAbdz2fLTewLowR2mChzJdozdbkjp7HW49g3lTHFoV71puJ/Xi/D8Kafc5lmCJLNHwozYWNiT5OyA66AoRgbQpni5q82G1JFGZo8SyYEd3XlddKuVd161bm/qjRqiziK5Iyck0vikmvSIHekSVqEkSfyQt7Iu/VsvVof1ue8tGAtek7JH1jfvxlvoU8=</latexit>

�[x]
<latexit sha1_base64="Ix9kWd0zRNXSI22F6B6cJwYtcDM=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBE8lUQFPRb14LGC/ZA0lM122y7d3YTdiVhCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJYIb9LxvZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrFuRcQwwRWrI0fBWolmREaCNaPh9cRvPjJteKzucZSwUJK+4j1OCVrpoX3DBJLgKeyUyl7Fm8JdJH5OypCj1il9tbsxTSVTSAUxJvC9BMOMaORUsHGxnRqWEDokfRZYqohkJsymB4/dY6t03V6sbSl0p+rviYxIY0Yysp2S4MDMexPxPy9IsXcZZlwlKTJFZ4t6qXAxdiffu12uGUUxsoRQze2tLh0QTSjajIo2BH/+5UXSOK34ZxXv7rxcvcrjKMAhHMEJ+HABVbiFGtSBgoRneIU3RzsvzrvzMWtdcvKZA/gD5/MHpOSQTA==</latexit>

Pass clues
to “Next”“Ans”

System 2 (GNN) Cognitive Graph G
Before Visiting x

… … …

W1
<latexit sha1_base64="eRV+cFYyUVwcnsSDasavMiXevIM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh3bf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+y6t7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gDaBY2B</latexit>

W2
<latexit sha1_base64="Up5tOwwgSUXlwkAGw0dYYCaLo54=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00O7X+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRqVe+i6t5fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHbiY2C</latexit>

Figure 2: Overview of CogQA implementation. When visiting the node x, System 1 generates new hop and answer
nodes based on the clues[x,G] discovered by System 2. It also creates the inital representation sem[x,Q, clues],
based on which the GNN in System 2 updates the hidden representationsX[x].

paragraphs is to access some specific paragraphs
by their title indexes. For multi-hop questions,
traditional retrieval-extraction frameworks might
sacrifice the potential of follow-up models, be-
cause paragraphs multiple hops away from the
question could share few common words and little
semantic relation with the question, leading to a
failed retrieval. However, these paragraphs can be
discovered by iteratively expanding with clues in
our framework.

Algorithm 1 describes the procedure of our
framework CogQA. After initialization, an iter-
ative process for graph expansion and reasoning
begins. In each step we visit a frontier node x,
and System 1 reads para[x] under the guidance of
clues and the question Q, extracts spans and gen-
erates semantic vector sem[x,Q, clues]. Mean-
while, System 2 updates hidden representation X
and prepares clues[y,G] for any successor node y.
The final prediction is made based onX.

3 Implementation

The main part to implement the CogQA frame-
work is to determine the concrete models of Sys-
tem 1 and 2, and the form of clues.

Our implementation uses BERT as System 1
and GNN as System 2. Meanwhile, clues[x,G]
are sentences in paragraphs of x’s predecessor

nodes, from which x is extracted. We directly pass
raw sentences as clues, rather than any form of
computed hidden states, for easy training of Sys-
tem 1. Because raw sentences are self-contained
and independent of computations from previous
iterative steps, training at different iterative steps
is then decoupled, leading to efficiency gains dur-
ing training. Details are introduced in § 3.4. Hid-
den representationsX for graph nodes are updated
each time by a propagation step of GNN.

Our overall model is illustrated in Figure 2.

3.1 System 1
The extraction capacity of System 1 model is fun-
damental to construct the cognitive graph, thus a
powerful model is needed. Recently, BERT (De-
vlin et al., 2018) has become one of the most suc-
cessful language representation models on various
NLP tasks, including SQuAD (Rajpurkar et al.,
2016). BERT consists of multiple layers of Trans-
former (Vaswani et al., 2017), a self-attention
based architecture, and is elaborately pre-trained
on large corpora. Input sentences are composed of
two different functional parts A and B.

We use BERT as System 1, and its input when
visiting the node x is as follows:

[CLS] Question [SEP] clues[x,G] [SEP]| {z }
Sentence A

Para[x]| {z }
Sentence B

<latexit sha1_base64="UUpcMFddJxBgFFJj3Qoeg+A+48A=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCeCiJKHoseNBjBWsLaSmb7aZdutmE3RehhP4MLx4U8eqv8ea/cdPmoK0DC8PMe+y8CRIpDLrut1NaWV1b3yhvVra2d3b3qvsHjyZONeMtFstYdwJquBSKt1Cg5J1EcxoFkreD8U3ut5+4NiJWDzhJeC+iQyVCwShaye9GFEeMyux22q/W3Lo7A1kmXkFqUKDZr351BzFLI66QSWqM77kJ9jKqUTDJp5VuanhC2ZgOuW+pohE3vWwWeUpOrDIgYaztU0hm6u+NjEbGTKLATuYRzaKXi/95forhdS8TKkmRKzb/KEwlwZjk95OB0JyhnFhCmRY2K2EjqilD21LFluAtnrxMHs/r3mXdvb+oNc6KOspwBMdwCh5cQQPuoAktYBDDM7zCm4POi/PufMxHS06xcwh/4Hz+AHOGkUk=</latexit>G

<latexit sha1_base64="7sBxCpAslcX/eSwL+9oxwQm7zqs=">AAAB8nicbVBNS8NAFHypX7V+VT16WayCp5KIoseCBz1WsLaQlrLZbtqlm03YfRFK6M/w4kERr/4ab/4bN20O2jqwMMy8x86bIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY3+R++4lrI2L1gJOE9yI6VCIUjKKV/G5EccSozG6n/WrNrbszkGXiFaQGBZr96ld3ELM04gqZpMb4nptgL6MaBZN8WummhieUjemQ+5YqGnHTy2aRp+TUKgMSxto+hWSm/t7IaGTMJArsZB7RLHq5+J/npxhe9zKhkhS5YvOPwlQSjEl+PxkIzRnKiSWUaWGzEjaimjK0LVVsCd7iycvk8bzuXdbd+4ta46SoowxHcAxn4MEVNOAOmtACBjE8wyu8Oei8OO/Ox3y05BQ7h/AHzucPcbiRQw==</latexit>G

<latexit sha1_base64="giCdyg3mshq32J7zJ8qlIOKuQJE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REFD0WvHisaD+gDWWznbRLN5uwuxFL6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YhK81g+mHGCfkQHkoecUWOl+3bvqVeuuFV3BrJMvJxUIEe9V/7q9mOWRigNE1Trjucmxs+oMpwJnJS6qcaEshEdYMdSSSPUfjY7dUJOrNInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/9jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdkQvMWXl0nzvOpdVt27i0rtLI+jCEdwDKfgwRXU4Bbq0AAGA3iGV3hzhPPivDsf89aCk88cwh84nz9BQI21</latexit>

Xx

<latexit sha1_base64="L3R95SSqtEt9LlLRewmVMotJdYg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBg5REFD0WvHisYD+wDWWznbRLN5uwuymU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+a4xK81g+mkmCfkQHkoecUWOlp3Yvqysc97xpr1xxq+4cZJV4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4LXVTjQllIzrAjqWSRqj9bH7xlJxZpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3voZl0lqULLFojAVxMRk9j7pc4XMiIkllClubyVsSBVlxoZUsiF4yy+vkuZl1buuug9XldpFHkcRTuAUzsGDG6jBPdShAQwkPMMrvDnaeXHenY9Fa8HJZ47hD5zPH2KekKg=</latexit>

XPrev1

<latexit sha1_base64="p5I/W1J7Nnlt+NMgCb9fZgrosk8=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4kJIURY8FLx4r2A9sQ9hsp+3SzSbsbgol9F948aCIV/+NN/+N2zYHbX0w8Hhvhpl5YSK4Nq777aytb2xubRd2irt7+weHpaPjpo5TxbDBYhGrdkg1Ci6xYbgR2E4U0igU2ApHdzO/NUaleSwfzSRBP6IDyfucUWOlp3aQ1RWOg+o0KJXdijsHWSVeTsqQox6Uvrq9mKURSsME1brjuYnxM6oMZwKnxW6qMaFsRAfYsVTSCLWfzS+eknOr9Eg/VrakIXP190RGI60nUWg7I2qGetmbif95ndT0b/2MyyQ1KNliUT8VxMRk9j7pcYXMiIkllClubyVsSBVlxoZUtCF4yy+vkma14l1X3Iercu0yj6MAp3AGF+DBDdTgHurQAAYSnuEV3hztvDjvzseidc3JZ07gD5zPH2QjkKk=</latexit>

XPrev2

<latexit sha1_base64="eA+LNHChZyeHW4T5nVYCUL+kR68=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WNBDx4r2A9sQ9lsN+3SzSbsTsQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrqd+65FrI2J1j+OE+xEdKBEKRtFKD90bLpH2sqdJr1xxq+4MZJl4OalAjnqv/NXtxyyNuEImqTEdz03Qz6hGwSSflLqp4QllIzrgHUsVjbjxs9nFE3JilT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk/6QnOGcmwJZVrYWwkbUk0Z2pBKNgRv8eVl0jyrehdV9+68UnPzOIpwBMdwCh5cQg1uoQ4NYKDgGV7hzTHOi/PufMxbC04+cwh/4Hz+ALnEkOU=</latexit>

�x

Fig. 21.6: Overview of CogQA implementation. When visiting the node x, System 1
generates new hop and answer nodes based on the clues[x,G] discovered by System
2. It also creates the inital representation sem[x,Q,clues], based on which the GNN
in System 2 updates the hidden representations Xx. Figure credit: Ding et al (2019a).

∆ = σ((AD−1)⊤σ(XW1)) (21.1)
X ′ = σ(XW2 +∆) (21.2)

where X ′ is the new hidden representations after a propagation step of GNN.
W1,W2 ∈ Rh×h are weight matrices, σ is the activation function. ∆ ∈ Rn×h are ag-
gregated vectors passed from neighbors in the propagation. A is the adjacent matrix
of G . It is column-normalized to AD−1, where D is the degree matrix of G . By left
multiplying the transformed hidden vector σ(XW1) with (AD−1)⊤, the GNN per-
forms a localized spectral filtering. In the iterative step of visiting frontier node x,
its hidden representation Xx is updated following the above equations.

Finally, a two-layer fully connected network (FCN) is utilized to serve as predic-
tor F :

answer = argmax
answer node x

F (Xx) (21.3)

In this way, one answer candidate can be selected as the final answer. In the Hot-
potQA dataset (Yang et al, 2018b), there are also questions that aim to compare a
certain property of entity x and y. Such questions are regarded as binary classifica-
tion with input Xx−Xy and solved by another identical FCNs.

21 Graph Neural Networks in Natural Language Processing 479

The cognitive graph structure in the CogQA framework offers ordered and entity-
level explainability and suits for relational reasoning, owing to the explicit reasoning
paths in it. Aside from simple paths, it can also clearly display joint or loopy reason-
ing processes, where new predecessors might bring new clues about the answer. As
we can see, by modeling the context information as a cognitive graph and applying
GNN to such representation, we can mimic the dual process of human perception
and reasoning and achieve excellent performance on multi-hop machine reading
comprehension tasks, as demonstrated in (Ding et al, 2019a).

21.5 Future Directions

Applying graph neural networks to NLP tasks with suitable graph representations
for text can bring significant benefits, as we have discussed and shown through
the case studies. Although GNNs have achieved outstanding performance in many
tasks, including text clustering, classification, generation, machine reading compre-
hension and so on, there are still numerous open problems to solve at the moment
to better understand human language with graph-based representations and models.
In particular, here we categorize and discuss the open problems or future directions
for graph-based NLP in terms of five aspects: model design of GNNs, data rep-
resentation learning, multi-task relationship modeling, world model, and learning
paradigm.

Although several GNN models are applicable to NLP tasks, only a small subset of
them is explored for model design. More advanced GNN models can be utilized or
improved to handle the scale, depth, dynamics, heterogeneity, and explainability of
natural language texts. First, scaling GNNs to large graphs helps to utilize resources
such as large-scale knowledge graphs better. Second, most GNN architectures are
shallow, and the performance drops after two to three layers. Design deeper GNNs
enables node representation learning with information from larger and more adap-
tive receptive fields (Liu et al, 2020c). Third, we can utilize dynamic graphs to model
the evolving or temporal phenomenons in texts, e.g., the development of stories or
events. Correspondingly, dynamic or temporal GNNs (Skarding et al, 2020) can help
capture the dynamic nature in specific NLP tasks. Forth, the syntactic, semantic, as
well as knowledge graphs in NLP are essentially heterogeneous graphs. Developing
heterogeneous GNNs (Wang et al, 2019i; Zhang et al, 2019b) can help better utiliz-
ing the various nodes and edge information in text and understanding its semantic.
Last but not least, the need for improved explainability, interpretability, and trust of
AI systems in general demands principled methodologies. One way is using GNNs
as a model of neural-symbolic computing and reasoning (Lamb et al, 2020), as the
data structure and reasoning process can be naturally captured by graphs.

For data representations, most existing GNNs can only learn from input when
a graph-structure of input data is available. However, real-world graphs are often
noisy and incomplete or might not be available at all. Designing effective models
and algorithms to automatically learn the relational structure in input data with lim-

480 Bang Liu, Lingfei Wu

ited structured inductive biases can efficiently solve this problem. Instead of man-
ually designing specific graph representations of data for different applications, we
can enable models to automatically identify the implicit, high-order, or even casual
relationships between input data points, and learn the graph structure and repre-
sentations of inputs. To achieve these, recent research on graph pooling (Lee et al,
2019b), graph transformers (Yun et al, 2019), and hypergraph neural networks (Feng
et al, 2019c) can be applied and further explored.

Multi-task learning (MTL) in deep neural networks for NLP has recently re-
ceived increasing interest as it has the potential to efficiently regularize models and
to reduce the need for labeled data (Bingel and Søgaard, 2017). We can marriage the
representation power of graph structures with multi-task learning to integrate diverse
input data, such as images, text pieces, and knowledge bases, and jointly learn a uni-
fied and structured representation for various tasks. Furthermore, we can learn the
relationships or correlations between different tasks and exploit the learned relation-
ship for curriculum learning to accelerate the convergence rate for model training.
Finally, with the unified graph representation and integration of different data, as
well as the joint and curriculum learning of different tasks, NLP or AI systems will
gain the ability to continually acquire, fine-tune, and transfer knowledge and skills
throughout their lifespan.

Grounded language learning or acquisition (Matuszek, 2018; Hermann et al,
2017) is another trending research topic that aims at learning the meaning of lan-
guage as it applies to the physical world. Intuitively, language can be better learned
when presented and interpreted in the context of the world it pertains to. It has
been demonstrated that GNNs can efficiently capture joint dependencies between
different elements in the world (Li et al, 2017e). Besides, they can also efficiently
utilize the rich information in multiple modalities of the world to help understand
the meaning of scene texts (Gao et al, 2020a). Therefore, representing the world
or environment with graphs and GNNs to improve the understanding of languages
deserves more research endeavors.

Lastly, research about self-supervised pre-training for GNNs is also attracting
more attention. Self-supervised representation learning leverages input data itself
as supervision and benefits almost all types of downstream tasks (Liu et al, 2020f).
Numerous successful self-supervised pre-training strategies, such as BERT (Devlin
et al, 2019) and GPT (Radford et al, 2018) have been developed to tackle a variety
of language tasks. For graph learning, when task-specific labeled data is extremely
scarce, or the graphs in the training set are structurally very different from graphs
in the test set, pre-training GNNs can serve as an efficient approach for transfer
learning on graph-structured data (Hu et al, 2020c).

21.6 Conclusions

Over the past few years, graph neural networks have become powerful and practical
tools for a variety of problems that can be modeled by graphs. In this chapter, we

21 Graph Neural Networks in Natural Language Processing 481

did a comprehensive overview of combining graph representations and graph neural
networks in NLP tasks. We introduced the motivation of applying graph representa-
tions and GNNs to NLP problems through the developing history of NLP research.
After that, we provided a brief overview of various graph representations in NLP,
as well as discussed how to tackle different NLP tasks from a graph perspective. To
illustrate how graphs and GNNs are applied in NLP applications with more details,
we presented two case studies related to graph-based hot event discovery and multi-
hop machine reading comprehension. Finally, we categorized and discussed several
frontier research and open problems for graph-based NLP.

Editor’s Notes: Graph-based methods for Natural Language Processing
have been long studied over the last two decades. Indeed, the human lan-
guage is high-level symbol and thus there are rich hidden structural infor-
mation beyond the original simple text sequence. In order to make full use
of GNNs for NLP, graph structure learning techniques in Chapter 14 and
GNN Methods in Chapter 4 serve as the two fundamental building blocks.
Meanwhile, GNN Scalability in Chapter 6, Heterogeneous GNNs in Chap-
ter 16, GNN Robustness in Chapter 8, and so on are also highly important
for developing an effective and efficient approach with GNNs for various
NLP applications. This chapter is also highly correlated with the Chapter
20 (GNN for CV) since vision and language is a fast-growing research area
and multi-modality data is widely used today.

Chapter 22
Graph Neural Networks in Program Analysis

Miltiadis Allamanis

Abstract Program analysis aims to determine if a program’s behavior complies
with some specification. Commonly, program analyses need to be defined and tuned
by humans. This is a costly process. Recently, machine learning methods have
shown promise for probabilistically realizing a wide range of program analyses.
Given the structured nature of programs, and the commonality of graph represen-
tations in program analysis, graph neural networks (GNN) offer an elegant way to
represent, learn, and reason about programs and are commonly used in machine
learning-based program analyses. This chapter discusses the use of GNNs for pro-
gram analysis, highlighting two practical use cases: variable misuse detection and
type inference.

22.1 Introduction

Program analysis is a widely studied area in programming language research that
has been an active and lively research domain for decades with many fruitful re-
sults. The goal of program analysis is to determine properties of a program with
regards to its behavior (Nielson et al, 2015). Traditionally analysis methods aim to
provide formal guarantees about some program property e.g., that the output of a
function always satisfies some condition, or that a program will always terminate.
To provide those guarantees, traditional program analysis relies on rigorous math-
ematical methods that can deterministically and conclusively prove or disprove a
formal statement about a program’s behavior.

However, these methods cannot learn to employ coding patterns or probabilisti-
cally handle ambiguous information that is abundant in real-life code and is widely
used by coders. For example, when a software engineer encounters a variable named

Miltiadis Allamanis
Microsoft Research, e-mail: miallama@microsoft.com

483
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_22

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:miallama@microsoft.com
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_22&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_22

484 Miltiadis Allamanis

“counter”, without any additional context, she/he will conclude with a high proba-
bility that this variable is a non-negative integer that enumerates some elements or
events. In contrast, a formal program analysis method — having no additional con-
text — will conservatively conclude that “counter” may contain any value.

Machine learning-based program analysis (Section 22.2) aims to provide this
human-like ability to learn to reason over ambiguous and partial information at the
cost of foregoing the ability to provide (absolute) guarantees. Instead, through learn-
ing common coding patterns, such as naming conventions and syntactic idioms,
these methods can offer (probabilistic) evidence about aspects of the behavior of a
program. This is not to say that machine learning makes traditional program analy-
ses redundant. Instead, machine learning provides a useful weapon in the arsenal of
program analysis methodologies.

Graph representations of programs play a central role in program analysis and al-
low reasoning over the complex structure of programs. Section 22.3 illustrates one
such graph representation which we use throughout this and discusses alternatives.
We then discuss GNNs which have found a natural fit for machine learning-based
program analyses and relate them to other machine learning models (Section 22.4).
GNNs allow us to represent, learn, and reason over programs elegantly by integrat-
ing the rich, deterministic relationships among program entities with the ability to
learn over ambiguous coding patterns. In this , we discuss how to approach two prac-
tical static program analyses using GNNs: bug detection (Section 22.5), and prob-
abilistic type inference (Section 22.6). We conclude this (Section 22.7) discussing
open challenges and promising new areas of research in the area.

22.2 Machine Learning in Program Analysis

Before discussing program analysis with GNNs, it is important to take a step back
and ask where machine learning can help program analysis and why. At a first look
these two fields seem incompatible: static program analyses commonly seek guar-
antees (e.g., a program never reaches some state) and dynamic program analyses
certify some aspect of a program’s execution (e.g., specific inputs yield expected
outputs), whereas machine learning models probabilities of events.

At the same time, the burgeoning area of machine learning for code (Allamanis
et al, 2018a) has shown that machine learning can be applied to source code across
a series of software engineering tasks. The premise is that although code has a de-
terministic, unambiguous structure, humans write code that contains patterns and
ambiguous information (e.g. comments, variable names) that is valuable for under-
standing its functionality. It is this phenomenon that program analysis can also take
advantage of.

There are two broad areas where machine learning can be used in program anal-
ysis: learning proof heuristics, and learning static or dynamic program analyses.
Commonly static program analyses resort into converting the analysis task into a
combinatorial search problem, such as a Boolean satisfiability problem (SAT), or

22 Graph Neural Networks in Program Analysis 485

another form of theorem proving. Such problems are known to often be computa-
tionally intractable. Machine learning-based methods, such as the work of (Irving
et al, 2016) and (Selsam and Bjørner, 2019) have shown the promise that heuris-
tics can be learned to guide combinatorial search. Discussing this exciting area of
research is out-of-scope for this . Instead, we focus on the static program analysis
learning problem.

Conceptually, a specification defines a desired aspect of a program’s functionality
and can take many forms, from natural language descriptions to formal mathemati-
cal constructs. Traditional static program analyses commonly resort to formulating
program analyses through rigorous formal methods and dynamic analyses through
observations of program executions. However, defining such program analyses is a
tedious, manual task that can rarely scale to a wide range of properties and programs.
Although it is imperative that formal methods are used for safety-critical applica-
tions, there is a wide range of applications that miss on the opportunity to benefit
from program analysis. Machine learning-based program analysis aims to address
this, but sacrifice the ability to provide guarantees. Specifically, machine learning
can help program analyses deal with the two common sources of ambiguities: latent
specifications, and ambiguous execution contexts (e.g., due to dynamically loaded
code). Program analysis learning commonly takes one of three forms, discussed
next.

Specification Tuning where an expert writes a sound program analysis which may
yield many false positives (false alarms). Raising a large number of false alarms
leads to the analogue of Aesop’s “The Boy who Cried Wolf”: too many false alarms,
lead to true positives getting ignored, diminishing the utility of the analysis. To ad-
dress this, work such as those of (Raghothaman et al, 2018) and (Mangal et al,
2015) use machine learning methods to “tune” (or post-process) a program analy-
sis by learning which aspects of the formal analysis can be discounted, increasing
precision at the cost of recall (soundness).

Specification Inference where a machine learning model is asked to learn to pre-
dict a plausible specification from existing code. By making the (reasonable) as-
sumption that most of the code in a codebase complies with some latent specifica-
tion, machine learning models are asked to infer closed forms of those specifica-
tions. The predicted specifications can then be input to traditional program analyses
that check if a program satisfies them. Examples of such models are the factor graphs
of (Kremenek et al, 2007) for detecting resource leaks, the work of (Livshits et al,
2009) and (Chibotaru et al, 2019) for information flow analysis, the work of (Si
et al, 2018) for generating loop invariants, and the work of (Bielik et al, 2017) for
synthesizing rule-based static analyzers from examples. The type inference problem
discussed in Section 22.6 is also an instance of specification inference.

Weaker specifications — commonly used in dynamic analyses — can also be in-
ferred. For example, Ernst et al (2007) and Hellendoorn et al (2019a) aim to predict
invariants (assert statements) by observing the values during execution. Tufano et al
(2020) learn to generate unit tests that describe aspects of the code’s behavior.

486 Miltiadis Allamanis

Black Box Analysis Learning where the machine learning model acts as a black
box that performs the program analysis and raises warnings but never explicitly for-
mulates a concrete specification. Such forms of program analysis have great flexi-
bility and go beyond what many traditional program analyses can do. However, they
often sacrifice explainability and provide no guarantees. Examples of such methods
include DeepBugs (Pradel and Sen, 2018), Hoppity (Dinella et al, 2020), and the
variable misuse problem (Allamanis et al, 2018b) discussed in Section 22.5.

In Section 22.5 and 22.6, we showcase two learned program analyses using
GNNs. However, we first need to discuss how to represent programs as graphs (Sec-
tion 22.3) and how to process these graphs with GNNs (Section 22.4).

22.3 A Graph Represention of Programs

Many traditional program analysis methods are formulated over graph represen-
tations of programs. Examples of such representations include syntax trees, con-
trol flow, data flow, program dependence, and call graphs each providing different
views of a program. At a high level, programs can be thought as a set of heteroge-
neous entities that are related through various kinds of relations. This view directly
maps a program to a heterogeneous directed graph G = (V ,E), with each entity
being represented as a node and each relationship of type r represented as an edge
(vi,r,v j) ∈ E . These graphs resemble knowledge bases with two important differ-
ences (1) nodes and edges can be deterministically extracted from source code and
other program artifacts (2) there is one graph per program/code snippet.

However, deciding which entities and relations to include in a graph represen-
tation of a program is a form of feature engineering and task-dependent. Note that
there is no unique or widely accepted method to convert a program into a graph
representation; different representations offer trade-offs between expressing various
program properties, the size of the graph representation, and the (human and com-
putational) effort required to generate them.

In this section we illustrate one possible program graph representation inspired
by (Allamanis et al, 2018b), who model each source code file as a single graph.
We discuss other graph representations at the end of this section. Figure 22.1 shows
the graph for a hand-crafted synthetic Python code snippet curated to illustrate a
few aspects of the graph representation. A high-level explanation of the entities
and relations follows; for a detailed overview of the relevant concepts, we refer the
reader to programming language literature, such as the compiler textbook of (Aho
et al, 2006).

Tokens A program’s source code is at its most basic form a string of characters. By
construction programming languages can be deterministically tokenized (lexed) into
a sequence of tokens (also known as lexemes). Each token can then be represented
as a node (white boxes with gray border in Figure 22.1) of “token” type. These

22 Graph Neural Networks in Program Analysis 487

Fig. 22.1: A heterogeneous graph representation of a simple synthetic Python pro-
gram (some nodes omitted for visual clarity). Source code is represented as a het-
erogeneous graph with typed nodes and edges (shown at the bottom of the figure).
Code is originally made of tokens (token nodes) which can deterministically be
parsed into a syntax tree with non-terminal nodes (vertexes). The symbols present
in the snippet (e.g. variables) can then be computed (Symbol nodes) and each refer-
ence of symbol denoted by an OccurenceOf edge. Finally, dataflow edges can be
computed (MayNextUse) to indicate the possible flows of values in the program.
Note, the snippet here contains a bug in line 4 (see Section 22.5).

nodes are connected with a NextToken edge (not shown in Figure 22.1) to form a
linear chain.

Syntax The sequence of tokens is parsed into a syntax tree. The leafs of the tree
are the tokens and all other nodes of the tree are “syntax nodes” (Figure 22.1; grey
blue rounded boxes). Using edges of Child type all syntax nodes and tokens are con-
nected to form a tree structure. This stucture provides contextual information about
the syntactical role of the tokens, and groups them into expressions and statements;
core units in program analysis.

Symbols Next, we introduce “symbol” nodes (Figure 22.1; black boxes with
dashed outline). Symbols in Python are the variables, functions, packages that are
available at a given scope of a program. Like most compilers and interpreters, after
parsing the code, Python creates a symbol table containing all the symbols within

7

6

5

1

2

3

4

def normalize_and_encode (content max_len, , min_len) :

if len (content) > max_len :

“””Truncate content and encode.”””

elif len (content) < min_len :

content content= []min_len:

raise Exception ()

return bytes_encode (content)

Assign

Raise

Comparison

ReturnStatement

Comparison

MethodInvoke

MethodInvoke

MethodInvoke

Index

MethodInvoke

if

if

Body

FnDef Parameters

content

min_len

max_len

Token Node Symbol NodeSyntax Node Child Occurrence Of May Next Use

488 Miltiadis Allamanis

each file of code. For each symbol, a node is created. Then, every identifier token
(e.g., the content tokens in Figure 22.1) or expression node is connected to the sym-
bol node it refers to. Symbol nodes act as a central point of reference among the
uses of variables and are useful for modeling the long-range relationships (e.g., how
an object is used).

Data Flow To convey information about the program execution we add data flow
edges to the graph (dotted curved lines in Figure 22.1) using an intraprocedural
dataflow analysis. Although, the actual data flow within the program during execu-
tion is unknown due to the use of branching in loops and if statements, we can add
edges indicating all the valid paths that data may flow through the program. Take as
an example the parameter min len in Figure 22.1. If the condition in line 3 is true,
then min len will be accessed in line 4, but not in line 5. Conversely, if the condition
in line 3 is false, then the program will proceed to line 5, where min len will be
accessed. We denote this information with a MayNextUse edge. This construction
resembles a program dependence graph (PDG) used in compilers and conventional
program analyses. In contrast to the edges previously discussed, MayNextUse has a
different flavor. It does not indicate a deterministic relationship but sketches all pos-
sible data flows during execution. Such relationships are central in program analyses
where existential or universal properties of programs need to be computed. For ex-
ample, a program analysis may need to compute that for all (∀) possible execution
paths some property is true, or that there exists (∃) at least one possible execution
with some property.

It is interesting to observe that just using the token nodes and NextToken edges
we can (deterministically) compute all other nodes and edges. Compilers do ex-
actly that. Then why introduce those additional nodes and edges and not let a neural
network figure them out? Extracting such graph representations is cheap computa-
tionally and can be performed using the compiler/interpreter of the programming
language without substantial effort. By directly providing this information to ma-
chine learning models — such as GNNs — we avoid “spending” model capacity for
learning deterministic facts and introduce inductive biases that can help on program
analysis tasks.

Alternative Graph Representations So far we presented a simplified graph rep-
resentation inspired from (Allamanis et al, 2020). However, this is just one possi-
ble representation among many, that emphasizes the local aspects of code, such as
syntax, and intraprocedural data flow. These aspects will be useful for the tasks dis-
cussed in Sections 22.5 and 22.6. Others entities and relationships can be added, in
the graph representation of Figure 22.1. For example, Allamanis et al (2018b) use a
GuardedBy edge type to indicate that a statement is guarded by a condition (i.e., it
is executed only when the condition is true), and Cvitkovic et al (2018) use a Subto-
kenOf edge to connect tokens to special subtoken nodes indicating that the nodes
share a common subtoken (e.g., the tokens max len and min len in Figure 22.1 share
the len subtoken).

Representations such as the one presented here are local, i.e. emphasize the local
structure of the code and allow detecting and using fine-grained patterns. Other local

22 Graph Neural Networks in Program Analysis 489

representations, such as the one of (Cummins et al, 2020) emphasize the data and
control flow removing the rich natural language information in identifiers and com-
ments, which is unnecessary for some compiler program analysis tasks. However,
such local representations yield extremely large graphs when representing multiple
files and the graphs become too large for current GNN architectures to meaningfully
process (e.g., due to very long distances among nodes). Although a single, general
graph representation that includes every imaginable entity and relationship would
seem useful, existing GNNs would suffer to process the deluge of data. Neverthe-
less, alternative graph constructions that emphasize different program aspects are
found in the literature and provide different trade-offs.

One such representation is the global hypergraph representation of (Wei et al,
2019) that emphasizes the inter- and intraprocedural type constraints among expres-
sions in a program, ignoring information about syntactic patterns, control flow, and
intraprocedural data flow. This allows processing whole programs (instead of single
files; as in the representation of Figure 22.1) in a way that is suitable for predicting
type annotations, but misses the opportunity to learn from syntactic and control-flow
patterns. For example, it would be hard argue for using this representation for the
variable misuse bug detection discussed in Section 22.5.

Another kind of graph representations is the extrinsic one defined by (Abde-
laziz et al, 2020) who combine syntactic and semantic information of programs
with metadata such as documentation and content from question and answer (Q&A)
websites. Such representations often de-emphasize aspects of the code structure fo-
cusing on other natural language and social elements of software development. Such
a representation would be unsuitable for the program analyses of Sections 22.5 and
22.6.

22.4 Graph Neural Networks for Program Graphs

Given the predominance of the graph representations for code, a variety of ma-
chine learning techniques has been employed for program analyses over program
graphs, well before GNNs got established in the machine learning community. In
these methods, we find some of the origins and motivations for GNNs.

One popular approach has been to project the graph into another simpler repre-
sentation that other machine learning methods can accept as input. Such projections
include sequences, trees, and paths. For example, Mir et al (2021) encode the se-
quences of tokens around each variable usage to predict its type (as in the usecase
of Section 22.6). Sequence-based models offer great simplicity and have good com-
putational performance but may miss the opportunity to capture complex structural
patterns such as data and control flow.

Another successful representation is the extraction of paths from trees or graphs.
For example, Alon et al (2019a) extract a sample of the paths between every two
terminal nodes in an abstract syntax tree, which resembles random walk meth-
ods (Vishwanathan et al, 2010). Such methods can capture the syntactic informa-

490 Miltiadis Allamanis

tion and learn to derive some of code’s semantic information. These paths are easy
to extract and provide useful features to learn about code. Nevertheless, they are
lossy projections of the entities and relations within a program, that a GNN can – in
principle – use in full.

Finally, factor graphs, such as conditional random fields (CRF) work directly on
graphs. Such models commonly include carefully constructed graphs that capture
only the relevant relationships. The most prominent example in program analysis
includes the work of Raychev et al (2015) that captures the type constraints among
expressions and the names of identifiers. While such models accurately represent
entities and relationships, they commonly require manual feature engineering and
cannot easily learn “soft” patterns beyond those explicitly modeled.

Graph Neural Networks GNNs rapidly became a valuable tool for learned pro-
gram analyses given their flexibility to learn from rich patterns and the easiness
of combining them with other neural network components. Given a program graph
representation, GNNs compute the network embeddings for each node, to be used
for downstream tasks, such as those discussed in Section 22.5 and 22.6. First, each
entity/node vi is embedded into a vector representation nvi . Program graphs have
rich and diverse information in their nodes, such as meaningful identifier names
(e.g. max len). To take advantage of the information within each token and symbol
node, its string representation is subtokenized (e.g. “max”, “len”) and each initial
node representation nvi is computed by pooling the embeddings of the subtokens,
i.e., for a node vi and for sum pooling, the input node representation is computed as

nvi = ∑
s∈SUBTOKENIZE(vi)

ts

where ts is a learned embedding for a subtoken s. For syntax nodes, their initial
state is the embedding of the type of the node. Then, any GNN architecture that
can process directed heterogeneous graphs1 can be used to compute the network
embeddings, i.e.,

{hvi}= GNN
(
G ′,{nvi}

)
, (22.1)

where the GNN commonly has a fixed number of “layers” (e.g. 8), G ′ = (V ,E ∪
Einv), and Einv is the set of inverse edges of E , i.e., Einv =

{
(v j,r−1,vi),∀(vi,r,v j) ∈ E

}
.

The network embeddings {hvi} are then the input to a task-specific neural network.
We discuss two tasks in the next sections.

1 GGNNs (Li et al, 2016b) have historically been a common option, but other architectures have
shown improvements (Brockschmidt, 2020) over plain GGNNs for some tasks.

22 Graph Neural Networks in Program Analysis 491

22.5 Case Study 1: Detecting Variable Misuse Bugs

We now focus on a black box analysis learning problem that utilizes the graph rep-
resentation discussed in the previous section. Specifically, we discuss the variable
misuse task, first introduced by (Allamanis et al, 2018b) but employ the formulation
of (Vasic et al, 2018). A variable misuse is the incorrect use of one variable instead
of another already in the scope. Figure 22.1 contains such a bug in line 4, where
instead of min len, the max len variable needs to be used to correctly truncate the
content. To tackle this task a model needs to first localize (locate) the bug (if one
exists) and then suggest a repair.

Such bugs happen frequently, often due to careless copy-paste operations and can
often be though as “typos”. Karampatsis and Sutton (2020) find that more than 12%
of the bugs in a large set of Java codebases are variable misuses, whereas Tarlow et al
(2020) find 6% of Java build errors in the Google engineering systems are variable
misuses. This is a lower bound, since the Java compiler can only detect variable
misuse bugs though its type checker. The author conjectures — from his personal
experience — that many more variable misuse bugs arise during code editing and
are resolved before being committed to a repository.

Note that this is a black box analysis learning task. No explicit specification
of what the user tries to achieve exists. Instead the GNN needs to infer this from
common coding patterns, natural language information within comments (like the
one in line 2; Figure 22.1) and identifier names (like min, max, and len) to reason
about the presence of a likely bug. In Figure 22.1 it is reasonable to assume that the
developer’s intent is to truncate content to max len when it exceeds that size (line
4). Thus, the goal of the variable misuse analysis is to (1) localize the bug (if one
exists) by pointing to the buggy node (the min len token in line 4), and (2) suggest
a repair (the max len symbol).

To achieve this, assume that a GNN has computed the network embeddings {hvi}
for all nodes vi ∈ V in the program graph G (Equation 22.1). Then, let Vvu ⊂ V be
the set of token nodes that refer to variable usages, such as the min len token in line
4 (Figure 22.1). First, a localization module aims to pinpoint which variable usage
(if any) is a variable misuse. This is implemented as a pointer network (Vinyals
et al, 2015) over Vvu ∪{ /0} where /0 denotes the “no bug” event with a learned h /0
embedding. Then using a (learnable) projection u and a softmax, we can compute
the probability distribution over Vvu and the special “no bug” event,

ploc(vi) = softmax
v j∈Vvu∪{ /0}

(
u⊤hvi

)
. (22.2)

In the case of Figure 22.1, a GNN detecting the variable misuse bug in line 4, would
assign a high ploc to the node corresponding to the min len token, which is the
location of the variable misuse bug. During (supervised) training the loss is simply
the cross-entropy classification loss of the probability of the ground-truth location
(Equation 22.2).

492 Miltiadis Allamanis

1 def describe_identity_pool(self, identity_pool_id):
2 identity_pool = self.identity_pools.get(identity_pool_id, None)
3

4 if not identity_pool:
5 - raise ResourceNotFoundError(identity_pool)
6 + raise ResourceNotFoundError(identity_pool_id)
7 ...

Fig. 22.2: A diff snippet of code with a real-life variable misuse error caught by a
GNN-based model in the https://github.com/spulec/moto open-source
project.

Repair given the location of a variable misuse bug can also be represented as a
pointer network over the nodes of the symbols that are in scope at the variable mis-
use location vbug. We define Vs@vbug as the set of the symbol nodes of the alternative
candidate symbols that are in scope at vbug, except from the symbol node of vbug.
In the case of Figure 22.1 and the bug in line 4, Vs@vbug would contain the content
and max len symbol nodes. We can then compute the probability of repairing the
localized variable misuse bug with the symbol si as

prep(si) = softmax
s j∈Vs@vbug

(
w⊤[hvbug ,hsi]

)
,

i.e., the softmax of the concatenation of the node embeddings of vbug and si, pro-
jected onto a w (i.e., a linear layer). For the example of Figure. 22.1, prep(si) should
be high for the symbol node of max len, which is the intended repair for the vari-
able misuse bug. Again, in supervised training, we minimize the cross-entropy loss
of the probability of the ground-truth repair.

Training When a large dataset of variable misuse bugs and the relevant fixes can
be mined, the GNN-based model discussed in this section can be trained in a super-
vised manner. However, such datasets are hard to collect at the scale that existing
deep learning methods require to achieve reasonable performance. Instead work in
this area has opted to automatically insert random variable misuse bugs in code
scraped from open-source repositories — such as GitHub — and create a corpus of
randomly inserted bugs (Vasic et al, 2018; Hellendoorn et al, 2019b). However, the
random generation of buggy code needs to be carefully performed. If the randomly
introduced bugs are “too obvious”, the learned models will not be useful. For exam-
ple, random bug generators should avoid introducing a variable misuse that causes
a variable to be used before it is defined (use-before-def). Although such randomly
generated corpora are not entirely representative of real-life bugs, they have been
used to train models that can catch real-life bugs.

When evaluating variable misuse models — like those presented in this section
— they achieve relatively high accuracy over randomly generated corpora with ac-
curacies of up to 75% (Hellendoorn et al, 2019b). However, in the author’s experi-

https://github.com/spulec/moto

22 Graph Neural Networks in Program Analysis 493

ence for real-life bugs — while some variable misuse bugs are recalled — precision
tends to be low making them impractical for deployment. Improving upon this is
an important open research problem. Nevertheless, actual bugs have been caught in
practice. Figure 22.2 shows such an example caught by a GNN-based variable mis-
use detector. Here, the developer incorrectly passed identity pool instead of iden-
tity pool id as the exception argument when identity pool was None (no pool with
the requested id could be found). The GNN-based black-box analysis seems to have
learned to “understand” that it is unlikely that the developer’s intention is to pass
None to the ResourceNotFoundError constructor and instead suggests that it should
be replaced by identity pool id. This is without ever formulating a formal specifica-
tion or creating a symbolic program analysis rule.

22.6 Case Study 2: Predicting Types in Dynamically Typed
Languages

Types are one of the most successful innovations in programming languages. Specif-
ically, type annotations are explicit specifications over the valid values a variable can
take. When a program type checks, we get a formal guarantee that the values of vari-
ables will only take the values of the annotated type. For example, if a variable has
an int annotation, it must contain integers but not strings, floats, etc. Furthermore,
types can help coders understand code more easily and software tools such as auto-
completion and code navigation to be more precise. However, many programming
languages either have to decide to forgo the guarantees provided by types or require
their users to explicitly provide type annotations.

To overcome these limitations, specification inference methods can be used to
predict plausible type annotations and bring back some of the advantages of typed
code. This is especially useful in code with partial contexts (e.g., a standalone snip-
pet of code in a webpage) or optionally typed languages. This section looks into
Python, which provides an optional mechanism for defining type annotations. For
example, content in Figure 22.1 can be annotated as content: str in line 1 to indi-
cate that the developer expects that it will only contain string values. These annota-
tions can then be used by type checkers, such as mypy (mypy Contributors, 2021)
and other developer tools and code editors. This is the probabilistic type inference
problem, first proposed by (Raychev et al, 2015). Here we use the GRAPH2CLASS
GNN-based formulation of (Allamanis et al, 2020) treating this as a classification
task over the symbols of the program similar to (Hellendoorn et al, 2018). Pandi
et al (2020) offer an alternative formulation of the problem.

For type checking methods to operate explicit types annotations need to be pro-
vided by a user. When those are not present, type checking may not be able to
function and provide any guarantees about the program. However, this misses the
opportunity to probabilistically reason over the types of the program from other
sources of information – such as variable names and comments. Concretely, in the
example of Figure 22.1, it would be reasonable to assume that min len and max len

494 Miltiadis Allamanis

have an integer type given their names and usage. We can then use this “educated
guess” to type check the program and retrieve back some guarantees about the pro-
gram execution.

Such models can find multiple applications. For example, they can be used in
recommendation systems that help developers annotate a code base. They may help
developers find incorrect type annotations or allow editors to provide assistive fea-
tures — such as autocomplete — based on the predicted types. Or they may offer
“fuzzy” type checking of a program (Pandi et al, 2020).

At its simplest form, predicting types is a node classification task over the subset
of symbol nodes. Let Vs be the set of nodes of “symbol” type in the heterogeneous
graph of a program. Let also, Z be a fixed vocabulary of type annotations, along with
a special Any type2. We can then use the node embeddings of every node v ∈ Vs to
predict the possible type of each symbol.

p(s j : τ) = softmax
τ ′∈Z

(
Eτ
⊤hvs j

+bτ

)
,

i.e., the inner product of each symbol node embedding with a learnable type embed-
ding Eτ for each type τ ∈ T plus a learnable bias bτ . Training can then be performed
by minimizing some classification loss, such as the cross entropy loss, over a corpus
of (partially) annotated code.

Type Checking The type prediction problem is a specification inference problem
(Section 22.2) and the predicted type annotations can be passed to a standard type
checking tool which can verify that the predictions are consistent with the source
code’s structure (Allamanis et al, 2020) or search for the most likely prediction
that is consistent with the program’s structure (Pradel et al, 2020). This approach
allows to reduce false positives, but does not eliminate them. A trivial example is
an identity function def foo(x): return x. A machine learning model may incorrectly
deduce that x is a str and that foo returns a str. Although the type checker will
consider this prediction type-correct it is hard to justify as correct in practice.

Training The type prediction model discussed in this section can be trained in a
supervised fashion. By scraping large corpora of code, such as open-source code
found on GitHub3, we can collect thousands of type-annotated symbols. By strip-
ping those type annotations from the original code and using them as a ground truth
a training and validation set can be generated.

Such systems have shown to achieve a reasonably high accuracy (Allamanis et al,
2020) but with some limitations: type annotations are highly structured and sparse.
For example Dict[Tuple[int, str], List[bool]] is a valid type annotation that may
appear infrequently in code. New user-defined types (classes) will also appear at test
time. Thus, treating type annotations as district classes of a classification problem

2 The type Any representing the top of the type lattice and is somewhat analogous to the special
UNKNOWN token used in NLP.
3 Automatically scraped code corpora are known to suffer from a large number of duplicates (Al-
lamanis, 2019). When collecting such corpora special care is needed to remove those duplicates to
ensure that the test set is not contaminated with training examples.

22 Graph Neural Networks in Program Analysis 495

1 def __init__(
2 self,
3 - embedding_dim: float = 768,
4 - ffn_embedding_dim: float = 3072,
5 - num_attention_heads: float = 8,
6 + embedding_dim: int = 768,
7 + ffn_embedding_dim: int = 3072,
8 + num_attention_heads: int = 8,
9 dropout: float = 0.1,

10 attention_dropout: float = 0.1,

Fig. 22.3: A diff snippet from the incorrect type annotation caught by Typilus (Al-
lamanis et al, 2020) in the open-source fairseq library.

is prone to severe class imbalance issues and fails to capture information about the
structure within types. Adding new types to the model can be solved by employing
meta-learning techniques such as those used in Typilus (Allamanis et al, 2020; Mir
et al, 2021), but exploiting the internal structure of types and the rich type hierarchy
is still an open research problem.

Applications of type prediction models include suggesting new type annotations
to previously un-annotated code but can also be used for other downstream tasks
that can exploit information for a probabilistic estimate of the type of some symbol.
Additionally, such models can help find incorrect type annotations provided by the
users. Figure 22.3 shows such an example from Typilus (Allamanis et al, 2020).
Here the neural model “understands” from the parameter names and the usage of the
parameters (not shown) that the variables cannot contain floats but instead should
contain integers.

22.7 Future Directions

GNNs for program analysis is an exciting interdisciplinary field of research combin-
ing ideas of symbolic AI, programming language research, and deep learning with
many real-life applications. The overarching goal is to build analyses that can help
software engineers build and maintain the software that permeates every aspect of
our lives. Still there are many open challenges that need to be addressed to deliver
upon this promise.

From a program analysis and programming language perspective a lot of work is
needed to bridge the domain expertise of that community to machine learning. What
kind of learned program analysis can be useful to coders? How can existing program
analyses be improved using learned components? What are the inductive biases that
machine learning models need to incorporate to better represent program-related
concepts? How should learned program analyses be evaluated amidst the lack of
large annotated corpora? Until recently, program analysis research has limited itself

496 Miltiadis Allamanis

to primarily using the formal structure of the program, ignoring ambiguous informa-
tion in identifiers and code comments. Researching analyses that can better leverage
this information may light new and fruitful directions to help coders across many
application domains.

Crucially, the question of how to integrate formal aspects of program analyses
into the learning process is still an open question. Most specification inference work
(e.g. Section 22.6) commonly treats the formal analyses as a separate pre- or post-
processing step. Integrating the two viewpoints more tightly will create better, more
robust tools. For example, researching better ways to incorporate (symbolic) con-
straints, search, and optimization concepts within neural networks and GNNs will
allow for better learned program analyses that can learn to better capture program
properties.

From a software engineering research additional research is needed for the user
experience (UX) of the program analysis results presented to users. Most of the
existing machine learning models do not have performance characteristics that al-
low them to work autonomously. Instead they make probabilistic suggestions and
present them to users. Creating or finding the affordances of the developer environ-
ment that allow to surface probabilistic observations and communicate the proba-
bilistic nature of machine learning model predictions will significantly help accel-
erate the use of learned program analyses.

Within the research area of GNNs there are many open research questions. GNNs
have shown the ability to learn to replicate some of the algorithms used in common
program analysis techniques (Veličković et al, 2019) but with strong supervision.
How can complex algorithms be learned with GNNs using just weak supervision?
Additionally, existing techniques often lack the representational capabilities of for-
mal methods. Combinatorial concepts found in formal methods, such as sets and
lattices lack direct analogues in deep learning. Researching richer combinatorial
— and possibly non-parametric — representations will provide valuable tools for
learning program analyses.

Finally, common themes in deep learning also arise within this domain:

• The explainability of the decisions and warnings raised by learned program
analyses is important to coders who need to understand them and either mark
them as false positives or address them appropriately. This is especially impor-
tant for black-box analyses.

• Traditional program analyses offer explicit guarantees about a program’s behav-
ior even within adversarial settings. Machine learning-based program analyses
relax many of those guarantees towards reducing false positives or aiming to
provide some value beyond the one offered by formal methods (e.g. use am-
biguous information). However, this makes these analyses vulnerable to adver-
sarial attacks (Yefet et al, 2020). Retrieving some form of adversarial robustness
is still desirable for learned program analyses and is still an open research prob-
lem.

• Data efficiency is also an important problem. Most existing GNN-based pro-
gram analysis methods either make use of relatively large datasets of annotated
code (Section 22.6) or use unsupervised/self-supervised proxy objectives (Sec-

22 Graph Neural Networks in Program Analysis 497

tion 22.5). However, many of the desired program analyses do not fit these
frameworks and would require at least some form of weak supervision.
Pre-training on graphs is one promising direction that could address this prob-
lem, but has so far is focused on homogeneous graphs, such as social/cita-
tion networks and molecules. However, techniques developed for homogeneous
graphs, such as the pre-training objectives used, do not transfer well to hetero-
geneous graphs like those used in program analysis.

• All machine learning models are bound to generate false positive suggestions.
However when models provide well-calibrated confidence estimates, sugges-
tions can be accurately filtered to reduce false positives and their confidence
better communicated to the users. Researching neural methods that can make
accurate and calibrated confidence estimates will allow for greater impact of
learned program analyses.

Acknowledgements The author would like to thank Earl T. Barr for useful discussions and feed-
back on drafts of this chapter.

Editor’s Notes: Program analysis is one of the important downstream tasks
of graph generation (Chapter 11). The main challenging problem of pro-
gram analysis lies in graph representation learning (Chapter 2), which inte-
grates the relationships and entities of the program. On basis of these graph
representations, heterogeneous GNN (Chapter 16) and other variants can be
used to learn the embedding of each node for task-specific neural networks.
It has achieved state-of-art performances in bug detection and probabilistic
type inference. There are also many emerging problems in program analy-
sis, e.g. explainability (Chapter 7) of decisions and warnings, and adversar-
ial robustness (Chapter 8).

Chapter 23
Graph Neural Networks in Software Mining

Collin McMillan

Abstract Software Mining encompasses a broad range of tasks involving software,
such as finding the location of a bug in the source code of a program, generating nat-
ural language descriptions of software behavior, and detecting when two programs
do basically the same thing. Software tends to have an extremely well-defined struc-
ture, due to the linguistic confines of source code and the need for programmers to
maintain readability and compatibility when working on large teams. A tradition
of graph-based representations of software has therefore proliferated. Meanwhile,
advances in software repository maintenance have recently helped create very large
datasets of source code. The result is fertile ground for Graph Neural Network rep-
resentations of software to facilitate a plethora of software mining tasks. This chap-
ter will provide a brief history of these representations, describe typical software
mining tasks that benefit from GNNs, demonstrate one of these tasks in detail, and
explain the benefits that GNNs can provide. Caveats and recommendations will also
be discussed.

23.1 Introduction

Software Mining is broadly defined as any task that seeks to solve a software en-
gineering problem by analyzing the myriad artifacts in projects and their connec-
tions (Hassan and Xie, 2010; Kagdi et al, 2007; Zimmermann et al, 2005). Consider
the task of writing documentation. A human performing this task may gain compre-
hension of the software by reading the source code and understanding how different
parts of the code interact. Then he or she may write documentation explaining the
behavior of the system based on that comprehension. Likewise, if a machine is to
automate writing that documentation, the machine must also analyze the software
in order to comprehend it. This analysis is often called “Software Mining.”

Collin McMillan
Department of Computer Science, University of Notre Dame, e-mail: cmc@nd.edu

499
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_23

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:cmc@nd.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_23&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_23

500 Collin McMillan

While human comprehension of software is a cognitive process that occurs natu-
rally as engineers read and interact with that software (Letovsky, 1987; Maalej et al,
2014), machine comprehension must be formally defined and quantifiable. Typically
this boils down to a vectorized representation of each software artifact. For exam-
ple, each identifier name in a function may be assigned an, e.g., 100-length vector
denoting its position in a word embedding space. Then the function may be the av-
erage of those vectors for the identifier names it contains. Or it may be the output
of a recurrent neural network given those identifier name vectors, or perhaps only
the names that occur in particular locations. The point is that machine comprehen-
sion of software is often quantifiable as a vectorized representation of the artifacts
composing that software.

Evidence is accumulating that Graph Neural Networks are an effective means to
obtain these vectorized representations and thus improve machine comprehension of
software. There is a long tradition in the Software Engineering research literature of
treating software as a graph. Control flow graphs, call graphs, abstract syntax trees,
execution path graphs, and many others are frequently the output of both static and
dynamic analysis. Meanwhile, advances in software repository management have
enabled the creation of datasets covering billions of lines of code. The result is
fertile ground for GNNs.

This chapter covers the history and state-of-the-art in representing software as
a graph for GNNs, followed by a high-level discussion of current approaches, a
detailed look at a specific approach, and caveats for future researchers.

23.2 Modeling Software as a Graph

Software is a high-value target for GNNs partly because software tends to be very
highly structured as a graph or set of graphs. Different software mining tasks may
take advantage of different graph structures from software. Graph representations
of software go far beyond any specific software mining task. Graph representations
are baked into the way compilers convert source code into machine code (e.g., parse
trees). They are used during linking and dependency resolution (e.g., program de-
pendence graphs). And they have long the basis for many visualization and support
tools to help programmers understand large software projects (Gema et al, 2020;
Ottenstein and Ottenstein, 1984; Silva, 2012).

When considering how to make use of these different graph structures in soft-
ware, basically the questions one must ask are: “what are the nodes?” and “what
are the edges?” These questions take two forms in software engineering research:
a macro- and a micro-level representation. The macro-level representation tends to
concern connections among large software artifacts, such as a graph in which ev-
ery source code file is a node and every dependency among the files is an edge.
The micro-level representation, in contrast, tends to include small details, such as a
graph in which every token in a function is a node, and every edge is a syntactic link
between the nodes, such as are often extracted from an Abstract Syntax Tree.

23 Graph Neural Networks in Software Mining 501

This section compares and contrasts these representations as they relate to using
GNNs for Software Mining tasks.

23.2.1 Macro versus Micro Representations

Graph structures in software may be broadly classified as either macro- or micro-
level. In theory, the distinction is superfluous because a micro-level representation
may be scaled up to arbitrary size. For example, an entire large program may be
represented as one large abstract syntax tree. But in practice, time and space con-
straints necessitate a separation of macro- and micro-level representations. In a re-
cent collection of Java programs (LeClair and McMillan, 2019), the average number
of nodes in the AST of a function is over 120, with at least one edge per node. The
average number of functions per program is over 1800, and there are over 28,000
programs in the dataset. The reality is that a micro-level representation of an en-
tire program is often not feasible, so a macro-level representation is introduced to
capture the “big picture.”

23.2.1.1 Macro-level Representations

A macro-level graph representation of software captures the high-level structure
and intent behind a program while avoiding a deep dive into details required to
implement that intent. Inspiration for macro-level representations is often drawn
from software design documents, such as those formally defined via UML (Braude
and Bernstein, 2016; Horton, 1992). An example is a class diagram for an object-
oriented program. Each class is a node in the graph. Edges in the graph may var-
iously be dependency, inheritance, realization, composition, among others. Nodes
may also have attributes that refer to the member variables and methods of a class.

In practice, selecting a macro-level representation for a software mining task us-
ing GNNs tends to be severely constrained by what can actually be obtained from
the dataset. Often this constraint precludes the use of behavior-based graphs such
as use case diagrams, because proper use case diagrams are rare, and those that are
available are usually not in a consistent format. For example, because some engi-
neers might follow different conventions, or only provide these diagrams informally.
Software repositories tend to be replete with source code but lack documentation,
especially design documentation (Kalliamvakou et al, 2014).

Therefore, by far, the most popular macro-level graph representations tend to be
ones that can be extracted directly from source code. A decision often arises related
to the degree of granularity, which usually is a choice between packages/directories,
classes/files, or methods/functions. The class diagram is relatively easy to locate ev-
ery class in a software project, then analyze each class to find their dependencies,
inheritances, and etc. Package diagrams are similar, having the advantage of quickly
providing a very high level view of a program – even large projects may only have a

502 Collin McMillan

few dozen packages. But a very popular alternative is a function/method call graph,
in which each function in a program is a node and each call relationship from one
function to another is a directed edge between two nodes. Call graphs are popu-
lar within Software Engineering literature because they are relatively easy to extract
while giving enough detail for a strong macro-level view of a program without over-
whelming data sizes (recall a typical program has around 1800 functions (LeClair
and McMillan, 2019)).

23.2.1.2 Micro-level Representations

A micro-level representation describes a portion of the software in great detail.
Micro-level representations have been the focus of a majority of research using
GNNs for software mining. Allamanis et al (2018b) describe one approach, point-
ing out that the “backbone of a program graph is the program’s abstract syntax tree.”
However, as mentioned above, it is often not feasible to build a model relying on the
entire AST of an entire program. Instead, a typical practice is to generate the AST
for small portions of code, such as individual functions. Each function is treated as
a graph, independent of all other functions.

The benefit of treating each function as a separate graph is that a GNN model
can be trained on each independently. A prediction model of nearly any kind will
require independent, self-contained examples. There will be some context about
which an output prediction is generated (or against which a sample prediction is
used for training). By treating each function as an independent graph, a GNN can
be trained using each function as the context. This is a tidy solution in software
mining for two reasons. First, many tasks in software mining involve predictions
about specific functions, such as whether that function is likely to contain a fault
(see the next section). Second, graphs of functions derived from the AST exhibit a
community structure. In a typical function, there are many connections among nodes
inside the function, but relatively few connections from nodes inside the function to
nodes outside the function – the variables, conditionals, loops, and etc., in the code
of a function interact closely with each other, while must less frequently referring
to something outside the function such as the use of a global variable or call.

One may concoct any number of micro-level representations of software, based
on different tokens in the source code and relationships of those tokens. For ex-
ample, control flow relationships have occasionally been highlighted as often more
valuable for comprehension than data dependencies (Dearman et al, 2005; Ko et al,
2006). At other times, method invocations (Mcmillan et al, 2013; Sillito et al, 2008)
or signatures (Roehm et al, 2012) are proposed as providing superior information
for different software mining tasks. Yet the pattern is that a micro-level representa-
tion is generated for many small portions of a software system, and these portions
are treated as independent of each other. A GNN can take advantage of these micro-
level representations by learning from each one as a different sample.

23 Graph Neural Networks in Software Mining 503

23.2.2 Combining the Macro- and Micro-level

Macro- and micro-level representations may be combined. One strategy would be to
compute both macro- and micro-level representations independently, then concate-
nate them into one large context matrix. Such a model may be referred to as “dual
encoder” (Chidambaram et al, 2019; Yang et al, 2019h) or “cascading” (Wang et al,
2017h) in that they learn two representations of the same object but at different
levels of granularity. An alternative would be to use the output of the micro-level
representation to seed the macro-level representation, for example, by learning a
representation of each function using the AST and then using it as the initial value
for the nodes in a function call graph.

23.3 Relevant Software Mining Tasks

Graph neural networks are becoming a staple of research in software mining tasks.
The history of deep learning for software mining tasks is chronicled in several sur-
veys (Allamanis et al, 2018a; Lin et al, 2020b; Semasaba et al, 2020; Song et al,
2019b). Allamanis et al (2018a) cast a particularly wide net and broadly classify
software mining tasks that rely on neural networks as either “code generational”
or ”code representational.” This classification is based on a big picture view of the
models used for these tasks. In a code generational task, the output of the model is
source code. Tasks in this category include automatic program repair (Chen et al,
2019e; Dinella et al, 2020; Wang et al, 2018d; Vasic et al, 2018; Yasunaga and
Liang, 2020), code completion (Li et al, 2018a; Raychev et al, 2014), and compiler
optimization (Brauckmann et al, 2020). These models tend to be trained with large
volumes of code vetted somehow to ensure quality, with the aim of learning norms
in code that lead to that quality. Then, during inference, the goal is to bring arbi-
trary code into closer conformance with those norms. For example, a model may be
presented with code containing a bug, and that bug may be repaired by changing
the code to be more like the model’s predictions (which, it is hoped, represent the
norms learned in training).

In contrast to code generational tasks are code representational tasks. These tasks
use source code primarily as the input to a neural model during training but have a
wide variety of outputs. Tasks in this category include code clone detection (Ain
et al, 2019; Li et al, 2017c; White et al, 2016), code search (Chen and Zhou, 2018;
Sachdev et al, 2018; Zhang et al, 2019f), type prediction (Pradel et al, 2020), and
code summarization (Song et al, 2019b). In models designed to solve these tasks, the
goal is usually to create a vectorized representation of code, which is then used for
a specific task that may only be tangentially related to the code itself. For instance,
for source code search, a neural model may be used to project the source code in
a large repository into a vector space. Then a different model is used to project a
natural language query into the same vector space. The code nearest to the query
in the vector space is considered as the search result for that query. Code clone

504 Collin McMillan

detection is similar: code is projected into a vector space, and very nearby code may
be considered a clone in that space.

The use of graph neural networks is ballooning in both categories of software
mining tasks. In code generational tasks, the focus tends to be on modifications to a
program graph such as an AST that bring that graph into closer conformity with the
model’s expectations. While some approaches focus on code as a sequence (Chen
et al, 2019e), the recent trend has been to recommend graph transformations or
highlight non-conforming areas of the graph (Dinella et al, 2020; Yasunaga and
Liang, 2020). This is useful in code because a recommendation may relate to code
elements that are quite far away from each other, such as the declaration of a vari-
able and a use of that variable. In contrast, in code representational tasks, the focus
tends to be on creating ever more complex graph representations of code and then
using GNN architectures to exploit that complexity. For example, the first GNN-
based approaches tended to use only the AST (LeClair et al, 2020), while newer
approaches use attention-based GNNs to emphasize the most important edges out
of a multitude that can be extracted from code (Zügner et al, 2021). Despite differ-
ences in code generational and representational tasks, the trend in both categories
has strongly favored GNNs.

Consider the task of code summarization, which exemplifies the trend towards
GNNs. Code summarization is the task of writing natural language descriptions of
source code. Typically these descriptions are used in documentation for that source
code, e.g., JavaDocs. The evolution of this research area is shown in Figure 23.1.
The term “code summarization” was coined around 2010, and several years of active
research followed using templated and IR-based solutions. Then around 2017, solu-
tions based on neural networks proliferated. At first, these were essentially seq2seq
models in which the encoder sequence is the code and decoder sequence is the de-
scription. Starting around 2018, the state-of-the-art moved to linearized AST repre-
sentations. Graph neural networks were proposed around this time as a better solu-
tion (Allamanis et al, 2018b), but it would be another year or more for GNN-based
approaches to appear in the literature. GNNs are poised to underpin the state-of-the-
art. In the next section, we dive into the details of a GNN-based solution, showing
why it works and areas of future growth.

23.4 Example Software Mining Task: Source Code
Summarization

This section describes source code summarization as an example software mining
task that benefits from GNNs. Source code summarization, as mentioned above, is
the task of writing natural language descriptions of source code. The input to a code
summarization model includes at least the source code being described, though may
also include other details about the software project from which the code originates.
The output is the natural language description. This task is considered “code repre-

23 Graph Neural Networks in Software Mining 505

sentational” because it primarily relies on a learned representation of code in order
to make predictions about the description.

23.4.1 Primer GNN-based Code Summarization

As a primer towards GNN-based code summarization, consider a technique pre-
sented by LeClair et al (2020). This model is intended to be a straightforward appli-
cation of convolutional GNNs in the vein of graph2seq (Xu et al, 2018c).

IR M T A S G
*Haiduc et al (2010) x
*Sridhara et al (2011) x x
*Rastkar et al (2011) x x x
*De Lucia et al (2012) x
*Panichella et al (2012) x x
*Moreno et al (2013) x x
*Rastkar and Murphy (2013) x
*McBurney and McMillan (2014) x x
*Rodeghero et al (2014) x
*Rastkar et al (2014) x
*Cortés-Coy et al (2014) x
*Moreno et al (2014) x
*Oda et al (2015) x
*Abid et al (2015) x x
*Iyer et al (2016) x
*McBurney et al (2016) x x
*Zhang et al (2016a) x x
*Rodeghero et al (2017) x
*Fowkes et al (2017) x
*Badihi and Heydarnoori (2017) x x
*Loyola et al (2017) x
*Lu et al (2017b) x
*Jiang et al (2017) x
*Hu et al (2018c) x
*Hu et al (2018b) x x
*Wan et al (2018) x x
*Liang and Zhu (2018) x x
*Alon et al (2019a,b) x x
*Gao et al (2019b) x
*LeClair et al (2019) x x
*Nie et al (2019) x x
*Haque et al (2020) x x
*Haldar et al (2020) x x
*LeClair et al (2020) x x x
*Ahmad et al (2020) x x
*Zügner et al (2021) x x x
*Liu et al (2021) x x x

Table 23.1: Overview of papers on the topic of source code summarization, from the paper to
coin the term “code summarization” in 2010 to the following ten years. Note the evolution from
IR/template-based solutions to neural models and now to GNN models. Column IR indicates if the
approach is based on Information Retrieval. M indicates manual features/heuristics. T indicates
templated natural language. A indicates Artificial Intelligence (usually Neural Network) solutions.
S means structural data such as the AST is used (for AI-based models). G means a GNN is the
primary means of representing that structural data.

506 Collin McMillan

23.4.1.1 Model Input / Output

The input to this technique is a micro-level representation of code: it is just the AST
of a single subroutine. The nodes in the graph are all nodes in the GNN, whether
they are visible to the programmer or not. The only edge type is the parent-child
relationship in the AST. Consider the code and example summaries in Example 23.1
and the AST of this code in Figure 23.1. Regarding the Figure 23.1, bold indicates
text from source code that is visible to a human reader in the source code file –
a depth-first search of the leaf nodes reveals the code sequence. E.g., “public void
send guess ...” Non-bold indicates AST nodes that the compiler uses to represent
structure. Visible text is preprocessed as it would appear to the model. For example,
the name sendGuess is split into send and guess, and both nodes are children
of a name node, which is a child of function. Neither name nor function is
visible to a human reader. The circled areas 1-4 are reference points for discussion
in Sections 23.4.1.4 and 23.4.2.

The AST in Figure 23.1 is the only input to the model, from which the model
must generate an English description. Technically, the AST is srcml (Collard et al,
2011) preprocessed (e.g., splitting identifies such as sendGuess into send and
guess) using community standard procedures (LeClair and McMillan, 2019). The
reference output description in Example 23.1 is the actual JavaDoc summary written
by a human programmer. The summary labeled “gnn ast” is the prediction from this
approach. The summary labeled “flat ast” is the output from an immediate prede-
cessor that used an RNN on a linearization of the AST. The only difference between
the GNN and flat AST approach is the structure of the encoder; all other model de-
tails are identical. Yet, we note that the GNN-based approach matched the reference
exactly, while the flat AST approach matched only a few words. Shortly we will
analyze this example to provide intuition about why the model performed so well.

summaries
reference sends a guess to the server
ast-attendgru-gnn (LeClair et al, 2020) sends a guess to the socket
ast-attendgru-flat (LeClair et al, 2019) attempts to initiate a <UNK> guess

source code

public void sendGuess(String guess) {
if(isConnected()) {

gui.statusBarInfo("Querying...", false);
try {
os.write((guess + "\\r\\n").getBytes());
os.flush();

} catch (IOException e) {
gui.statusBarInfo("Failed to send guess.", true);
System.err.println("IOException during send guess");

}
}

}

Example 23.1: The function sendGuess() and summary descriptions.

23 Graph Neural Networks in Software Mining 507

23.4.1.2 Model Architecture

The model architecture, as mentioned, is essentially a 2-hop graph2seq design based
on a convolutional GNN. While we leave the details of the model to the relevant
paper (LeClair et al, 2020), a bird’s-eye view of the model is in Figure 23.2.

The model input is derived only from a single subroutine being described: the
code as a sequence and the AST nodes and edges (Figure 23.2 area A). A word em-
bedding projects tokens in the sequence and nodes in the AST into the same vector
space, which is possible because the vocabulary is the same in both the sequence
and the node input (area B). A 2-hop convolutional GNN is used to form a vec-
torized representation of the AST (area C). The output after the second hop is a
matrix in which each column is a vector representing a node in the AST. A GRU
is then applied to this matrix to capture information about the order in which the
nodes appear. Meanwhile, a GRU is also applied to the sequence directly (area D).
The decoder is a simple GRU representation of the summary (area H). Attention is
applied between the decoder output and the sequence GRU output, as well as the
GNN output (area E). The attended matrices are then concatenated into a context
matrix (area F) and connected to an output dense layer (area G).

A key feature of the model is the attention between the decoder and the GNN
output. The purpose of this attention is to highlight the nodes in the AST that are the
most related to the words in the decoder sequence. We will describe below how this
attention was made much more effective by the shared word embedding (area B).

23.4.1.3 Experiment

An experiment demonstrated improvement of the GNN model over various base-
lines, and explored the effects of various model design decisions. The experiment
used a dataset of 2.1m Java methods and associated JavaDoc summaries (LeClair
et al, 2020). Essentially the conditions were that 80% of the projects in the dataset
were assigned for the training set, and 10% each for validation/testing. Duplicates
and other defects were removed from the dataset in accordance with community
standards (LeClair and McMillan, 2019). The model was trained with methods from
the projects in the training set. The training ran for 10 epochs, and the model with
the highest validation accuracy was selected for testing. The predictions from the
tests were then compared with reference summaries.

Three findings stand out in findings reported by LeClair et al (2020). First, the
GNN-based approaches outperform the most-similar baseline (ast-attendgru-flat) by
about 1 BLEU point (about a 5% improvement). Since the only difference between
the “flat” model and this GNN-based one is the AST encoder portion of the model,
the improvement can be attributed to the use of the GNN (as opposed to an RNN) for
the AST encoding. Improvement was also observed over two other baselines. The
vanilla graph2seq model, which had only the AST and not the sequence encoder
(Figure 23.2 area A), was roughly equivalent to the flat AST model in terms of

508 Collin McMillan

aggregate BLEU score but this score obscures some details of the performance,
which we will see in the next section.

The second key finding is that a hop distance of two results in the best over-
all performance. While models with GNN iterations ranging between one and ten
all achieve higher scores than the baselines, the model performs best with two it-
erations. One explanation is that nodes in the AST are only relevant to each other
within a distance of about two. The AST is a tree, so information is propagated up
and down levels of the tree. For two hops, this means information from a node will
propagate to its parent in the first hop and then to its grandparent and siblings in
the second hop. It is possible that nodes beyond this scope are not that relevant to
the model for code summarization. However, another explanation is that the method
of aggregating information in each hop is less efficient after two hops – this inter-
pretation would be consistent with findings by Xu et al (2018c) that aggregation
procedure is critical to GNN deployment. Either way, the practical advice for model
designers is that the optimal number of GNN iterations for this task is not that high.

The third key finding is that the use of the GRU after the GNN layer (Figure 23.2
after area C) improves overall performance. The models labeled with the suffix
+GRU use this GRU layer, as described in Section 23.4.1.2. The model labeled with
the suffix +dense calculates attention between the decoder and the output matrix
from the GNN. This model did not perform as well. A likely explanation is that
source code has not only a tree structure via the AST – it also has an order from
start to end. The GRU after the GNN captures this order and seems to result in a
better representation of the code for summarization.

23.4.1.4 What benefit did the GNN bring?

A question remains regarding what benefit can be attributed to the use of a GNN.
While we and others may observe an improvement in overall BLEU scores when
using a GNN (LeClair et al, 2020; Zügner et al, 2021; Liu et al, 2021), a key point
is that the GNN contributes orthogonal information to the model. This section ex-
plores how.

Concentration of Improvement:
The improvement is concentrated among a set of subroutines where the GNN

adds significant improvement. It is not the case that the BLEU scores increase
marginally for all subroutines – there is a set of subroutines that benefits the most.
Consider Figure 23.3. The pie chart divides the test set into subroutines from the
experiment describe above into five groups: one group where ast-attendgru-gnn per-
formed the best, one group where ast-attendgru-flat performed the best, one group
where they tied, one group for attendgru, and one group for other ties including
when all models made the same prediction. For simplicity, we use BLEU-1 scores
(BLEU-1 is unigram precision, single words predicted correctly).

What we observe is that each model achieves the highest BLEU-1 score for 20-
25% of the subroutines. For about 12% of the subroutines, the AST-based models

23 Graph Neural Networks in Software Mining 509

were tied, meaning that in total over 50% of the subroutines benefited from AST
information (GNN plus flat AST models). But there still exists a large set of sub-
routines where attendgru outperformed all others. However, consider the bar chart
in Figure 23.3. The “all” columns show the BLEU-1 score for that approach – note
that ast-attendgru-gnn is only marginally higher than others. The “best” columns
show the score for the set where that model achieved the highest BLEU-1 score (the
set with that model’s name indicated in the pie chart). We observe that the BLEU-1
scores for ast-attendgru-gnn are much higher for this set than others.

Demonstrating Improvement in Example 23.1:
A deeper dive into the subroutine sendGuess() from Example 23.1 demon-

strates the improvement that a GNN provides. Recall that the ast-attendgru-gnn
model calculates attention between each position in the decoder and each node in
the output from the GNN (Section 23.4.1.2, Figure 23.2 area E). The result is an m
x n matrix where m is the length of the decoder sequence and n is the number of
nodes (in the implementation, m=13 and n=100). Thus each position in the attention
matrix represents the relevance of an AST node to a word in the output summary.
In fact, the attention matrix for ast-attendgru-flat has the same meaning: the mod-
els are identical except that ast-attendgru-gnn encodes the AST with a GNN then a
GRU, while the flat model uses only the GRU. Comparing the values in these atten-
tion matrices provides a useful contrast of the two models because they show the
contribution of the AST encoding to the prediction.

The benefit of a GNN becomes apparent in the attention networks in Figure 23.3.
Both models have a very similar attention activation to the tokens in the source code
sequence (Figures 23.3a and 23.3c). Both models show close attention to position
2 of the code sequence, which is the word “send”. This is not surprising consider-
ing that “send” appears in the method’s name. Yet, ast-attendgru-flat still incorrectly
predicts the first word of the summary as “attempts”, while ast-attendgru-gnn cor-
rectly predicts “sends.” The explanation lies in the attention to AST nodes. The
flat model focuses on node 37 (Figure 23.3d), which is an expr stmt node immedi-
ately after the try block, just before the call to os.write(), indicated as area
1 in Figure 23.1. The reason for this focus suggested by the original paper on that
model (LeClair et al, 2019) is that the flat AST model tends to learn broadly similar
code structure such as “if-block, try-block, call to os.write().” Under this expla-
nation, methods in the training set with this if-try-call-catch pattern are associated
with the word “attempts.”

In contrast, the GNN-based model focuses on position 8, which is the word
“send” in the method name, just like in the attention to the code sequence (Fig-
ure 23.3b). The result is that the GNN-based AST encoding reinforces the attention
paid to this word when predicting the first word of the output. Consider the method’s
AST in Figure 23.1. Position 8 is the node for “send” indicated at area 2. In a 2-hop
GNN, this node will share information with its parent (name), grandparent (func-
tion), and sibling (guess). During training, the model learned that words associated
with the AST nodes “function” and “name” are likely candidates for the first word
of the summary, so the model knows to highlight this word.

510 Collin McMillan

In short, the GNN model outperformed because it conveys a lopsided benefit to
a particular subset of the subroutines, and a likely reason it conveys this benefit is
that it learns to associate AST tokens with particular locations in the code summary.

23.4.2 Directions for Improvement

The view of software as a graph described in Section 23.2 provides two directions
for improvement: micro- and macro-level representations. Essentially the choice is
whether to attempt to squeeze more information out of the source code being de-
scribed (micro-level) or to draw upon more information from outside that source
code (macro-level). If the aim is to generate summaries of a Java method, then one
may learn more information about the details of that method, or one may use in-
formation from the classes, packages, dependencies, and etc., around the method.
Micro- and macro-level improvements tend to be complementary rather than com-
petitive. Learning more about the macro-level graph information benefits models of
micro-level information and visa versa (Haque et al, 2020).

23.4.2.1 Example Micro-level Improvement

Liu et al (2021) present a notable example of an improvement to GNN-based code
summarization using a richer micro-level graph representation of software. The es-
sentials of the approach are similar to (LeClair et al, 2020) described above: the
input to the model is the source code of a subroutine, and the output is a description
of the subroutine. The encoder is based on a GNN, and the input to this GNN is the
AST of the subroutine. The nodes in the graph are AST nodes, and the edges are the
AST parent-child relationships. However, one novel aspect is that the model also
considers other types of edges, namely control flow and data dependencies (these
are unified as a Code Property Graph (Yamaguchi et al, 2014)). The benefit to this
structure is that nodes in the AST will receive information directly from other rele-
vant parts of the code, rather than only the nodes nearby in the AST.

Consider Figure 23.1 area 3, which is an AST node corresponding to the string
variable “guess” in Example 23.1. The ast-attendgru-gnn approach would propa-
gate information from that variable to the parents, grandparents, and siblings (in the
two hops configuration). These would be the “name” and “decl” AST nodes. These
nodes have locations in the word embedding associated with them, and these nodes
also appear in practically every subroutine in the dataset. So, the model will learn
how these nodes are used and associate them with what a human would call a vari-
able declaration. The effect in this example is that the model will learn that the word
“guess” is a variable name declaration.

The approach by Liu et al. improves over ast-attendgru-gnn because it can learn
this relationship in addition to several others. The experiment with ast-attendgru-gnn
showed evidence that AST structural information can lead to a better representation
of code – it is useful to know that “guess” is a variable name declaration. But other
relationships also exist. The variable “guess” is used in the call to os.write(). This

23 Graph Neural Networks in Software Mining 511

relationship is a data dependency and is useful to human readers (Freeman, 2003).
A human attempting to comprehend this code would likely note that whatever is
passed into the subroutine as a parameter via the variable “guess” is subsequently
written out via a method call. The benefit to Liu et al.’s approach is that it captures
this relationship and uses it to form a more-complete GNN-based representation of
the code.

A caveat is that as more edge types are added to the graph, more information
will be propagated among nodes, which may have effects that are difficult to ex-
plain. Imagine in Figure 23.1 if an edge were to exist between “guess” at area 4 and
“guess” at area 1, denoting a data dependency. A typical GNN design would prop-
agate information across this edge. The result would be that the nodes around the
location that uses “guess” would gain information from the nodes where “guess” is
defined. But now imagine a control dependency from the try block start to the call
to os.write(). The information would then also propagate from the try block to
the use of “guess” over the control flow edge and then from the use of “guess” to the
definition of “guess” over the data flow edge. This connection is difficult to explain
– it is not clear what it means for a try block to be connected to the parameter list.
A human may proffer an explanation for this particular subroutine, but a model such
as ast-attendgru-gnn would always propagate information across these edges, even
when it does not make sense to do so.

Liu et al. solve this problem by using an attentional GNN proposed by Zhu et al
(2019b). Essentially, this GNN adds an attention layer as a gate prior to propagating
information across an edge. The input to this gate includes the node embedding for
the node at the origin of the edge, plus an edge embedding for that type of edge. The
result is that the model learns during training when to propagate information from a
node over a particular type of edge. That way, information from the, e.g., try block
may or may not propagate to the parameter list, depending on whether that particu-
lar connection was useful during training. Liu et al. use the learned representation of
code to help locate similar code comments in a database of those comments. How-
ever, the big picture idea is to use an attentional GNN to emphasize some edges in
the code over others when the graph representation of code becomes large and com-
plex, and this idea may serve as inspiration for a variety of software mining tasks.
It is an example of how better micro-level representations of code can assist these
software mining tasks.

23.4.2.2 Example Macro-level Improvement

One inspiration for macro-level improvement to neural code summarization is from
(Aghamohammadi et al, 2020). Their approach focuses on generating summaries of
code in Android projects. The approach is divided into two parts. The first part cen-
ters around an attentional encoder-decoder model similar to the attendgru baseline
described by LeClair et al (2019). They use this model to generate an initial code
summary based solely on the words inside the subroutine itself. The second part is to
augment the initial summary with phrases from the summaries of other subroutines

512 Collin McMillan

in the same project. The approach is to obtain a dynamic call graph of the Android
program, which represents the actual runtime control flow from one subroutine to
the next. Then a subset of the subroutines in this call graph is selected using PageR-
ank – the idea is to emphasize the subroutines, which are called many times or hold
other importance measurable from the structure of the call graph (McMillan et al,
2011). The summaries from these subroutines are then appended to the initial sum-
mary.

Aghamohammadi et al (2020)’s approach demonstrates an advantage to macro-
level information. The macro-level information is the dynamic call graph of the
entire program, and it is used to augment summaries created from the source code
itself. The summaries tend to be longer and to provide more contextual informa-
tion to readers. Recall sendGuess() in Example 23.1, for which ast-attendgru-gnn
wrote “sends a guess to the socket.” The approach by Aghamohammadi et al (2020)
may (hypothetically) find that the subroutine that calls sendGuess() is a mouse
click handler subroutine, and so would append, e.g., “called when the mouse is used
to click the button.” Human readers of documentation benefit from knowing how
subroutines are used, so summaries that include this macro-level information tend
to be considered more valuable by those readers (Holmes and Murphy, 2005; Ko
et al, 2006; McBurney and McMillan, 2016).

Macro-level representations of code for software mining tasks are likely fertile
ground for GNN-based technologies. The dynamic call graphs which Aghamoham-
madi et al (2020) extract contain information from actual runtime use, and a GNN
may serve as a useful tool in generating a representation of this information. Yet,
applications of GNNs to macro-level data for software mining tasks are still in their
infancy.

23.5 Summary

In this chapter, we presented Software Mining Tasks as an application area for
GNNs. A high-level view of any approach is to represent the software as a graph,
then create a GNN model able to use this graph to learn to make predictions for a
particular purpose. We present two views of software graphs: a micro- and macro-
level representation. Micro-level representations predominate. For example, for the
task of bug prediction in a subroutine, most approaches tend to look exclusively
within those subroutines for patterns associated with that bug. Yet, evidence is
emerging that macro-level representations may also benefit these tasks, as the con-
text surrounding code is very likely to contain information necessary to compre-
hend that code. The future likely lies in combined GNN models of both micro- and
macro-level graph representations of software.

We focus in this chapter on the task of source code summarization as an exam-
ple of how GNN-based models help produce better predictions for software mining
tasks. A straightforward approach is described in which the AST of subroutines is
used to train a GNN, which leads to a better micro-level representation in many

23 Graph Neural Networks in Software Mining 513

cases. An improvement based on an attentional GNN shows how much more com-
plex graphs can also be exploited for better for this purpose. Yet, these improve-
ments for code summarization likely herald improvements for many software min-
ing tasks. Both code representational and code generational tasks depend heavily on
understanding the nuances of the structure that code, and GNNs are a likely avenue
for capturing this structure. This chapter has covered the history of this research, a
specific target problem, and recommendations for future researchers.

Editor’s Notes: AI for Code is a very fast-growing area in the recent years.
Computer software or program is just like a second language compared
to human language, which is not surprising that there are many shared at-
tributes or aspects in both languages. Therefore, we have seen this trend
that both NLP and Software communities start paying a large amount of
attentions in applying GNNs for their domain applications and achieve the
great successes in both domains. Just like GNNs for NLP, graph structure
learning techniques in Chapter 14, GNN Methods in Chapter 4, GNN Scal-
ability in Chapter 6, Heterogeneous GNNs in Chapter 16, GNN Robustness
in Chapter 8 are all highly important building blocks for developing an ef-
fective and efficient approach with GNNs for code.

514 Collin McMillan

Figure 23.1: Abstract Syntax Tree for the function sendGuess() in Example 1.

23 Graph Neural Networks in Software Mining 515

Src sequence

AST nodes

Summary

GRU

ConvGNN-1

ConvGNN-2 GRU

AST edges

GRU

Attention

Attention

Context Output

Src/AST
Embedding

DBA

E
F GC

H
Summary
Embedding

Figure 23.2: High-level diagram of the model architecture for 2-hop model.

Figure 23.3: (left) Comparison of the BLEU-1 score for the subroutines where each
method performed best, to BLEU-1 score for the whole test set. (right) Percent of
test set for which each approach received the highest BLEU-1 score.

516 Collin McMillan

(a) ast-attendgru-gnn attention to source code sequence

(b) ast-attendgru-gnn attention to AST nodes

(c) ast-attendgru-flat attention to source code sequence

(d) ast-attendgru-flat attention to AST nodes

Figure 23.4: Visualization of attention network for ast-attendgru-gnn and ast-
attendgru-flat for the subroutine sendGuess() in Example 23.1 and AST in Fig-
ure 23.1. Matrices are 13x100 because attention is applied between every position
in the decoder output (length 13) and every position in the encoder (100 nodes or
100 code tokens). Bright areas indicate high attention. For example, position 2 in
the code sequence is heavily emphasized for both models. Position 2 corresponds to
the word “send” in the code sequence.

Chapter 24
GNN-based Biomedical Knowledge Graph
Mining in Drug Development

Chang Su, Yu Hou, Fei Wang

Abstract Drug discovery and development (D3) is an extremely expensive and time
consuming process. It takes tens of years and billions of dollars to make a drug suc-
cessfully on the market from scratch, which makes this process highly inefficient
when facing emergencies such as COVID-19. At the same time, a huge amount
of knowledge and experience has been accumulated during the D3 process during
the past decades. These knowledge are usually encoded in guidelines or biomedi-
cal literature, which provides an important resource containing insights that can be
informative of the future D3 process. Knowledge graph (KG) is an effective way
of organizing the useful information in those literature so that they can be retrieved
efficiently. It also bridges the heterogeneous biomedical concepts that are involved
in the D3 process. In this chapter we will review the existing biomedical KG and
introduce how GNN techniques can facilitate the D3 process on the KG. We will
also introduce two case studies on Parkinson’s disease and COVID-19, and point
out future directions.

24.1 Introduction

Biomedicine is a discipline with lots of highly specialized knowledge accumulated
from biological experiments and clinical practice. This knowledge is usually buried

Chang Su,
Department of Population Health Sciences, Weill Cornell Medicine, e-mail: chs4001@med.
cornell.edu

Yu Hou,
Department of Population Health Sciences, Weill Cornell Medicine, e-mail: yuh4001@med.
cornell.edu

Fei Wang,
Department of Population Health Sciences, Weill Cornell Medicine, e-mail: few2001@med.
cornell.edu

517
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_24

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:chs4001@med.cornell.edu
mailto:chs4001@med.cornell.edu
mailto:yuh4001@med.cornell.edu
mailto:yuh4001@med.cornell.edu
mailto:few2001@med.cornell.edu
mailto:few2001@med.cornell.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_24&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_24

518 Chang Su, Yu Hou, Fei Wang

in massive biomedical literature and text books. This makes effective knowledge
organization and efficient knowledge retrieval a challenging task. Knowledge graph
is a recently emerged concept aiming at achieving this goal. A knowledge graph
(KG) stores and represents knowledge by constructing a semantic network describ-
ing entities and the relationships between them. The basic elements comprising a
knowledge graph are a set of ⟨head, relation, tail⟩ tuples, where the heads and tails
are concept entities and relations link these entities with semantic relationships. In
biomedicine, the typical entities could be diseases, drugs, genes, etc., and the rela-
tionships could be treats, binds, interactions, etc. Large scale biomedical KG makes
efficient knowledge retrieval and inference possible.

Biomedical KG can effectively complement the biomedical data analytics pro-
cesses. In particular, many different types of biomedical data are heterogeneous and
noisy (Wang et al, 2019f; Wang and Preininger, 2019; Zhu et al, 2019e), which
makes the data-driven models developed on these data not reliable for real prac-
tice. Biomedical KGs (BKGs) effectively encode the biomedical entities and their
semantic relationships, which can serve as “prior knowledge” to guide the down-
stream data-driven analytics procedure and improve the quality of the model. On
the other hand, we can also use BKGs to generate hypotheses (such as which drug
can be used to treat which disease), and get them validated in real world health data
(such as electronic health records).

In this chapter, we will review existing BKGs and present examples of how BKGs
can be used for generating drug repurposing hypotheses, and point out future direc-
tions.

24.2 Existing Biomedical Knowledge Graphs

This section surveys the existing BKGs that are publicly available and the ways of
BKG construction and curation (Table 24.3).

A common way for constructing a BKG is to extract and integrate data from
data resources, usually, which are manually curated to summarize and organize the
biomedical knowledge derived from biological experiments, clinical trials, genome
wide association analyses, clinical practices, etc (Santos et al, 2020; Ioannidis et al,
2020; Himmelstein et al, 2017; Rizvi et al, 2019; Yu et al, 2019b; Zhu et al, 2020b;
Zeng et al, 2020b,b; Domingo-Fernández et al, 2020; Wang et al, 2020e; Percha and
Altman, 2018; Li et al, 2020d,b; Goodwin and Harabagiu, 2013; Rotmensch et al,
2017; Sun et al, 2020a). In table 24.2, we summarized some public data resources
that have been commonly used in the construction of BKGs. For instance, Compar-
ative Toxicogenomics Database (CTD) (Davis et al, 2019) is an open resource pro-
viding rich, manually curated chemical–gene, chemical–disease and gene–disease
relational data, for the aim of advancing understanding the impacts of environmental
exposures on human health. DrugBank (Wishart et al, 2018) is a database containing
information of the approved drugs and drugs under trial, as well as the pharmacoge-
nomic data (e.g., drug-target interactions). Ontology resources like Gene Ontology

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 519

(Ashburner et al, 2000) and Disease Ontology (Schriml et al, 2019) stored func-
tional and semantic context of genes and diseases, respectively. By integrating data
from these rich resources, a number of BKGs have been constructed (Santos et al,
2020; Ioannidis et al, 2020; Himmelstein et al, 2017; Rizvi et al, 2019; Yu et al,
2019b; Zhu et al, 2020b; Zeng et al, 2020b,b; Domingo-Fernández et al, 2020; Wang
et al, 2020e). For example, Hetionet (Himmelstein et al, 2017), released in 2017, is
a well-curated BKG that integrates 29 publicly available biomedical databases. It
contains 11 types of 47031 biomedical entities and 24 types of over 2 million re-
lations among thoses entities. Similar to Hetionet, Drug Repurposing Knowledge
Graph (DRKG) (Ioannidis et al, 2020) was built by integrating data from six differ-
ent existing biomedical databases, containing 13 types of about 100K entities and
107 types of over 5 million relationships. Zhu et al (2020b) constructed a drug-
centric BKG by systematically integrating multiple drug databases such as Drug-
Bank (Wishart et al, 2018) and PharmGKB (Whirl-Carrillo et al, 2012). Hetionet,
DRKG, and BKGs have been used in accelerating computational drug repurpos-
ing. PreMedKB (Yu et al, 2019b) includes the information of disease, genes, vari-
ants, and drugs by integrating relational data among them from existing resources.
By integrating multiple dietary related databases, Rizvi et al (2019) built a BKG,
named Dietary Supplements Knowledge Base (iDISK), which covers knowledge of
dietary supplements, including vitamins, herbs, minerals, etc. The Clinical Knowl-
edge Graph (CKG)(Santos et al, 2020) was constructed by integrating relevant exist-
ing biomedical databases such as DrugBank (Wishart et al, 2018), Disease Ontology
(Schriml et al, 2019), SIDER (Kuhn et al, 2016), etc. and knowledge extracted from
scientific literature. It contains over 16 million nodes and over 220 million relation-
ships. Compared to other BKGs, CKG has a finer granularity of knowledge as it
involves more entity types such as metabolite, modified protein, molecule function,
transcript, genetic variant, food, clinical variable, etc.

As the rapid development of biomedical research, a continuously increasing vol-
ume of biomedical articles have been published every day. Manually extracting
knowledge from literature for BKG cuuration is no longer sufficient to meet cur-
rent needs. To this end, efforts have been made in using text mining methods to ex-
tract biomedical knowledge from scientific literature to construct BKGs (Domingo-
Fernández et al, 2020; Wang et al, 2020e; Percha and Altman, 2018; Li et al,
2020d). For example, Sun et al (2020a) constructed a knowledge graph by extracting
biomedical entities and relationships from drug descriptions, medical dictionaries,
and literature to identify suspected cases of Fraud, Waste, and Abuse from claim
files. COVID-KG (Wang et al, 2020e) and COVID-19 Knowledge Graph (Domingo-
Fernández et al, 2020) were built by extracting COVID-19 specific knowledge from
biomedical literature. The resulting COVID-19 specific BKGs contain entities such
as diseases, chemicals, genes, and pathways, along with their relationships. KGHC
(Li et al, 2020d) is a BKG with the specific focus on hepatocellular carcinoma.
It was built by extracting knowedge from literature and contents on the internet,
as well as structured triples from SemMedDB (Kilicoglu et al, 2012). In addition,
some studies (Goodwin and Harabagiu, 2013; Li et al, 2020b; Rotmensch et al,
2017; Sun et al, 2020a) tried to build BKGs from clinical data such as electronic

520 Chang Su, Yu Hou, Fei Wang

health records (EHRs) and electronic medical records (EMRs). For instance, Rot-
mensch et al (2017) constructed a BKG by extracting disease-symptom associations
from EHR data using the data-driven approach. Li et al (2020b) proposed a sys-
tematic pipeline for extracting BKG from large scale EMR data. Compared to other
BKGs based on triplet structure, the resulting KG is based a quadruplet structure,
i.e., ⟨head,relation, tail, property⟩. Here the property includes information such as
co-occurrence number, co-occurrence probablity, specificity, and reliability of the
corresponding ⟨head,relation, tail⟩ triplet.

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 521

Table 24.1: Summary of existing BKGs.

BKGs Entities Relations Focus Construction
method

URL

Clinical
Knowledge
Graph (Santos
et al, 2020)

16 million entities
from 33 entity types

220 million
relations from 51
relation types

General Resources
Integration

https://github.com/
MannLabs/CKG

Drug
Repurposing
Knowledge
Graph
(Ioannidis
et al, 2020)

97,238 entities from
13 entity types

5,874,261 relations
from 107 relation
types

General Resources
Integration

https://github.com/
gnn4dr/DRKG

Hetionet
(Himmelstein
et al, 2017)

47,031 entities from
11 entity types

2,250,197 relations
from 24 relation
types

General Resources
Integration

https://het.io/

iDISK (Rizvi
et al, 2019)

144,059 entities
from 6 entity types

708,164 relations
from 6 relation
types

Dietary
Supplements

Resources
Integration

https://conservancy.
umn.edu/handle/
11299/204783

PreMedKB
(Yu et al,
2019b)

404,904 entities
from 4 entity types

496,689 relations
from 52 relation
types

General Resources
Integration

http:
//www.fudan-pgx.org/
premedkb/index.html#
/home

Zhu et al
(2020b)

5 entity types 9 relation types General Resources
Integration

-

Zeng et al
(2020b)

145,179 entities
from 4 entity types

15,018,067
relations from 39
relation types

General Resources
Integration

-

COVID-19
Knowledge
Graph
(Domingo-
Fernández
et al, 2020)

3,954 entities from
10 entity types

9,484 relations COVID-19 Literature
Mining

https://github.com/
covid19kg/covid19kg

COVID-KG
(Wang et al,
2020e)

67,217 entities from
3 entity types

85,126,762
relations from 3
relation types

COVID-19 Literature
Mining

http://blender.cs.
illinois.edu/
covid19/

Global
Network of
Biomedical
Relationships
(Percha and
Altman, 2018)

Three entity types
(Chemical, Disease,
Gene)

2,236,307 relations
from 36 relation
types

General Literature
Mining

https://zenodo.org/
record/1035500

KGHC (Li
et al, 2020d)

5,028 entities from
9 entity types

13,296 relations Hepatocellular
Carcinoma

Literature
Mining

http://202.118.75.
18:18895/browser/

Li et al
(2020b)

22,508 entities from
9 entity types

579,094 relations General EHR Mining -

QMKG
(Goodwin and
Harabagiu,
2013)

634,000 entities 1,390,000,000
relations

General EHR Mining -

Rotmensch
et al (2017)

647 entities from 2
entity types

Disease-Symptom General EHR Mining -

Sun et al
(2020a)

1,616,549 entities
from 62 entity types

5,963,444 relations
from 202 relation
types

General EHR Mining https://web.archive.
org/web/
20191231152615if_
/http://121.12.85.
245:1347/kg_test/#/

https://github.com/MannLabs/CKG
https://github.com/MannLabs/CKG
https://github.com/gnn4dr/DRKG
https://github.com/gnn4dr/DRKG
https://het.io/
https://conservancy.umn.edu/handle/11299/204783
https://conservancy.umn.edu/handle/11299/204783
https://conservancy.umn.edu/handle/11299/204783
http://www.fudan-pgx.org/premedkb/index.html#/home
http://www.fudan-pgx.org/premedkb/index.html#/home
http://www.fudan-pgx.org/premedkb/index.html#/home
http://www.fudan-pgx.org/premedkb/index.html#/home
https://github.com/covid19kg/covid19kg
https://github.com/covid19kg/covid19kg
http://blender.cs.illinois.edu/covid19/
http://blender.cs.illinois.edu/covid19/
http://blender.cs.illinois.edu/covid19/
https://zenodo.org/record/1035500
https://zenodo.org/record/1035500
http://202.118.75.18:18895/browser/
http://202.118.75.18:18895/browser/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/

522 Chang Su, Yu Hou, Fei Wang

Table 24.2: Publicly available resources for BKG construction

Database Entities Relations Short Description URL
Bgee (Bastian
et al, 2021)

60,072 Anatomy
and Gene entities

11,731,369
relations in terms of
presence/absence of
expression

A database for
Anatomy-Gene Expression

https://bgee.org/

Comparative
Toxicoge-
nomics
Database
(Davis et al,
2019)

73,922 Disease,
Gene, Chemical,
Pathway entities

38,344,568
Chemical-Gene,
Chemical-Disease,
Chemical-Pathway,
Gene-Disease,
Gene-Pathway, and
Disease-Pathway
relations

A database that is manually
curated includes chemical-
disease-gene-pathway
relations

http://ctdbase.org/

Drug–Gene
Interaction
Database
(Cotto et al,
2018)

160,054 Drug and
Gene entities

96,924 Drug-Gene
Interaction relations

A database for drug-gene
interactions

https:
//www.dgidb.org/

DISEASES
(Pletscher-
Frankild et al,
2015)

22,216 Disease and
Gene entities

543,405 relations A database for Disease-Gene
Association

https://diseases.
jensenlab.org/

DisGeNET
(Piñero et al,
2020)

159,052 Disease,
Gene and Variant
entities

839,138 Gene-
Disease,Variant-
Disease relations

A database that integrates data
from expert-curated
repositories for genes and
variants associated with
human diseases.

https://www.
disgenet.org/home/

IntAct
(Orchard et al,
2014)

119,281 Chemical
and Gene entities

1,130,596 relations A database for molecular
interaction data

https://www.ebi.ac.
uk/intact/

STRING
(Szklarczyk
et al, 2019)

24,584,628 Protein
entities

3,123,056,667
Protein-Protein
Interaction relations

A database for Protein-Protein
Interaction netword

https:
//string-db.org/

SIDER (Kuhn
et al, 2016)

7,298 Drug and
Side-effect entities

139,756 Drug-Side
effect relations

A database contains
medicines and their recorded
adverse drug reactions

http://sideeffects.
embl.de/

SIGNOR
(Licata et al,
2020)

7,095 entities from
10 entity types

26,523 relations A database for signaling
information published in the
scientific literature

https://signor.
uniroma2.it/

TISSUE
(Palasca et al,
2018)

26,260 entities in
Tissue and Gene

6,788,697 relations A database for Tissue-Gene
Expression by literature
curated manually

https://tissues.
jensenlab.org/

DrugBank
(Wishart et al,
2018)

15,128 Drug
entities

28,014 Drug-Target,
Drug-Enzyme,
Drug-Carrier,
Drug-Transporter
relations

A database for the information
on drugs and drug targets

https:
//go.drugbank.com/

KEGG
(Kanehisa and
Goto, 2000)

33,756,186 entities
in Drug, Pathway,
Gene, etc.

- A database for genomes,
biological pathways, diseases,
drugs, and chemical
substances.

https:
//www.kegg.jp/kegg/

PharmGKB
(Whirl-
Carrillo et al,
2012)

43,112 entities in
Genes, Variant,
Drug/Chemical and
Phenotype

61,616 relations A database for drugs and
drug-related relationships.

https:
//www.pharmgkb.org/

Reactome
(Jassal et al,
2020)

21.087 Pathway
entities

- A manually curated database
for peer-reviewed pathway

https:
//reactome.org/

Semantic
MEDLINE
Database
(Kilicoglu
et al, 2012)

- 109,966,978
relations

A database contains Semantic
predictions from the literature

https://skr3.nlm.
nih.gov/index.html

Gene
Ontology
(Ashburner
et al, 2000)

44,085 Gene
entities

- An ontology the functions of
genes

http:
//geneontology.org/

https://bgee.org/
http://ctdbase.org/
https://www.dgidb.org/
https://www.dgidb.org/
https://diseases.jensenlab.org/
https://diseases.jensenlab.org/
https://www.disgenet.org/home/
https://www.disgenet.org/home/
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/
https://string-db.org/
https://string-db.org/
http://sideeffects.embl.de/
http://sideeffects.embl.de/
https://signor.uniroma2.it/
https://signor.uniroma2.it/
https://tissues.jensenlab.org/
https://tissues.jensenlab.org/
https://go.drugbank.com/
https://go.drugbank.com/
https://www.kegg.jp/kegg/
https://www.kegg.jp/kegg/
https://www.pharmgkb.org/
https://www.pharmgkb.org/
https://reactome.org/
https://reactome.org/
https://skr3.nlm.nih.gov/index.html
https://skr3.nlm.nih.gov/index.html
http://geneontology.org/
http://geneontology.org/

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 523

24.3 Inference on Knowledge Graphs

In KG inference, one usually needs to address two important attributes of KGs: 1)
the KG’s local and global structure properties, and 2) heterogeneity of entities and
relations(Wang et al, 2017d; Cai et al, 2018b; Zhang et al, 2018c; Goyal and Ferrara,
2018; Su et al, 2020c; Zhao et al, 2019d). In this context, a standard pipeline for KG
inference typically contains two major steps: 1) learning embeddings (i.e., repre-
sentation vectors) for entities (and relations) while preserving their structural prop-
erties and entity and relation attributes in the KG; and 2) performing downstream
tasks such as entity classification and link prediction using the learned embeddings.
Of note, one can perform these two steps separately, but also build an end-to-end
model that can jointly learn the embeddings and perform downstream tasks. In this
section, we review the existing techniques for inference on KGs, including the con-
ventional inference techniques and the GNN-based models.

24.3.1 Conventional KG inference techniques

This subsection surveys the conventional KG inference techniques.
Semantic matching models typically exploit the similarity-based energy func-

tions by matching latent semantics of entities and relations in the embedding spaces.
A well-known semantic matching model, RESCAL (Nickel et al, 2011; Jenatton
et al, 2012), was proposed based on the idea that entities are similar if connected to
similar entities via similar relations(Nickel and Tresp, 2013). By associating each
relation rk with a matrix Mk , it defines the energy function by a bilinear model
f (ei,rk,e j) = h⊤i Mkh j, where hi,h j ∈ Rd are d-dimensional embedding vectors for
entities ei and e j, respectively. RESCAL jointly learns embedding results for entities
by ei and e j and for relation by Mk. Another model, DistMult (Yang et al, 2015a)
simplifies RESCAL by restricting matrix Mk for relation rk as a diagonal matrix.
Though DistMult is more efficient than RESCAL, it can only deal with the undi-
rected graphs. To address this, HolE (Nickel et al, 2016b) composes ei and e j by
their circular correlation. Consequently, power of RESCAL and efficiency of Dist-
Mult are inherited by HolE. Other semantic matching models refer to the neural
network architecture by considering embedding as the input layer and energy func-
tion as the output layer, such as the the semantic matching energy (SME) model
(Bordes et al, 2014) and multi-layer perceptron (MLP) (Dong et al, 2014).

Translational distance models are based on the idea that, for each triplet
(ei,rk,e j) , the relation rk can be considered as a translation from head entity ei to tail
entity e j in the embedding space. Accordingly, they exploit distance-based energy
functions to model the triplets in KG. In this context, TransE (Bordes et al, 2013) is
the famous pioneer of the translational distance model family. It typically represents
relation rk as the translation vector gk, such that ei and e j are closely connected by
rk. Therefore, the energy function is defined as f (ei,rk,e j) = ∥hi +gk +h j∥2. Since
all parameters to learn are entity and relation embedding vectors lying in a same

524 Chang Su, Yu Hou, Fei Wang

low-dimensional space, TransE is obviously easy to train. A drawback of TransE is
that it cannot do well with N-to-1, N-to-1 and N-to- N structures in KGs. To address
this issue, TransH (Wang et al, 2014) extends TransE by introducing a hyperplane
for each relation rk and projecting ei and e j into the hyperplane before constructing
the translation scheme. In this way, TransH improves model capacity while preserv-
ing efficiency. Similarly, TransR (Lin et al, 2015) extends TransE by introducing
the relation-specific space. Further, for more fine-grained embedding, TransD (Ji
et al, 2015) extends TransE by constructing two matrices M1

k and M2
k for each rk to

project ei and e j, respectively. Hence it captures both entity diversity and relation
diversity. Further, TranSparse (Ji et al, 2016) simplifies TransR by using adaptive
sparse matrices to model different types of relations, and TransF (Feng et al, 2016)
relaxes the translation restriction as hi +gk ≈ αh j.

Meta-path-based approaches. A potential issue for both semantic matching
models and translational distance models is that they mainly focus on one-hop in-
formation (i.e., modeling neighboring entities within a triplet) and hence may ig-
nore the global structure properties of KGs. To address this, the meta-path based
models aim at capturing local and global structure properties, as well as entity and
relation types for KG inference. Typically, a meta-path is defined as a sequence of
node types separated by edge types (Sun et al, 2011). For example, a meta-path

of length l is a1
b1→ a2

b2→ ...
bl−1→ al , where {a1,a2, ...,al} and {b1,b2, ...,bl−1} are

the sets of node type and relation type, respectively. Following this idea, Hetero-
geneous Information Network Embedding (HINE) (Huang and Mamoulis, 2017)
defines meta-path-based proximity. It preserves heterogeneous structure by mini-
mizing the difference between meta-path-based proximity and expected proximity
in the embedding space. Moreover, metapath2vec (Dong et al, 2017) formalizes
meta-path-based random walks and extends the word embedding model SkipGram
to learn entity embeddings, by considering each walk path as a sentence and entities
as words.

Convolutional neural network (CNN) models have also been used to address
the KG inference task. For example, ConvE (Dettmers et al, 2018) uses CNN archi-
tecture for link prediction in KGs. For each triplet (ei,rk,e j), ConvE first reshapes
embedding vectors of ei and rk as two matrices and concatenate them. The resulting
matrix is then fed to the convolutional layers to produce feature maps, which are
then transformed into the entity embedding space to match the embedding of e j. In
addition, ConvKB (Nguyen et al, 2017) directly concatenates embedding vectors of
ei , rk, and e j, for each triplet (ei,rk,e j), into a 3-column matrix. Then the matrix is
fed to the convolutional layers to learn the entity and relation embeddings.

24.3.2 GNN-based KG inference techniques

This subsection discusses KG inference techniques based on the novel GNN archi-
tectures.

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 525

Graph convolution network (GCN)-based architectures. A pioneer effort us-
ing and extending GCN in KG inference is the Relational GCN (R-GCN) (Schlichtkrull
et al, 2018). In contrast to the original application scenario, the structure property of
a KG is usually heterogeneous as having diverse entity types and relation types. To
address this, R-GCN introduces two subtle modifications on the regular GCN archi-
tecture (Berg et al, 2017). Specifically, for each entity, instead of simply aggregating
information from all of its neighbors, R-GCN uses a relation-specific transformation
mechanism, which first gathers information from neighboring entities based on re-
lation types and relation directions separately and then accumulates them together.
Specifically,

h(l+1)
i = σ

 ∑

rk∈R
∑

j∈N k
i

1
ci,k

W (l)
k h(l)

j +W (l)
0 h(l)

i

 (24.1)

Here h(l+1)
i is the embedding vector of entity ei at the (l+1)-th graph convolutional

layer. R is the set of all relations and N k
i is the neighbors of entity ei under rela-

tion rk. The problem-specific normalization coefficient ci,k can be either learned or
pre-defined. Using softmax for each entity, R-GCN can be trained for entity clas-
sification. In link prediction, R-GCN is used as an encoder for learning embedding
vectors of the entities while the factorization model, DistMult, is used as the de-
coder to predict missing links in the KG based on the learned entity embeddings. It
resulted in a significantly improved performance compared to the baseline models
like DistMult and TransE.

Cai et al (2019) proposed the TransGCN, which combines the GCN architecture
with the translational distance models (e.g., TransE and RotatE) for link prediction
in KGs. Compared to R-GCN, TransGCN aims to address the link prediction task
without a task-specific decoder like R-GCN and learn both entity embeddings and
relation embeddings simultaneously. For each triplet (ei,rk,e j), TransGCN assumes
that rk is the transformation from the head ei to the tail e j in the embedding space.
Then it extends the GCN layer to update ei’s embedding as

m(l+1)
i =

1
ci

W (l)
0

 ∑

(e j ,rk,ei)∈N (in)
i

h(l)
i ◦g(l)k + ∑

(ei,rk,e j)∈N (out)
i

h(l)
j ⋆g(l)k

 (24.2)

h(l+1)
i = σ

(
m(l+1)

i +h(l)
i

)
(24.3)

where ◦ and ⋆ are transformation operators that can be defined based on specific
translational mechanism used. N

(in)
i and N

(out)
i are incoming and outgoing triplet

of ei, respectively. The normalization constant ciwas defined by the total degree
of entity ei. Meanwhile, embedding of each relation rk was updated by simply
g(l+1)

k = σ(W (l)
1 g(l)k). The authors engaged two translational mechanisms, TransE

and RotatE, and defined ◦ , ⋆, and scoring functions accordingly. Both result-

526 Chang Su, Yu Hou, Fei Wang

ing architectures, TransE-GCN and RotatE-GCN, showed higher performance than
TransE, RotatE, and R-GCN in the experiments.

Structure-Aware Convolutional Network (SACN) (Shang et al, 2019) is another
architecture for knowledge graph inference based on GCN. Similar to R-GCN, it
engaged a weighted graph convolutional network (WGCN) as the encoder to capture
the structure property of the KG. WGCN considers a KG with multiple relation
types as a combination of multiple sub-graphs with single relation type. Then, the
embedding vector of each entity ei can be obtained by a weighted combination of
information propagation based on each sub-graph,

h(l+1)
i = σ

(
∑

j∈Ni

α
(l)
k h(l)

j W (l)+h(l)
i W (l)

)
(24.4)

where α
(l)
k is the weight of relation rk at the l-th layer. The learned embedding from

WGCN was then fed to a decoder, Conv-TransE, a CNN with TransE’s translational
mechanism, for link prediction.

Graph attention network (GAT)-based architectures. A potential drawback
of the GCN architectures is that, for each entity, they treat the neighbors equally
to gather information. However, different neighboring entities, relations or triplets
may have different importances in indicating a specific entity, and the weights of
neighboring entities under the same relation may be also distinct. To address this,
GATs have been used to involved in the KG inference problems. One of the early
efforts is the GATE-KG (i.e., graph attention-based embedding in KG) (Nathani
et al, 2019). It introduces an extended and generalized attention mechanism as the
encoder to produce the entity and relation embeddings while capturing the diverse
relation type in KG. For each triplet (ei,rk,e j), GATE-KG first produces a represen-
tation vector c(l)i jk of this triplet by

c(l)i jk =W (l)
1 [h(l)

i ||h
(l)
j ||g

(l)
k] (24.5)

Here || is the concatenation operation. The attention coefficient αi jk is obtained by

β
(l)
i jk = LeakyReLU

(
W (l)

2 c(l)i jk

)
(24.6)

α
(l)
i jk =

exp(β (l)
i jk)

∑ j′∈Ni ∑k′∈Ri j′ exp(β
(l)
i j′k′)

(24.7)

where Ri j is the set of all relations between ei and e j . By aggregating information
from neighbors according to different relations, entity ei’s embedding vector h(l+1)

i
at the (l +1)-th layer can be calculated as

h(l+1)
i = σ

(
∑

j∈Ni

∑
k∈Ri j

α
(l)
i jkc(l)i jk

)
(24.8)

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 527

In addition, by using the auxiliary relation between n-hop neighbors and itera-
tively accumulating information of n-hop neighbors at the n-th graph attention layer,
GATE-KG gives high weights to the 1-hop neighbors while lower weights to the n-
hop neighbors. Hence it captures the multi-hop structure information of KG.

Relational Graph neural network with Hierarchical ATtention (RGHAT) (Zhang
et al, 2020i) is another GAT-based model to address link prediction in KGs. Specif-
ically, it engages a two-level attention mechanism. First, a relational-level attention
defines the weight of each relation rk indicating a specific entity ei as

aik =W1 [hi||gk] (24.9)

αik =
exp(σ(z1 ·aik))

∑rx∈Ni exp(σ(z1 ·aix))
(24.10)

where z1is a learnable parameter vector and σ is LeakyReLU. Ni is the neighboring
relations of entity ei. Second, it defines an entity-level attention as

bik j =W2 [aik||h j] (24.11)

βk j =
exp(σ(z2 ·bik j))

∑ry∈Ni,k
exp(σ(z1 ·biy j))

(24.12)

where z2is a learnable parameter vector and Ni,k denotes the set of tail entities of en-
tity ei under relation rk. The final attention coefficient for gathering information via
triplet (ei,rk,e j) is calculated as µik j = αik ·βk j. Similar to GATE-KG, the RGHAT
engages ConvE as the decoder for link prediction.

Wang et al (2019j) proposed the Knowledge Graph Attention Network (KGAT)
for recommendation based on KG, which contains three types of layers. First, a
embedding layer learns embeddings for entities and relations using TransR. Second,
the attentive embedding propagation layers extend GAT to capture the high-order
structure properties (i.e., multi-hop neighbor information) of KG. Specifically, they
defined the attention coefficient for each triplet (ei,rk,e j), depending on distance
between ei and e j in the rk’s space, i.e.,

βi jk = (Wkhi)
⊤ tanh(Wkh j +gk) (24.13)

αi jk =
exp(bi jk)

∑ j′∈Ni ∑k′∈Ri j′ exp(βi j′k′)
(24.14)

KGAT then stacks multiple attentive embedding propagation layers to capture infor-
mation of multiple-hop neighbors of each entity, specifically, entity eis embedding
at the (l+1)-th layer, i.e., h(l+1)

i =σ

(
h(l)

i ,h(1)
Ni

)
, where h(1)

Ni
=∑(ei,rk,e j)∈Ni αi jkh(l)

j .
Finally, a prediction layer concatenates embeddings at each graph attention layer for
each entity to make prediction.

528 Chang Su, Yu Hou, Fei Wang

In addition, Heterogeneous graph Attention Network (HAN) (Wang et al, 2019m)
uses GAT to address the node (i.e., entity) classification in the heterogeneous graphs
(the KG can be considered as a specific type of heterogeneous graph). HAN couples
graph attention mechanism with meta-paths to capture the heterogeneous structure
properties. A hierarchical attention mechanism that contains a node-level attention
and semantic-level attention was proposed. The node-level attention aims to learn
the importance of the meta-path-based neighbors in indicating a node. Specifically,
it first projects different types of entities into a same space by hi = Mφih

′
i, where φi

is the type of entity ei, and hi and h′i are the projected and original embeddings of ei,
respectively. It then calculates the attention weight αΦ

i j of entity pair (ei,e j) under a
specific meta-path Φ , as

α
Φ
i j =

exp(a⊤
Φ
· [hi||h j])

∑ j′∈N Φ
i

exp(a⊤
Φ
· [hi||h j′])

(24.15)

where N Φ
i is the neighbors of ei under meta-path Φ and aΦ is the node-level at-

tention vector. In addition, the semantic attention layer learns importance of each
meta-path Φ in the task (i.e., classification) by

wΦ =
1
|V | ∑

ei∈V
q⊤ · tanh

(
W · zΦ

i +b
)

(24.16)

where V is all entities, q is the learnable semantic-level attention vector, and b is
the bias. Then the semantic-level attention weight is calculated as βΦ = exp(wΦ)

∑Φ ′ exp(w
Φ ′)

.
The final embeddings of all entities, Z = ∑Φ βΦ ZΦ , are used for classification.

24.4 KG-based hypothesis generation in computational drug
development

Generally, the drug repurposing procedure includes three major steps: hypothesis
generation, assessment, and validation (Pushpakom et al, 2019). Among them, the
first and foremost step is hypothesis generation. Typially, the hypothesis generation
for drug repurposing aims at identifying candidate drugs that has a high confidence
to be associated with the therapeutic indication of interest. Today’s largly available
BKGs, encoding huge volume of biomedical knowledge, have become a valuable
resouce for drug repurposing. In KG, the hypothesis generation procedure can be
formulated as a link prediction problem, i.e., computational identification of poten-
tial drug-target or drug-disease associations with a high confidence level based on
existing knowledge (KG’s structure properties). This section introduces some pre-
liminary efforts of hypothesis generation for drug repurposing, using computational
approaches in the BKGs.

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 529

24.4.1 A machine learning framework for KG-based drug
repurposing

One of the previous efforts using computational inference in BKG for drug repur-
posing is Zhu et al.’s study (Zhu et al, 2020b). The main contributions of this study
is two-fold: 1) KG construction via data integration, and 2) building the KG-based
machine learning pipeline for drug repurposing.

First, by integrating six drug knowledge bases, including PharmGKB (Whirl-
Carrillo et al, 2012), TTD (Yang et al, 2016a), KEGG DRUG (Kanehisa et al,
2007), DrugBank (Wishart et al, 2018), SIDER (Kuhn et al, 2016), and DID (Sharp,
2017), they curated a drug-centric KG consisting of five entity types including drugs,
diseases, genes, pathways, and side-effects and nine relation types including drug-
disease TREATS, drug-drug INTERACTS, and drug-gene REGULATES, BINDS,
and ASSOCIATES, drug-side effect CAUSES relations, gene-gene ASSOCIATES,
gene-disease ASSOCIATES, and gene-pathway PARTICIPATES relations.

Second, based on the drug-centric KG, a machine learning pipeline was built
for drug repurposing. Specifically, the target of the proposed model was to pre-
dict the existence of relation between a pair of drug and disease entities. In this
way, the task fell into the supervised classification setting where the input sam-
ples were the drug-disease pairs. To this end, representation for each sample (drug-
disease pair) was calculated in two ways: 1) meta-path-based representation and 2)
KG embedding-based representation. For meta-path-based representation, 99 pos-
sible meta-paths between drugs and diseases with length 2-4 were enumerated,
such as Drug TREATS→ Gene ASSOCIATES→ Disease and Drug TREATS→ Gene ASSOCIATES→
Gene ASSOCIATES→ Disease. Then a 99-dimensional representation vector was cal-
culated for a drug-disease pair, of which each element indicates the connectivity
measure between this two entities based on a specific meta-path. In this study, four
different connectivity measures were used, under a specific meta-path Φ , including

• Path count, PCΦ(edr,edi), the number of paths between drug edr and disease
edi;

• Head normalized path count HNPCΦ = PCΦ (edr ,edi)
PCΦ (edr ,∗) ;

• Tail normalized path count T NPCΦ = PCΦ (edr ,edi)
PCΦ (∗,edi)

;

• Normalized path count NPCΦ = PCΦ (edr ,edi)
PCΦ (edr ,∗)+PCΦ (edr ,∗) ;

For KG embedding-based representation, three translational distance models, in-
cluding TransE (Bordes et al, 2013), TransH (Wang et al, 2014), and TransR (Lin
et al, 2015), were used. Specifically, for each pair of drug edr and disease edi, using
each of the three models, their embedding vectors hdr and hdi were first learned.
Then representation of the drug-disease pair (edr,edi) was calculated by hdi−hdr.

After that, a machine learning pipeline was built of which the input are repre-
sentations of the drug-disease pairs. A drug-disease pair was labeled as positive if
there is a relation between them. However, the drug-disease pair without a relation
between them isn’t really negative, instead, it was marked as unknown/unlabeled.

530 Chang Su, Yu Hou, Fei Wang

To address this, a positive and unlabeled (PU) learning framework (Elkan and Noto,
2008) was used. Decision Tree, Random Forest, and support vector machine (SVM)
were used as basic classifiers of this PU learning framework, respectively. In this
study, drug-disease relations related to eight diseases were used as the testing set,
while the remaining drug-disease relations (positive) and 143,830 pairs associating
the eight diseases with other drugs (unlabeled) were used as the training set. Ex-
perimental results showed that the KG-driven pipeline can produce high prediction
results on known diabetes mellitus treatments with only using treatment information
of other diseases.

24.4.2 Application of KG-based drug repurposing in COVID-19

The sudden outbreak of the human coronavirus disease 2019 (COVID-19) has led
to a pandemic that heavily strikes the healthcare system and tremendously impacts
people’ life around the world. To date, many drugs have been under investigation to
treat COVID-19, costing tremendous investment, however, very limited COVID-19
antiviral medications are approved. In this context, there is the urgent need for a
more efficient and effective way for drug development against the pandemic, and
computational drug repurposing can be a promising approach to address this.

Zeng et al.’s work (Zeng et al, 2020b) is a pioneer effort that computationally
repurposes antiviral medications in COVID-19 based on KG inference. First of all,
a comprehensive biomedical KG was constructed by integrating the two biomedi-
cal relational data resources, Global Network of Biomedical Relationships (GNBR)
(Percha and Altman, 2018) and DrugBank (Wishart et al, 2018), and experimen-
tally discovered COVID-gene relationships (Zhou et al, 2020f), resulting in a KG
consisting of 145,179 entities of four types (drugs, disease, genes, and drug side
information) and 15,018,067 relationships of 39 types. Secondly, a deep KG em-
bedding model, RotatE, was performed to learn low-dimensional representations
for the entities and relations. Using such learned embedding vectors, the top 100
drugs that are most close to the COVID-19 entity in the embedding space were pri-
oritized as the candidate drugs. Using drugs in ongoing COVID-19 clinical trials
(https://covid19-trials.com/) as a validation set, the results achieved a
desirable performance with an area under the receiver operating characteristic curve
(AUROC) of 0.85. Moreover, gene set enrichment analysis (GSEA), which involved
transcriptome data from peripheral blood and Calu-3 cells, and proteome data from
Caco-2 cells, was performed to validate the candidate drugs. Finally, 41 drugs were
identified as potential repurposable candidates for COVID-19 therapy, especially
9 are under ongoing COVID-19 trials. Among the 41 candidates, three types of
drugs were highlighted by the author: 1) the Anti-Inflammatory Agents such as
dexamethasone, indomethacin, and melatonin; 2) the Selective Estrogen Receptor
Modulators (SERMs) such as clomifene, bazedoxifene, and toremifene; and 3) the
Antiparasitics including hydroxychloroquine and chloroquine phosphate.

https://covid19-trials.com/

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 531

Another work (Hsieh et al, 2020), has been focused on using GNN in KG to
address the drug repurposing problem. By extracting and integrating drug-target
interactions, pathways, gene/drug-phenotype interactions from CTD (Davis et al,
2019), a SARS-CoV-2 KG was built, which consists of 27 SARS-CoV-2 baits, 5,677
host genes, 3,635 drugs, and 1,285 phenotypes, as well as 330 virus-host protein-
protein interactions, 13,423 gene-gene sharing pathway interactions, 16,972 drug-
target interactions, 1,401 gene-phenotype associations, and 935 drug-phenotype as-
sociations. Nest, a variational graph autoencoder (Kipf and Welling, 2016), which
engages R-GCN (Schlichtkrull et al, 2018) as encoder, was used to learn entity em-
beddings in the SARS-CoV-2 KG. Since the SARS-CoV-2 KG has a specific focus
on COVID-19 related knowledge, some general yet meaningful biomedical knowl-
edge may be missing. To address this, a transfer learning framework was introduced.
Specifically, it first used entity embeddings of Zeng et al.’s work (Zeng et al, 2020b)
that encode general biomedical knowledge to initialize entity embeddings in SARS-
CoV-2 KG. Then the embeddings were fine-tuned in SARS-CoV-2 KG through the
proposed GNN. Using a customized neural network ranking model, 300 drugs that
are most relevant to the COVID-19 were selected as the candidate drugs. Similar to
Zeng et al.’s work (Zeng et al, 2020b) , the authors engaged GSEA, retrospective in-
vitro drug screening, and populiation-based treatment effect analysis in electronic
health records (EHRs), to further validate the repurposable candidates. Through
such a pipeline, 22 drugs were highlighted for potential COVID-19 treatment, in-
cluding Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol.

In summary, these studies shed light on the importance of the KG-based compu-
tational approaches in drug repurposing to fight against the complex diseases like
COVID-19. The reported good performance in terms of the high overlapping ratio
between the repurposed candidate drug set and the drugs under ongoing COVID-19
trials, not only demonstrated the effectiveness of the KG-based techniques but also
provided biological evidence of the ongoing clinical trials. Moreover, they proposed
feasible ways using other publicly available data to validate or refine the hypothesis
derived from KGs, which therefore enhances the usability of KG-based approaches.

24.5 Future directions

KGs have been playing a more and more important role in biomedicine. An increas-
ing number of KG-based machine learning and deep learning approaches have been
used in biomedical studies such as hypothesis generation in computational drug de-
velopment. As one of the latest advances in artificial intelligence (AI), GNNs, which
have led to tremendous progress in image and text data mining (Kipf and Welling,
2017b; Hamilton et al, 2017b; Veličković et al, 2018), have been introduced to ad-
dress the KG inference problems. In this context, the use of GNN in biomedical KGs
has a great potential in improving hypothesis generation in computational drug de-
velopment. However, there remain significant gaps between the novel technique and
the success of computational drug development. This section discusses the potential

532 Chang Su, Yu Hou, Fei Wang

opportunities and future research possibilities in this field toward improvements of
hypothesis generation for computational drug development.

24.5.1 KG quality control

The procedures of constructing and curating a biomedical KG typically include
manually gathering, annotating, and extracting knowledge from text (e.g., litera-
ture or experimental reports), automatically or manually normalizing terminology
to integrate multiple data resources, and automatically text mining for knowledge
extraction, etc. However, none of them are perfect. Therefore, the quality issue has
been challenging the KG inference approaches. In KG-based hypothesis generation
for drug repurposing, a poor quality of KG will lead to uninformative or wrong
representations and hence result in incorrect hypothesis generated (drug-disease as-
sociations) and even failure of the entire drug repurposing project. Therefore, there
is an urgent need for accurate and appropriate KG quality control. In general, there
are two categories of quality issues in KGs: the incorrectness and incompleteness.

Incorrectness refers to incorrect triplets in the KG, i.e., a triplet exists in KG but
the corresponding relationship between the two entities is inconsistent with real-
world evidence. To address this, a common strategy is manual annotation with sam-
pled small subsets. Such a procedure is time- and cost-consuming, if one wants to
evaluate sufficient triplets to reach the statistic criteria. To address this, for exam-
ple, Gao et al (2019a) proposed an iterative evaluation framework for KG accuracy
evaluation. Specifically, inspired by the properties of the annotation cost function
observed in practice, the authors developed a cluster sampling strategy with un-
equal probability theory. Their framework resulted in a 60% shrunk annotation cost
and can be easily extended to address evolving KG. In addition, the use of well-
designed biomedical vocabularies such as the Unified Medical Language System
(UMLS) (Bodenreider, 2004) will improve entity term normalization and hence
reduce the risk of errors caused by the ambiguous biomedical entities. Moreover,
learning based on KG structure to refine the KG is also a potential way to solve this
issue. Early efforts, such as (Zhao et al, 2020d), have been focused on this field.

Incompleteness mainly refers to the missing of biologically or clinically mean-
ingful triplets in the KG. To address the incompleteness in biomedical KG, a com-
mon way is to integrate multiple data resources, biomedical data bases, and biomed-
ical KGs to construct and curate a more comprehensive one. CKG (Santos et al,
2020), Hetionet (Himmelstein et al, 2017), DRKG (Ioannidis et al, 2020), KG (Zhu
et al, 2020b), etc. are good examples of this strategy. However, there is no guarantee
that they are comprehensive enough to cover all biomedical knowledge. In addi-
tion, today’s largely available biomedical literature and medical data (e.g., EHRs)
are great treasure of biomedical knowledge. In this context, previous studies have
been focused on deriving knowledge from biomedical literature (Zhao et al, 2020e;
Xu et al, 2013; Zhang et al, 2018h; Sahu and Anand, 2018) and EHR data (Rot-
mensch et al, 2017; Chen et al, 2020e), and the derived knowledge could be a good

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 533

complement for the biomedical KGs. Moreover, the computational methods such as
the KG embedding models (e.g., TransE and TransH) and the GNNs (e.g., R-GCN)
have been used in KG completion (Arora, 2020), which predict missing relations
within a KG according to its structure properties.

24.5.2 Scalable inference

An ultimate goal of biomedical KGs is always to comprehensively incorporate the
biomedical knowledge. For example, by integration of 26 publicly available biomed-
ical databases, CKG (Santos et al, 2020) has included over 16 million biomedical
entities connected by over 220 million relationships; another KG, DRKG (Ioanni-
dis et al, 2020), integrating six databases and data collected from recent COVID-19
publications, has included 10K entities and 5.8 million relationships. Meanwhile, to-
day’s advanced high-throughput techniques as well as computer software and hard-
ware have led to an inrush of a continuously increasing number of relational data
interlinking biomedical entities like drugs, genes, proteins, chemical compounds,
diseases and medical concepts extracted from clinical data. This largely enables us
to extract knew knowledge to enrich the biomedical KGs and hence these KGs keep
expanding constantly.

In this context, the huge and even continuously increasing volume of KGs may
challenge the computational models like GNNs. To this end, there is an urgent need
for scalable techniques to address the high memory- and time-cost in KGs. For ex-
ample, Deep Graph Library (DGL, https://www.dgl.ai) (Wang et al, 2019f)
is an open-source, free Python package designed by Amazon for facilitating the im-
plementation of GNN family models, running on the top of several deep learning
framework including PyTorch (Paszke et al, 2019), TensorFlow (Abadi et al, 2016),
and MXNet (Chen et al, 2015). As of Mach 1, 2021, it has released the version
0.6. By distilling GNN’s message passing procedure as the generalized sparse ten-
sor operations, DGL provides the implementations of optimization techniques like
kernel fusion, multi-thread and multi-process acceleration, and automatic sparse
format tuning to speed up training process and reduce memory load. In addition
to GNNs, DGL also released DGL-KE (https://github.com/awslabs/
dgl-ke) (Zheng et al, 2020c), an easy-to-use framework for implementation of
KG representation models such as TransE, DistMult, RotatE, etc., which has been
used in existing KG-based drug-repurposing studies such as (Zeng et al, 2020b).

24.5.3 Coupling KGs with other biomedical data

Apart from the KGs, there is an enormous volume of other biomedical data available
such as clinical data and omics data, which are also promising resources for compu-
tational drug repurposing. The clinical data is an important resource for healthcare

https://www.dgl.ai
https://github.com/awslabs/dgl-ke
https://github.com/awslabs/dgl-ke

534 Chang Su, Yu Hou, Fei Wang

Biomedical Knowledge

Clinical Data Omics Data

Figure 24.1: Coupling biomedical KGs with other biomedical data resources for
improving computational drug development.

and medical research, mainly including EHR data, claim data, and clinical trial data,
etc. The EHR data is routinely collected during the daily patient care, containing het-
erogeneous information of the patients, such as demographics, diagnoses, laboratory
test results, medications, and clinical notes. Such rich information makes it possible
for tracking patient’s health condition changes, medication prescriptions, and clini-
cal outcomes. In addition, a tremendous volume of EHR data has been collected and
the volume is rapidly increasing, which largely strengthens the statistical power for
EHR-based analysis. For this reason, beyond its common usage such as diagnostic
and prognostic prediction (Xiao et al, 2018; Si et al, 2020; Su et al, 2020e,a), and
phenotyping (Chiu and Hripcsak, 2017; Weng et al, 2020; Su et al, 2020d, 2021),
EHR data has been used for computational drug repurposing (Hurle et al, 2013;
Pushpakom et al, 2019). For example, Wu et al (2019d) identified some non-cancer
drugs as the repurposable candidates to treat cancer using EHR; Gurwitz (Gurwitz,
2020) analyized EHR data to repurpose drugs for treating COVID-19.

Advanced by the high throughput sequencing techniques, an enormous volume
of omics data, including genomics, proteomics, transcriptomics, epigenomics, and
metabolomics, have been collected and publicly available for analysis. Integrating
and analyzing the omics data enable us to derive new biomedical insights and better
understand human health and diseases at the molecular level (Subramanian et al,
2020; Nicora et al, 2020; Su et al, 2020b). Due to the wealth of the omics data, it
has also been involved in computational drug development (Pantziarka and Meheus,
2018; Nicora et al, 2020; Issa et al, 2020). For example, via mining multiple omics
data, Zhang et al (2016c) identified 18 proteins as the potential anti-Alzheimer’s dis-

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 535

ease (AD) targets and prioritized 7 repurposable drugs inhibiting the targets. Mokou
et al (2020) proposed a drug repurposing pipeline in bladder cancer based on pa-
tients’ omics (proteomics and transcriptomics) signature data.

In this context, combining KGs, clinical data, and multi-omics data and jointly
learning them is a promising route to advance computational drug development (Fig.
24.1). The benefits of combining of these data for inference can be two-way. First,
computational models in clinical data and multi-omics data usually suffer from the
data quality such as noise and limited cohort size especially for the population of a
rare disease and model interpretability. The incorporation of KGs has been demon-
strated to be able to address these issues effectively and accelerate the clinical data
and omics data analysis. For example, Nelson et al (2019) linked EHR data with a
biomedical KG and learned a barcode vector for each specific cohort (e.g., the obese
cohort), which encodes both KG structure and EHR information and illustrates the
importance of each biomedical entity (e.g., genes, symptoms, and medications) in
indicating the cohort. Such cohort-specific barcode vectors further showed the ef-
fectiveness in link prediction (e.g., disease-gene associations prediction). Wang et al
(2017c) bridged patient EHR data with the BKG and extended the KG embedding
model for safe medicine recommendation, which comprehensively considered rel-
evant knowledge such as drug-drug interactions. In addition, Santos et al (2020)
developed an open platform that couples the CKG (i.e., Clinical Knowledge Graph)
with the typical proteomics workflows. In this way, CKG facilitates analysis and
interpretation of the protomics data. Second, the incorporation of clinical data and
omics data can potentially improve KG inference. Current KG-based drug repurpos-
ing studies have involved the clinical data and omics data (Zeng et al, 2020b; Hsieh
et al, 2020), which were typically used in an independent validation procedure to
validate/refine the generated new hypotheses (i.e., novel disease-drug associations)
. Moreover, previous studies have showcased that leveraging the clinical data (Rot-
mensch et al, 2017; Chen et al, 2020e; Pan et al, 2020c) and omics data (Ramos et al,
2019) can derive new knowledge. Therefore, we believe that incorporating clinical
data and omics data in KG inference may largely reduce the impacts of KG quality
issues especially the incompleteness. In total, when we design the next-generation
GNN models for drug-repurposing, a considerable direction is the feasible and flex-
ible architecture that can subtly harness KGs, clinical data, and multi-omics data to
recursively improve each other.

Editor’s Notes: Drug hypothesis generation aims to use biological and clin-
ical knowledge to generate biomedical molecules. This knowledge is effec-
tively stored in the form of knowledge graph (KG). The construction of KG
is relevant to graph generation (Chapter 11) and some applications, such
as text mining (Chapter 21). Based on KG, hypothesis generation process
mainly contains graph representation learning (Chapter 2) and graph struc-
ture learning (Chapter 14). It can also be formulated as the link prediction
(Chapter 10) problem and calculate the confidence level of candidate drugs.
The future direction of drug developments focuses on scalability (Chapter
6) and interpretability (Chapter 7).

536 Chang Su, Yu Hou, Fei Wang

Table 24.3: Summary of existing BKGs.

D
at

ab
as

e
N

um
be

ro
fE

nt
iti

es
E

nt
ity

Ty
pe

s
N

um
be

ro
f

R
el

at
io

ns
R

el
at

io
n

Ty
pe

s
Fo

cu
s

A
va

ila
bl

e
Fo

rm
at

s
So

ur
ce

Ty
pe

U
R

L

C
lin

ic
al

K
no

w
le

dg
e

G
ra

ph
(S

an
to

s
et

al
,

20
20

)

16
m

ill
io

n
33

en
tit

y
ty

pe
s,

su
ch

as
D

ru
g,

G
en

e,
D

is
ea

se
,e

tc
.

22
0

m
ill

io
n

51
re

la
tio

n
ty

pe
s,

su
ch

as
as

so
ci

at
e,

ha
s

qu
an

tifi
ed

pr
ot

ei
n,

et
c.

-
N

eo
4j

K
G

(I
nt

eg
ra

tio
n)

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

M
a
n
n
L
a
b
s
/
C
K
G

D
ru

g
R

ep
ur

po
si

ng
K

no
w

le
dg

e
G

ra
ph

(I
oa

nn
id

is
et

al
,2

02
0)

97
,2

38
13

en
tit

y
ty

pe
s,

su
ch

as
C

om
po

un
d,

D
is

ea
se

,e
tc

.

5,
87

4,
26

1
10

7
re

la
tio

n
ty

pe
s,

su
ch

as
in

te
ra

ct
io

n,
et

c.

-
T

SV
K

G
(I

nt
eg

ra
tio

n)
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

g
n
n
4
d
r
/
D
R
K
G

H
et

io
ne

t(
H

im
m

el
st

ei
n

et
al

,2
01

7)
11

en
tit

y
ty

pe
s,

su
ch

as
D

is
ea

se
,

G
en

e,
C

om
po

un
d,

et
c.

2,
25

0,
19

7
24

re
la

tio
n

ty
pe

s,
su

ch
as

tr
ea

ts
,

as
so

ci
at

es
,e

tc
.

-
N

eo
4j

,T
SV

K
G

(I
nt

eg
ra

tio
n)

h
t
t
p
s
:
/
/
h
e
t
.
i
o
/

iD
IS

K
(R

iz
vi

et
al

,
20

19
)

14
4,

05
9

6
en

tit
y

ty
pe

s,
su

ch
as

Se
m

an
tic

D
ie

ta
ry

Su
pp

le
m

en
t

In
gr

ed
ie

nt
,D

ie
ta

ry
Su

pp
le

m
en

t
Pr

od
uc

t,
D

is
ea

se
,

et
c.

70
8,

16
4

6
re

la
tio

n
ty

pe
s,

su
ch

as
ha

s
ad

ve
rs

e
re

ac
tio

n,
is

ef
fe

ct
iv

e
fo

r,
et

c.

D
ie

ta
ry

Su
pp

le
m

en
ts

N
eo

4j
,R

R
F

K
G

(I
nt

eg
ra

tio
n)

h
t
t
p
s
:
/
/
c
o
n
s
e
r
v
a
n
c
y
.

u
m
n
.
e
d
u
/
h
a
n
d
l
e
/

1
1
2
9
9
/
2
0
4
7
8
3

Pr
eM

ed
K

B
(Y

u
et

al
,2

01
9b

)
40

4,
90

4
D

ru
g,

V
ar

ia
nt

,
G

en
e,

D
is

ea
se

49
6,

68
9

52
re

la
tio

n
ty

pe
s,

su
ch

as
ca

us
e,

as
so

ci
at

e,
et

c.

V
ar

ia
nt

-
K

G
(I

nt
eg

ra
tio

n)
h
t
t
p
:

/
/
w
w
w
.
f
u
d
a
n
-
p
g
x
.
o
r
g
/

p
r
e
m
e
d
k
b
/
i
n
d
e
x
.
h
t
m
l
#

/
h
o
m
e

Z
hu

et
al

(2
02

0b
)

-
D

ru
g,

Si
de

-e
ff

ec
t,

D
is

ea
se

,G
en

e,
Pa

th
w

ay

-
9

re
la

tio
n

ty
pe

s,
su

ch
as

C
au

se
,

B
in

ds
,T

re
at

s,
et

c.

D
ru

g
R

ep
ur

po
si

ng
-

K
G

(I
nt

eg
ra

tio
n)

-

Z
en

g
et

al
(2

02
0b

)
14

5,
17

9
D

ru
g,

G
en

e,
D

is
ea

se
,a

nd
D

ru
g

si
de

15
,0

18
,0

67
39

re
la

tio
n

ty
pe

s,
su

ch
as

tr
ea

tm
en

t,
bi

nd
in

g,
et

c.

D
ru

g
R

ep
ur

po
si

ng
-

K
G

(I
nt

eg
ra

tio
n)

-

47
,0

31

https://github.com/MannLabs/CKG
https://github.com/MannLabs/CKG
https://github.com/gnn4dr/DRKG
https://github.com/gnn4dr/DRKG
https://het.io/
https://conservancy.umn.edu/handle/11299/204783
https://conservancy.umn.edu/handle/11299/204783
https://conservancy.umn.edu/handle/11299/204783
http://www.fudan-pgx.org/premedkb/index.html#/home
http://www.fudan-pgx.org/premedkb/index.html#/home
http://www.fudan-pgx.org/premedkb/index.html#/home
http://www.fudan-pgx.org/premedkb/index.html#/home

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 537

D
at

ab
as

e
N

um
be

ro
fE

nt
iti

es
E

nt
ity

Ty
pe

s
N

um
be

ro
f

R
el

at
io

ns
R

el
at

io
n

Ty
pe

s
Fo

cu
s

A
va

ila
bl

e
Fo

rm
at

s
So

ur
ce

Ty
pe

U
R

L

C
O

V
ID

-1
9

K
no

w
le

dg
e

G
ra

ph
(D

om
in

go
-

Fe
rn

án
de

z
et

al
,

20
20

)

3,
95

4
10

en
tit

y
ty

pe
s,

su
ch

as
pr

ot
ei

ns
,

ge
ne

s,
ch

em
ic

al
s,

et
c.

9,
48

4
In

cr
ea

se
s,

D
ec

re
as

es
,

as
so

ci
at

io
n,

et
c.

C
O

V
ID

-1
9

JS
O

N
K

G
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

c
o
v
i
d
1
9
k
g
/
c
o
v
i
d
1
9
k
g

C
O

V
ID

-K
G

(W
an

g
et

al
,2

02
0e

)
67

,2
17

D
is

ea
se

s,
C

he
m

ic
al

s,
G

en
es

85
,1

26
,7

62
C

he
m

ic
al

-G
en

e,
C

he
m

ic
al

-D
is

ea
se

,
G

en
e-

D
is

ea
se

-
C

SV
K

G
h
t
t
p
:
/
/
b
l
e
n
d
e
r
.
c
s
.

i
l
l
i
n
o
i
s
.
e
d
u
/

c
o
v
i
d
1
9
/

K
G

H
C

(L
ie

ta
l,

20
20

d)
5,

02
8

9
en

tit
y

ty
pe

s,
su

ch
as

dr
ug

,p
ro

te
in

,
di

se
as

e,
et

c.

13
,2

96
A

ss
oc

ia
te

w
ith

,
C

au
se

,e
tc

.
H

ep
at

oc
el

lu
la

r
C

ar
ci

no
m

a
N

eo
4j

K
G

h
t
t
p
:
/
/
2
0
2
.
1
1
8
.
7
5
.

1
8
:
1
8
8
9
5
/
b
r
o
w
s
e
r
/

L
ie

ta
l(

20
20

b)
22

,5
08

9
en

tit
y

ty
pe

s,
su

ch
as

di
se

as
e,

sy
m

pt
om

,e
tc

.

57
9,

09
4

-
D

is
ea

se
-

Sy
m

pt
om

-
K

G
-

Q
M

K
G

(G
oo

dw
in

an
d

H
ar

ab
ag

iu
,

20
13

)

63
4,

00
0

-
1,

39
0,

00
0,

00
0

-
-

-
K

G
-

R
ot

m
en

sc
h

et
al

(2
01

7)
64

7
D

is
ea

se
,S

ym
pt

om
-

D
is

ea
se

-S
ym

pt
om

T
he

lin
ka

ge
be

tw
ee

n
di

se
as

es
an

d
sy

m
pt

om
s

-
K

G
-

Su
n

et
al

(2
02

0a
)

1,
61

6,
54

9
62

en
tit

y
ty

pe
s,

su
ch

as
D

is
ea

se
,

D
ru

g,
et

c

5,
96

3,
44

4
20

2
re

la
tio

n
ty

pe
s

C
lin

ic
al

su
sp

ec
te

d
cl

ai
m

s
de

te
ct

io
n

-
K

G
h
t
t
p
s
:
/
/
w
e
b
.
a
r
c
h
i
v
e
.

o
r
g
/
w
e
b
/

2
0
1
9
1
2
3
1
1
5
2
6
1
5
i
f
_

/
h
t
t
p
:
/
/
1
2
1
.
1
2
.
8
5
.

2
4
5
:
1
3
4
7
/
k
g
_
t
e
s
t
/
#
/

B
ge

e(
B

as
tia

n
et

al
,

20
21

)
60

,0
72

A
na

to
m

y,
G

en
e

11
,7

31
,3

69
E

xp
re

ss
io

n
Pr

es
en

t,
E

xp
re

ss
io

n
A

bs
en

t
A

na
to

m
y-

G
en

e
E

xp
re

ss
io

n

T
SV

K
B

h
t
t
p
s
:
/
/
b
g
e
e
.
o
r
g
/

C
om

pa
ra

tiv
e

To
xi

co
ge

no
m

ic
s

D
at

ab
as

e(
D

av
is

et
al

,2
01

9)

73
,9

22
D

is
ea

se
,G

en
e,

C
he

m
ic

al
,P

at
hw

ay
38

,3
44

,5
68

C
he

m
ic

al
-G

en
e,

C
he

m
ic

al
-D

is
ea

se
,

C
he

m
ic

al
-P

at
hw

ay
,

G
en

e-
D

is
ea

se
,

G
en

e-
Pa

th
w

ay
,

D
is

ea
se

-P
at

hw
ay

-
C

SV
,T

SV
K

B
h
t
t
p
:
/
/
c
t
d
b
a
s
e
.
o
r
g
/

https://github.com/covid19kg/covid19kg
https://github.com/covid19kg/covid19kg
http://blender.cs.illinois.edu/covid19/
http://blender.cs.illinois.edu/covid19/
http://blender.cs.illinois.edu/covid19/
http://202.118.75.18:18895/browser/
http://202.118.75.18:18895/browser/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/
https://web.archive.org/web/20191231152615if_/http://121.12.85.245:1347/kg_test/#/
https://bgee.org/
http://ctdbase.org/

538 Chang Su, Yu Hou, Fei Wang

D
at

ab
as

e
N

um
be

ro
fE

nt
iti

es
E

nt
ity

Ty
pe

s
N

um
be

ro
f

R
el

at
io

ns
R

el
at

io
n

Ty
pe

s
Fo

cu
s

A
va

ila
bl

e
Fo

rm
at

s
So

ur
ce

Ty
pe

U
R

L

D
ru

g–
G

en
e

In
te

ra
ct

io
n

D
at

ab
as

e(
C

ot
to

et
al

,2
01

8)

16
0,

05
4

D
ru

g,
G

en
e

96
,9

24
-

D
ru

g-
G

en
e

In
te

ra
ct

io
n

T
SV

K
B

h
t
t
p
s
:

/
/
w
w
w
.
d
g
i
d
b
.
o
r
g
/

D
IS

E
A

SE
S(

Pl
et

sc
he

r-
Fr

an
ki

ld
et

al
,2

01
5)

D
is

ea
se

,G
en

e
54

3,
40

5
-

D
is

ea
se

-G
en

e
A

ss
oc

ia
tio

n
T

SV
K

B
h
t
t
p
s
:
/
/
d
i
s
e
a
s
e
s
.

j
e
n
s
e
n
l
a
b
.
o
r
g
/

D
is

G
eN

E
T

(P
iñ

er
o

et
al

,2
02

0)
15

9,
05

2
D

is
ea

se
,G

en
e,

V
ar

ia
nt

83
9,

13
8

G
en

e-
D

is
ea

se
,V

ar
ia

nt
-

D
is

ea
se

G
en

e-
D

is
ea

se
,V

ar
ia

nt
-

D
is

ea
se

as
so

ci
at

io
ns

T
SV

K
B

h
t
t
p
s
:
/
/
w
w
w
.

d
i
s
g
e
n
e
t
.
o
r
g
/
h
o
m
e
/

G
lo

ba
lN

et
w

or
k

of
B

io
m

ed
ic

al
R

el
a-

tio
ns

hi
ps

(P
er

ch
a

an
d

A
ltm

an
,2

01
8)

-
C

he
m

ic
al

,D
is

ea
se

,
G

en
e

2,
23

6,
30

7
36

re
la

tio
n

ty
pe

s,
su

ch
as

ca
us

al
m

ut
at

io
ns

,
tr

ea
tm

en
t,

et
c.

-
T

X
T

K
B

h
t
t
p
s
:
/
/
z
e
n
o
d
o
.
o
r
g
/

r
e
c
o
r
d
/
1
0
3
5
5
0
0

In
tA

ct
(O

rc
ha

rd
et

al
,2

01
4)

11
9,

28
1

C
he

m
ic

al
,G

en
e

1,
13

0,
59

6
-

M
ol

ec
ul

ar
In

te
ra

ct
io

n
T

X
T

K
B

h
t
t
p
s
:
/
/
w
w
w
.
e
b
i
.
a
c
.

u
k
/
i
n
t
a
c
t
/

ST
R

IN
G

(S
zk

la
rc

zy
k

et
al

,2
01

9)
24

,5
84

,6
28

Pr
ot

ei
n

3,
12

3,
05

6,
66

7
Pr

ot
ei

n-
Pr

ot
ei

n
In

te
ra

ct
io

n
Pr

ot
ei

n-
Pr

ot
ei

n
In

te
ra

ct
io

n

T
X

T
K

B
h
t
t
p
s
:

/
/
s
t
r
i
n
g
-
d
b
.
o
r
g
/

SI
D

E
R

(K
uh

n
et

al
,

20
16

)
7,

29
8

D
ru

g,
Si

de
-e

ff
ec

t
13

9,
75

6
D

ru
g-

Si
de

ef
fe

ct
M

ed
ic

in
es

an
d

th
ei

rr
ec

or
de

d
ad

ve
rs

e
dr

ug
re

ac
tio

ns

T
SV

K
B

h
t
t
p
:
/
/
s
i
d
e
e
f
f
e
c
t
s
.

e
m
b
l
.
d
e
/

SI
G

N
O

R
(L

ic
at

a
et

al
,2

02
0)

7,
09

5
10

en
tit

y
ty

pe
s,

su
ch

as
pr

ot
ei

n,
ch

em
ic

al
,e

tc
.

26
,5

23
-

Si
gn

al
in

g
in

fo
rm

at
io

n
T

SV
K

B
h
t
t
p
s
:
/
/
s
i
g
n
o
r
.

u
n
i
r
o
m
a
2
.
i
t
/

T
IS

SU
E

(P
al

as
ca

et
al

,2
01

8)
26

,2
60

Ti
ss

ue
,G

en
e

6,
78

8,
69

7
E

xp
re

ss
Ti

ss
ue

-G
en

e
E

xp
re

ss
io

n
T

SV
K

B
h
t
t
p
s
:
/
/
t
i
s
s
u
e
s
.

j
e
n
s
e
n
l
a
b
.
o
r
g
/

C
at

al
og

ue
of

So
m

at
ic

M
ut

at
io

ns
in

C
an

ce
r(

Ta
te

et
al

,
20

19
)

12
,3

39
,3

59
M

ut
at

io
n

-
-

So
m

at
ic

M
ut

at
io

ns
in

C
an

ce
r

T
SV

D
at

ab
as

e
h
t
t
p
s
:
/
/
c
a
n
c
e
r
.

s
a
n
g
e
r
.
a
c
.
u
k
/
c
o
s
m
i
c

22
,2

16

https://www.dgidb.org/
https://www.dgidb.org/
https://diseases.jensenlab.org/
https://diseases.jensenlab.org/
https://www.disgenet.org/home/
https://www.disgenet.org/home/
https://zenodo.org/record/1035500
https://zenodo.org/record/1035500
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/
https://string-db.org/
https://string-db.org/
http://sideeffects.embl.de/
http://sideeffects.embl.de/
https://signor.uniroma2.it/
https://signor.uniroma2.it/
https://tissues.jensenlab.org/
https://tissues.jensenlab.org/
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic

24 GNN-based Biomedical Knowledge Graph Mining in Drug Development 539

D
at

ab
as

e
N

um
be

ro
fE

nt
iti

es
E

nt
ity

Ty
pe

s
N

um
be

ro
f

R
el

at
io

ns
R

el
at

io
n

Ty
pe

s
Fo

cu
s

A
va

ila
bl

e
Fo

rm
at

s
So

ur
ce

Ty
pe

U
R

L

C
hE

M
B

L
(M

en
de

z
et

al
,2

01
9)

1,
94

0,
73

3
M

ol
ec

ul
e

-
-

M
ol

ec
ul

e
T

X
T

D
at

ab
as

e
h
t
t
p
s
:
/
/
w
w
w
.
e
b
i
.
a
c
.

u
k
/
c
h
e
m
b
l
/

C
hE

B
I(

H
as

tin
gs

et
al

,2
01

6)
15

5,
34

2
M

ol
ec

ul
e

-
-

M
ol

ec
ul

e
T

X
T

D
at

ab
as

e
h
t
t
p
s
:
/
/
w
w
w
.
e
b
i
.
a
c
.

u
k
/
c
h
e
b
i
/
i
n
i
t
.
d
o

D
ru

gB
an

k(
W

is
ha

rt
et

al
,2

01
8)

15
,1

28
D

ru
g

28
,0

14
D

ru
g-

Ta
rg

et
,

D
ru

g-
E

nz
ym

e,
D

ru
g-

C
ar

ri
er

,
D

ru
g-

Tr
an

sp
or

te
r

D
ru

g
C

SV
D

at
ab

as
e

h
t
t
p
s
:

/
/
g
o
.
d
r
u
g
b
a
n
k
.
c
o
m
/

E
nt

re
z

G
en

e(
M

ag
lo

tt
et

al
,

20
10

)

30
,8

96
,0

60
G

en
e

-
-

G
en

e
T

X
T

D
at

ab
as

e
h
t
t
p
s
:
/
/
w
w
w
.
n
c
b
i
.

n
l
m
.
n
i
h
.
g
o
v
/
g
e
n
e
/

H
U

G
O

G
en

e
N

om
en

cl
at

ur
e

C
om

m
itt

ee
(B

ra
sc

hi
et

al
,2

01
7)

41
,4

39
G

en
e

-
-

G
en

e
T

X
T

D
at

ab
as

e
h
t
t
p
s
:

/
/
w
w
w
.
g
e
n
e
n
a
m
e
s
.
o
r
g
/

K
E

G
G

(K
an

eh
is

a
an

d
G

ot
o,

20
00

)
33

,7
56

,1
86

D
ru

g,
Pa

th
w

ay
,

G
en

e,
et

c.
-

-
-

T
X

T
D

at
ab

as
e

h
t
t
p
s
:

/
/
w
w
w
.
k
e
g
g
.
j
p
/
k
e
g
g
/

Ph
ar

m
G

K
B

(W
hi

rl
-

C
ar

ri
llo

et
al

,2
01

2)
43

,1
12

G
en

es
,V

ar
ia

nt
,

D
ru

g/
C

he
m

ic
al

,
Ph

en
ot

yp
e

61
,6

16
-

-
T

SV
D

at
ab

as
e

h
t
t
p
s
:

/
/
w
w
w
.
p
h
a
r
m
g
k
b
.
o
r
g
/

R
ea

ct
om

e(
Ja

ss
al

et
al

,2
02

0)
21

.0
87

Pa
th

w
ay

-
-

Pa
th

w
ay

T
X

T
D

at
ab

as
e

h
t
t
p
s
:

/
/
r
e
a
c
t
o
m
e
.
o
r
g
/

Se
m

an
tic

M
E

D
L

IN
E

D
at

ab
as

e(
K

ili
co

gl
u

et
al

,2
01

2)

-
-

10
9,

96
6,

97
8

Su
bj

ec
t-

Pr
ed

ic
at

e-
O

bj
ec

tT
ri

pl
es

Se
m

an
tic

pr
ed

ic
tio

ns
fr

om
th

e
lit

er
at

ur
e

C
SV

D
at

ab
as

e
h
t
t
p
s
:
/
/
s
k
r
3
.
n
l
m
.

n
i
h
.
g
o
v
/
i
n
d
e
x
.
h
t
m
l

U
ni

Po
rt

(B
at

em
an

et
al

,2
02

0)
24

3,
65

8
Pr

ot
ei

n
-

-
Pr

ot
ei

n
X

M
L

,T
X

T
D

at
ab

as
e

h
t
t
p
s
:

/
/
w
w
w
.
u
n
i
p
r
o
t
.
o
r
g
/

B
re

nd
a

Ti
ss

ue
O

nt
ol

og
y(

G
re

m
se

et
al

,2
01

0)

6,
47

8
Ti

ss
ue

-
-

Ti
ss

ue
O

W
L

O
nt

ol
og

y
h
t
t
p
:
/
/
w
w
w
.
B
T
O
.

b
r
e
n
d
a
-
e
n
z
y
m
e
s
.
o
r
g

D
is

ea
se

O
nt

ol
og

y(
Sc

hr
im

l
et

al
,2

01
9)

10
,6

48
D

is
ea

se
-

-
D

is
ea

se
O

W
L

O
nt

ol
og

y
h
t
t
p
s
:

/
/
d
i
s
e
a
s
e
-
o
n
t
o
l
o
g
y
.

o
r
g
/

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chebi/init.do
https://www.ebi.ac.uk/chebi/init.do
https://go.drugbank.com/
https://go.drugbank.com/
https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/
https://www.genenames.org/
https://www.genenames.org/
https://www.kegg.jp/kegg/
https://www.kegg.jp/kegg/
https://www.pharmgkb.org/
https://www.pharmgkb.org/
https://reactome.org/
https://reactome.org/
https://skr3.nlm.nih.gov/index.html
https://skr3.nlm.nih.gov/index.html
https://www.uniprot.org/
https://www.uniprot.org/
http://www.BTO.brenda-enzymes.org
http://www.BTO.brenda-enzymes.org
https://disease-ontology.org/
https://disease-ontology.org/
https://disease-ontology.org/

540 Chang Su, Yu Hou, Fei Wang

D
at

ab
as

e
N

um
be

ro
fE

nt
iti

es
E

nt
ity

Ty
pe

s
N

um
be

ro
f

R
el

at
io

ns
R

el
at

io
n

Ty
pe

s
Fo

cu
s

A
va

ila
bl

e
Fo

rm
at

s
So

ur
ce

Ty
pe

U
R

L

G
en

e
O

nt
ol

-
og

y(
A

sh
bu

rn
er

et
al

,2
00

0)

44
,0

85
G

en
e

-
-

G
en

e
O

W
L

O
nt

ol
og

y
h
t
t
p
:

/
/
g
e
n
e
o
n
t
o
l
o
g
y
.
o
r
g
/

U
be

ro
n(

M
un

ga
ll

et
al

,2
01

2)
14

,9
44

A
na

to
m

y
-

-
A

na
to

m
y

O
W

L
O

nt
ol

og
y

h
t
t
p
:

/
/
u
b
e
r
o
n
.
g
i
t
h
u
b
.
i
o
/

p
u
b
l
i
c
a
t
i
o
n
s
.
h
t
m
l

http://geneontology.org/
http://geneontology.org/
http://uberon.github.io/publications.html
http://uberon.github.io/publications.html
http://uberon.github.io/publications.html

Chapter 25
Graph Neural Networks in Predicting Protein
Function and Interactions

Anowarul Kabir and Amarda Shehu

Abstract Graph Neural Networks (GNNs) are becoming increasingly popular and
powerful tools in molecular modeling research due to their ability to operate over
non-Euclidean data, such as graphs. Because of their ability to embed both the inher-
ent structure and preserve the semantic information in a graph, GNNs are advancing
diverse molecular structure-function studies. In this chapter, we focus on GNN-
aided studies that bring together one or more protein-centric sources of data with
the goal of elucidating protein function. We provide a short survey on GNNs and
their most successful, recent variants designed to tackle the related problems of pre-
dicting the biological function and molecular interactions of protein molecules. We
review the latest methodological advances, discoveries, as well as open challenges
promising to spur further research.

25.1 From Protein Interactions to Function: An Introduction

Molecular biology is now reaping the benefits of big data, as rapidly advancing
high-throughput, automated wet-laboratory protocols have resulted in a vast amount
of biological sequence, expression, interactions, and structure data (Stark, 2006;
Zoete et al, 2011; Finn et al, 2013; Sterling and Irwin, 2015; Dana et al, 2018;
Doncheva et al, 2018). Since functional characterization has lagged behind, we now
have millions of protein products in databases for which no functional information
is readily available; that is, we do not know what many of the proteins in our cells
do (Gligorijevic et al, 2020).

Anowarul Kabir
Department of Computer Science, George Mason University, e-mail: akabir4@gmu.edu

Amarda Shehu
Department of Computer Science, George Mason University, e-mail: amarda@gmu.edu

541
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_25

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:akabir4@gmu.edu
mailto:amarda@gmu.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_25&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_25

542 Anowarul Kabir and Amarda Shehu

Answering the question of what function a protein molecule performs is key not
only to understanding our biology and protein-centric disorders, but also to advanc-
ing protein-targeted therapies. Hence, this question remains the driver of much wet-
and dry-laboratory research in molecular biology (Radivojac et al, 2013; Jiang et al,
2016). Answering it can take many forms based on the detail sought or possible. The
highest amount of detail provides an answer to the question by directly exposing the
other molecules with which a target protein interacts in the cell, thus revealing what
a protein does by elucidating the molecular partners to which it binds.

In this brief survey, we focus on how graph neural networks (GNNs) are ad-
vancing our ability to answer this question in silico. This chapter is organized as
follows: First, a brief historical overview is provided, so that the reader understands
the evolution of ideas and data that have made possible the application of machine
learning to the problem of protein function prediction. Then, a brief overview of the
(shallow) models prior to GNNs is provided. The rest of the survey is devoted to
the GNN-based formulation of this question, a summary of state-of-the-art (SOTA)
GNN-based methods, with a few selected methods highlighted where relevant, and
an exposition of remaining challenges and potential ways forward via GNNs.

25.1.1 Enter Stage Left: Protein-Protein Interaction Networks

Historically, the earliest methods devised for protein function prediction related pro-
tein sequence similarity to protein function similarity. This led to important discov-
eries until remote homologs were identified, which are proteins with low sequence
similarity but highly similar three-dimensional/tertiary structure and function. So
methods evolved to utilize tertiary structure, but their applicability was limited, as
determination of tertiary structure was and remains a laborious process. Other meth-
ods utilized patterns in gene expression data to infer interacting proteins, based on
the insight that proteins interacting with one another need foremost to be expressed
in the cell at the same time.

With the development of high-throughput technologies, such as two-hybrid anal-
ysis for the yeast protein interactome (Ito et al, 2001), tandem-affinity purifi-
cation and mass spectrometry (TAP-MS) (Gavin et al, 2002) for characterizing
multi-protein complexes and protein-protein associations (Huang et al, 2016a),
high-throughput mass spectrometric protein complex identification (HMS-PCI) (Ho
et al, 2002), co-immunoprecipitation coupled to mass spectrometry (Foltman and
Sanchez-Diaz, 2016), protein-protein interaction (PPI) data suddenly became avail-
able, and in large amounts. PPI networks, with edges denoting interacting protein
nodes, of many species, such as human, yeast, mouse, and others, suddenly became
available to researchers. PPI networks, as small as a few nodes or as large as tens
of thousands of nodes, gave a boost to machine learning methods and improved the
performance of shallow models. Surveys such as Ref. (Shehu et al, 2016) provide a
detailed history of the evolution of protein function prediction methods as different
sources of wet-laboratory data became available to computational biologists.

25 Graph Neural Networks in Predicting Protein Function and Interactions 543

25.1.2 Problem Formulation(s), Assumptions, and Noise: A
Historical Perspective

A natural question arises. If we have access to PPI data, then what else remains
to predict with regards to protein function? Despite significant progress, the reality
remains that there are many unmapped PPIs. This is formally known as the link pre-
diction problem. For various reasons, PPI networks are incomplete. They entirely
miss information on a protein, or they may contain incomplete information on a
protein. In particular, we now know that PPIs suffer from high type-I error, type-II
error, and low inclusion (Luo et al, 2015; Byron and Vestergaard, 2015). The to-
tal number of PPI links that are experimentally determined is still moderate (Han
et al, 2005). PPI data are inherently noisy as experimental methods often produce
false-positive results (Hashemifar et al, 2018). Therefore, predicting protein func-
tion computationally remains an essential task.

The problem of protein function prediction is often formulated as that of link
prediction, that is, predicting whether or not there exists a connection between two
nodes in a given PPI network. While link prediction methods connect proteins on
the basis of biological or network-based similarity, researchers report that inter-
acting proteins are not necessarily similar and similar proteins do not necessarily
interact (Kovács et al, 2019).

As indicated above, information on protein function can be provided at different
levels of detail. There are several widely-used protein function annotation schemes,
including the Gene Ontology (Lovell et al, 2003) (GO) Consortium, the Kyoto En-
cyclopedia of Genes and Genomes (Wang and Dunbrack, 2003) (KEGG), the En-
zyme Commission (Rhodes, 2010) (EC) numbers, the Human Phenotype Ontol-
ogy (Robinson et al, 2008), and others. It is beyond the scope of this paper to provide
an explanation of these ontologies. However, we emphasize that the most popular
one remains the GO annotation, which classifies proteins into hierarchically-related
functional classes organized into 3 different ontologies: Molecular Function (MF),
Biological Process (BP), and Cellular Component (CC), to describe different aspects
of protein functions. Systematic benchmarking efforts via the Critical Assessment
of Functional Annotation (CAFA) community-wide experiments (Radivojac et al,
2013; Jiang et al, 2016; Zhou et al, 2019b) and MouseFunc (Peña-Castillo et al,
2008) have been central to the automation of protein function annotation and rigor-
ous assessment of devised methodologies.

25.1.3 Shallow Machine Learning Models over the Years

Many shallow machine learning approaches have been developed over the years.
Xue-Wen and Mei propose a domain-based random forest of decision trees to infer
protein interactions on the Saccharomyces cerevisiae dataset (Chen and Liu, 2005).
Shinsuke et al. apply multiple support vector machines (SVMs) for predicting in-

544 Anowarul Kabir and Amarda Shehu

teractions between pairs of yeast proteins and pairs of human proteins by increas-
ing more negative pairs than positives (Dohkan et al, 2006). Fiona et al. assess
naı̈ve bayes (NB), multi-layer perceptron (MLP) and k-nearest neighbour (KNN)
methods on diverse, large-scale functional data to infer pairwise (PW) and module-
based (MB) interaction networks (Browne et al, 2007). PRED PPI provides a server
developed on SVM for predicting PPIs in five organisms, such as humans, yeast,
Drosophila, Escherichia coli, and Caenorhabditis elegans (Guo et al, 2010). Xiao-
tong and Xue-wen integrate features extracted from microarray expression measure-
ments, GO labels and orthologous scores, and apply a tree-augmented NB classifier
for human PPI predictions from model organisms (Lin and Chen, 2012). Zhu-Hong
et al. propose a multi-scale local descriptor feature representation scheme to ex-
tract features from a protein sequence and use random forest (You et al, 2015a).
Zhu-Hong et al. propose to apply SVM on a matrix-based representation of protein
sequence, which fully considers the sequence order and dipeptide information of the
protein primary sequence to detect PPIs (You et al, 2015b).

Although many advances were made by shallow models, as summarized in Ta-
ble 25.1, the problem of protein function prediction is still a long way from being
solved. Shallow machine learning methods depend greatly on feature extraction and
feature computation, which hinder performance. The task of feature engineering,
particularly when integrating different sources of data (sequence, expression, in-
teractions) is complex, laborious, and ultimately limited by human creativity and
domain-specific understanding of what may be determinants of protein function. In
particular, feature-based shallow models cannot fully incorporate the rich, local and
distal topological information present in one or more PPI networks. These reasons
have prompted researchers to investigate GNNs for protein function prediction.

25.1.4 Enter Stage Right: Graph Neural Networks

This section first relates a general formulation of a GNN and forsakes detail in the
interest of space, assuming readers are already somewhat familiar with GNNs. The
rest of the section focuses on three task-specific formulations that allow leveraging
GNNs for protein function prediction.

25.1.4.1 Preliminaries

Assume an undirected and unweighted molecular-interaction graph, i.e., a PPI net-
work, is represented by G = (V ,E), where V and E denote the set of vertices
representing proteins and the edges indicating interactions among proteins, respec-
tively. Let the i-th protein be represented as an m-dimensional feature vector; that
is, pi ∈Rm. The objective of a GNN is to learn an embedding, hi, using the message
passing protocol which essentially aggregates and transforms neighboring informa-
tion to update the current node’s vector representation. Assuming f and g are two

25 Graph Neural Networks in Predicting Protein Function and Interactions 545

Table 25.1: Summary of performance of shallow models as reported in (Chen and
Liu, 2005; Guo et al, 2010; Lin and Chen, 2012; You et al, 2015a,b)

Literature Model Dataset Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Chen and Liu (2005) RF Saccharomyces
cerevisiae

79.78 64.38 NA∗

Guo et al (2010) SVM Human 89.17 92.17 90.67
Yeast 88.17 89.81 88.99
Drosophila 99.53 80.65 90.09
Escherichia coli 95.11 90.35 92.73
Caenorhabditis
elegans

96.46 98.55 97.51

Lin and Chen (2012) Tree-
Augmented
Naı̈ve Bayes
(TAN)

Human 88 70 NA∗

You et al (2015a) RF Saccharomyces
cerevisiae

94.34 NA∗ 94.72

You et al (2015b) SVM Saccharomyces
cerevisiae

85.74 94.37 90.06

∗ Not available

parametric functions that compute the embedding and output considering a single
protein, following (Scarselli et al, 2008), we formulate follows:

hi = f (pi, pe[i], pne[i],hne[i]) (25.1)

oi = g(hi, pi) (25.2)

where pi, pe[i], pne[i] and hne[i] denote the feature representation of the i-th protein,
features of all connected edges to the i-th protein, neighboring proteins’ features and
embeddings of neighborhood proteins of the i-th protein, respectively.

Let us now consider |V | = n proteins. All proteins are represented as a matrix,
P ∈Rn×m. The adjacency matrix A ∈Rn×n encodes the connectivity of the proteins;
namely, Ai, j indicates whether or not there exists a link between proteins i and j.
Enforcing the self-loops with each protein, the updated adjacent matrix is Ã = A+ I.
The degree diagonal matrix, D, can then be defined, such that Di,i = ∑

n
j=1 Ãi, j. From

there, one can compute the symmetric Laplacian matrix L = D− Ã. Finally, one can
then formulate the following iterative process:

Ht+1 = F(Ht ,P||A||L||X) (25.3)

546 Anowarul Kabir and Amarda Shehu

O = G(H,P||A||L||X) (25.4)

where Ht denotes t-th iteration of H, (·||·) indicates the aggregation operation based
on the task at hand, and O is the final stacked output.

25.1.4.2 GNNs for Representation Learning

We now want to encode complex high-dimensional information, such as a protein,
P, or a biological interaction, A, or an interaction network, G , into low-dimensional
embeddings, Z, by capturing linearity and non-linearity among nodes and edges.
In principle, the representation should contain all the information for downstream
machine learning tasks, such as link prediction, protein classification, protein cluster
analysis, interaction prediction, etc.

Suppose we want to learn a graph embedding, Z, from the network G . A graph
auto-encoder neural network (Kipf and Welling, 2016) can be applied to learn Z:

Z = GNN(P,A;θgnn) (25.5)

where θgnn denotes GNN (encoder)-specific learnable parameters.

25.1.4.3 GNNs for the Link Prediction Problem

Given two proteins, we want to predict if there is a link between them, where prob-
ability p(Ai, j) ≈ 1 indicates there exists an interaction with high confidence; con-
versely p(Ai, j) ≈ 0 indicates a low interaction confidence. The prediction of a link
between two given proteins can bet set up as a binary classification problem. The
relations among nodes can be of several types; so, an edge of type r from node u to
v can be defined as u r−→ v ∈ E , which can be formulated as a multi-relational link
prediction problem.

Using GNNs, one can map graph nodes into a low-dimensional vector space
which may preserve both local graph structure and dissimilarities among node fea-
tures. To address link prediction, one can employ a two layer encoder-decoder ap-
proach where the model learns Z from equation 25.5:

A′ = DECODER(Z|P,A;θdecoder) (25.6)

where θdecoder denotes decoder (task)-specific learnable parameters, and A′i, j indi-
cates the confidence score with the predicted link between protein i and j.

25 Graph Neural Networks in Predicting Protein Function and Interactions 547

25.1.4.4 GNNs for Automated Function Prediction as a Multi-label
Classification Problem

Given n-GO terms and m-proteins, u = m− l proteins need to be annotated with
term(s), whereas l proteins are already annotated. So for the i-th protein, the pre-
diction will be yi = yi,1,yi,2, ...,yi,n where yi, j ∈ {0,1}. This task can be considered
as a binary multi-label classification problem, since a protein usually participates
in multiple biological functions. This could be protein-centric, where GO-terms are
annotated for each protein, or GO-term centric, where proteins are annotated for
each GO-term, or protein-term pair centric, where a probability association score is
predicted for each pair.

25.2 Highlighted Case Studies

In the following, we highlight three selected methods that exemplify SOTA tech-
niques and performance.

25.2.1 Case Study 1: Prediction of Protein-Protein and
Protein-Drug Interactions: The Link Prediction Problem

Liu et al (2019) apply a graph convolutional neural network (GCN) for PPI pre-
diction as a supervised binary classification task. Learned representations of two
proteins are fed to the model, and the model predicts the probability of interaction
between the proteins. The model first captures position-specific information inside
the PPI network and combines amino-acid sequence information to output final em-
beddings for each protein. The model encodes each amino acid as a one-hot vector
and employs a graph convolutional layer to learn a hidden representation from the
graph. To do that, Liu et al (2019) use the message passing protocol to update each
protein embedding by aggregating the original features and first-hop neighbors’ in-
formation, which is formulated as following:

X1 = ReLU(D−1ÃX0W0) (25.7)

where X0 ∈ Rn×n is the original protein feature matrix which is an identity matrix;
X1 ∈ Rn× f is the final output feature matrix, where f is the feature dimension of
each protein after the graph convolution operation and W0 is the trainable weight
matrix. In the prediction phase, the authors utilize fully connected layers followed
by batch normalization and dropout layers to extract high-level features; softmax is
then used to predict the final interaction probability score. The experiments show
that the method achieves mean AUPR (area under precision-recall curve) of 0.52
and 0.45 on yeast and human datasets, respectively, which outperforms sequence-

548 Anowarul Kabir and Amarda Shehu

based SOTA methods. Additionally, the authors report achieving 95% accuracy on
yeast data under 93% sensitivity. Therefore, the extracted information from the PPI
graph suggests that a single graph convolutional layer is capable of extracting useful
information for the PPI prediction task.

Brockschmidt (Brockschmidt, 2020) proposes a novel GNN variant using feature-
wise linear modulation (GNN-FiLM), originally introduced by Perez et al. (Perez
et al, 2018) in the visual question-answering domain, and evaluates on three differ-
ent tasks, including node-level classification of PPI networks. The targeted appli-
cation in this work is the classification of proteins into known protein families or
super-families, which is of great importance in numerous application domains, such
as precision drug design. Typically, in GNN variants, the information is passed from
the source to the target node considering the learned weights and the representation
of the source node. However, the GNN-FiLM method proposes a hypernetwork,
neural networks, that compute parameters for other networks (Ha et al, 2017), in
graph settings, where the feature weights are learned dynamically based on the in-
formation that the target node holds. Therefore, considering function g as a learnable
function to compute the parameters for the affine transformation, the update rule is
defined for the l-th layer as follows:

β
(l)
r,v γ

(l)
r,v = g(h(l)v ;θg,r) (25.8)

h(l+1)
v = σ

 ∑

u
r−→v∈E

γ
(l)
r,v ⊙Wrh

(l)
u +β

(l)
r,v

 (25.9)

where g is implemented as a single linear layer in practice considering β
(t)
e,v and

γ
(t)
e,v as the hyperparameters of the message passing operation in GNN, and u e−→ v

indicates that message is passing from u to v through a type r edge. In experiments,
GNN-FiLM achieves micro-averaged F1 score of 99% which outperforms other
variants when evaluated on protein classification tasks.

Zitnik et al (2018) employ GCNs to predict polypharmacy side effects, which
emerge from drug-drug interactions when using drug combinations on patients’
treatments. The problem can be formulated as a multi-relational link prediction
problem in multimodal graph structured data. Specifically, Zitnik et al (2018)
consider two types of nodes, proteins and drugs, and construct the network using
protein-protein, protein-drug, and drug-drug interactions as polypharmacy side ef-
fects, whereas each side effect can be of different types of edges, called Decagon.
More precisely, a relation of type r between two nodes (proteins or drugs), u and v, is
defined as (u,r,v)∈ E . Here, the relations can be a side effect between two proteins,
binding affinity of two proteins, or relation between a protein and a drug. More
formally, given a drug pair (u,v), the task is to predict the likelihood of an edge,
Au,v = (u,r,v). For this purpose, they develop a non-linear and multi-layer graph
convolutional encoder to compute the embeddings of each node using original node
features, called Decagon. To update a node’s representation, authors transform the

25 Graph Neural Networks in Predicting Protein Function and Interactions 549

information of neighboring nodes by aggregation and propagation operations over
the edges. The update operator is defined using the following rule:

h(l+1)
i = φ

∑

r
∑

j∈N i
r

ci, j
r W (l)

r h(l)j + ci
rh

(l)
i

 (25.10)

where φ denotes non-linear activation function, h(l)i indicates hidden state of the i-th
node at the l-th layer, W (l)

r means relation-type specific learnable parameter matrix,
j ∈ N i

r are the neighboring nodes of i, ci, j
r = 1√

|N i
r ||N i

r |
and ci

r =
1√
|N i

r |
are the

normalization constant. Finally, a tensor factorization model is used to predict the
polypharmacy side effects using these embeddings. The probability of a link of type
r between node u and v is defined as:

xu,v
r = σ(g(u,r,v)) (25.11)

where σ is the sigmoid function and g is defined as follows:

g(u,r,v) =

{
zT

u DrRDrzv if u and v both denote drug nodes
zT

u Mrzv if any of u or v is not drug node
(25.12)

where Dr, R and Mr are parameter matrices, such that Dr defines side-effect-specific
diagonal matrix, R is global drug-drug interaction matrix, and Mr is relation-type-
specific parameter matrix. Decagon achieves an AUPR of 83% under 80% precision,
outperforming other baselines by up to 69%. The authors attribute the large margin
in improvement to two components, the graph-structured convolution encoder and
the tensor factorization model.

25.2.2 Case Study 2: Prediction of Protein Function and
Functionally-important Residues

Automated Function Prediction (AFP) problems are often formulated as a multi-
label classification problems and are more nuanced than predicting interactions be-
tween two proteins. Many works report that proteins connected in the same molec-
ular network share the same functions (Schwikowski et al, 2000), but recent de-
velopments show that interacting proteins are not necessarily similar, and similar
proteins do not necessarily interact (Kovács et al, 2019). Moreover, more than 80%
of proteins interact with other molecules while functioning (Berggård et al, 2007).
Therefore, identifying or predicting the roles of proteins in organisms is vital, and
community-wide challenges have been organized to advance research towards this
goal. These include the Critical Assessment of Function Annotation (CAFA) (Radi-

550 Anowarul Kabir and Amarda Shehu

vojac et al, 2013; Jiang et al, 2016; Zhou et al, 2019b) and MouseFunc (Peña-
Castillo et al, 2008).

Many computation methods have been developed to this end to analyze protein-
function relationships. Traditional machine learning approaches, such as SVMs (Guan
et al, 2008; Wass et al, 2012; Cozzetto et al, 2016), heuristic-based methods (Schug,
2002), high dimensional statistical methods (Koo and Bonneau, 2018), and hierar-
chical supervised clustering methods (Das et al, 2015) have been extensively stud-
ied in AFP tasks and found that integration of several features, such as gene and
protein network or structure outperforms sequence-based features. However, these
traditional approaches rely strongly on hand-engineered features.

Deep learning methods have become prevalent. For example, DeepSite (Jiménez
et al, 2017), Torng and Altman (2018), and Enzynet (Amidi et al, 2018) ap-
ply 3D convolutonal neural networks (CNNs) for feature extraction and predic-
tion from protein structure data. However, storing the high-resolution 3D represen-
tation of protein structure and applying 3D convolutions over the representation
is inefficient (Gligorijevic et al, 2020). Very recently, GCNs (Kipf and Welling,
2017b) (Henaff et al, 2015; Bronstein et al, 2017) have been shown to general-
ize convolutional operations on graph-like molecular representations and overcome
these limitations.

In particular, Ioannidis et al (2019) adapt the graph residual neural network
(GRNN) approach for a semi-supervised learning task over multi-relational PPI
graphs to address AFP. The authors formulate a multi-relational connectivity graph
as an n× n× I tensor S, where Sn,n′,i captures the edge between proteins vn and
vn′ for the i-th relation. The n proteins are encoded in a feature matrix X ∈ Rn× f ,
where the i-th protein is represented as an f ×1 feature vector. Furthermore, a label
matrix Y ∈ Rn×k encodes the k labels. Subsets of proteins are associated with true
labels, and the task is to predict the labels of proteins with unavailable labels. The
neighborhood aggregation for the n-th protein and the i-th relation at the l-th layer
is defined by the following formula:

H(l)
n,i = ∑

n′∈N (i)
n

Sn,n′,iŽ
(l−1)
n′,i (25.13)

where n′ denotes the neighboring nodes of the n-th protein, and Ž(l−1)
n′i denotes the

feature vector of the n-th protein in the i-th relation at the l-th to the first layer.
Neighboring nodes are defined as one-hop only, which essentially incorporates one-
hop diffusion. However, successive operations eventually spread the information
across the network. To apply multi-relational graphs, the authors combine H(l)

ni
across i as follows:

G(l)
n,i =

I

∑
i′=1

R(l)
i,i′H

(l)
n,i′ (25.14)

where R(l)
i,i′ is the learnable parameter. Then, a linear operation mixes the extracted

features as follows:

25 Graph Neural Networks in Predicting Protein Function and Interactions 551

Z(l) = GT
n,iW

(l)
n,i −1 (25.15)

where Wn,i is the learnable parameter. In summary, the neighborhood convolution
and propagation step can be shown as:

Z(l) = f (Z(l−1);θ
(l)
z) (25.16)

where θ
(l)
z is comprised of two weight matrices, W and R, which linearly combine

the information of neighboring nodes and the multi-relational information, respec-
tively. Moreover, the authors incorporate residual connection to diffuse the input, X ,
across L-hop neighborhoods to capture multi-type diffusion; that is:

Z(l) = f (Z(l−1);θ
(l)
z)+ f (X ;θ

(l)
x) (25.17)

A softmax classification layer is used for the final prediction. The authors apply
this model on three multi-relational networks, comprising generic, brain, and circu-
lation cells. The model is shown to perform better than general graph convolutional
neural networks.

Recently, Gligorijevic et al (2020) employ DeepFRI, based on GCNs, for func-
tionally annotating protein sequences and structures. DeepFRI outputs probabil-
ities for each function. A Long Short-Term Memory Language Model (LSTM-
LM) (Graves, 2013) is pretrained on around 10 million protein sequences from
protein family database (Pfam) (Finn et al, 2013) to extract residue-level position-
context features. The following equation is used:

H0 = H input = ReLU(HLMW LM +XW X +b) (25.18)

where H0 is the final residue-level feature representation and the first graph con-
volutional layer. W LM , W X and b are learnable parameters trained with the graph
convolutional layers. Contact-map features, which encode tertiary protein structure,
combined with LSTM-LM task-agnostic sequence-embeddings are fed to a GCN
while keeping LSTM-LM frozen. The l-th layer of the convolution takes sequence-
embeddings and the contact map A and outputs residue-level embeddings to the
next, (l + 1)-th, layer. Residue level features are extracted by propagating residue
information to proximal residues. The rule for updating the node representation is:

H(l+1) = ReLU(D̃−
1
2 ÃD̃−

1
2 H(l)W (l)) (25.19)

The features are then concatenated into a single feature matrix as a protein embed-
ding. Intuitively, embeddings from different layers can be thought as context-aware
features. Additionally, the feature extraction strategy exploits linear or non-linear
relationships from neighbouring residues, as well as residues distant in sequence
but proximal in structure.

The learned protein representation is fed into two consecutive fully connected
layers to obtain predictions as class probabilities for all the GO-terms. The au-
thors evaluate their model on experimental and predicted structures and compare

552 Anowarul Kabir and Amarda Shehu

with existing baseline models, including CAFA-like BLAST (Wass et al, 2012) and
CNN-based sequence-only DeepGOPlus (Kulmanov and Hoehndorf, 2019), on each
sub-ontology of GO-terms and EC numbers and outperform in every category.

Zhou et al (2020b) apply a GCN model, DeepGOA, to predict maize protein
functions. The authors exploit both GO structure information and protein sequence
information for a multi-label classification task. Since GO organizes the functional
annotation terms into a directed acyclic graph (DAG), the authors utilize the knowl-
edge encoded in the GO hierarchy. First, amino acids of a protein are encoded into
one-hot encodings, a 21-dimensional feature vector for each amino acid, as there are
20 amino acids and sometimes there are undetermined amino acids in a protein. Pro-
teins might be different in length; therefore, the authors only extract the first 2000
amino acids for those proteins which are longer than that. Otherwise, the encodings
are zero-padded. So the i-th protein is represented as

Xi = [xi1,xi2,xi3,xi2000] (25.20)

To learn the low-dimensional feature representation of each protein sequence,
the authors apply CNNs of four different sizes of convolutional kernels, such as
8, 16, 24 and 32, to extract hypothetical non-linear secondary or tertiary structure
information. The 1D convolution operation is formulated as follows:

cim = f (w∗ xi(m:m+h)),m ∈ [1,k−h] (25.21)

where h is the sliding window length, w ∈ R21×h is a convolutional kernel, and f (·)
is a non-linear activation function. Then, the authors incorporate the GO structure
into the model. To do that, graph convolutional layers are deployed to generate the
embeddings of the GO terms by propagating information among GO terms using
neighboring terms in the GO hierarchy. For τ number of GO terms, initial one-hot
feature description, H0 ∈ Rτ×τ , and correlation matrix, A ∈ Rτ×τ are computed as
input. For the l-th layer’s representation, H l is updated using the following neigh-
borhood information propagating equation:

H l = f (ÂH l−1W l) (25.22)

where Â∈Rτ×τ is the symmetrically normalized correlation matrix derived from A,
f (·) is a non-linear activation function, and W l ∈ Rdl−1×dl is the learnable transfor-
mation matrix. Then, such graph convolutional layers are stacked to capture high-
and low-order information of the GO DAG. In this way, DeepGOA learns a se-
mantic representation of GO-terms, H ∈ Rτ×d , and protein sequence representa-
tion, Z ∈ Rn×d , in some d-dimensional semantic space. Dot product is used to then
compute protein-term pair association probabilities as follows:

Ŷ = HZT (25.23)

Cross-entropy loss for the multi-label loss function is used to train the model
end-to-end. The authors experiment on the Maize PH207 inbred line (Hirsch et al,

25 Graph Neural Networks in Predicting Protein Function and Interactions 553

2016) and the human protein sequence dataset and show that DeepGOA outperforms
SOTA methods.

25.2.3 Case Study 3: From Representation Learning to
Multirelational Link Prediction in Biological Networks with
Graph Autoencoders

Yang et al (2020a) employ signed variational graph auto-encoder (S-VGAE) to au-
tomatically learn graph representation, and incorporate protein sequence informa-
tion as features for the PPI prediction task. The authors report SOTA performance
compared to existing sequence-based models on several datasets.

The protein interaction network is encoded as an undirected graph, with different
signs (i.e., positive, negative or neutral) added the edges in the adjacency matrix to
extract fine-grained features, where the model is assumed to learn negative impact of
highly negative interactions. Moreover, the authors consider only high-confidence
interactions in the cost function, enabling the model to learn embeddings more accu-
rately. First, protein sequences are encoded using the CT method (Shen et al, 2007).
All amino acids are divided into seven categories considering their dipole and side-
chain volumes. Each group represents analogous mutations due similar character-
istics. Thus, a protein can be represented as a sequence of numbers representing a
category. Then, a window of size 3 amino acids slides over the numeric sequence
one step at a time and counts the number of occurrences of each triad. Thus, the size
of a protein CT vector is 343(=m), which can be defined as follows:

V = [r1,r2,rM] (25.24)

where ri is the number of occurrences of each triad type. For n proteins, the input
features of each protein can be summarized in a matrix X ∈ Rn×m. Afterwards, S-
VGAE is employed to extract protein embeddings by combining both graph struc-
ture and sequence information, following Kipf and Welling’s (Kipf and Welling,
2016) variational graph auto-encoder. Considering the primary/sequence features,
its neighborhood structures and positions in the graph, the encoder maps each pro-
tein xi to a low-dimensional vector zi. The idea is to map proteins’ original features
X into low dimensional embeddings Z using an augmented information adjacency
matrix A. The encoding rule is formulated as follows:

q(Z|X ,A) =
N

∏
i=1

q(zi|Z,A) (25.25)

q(zi|Z,A) = N (zi|µi,diag(σ2
i)) (25.26)

Mean vector, µi, and standard deviation vector, σi, is defined as follows:

µ = GCNµ(X ,A) (25.27)

554 Anowarul Kabir and Amarda Shehu

logσ = GCNσ (X ,A) (25.28)

where GCN is a neighborhood aggregation propagation step formulated as below:

GCN(X ,A) = AReLU(AXW0) (25.29)

GCNµ(X ,A) = AReLU(AXW1) (25.30)

GCNσ (X ,A) = AReLU(AXW2) (25.31)

where W0, W1 and W2 are trainable parameters and, GCNµ and GCNσ share W0
to reduce parameters. The decoder predicts the classification label of protein i and
j by taking the dot product of their lower-dimensional embeddings zi and z j; the
interaction probability indicates whether there is a connection between two proteins.
This is defined as follows:

p(A|Z) =
N

∏
i=1

N

∏
j=1

p(Ai, j|zi,z j) (25.32)

p(Ai, j = 1|zi,z j) = σ(zT
i z j) (25.33)

where σ(·) is the logistic sigmoid function. Thus, the S-VGE learns to encode pro-
tein embeddings into low-dimensional features by solving the task of decoding the
learned embeddings back to the original graph structure. Instead of using the de-
coder as the final classification layer, the authors utilize it as a generative model for
learning latent features. Then, three fully connected layers perform the final classi-
fication task. Overall, the model achieves more than 98% accuracy on five different
datasets.

Hasibi and Michoel (2020) propose a graph feature auto-encoder (GFAE) model,
called FeatGraphConv, which is trained on a feature reconstruction task instead of
graph reconstruction task. The model performs well on predicting unobserved node
features on biological networks, such as transcriptional, protein-protein and genetic
interaction networks. FeatGraphConv investigates how well GNNs might preserve
node features. The authors aim to identify whether or not the graph structure and
feature values encode similar information. The relationship between a graph G and
latent embeddings Z can be formulated using graph convolutional layers as messag-
ing passing protocol by aggregating neighborhood information as follows:

Z = GCN(G;θ) = GCN(X , Ã;θ) (25.34)

Z = σ(ÃReLU(ÃXW0)W1) (25.35)

where θ contains learnable weights, defined as θ =W0;W1;Wi, and σ is a non-
linear task-specific mapping function. The authors leverage four message passing

25 Graph Neural Networks in Predicting Protein Function and Interactions 555

and neighborhood information aggregation operations. The GCN update rule (Gilmer
et al, 2017) is followed for the i-th protein’s representation, hk

i , at the l-th layer as
follows:

hl
i = ∑

j∈N (i)∪i

1√
deg(i)∗

√
deg(j)

Whl−1
j (25.36)

The GraphSAGE (Hamilton et al, 2017b) update rule is then deployed:

hl
i =W1hl−1

i +W2Mean j∈N (i)∪ih
l−1
j (25.37)

Additionally, the authors employ the GraphConv (Morris et al, 2020b) operator:

hl
i =W1hl−1

i + ∑
j∈N (i)

W2hl−1
j (25.38)

A new update rule is also proposed:

hl
i =W2(W1hl−1

i ||Mean j∈N (i)∪i(W1hl−1
j)) (25.39)

where (·||·) denotes a concatenation operation. The authors train the learnable pa-
rameters on the embeddings ability to reconstruct the adjacency matrix, which is
formulated as follows:

Â = Sigmoid(ZZT) (25.40)

Cross-entropy loss between A and Â and gradient descent are used to update the
weights. Finally, the embeddings Z are used to predict the class Y in predicting
missing links in the adjacency matrix and thus in the graph.

25.3 Future Directions

As this survey indicates, many variants of GNNs have been applied to obtain infor-
mation on protein function. Much work remains to be done. Future directions can
be broadly divided into two categories, methodology-oriented and task-oriented.

Many existing GNN-based approaches are limited to proteins of the same size
(number of amino acids). This essentially weakens model capacity for the particular
task at hand. Therefore, future research needs to focus on size-agnostic, as well as
task-agnostic models. Choosing the right model is always a difficult task. However,
benchmark datasets and available packages are making it easier to develop models
expediently.

Enhancing model explainability is also an important direction. Some community
bias has been observed towards focusing model development on GCNs for learn-
ing semantic and topological information for the function prediction task. However,
there are many other variants of GNNs. For instance, graph attention networks may

556 Anowarul Kabir and Amarda Shehu

prove useful. Existing literature also often ignores ablation studies, which are impor-
tant to provide a strong rationale for choosing a particular component of the model
over others.

Most of the PPI prediction tasks assume training a single model for an organism.
Leveraging multi-organisms PPI networks provides more data and may result in
better performance. In the same spirit, leveraging multi-omics data combined with
sequence and structural data may advance the state of the art.

Finally, we draw attention to the site-specific function prediction task, which
provides more information and highlights specific residues that are important for
a particular function. This fine-grained function prediction task can be even more
critical to support other tasks, such as drug design. Transfer learning across related
tasks may additionally provide insights for learning important attributes.

This work is supported in part by National Science Foundation Grant No.
1907805 and Grant No. 1763233. This material is additionally based upon work
by AS supported by (while serving at) the National Science Foundation. Any opin-
ion, findings, and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National Science
Foundation.

Editor’s Notes: In addition to small molecules introduced in Chapter 25,
large molecules such as proteins and DNA represent another domain in
bioinformatics that started to largely leverage the techniques from graph
neural networks. The recent popularity of graph deep learning for small
and large molecules seems to share similar reasons. The first reason is the
well-formulated problem and the availability of benchmark datasets while
the other is due to the high complexity of the problem and the insufficiency
of existing techniques. On the other hand, there is also some subtle differ-
ence between them: The deep graph learning community seems dedicated
to more extensive new models for small molecules than large ones previ-
ously. But in recent years, research frontiers tend to start to transfer the
success in small molecules to benefit larger ones, with representative works
such as AlphaFold.

Chapter 26
Graph Neural Networks in Anomaly Detection

Shen Wang, Philip S. Yu

Abstract Anomaly detection is an important task, which tackles the problem of dis-
covering “different from normal” signals or patterns by analyzing a massive amount
of data, thereby identifying and preventing major faults. Anomaly detection is ap-
plied to numerous high-impact applications in areas such as cyber-security, finance,
e-commerce, social network, industrial monitoring, and many more mission-critical
tasks. While multiple techniques have been developed in past decades in address-
ing unstructured collections of multi-dimensional data, graph-structure-aware tech-
niques have recently attracted considerable attention. A number of novel techniques
have been developed for anomaly detection by leveraging the graph structure. Re-
cently, graph neural networks (GNNs), as a powerful deep-learning-based graph rep-
resentation technique, has demonstrated superiority in leveraging the graph structure
and been used in anomaly detection. In this chapter, we provide a general, compre-
hensive, and structured overview of the existing works that apply GNNs in anomaly
detection.

26.1 Introduction

In the era of machine learning, sometimes, what stands out in the data is more
important and interesting than the normal. This branch of task is called anomaly
detection, which concentrates on discovering “different from normal” signals or
patterns by analyzing a massive amount of data, thereby identifying and prevent-
ing major faults. This task plays a key on in several high-impact domains, such as
cyber-security (network intrusion or network failure detection, malicious program

Shen Wang
Department of Computer Science, University of Illinois at Chicago, e-mail: swang224@uic.
edu

Philip S. Yu
Department of Computer Science, University of Illinois at Chicago, e-mail: psyu@uic.edu

557
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_26

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:swang224@uic.edu
mailto:swang224@uic.edu
mailto:psyu@uic.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_26&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_26

558 Shen Wang, Philip S. Yu

detection), finance (credit card fraud detection, malicious account detection, cashout
user detection, loan fraud detection), e-commerce (reviews spam detection), social
network (key player detection, anomaly user detection, real money trading detec-
tion), and industrial monitoring (fault detection).

In the past decades, many techniques have been developed for anomaly detec-
tion by leveraging the graph structure, a.k.a. graph-based anomaly detection. Unlike
non-graph anomaly detection, they further take the inter-dependency among each
data instance into consideration, where data instances in a wide range of disciplines,
such as physics, biology, social sciences, and information systems, are inherently re-
lated to one another. Compare to the non-graph-based method, the performance of
the graph-based method is greatly improved. Here, we provide an illustrative ex-
ample of malicious program detection in the cyber-security domain in Figure 26.1.
In a phishing email attack as shown in Figure 26.1, to steal sensitive data from the
database of a computer/server, the attacker exploits a known venerability of Mi-
crosoft Office by sending a phishing email attached with a malicious .doc file to
one of the IT staff of the enterprise. When the IT staff member opens the attached
.doc file through the browser, a piece of a malicious macro is triggered. This ma-
licious macro creates and executes a malware executable, which pretends to be an
open-source Java runtime (Java.exe). This malware then opens a backdoor to the ad-
versary, subsequently allowing the adversary to read and dump data from the target
database via the affected computer. In this case, signature-based or behavior-based
malware detection approaches generally do not work well in detecting the mali-
cious program in our example. As the adversary can make the malicious program
from scratch with binary obfuscation, signature-based approaches would fail due
to the lack of known malicious signatures. Behavior-based approaches may not be
effective unless the malware sample has previously been used to train the detection
model. It might be possible to detect the malicious program using existing host-
level anomaly detection techniques. These host-based anomaly detection methods
can locally extract patterns from process events as the discriminators of abnormal
behavior. However, such detection is based on observations of single operations,
and it sacrifices the false positive rate to detect the malicious program. For exam-
ple, the host-level anomaly detection can detect the fake “Java.exe” by capturing the
database read. However, a Java-based SQL client may also exhibit the same opera-
tion. If we simply detect the database read, we may also classify normal Java-based
SQL clients as abnormal program instances and generate false positives. In the en-
terprise environment, too many false positives can lead to the alert fatigue problem,
causing cyber-analysts to fail to catch up with attacks. To accurately separate the
database read of the malicious Java from the real Java instances, we need to con-
sider the higher semantic-level context of the two Java instances. As shown in Figure
??, malicious Java is a very simple program and directly accesses the database. On
the contrary, a real Java instance has to load a set of .DLL files in addition to the
database read. By comparing the behavior graph of the fake Java instance with the
normal ones, we can find that it is abnormal and precisely report it as a malicious
program instance. Thus, leveraging the graph helps to identify the anomaly data
instances.

26 Graph Neural Networks in Anomaly Detection 559

phishing
 email

.doc create
execute

Java.exe

IT Laptop

dump

Web
Service

Whole Execution Environment

Database

Malicious Java Real Java

MSVCRT.DLL RPCRT4.DLL

Database

NTDLL.DLL

USP10.DLLUSER32.DLL

Figure 26.1: An illustrative example of malicious program detection in the cyber-
security domain. The left side shows an example of a phishing email attack: the
hacker creates and executes a malware executable, which pretends to be an open-
source Java runtime (Java.exe); this malware then opens a backdoor to the adversary,
subsequently allowing the adversary to read and dump data from the target database
via the affected computer. The right side demonstrates the behavior graph of the
malicious Java.exe vs. normal Java runtime.

Specifically, the benefit of graph-based method is four-folded:

• Inter-dependent Property – Data instances in a wide range of disciplines, such
as physics, biology, social sciences, and information systems, are inherently
related to one another and can form a graph. These graph structures can provide
additional side information to identify the anomalies in addition to the attributes
of each data instance.

• Relational Property – The anomaly data instances sometimes can exhibit them-
selves as relational, e.g., in the fraud domain, the context of the anomaly data
instance has a high probability of being abnormal; the anomaly data instance
is closely related to a group of data instances. If we identify one anomaly data
instance in the graph, some other anomaly data instances based on it can be
detected.

• Fruitful Data Structure – The graph is a data structure encoding fruitful in-
formation. The graph consists of nodes and edges, enabling the incorporation
of node and edge attributes/types for anomaly data instance identification. Be-
sides, multiple paths exist between each pair of data instances, which allows the
relation extraction in different ranges.

• Robust Data Structure – The graph is a more adversarially robust data structure,
e.g., attacker or fraudster usually can only attack or fraud the specific data in-
stance or its context and have a limited global view of the whole graph. In this
case, the anomaly data instance is harder to fit into the graph as well as possible.

Recent years have witnessed a growing interest in developing deep-learning-
based algorithms on the graph, including unsupervised methods (Grover and Leskovec,
2016; Liao et al, 2018; Perozzi et al, 2014) and supervised methods (Wang et al,
2016, 2017e; Hamilton et al, 2017b; Kipf and Welling, 2017b; Veličković et al,
2018). Among these deep-learning-based algorithms on the graph, the graph neural
networks (GNNs) (Hamilton et al, 2017b; Kipf and Welling, 2017b; Veličković et al,

560 Shen Wang, Philip S. Yu

2018), as powerful deep graph representation learning techniques, have demon-
strated superiority in leveraging the graph structure. The basic idea is to aggregate
information from local neighborhoods in order to combine the content feature and
graph structures to learn the new graph representation. In particular, GCN (Kipf
and Welling, 2017b) leverages the “graph convolution” operation to aggregate the
feature of one-hop neighbors and propagate multiple-hop information via the iter-
ative “graph convolution”. GraphSage (Hamilton et al, 2017b) develops the graph
neural network in an inductive setting, which performs neighborhood sampling and
aggregation to generate new node representation efficiently. GAT (Veličković et al,
2018) further incorporates attention mechanism into GCN to perform the attentional
aggregation of the neighborhoods. Given the importance of graph-based anomaly
detection and the success of graph neural networks, both academia and industry
are interested in applying GNNs to tackle the problem of anomaly detection. In re-
cent years, some researchers have successfully applied GNNs in several important
anomaly detection tasks. In this book chapter, we summarize different GNN-based
anomaly detection approaches and provide taxonomies for them according to var-
ious criteria. Despite the more than 10+ papers published in the last three years,
several challenges remain unsolved until now, which we summarize and introduce
in this chapter as below.

• Issues Unlike GNNs applications in other domains, the GNNs applications in
anomaly detection have several unique issues, which comes from data, task,
and model. We briefly discuss and summarize them to provide a comprehensive
understanding of the difficulties of the problems.

• Pipeline There are various GNN-based anomaly detection works. It is challeng-
ing and time-consuming to understand the big pictures of all these works. To
facilitate an easy understanding of existing research on this line, we summarize
the general pipeline of GNN-based anomaly detection approaches.

• Taxonomy There are already several works in the domain of GNN-based anomaly
detection. Compared with other GNN applications, GNN-based anomaly detec-
tion is more complicated due to unique challenges and problem definitions. To
provide a quick understanding of the similarity and differences between exist-
ing works, we list some representative works and summarize novel elaborated
taxonomies according to various criteria.

• Case Studies We provide the case studies of some representative GNN-based
anomaly detection approaches.

The rest of this chapter is organized as follows. Section 26.2 discusses and sum-
marizes the issues of the GNN-based anomaly detection. Section 26.3 provides the
unified pipeline of the GNN-based anomaly detection. Section 26.4 provides the
taxonomies of existing GNN-based anomaly detection approaches. Section 26.5
provides the case studies of some representative GNN-based anomaly detection ap-
proaches. In the last section, we provide the discussion and future directions.

26 Graph Neural Networks in Anomaly Detection 561

26.2 Issues

In this section, we provide a brief discussion and summary of the issues in GNN-
based anomaly detection. In particular, we group them into three: (i) data-specific
issues, (ii) task-specific issues, and (iii) model-specific issues.

26.2.1 Data-specific issues

As the anomaly detection systems usually work with real-world data, they demon-
strate high volume, high dimensionality, high heterogeneity, high complexity, and
dynamic property.

High Volume – With the advance of information storage, it is much easier to
collect large amounts of data. For example, in an e-commerce platform like Xianyu,
there are over 1 billion second-hand goods published by over ten millions users;
in an enterprise network monitoring system, the system event data collected from
a single computer system in one day can easily reach 20 GB, and the number of
events related to one specific program can easily reach thousands. It is prohibitively
expensive to perform the analytic task on such massive data in terms of both time
and space.

High Dimensionality – Also, benefit from the advance of the information stor-
age, rich amount of information is collected. It results in high dimensionality of
the attributes for each data instance. For example, in an e-commerce platform like
Xianyu, different types of attributes are collected for each data instance, such as
user demographics, interests, roles, as well as different types of relations; in an en-
terprise network monitoring system, each collected system event is associated with
hundreds of attributes, including information of involved system entities and their
relationships, which causes the curse of dimensionality.

High Heterogeneity – As rich types of information are collected, it results in
high heterogeneity of the attributes for each data instance: the feature of each data
instance can be multi-view or multi-sourced. For example, in an e-commerce plat-
form like Xianyu, multiple types of data are collected from the user, such as personal
profile, purchase history, explore history, and so on. Nevertheless, multi-view data
like social relations and user attributes have different statistical properties. Such het-
erogeneity poses a great challenge to integrate multi-view data.

High Complexity – As we can collect more and more information, the collected
data is complex in content: it can be categorical or numerical, which increases the
difficulty of leveraging all the contents jointly.

Dynamic Property – The data collection is usually conducted every day or con-
tinuously. For example, billions of credit card transactions are performed every day;
billions of click-through traces of web users are generated each day. This kind of
data can be thought of as streaming data, and it demonstrates dynamic property.

The above data-specific issues are general and apply to all kinds of data. So
we also need to discuss the graph-data-specific issues, including relational prop-

562 Shen Wang, Philip S. Yu

erty, graph heterogeneity, graph dynamic, variety of definitions, lack of intrinsic
distance/similarity metrics, and search space size.

Relational Property – The relational property of the data makes it challenging to
quantify the anomalousness of graph objects. While in traditional outlier detection,
the objects or data instances are treated as independent and identically distributed
(i.i.d.) from each other, the data instances in graph data are pair-wise correlated.
Thus, the “spreading activation” of anomalousness or “guilt by associations” needs
to be carefully accounted for. For example, the cash-out users not only have ab-
normal features, but also behavior abnormally in interaction relations. They may
simultaneously have many transactions and fund transfer interactions with particu-
lar merchants, which is hard to be exploited by traditional feature extraction.

Graph Heterogeneity – Similar to the general data-specific issues of high het-
erogeneity, the graph instance type, and relation type are usually heterogeneous.
For example, in a computer system graph, there are three types of entities: process
(P), file (F), and INETSocket (I) and multiple types of relations: a process forking
another process (P→P), a process accessing a file (P→F), a process connecting to
an Internet socket (P→I), and so on. Due to the heterogeneity of entities (nodes)
and dependencies (edges) in a heterogeneous graph, the diversities between differ-
ent dependencies vary dramatically, significantly increasing the difficulty of jointly
leveraging these nodes and edges.

Graph Dynamic – As the data are collected periodically or continuously, the
constructed graph also demonstrates the dynamic property. It is challenging to de-
tect the anomaly due to its dynamic nature. Some anomalous operations show some
explicit patterns but try to hide them in a large graph, while others are with implicit
patterns. Take an explicit anomaly pattern in a recommender system as an exam-
ple. As anomalous users usually control multiple accounts to promote the target
items, the edges between these accounts and items may compose a dense subgraph,
which emerges in a short time period. In addition, although the accounts which
involve the anomaly perform anomalous operations sometimes, these accounts per-
form normally most of the time, which hides their long-term anomalous behavior
and increases the difficulty of detection.

Variety of Definitions – The definitions of anomalies in graphs are much more
diverse than in traditional outlier detection, given the rich representation of graphs.
For example, novel types of anomalies related to graph substructures are of interest
for many applications, e.g., money-laundering rings in trading networks.

Lack of Intrinsic Distance/Similarity Metrics – The intrinsic distance/similarity
metrics are not clear. For example, in real computer systems, given two programs
with thousands of system events related to them, it is a difficult task to measure their
distance/similarity.

Search Space Size – The main issue associated with more complex anomalies
such as graph substructures is that the search space is huge, as in many graph-
theoretical problems associated with graph search. The enumeration of possible
substructures is combinatorial, making the problem of finding out the anomalies
a much harder task. This search space is enlarged even more when the graphs are
attributed as the possibilities span both the graph structure and the attribute space.

26 Graph Neural Networks in Anomaly Detection 563

As a result, the graph-based anomaly detection algorithms need to be designed not
only for effectiveness but also for efficiency and scalability.

26.2.2 Task-specific Issues

Due to the unique characteristics of the anomaly detection task, the issues also come
from the problems, including labels quantity and quality, class imbalance and asym-
metric error, and novel anomalies.

Labels Quantity and Quality – The major issue of anomaly detection is that the
data often has no or very few class labels. It is unknown which data is abnormal
or normal. Usually, it is costly and time-consuming to obtain ground-truth labels
from the domain expert. Moreover, due to the complexity of the data, the produced
label may be noisy and biased. Therefore, this issue limits the performance of the
supervised machine learning algorithm. What is more, the lack of true clean labels,
i.e., ground truth data, also makes the evaluation of anomaly detection techniques
challenging.

Class Imbalance and Asymmetric Error – Since the anomalies are rare and only
a small fraction of the data is excepted to be abnormal, the data is extremely imbal-
anced. Moreover, the cost of mislabeling a good data instance versus a bad instance
may change depending on the application and further could be hard to estimate
beforehand. For example, mis-predicting a cash-out fraudster as a normal user is es-
sentially harmful to the whole financial system or even the national security, while
mis-predicting a normal user as a fraudster could cause customer loss fidelity. There-
fore, the class imbalance and asymmetric error affect the machine-learning-based
method seriously.

Novel Anomalies – In some domain, such as fraud detection or malware detec-
tion, the anomalies are created by the human. They are created by analyzing the
detection system and designed to be disguised as a normal instance to bypass the
detection. As a result, not only should the algorithms be adaptive to changing and
growing data over time, they should also be adaptive to and be able to detect novel
anomalies in the face of adversaries.

26.2.3 Model-specific Issues

Apart from data-specific and task-specific issues, it is also challenging to apply the
graph neural network directly to anomaly detection task sdue to its unique model
properties, such as homogeneous focus and vulnerability.

Homogeneous Focus – Most graph neural network models are designed for ho-
mogeneous graph, which considers a single type of nodes and edges. In many real-
world applications, data can be naturally represented as heterogeneous graphs. How-
ever, traditional GNNs treat different features equally. All the features are mapped

564 Shen Wang, Philip S. Yu

and propagated together to get the representations of nodes. Considering that the
role of each node is just a one-dimensional feature in the high dimensional feature
space, there exist more features that are not related to the role, e.g., age, gender, and
education. Thus the representation of applicants with neighbors of different roles
has no distinction in representation space after neighbor aggregation, which causes
the traditional GNNs to fail.

Vulnerability – Recently theoretical studies prove the limitations and vulnerabil-
ities of GNNs, when graphs have noisy nodes and edges. Therefore, a small change
to the node features may cause a dramatic performance drop and failing to tackle
the camouflage, where fraudsters would sabotage the GNN-based fraud detectors.

26.3 Pipeline

In this section, we introduce the standard pipeline of the GNN-based anomaly detec-
tion. Typically, GNN-based anomaly detection methods consist of three important
components, including graph construction and transformation, graph representation
learning, and prediction.

26.3.1 Graph Construction and Transformation

As discussed in the previous section, a real-world anomaly detection system has
some data-specific issues. Therefore, it requires data analysis on the raw data to ad-
dress them. Then the graph can be constructed to capture the complex interactions
and eliminate the data redundancies. Based on the type of the data instance and
relations, the graph can be constructed as a homogeneous graph or heterogeneous
graph, where a homogeneous graph only has a single-typed data instance and rela-
tion, and a heterogeneous graph has multi-typed data instances and relations. Based
on the availability of the timestamp, the graph can be constructed as a static graph
or a dynamic graph, where a static graph refers to the graph that has fixed nodes
and edges, and a dynamic graph refers to the graph that has nodes and/or edges
change over time. Based on the availability of the node and/or edge attributes, the
constructed graph can be a plain graph or an attributed graph, where the plain graph
only contains the structure information and the attributed graph has attributes on
nodes and/or edges.

When the constructed graph is heterogeneous, simply aggregating neighbors can-
not capture the semantic and structural correlations among different types of enti-
ties. To address the graph heterogeneity issue, a graph transformation is performed
to transform the heterogeneous graph to a multi-channel graph guided by the meta-
paths, where a meta-path (Sun et al, 2011) is a path that connects entity types via
a sequence of relations over a heterogeneous network. For example, in a computer
system, a meta-path can be the system events (P→P, P→F, and P→I), with each

26 Graph Neural Networks in Anomaly Detection 565

one defining a unique relationship between two entities. The multi-channel graph
is a graph with each channel constructed via a certain type of meta-path. Formally,
given a heterogeneous graph G with a set of meta-paths M = {M1, ...,M|M |}, the
transformed multi-channel network Ĝ is defined as follows:

Ĝ = {Gi|Gi = (Vi,Ei,Ai), i = 1,2, ..., |M |)} (26.1)

where Ei denotes the homogeneous links between the entities in Vi, which are con-
nected through the meta-path Mi. Each channel graph Gi is associated with an adja-
cency matrix Ai. |M | indicates the number of meta-paths. Notice that the potential
meta-paths induced from the heterogeneous network can be infinite, but not every-
one is relevant and useful for the specific task of interest. Fortunately, there are some
algorithms (Chen and Sun, 2017) proposed recently for automatically selecting the
meta-paths for particular tasks.

26.3.2 Graph Representation Learning

After the graph is constructed and transformed, graph representation learning is
conducted to get the proper new representation of the graph. Generally GNNs
are built by stacking seven types of basic operations, including neural aggrega-
tor function AGG(), linear mapping function MAPlinear(), nonlinear mapping func-
tion MAPnonlinear(), multilayer perceptron function MLP(), feature concatenation
CONCAT (), attentional feature fusion COMBatt , and readout function Readout().
Among these operations, linear mapping function, nonlinear mapping function, mul-
tilayer perceptron function, feature concatenation, and attentional feature fusion are
typical operations used in traditional deep learning algorithms. Their formal de-
scriptions are described as follows:

Linear Mapping Function MAPlinear():

MAPlinear(x) = Wx (26.2)

where x is the input feature vector, and W is the trainable weight matrix.
Nonlinear Mapping Function MAPnonlinear():

MAPnonlinear(x) = σ(Wx) (26.3)

where x is the input feature vector, W is the trainable weight matrix, and σ() repre-
sents the non-linear activation function.

Multilayer Perceptron Function MLP():

MLP(x) = σ(Wk · · ·σ(W1x)) (26.4)

566 Shen Wang, Philip S. Yu

where x is the input feature vector, Wi with i = 1, ...,k is the trainable weight ma-
trix, k indicates the number of layers, and σ() represents the non-linear activation
function.

Feature Concatenation CONCAT ():

CONCAT (x1, · · ·xn) = [x1, · · ·xn] (26.5)

where n indicates the number of the features.
Attentional Feature Fusion COMBatt():

COMBatt(x1, · · ·xn) =
n

∑
i=1

so f tmax(xi)xi (26.6)

so f tmax(xi) =
exp(MAP(xi))

∑
n
j=1 exp(MAP(x j))

(26.7)

where MAP() can be linear or nonlinear.
Different from traditional deep learning algorithm, the GNNs have its unique

operation–neural aggregation function AGG(). Based on the level of object to ag-
gregate, it can be categorized into three specific types: node-wise neural aggregator
AGGnode(), layer-wise neural aggregator AGGlayer(), and path-wise neural aggrega-
tor AGGpath().

Node-wise Neural Aggregator AGGnode() is the GNN module that aims to aggre-
gate the node neighborhoods, which can be described as follows,

h(i)(k)
v = AGGnode(h

(i)(k−1)
v ,{h(i)(k−1)

u }u∈N i
v
) (26.8)

where i is meta-path (relation) indicator, k ∈ {1,2, ...K} is the layer indicator, h(i)(k)
v

is the feature vector of node v for relation Mi at the k-th layer, N i
v indicates the

neighbourhoods of node v under the relation Mi. Based on the way the the node
neighborhoods are aggregated, typically, the node-level neural aggregator can be
GCN AGGGCN() (Kipf and Welling, 2017b), GAT AGGGAT () (Veličković et al,
2018) or Message-Passing AGGMPNN() (Gilmer et al, 2017). For the GCN and GAT,
the formulations can be described by Equation 8. While for the Message-Passing,
the edges are also used during the node-level aggregation. Formally, it can be de-
scribed as follows,

h(i)(k)
v = AGGnode(h

(i)(k−1)
v ,{h(i)(k−1)

v ,h(i)(k−1)
u ,h(i)(k−1)

vu }u∈N i
v
) (26.9)

where h(i)(k−1)
vu denotes the edge embedding between the target node v and its neigh-

bor node u, and {} indicates a fusion function to combine the target node, its neigh-
bor node and the corresponding edge between them.

Layer-wise Neural Aggregator AGGlayer() is the GNN module that aims to ag-
gregate the context information from different hops. For example, if layer num-
ber k = 2, the GNN gets 1-hop neighborhood information, and if layer number

26 Graph Neural Networks in Anomaly Detection 567

k = K +1, the GNN gets K-hop neighborhood information. The larger the k is, the
more global information the GNN obtains. Formally, this function can be described
as follows,

l(i)(k)v = AGGlayer(l
(i)(k−1)
v ,h(i)(k)

v) (26.10)

where l(i)(k)v is the aggregated representation of (k− 1)−hop neighborhood node v
for relation Mi at the k-th layer.

Path-wise Neural Aggregator AGGlayer() is the GNN module that aims to ag-
gregate the context information from different relations. Generally, the relation can
be described by meta-path (Sun et al, 2011) based contextual search. Formally, this
function can be described as follows,

p(i)
v = l(i)(K)

v (26.11)

pv = AGGpath(p
(1)
v , ...p(|M |)

v) (26.12)

where p(i)
v is the aggregated final layer representation of node v for relation Mi.

Then the final node representation is described by the fusion representation from
different meta-paths (relations) as follows,

h(f inal)
v = pv (26.13)

Based on the task, we can also compute the graph representation by performing
readout function Readout() to aggregate all the nodes’ final representations, which
can be described as follows,

g = Readout(h(f inal)
v1 , ...h(f inal)

vV) (26.14)

Typically, we can obtain different levels of graph representations, including node-
level, edge-level, and graph-level. The node-level and edge-level representation are
the most preliminary representations, which can be learned via graph neural net-
work. The graph-level representation is a higher-level representation, which can be
obtained by performing the readout function to the node-level and edge-level repre-
sentations. Based on the target of the task, the specific level of graph representations
is fed to the next stage.

26.3.3 Prediction

After the graph representation is learned, they are fed to the prediction stage. De-
pends on the task and the target label, there are two types of prediction: classification
and matching. In the classification-based prediction, it assumes that enough labeled
anomaly data instances are provided. A good classifier can be trained to identify

568 Shen Wang, Philip S. Yu

if the given graph target is abnormal or not. As mentioned in the issues section,
there might be no or few anomaly data instances. In this case, the matching-based
prediction is usually used. If there are very few anomaly samples, we learn the rep-
resentation of them, and when the candidate sample is similar to one of the anomaly
samples, an alarm is triggered. If there is no anomaly sample, we learn the represen-
tation of the normal data instance. When the candidate sample is not similar to any
of the normal samples, an alarm is triggered.

26.4 Taxonomy

In this section, we provide the taxonomies of existing GNN-based anomaly detec-
tion approaches. Due to the variety of graph data and anomalies, the GNN-based
anomaly detection can have multiple taxonomies. Here we provided four types of
taxonomy in order to give a quickly understand of the similarity and difference
between existing works, including static/dynamic graph taxonomy, homogeneous/
heterogeneous graph taxonomy, plain/attributed graph taxonomy, object taxonomy,
and task taxonomy.

In task taxonomy, the exiting works can be categorized into GNN-based anomaly
detection in financial networks, GNN-based anomaly detection in computer net-
works, GNN-based anomaly detection in telecom networks, GNN-based anomaly
detection in social networks, GNN-based anomaly detection in opinion networks,
and GNN-based anomaly detection in sensor networks.

In anomaly taxonomy, the existing works can be categorized into node-level
anomaly detection, edge-level anomaly detection, and graph-level anomaly detec-
tion.

In static/dynamic graph taxonomy, the existing works can be categorized into
static GNN-based anomaly detection and dynamic GNN-based anomaly detection.

In homogeneous/heterogeneous graph taxonomy, the exiting works can be
categorized into homogeneous GNN-based anomaly detection and heterogeneous
GNN-based anomaly detection.

In plain/attributed graph taxonomy, the exiting works can be categorized into
plain GNN-based anomaly detection and attributed GNN-based anomaly detection.

In object taxonomy, the exiting works can be categorized into: classification-
based approach and matching-based approach.

We present our taxonomy with more details in Table 1.

26.5 Case Studies

In this section, we provide the case studies to give the details of some representative
GNN-based anomaly detection approaches.

26 Graph Neural Networks in Anomaly Detection 569

Table 26.1: Summary of GNN-based anomaly detection approaches.

Approach Year Venue Task Anomaly
Static

Dynamic
Homogeneous
Heterogeneous

Plain
Attributed Model Object

GEM (Liu et al, 2018f) 2018 CIKM
Malicious Account

Detection Node Static Heterogeneous Attributed
GCN,

Attention(path)
Classification

HACUD (Hu et al, 2019b) 2019 AAAI
Cashout User

Detection Node Static Heterogeneous Attributed
GCN,

Attention(f eature,path)
Classification

DeepHGNN (Wang et al, 2019h) 2019 SDM
Malicious Program

Detection Node Static Heterogeneous Attributed
GCN,

Attention(path)
Classification

MatchGNet (Wang et al, 2019i). 2019 IJCAI
Malicious Program

Detection Graph Static Heterogeneous Attributed
GCN,

Attention(node,layer,path)
Matching

AddGraph (Zheng et al, 2019) 2019 IJCAI
Malicious Connection

Detection Edge Dynamic Homogeneous Plain
GCN,

GRUatt
Matching

SemiGNN (Wang et al, 2019b) 2019 ICDM
Malicious Account

Detection Node Static Heterogeneous Attributed
GCN,

Attention(node,path)
Classification,

Matching

MVAN (Tao et al, 2019) 2019 KDD
Real Money Trading

Detection Node Static Heterogeneous Attributed
GAT,

Attention(path,view)
Classification

GAS (Li et al, 2019a) 2019 CIKM
Spam

Detection Edge Static Heterogeneous Attributed
MPNN,

Attention(message)
Classification

iDetective (Zhang et al, 2019a) 2019 CIKM
Key Player
Detection Node Static Heterogeneous Attributed

GCN,
Attention(path)

Classification

GAL (Zhao et al, 2020f) 2020 CIKM
Anomaly User

Detection Node Static Homogeneous Attributed GCN/GAT Matching

CARE-GNN (Dou et al, 2020) 2020 CIKM
Fraud

Detection Node Static Heterogeneous Attributed
GCN,

Attention(node)
Classification

26.5.1 Case Study 1: Graph Embeddings for Malicious Accounts
Detection

Graph embeddings for malicious accounts detection (GEM) (Liu et al, 2018f) is the
first attempt to apply the GNN to anomaly detection. The aim of GEM is to detect
the malicious account at Alipay pay, a mobile cashless payment platform.

The graph constructed from the raw data is static and heterogeneous. The con-
strued graph G = (V ,E) consists of 7 types of nodes, including account typed
nodes (U) and 6 types of device typed nodes (phone number (PN), User Machine ID
(UMID), MAC address (MACA), International Mobile Subscriber Identity (IMSI),
Alipay Device ID (APDID) and a random number generated via IMSI and IMEI
(TID), such that V = U ∪PN ∪UMID∪MACA∪ IMSI ∪APDID∪T ID. To over-
come the heterogeneous graph challenge and make GNN applicable to the graph,
through graph transformation, GEM constructs a 6-channel graph Ĝ = {Gi|Gi =
(Vi,Ei,Ai), i= 1,2, ..., |M |}with |M |= 6. In particular, 6 types of edges are specif-
ically modeled to capture the edge heterogeneity, e.g., account connects phone num-
ber (U → PN), account connects UMID (U →UMID), account connects MAC ad-
dress (U →MACA), account connects IMSI (U → IMSI), account connects Alipay
Device ID (U → APDID) and account connects TID (U → T ID). As the activity
attributes are constructed, the constructed graph is an attributed graph. After the
graphs are constructed and transformed, GEM performs a graph convolutional net-
work to aggregate the neighborhood on each channel graph. As each channel graph
is treated as a homogeneous graph corresponding to a specific relation, GNN can be
directly applied to each channel graph.

570 Shen Wang, Philip S. Yu

During the graph representation learning stage, the node aggregated representa-
tion h(i)(k)

v is computed by performing a GCN aggregator AGGGCN(). To get the path
aggregated representation, it adopts the attentionally feature fusion to fuse the node
aggregated representation obtained in each channel graph G i. Besides, an activity
feature for each node is constructed, and it adds the linear mapping of this activity
feature to the attentional feature fusion of the path aggregated representations. For-
mally, the GNN operations can be described as follow.
Node-wise aggregation:

h(i)(k)
v = AGGnode(h

(i)(k−1)
v ,{h(i)(k−1)

u }u∈N i
v
)

= AGGGCN(h(i)(k−1)
v ,{h(i)(k−1)

u }u∈N i
v
)

(26.15)

Path-wise aggregation:

p(k)
v = MAPlinear(xv)+COMBatt(h

(1)(k))
v , ...,h(|M |)(k)

v) (26.16)

Layer-wise aggregation:

l(K)
v = p(K)

v (26.17)

Final node representation:

h(f inal)
v = l(K)

v (26.18)

where K indicates the number of the layers.
The object of GEM is classification. It feeds the learned account node embedding

to a standard logistic loss function.

26.5.2 Case Study 2: Hierarchical Attention Mechanism based
Cash-out User Detection

Hierarchical attention mechanism based cash-out user detection (HACUD) (Hu
et al, 2019b) applied the GNN to the fraud user detection at Credit Payment Ser-
vices platform, where the fraud user performs the cash-out fraud, that pursues cash
gains with illegal or insincere intent.

HACUD also constructs a static heterogeneous graph from the raw data. Specif-
ically, it consists of multiple types of nodes (i.e., User (U), Merchant (M), Device
(D)) with rich attributes and relations (i.e., fund transfer relation between users and
transaction relation between users and merchants). Different from the way GEM
deal with the graph heterogeneity issues, during the graph transformation stage,
HACUD only models the user nodes and considers two specific types of meta-paths
(relations) between pairwise of users, including User-(fund transfer)-User (UU) and
User-(transaction)-Merchant-(transaction)-User (UMU) and constructs a 2-channel
graph, such that Ĝ = {Gi|Gi = (Vi,Ei,Ai), i = 1, ..., |M |} with |M |= 2 and Vi ∈U .

26 Graph Neural Networks in Anomaly Detection 571

The two selected meta-paths capture different semantics. For example, the UU path
connects users having fund transfers from one to another, while the UMU connects
users having transactions with the same merchants. Then each channel graph is ho-
mogeneous and can work with GNN directly. As the user attributes are available,
the constructed graph is attributed.

In the graph representation stage, the node-wise aggregation is performed to each
channel graph via a convolutional graph network. Different from GEM (Liu et al,
2018f), it adds and joins the user feature xv to the aggregated node representation
in an attentional way. Then the node-wise aggregation extends to a 3-step proce-
dure, including (a) initial node-wise aggregation, (b) feature fusion, and (c) feature
attention. After the initial aggregated node representation h̃(i)

v is computed vis GCN
AGGGCN(), it is fused with user feature xv through a feature fusion. Next, it per-
forms the feature attention. Since only 1-hop neighborhoods are considered, there is
no layer-wise aggregation, and the final node-wise aggregated representations h(i)

v
are fed to the path-wise aggregation directly. Formally, it can be described as fol-
lows,
Node-wise aggregation:

(a)Initial node-wise aggregation:

h̃(i)
v = AGGnode(h

(i)
v ,{h(i)

u }u∈N i
v
)

= AGGGNN(h(i)
v ,{h(i)

u }u∈N i
v
)

(26.19)

(b)Feature fusion:

f(i)v = MAPnonlinear(CONCAT (MAPlinear(h̃
(i)
v),MAPlinear(xv))) (26.20)

(c)Feature attention:

α
(i)
v = MAPnonlinear(MAPnonlinear(CONCAT (MAPlinear(xv), f

(i)
v)) (26.21)

h(i)
v = so f tmax(α(i)

v)
⊙

f(i)v (26.22)

Path-wise aggregation:

pv = AGGpath(h
(0)
v ,h(1)

v)

=COMBatt(h
(0)
v ,h(1)

v)
(26.23)

Final node representation:

h(f inal)
v = MLP(pv) (26.24)

where
⊙

denotes the element-wise product. As only one-hop information is used,
there is no layer indicator k.

572 Shen Wang, Philip S. Yu

As same as GEM, the object of HACUD is classification. It feeds the learned
user node embedding to a standard logistic loss function.

26.5.3 Case Study 3: Attentional Heterogeneous Graph Neural
Networks for Malicious Program Detection

Attentional heterogeneous graph neural network for malicious program detection
(DeepHGNN) (Wang et al, 2019h) applied the GNN to the malicious program de-
tection in a computer system of an enterprise network.

The raw data is a large volume of system behavioral data with rich informa-
tion on program/process level events. A static heterogeneous graph is constructed to
model the program behaviors. Formally, given the program event data across many
machines within a time window (e.g., 1 day), a heterogeneous graph G = (V ,E) is
constructed for the target program. V denotes a set of nodes, with each one repre-
senting an entity of three types: process (P), file (F), and INETSocket (I). Namely,
V = P∪F ∪ I. E denotes a set of edges (vs,vd ,r) between the source entity vs and
destination entity vd with relation r. To address the heterogeneous graph challenges,
it takes three types of relations, including: (1) a process forking another process
(P→P), (2) a process accessing a file (P→F), and (3) a process connecting to an In-
ternet socket (P→I). Similar to GEM, DeepHGNN designs a graph transformation
module to transform the heterogeneous graph to a 3-channel graph guided by above
three meta-paths (relations), such that Ĝ = {Gi|Gi = (Vi,Ei,Ai), i = 1,2, ..., |M |}
with |M | = 3 and Vi = V . The attributes are constructed for each node. Since the
process node, file node, and INETSocket node has quite different attributes, the
graph statistic features x(i)(gstat)

v are constructed and act as the node attributes.
Similar to the GEM and HACUD, DeepHGNN also adopts the graph convo-

lutional network AGGGCN() for node-wise aggregation. Three layers are used in
order to capture program behavior within 3-hop contexts. Different from GEM and
HACUD, DeepHGNN uses the graph statistic node attributes as the initialization of
the node representation for each channel graph. After the three node-wise aggre-
gation and layer-wise aggregation, the node representations from different channel
graphs are fused via the attentional feature fusion as GEM and HACUD. Formally,
it can be described as follows,
Node-wise aggregation:

h(i)(0)
v = x(i)(gstat)

v (26.25)

h(i)(k)
v = AGGnode(h

(i)(k−1)
v ,{h(i)(k−1)

u }u∈N i
v
)

= AGGGNN(h(i)(k−1)
v ,{h(i)(k−1)

u }u∈N i
v
)

(26.26)

Layer-wise aggregation:

26 Graph Neural Networks in Anomaly Detection 573

l(i)(k)v = h(i)(k)
v (26.27)

Path-wise aggregation:

pv =COMBatt(l
(1)(K))
v , ..., l(|M |)(K)

v) (26.28)

Final node representation:

h(f inal)
v = pv (26.29)

The object of DeepHGNN is classification. However, it is different from GEM
and HACUD, which simply build single classifiers for all the samples. DeepHGNN
formulates the problem of program reidentification in malicious program detection.
The graph representation learning aims to learn the representation of the normal
target program, and each target program learns a unique classifier. Given a target
program with corresponding event data during a time window U = {e1,e2, ...} and a
claimed name/ID, the system checks whether it belongs to the claimed name/ID. If
it matches the behavior pattern of the claimed name/ID, the predicted label should
be +1; otherwise, it should be −1.

26.5.4 Case Study 4: Graph Matching Framework to Learn the
Program Representation and Similarity Metric via Graph
Neural Networks for Unknown Malicious Program
Detection

Graph matching framework to learn the program representation and similarity met-
ric via graph neural network (MatchGNet) (Wang et al, 2019i) is another GNN-
based anomaly detection approach for malicious program detection in a computer
system of an enterprise network. MatchGNet is different from DeepHGNN in five
aspects: (1) after the graph transformation, the resulted channel graph only keep the
target type node – process node, which is similar to HACUD, (2) the raw program
attributes are used as the program node representation initialization, (3) the GNN
aggregation is conducted hierarchically in node-wise, layer-wise, and path-wise, (4)
the anomaly target is the subgraph of the target program (5) the final graph repre-
sentation is fed to a similarity learning framework with contrastive loss to deal with
the unknown anomaly.

It follows a similar style to construct the static heterogeneous graph from system
behavioral data. In the graph transformation, it adopts three meta-paths (relations):
a process forking another process (P→ P), two processes accessing the same file
(P←F→P), and two processes opening the same internet socket (P← I→P) with
each one defining a unique relationship between two processes. Based on them, a
3-channel graph is constructed from the the heterogeneous graph, such that Ĝ =
{Gi|Gi = (Vi,Ei,Ai), i = 1, ..., |M |} with |M |= 3 and Vi ∈ P. Then the GNN can be

574 Shen Wang, Philip S. Yu

directly applied to each channel graph. As only process typed nodes are available,
we use the raw attributes of these process xv as the node representation initialization.

During the graph representation stage, a hierarchical attentional graph neural
network is designed, including node-wise attentional neural aggregator, layer-wise
dense-connected neural aggregator, and path-wise attentional neural aggregator. In
particular, the node-wise attentional neural aggregator aims to generate node em-
beddings by selectively aggregating the entities in each channel graph based on ran-
dom walk scores α i

(u). Layer-wise dense-connected neural aggregator aggregates the
node embeddings generated from different layers towards a dense-connected node
embedding. Path-wise attentional neural aggregator performs attentional feature fu-
sion of the layer-wise dense-connected representations. In the end, the final node
representation is used as the graph representation. Formally, it can be described as
follows,
Node-wise aggregation:

h(i)(0)
v = xv (26.30)

h(i)(k)
v = AGGnode(h

(i)(k−1)
v ,{h(i)(k−1)

u }u∈N i
v
)

= MLP((1+ ε
(k))h(i)(k−1)

v + ∑
u∈N i

v

α
i
(u)(:)h

(i)(k−1)
u)

(26.31)

Layer-wise aggregation:

l(i)(k)v = AGGlayer(h
(i)(0)
v , l(i)(1)v , ...l(i)(k)v)

= MLP(CONCAT (h(i)(0)
v ; l(i)(1)v ; ...l(i)(k)v))

(26.32)

Path-wise aggregation:

pv =COMBatt(l
(i)(K))
v , ..., l(|M |)(K)

v) (26.33)

Final node representation:

h(f inal)
v = pv (26.34)

Final graph representation:

hGv = h(f inal)
v (26.35)

where k indicates the number of layers, and ε is a small number. Different from
GEM, HACUD, and DeepHGNN, the object of MatchGNet is matching. The final
graph representation is fed to a similarity learning framework with contrastive loss
to deal with the unknown anomaly. During the training, P pairs of program graph
snapshots (Gi(1),Gi(2)), i ∈ {1,2, ...P} are collected with corresponding ground truth
pairing information yi ∈ {+1,−1}. If the pair of graph snapshots belong to the
same program, the ground truth label is yi = +1; otherwise, its ground truth label
is yi = −1. For each pair of program snapshots, a cosine score function is used to

26 Graph Neural Networks in Anomaly Detection 575

measure the similarity of the two program embeddings, and the output is defined as
follows:

Sim(Gi(1),Gi(2)) = cos((hGi(1)
,hGi(2)

))

=
hGi(1)

·hGi(2)

||hGi(1)
|| · ||hGi(2)

||
(26.36)

Correspondingly, our objective function can be formulated as:

ℓ=
P

∑
i=1

(Sim(Gi(1),Gi(2))− yi)
2 (26.37)

26.5.5 Case Study 5: Anomaly Detection in Dynamic Graph Using
Attention-based Temporal GCN

Anomaly detection in dynamic graph using attention-based temporal GCN (Add-
Graph) (Zheng et al, 2019) is the first work that applies the GNN to solve the prob-
lem of anomaly edge detection in the dynamic graph. It focuses on the modeling of
the dynamic graph via GNN and performs anomaly connection detection in telecom
networks and social networks. The graphs are constructed from the edge stream
data, and the constructed graphs are dynamic, homogeneous, and plain.

The basic idea is to build a framework to describe the normal edges by using all
possible features in the graph snapshots in the training phase, including structural,
content, and temporal features. Then at the prediction stage, the matching objective
is used similar to MatchGNet. In particular, AddGraph applies GCN AGGGCN() to
compute the new current state of a node ct

v by aggregating its neighborhoods in the
current snapshot graph, which can be described as follows,

ct
v = AGGGCN(ht−1

v) (26.38)

As the state of a node ct
v can be computed by aggregating the neighboring hidden

states in the previous timestamp t − 1, the node hidden states in a short window
w can be obtained and combined to get the short-term embedding st

v. In particular,
an attentional feature fusion is used to combine these node hidden states in a short
window, as follows,

st
v =COMBatt(ht−w

v , ...,ht−1
v) (26.39)

Then short-term embedding st
v and current state ct

v are fed to GRU, a classic recur-
rent neural network, to compute the current hidden state that encoding the dynamics
within the graph. This stage can be described as follows:

ht
v = GRU(ct

v,s
t
v) (26.40)

576 Shen Wang, Philip S. Yu

The object of AddGraph is matching. The hidden state of the nodes at each times-
tamp are used to calculate the anomalous probabilities of an existing edge and a
negative sampled edge, and then feed them to a margin loss.

26.5.6 Case Study 6: GCN-based Anti-Spam for Spam Review
Detection

GCN-based anti-spam (GAS) (Li et al, 2019a) applies the GNN in the spam re-
view detection at the e-commerce platform Xianyu. Similar to previous works, the
constructed graph is static, heterogeneous and attributed, such that G = (U ,I ,E).
There are two types of nodes: user nodes U and item nodes I . The edges E are a
set of comments. Different from previous works, the edges E are the anomalies tar-
gets. Moreover, as each edge represents a sentence, edge modeling is complicated,
and the number of edge types increases dramatically. To better capture the edge
representation, the message-passing-like GNN is used. The edge-wise aggregation
is proposed by concatenation of previous representation of the edge itself hk−1

iu and
corresponding user node representation hk−1

u , item node representation hk−1
i To get

the initial attributes of edge, the word2vec word embedding for each word in the
comments of the edges is extracted via the embedding function pre-training on a
million-scale comment dataset. Then the word embedding of each words in an edge
of comments w0,w1, ...wn is fed to TextCNN() function to get the comments em-
bedding h0

iu, which is used as the initial attributes of edge. Then the edge-wise ag-
gregation is defined as:
Edge-wise aggregation:

h0
iu = TextCNN(w0,w1, ...wn) (26.41)

hk
iu = MAPnonlinear(CONCAT (hk−1

iu ,hk−1
i ,hk−1

u)) (26.42)

On the other hand, the node-wise aggregation also needs to take the edges into con-
sideration. The node-wise aggregation is performed by attention feature fusion of
the target node and its connected edge followed by a non-linear mapping, which can
be described with (a) user node-wise aggregation, and (b) item node-wise aggrega-
tion as follows:
Node-wise aggregation:

(a)User node-wise aggregation:

hk
u =CONCAT (MAPlinear(hk−1

u),MAPnonlinear(COMBatt(hk−1
u ,CONCAT (hk−1

iu ,hk−1
i)))

(26.43)
(b)Item node-wise aggregation:

26 Graph Neural Networks in Anomaly Detection 577

(26.44)
where k is the layer indicator. The final edge representation is computed by con-
catenation of the raw edge embedding h0

iu, new edge embedding hK
iu, corresponding

new user node embedding hK
u , and corresponding new item node embedding hK

i as
follows:
Final edge representation:

h f inal
iu =CONCAT (h0

vu,h
K
vu,h

K
u ,h

K
i) (26.45)

The object of GAS is classification, and the final edge representation is fed to a
standard logistic loss function.

26.6 Future Directions

GNNs on anomaly detection is an important research direction, which leverages
multi-source, multi-view features extracted from both content and structure for
anomaly sample analysis and detection. It plays a key role in numerous high-impact
applications in areas such as cyber-security, finance, e-commerce, social network,
industrial monitoring, and many more mission-critical tasks. Due to the multiple is-
sues from data, model and task, it still needs a lot of effort in the field. The future
works are mainly lying in two perspectives: anomaly analysis and machine learning.

From an anomaly analysis perspective, there are still a lot of research questions.
How to define and identify the anomalies in the graph in the different tasks? How to
effectively convert the large-scale raw data to the graph? How to effectively leverage
the attributes? How to model the dynamic during the graph construction? How to
keep the heterogeneity during the graph construction? Recently, due to the data-
specific and task-specific issues, the applications of GNN-based anomaly detection
are still limited. There is still a lot of potential scenarios that can be applied.

From a machine learning perspective, lots of issues need to be addressed. How
to model the graph? How to represent the graph? How to leverage the context? How
to fuse the content and structure features? Which part of the structure to capture,
local or global? How to provide the model explainability? How to protect the model
from adversarial attacks? How to overcome the time-space scalability bottleneck.
Recently, lots of contributions have been made from the machine learning perspec-
tive. However, due to the unique characteristics of the anomaly detection problem,
which GNNs to use and how to apply GNNs are still critical questions. Further
work will also benefit from the new findings and new models in the graph machine
learning community.

hk
i =CONCAT(MAPlinear(h

k−1
i),MAPnonlinear(COMBatt(h

k−1
i ,CONCAT(hk−1

iu ,hk−1
u)))

578 Shen Wang, Philip S. Yu

Editor’s Notes: Graph neural networks for anomaly detection can be con-
sidered as a downstream task of graph representation learning, where the
long-term challenges in anomaly detection are coupled with the vulnera-
bility of graph neural networks such as scalability discussed in Chapter 6
and robustness discussed in Chapter 8. Graph neural networks for anomaly
detection also further benefits a wide range of downstream tasks in various
interesting, important, yet usually challenging areas such as anomaly detec-
tion in dynamic networks, spam review detection for recommender system,
and malware program detection, which are highly relevant to the topics in-
troduced in Chapters 15, 19, and 22.

Chapter 27
Graph Neural Networks in Urban Intelligence

Yanhua Li, Xun Zhou, and Menghai Pan

Abstract In recent years, smart and connected urban infrastructures have undergone
a fast expansion, which increasingly generates huge amounts of urban big data, such
as human mobility data, location-based transaction data, regional weather and air
quality data, social connection data. These heterogeneous data sources convey rich
information about the city and can be naturally linked with or modeled by graphs,
e.g., urban social graph, transportation graph. These urban graph data can enable
intelligent solutions to solve various urban challenges, such as urban facility plan-
ning, air pollution, etc. However, it is also very challenging to manage, analyze, and
make sense of such big urban graph data. Recently, there have been many studies
on advancing and expanding Graph Neural Networks (GNNs) approaches for var-
ious urban intelligence applications. In this chapter, we provide a comprehensive
overview of the graph neural network (GNN) techniques that have been used to em-
power urban intelligence, in four application categories, namely, (i) urban anomaly
and event detection, (ii) urban configuration and transportation planning, (iii) ur-
ban traffic prediction, and (iv) urban human behavior inference. The chapter also
discusses future directions of this line of research. The chapter is (tentatively) orga-
nized as follows.

Yanhua Li
Computer Science Department, Worcester Polytechnic Institute, e-mail: yli15@wpi.edu

Xun Zhou
Tippie College of Business, University of Iowa e-mail: un-zhou@uiowa.edu

Menghai Pan
Computer Science Department, Worcester Polytechnic Institute, e-mail: mpan@wpi.edu

579
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2_27

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

mailto:yli15@wpi.edu
mailto:un-zhou@uiowa.edu
mailto:mpan@wpi.edu
https://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6054-2_27&domain=pdf
https://doi.org/10.1007/978-981-16-6054-2_27

580 Yanhua Li, Xun Zhou, and Menghai Pan

27.1 Graph Neural Networks for Urban Intelligence

27.1.1 Introduction

According to the report (Desa, 2018) published by the United Nations in 2018, the
urban population in the world reached 55 percent in 2018, which is growing rapidly
over time. By 2050, the world will be one-third rural (34 percent) and two-thirds
urban (66 percent). Moreover, thanks to the fast development of sensing technolo-
gies in recent years, various sensors are widely deployed in the urban areas, e.g., the
GPS sets on vehicles, personal devices, air quality monitoring stations, gas pressure
regulators, etc. Stimulated by the large urban population and the wide use of the
sensors, there are massive data generated in the urban environment, for example,
the trajectory data of the vehicles in ride-sharing services, the air quality monitoring
data. Given a large amount of heterogeneous urban data, the question to answer is
what and how can we benefit from these data. For instance, can we use the GPS data
of the vehicles to help urban planners better design the road network? Can we infer
the air quality index across the city based on a limited number of existing monitor-
ing stations? To answer these practical questions, the interdisciplinary research area,
Urban Intelligence, has been extensively studied in recent years. In general, Urban
Intelligence, which is also referred as urban computing, is a process of acquisition,
integration, and analysis of big and heterogeneous data generated by a diversity of
sources in urban spaces, such as sensors, devices, vehicles, buildings, and humans,
to tackle the major issues in cities (Zheng et al, 2014).

Data analytics (e.g., data mining, machine learning, optimization) techniques are
usually employed to analyze numerous types of data generated in the urban scenar-
ios for prediction, pattern discovery, and decision-making purposes. How to repre-
sent urban data is an essential question for the design and implementation of these
techniques. Given the heterogeneity of urban big data, various data structures can
be used to represent them. For example, spatial data in an urban area can be rep-
resented as raster data (like images), where the area is partitioned into grid cells
(pixels) with attribute functions imposed on them (Pan et al, 2020b; Zhang et al,
2019, 2020b,a; Pan et al, 2019, 2020a). Spatial data can also be represented as a
collection of objects (e.g., vehicles, point-of-interests, and trajectory GPS points)
with their locations and topological relationships defined (Ding et al, 2020b).

Moreover, the intrinsic structures of many urban big data enable people to rep-
resent them with graphs. For instance, the structure of urban road network helps
people model the traffic data with graphs (Xie et al, 2019b; Dai et al, 2020; Cui
et al, 2019; Chen et al, 2019b; Song et al, 2020a; Zhang et al, 2020e; Zheng et al,
2020a; Diao et al, 2019; Guo et al, 2019b; Li et al, 2018e; Yu et al, 2018a; Zhang
et al, 2018e); the pipeline of gas supply network enable people to model the gas
pressure monitoring data with graph (Yi and Park, 2020); people can also represent
the data on the map with a graph by dividing the city into functional regions (Wang
et al, 2019o; Yi and Park, 2020; Geng et al, 2019; Bai et al, 2019a; Xie et al, 2016).
Representing urban data with graphs can capture the intrinsic topological informa-

27 Graph Neural Networks in Urban Intelligence 581

tion and knowledge in the data, and plenty of techniques are developed to analyze
the urban graph data.

Graph Neural Networks (GNNs) are naturally employed to solve various real-
world problems with urban graph data. For example, Convolutional Graph Neu-
ral Networks (ConvGNN) (Kipf and Welling, 2017b) are used to capture the spa-
tial dependencies of the urban graph data, and Recurrent Graph Neural Networks
(RecGNN) (Li et al, 2016b) are for the temporal dependencies. Spatial-temporal
Graph Neural Networks (STGNN) (Yu et al, 2018a) can capture both spatial and
temporal dependencies in the data, which are widely used in dealing with many ur-
ban intelligence problems, e.g., predicting traffic status based on urban traffic data
(Zhang et al, 2018e; Li et al, 2018e; Yu et al, 2018a). The traffic data are modeled
as spatial-temporal graphs where the nodes are sensors on road segments, and each
node has the average traffic speed within a window as dynamic input features.

In the following sections, we first summarize the general application scenarios in
urban intelligence, followed by the graph representations in urban scenarios. Then,
we provide more details on GNN for urban configuration and transportation plan-
ning, urban anomaly and event detection, and urban human behavior inference, re-
spectively.

27.1.2 Application scenarios in urban intelligence

The diverse application domains in urban intelligence include urban planning, trans-
portation, environment, energy, human behavior analysis, economy, and event de-
tection, etc. In the following paragraphs, we will introduce the practical problems
and the common datasets in these domains. The problems and examples highlighted
below are not exhaustive, here we just introduce some critical problems and typical
examples from literature, which are summarized in Table 27.1.
1) Urban configuration. Urban configuration is essential for enabling smart cities.
It deals with the design problem of the entire urban area, such as, the land use, the
layout of human settlements, design of road networks, etc. The problems in this
domain includes estimating the impact of a construction (Zhang et al, 2019c), dis-
covering the functional regions of the city (Yuan et al, 2012), detecting city bound-
aries (Ratti et al, 2010), etc. In (Zhang et al, 2019c), the authors employ and ana-
lyze the historical taxi GPS data and the road network data, where they define the
off-deployment traffic estimation problem as a traffic generation problem, and de-
velop a novel deep generative model TrafficGAN that captures the shared patterns
across spatial regions of how traffic conditions evolve according to travel demand
changes and underlying road network structures. This problem is important to city
planners to evaluate and develop urban deployment plans. In (Yuan et al, 2012), the
authors propose a DRoF framework that Discovers Regions of different Functions
in a city using human mobility between regions with data collected from the GPS
set in Taxis in Beijing and points of interest (POIs) located in the city. The under-
standing of functional regions in a city can calibrate urban planning and facilitate

582 Yanhua Li, Xun Zhou, and Menghai Pan

Table 27.1: Application domain and examples in urban intelligence.

Application domain Example task Example data source

Urban configuration
Estimate impact of construction

(Zhang et al, 2019c) Taxi GPS, road network.

Discover functional regions
(Yuan et al, 2012) Taxi GPS, POIs.

Transportation
Improve efficiency of taxi drivers

(Pan et al, 2019) Taxi GPS, road network.

Environment Infer air quality(Zheng et al, 2013)
Air quality data from monitor
stations, road network, POIs.

Energy consumption
Estimate gas consumption

(Shang et al, 2014) Taxi GPS.

Human behavior Estimate user similarity(Li et al, 2008) GPS data from phones.

Economy
Place retail store

(Karamshuk et al, 2013) POIs, human mobility data.

Public Safety
Detect anomalous traffic pattern

(Pang et al, 2011) Taxi GPS, road network.

other applications, such as choosing a location for a business. In (Ratti et al, 2010),
the authors propose a model to detect the city’s boundary by analyzing the human
network inferred from a large telecommunications database in Great Britain. An-
swering this question can help the city planner get a sense on what the exact range
the urban area is within as the urban area changes fast over time.
2) Transportation. Transportation plays an important role in the urban area. Urban
intelligence deals with several problems regarding the transportation in the city, e.g.,
routing for the drivers, estimating the travel time, improving the efficiency of taxi
system and the public transit system, etc. In (Yuan et al, 2010), the authors propose a
T-Drive system, that provides personalized driving directions that adapt to weather,
traffic conditions, and a person’s own driving habits. The system is built based on
historical trajectory data of taxicabs. In (Pan et al, 2019), the authors propose a solu-
tion framework to analyze the learning curve of taxi drivers. The proposed method
first learns the driver’s preference to different profiles and habit features in each
time period, then analyzes the preference dynamics of different groups of drivers.
The results illustrate that taxi drivers tend to change their preference to some habit
features to improve their operation efficiency. This finding can help the new drivers
improve their operation efficiency faster. The authors in (Watkins et al, 2011) con-
ducted a study on the impact of providing real-time bus arrival information directly
on riders’ mobile phones and found it to reduce not only the perceived wait time of
those already at a bus stop, but also the actual wait time experienced by customers
who plan their journey using such information.
3) Urban Environment. Urban intelligence can deal with the potential threat to the
environment caused by the fast pace of urbanization. The environment is essential
for people’s health, for example, air quality, noise, etc. In (Zheng et al, 2013), the
authors infer the real-time and fine-grained air quality information throughout a city
based on the (historical and real-time) air quality data reported by existing monitor

27 Graph Neural Networks in Urban Intelligence 583

stations and a variety of data sources observed in the city, such as meteorology, traf-
fic flow, human mobility, structure of road networks, and POIs. The results can be
used to suggest people when and where to conduct outdoor activities, e.g., jogging.
Also, the result can infer suitable locations for deploying new air quality monitoring
stations. Noise pollution is usually serious in the urban area. It has impacts to both
the mental and physical health of human beings. Santini et al (2008) assess environ-
mental noise pollution in urban areas by using the monitoring data from wireless
sensor networks.
4) Energy supply and consumption. Another application domain of urban intelli-
gence is energy consumption in the urban area, which usually deals with the problem
of sensing city-scale energy cost, improving energy infrastructures, and finally re-
ducing energy consumption. The common energy include gas and electricity. Shang
et al (2014) inferred the gas consumption and pollution emission of vehicles travel-
ing on a city’s road network in the current time slot using GPS trajectories from a
sample of vehicles (e.g., taxicabs). The knowledge can be used not only to suggest
cost-efficient driving routes but also to identify the road segments where gas has
been wasted significantly. Momtazpour et al (2012) proposes a framework to pre-
dict electronic vehicle (EV) charging needs based on owners’ activities, EV charg-
ing demands at different locations in the city and available charge of EV batteries,
and design distributed mechanisms that manage the movements of EVs to different
charging stations.
5) Urban human behavior analysis. With the popularization of smart devices,
people can generate massive location-embedded information every day, such as,
location-tagged text, image, video, check-ins, GPS trajectories. The first question in
this domain is estimating user similarity, and similar users can be recommended as
friends. Li et al (2008) connects users with similar interests even when they may not
have known each other previously, and community discovery, which employs the
GPS trajectories collected from GPS equipped devices like phones.
6) Economy. Urban intelligence can benefit the urban economy. The human mobil-
ity and the statistics of POIs can reflect the economy of the city. For example, the
average price of a dinner in the restaurants can indicate the income level and the
power of consumption. In (Karamshuk et al, 2013), the authors study the problem
of optimal retail store placement in the context of location-based social networks.
They collected human mobility data from Foursquare and analyzed it to understand
how the popularity of three retail store chains in New York is shaped in terms of
number of check-ins. The result indicates that some POIs, like train station and air-
port, can imply the popularity of the location, also, the number of competitive stores
is an indicator for the popularity.
7) Public safety. Public safety and security in the urban area is always attracting
people’s concerns. The availability of different data enable us to learn from his-
tory how to deal with public safety problems, e.g., traffic accident (Yuan et al,
2018), large event (Vahedian et al, 2019; Khezerlou et al, 2021, 2017; Vahedian
et al, 2017), pandemic (Bao et al, 2020), etc., and we can use the data to detect
and predict abnormal events. Pang et al (2011) detects the anomalous traffic pattern
from the spatial-temporal data of vehicles. The authors partition a city into uniform

584 Yanhua Li, Xun Zhou, and Menghai Pan

grids and counted the number of vehicles arriving in a grid over a time period. The
objective was to identify contiguous sets of cells and time intervals that have the
largest statistically significant departure from expected behavior (i.e., the number of
vehicles).

27.1.3 Representing urban systems as graphs

Various data structures and models can be employed to define the spatial settings
of urban systems. For example, a simple model is a grid structure, where the ur-
ban area is partitioned into grid cells, with a set of attribute values of interest (e.g.,
average traffic speed, number of taxis, population, rainfall) associated with each
cell. While such a model is simple to implement, it ignores many intrinsic and im-
portant relationships existing in urban data. For example, a grid structure may lose
the information of road connectivity in the underlying traffic system of the city. In
many scenarios, instead, graph is an elegant choice to capture the intrinsic topolog-
ical information and knowledge in the data. Many urban system components can
be represented as graphs. Additional attributes may be associated with nodes and/or
edges. In this section, we introduce graph representations of various urban system
scenarios, which are summarized in Table 27.2. The application domains covered
include 1) Urban transportation and configuration planning, 2) Urban environment
monitoring, 3) Urban energy supply and consumption, 4) Urban event and anomaly
detection, and 5) Urban human behavior analysis.

1) Urban transportation and configuration planing. Modeling urban trans-
portation system as a graph is widely used in solving real-world urban intelligence
problems, e.g., traffic flow prediction (Xie et al, 2019b; Dai et al, 2020; Cui et al,
2019; Chen et al, 2019b; Song et al, 2020a; Zhang et al, 2020e; Zheng et al, 2020a;
Diao et al, 2019; Guo et al, 2019b; Li et al, 2018e; Yu et al, 2018a; Zhang et al,
2018e), parking availability problem (Zhang et al, 2020h), etc. The graphs are usu-
ally built based on the real-world road network. To solve the problem of traffic flow
prediction, in (Cui et al, 2019), the authors employ an undirected graph to predict
the traffic state, the nodes are the traffic sensing locations, e.g., sensor stations, road
segments, and the edges are the intersections or road segments connecting those
traffic sensing locations. Xie et al (2019b); Dai et al (2020) model the urban traffic
network as a directed graph with attributes to predict the traffic speed, the nodes
are the road segments, and the edges are the intersections. Road segment width,
length, and direction are the attributes of the nodes, and the type of intersection,
and whether there are traffic lights, toll gates are the attributes of the edges. For
urban configuration, Wu et al (2020c) incorporates a hierarchical GNN framework
to learn Road Network Representation in different levels. The nodes in the hierar-
chical graph include road segments, structural regions, and functional zones, and
the edges are intersections and hyperedges. There are some works about predicting
parking availability. Zhang et al (2020h) models the parking lots and the surround-
ing POIs and population features as a graph to predict the parking availability for

27 Graph Neural Networks in Urban Intelligence 585

Table 27.2: Graph representations in urban systems

Application domain Nodes Edges Examples

Transportation &
configuration

planning

Road segments Intersections

Traffic flow prediction
(Xie et al, 2019b)
(Dai et al, 2020)
(Cui et al, 2019)

(Chen et al, 2019b)
(Song et al, 2020a)
(Zhang et al, 2020e)
(Zheng et al, 2020a)

(Diao et al, 2019)
(Guo et al, 2019b)
(Li et al, 2018e)
(Yu et al, 2018a)

(Zhang et al, 2018e)

Functional zones Road connections
Learning road network

representation (Wu et al, 2020c)

POIs Road connections

Parking availability prediction,
POI recommendation
(Zhang et al, 2020h)
(Chang et al, 2020a)

Environment
monitoring Monitoring sensors Proximity

Air quality inference
(Wang et al, 2020h)

(Li et al, 2017f)
Energy supply
& consumption Regulators Pipelines

Gas pressure monitoring
(Yi and Park, 2020)

Event &
anomaly detection Urban regions Proximity

Traffic accident prediction
(Zhou et al, 2020g)
(Zhou et al, 2020h)

(Yu et al, 2021b)
Human behavior

analysis
Sessions,

locations, objects Event stream
User behavior modeling

(Wang et al, 2020a)

Urban regions Proximity

Passenger demand prediction
(Wang et al, 2019o)
(Yi and Park, 2020)
(Geng et al, 2019)
(Bai et al, 2019a)
(Xie et al, 2016)

the parking lots. The nodes are the parking lots, and the edges are determined by
the connectivity between each two parking lots whose on-road distance is smaller
than a threshold. Context features, e.g., POI distribution, population, etc., are the
attributes of the nodes.

2) Urban environment monitoring system. People model the air quality mon-
itoring system as a graph to forecast the air quality in the urban area(Wang et al,
2020h; Li et al, 2017f). For example, Wang et al (2020h) proposed the PM2.5-GNN
to forecast the PM2.5 index in different locations. The nodes are locations deter-
mined by latitude, longitude, altitude, and there exists an edge between two nodes
if the distance and difference of altitudes between them are less than threshholds re-

586 Yanhua Li, Xun Zhou, and Menghai Pan

spectively (e.g., distance < 300 km and difference of altitudes < 1200 m). The node
attributes include Planetary Boundary Layer (PBL) height, K index, wind speed, 2m
temperature, relative humidity, precipitation, and surface pressure. Edge attributes
include wind speed of source node, distance between source and sink, wind direc-
tion of source node, and direction from source to sink.

3) Urban energy supply and consumption. GNN is also employed in analyz-
ing urban energy supply and consuming systems. For example, Yi and Park (2020)
proposed a framework to predict the gas pressure in the gas supply network. The
gas regulators are considered as the nodes, and the pipelines that connect every two
regulators are the edges.

4) Urban event and anomaly detection. Urban event and anomaly detection is a
hot topic in urban intelligence. People employ machine learning models to detect or
predict the events occurring in the urban area, e.g., traffic accident prediction(Zhou
et al, 2020g,h; Yu et al, 2021b). In (Zhou et al, 2020g), the authors proposed a
framework to predict traffic accident in different regions of the city. The urban area
is divided into subregions, i.e., grids, and if the traffic elements within two subre-
gions have strong correlations, there is a connection.

5) Urban human behavior analysis. Studying human behavior in urban region
can benefit people in many aspects, for example, demographic attribute prediction,
personalized recommendation, passenger demand prediction, etc. Some works pro-
posed GNN to study Human behavior modeling. Human behavior modeling is es-
sential for many real-world applications such as demographic attribute prediction,
content recommendation, and target advertising. In (Wang et al, 2020a), the authors
model human behavior via a tripartite graph. The nodes include user’s sessions, lo-
cations and items. There exists an edge between a session node and a location node if
the user started the session at this location. Similarly, there exists an edge between
a session node and an item node if the user interacted with this item within the
session. Each edge possesses a time attribute indicating the temporal signal of the
interaction between two nodes. Another application of analysing human behavior is
passenger demand prediction. Understanding human behavior in daily transits can
help improve the efficiency of urban transportation system. For example, predicting
the passenger demand in the ride-sharing system can help the ride-sharing company
and the drivers improve their operation efficiency. And in recent publications, many
researchers employ graph neural networks to solve the problem of predicting human
mobility (Wang et al, 2019o; Yi and Park, 2020; Geng et al, 2019; Bai et al, 2019a;
Xie et al, 2016), and usually the nodes of the graph are subregions of the city, and
the edges are usually defined based on spatial proximity.

27.1.4 Case Study 1: Graph Neural Networksin urban
configuration and transportation

Urban intelligence can help urban planners design urban configuration, and bene-
fit the urban transportation system from different perspectives, e.g., operation effi-

27 Graph Neural Networks in Urban Intelligence 587

Figure 27.1: CNN-based STGNN

ciency, safety, environmental protection, etc. To enable urban intelligence in urban
configuration and transportation planning, researchers developed practical machine
learning approaches, including graph neural networks (GNN), to deal with real-
world problems. In this section, we introduce some state-of-the-art (SOTA) designs
of GNN targeting on solving the real-world urban configuration and transportation
problems.

Urban traffic prediction. Predicting traffic status, e.g., speed, volume, is im-
portant in enabling urban intelligence. The traffic prediction problem is a typical
time-series prediction problem:

Definition 27.1. Urban traffic prediction problem. Given historical traffic obser-
vations and context features of the road network, predicting the traffic status (e.g.,
speed, flow, etc.) in future time slots over the road network.

To address the traffic prediction problem, Spatial-temporal Graph Neural Networks
(STGNN) are usually employed. The road segments are the nodes, and the traf-
fic status is the attributes of the nodes. The traffic status in different time slots
are corresponding to the temporal dynamics of the graph. Usually, graph convo-
lution operation is used to capture the spatial dependencies among the nodes, and
a 1D-convolution operation is then employed to capture the temporal dependencies
among different time slots. The framework of CNN-based STGNN is illustrated in
Fig.27.1. The spatial-temporal embeddings can be used to predict the traffic status.

Another design of STGNN is based on Recurrent Neural Networks (RNN),
which can also predict traffic status in Spatial-temporal graphs. Most RNN-based
approaches capture spatial-temporal dependencies by filtering inputs and hidden
states passed to a recurrent unit using graph convolution operations. The basic RNN
can be formulated in Eq. (27.1).

H(t) = σ(WX (t)+UH(t−1)+b), (27.1)

where X (t) is the node feature matrix at time step t. H is the hidden state. W , U , and
b are the network parameters. Then, the STGNN based on RNN can be formulated
as Eq. (27.2):

588 Yanhua Li, Xun Zhou, and Menghai Pan

Figure 27.2: Hierarchical road network graph

H(t) = σ(Gconv(X (t),A;W)+Gconv(H(t−1),A;U)+b), (27.2)

where Gconv(·) is the graph convolution operation, and A is the graph adjacency
matrix. Both designs of STGNN can be employed to predict the node attributes, i.e.,
traffic status, given the spatial-temporal graph of traffic.

Urban configuration. An urban road network is a vital component in urban con-
figuration. How to represent it is essential for many analyses and researches related
to real-world applications. As a real-world road network is a complex system with
hierarchical structures, long-range dependency among units, and functional roles, it
is challenging to design effective representation learning methods. The road network
representation learning problem can be defined like this:

Definition 27.2. Road network representation learning problem. Given a road
network, the target is to construct the corresponding graphs that can represent the
structure and topological information of the road network.

Benefit from the topology of graph, we can represent road network with hier-
archical graphs. In (Wu et al, 2020c), the authors propose to represent urban road
networks with a hierarchical graph with three levels, and the node in each level cor-
responds to road segments, structural region, and functional zone, respectively, as
illustrated in Fig.27.2. The structural region is the aggregation of some connected
road segments, which serves as some specific traffic roles, e.g., intersection, over-
pass. And functional zone is the aggregation of structural regions, which can repre-
sent some functional facilities in the city, e.g., transportation hub, shopping area. To
learn the hierarchical graph representation, the road segments are first represented
by contextual embedding, e.g., road type, lane number, segment length, etc. Then,
graph clustering and network reconstruction techniques are employed to form the
structural region graph. And vehicle trajectory data is employed to capture the func-
tional zones over structural regions.

27 Graph Neural Networks in Urban Intelligence 589

Figure 27.3: Example GNN framework for traffic accident prediction.

27.1.5 Case Study 2: Graph Neural Networks in urban anomaly
and event detection

Public safety and security in the urban area always attracts people’s concerns. The
availability of different data enables us to learn from history how to deal with public
safety problems, e.g., traffic accidents, crime, large events, pandemic, etc., and we
can use the data to detect and predict abnormal events.

Traffic accident prediction. Traffic accident prediction is of great significance
to improve the safety of the road network. Although “accident” is a word related to
“randomness”, there exist a significant correlation between the occurrence of traffic
accidents and the surrounding environmental features, e.g., traffic flow, road net-
work structure, weather, etc. Thus, machine learning approaches, like GNN, can be
employed to predict or forecast traffic accidents over the city, which can help enable
urban intelligence.

The problem of traffic accident prediction is as follows:

Definition 27.3. Traffic accident prediction problem. Given the road network data
and the historical environmental features, the target is to predict the traffic accident
risk over the city in the future.

The environmental features include the traffic conditions, surrounding POIs, etc. In
recent publications (Zhou et al, 2020g,h; Yu et al, 2021b), GNN is employed to
solve this problem.

The graphs in solving traffic accident problem are usually constructed based on
dividing the urban area into grids, and each grid is considered as a node. If the traffic
conditions between two nodes have a strong correlation, there is an edge between
them. The context environmental features are the attributes with each grid. After the
graphs are constructed in different historical time slots, graph convolutional neural
networks (GCNs) are usually used to extract the hidden embedding in each time
slot. Then, methods dealing with time-series inputs can be employed to capture
the temporal dependencies, e.g., RNN-based neural networks. Finally, the spatial-
temporal information is used to predict traffic accident risk over the city. Overall,

590 Yanhua Li, Xun Zhou, and Menghai Pan

Figure 27.4: Example STGNN framework for passenger demand prediction.

the solution framework can be considered as an STGNN as illustrate in Fig. 27.3.
For more details, please refer to (Zhou et al, 2020g,h; Yu et al, 2021b).

27.1.6 Case Study 3: Graph Neural Networks in urban human
behavior inference

Human behavior analysis plays an important role in enabling urban intelligence,
for example, studying the behavior of drivers can help improve the efficiency of
urban transportation system, analysing passenger behaviors can help improve the
operation efficiency of the drivers in taxi or ride-hailing services, and understanding
user behavior pattern can help improve personal recommendation of commercial
items, which will benefit the urban economy. In this section, we demonstrate how
GNN works in analyzing urban human behaviors via two real-world applications,
i.e., passenger demand prediction and user behavior modeling.

Passenger demand prediction. Passenger demand prediction is mostly con-
ducted at the region-level, i.e., the urban area is divided into small grids. The prob-
lem can be defined as follows:

Definition 27.4. Passenger demand prediction problem. Given the historical de-
mands and context features distributions, the task is to predict the passenger demand
in each region.

Different from most traffic graphs which construct the graphs with road segments as
nodes, here in passenger demand prediction problem, people usually construct the
graph with grids as the nodes. The edges, i.e., the correlations between each pair of
nodes, are determined by spatial proximity, similarity of contextual environment, or
road network connectivity for distant grids.

Spatial-temporal Graph Neural Networks (STGNN) are the most popular GNN
models employed in predicting passenger demand. In (Geng et al, 2019), the au-
thors propose the spatiotemporal multi-graph convolution network (ST-MGCN) to

27 Graph Neural Networks in Urban Intelligence 591

predict the passenger demand in the ride-hailing service. The overall framework
can be illustrated as in Fig.27.4. First, multiple graphs are constructed based on dif-
ferent aspects of relationships between each two grids, i.e., proximity, functional
similarity, and transportation connectivity. Then, a RNN is used to aggregate obser-
vations in different times considering the global contextual information. After that,
GCN is used to model the non-Euclidean correlations among regions. Finally, the
aggregated embeddings are used to predict the passenger demand over the city.

User behavior modeling. Modeling human behavior is important for many real-
world applications, e.g., demographic attribute prediction, content recommendation,
and target advertising, etc. Studying human behavior in the urban scenario can ben-
efit urban intelligence in many aspects, e.g., economy, transportation, etc. Here,
we introduce an example of modeling spatial-temporal user behavior with tripartite
graphs (Wang et al, 2020a).

Take the urban user online browsing behavior as an example, the spatial-temporal
user behavior can be defined on a set of users U , a set of sessions S, a set of items
V , and a set of locations L. Each user’s behavior log can be represented by a set of
session-location tuples, and each session contains multiple item-timestamp tuples.
Then a user’s spatial-temporal behavior can be captured via a tripartite graph as
illustrated in Fig.27.5. The nodes of this tripartite graph include user’s sessions S,
locations L, and items V . The edges include session-item edges and session-location
edges.

Figure 27.5: Spatial-temporal user behavior graph

To extract the user representation from each user’s spatial-temporal behavior
graph, GNN can be employed. The idea is to extract session embeddings from the
items within each session, and RNN can be employed to aggregate the information
of items. Then session embeddings are further aggregated into temporal embeddings
of different time span, e.g., day, week. Also, the session embeddings and locations
are composed to produce the spatial embeddings. Last, the spatial and temporal em-
beddings are fused into one embedding which can represent the user’s behavior. For
more details, we would like to refer you to (Wang et al, 2020a).

592 Yanhua Li, Xun Zhou, and Menghai Pan

27.1.7 Future Directions

It is inspiring that GNNs have obtained significant achievements on urban intelli-
gence. For future research, we envision that there exist several potential directions
as following.

Interpretability of the GNNs model on urban intelligence. The applications
of GNNs on urban intelligence are closely related to real-world problems. Besides
improving the performance of the GNNs model, it is necessary to enhance the in-
terpritability of the GNNs model. For example, in the application predicting traffic
flow, it is important to identify hidden factors (e.g., structure of road network) that
can affect the traffic flow. These hidden factors may also help urban planners better
design road network to balance the traffic flow.

Recent advances in interpretable AI and machine learning research have led to
the development of numerous intrinsic or post-hoc interpretable graph neural net-
work models (Huang et al, 2020c). However, few of them are designed for GNNs
on urban problems. Designing interpretable urban GNNs is non-trivial due to the
unique properties of urban big data. For example, urban data are usually heteroge-
neous, i.e., the interpretation of learned relationships between the input features and
target variables vary over space. For example, the risk factors for traffic accidents
may shift when moving from a densely populated area to a non-residential area.
Also, the interpretation model of GNN at nearby locations (e.g., neighboring nodes)
share similarities due to the auto-correlation of spatial data (Pan et al, 2020b). These
factors should be considered when designing interpretable urban GNNs.

New applications for GNNs on urban intelligence. As introduced above,
GNNs have demonstrated their effectiveness and efficiency in many applications
domains in urban intelligence, e.g., transportation, environment, energy, safety, hu-
man behavior. There exist potential applications of GNNs on urban scenario, such
as, improving urban power (electricity) supply, contact tracing of patients of infec-
tious diseases (e.g., COVID-19), and modeling responses to complex environmental
and climate events (e.g., flood, Hurricane, etc).

27 Graph Neural Networks in Urban Intelligence 593

Editor’s Notes: Urban intelligence covers a wide range of macro-scale
physical networks such as transportation networks and power grids. They
are typical cases of spatial networks, which are networks whose nodes and
edges are embedded in space probably under spatial constraints (e.g., pla-
narity). So it is not a surprise that urban intelligence could largely benefit
from deep learning techniques for spatial data and network data. Differ-
ent from most of the application domains introduced in Chapters 19-27,
there are usually well-designed computational models for many subareas
in urban intelligence, so it is important to explore how deep graph learning
techniques can contribute and compensate for the weakness of the existing
strategies.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S,
Irving G, Isard M, et al (2016) Tensorflow: A system for large-scale machine
learning. In: 12th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 16), pp 265–283

Abbe E (2017) Community detection and stochastic block models: recent develop-
ments. Journal of Machine Learning Research 18(1):6446–6531

Abbe E, Sandon C (2015) Community detection in general stochastic block models:
Fundamental limits and efficient algorithms for recovery. In: IEEE 56th Annual
Symposium on Foundations of Computer Science, pp 670–688

Abboud R, Ceylan ii, Grohe M, Lukasiewicz T (2020) The surprising power of
graph neural networks with random node initialization. CoRR abs/2010.01179

Abdelaziz I, Dolby J, McCusker JP, Srinivas K (2020) Graph4Code: A machine
interpretable knowledge graph for code. arXiv preprint arXiv:200209440

Abdollahpouri H, Adomavicius G, Burke R, Guy I, Jannach D, Kamishima T,
Krasnodebski J, Pizzato L (2020) Multistakeholder recommendation: Survey and
research directions. User Modeling and User-Adapted Interaction 30(1):127–158

Abid NJ, Dragan N, Collard ML, Maletic JI (2015) Using stereotypes in the au-
tomatic generation of natural language summaries for c++ methods. In: 2015
IEEE International Conference on Software Maintenance and Evolution (IC-
SME), IEEE, pp 561–565

Abney S (2007) Semisupervised learning for computational linguistics. CRC Press
Adamic LA, Adar E (2003) Friends and neighbors on the web. Social networks

25(3):211–230
Adams RP, Zemel RS (2011) Ranking via sinkhorn propagation. arXiv preprint

arXiv:11061925
Aghamohammadi A, Izadi M, Heydarnoori A (2020) Generating summaries for

methods of event-driven programs: An android case study. Journal of Systems
and Software 170:110,800

595
L. Wu et al. (eds.), Graph Neural Networks: Foundations, Frontiers, and Applications,

https://doi.org/10.1007/978-981-16-6054-2

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

https://doi.org/10.1007/978-981-16-6054-2

596 References

Ahmad MA, Eckert C, Teredesai A (2018) Interpretable machine learning in health-
care. In: Proceedings of the 2018 ACM international conference on bioinformat-
ics, computational biology, and health informatics, pp 559–560

Ahmad WU, Chakraborty S, Ray B, Chang KW (2020) A transformer-based ap-
proach for source code summarization. arXiv preprint arXiv:200500653

Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola AJ (2013) Dis-
tributed large-scale natural graph factorization. In: Proceedings of the 22nd inter-
national conference on World Wide Web, pp 37–48

Aho AV, Lam MS, Sethi R, Ulman JD (2006) Compilers: principles, techniques and
tools. Pearson Education

Ain QU, Butt WH, Anwar MW, Azam F, Maqbool B (2019) A systematic review
on code clone detection. IEEE Access 7:86,121–86,144

Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic
blockmodels. Journal of Machine Learning Research 9(Sep):1981–2014

Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and descrip-
tion: a survey. Data mining and knowledge discovery 29(3):626–688

Al Hasan M, Zaki MJ (2011) A survey of link prediction in social networks. In:
Social network data analytics, Springer, pp 243–275

Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Reviews
of modern physics 74(1):47

Albooyeh M, Goel R, Kazemi SM (2020) Out-of-sample representation learning
for knowledge graphs. In: Empirical Methods in Natural Language Processing:
Findings, pp 2657–2666

Ali H, Tran SN, Benetos E, Garcez ASd (2018) Speaker recognition with hybrid fea-
tures from a deep belief network. Neural Computing and Applications 29(6):13–
19

Allamanis M (2019) The adverse effects of code duplication in machine learning
models of code. In: Proceedings of the 2019 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and
Software, pp 143–153

Allamanis M, Barr ET, Devanbu P, Sutton C (2018a) A survey of machine learning
for big code and naturalness. ACM Computing Surveys (CSUR) 51(4):1–37

Allamanis M, Brockschmidt M, Khademi M (2018b) Learning to represent pro-
grams with graphs. In: International Conference on Learning Representations
(ICLR)

Allamanis M, Barr ET, Ducousso S, Gao Z (2020) Typilus: neural type hints. In:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp 91–105

Alon U, Brody S, Levy O, Yahav E (2019a) code2seq: Generating sequences from
structured representations of code. International Conference on Learning Repre-
sentations

Alon U, Zilberstein M, Levy O, Yahav E (2019b) code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages
3(POPL):1–29

References 597

Amidi A, Amidi S, Vlachakis D, et al (2018) EnzyNet: enzyme classification using
3d convolutional neural networks on spatial representation. PeerJ 6:e4750

Amizadeh S, Matusevych S, Weimer M (2018) Learning to solve circuit-sat: An
unsupervised differentiable approach. In: International Conference on Learning
Representations

Anand N, Huang PS (2018) Generative modeling for protein structures. In: Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, pp 7505–7516

Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial net-
works. In: International Conference on Machine Learning, pp 214–223

Arora S (2020) A survey on graph neural networks for knowledge graph completion.
arXiv preprint arXiv:200712374

Arvind V, Köbler J, Rattan G, Verbitsky O (2015) On the power of color refinement.
In: International Symposium on Fundamentals of Computation Theory, pp 339–
350

Arvind V, Fuhlbrück F, Köbler J, Verbitsky O (2019) On weisfeiler-leman invari-
ance: subgraph counts and related graph properties. In: International Symposium
on Fundamentals of Computation Theory, Springer, pp 111–125

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al (2000) Gene ontology: tool for the unifi-
cation of biology. Nature genetics 25(1):25–29

Aynaz Taheri TBW Kevin Gimpel (2018) Learning graph representations with re-
current neural network autoencoders. In: KDD’18 Deep Learning Day

Azizian W, Lelarge M (2020) Characterizing the expressive power of invariant and
equivariant graph neural networks. arXiv preprint arXiv:200615646

Babai L (2016) Graph isomorphism in quasipolynomial time. In: Proceedings of the
Forty-Eighth Annual ACM Symposium on Theory of Computing, pp 684–697

Babai L, Kucera L (1979) Canonical labelling of graphs in linear average time. In:
Foundations of Computer Science, 1979., 20th Annual Symposium on, IEEE, pp
39–46

Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W (2015) On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one 10(7):e0130,140

Badihi S, Heydarnoori A (2017) Crowdsummarizer: Automated generation of code
summaries for java programs through crowdsourcing. IEEE Software 34(2):71–
80

Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learn-
ing to align and translate. In: 3rd International Conference on Learning Repre-
sentations

Bai L, Yao L, Kanhere SS, Wang X, Liu W, Yang Z (2019a) Spatio-temporal graph
convolutional and recurrent networks for citywide passenger demand prediction.
In: Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, Association for Computing Machinery, CIKM ’19, p
2293–2296, DOI 10.1145/3357384.3358097

598 References

Bai X, Zhu L, Liang C, Li J, Nie X, Chang X (2020a) Multi-view feature selection
via nonnegative structured graph learning. Neurocomputing 387:110–122

Bai Y, Ding H, Sun Y, Wang W (2018) Convolutional set matching for graph simi-
larity. In: NeurIPS 2018 Relational Representation Learning Workshop

Bai Y, Ding H, Bian S, Chen T, Sun Y, Wang W (2019b) Simgnn: A neural network
approach to fast graph similarity computation. In: Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, pp 384–392

Bai Y, Ding H, Qiao Y, Marinovic A, Gu K, Chen T, Sun Y, Wang W (2019c) Unsu-
pervised inductive graph-level representation learning via graph-graph proximity.
arXiv preprint arXiv:190401098

Bai Y, Ding H, Gu K, Sun Y, Wang W (2020b) Learning-based efficient graph simi-
larity computation via multi-scale convolutional set matching. In: Proceedings of
the AAAI Conference on Artificial Intelligence, pp 3219–3226

Bai Y, Xu D, Wang A, Gu K, Wu X, Marinovic A, Ro C, Sun Y, Wang W (2020c)
Fast detection of maximum common subgraph via deep q-learning. arXiv preprint
arXiv:200203129

Bajaj M, Wang L, Sigal L (2019) G3raphground: Graph-based language grounding.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp 4281–4290

Baker B, Gupta O, Naik N, Raskar R (2016) Designing neural network architectures
using reinforcement learning. arXiv preprint arXiv:161102167

Baker CF, Ellsworth M (2017) Graph methods for multilingual framenets. In: Pro-
ceedings of TextGraphs-11: the Workshop on Graph-based Methods for Natural
Language Processing, pp 45–50

Balcilar M, Renton G, Héroux P, Gaüzère B, Adam S, Honeine P (2021) Analyz-
ing the expressive power of graph neural networks in a spectral perspective. In:
International Conference on Learning Representations

Baldassarre F, Azizpour H (2019) Explainability techniques for graph convolutional
networks. arXiv preprint arXiv:190513686

Balinsky H, Balinsky A, Simske S (2011) Document sentences as a small world. In:
2011 IEEE International Conference on Systems, Man, and Cybernetics, IEEE,
pp 2583–2588

Banarescu L, Bonial C, Cai S, Georgescu M, Griffitt K, Hermjakob U, Knight K,
Koehn P, Palmer M, Schneider N (2013) Abstract meaning representation for
sembanking. In: Proceedings of the 7th linguistic annotation workshop and inter-
operability with discourse, pp 178–186

Bao H, Zhou X, Zhang Y, Li Y, Xie Y (2020) Covid-gan: Estimating human mobility
responses to covid-19 pandemic through spatio-temporal conditional generative
adversarial networks. In: Proceedings of the 28th International Conference on
Advances in Geographic Information Systems, pp 273–282

Barabási AL (2013) Network science. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences 371(1987):20120,375

Barabási AL, Albert R (1999) Emergence of scaling in random networks. science
286(5439):509–512

References 599

Barabasi AL, Oltvai ZN (2004) Network biology: Understanding the cell’s func-
tional organization. Nature Reviews Genetics 5(2):101–113

Barber D (2004) Probabilistic modelling and reasoning: The junction tree algorithm.
Course Notes

Barceló P, Kostylev EV, Monet M, Pérez J, Reutter J, Silva JP (2019) The logical ex-
pressiveness of graph neural networks. In: International Conference on Learning
Representations

Bastian FB, Roux J, Niknejad A, Comte A, Fonseca Costa SS, De Farias TM,
Moretti S, Parmentier G, De Laval VR, Rosikiewicz M, et al (2021) The bgee
suite: integrated curated expression atlas and comparative transcriptomics in ani-
mals. Nucleic Acids Research 49(D1):D831–D847

Bastings J, Titov I, Aziz W, Marcheggiani D, Sima’an K (2017) Graph convo-
lutional encoders for syntax-aware neural machine translation. arXiv preprint
arXiv:170404675

Batagelj V, Zaversnik M (2003) An o(m) algorithm for cores decomposition of net-
works. arXiv preprint cs/0310049

Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E,
Bowler-Barnett EH, Britto R, Bursteinas B, et al (2020) Uniprot: the universal
protein knowledgebase in 2021. Nucleic Acids Research

Battaglia P, Pascanu R, Lai M, Rezende DJ, kavukcuoglu K (2016) Interaction net-
works for learning about objects, relations and physics. In: Proceedings of the
30th International Conference on Neural Information Processing Systems, pp
4509–4517

Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski
M, Tacchetti A, Raposo D, Santoro A, Faulkner R, et al (2018) Relational induc-
tive biases, deep learning, and graph networks. arXiv preprint arXiv:180601261

Beaini D, Passaro S, Létourneau V, Hamilton WL, Corso G, Liò P (2020) Direc-
tional graph networks. CoRR abs/2010.02863

Beck D, Haffari G, Cohn T (2018) Graph-to-sequence learning using gated graph
neural networks. arXiv preprint arXiv:180609835

Belghazi MI, Baratin A, Rajeswar S, Ozair S, Bengio Y, Hjelm RD, Courville AC
(2018) Mutual information neural estimation. In: Dy JG, Krause A (eds) Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, PMLR, Proceedings
of Machine Learning Research, vol 80, pp 530–539

Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for em-
bedding and clustering. In: Advances in neural information processing systems,
pp 585–591

Bengio Y (2008) Neural net language models. Scholarpedia 3(1):3881
Bengio Y, Senécal JS (2008) Adaptive importance sampling to accelerate training

of a neural probabilistic language model. IEEE Transactions on Neural Networks
19(4):713–722

Bennett J, Lanning S, et al (2007) The netflix prize. In: Proceedings of KDD cup
and workshop, New York, vol 2007, p 35

600 References

van den Berg R, Kipf TN, Welling M (2018) Graph convolutional matrix comple-
tion. KDD18 Deep Learning Day

Berg Rvd, Kipf TN, Welling M (2017) Graph convolutional matrix completion.
arXiv preprint arXiv:170602263

Berger P, Hannak G, Matz G (2020) Efficient graph learning from noisy and incom-
plete data. IEEE Trans Signal Inf Process over Networks 6:105–119

Berggård T, Linse S, James P (2007) Methods for the detection and analysis of
protein–protein interactions. PROTEOMICS 7(16):2833–2842

Berline N, Getzler E, Vergne M (2003) Heat kernels and Dirac operators. Springer
Science & Business Media

Bian R, Koh YS, Dobbie G, Divoli A (2019) Network embedding and change mod-
eling in dynamic heterogeneous networks. In: Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pp 861–864

Bianchi FM, Grattarola D, Alippi C (2020) Spectral clustering with graph neural
networks for graph pooling. In: International Conference on Machine Learning,
ACM, pp 2729–2738

Bielik P, Raychev V, Vechev M (2017) Learning a static analyzer from data. In:
International Conference on Computer Aided Verification, Springer, pp 233–253

Biggs N, Lloyd EK, Wilson RJ (1986) Graph Theory, 1736-1936. Oxford University
Press

Bingel J, Søgaard A (2017) Identifying beneficial task relations for multi-task learn-
ing in deep neural networks. In: Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics: Volume 2, Short
Papers, pp 164–169

Bishop CM (2006) Pattern recognition and machine learning. springer
Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak R, Hellmann S

(2009) Dbpedia-a crystallization point for the web of data. Journal of web se-
mantics 7(3):154–165

Blitzer J, McDonald R, Pereira F (2006) Domain adaptation with structural corre-
spondence learning. In: Proceedings of the 2006 conference on empirical methods
in natural language processing, pp 120–128

Bodenreider O (2004) The unified medical language system (umls): integrating
biomedical terminology. Nucleic acids research 32(suppl 1):D267–D270

Bojchevski A, Günnemann S (2019) Adversarial attacks on node embeddings via
graph poisoning. In: International Conference on Machine Learning, PMLR, pp
695–704

Bojchevski A, Günnemann S (2019) Certifiable robustness to graph perturbations.
In: Wallach H, Larochelle H, Beygelzimer A, d'Alché-Buc F, Fox E, Garnett R
(eds) Advances in Neural Information Processing Systems, Curran Associates,
Inc., vol 32

Bojchevski A, Matkovic Y, Günnemann S (2017) Robust spectral clustering for
noisy data: Modeling sparse corruptions improves latent embeddings. In: Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp 737–746

References 601

Bojchevski A, Shchur O, Zügner D, Günnemann S (2018) Netgan: Generating
graphs via random walks. arXiv preprint arXiv:180300816

Bojchevski A, Klicpera J, Günnemann S (2020a) Efficient robustness certificates
for discrete data: Sparsity-aware randomized smoothing for graphs, images and
more. In: International Conference on Machine Learning, PMLR, pp 1003–1013

Bojchevski A, Klicpera J, Perozzi B, Kapoor A, Blais M, Rózemberczki B, Lukasik
M, Günnemann S (2020b) Scaling graph neural networks with approximate
pagerank. In: Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp 2464–2473

Bollacker K, Tufts P, Pierce T, Cook R (2007) A platform for scalable, collaborative,
structured information integration. In: Intl. Workshop on Information Integration
on the Web (IIWeb’07), pp 22–27

Bollobás B (2013) Modern graph theory, vol 184. Springer Science & Business
Media

Bollobás B, Béla B (2001) Random graphs. 73, Cambridge university press
Bollobás B, Janson S, Riordan O (2007) The phase transition in inhomogeneous

random graphs. Random Structures & Algorithms 31(1):3–122
Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O (2013) Translating

embeddings for modeling multi-relational data. In: Neural Information Process-
ing Systems, pp 1–9

Bordes A, Glorot X, Weston J, Bengio Y (2014) A semantic matching energy func-
tion for learning with multi-relational data. Machine Learning 94(2):233–259

Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ, Kriegel HP
(2005) Protein function prediction via graph kernels. Bioinformatics 21(Supple-
ment 1):i47–i56

Borgwardt KM, Ghisu ME, Llinares-López F, O’Bray L, Rieck B (2020) Graph
kernels: State-of-the-art and future challenges. Found Trends Mach Learn 13(5-
6)

Bose A, Hamilton W (2019) Compositional fairness constraints for graph embed-
dings. In: International Conference on Machine Learning, PMLR, pp 715–724

Bottou L (1998) Online learning and stochastic approximations. On-line learning in
neural networks 17(9):142

Bourgain J (1985) On lipschitz embedding of finite metric spaces in hilbert space.
Israel Journal of Mathematics 52(1-2):46–52

Bourigault S, Lagnier C, Lamprier S, Denoyer L, Gallinari P (2014) Learning social
network embeddings for predicting information diffusion. In: Proceedings of the
7th ACM international conference on Web search and data mining, pp 393–402

Bouritsas G, Frasca F, Zafeiriou S, Bronstein MM (2020) Improving graph
neural network expressivity via subgraph isomorphism counting. CoRR
abs/2006.09252, 2006.09252

Boyd S, Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge univer-
sity press

Braschi B, Denny P, Gray K, Jones T, Seal R, Tweedie S, Yates B, Bruford E (2017)
Genenames. org: the hgnc and vgnc resources in

602 References

Brauckmann A, Goens A, Ertel S, Castrillon J (2020) Compiler-based graph repre-
sentations for deep learning models of code. In: Proceedings of the 29th Interna-
tional Conference on Compiler Construction, pp 201–211

Braude EJ, Bernstein ME (2016) Software engineering: modern approaches. Wave-
land Press

Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems 30(1-7):107–117

Brin S, Page L (2012) Reprint of: The anatomy of a large-scale hypertextual web
search engine. Computer networks 56(18):3825–3833

Brockschmidt M (2020) GNN-FiLM: Graph neural networks with feature-wise
linear modulation. In: III HD, Singh A (eds) Proceedings of the 37th Interna-
tional Conference on Machine Learning, PMLR, Virtual, Proceedings of Machine
Learning Research, vol 119, pp 1144–1152

Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P (2017) Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine
34(4):18–42

Browne F, Wang H, Zheng H, et al (2007) Supervised statistical and machine learn-
ing approaches to inferring pairwise and module-based protein interaction net-
works. In: 2007 IEEE 7th International Symposium on BioInformatics and Bio-
Engineering, pp 1365–1369, DOI 10.1109/BIBE.2007.4375748

Bruna J, Zaremba W, Szlam A, LeCun Y (2014) Spectral networks and deep lo-
cally connected networks on graphs. In: 2nd International Conference on Learn-
ing Representations, ICLR 2014

Bui TN, Chaudhuri S, Leighton FT, Sipser M (1987) Graph bisection algorithms
with good average case behavior. Combinatorica 7(2):171–191

Bunke H (1997) On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(8):689–694

Burt RS (2004) Structural holes and good ideas. American journal of sociology
110(2):349–399

Byron O, Vestergaard B (2015) Protein–protein interactions: a supra-structural phe-
nomenon demanding trans-disciplinary biophysical approaches. Current Opinion
in Structural Biology 35:76 – 86, catalysis and regulation • Protein-protein inter-
actions

Cai D, Lam W (2020) Graph transformer for graph-to-sequence learning. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp 7464–
7471

Cai H, Chen T, Zhang W, Yu Y, Wang J (2018a) Efficient architecture search by
network transformation. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol 32

Cai H, Zheng VW, Chang KCC (2018b) A comprehensive survey of graph embed-
ding: Problems, techniques, and applications. IEEE Transactions on Knowledge
and Data Engineering 30(9):1616–1637

Cai H, Gan C, Wang T, Zhang Z, Han S (2020a) Once for all: Train one network
and specialize it for efficient deployment. In: ICLR

References 603

Cai H, Gan C, Zhu L, Han S (2020b) Tinytl: Reduce memory, not parameters for
efficient on-device learning. Advances in Neural Information Processing Systems
33

Cai JY, Fürer M, Immerman N (1992) An optimal lower bound on the number of
variables for graph identification. Combinatorica 12(4):389–410

Cai L, Ji S (2020) A multi-scale approach for graph link prediction. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol 34, pp 3308–3315

Cai L, Yan B, Mai G, Janowicz K, Zhu R (2019) Transgcn: Coupling transformation
assumptions with graph convolutional networks for link prediction. In: Proceed-
ings of the 10th International Conference on Knowledge Capture, pp 131–138

Cai L, Li J, Wang J, Ji S (2020c) Line graph neural networks for link prediction.
arXiv preprint arXiv:201010046

Cai T, Luo S, Xu K, He D, Liu Ty, Wang L (2020d) Graphnorm: A princi-
pled approach to accelerating graph neural network training. arXiv preprint
arXiv:200903294

Cai X, Han J, Yang L (2018c) Generative adversarial network based heterogeneous
bibliographic network representation for personalized citation recommendation.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32

Cai Z, Wen L, Lei Z, Vasconcelos N, Li SZ (2014) Robust deformable and oc-
cluded object tracking with dynamic graph. IEEE Transactions on Image Pro-
cessing 23(12):5497–5509

Cairong Z, Xinran Z, Cheng Z, Li Z (2016) A novel dbn feature fusion model for
cross-corpus speech emotion recognition. Journal of Electrical and Computer En-
gineering 2016

Cangea C, Velickovic P, Jovanovic N, Kipf T, Liò P (2018) Towards sparse hierar-
chical graph classifiers. CoRR abs/1811.01287

Cao S, Lu W, Xu Q (2015) Grarep: Learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM international on conference
on information and knowledge management, pp 891–900

Cao Y, Peng H, Philip SY (2020) Multi-information source hin for medical con-
cept embedding. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Springer, pp 396–408

Cao Z, Simon T, Wei SE, Sheikh Y (2017) Realtime multi-person 2d pose estimation
using part affinity fields. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 7291–7299

Cao Z, Hidalgo G, Simon T, Wei SE, Sheikh Y (2019) Openpose: realtime multi-
person 2d pose estimation using part affinity fields. IEEE transactions on pattern
analysis and machine intelligence 43(1):172–186

Cappart Q, Chételat D, Khalil E, Lodi A, Morris C, Veličković P (2021)
Combinatorial optimization and reasoning with graph neural networks. CoRR
abs/2102.09544

Carlini N, Wagner D (2017) Towards Evaluating the Robustness of Neural Net-
works. IEEE Symposium on Security and Privacy pp 39–57, DOI 10.1109/SP.
2017.49

604 References

Caron M, Bojanowski P, Joulin A, Douze M (2018) Deep clustering for unsuper-
vised learning of visual features. In: Proceedings of the European Conference on
Computer Vision (ECCV), pp 132–149

Carreira J, Zisserman A (2017) Quo vadis, action recognition? a new model and the
kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp 6299–6308

Cartwright D, Harary F (1956) Structural balance: a generalization of heider’s the-
ory. Psychological review 63(5):277

Cen Y, Zou X, Zhang J, Yang H, Zhou J, Tang J (2019) Representation learning for
attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp
1358–1368

Cetoli A, Bragaglia S, O’Harney A, Sloan M (2017) Graph convolutional networks
for named entity recognition. In: Proceedings of the 16th International Workshop
on Treebanks and Linguistic Theories, pp 37–45

Chakrabarti D, Faloutsos C (2006) Graph mining: Laws, generators, and algorithms.
ACM computing surveys (CSUR) 38(1)

Chami I, Ying Z, Ré C, Leskovec J (2019) Hyperbolic graph convolutional neural
networks. In: Advances in neural information processing systems, pp 4868–4879

Chami I, Abu-El-Haija S, Perozzi B, Ré C, Murphy K (2020) Machine learning on
graphs: A model and comprehensive taxonomy. CoRR abs/2005.03675

Chang B, Jang G, Kim S, Kang J (2020a) Learning graph-based geographical latent
representation for point-of-interest recommendation. In: Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp
135–144

Chang H, Rong Y, Xu T, Huang W, Zhang H, Cui P, Zhu W, Huang J (2020b) A Re-
stricted Black-Box Adversarial Framework Towards Attacking Graph Embedding
Models. In: AAAI Conference on Artificial Intelligence, vol 34, pp 3389–3396,
DOI 10.1609/aaai.v34i04.5741

Chang J, Scherer S (2017) Learning representations of emotional speech with deep
convolutional generative adversarial networks. In: 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 2746–
2750

Chang S (2018) Scaling knowledge access and retrieval at airbnb. Airbnb Engineer-
ing and Data Science

Chang S, Han W, Tang J, Qi GJ, Aggarwal CC, Huang TS (2015) Heterogeneous
network embedding via deep architectures. In: Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp
119–128

Chao YW, Vijayanarasimhan S, Seybold B, Ross DA, Deng J, Sukthankar R (2018)
Rethinking the faster r-cnn architecture for temporal action localization. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp 1130–1139

Chen B, Sun L, Han X (2018a) Sequence-to-action: End-to-end semantic graph gen-
eration for semantic parsing. arXiv preprint arXiv:180900773

References 605

Chen B, Barzilay R, Jaakkola T (2019a) Path-augmented graph transformer net-
work. ICML 2019 Workshop on Learning and Reasoning with Graph-Structured
Data

Chen B, Zhang J, Zhang X, Tang X, Cai L, Chen H, Li C, Zhang P, Tang J (2020a)
Coad: Contrastive pre-training with adversarial fine-tuning for zero-shot expert
linking. arXiv preprint arXiv:201211336

Chen C, Li K, Teo SG, Zou X, Wang K, Wang J, Zeng Z (2019b) Gated residual re-
current graph neural networks for traffic prediction. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol 33, pp 485–492

Chen D, Lin Y, Li L, Li XR, Zhou J, Sun X, et al (2020b) Distance-wise graph
contrastive learning. arXiv preprint arXiv:201207437

Chen D, Lin Y, Li W, Li P, Zhou J, Sun X (2020c) Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view.
In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, AAAI
Press, pp 3438–3445

Chen H, Yin H, Wang W, Wang H, Nguyen QVH, Li X (2018b) Pme: projected
metric embedding on heterogeneous networks for link prediction. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp 1177–1186

Chen H, Xu Y, Huang F, Deng Z, Huang W, Wang S, He P, Li Z (2020d) Label-
aware graph convolutional networks. In: The 29th ACM International Conference
on Information and Knowledge Management, pp 1977–1980

Chen IY, Agrawal M, Horng S, Sontag D (2020e) Robustly extracting medical
knowledge from ehrs: A case study of learning a health knowledge graph. In:
Pac Symp Biocomput, World Scientific, pp 19–30

Chen J, Ma T, Xiao C (2018c) Fastgcn: Fast learning with graph convolutional net-
works via importance sampling. In: International Conference on Learning Repre-
sentations

Chen J, Zhu J, Song L (2018d) Stochastic training of graph convolutional net-
works with variance reduction. In: International Conference on Machine Learn-
ing, PMLR, pp 942–950

Chen J, Chen Y, Zheng H, Shen S, Yu S, Zhang D, Xuan Q (2020f) MGA: Momen-
tum Gradient Attack on Network. IEEE Transactions on Computational Social
Systems pp 1–10, DOI 10.1109/TCSS.2020.3031058

Chen J, Lei B, Song Q, Ying H, Chen DZ, Wu J (2020g) A hierarchical graph
network for 3d object detection on point clouds. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp 392–401

Chen J, Lin X, Shi Z, Liu Y (2020h) Link Prediction Adversarial Attack Via It-
erative Gradient Attack. IEEE Transactions on Computational Social Systems
7(4):1081–1094, DOI 10.1109/TCSS.2020.3004059

606 References

Chen J, Lin X, Xiong H, Wu Y, Zheng H, Xuan Q (2020i) Smoothing Adversarial
Training for GNN. IEEE Transactions on Computational Social Systems pp 1–12,
DOI 10.1109/TCSS.2020.3042628

Chen J, Xu H, Wang J, Xuan Q, Zhang X (2020j) Adversarial Detection on Graph
Structured Data. In: Workshop on Privacy-Preserving Machine Learning in Prac-
tice

Chen L, Tan B, Long S, Yu K (2018e) Structured dialogue policy with graph neural
networks. In: Proceedings of the 27th International Conference on Computational
Linguistics, pp 1257–1268

Chen L, Chen Z, Bruna J (2020k) On graph neural networks versus graph-
augmented mlps. arXiv preprint arXiv:201015116

Chen M, Wei Z, Huang Z, Ding B, Li Y (2020l) Simple and deep graph convolu-
tional networks. In: International Conference on Machine Learning, PMLR, pp
1725–1735

Chen Q, Zhou M (2018) A neural framework for retrieval and summarization of
source code. In: 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, pp 826–831

Chen T, Sun Y (2017) Task-guided and path-augmented heterogeneous network em-
bedding for author identification. In: Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, pp 295–304

Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z
(2015) Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:151201274

Chen T, Bian S, Sun Y (2019c) Are powerful graph neural nets necessary? a dissec-
tion on graph classification. arXiv preprint arXiv:190504579

Chen X, Ma H, Wan J, Li B, Xia T (2017) Multi-view 3d object detection network
for autonomous driving. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp 1907–1915

Chen XW, Liu M (2005) Prediction of protein–protein interactions using random
decision forest framework. Bioinformatics 21(24):4394–4400

Chen Y, Rohrbach M, Yan Z, Shuicheng Y, Feng J, Kalantidis Y (2019d) Graph-
based global reasoning networks. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp 433–442

Chen Y, Wu L, Zaki M (2020m) Iterative deep graph learning for graph neural net-
works: Better and robust node embeddings. Advances in Neural Information Pro-
cessing Systems 33

Chen Y, Wu L, Zaki MJ (2020n) Graphflow: Exploiting conversation flow with
graph neural networks for conversational machine comprehension. In: Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
pp 1230–1236

Chen Y, Wu L, Zaki MJ (2020o) Reinforcement learning based graph-to-sequence
model for natural question generation. In: 8th International Conference on Learn-
ing Representations

Chen Y, Wu L, Zaki MJ (2020p) Toward subgraph guided knowledge graph question
generation with graph neural networks. arXiv preprint arXiv:200406015

References 607

Chen YC, Bansal M (2018) Fast abstractive summarization with reinforce-selected
sentence rewriting. arXiv preprint arXiv:180511080

Chen YW, Song Q, Hu X (2021) Techniques for automated machine learning. ACM
SIGKDD Explorations Newsletter 22(2):35–50

Chen Z, Kommrusch SJ, Tufano M, Pouchet LN, Poshyvanyk D, Monperrus M
(2019e) Sequencer: Sequence-to-sequence learning for end-to-end program re-
pair. IEEE Transactions on Software Engineering pp 1–1, DOI 10.1109/TSE.
2019.2940179

Chen Z, Villar S, Chen L, Bruna J (2019f) On the equivalence between graph iso-
morphism testing and function approximation with gnns. In: Advances in Neural
Information Processing Systems, pp 15,868–15,876

Chen Z, Chen L, Villar S, Bruna J (2020q) Can graph neural networks count sub-
structures? vol 33

Chenxi Liu FSHAWHAYLFF Liang-Chieh Chen (2019) Auto-deeplab: Hierarchi-
cal neural architecture search for semantic image segmentation. arXiv preprint
arXiv:190102985

Chiang WL, Liu X, Si S, Li Y, Bengio S, Hsieh CJ (2019) Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pp 257–266

Chibotaru V, Bichsel B, Raychev V, Vechev M (2019) Scalable taint specification
inference with big code. In: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp 760–774

Chidambaram M, Yang Y, Cer D, Yuan S, Sung YH, Strope B, Kurzweil R (2019)
Learning cross-lingual sentence representations via a multi-task dual-encoder
model. ACL 2019 p 250

Chien E, Peng J, Li P, Milenkovic O (2021) Adaptive universal generalized pagerank
graph neural network. In: International Conference on Learning Representations

Chiu PH, Hripcsak G (2017) Ehr-based phenotyping: bulk learning and evaluation.
Journal of biomedical informatics 70:35–51

Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Ben-
gio Y (2014a) Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), Association for Com-
putational Linguistics, Doha, Qatar, pp 1724–1734, DOI 10.3115/v1/D14-1179

Cho M, Lee J, Lee KM (2010) Reweighted random walks for graph matching. In:
European conference on Computer vision, Springer, pp 492–505

Cho M, Sun J, Duchenne O, Ponce J (2014b) Finding matches in a haystack: A
max-pooling strategy for graph matching in the presence of outliers. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp 2083–2090

Choi E, Xu Z, Li Y, Dusenberry M, Flores G, Xue E, Dai AM (2020) Learning the
graphical structure of electronic health records with graph convolutional trans-
former. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, pp
606–613

608 References

Choromanski K, Likhosherstov V, Dohan D, Song X, Gane A, Sarlós T, Hawkins
P, Davis J, Mohiuddin A, Kaiser L, Belanger D, Colwell L, Weller A (2021)
Rethinking attention with performers. In: International Conference on Learning
Representations

Chorowski J, Weiss RJ, Bengio S, van den Oord A (2019) Unsupervised speech
representation learning using wavenet autoencoders. IEEE/ACM transactions on
audio, speech, and language processing 27(12):2041–2053

Chung F (2007) The heat kernel as the pagerank of a graph. Proceedings of the
National Academy of Sciences 104(50):19,735–19,740

Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:14123555

Cohen J, Rosenfeld E, Kolter Z (2019) Certified adversarial robustness via random-
ized smoothing. In: International Conference on Machine Learning, PMLR, pp
1310–1320

Cohen N, Shashua A (2016) Convolutional rectifier networks as generalized tensor
decompositions. In: International Conference on Machine Learning, PMLR, pp
955–963

Collard ML, Decker MJ, Maletic JI (2011) Lightweight transformation and fact
extraction with the srcml toolkit. In: Source Code Analysis and Manipulation
(SCAM), 2011 11th IEEE International Working Conference on, IEEE, pp 173–
184

Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Nat-
ural language processing (almost) from scratch. Journal of machine learning re-
search 12(ARTICLE):2493–2537

Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Annals
of operations research 153(1):235–256

mypy Contributors (2021) mypy - optional static typing for Python. http://
mypy-lang.org/, accessed: 2021-01-30

Corso G, Cavalleri L, ini D, Liò P, Velickovic P (2020) Principal neighbourhood
aggregation for graph nets. CoRR abs/2004.05718

Cortés-Coy LF, Linares-Vásquez M, Aponte J, Poshyvanyk D (2014) On automati-
cally generating commit messages via summarization of source code changes. In:
2014 IEEE 14th International Working Conference on Source Code Analysis and
Manipulation, IEEE, pp 275–284

Cosmo L, Kazi A, Ahmadi SA, Navab N, Bronstein M (2020) Latent patient net-
work learning for automatic diagnosis. arXiv preprint arXiv:200313620

Costa F, De Grave K (2010) Fast neighborhood subgraph pairwise distance kernel.
In: International Conference on Machine Learning, Omnipress, pp 255–262

Cotto KC, Wagner AH, Feng YY, Kiwala S, Coffman AC, Spies G, Wollam A, Spies
NC, Griffith OL, Griffith M (2018) Dgidb 3.0: a redesign and expansion of the
drug–gene interaction database. Nucleic acids research 46(D1):D1068–D1073

Cozzetto D, Minneci F, Currant H, et al (2016) FFPred 3: feature-based function
prediction for all gene ontology domains. Scientific Reports 6(1)

http://mypy-lang.org/
http://mypy-lang.org/

References 609

Cucurull G, Taslakian P, Vazquez D (2019) Context-aware visual compatibility pre-
diction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp 12,617–12,626

Cui J, Kingsbury B, Ramabhadran B, Sethy A, Audhkhasi K, Cui X, Kislal E,
Mangu L, Nussbaum-Thom M, Picheny M, et al (2015) Multilingual represen-
tations for low resource speech recognition and keyword search. In: 2015 IEEE
Workshop on Automatic Speech Recognition and Understanding (ASRU), IEEE,
pp 259–266

Cui P, Wang X, Pei J, Zhu W (2018) A survey on network embedding. IEEE Trans-
actions on Knowledge and Data Engineering 31(5):833–852

Cui Z, Henrickson K, Ke R, Wang Y (2019) Traffic graph convolutional recur-
rent neural network: A deep learning framework for network-scale traffic learn-
ing and forecasting. IEEE Transactions on Intelligent Transportation Systems
21(11):4883–4894

Cummins C, Fisches ZV, Ben-Nun T, Hoefler T, Leather H (2020) Programl:
Graph-based deep learning for program optimization and analysis. arXiv preprint
arXiv:200310536

Cussens J (2011) Bayesian network learning with cutting planes. In: Proceedings
of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp
153–160

Cvitkovic M, Singh B, Anandkumar A (2018) Deep learning on code with an un-
bounded vocabulary. In: Machine Learning for Programming

Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems 2(4):303–314

Cygan M, Pilipczuk M, Pilipczuk M, Wojtaszczyk JO (2012) Sitting closer to
friends than enemies, revisited. In: International Symposium on Mathematical
Foundations of Computer Science, Springer, pp 296–307

Dabkowski P, Gal Y (2017) Real time image saliency for black box classifiers. arXiv
preprint arXiv:170507857

Dahl G, Ranzato M, Mohamed Ar, Hinton GE (2010) Phone recognition with the
mean-covariance restricted boltzmann machine. Advances in neural information
processing systems 23:469–477

Dai B, Zhang Y, Lin D (2017) Detecting visual relationships with deep relational
networks. In: Proceedings of the IEEE conference on computer vision and Pattern
recognition, pp 3076–3086

Dai H, Dai B, Song L (2016) Discriminative embeddings of latent variable models
for structured data. In: International conference on machine learning, PMLR, pp
2702–2711

Dai H, Li H, Tian T, Huang X, Wang L, Zhu J, Song L (2018a) Adversarial attack on
graph structured data. In: International conference on machine learning, PMLR,
pp 1115–1124

Dai H, Tian Y, Dai B, Skiena S, Song L (2018b) Syntax-directed variational autoen-
coder for structured data. arXiv preprint arXiv:180208786

Dai Q, Li Q, Tang J, Wang D (2018c) Adversarial network embedding. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol 32

610 References

Dai R, Xu S, Gu Q, Ji C, Liu K (2020) Hybrid spatio-temporal graph convolutional
network: Improving traffic prediction with navigation data. In: Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp 3074–3082

Daitch SI, Kelner JA, Spielman DA (2009) Fitting a graph to vector data. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp
201–208

Damonte M, Cohen SB (2019) Structural neural encoders for amr-to-text genera-
tion. arXiv preprint arXiv:190311410

Dana JM, Gutmanas A, Tyagi N, et al (2018) SIFTS: updated structure integra-
tion with function, taxonomy and sequences resource allows 40-fold increase
in coverage of structure-based annotations for proteins. Nucleic Acids Research
47(D1):D482–D489

Das S, Lee D, Sillitoe I, et al (2015) Functional classification of CATH superfam-
ilies: a domain-based approach for protein function annotation. Bioinformatics
31(21):3460–3467

Dasgupta SS, Ray SN, Talukdar P (2018) Hyte: Hyperplane-based temporally aware
knowledge graph embedding. In: Empirical Methods in Natural Language Pro-
cessing, pp 2001–2011

Davidson TR, Falorsi L, De Cao N, Kipf T, Tomczak JM (2018) Hyperspherical
variational auto-encoders. In: 34th Conference on Uncertainty in Artificial Intel-
ligence 2018, UAI 2018, Association For Uncertainty in Artificial Intelligence
(AUAI), pp 856–865

Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, Wiegers TC,
Mattingly CJ (2019) The comparative toxicogenomics database: update 2019.
Nucleic acids research 47(D1):D948–D954

De Cao N, Kipf T (2018) Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:180511973

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2012) Using ir
methods for labeling source code artifacts: Is it worthwhile? In: 2012 20th IEEE
International Conference on Program Comprehension (ICPC), IEEE, pp 193–202

Dearman D, Cox A, Fisher M (2005) Adding control-flow to a visual data-flow
representation. In: 13th International Workshop on Program Comprehension
(IWPC’05), IEEE, pp 297–306

Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C (1991)
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. correlation with molecular orbital energies and hydrophobicity. Jour-
nal of medicinal chemistry 34(2):786–797

Defferrard M, X B, Vandergheynst P (2016) Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp 3844–3852

Delaney JS (2004) Esol: estimating aqueous solubility directly from molecular
structure. Journal of chemical information and computer sciences 44(3):1000–
1005

References 611

Deng C, Zhao Z, Wang Y, Zhang Z, Feng Z (2020) Graphzoom: A multi-level spec-
tral approach for accurate and scalable graph embedding. In: International Con-
ference on Learning Representations

Deng Z, Dong Y, Zhu J (2019) Batch Virtual Adversarial Training for Graph Con-
volutional Networks. In: ICML 2019 Workshop: Learning and Reasoning with
Graph-Structured Representations

Desa U (2018) Revision of world urbanization prospects. UN Department of Eco-
nomic and Social Affairs 16

Dettmers T, Minervini P, Stenetorp P, Riedel S (2018) Convolutional 2d knowledge
graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol 32

Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
Association for Computational Linguistics, Minneapolis, Minnesota, pp 4171–
4186, DOI 10.18653/v1/N19-1423

Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without eigenvectors a
multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29(11):1944–1957

Diao Z, Wang X, Zhang D, Liu Y, Xie K, He S (2019) Dynamic spatial-temporal
graph convolutional neural networks for traffic forecasting. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol 33, pp 890–897

Dinella E, Dai H, Li Z, Naik M, Song L, Wang K (2020) Hoppity: Learning graph
transformations to detect and fix bugs in programs. In: International Conference
on Learning Representations (ICLR)

Ding M, Zhou C, Chen Q, Yang H, Tang J (2019a) Cognitive graph for multi-hop
reading comprehension at scale. In: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp 2694–2703

Ding S, Qu S, Xi Y, Sangaiah AK, Wan S (2019b) Image caption generation with
high-level image features. Pattern Recognition Letters 123:89–95

Ding Y, Yao Q, Zhang T (2020a) Propagation model search for graph neural net-
works. arXiv preprint arXiv:201003250

Ding Y, Zhou X, Bao H, Li Y, Hamann C, Spears S, Yuan Z (2020b) Cycling-net:
A deep learning approach to predicting cyclist behaviors from geo-referenced
egocentric video data. Association for Computing Machinery, SIGSPATIAL ’20,
p 337–346, DOI 10.1145/3397536.3422258

Do K, Tran T, Venkatesh S (2019) Graph transformation policy network for chemi-
cal reaction prediction. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp 750–760

Doersch C, Gupta A, Efros AA (2015) Unsupervised visual representation learn-
ing by context prediction. In: 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, IEEE Computer So-
ciety, pp 1422–1430, DOI 10.1109/ICCV.2015.167

612 References

Dohkan S, Koike A, Takagi T (2006) Improving the performance of an svm-based
method for predicting protein-protein interactions. In Silico Biology 6:515–529,
6

Domingo-Fernández D, Baksi S, Schultz B, Gadiya Y, Karki R, Raschka T, Ebeling
C, Hofmann-Apitius M, et al (2020) Covid-19 knowledge graph: a computable,
multi-modal, cause-and-effect knowledge model of covid-19 pathophysiology.
BioRxiv

Donahue C, McAuley J, Puckette M (2018) Synthesizing audio with generative ad-
versarial networks. arXiv preprint arXiv:180204208 1

Donahue J, Anne Hendricks L, Guadarrama S, Rohrbach M, Venugopalan S, Saenko
K, Darrell T (2015) Long-term recurrent convolutional networks for visual recog-
nition and description. In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp 2625–2634

Doncheva NT, Morris JH, Gorodkin J, Jensen LJ (2018) Cytoscape StringApp: Net-
work analysis and visualization of proteomics data. Journal of Proteome Research
18(2):623–632

Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S,
Zhang W (2014) Knowledge vault: A web-scale approach to probabilistic knowl-
edge fusion. In: Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp 601–610

Dong X, Thanou D, Frossard P, Vandergheynst P (2016) Learning laplacian matrix
in smooth graph signal representations. IEEE Transactions on Signal Processing
64(23):6160–6173

Dong X, Thanou D, Rabbat M, Frossard P (2019) Learning graphs from data: A
signal representation perspective. IEEE Signal Processing Magazine 36(3):44–
63

Dong Y, Chawla NV, Swami A (2017) metapath2vec: Scalable representation learn-
ing for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD in-
ternational conference on knowledge discovery and data mining, pp 135–144

Donsker M, Varadhan S (1976) Asymptotic evaluation of certain markov process ex-
pectations for large time—iii. Communications on Pure and Applied Mathematics
29(4):389–461, copyright: Copyright 2016 Elsevier B.V., All rights reserved.

Dos Santos C, Gatti M (2014) Deep convolutional neural networks for sentiment
analysis of short texts. In: Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, pp 69–78

Dosovitskiy A, Springenberg JT, Riedmiller MA, Brox T (2014) Discriminative un-
supervised feature learning with convolutional neural networks. In: Ghahramani
Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp
766–774

Dosovitskiy A, et al (2021) An image is worth 16x16 words: Transformers for image
recognition at scale. ICLR

Dou Y, Liu Z, Sun L, Deng Y, Peng H, Yu PS (2020) Enhancing graph neural
network-based fraud detectors against camouflaged fraudsters. In: Proceedings

References 613

of the 29th ACM International Conference on Information & Knowledge Man-
agement, pp 315–324

Du M, Liu N, Yang F, Hu X (2019) Learning credible deep neural networks with
rationale regularization. In: 2019 IEEE International Conference on Data Mining
(ICDM), IEEE, pp 150–159

Du M, Yang F, Zou N, Hu X (2020) Fairness in deep learning: A computational
perspective. IEEE Intelligent Systems

Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik
A, Adams RP (2015a) Convolutional networks on graphs for learning molecular
fingerprints. In: Advances in neural information processing systems, pp 2224–
2232

Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik
A, Adams RP (2015b) Convolutional networks on graphs for learning molecular
fingerprints. In: Advances in Neural Information Processing Systems, pp 2224–
2232

Dvijotham KD, Hayes J, Balle B, Kolter Z, Qin C, Gyorgy A, Xiao K, Gowal S,
Kohli P (2020) A framework for robustness certification of smoothed classifiers
using f-divergences. In: International Conference on Learning Representations,
ICLR

Dwivedi VP, Joshi CK, Laurent T, Bengio Y, Bresson X (2020) Benchmarking graph
neural networks. arXiv preprint arXiv:200300982

Dyer C, Ballesteros M, Ling W, Matthews A, Smith NA (2015) Transition-
based dependency parsing with stack long short-term memory. arXiv preprint
arXiv:150508075

Easley D, Kleinberg J, et al (2012) Networks, crowds, and markets: Reasoning about
a highly connected world. Significance 9(1):43–44

Eksombatchai C, Jindal P, Liu JZ, Liu Y, Sharma R, Sugnet C, Ulrich M, Leskovec
J (2018) Pixie: A system for recommending 3+ billion items to 200+ million
users in real-time. In: Proceedings of the 2018 world wide web conference, pp
1775–1784

Elinas P, Bonilla EV, Tiao L (2020) Variational inference for graph convolutional
networks in the absence of graph data and adversarial settings. In: Advances in
Neural Information Processing Systems, vol 33, pp 18,648–18,660

Elkan C, Noto K (2008) Learning classifiers from only positive and unlabeled data.
In: Proceedings of the 14th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp 213–220

Elman JL (1990) Finding structure in time. Cognitive Science 14(2):179–211
Elmsallati A, Clark C, Kalita J (2016) Global alignment of protein-protein in-

teraction networks: A survey. IEEE/ACM Trans Comput Biol Bioinformatics
13(4):689–705

Entezari N, Al-Sayouri SA, Darvishzadeh A, Papalexakis EE (2020) All you need
is low (rank) defending against adversarial attacks on graphs. In: Proceedings of
the 13th International Conference on Web Search and Data Mining, pp 169–177

Erdős P, Rényi A (1959) On random graphs i. Publ Math Debrecen 6:290–297

614 References

Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung
Acad Sci 5(1):17–60

Erkan G, Radev DR (2004) Lexrank: Graph-based lexical centrality as salience in
text summarization. Journal of artificial intelligence research 22:457–479

Ernst MD, Perkins JH, Guo PJ, McCamant S, Pacheco C, Tschantz MS, Xiao C
(2007) The Daikon system for dynamic detection of likely invariants. Science of
computer programming 69(1-3):35–45

Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A, Kohno T,
Song D (2018) Robust physical-world attacks on deep learning visual classifica-
tion. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
pp 1625–1634

Faghri F, Fleet DJ, Kiros JR, Fidler S (2017) Vse++: Improving visual-semantic
embeddings with hard negatives. arXiv preprint arXiv:170705612

Fan Y, Hou S, Zhang Y, Ye Y, Abdulhayoglu M (2018) Gotcha-sly malware! scor-
pion a metagraph2vec based malware detection system. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp 253–262

Fang Y, Sun S, Gan Z, Pillai R, Wang S, Liu J (2020) Hierarchical graph network
for multi-hop question answering. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp 8823–8838

Fatemi B, Asri LE, Kazemi SM (2021) Slaps: Self-supervision improves structure
learning for graph neural networks. arXiv preprint arXiv:210205034

Feng B, Wang Y, Wang Z, Ding Y (2021) Uncertainty-aware Attention Graph Neu-
ral Network for Defending Adversarial Attacks. In: AAAI Conference on Artifi-
cial Intelligence

Feng F, He X, Tang J, Chua T (2019a) Graph adversarial training: Dynamically
regularizing based on graph structure. TKDE pp 1–1

Feng J, Huang M, Wang M, Zhou M, Hao Y, Zhu X (2016) Knowledge graph
embedding by flexible translation. In: Proceedings of the Fifteenth International
Conference on Principles of Knowledge Representation and Reasoning, pp 557–
560

Feng W, Zhang J, Dong Y, Han Y, Luan H, Xu Q, Yang Q, Kharlamov E, Tang J
(2020) Graph random neural networks for semi-supervised learning on graphs. In:
Advances in Neural Information Processing Systems, vol 33, pp 22,092–22,103

Feng X, Zhang Y, Glass J (2014) Speech feature denoising and dereverberation via
deep autoencoders for noisy reverberant speech recognition. In: 2014 IEEE inter-
national conference on acoustics, speech and signal processing (ICASSP), IEEE,
pp 1759–1763

Feng Y, Lv F, Shen W, Wang M, Sun F, Zhu Y, Yang K (2019b) Deep session interest
network for click-through rate prediction. arXiv preprint arXiv:190506482

Feng Y, You H, Zhang Z, Ji R, Gao Y (2019c) Hypergraph neural networks. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 3558–
3565

Feurer M, Hutter F (2019) Hyperparameter optimization. In: Automated Machine
Learning, Springer, Cham, pp 3–33

References 615

Févotte C, Idier J (2011) Algorithms for nonnegative matrix factorization with the
β -divergence. Neural computation 23(9):2421–2456

Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geo-
metric. CoRR abs/1903.02428

Fey M, Lenssen JE, Weichert F, Müller H (2018) Splinecnn: Fast geometric deep
learning with continuous b-spline kernels. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp 869–877

Fey M, Lenssen JE, Morris C, Masci J, Kriege NM (2020) Deep graph matching
consensus. In: International Conference on Learning Representations

Finn RD, Bateman A, Clements J, et al (2013) Pfam: the protein families database.
Nucleic Acids Research 42(D1):D222–D230

Foggia P, Percannella G, Vento M (2014) Graph matching and learning in pattern
recognition in the last 10 years. International Journal of Pattern Recognition and
Artificial Intelligence 28(01):1450,001

Foltman M, Sanchez-Diaz A (2016) Studying protein–protein interactions in bud-
ding yeast using co-immunoprecipitation. In: Yeast Cytokinesis, Springer, pp
239–256, DOI 10.1007/978-1-4939-3145-3 17

Fong RC, Vedaldi A (2017) Interpretable explanations of black boxes by meaningful
perturbation. In: Proceedings of the IEEE International Conference on Computer
Vision, pp 3429–3437

Fortin S (1996) The graph isomorphism problem
Fortunato S (2010) Community detection in graphs. Physics reports 486(3-5):75–

174
Fouss F, Pirotte A, Renders JM, Saerens M (2007) Random-walk computation of

similarities between nodes of a graph with application to collaborative recom-
mendation. IEEE Transactions on knowledge and data engineering 19(3):355–
369

Fowkes J, Chanthirasegaran P, Ranca R, Allamanis M, Lapata M, Sutton C (2017)
Autofolding for source code summarization. IEEE Transactions on Software En-
gineering 43(12):1095–1109

Franceschi L, Niepert M, Pontil M, He X (2019) Learning discrete structures for
graph neural networks. In: Proceedings of the 36th International Conference on
Machine Learning, vol 97, pp 1972–1982

Freeman LA (2003) A refresher in data flow diagramming: an effective aid for ana-
lysts. Commun ACM 46(9):147–151, DOI 10.1145/903893.903930

Freeman LC (2000) Visualizing social networks. Journal of social structure 1(1):4
Fröhlich H, Wegner JK, Sieker F, Zell A (2005) Optimal assignment kernels for

attributed molecular graphs. In: International Conference on Machine Learning,
pp 225–232

Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic
flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese
Association of Automation (YAC), IEEE, pp 324–328

Fu Ty, Lee WC, Lei Z (2017) Hin2vec: Explore meta-paths in heterogeneous infor-
mation networks for representation learning. In: Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, pp 1797–1806

616 References

Fu X, Zhang J, Meng Z, King I (2020) Magnn: metapath aggregated graph neural
network for heterogeneous graph embedding. In: Proceedings of The Web Con-
ference 2020, pp 2331–2341

Fu Y, Ma Y (2012) Graph embedding for pattern analysis. Springer Science & Busi-
ness Media

Gabrié M, Manoel A, Luneau C, Barbier J, Macris N, Krzakala F, Zdeborová L
(2019) Entropy and mutual information in models of deep neural networks. Jour-
nal of Statistical Mechanics: Theory and Experiment 2019(12):124,014

Gao D, Li K, Wang R, Shan S, Chen X (2020a) Multi-modal graph neural network
for joint reasoning on vision and scene text. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp 12,746–12,756

Gao H, Ji S (2019) Graph u-nets. In: International Conference on Machine Learning,
PMLR, pp 2083–2092

Gao H, Wang Z, Ji S (2018a) Large-scale learnable graph convolutional networks.
In: Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, ACM, pp 1416–1424

Gao J, Yang Z, Nevatia R (2017) Cascaded boundary regression for temporal action
detection. arXiv preprint arXiv:170501180

Gao J, Li X, Xu YE, Sisman B, Dong XL, Yang J (2019a) Efficient knowledge graph
accuracy evaluation. arXiv preprint arXiv:190709657

Gao S, Chen C, Xing Z, Ma Y, Song W, Lin SW (2019b) A neural model for
method name generation from functional description. In: 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER),
IEEE, pp 414–421

Gao X, Hu W, Qi GJ (2021) Unsupervised learning of topology transformation
equivariant representations

Gao Y, Guo X, Zhao L (2018b) Local event forecasting and synthesis using un-
paired deep graph translations. In: Proceedings of the 2nd ACM SIGSPATIAL
Workshop on Analytics for Local Events and News, pp 1–8

Gao Y, Wu L, Homayoun H, Zhao L (2019c) Dyngraph2seq: Dynamic-graph-to-
sequence interpretable learning for health stage prediction in online health fo-
rums. In: 2019 IEEE International Conference on Data Mining (ICDM), IEEE,
pp 1042–1047

Gao Y, Yang H, Zhang P, Zhou C, Hu Y (2020b) Graph neural architecture search.
In: International Joint Conference on Artificial Intelligence, pp 1403–1409

Garcia V, Bruna J (2017) Few-shot learning with graph neural networks. arXiv
preprint arXiv:171104043

Garcı́a-Durán A, Dumančić S, Niepert M (2018) Learning sequence encoders for
temporal knowledge graph completion. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp 4816–4821, DOI 10.
18653/v1/D18-1516

Garey MR (1979) A guide to the theory of np-completeness. Computers and in-
tractability

Garey MR, Johnson DS (2002) Computers and intractability, vol 29. wh freeman
New York

References 617

Garg V, Jegelka S, Jaakkola T (2020) Generalization and representational limits
of graph neural networks. In: International Conference on Machine Learning,
PMLR, pp 3419–3430

Gaudelet T, Day B, Jamasb AR, Soman J, Regep C, Liu G, Hayter JBR, Vickers R,
Roberts C, Tang J, Roblin D, Blundell TL, Bronstein MM, Taylor-King JP (2020)
Utilising graph machine learning within drug discovery and development. CoRR
abs/2012.05716

Gavin AC, Bösche M, Krause R, et al (2002) Functional organization of the yeast
proteome by systematic analysis of protein complexes. Nature 415(6868):141–
147

Geisler S, Zügner D, Günnemann S (2020) Reliable graph neural networks via ro-
bust aggregation. Advances in Neural Information Processing Systems 33

Geisler S, Zügner D, Bojchevski A, Günnemann S (2021) Attacking Graph Neural
Networks at Scale. In: Deep Learning for Graphs at AAAI Conference on Artifi-
cial Intelligence

Gema RP, Robles G, Alexander S, Zaidman A, Germán DM, Gonzalez-Barahona
JM (2020) How bugs are born: a model to identify how bugs are introduced in
software components. Empirical Software Engineering 25(2):1294–1340

Geng X, Li Y, Wang L, Zhang L, Yang Q, Ye J, Liu Y (2019) Spatiotemporal multi-
graph convolution network for ride-hailing demand forecasting. In: Proceedings
of the AAAI conference on artificial intelligence, vol 33, pp 3656–3663

Ghosal D, Hazarika D, Majumder N, Roy A, Poria S, Mihalcea R (2020) Kingdom:
Knowledge-guided domain adaptation for sentiment analysis. arXiv preprint
arXiv:200500791

Gidaris S, Singh P, Komodakis N (2018) Unsupervised representation learning by
predicting image rotations. In: 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings, OpenReview.net

Gilbert EN (1959) Random graphs. The Annals of Mathematical Statistics
30(4):1141–1144

Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message
passing for quantum chemistry. In: Precup D, Teh YW (eds) Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, PMLR, Proceedings of Machine Learning
Research, vol 70, pp 1263–1272

Girvan M, Newman ME (2002) Community structure in social and biological net-
works. Proceedings of the national academy of sciences 99(12):7821–7826

Gligorijevic V, Renfrew PD, Kosciolek T, Leman JK, Berenberg D, Vatanen T,
Chandler C, Taylor BC, Fisk IM, Vlamakis H, et al (2020) Structure-based func-
tion prediction using graph convolutional networks. bioRxiv p 786236

Goel R, Kazemi SM, Brubaker M, Poupart P (2020) Diachronic embedding for
temporal knowledge graph completion. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol 34, pp 3988–3995

618 References

Gold S, Rangarajan A (1996) A graduated assignment algorithm for graph match-
ing. IEEE Transactions on pattern analysis and machine intelligence 18(4):377–
388

Goldberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to
weave an information tapestry. Communications of the ACM 35(12):61–70

Gong X, Chang S, Jiang Y, Wang Z (2019) Autogan: Neural architecture search for
generative adversarial networks. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp 3224–3234

Gong Y, Jiang Z, Feng Y, Hu B, Zhao K, Liu Q, Ou W (2020) Edgerec: Recom-
mender system on edge in mobile taobao. In: Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management, pp 2477–2484

Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations

Goodfellow IJ, Pouget-Abadie J, Mirza M, Bing X, Bengio Y (2014a) Generative
adversarial nets. MIT Press

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S,
Courville A, Bengio Y (2014b) Generative adversarial networks. arXiv preprint
arXiv:14062661

Goodwin T, Harabagiu SM (2013) Automatic generation of a qualified medical
knowledge graph and its usage for retrieving patient cohorts from electronic med-
ical records. In: 2013 IEEE Seventh International Conference on Semantic Com-
puting, IEEE, pp 363–370

Gori M, Monfardini G, Scarselli F (2005) A new model for learning in graph do-
mains. In: IEEE International Joint Conference on Neural Networks, vol 2, pp
729–734, DOI 10.1109/IJCNN.2005.1555942

Goyal P, Ferrara E (2018) Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge-Based Systems 151:78–94

Grattarola D, Alippi C (2020) Graph neural networks in TensorFlow and Keras with
Spektral. CoRR abs/2006.12138, 2006.12138

Graves A (2013) Generating sequences with recurrent neural networks. CoRR
abs/1308.0850

Graves A, Fernández S, Schmidhuber J (2005) Bidirectional lstm networks for im-
proved phoneme classification and recognition. In: International Conference on
Artificial Neural Networks, Springer, pp 799–804

Grbovic M, Cheng H (2018) Real-time personalization using embeddings for search
ranking at airbnb. In: Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp 311–320

Greff K, Srivastava RK, Koutnı́k J, Steunebrink BR, Schmidhuber J (2016) Lstm: A
search space odyssey. IEEE transactions on neural networks and learning systems
28(10):2222–2232

Gremse M, Chang A, Schomburg I, Grote A, Scheer M, Ebeling C, Schomburg D
(2010) The brenda tissue ontology (bto): the first all-integrating ontology of all
organisms for enzyme sources. Nucleic acids research 39(suppl 1):D507–D513

Grohe M (2017) Descriptive complexity, canonisation, and definable graph structure
theory, vol 47. Cambridge University Press

References 619

Grohe M, Otto M (2015) Pebble games and linear equations. The Journal of Sym-
bolic Logic pp 797–844

Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pp 855–864

Grover A, Zweig A, Ermon S (2019) Graphite: Iterative generative modeling of
graphs. In: International Conference on Machine Learning, pp 2434–2444

Gu J, Cai J, Joty SR, Niu L, Wang G (2018) Look, imagine and match: Improving
textual-visual cross-modal retrieval with generative models. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp 7181–
7189

Gu S, Lillicrap T, Ghahramani Z, Turner RE, Levine S (2016) Q-prop: Sample-
efficient policy gradient with an off-policy critic. arXiv preprint arXiv:161102247

Guan Y, Myers CL, Hess DC, et al (2008) Predicting gene function in a hierarchical
context with an ensemble of classifiers. Genome Biology 9(Suppl 1):S3

Gui H, Liu J, Tao F, Jiang M, Norick B, Han J (2016) Large-scale embedding learn-
ing in heterogeneous event data. In: 2016 IEEE 16th International Conference on
Data Mining (ICDM), IEEE, pp 907–912

Gui T, Zou Y, Zhang Q, Peng M, Fu J, Wei Z, Huang XJ (2019) A lexicon-based
graph neural network for chinese ner. In: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 1039–
1049

Guille A, Hacid H, Favre C, Zighed DA (2013) Information diffusion in online
social networks: A survey. ACM Sigmod Record 42(2):17–28

Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved train-
ing of wasserstein gans. arXiv preprint arXiv:170400028

Guo G, Ouyang S, He X, Yuan F, Liu X (2019a) Dynamic item block and prediction
enhancing block for sequential recommendation. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pp 1373–1379

Guo H, Tang R, Ye Y, Li Z, He X (2017) Deepfm: a factorization-machine based
neural network for ctr prediction. In: Proceedings of the International Joint Con-
ference on Artificial Intelligence, pp 1725–1731

Guo M, Chou E, Huang DA, Song S, Yeung S, Fei-Fei L (2018a) Neural graph
matching networks for fewshot 3d action recognition. In: Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pp 653–669

Guo S, Lin Y, Feng N, Song C, Wan H (2019b) Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol 33, pp 922–929

Guo X, Wu L, Zhao L (2018b) Deep graph translation. arXiv preprint
arXiv:180509980

Guo X, Zhao L, Nowzari C, Rafatirad S, Homayoun H, Dinakarrao SMP (2019c)
Deep multi-attributed graph translation with node-edge co-evolution. In: 2019
IEEE International Conference on Data Mining (ICDM), IEEE, pp 250–259

620 References

Guo Y, Li M, Pu X, et al (2010) Pred ppi: a server for predicting protein-protein
interactions based on sequence data with probability assignment. BMC Research
Notes 3(1):145

Guo Z, Zhang Y, Lu W (2019d) Attention guided graph convolutional networks for
relation extraction. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp 241–251

Guo Z, Zhang Y, Teng Z, Lu W (2019e) Densely connected graph convolutional net-
works for graph-to-sequence learning. Transactions of the Association for Com-
putational Linguistics 7:297–312

Gurwitz D (2020) Repurposing current therapeutics for treating covid-19: A vital
role of prescription records data mining. Drug development research 81(7):777–
781

Gutmann M, Hyvärinen A (2010) Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In: Proceedings of the International
Conference on Artificial Intelligence and Statistics

Ha D, Dai A, Le QV (2017) Hypernetworks. In: Proceedings of the International
Conference on Learning Representations (ICLR)

Haghighi A, Ng AY, Manning CD (2005) Robust textual inference via graph match-
ing. In: Proceedings of Human Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language Processing, pp 387–394

Haiduc S, Aponte J, Moreno L, Marcus A (2010) On the use of automated text
summarization techniques for summarizing source code. In: 2010 17th Working
Conference on Reverse Engineering, IEEE, pp 35–44

Haldar R, Wu L, Xiong J, Hockenmaier J (2020) A multi-perspective architecture
for semantic code search. arXiv preprint arXiv:200506980

Hamaguchi T, Oiwa H, Shimbo M, Matsumoto Y (2017) Knowledge transfer for
out-of-knowledge-base entities: a graph neural network approach. In: Proceed-
ings of the 26th International Joint Conference on Artificial Intelligence, pp
1802–1808

Hamilton W, Ying Z, Leskovec J (2017a) Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol 30

Hamilton WL (2020) Graph representation learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning 14(3):1–159

Hamilton WL, Ying R, Leskovec J (2017b) Inductive representation learning on
large graphs. In: Advances in Neural Information Processing Systems, pp 1025–
1035

Hamilton WL, Ying R, Leskovec J (2017c) Representation learning on graphs:
Methods and applications. IEEE Data Engineering Bulletin 40(3):52–74

Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spec-
tral graph theory. Applied and Computational Harmonic Analysis 30(2):129–150

Han J, Luo P, Wang X (2019) Deep self-learning from noisy labels. In: 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, IEEE, pp 5137–5146, DOI
10.1109/ICCV.2019.00524

References 621

Han JDJ, Dupuy D, Bertin N, et al (2005) Effect of sampling on topology predictions
of protein-protein interaction networks. Nature Biotechnology 23(7):839–844

Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y, et al
(2020) A survey on visual transformer. arXiv preprint arXiv:201212556

Han X, Zhu H, Yu P, Wang Z, Yao Y, Liu Z, Sun M (2018) Fewrel: A large-scale su-
pervised few-shot relation classification dataset with state-of-the-art evaluation.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pp 4803–4809

Haque S, LeClair A, Wu L, McMillan C (2020) Improved automatic summarization
of subroutines via attention to file context. International Conference on Mining
Software Repositories p 300–310

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE transactions on Systems Science and Cyber-
netics 4(2):100–107

Hashemifar S, Neyshabur B, Khan AA, et al (2018) Predicting protein–protein inter-
actions through sequence-based deep learning. Bioinformatics 34(17):i802–i810

Hasibi R, Michoel T (2020) Predicting gene expression from network topology us-
ing graph neural networks. arXiv preprint arXiv:200503961

Hassan AE, Xie T (2010) Software intelligence: the future of mining software en-
gineering data. In: Proceedings of the FSE/SDP workshop on Future of software
engineering research, pp 161–166

Hassani K, Khasahmadi AH (2020) Contrastive multi-view representation learning
on graphs. In: International Conference on Machine Learning, PMLR, pp 4116–
4126

Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner
S, Swainston N, Mendes P, Steinbeck C (2016) Chebi in 2016: Improved
services and an expanding collection of metabolites. Nucleic acids research
44(D1):D1214–D1219

Haveliwala TH (2002) Topic-sensitive pagerank. In: Proceedings of the 11th inter-
national conference on World Wide Web, ACM, pp 517–526

He K, Zhang X, Ren S, Sun J (2016a) Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp 770–778

He K, Gkioxari G, Dollár P, Girshick R (2017a) Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision, pp 2961–2969

He Q, Chen B, Agarwal D (2016b) Building the linkedin knowledge graph. Engi-
neering linkedin com

He X, Niyogi P (2004) Locality preserving projections. Advances in neural infor-
mation processing systems 16(16):153–160

He X, Liao L, Zhang H, Nie L, Hu X, Chua TS (2017b) Neural collaborative filter-
ing. In: Proceedings of the 26th international conference on world wide web, pp
173–182

He X, Deng K, Wang X, Li Y, Zhang Y, Wang M (2020) Lightgcn: Simplifying
and powering graph convolution network for recommendation. In: Proceedings

622 References

of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp 639–648

He Y, Song Y, Li J, Ji C, Peng J, Peng H (2019) Hetespaceywalk: A heteroge-
neous spacey random walk for heterogeneous information network embedding.
In: Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, pp 639–648

Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998) Support vector ma-
chines. IEEE Intelligent Systems and their applications 13(4):18–28

Heimer RZ, Myrseth KOR, Schoenle RS (2019) Yolo: Mortality beliefs and house-
hold finance puzzles. The Journal of Finance 74(6):2957–2996

Helfgott HA, Bajpai J, Dona D (2017) Graph isomorphisms in quasi-polynomial
time. arXiv preprint arXiv:171004574

Helgason S (1979) Differential geometry, Lie groups, and symmetric spaces. Aca-
demic press

Hellendoorn VJ, Bird C, Barr ET, Allamanis M (2018) Deep learning type infer-
ence. In: Proceedings of the 2018 26th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineer-
ing, pp 152–162

Hellendoorn VJ, Devanbu PT, Polozov O, Marron M (2019a) Are my invariants
valid? a learning approach. arXiv preprint arXiv:190306089

Hellendoorn VJ, Sutton C, Singh R, Maniatis P, Bieber D (2019b) Global relational
models of source code. In: International Conference on Learning Representations

Henaff M, Bruna J, LeCun Y (2015) Deep convolutional networks on graph-
structured data. arXiv preprint arXiv:150605163

Henderson K, Gallagher B, Eliassi-Rad T, Tong H, Basu S, Akoglu L, Koutra D,
Faloutsos C, Li L (2012) Rolx: structural role extraction & mining in large graphs.
In: the ACM SIGKDD international conference on Knowledge discovery and data
mining, pp 1231–1239

Hensman S (2004) Construction of conceptual graph representation of texts. In:
Proceedings of the Student Research Workshop at HLT-NAACL 2004, pp 49–54

Hermann KM, Hill F, Green S, Wang F, Faulkner R, Soyer H, Szepesvari D, Czar-
necki WM, Jaderberg M, Teplyashin D, et al (2017) Grounded language learning
in a simulated 3d world. arXiv preprint arXiv:170606551

Herzig R, Levi E, Xu H, Gao H, Brosh E, Wang X, Globerson A, Darrell T
(2019) Spatio-temporal action graph networks. In: 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pp 2347–2356, DOI
10.1109/ICCVW.2019.00288

Hidasi B, Karatzoglou A, Baltrunas L, Tikk D (2015) Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:151106939

Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Ler-
chner A (2017) beta-vae: Learning basic visual concepts with a constrained vari-
ational framework. ICLR

Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, Green
A, Khankhanian P, Baranzini SE (2017) Systematic integration of biomedical
knowledge prioritizes drugs for repurposing. Elife 6:e26,726

References 623

Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief
nets. Neural computation 18(7):1527–1554

Hirsch CN, Hirsch CD, Brohammer AB, et al (2016) Draft assembly of elite inbred
line PH207 provides insights into genomic and transcriptome diversity in maize.
The Plant Cell 28(11):2700–2714

Hjelm RD, Fedorov A, Lavoie-Marchildon S, Grewal K, Bachman P, Trischler A,
Bengio Y (2018) Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:180806670

Ho Y, Gruhler A, Heilbut A, et al (2002) Systematic identification of pro-
tein complexes in saccharomyces cerevisiae by mass spectrometry. Nature
415(6868):180–183

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural computation
9(8):1735–1780

Hoff PD, Raftery AE, Handcock MS (2002) Latent space approaches to social net-
work analysis. Journal of the american Statistical association 97(460):1090–1098

Hoffart J, Suchanek FM, Berberich K, Lewis-Kelham E, De Melo G, Weikum G
(2011) Yago2: exploring and querying world knowledge in time, space, context,
and many languages. In: Proceedings of the 20th international conference com-
panion on World wide web, pp 229–232

Hoffman MD, Blei DM, Wang C, Paisley J (2013) Stochastic variational inference.
The Journal of Machine Learning Research 14(1):1303–1347

Hogan A, Blomqvist E, Cochez M, d’Amato C, de Melo G, Gutierrez C, Gayo JEL,
Kirrane S, Neumaier S, Polleres A, et al (2020) Knowledge graphs. arXiv preprint
arXiv:200302320

Holland PW, Laskey KB, Leinhardt S (1983) Stochastic blockmodels: First steps.
Social networks 5(2):109–137

Holmes R, Murphy GC (2005) Using structural context to recommend source code
examples. In: Proceedings. 27th International Conference on Software Engineer-
ing, 2005. ICSE 2005., IEEE, pp 117–125

Hong D, Gao L, Yao J, Zhang B, Plaza A, Chanussot J (2020a) Graph convo-
lutional networks for hyperspectral image classification. IEEE Transactions on
Geoscience and Remote Sensing pp 1–13, DOI 10.1109/TGRS.2020.3015157

Hong H, Guo H, Lin Y, Yang X, Li Z, Ye J (2020b) An attention-based graph neu-
ral network for heterogeneous structural learning. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol 34, pp 4132–4139

Hornik K, Stinchcombe M, White H, et al (1989) Multilayer feedforward networks
are universal approximators. Neural Networks 2(5):359–366

Horton T (1992) Object-oriented analysis & design. Englewood Cliffs (New Jersey):
Prentice-Hall

Hosseini A, Chen T, Wu W, Sun Y, Sarrafzadeh M (2018) Heteromed: Heteroge-
neous information network for medical diagnosis. In: Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, pp
763–772

Hou S, Ye Y, Song Y, Abdulhayoglu M (2017) Hindroid: An intelligent android
malware detection system based on structured heterogeneous information net-

624 References

work. In: Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pp 1507–1515

Houlsby N, Giurgiu A, Jastrzebski S, Morrone B, De Laroussilhe Q, Gesmundo
A, Attariyan M, Gelly S (2019) Parameter-efficient transfer learning for nlp. In:
International Conference on Machine Learning, PMLR, pp 2790–2799

Hsieh K, Wang Y, Chen L, Zhao Z, Savitz S, Jiang X, Tang J, Kim Y (2020) Drug
repurposing for covid-19 using graph neural network with genetic, mechanistic,
and epidemiological validation. arXiv preprint arXiv:200910931

Hsu WN, Zhang Y, Glass J (2017) Unsupervised learning of disentangled and inter-
pretable representations from sequential data. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, pp 1876–1887

Hsu WN, Zhang Y, Weiss RJ, Chung YA, Wang Y, Wu Y, Glass J (2019) Disentan-
gling correlated speaker and noise for speech synthesis via data augmentation and
adversarial factorization. In: ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 5901–5905

Hu B, Shi C, Zhao WX, Yu PS (2018a) Leveraging meta-path based context for
top-n recommendation with a neural co-attention model. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp 1531–1540

Hu B, Fang Y, Shi C (2019a) Adversarial learning on heterogeneous information
networks. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp 120–129

Hu B, Zhang Z, Shi C, Zhou J, Li X, Qi Y (2019b) Cash-out user detection based on
attributed heterogeneous information network with a hierarchical attention mech-
anism. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33,
pp 946–953

Hu L, Xu S, Li C, Yang C, Shi C, Duan N, Xie X, Zhou M (2020a) Graph neural
news recommendation with unsupervised preference disentanglement. In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pp 4255–4264

Hu R, Aggarwal CC, Ma S, Huai J (2016) An embedding approach to anomaly
detection. In: 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), IEEE, pp 385–396

Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta M, Leskovec J (2020b)
Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:200500687

Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande VS, Leskovec J (2020c) Strate-
gies for pre-training graph neural networks. In: 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, OpenReview.net

Hu X, Chiueh Tc, Shin KG (2009) Large-scale malware indexing using function-call
graphs. In: Proceedings of the 16th ACM Conference on Computer and Commu-
nications Security (CCS), Association for Computing Machinery, New York, NY,
USA, p 611–620

References 625

Hu X, Li G, Xia X, Lo D, Jin Z (2018b) Deep code comment generation. In: Pro-
ceedings of the 26th Conference on Program Comprehension, ACM, pp 200–210

Hu X, Li G, Xia X, Lo D, Lu S, Jin Z (2018c) Summarizing source code with trans-
ferred api knowledge. In: Proceedings of the 27th International Joint Conference
on Artificial Intelligence, AAAI Press, pp 2269–2275

Hu Z, Fan C, Chen T, Chang KW, Sun Y (2019c) Pre-training graph neural networks
for generic structural feature extraction. arXiv preprint arXiv:190513728

Hu Z, Dong Y, Wang K, Chang KW, Sun Y (2020d) Gpt-gnn: Generative pre-
training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp 1857–
1867

Hu Z, Dong Y, Wang K, Sun Y (2020e) Heterogeneous graph transformer. In: Pro-
ceedings of The Web Conference 2020, pp 2704–2710

Huang D, Chen P, Zeng R, Du Q, Tan M, Gan C (2020a) Location-aware graph con-
volutional networks for video question answering. In: The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI Press, pp 11,021–11,028

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017a) Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 4700–4708

Huang H, Wang X, Yi Z, Ma X (2000) A character recognition based on feature
extraction. Journal of Chongqing University (Natural Science Edition) 23:66–69

Huang H, Alvarez S, Nusinow DA (2016a) Data on the identification of protein in-
teractors with the evening complex and PCH1 in arabidopsis using tandem affinity
purification and mass spectrometry (TAP–MS). Data in Brief 8:56–60

Huang J, Li Z, Li N, Liu S, Li G (2019) Attpool: Towards hierarchical feature
representation in graph convolutional networks via attention mechanism. In:
IEEE/CVF International Conference on Computer Vision, pp 6479–6488

Huang JT, Sharma A, Sun S, Xia L, Zhang D, Pronin P, Padmanabhan J, Ottaviano
G, Yang L (2020b) Embedding-based retrieval in facebook search. In: Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pp 2553–2561

Huang L, Ma D, Li S, Zhang X, Houfeng W (2019a) Text level graph neural net-
work for text classification. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp 3435–3441

Huang Q, Yamada M, Tian Y, Singh D, Yin D, Chang Y (2020c) Graphlime: Lo-
cal interpretable model explanations for graph neural networks. arXiv preprint
arXiv:200106216

Huang S, Kang Z, Tsang IW, Xu Z (2019b) Auto-weighted multi-view clustering
via kernelized graph learning. Pattern Recognition 88:174–184

Huang W, Zhang T, Rong Y, Huang J (2018) Adaptive sampling towards fast graph
representation learning. Advances in Neural Information Processing Systems
31:4558–4567

Huang X, Alzantot M, Srivastava M (2019c) Neuroninspect: Detecting backdoors
in neural networks via output explanations. arXiv preprint arXiv:191107399

626 References

Huang X, Song Q, Li Y, Hu X (2019d) Graph recurrent networks with attributed ran-
dom walks. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp 732–740

Huang Y, Wang W, Wang L (2017b) Instance-aware image and sentence match-
ing with selective multimodal lstm. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp 2310–2318

Huang Z, Mamoulis N (2017) Heterogeneous information network embedding for
meta path based proximity. arXiv preprint arXiv:170105291

Huang Z, Xu W, Yu K (2015) Bidirectional lstm-crf models for sequence tagging.
arXiv preprint arXiv:150801991

Huang Z, Zheng Y, Cheng R, Sun Y, Mamoulis N, Li X (2016b) Meta structure:
Computing relevance in large heterogeneous information networks. In: Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp 1595–1604

Hurle M, Yang L, Xie Q, Rajpal D, Sanseau P, Agarwal P (2013) Computational
drug repositioning: from data to therapeutics. Clinical Pharmacology & Thera-
peutics 93(4):335–341

Hussein R, Yang D, Cudré-Mauroux P (2018) Are meta-paths necessary? revisiting
heterogeneous graph embeddings. In: Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pp 437–446

Hutchins WJ (1995) Machine translation: A brief history. In: Concise history of the
language sciences, Elsevier, pp 431–445

Ioannidis VN, Marques AG, Giannakis GB (2019) Graph neural networks for pre-
dicting protein functions. In: 2019 IEEE 8th International Workshop on Compu-
tational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp 221–225,
DOI 10.1109/CAMSAP45676.2019.9022646

Ioannidis VN, Song X, Manchanda S, Li M, Pan X, Zheng D, Ning X, Zeng
X, Karypis G (2020) Drkg - drug repurposing knowledge graph for covid-19.
https://github.com/gnn4dr/DRKG/

Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In: International Conference on Machine
Learning, pp 448–456

Irving G, Szegedy C, Alemi AA, Eén N, Chollet F, Urban J (2016) DeepMath - deep
sequence models for premise selection. Advances in neural information process-
ing systems 29:2235–2243

Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) Zinc: a free
tool to discover chemistry for biology. Journal of Chemical Information and Mod-
eling 52(7):1757–1768

Issa NT, Stathias V, Schürer S, Dakshanamurthy S (2020) Machine and deep learn-
ing approaches for cancer drug repurposing. In: Seminars in cancer biology, El-
sevier

Ito T, Chiba T, Ozawa R, et al (2001) A comprehensive two-hybrid analysis to ex-
plore the yeast protein interactome. Proceedings of the National Academy of Sci-
ences of the United States of America 98(8):4569–4574

https://github.com/gnn4dr/DRKG/

References 627

Iyer S, Konstas I, Cheung A, Zettlemoyer L (2016) Summarizing source code using
a neural attention model. In: Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pp 2073–2083

Jaakkola T, Sontag D, Globerson A, Meila M (2010) Learning bayesian network
structure using lp relaxations. In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, JMLR Workshop and Con-
ference Proceedings, pp 358–365

Jabri A, Owens A, Efros AA (2020) Space-time correspondence as a contrastive
random walk. arXiv preprint arXiv:200614613

Jacob Y, Denoyer L, Gallinari P (2014) Learning latent representations of nodes for
classifying in heterogeneous social networks. In: Proceedings of the 7th ACM
international conference on Web search and data mining, pp 373–382

Jain A, Zamir AR, Savarese S, Saxena A (2016a) Structural-RNN: Deep learning
on spatio-temporal graphs. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp 5308–5317

Jain A, Zamir AR, Savarese S, Saxena A (2016b) Structural-rnn: Deep learning
on spatio-temporal graphs. In: Proceedings of the ieee conference on computer
vision and pattern recognition, pp 5308–5317

Jaitly N, Hinton G (2011) Learning a better representation of speech soundwaves
using restricted boltzmann machines. In: 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 5884–5887

Jang E, Gu S, Poole B (2017) Categorical reparameterization with gumbel-softmax.
In: 5th International Conference on Learning Representations

Jang S, Moon SE, Lee JS (2019) Brain signal classification via learning connectivity
structure. arXiv preprint arXiv:190511678

Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K,
Cook J, Gillespie M, Haw R, et al (2020) The reactome pathway knowledgebase.
Nucleic acids research 48(D1):D498–D503

Jean S, Cho K, Memisevic R, Bengio Y (2014) On using very large target vocabulary
for neural machine translation. arXiv preprint arXiv:14122007

Jebara T, Wang J, Chang SF (2009) Graph construction and b-matching for semi-
supervised learning. In: Proceedings of the 26th annual international conference
on machine learning, pp 441–448

Jeh G, Widom J (2002) Simrank: a measure of structural-context similarity. In: Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, pp 538–543

Jeh G, Widom J (2003) Scaling personalized web search. In: the International Con-
ference on World Wide Web, pp 271–279

Jenatton R, Le Roux N, Bordes A, Obozinski G (2012) A latent factor model for
highly multi-relational data. In: Advances in Neural Information Processing Sys-
tems 25 (NIPS 2012), pp 3176–3184

Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd annual meeting of the association
for computational linguistics and the 7th international joint conference on natural
language processing, pp 687–696

628 References

Ji G, Liu K, He S, Zhao J (2016) Knowledge graph completion with adaptive sparse
transfer matrix. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol 30

Jia J, Wang B, Cao X, Gong NZ (2020) Certified robustness of community detec-
tion against adversarial structural perturbation via randomized smoothing. In: The
Web Conference, pp 2718–2724

Jia X, De Brabandere B, Tuytelaars T, Gool LV (2016) Dynamic filter networks.
Advances in neural information processing systems 29:667–675

Jiang B, Sun P, Tang J, Luo B (2019a) GLMNet: Graph learning-matching networks
for feature matching. arXiv preprint arXiv:191107681

Jiang B, Zhang Z, Lin D, Tang J, Luo B (2019b) Semi-supervised learning with
graph learning-convolutional networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp 11,313–11,320

Jiang C, Coenen F, Sanderson R, Zito M (2010) Text classification using graph
mining-based feature extraction. In: Research and Development in Intelligent
Systems XXVI, Springer, pp 21–34

Jiang S, Balaprakash P (2020) Graph neural network architecture search for molec-
ular property prediction. arXiv preprint arXiv:200812187

Jiang S, McMillan C, Santelices R (2016) Do programmers do change impact anal-
ysis in debugging? Empirical Software Engineering pp 1–39

Jiang S, Armaly A, McMillan C (2017) Automatically generating commit mes-
sages from diffs using neural machine translation. In: Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, IEEE
Press, pp 135–146

Jiménez J, Doerr S, Martı́nez-Rosell G, et al (2017) DeepSite: protein-binding site
predictor using 3d-convolutional neural networks. Bioinformatics 33(19):3036–
3042

Jin H, Zhang X (2019) Latent Adversarial Training of Graph Convolution Networks.
In: ICML 2019 Workshop: Learning and Reasoning with Graph-Structured Rep-
resentations

Jin H, Song Q, Hu X (2019a) Auto-keras: An efficient neural architecture search
system. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp 1946–1956

Jin H, Shi Z, Peruri VJSA, Zhang X (2020a) Certified robustness of graph convo-
lution networks for graph classification under topological attacks. Advances in
Neural Information Processing Systems 33

Jin J, Qin J, Fang Y, Du K, Zhang W, Yu Y, Zhang Z, Smola AJ (2020b) An ef-
ficient neighborhood-based interaction model for recommendation on heteroge-
neous graph. In: Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pp 75–84

Jin L, Gildea D (2020) Generalized shortest-paths encoders for amr-to-text gen-
eration. In: Proceedings of the 28th International Conference on Computational
Linguistics, pp 2004–2013

References 629

Jin M, Chang H, Zhu W, Sojoudi S (2019b) Power up! robust graph convolutional
network against evasion attacks based on graph powering. CoRR abs/1905.10029,
1905.10029

Jin W, Barzilay R, Jaakkola T (2018a) Junction tree variational autoencoder for
molecular graph generation. In: Proceedings of the 35th International Conference
on Machine Learning, pp 2323–2332

Jin W, Barzilay R, Jaakkola TS (2018b) Junction tree variational autoencoder for
molecular graph generation. In: International Conference on Machine Learning,
pp 2328–2337

Jin W, Yang K, Barzilay R, Jaakkola T (2018c) Learning multimodal graph-to-graph
translation for molecular optimization. arXiv preprint arXiv:181201070

Jin W, Barzilay R, Jaakkola T (2020c) Composing molecules with multiple property
constraints. arXiv preprint arXiv:200203244

Jin W, Derr T, Liu H, Wang Y, Wang S, Liu Z, Tang J (2020d) Self-supervised learn-
ing on graphs: Deep insights and new direction. arXiv preprint arXiv:200610141

Jin W, Ma Y, Liu X, Tang X, Wang S, Tang J (2020e) Graph structure learning
for robust graph neural networks. In: The 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp 66–74

Jin W, Derr T, Wang Y, Ma Y, Liu Z, Tang J (2021) Node similarity preserving
graph convolutional networks. In: Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pp 148–156

Johansson FD, Dubhashi D (2015) Learning with similarity functions on graphs us-
ing matchings of geometric embeddings. In: ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp 467–476

Johnson D, Larochelle H, Tarlow D (2020) Learning graph structure with a finite-
state automaton layer. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin
H (eds) Advances in Neural Information Processing Systems, Curran Associates,
Inc., vol 33, pp 3082–3093

Jonas E (2019) Deep imitation learning for molecular inverse problems. Advances
in Neural Information Processing Systems 32:4990–5000

Jurafsky D (2000) Speech & language processing. Pearson Education India
Kagdi H, Collard ML, Maletic JI (2007) A survey and taxonomy of approaches

for mining software repositories in the context of software evolution. Journal of
software maintenance and evolution: Research and practice 19(2):77–131

Kahneman D (2011) Thinking, fast and slow. Macmillan
Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network

for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics, Association for Computational Linguis-
tics, pp 655–665, DOI 10.3115/v1/P14-1062

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014)
The promises and perils of mining github. In: Proceedings of the 11th working
conference on mining software repositories, pp 92–101

Kalofolias V (2016) How to learn a graph from smooth signals. In: Artificial Intel-
ligence and Statistics, PMLR, pp 920–929

630 References

Kalofolias V, Perraudin N (2019) Large scale graph learning from smooth signals.
In: 7th International Conference on Learning Representations

Kaluza MCDP, Amizadeh S, Yu R (2018) A neural framework for learning dag to
dag translation. In: NeurIPS’2018 Workshop

Kampffmeyer M, Chen Y, Liang X, Wang H, Zhang Y, Xing EP (2019) Rethink-
ing knowledge graph propagation for zero-shot learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11,487–
11,496

Kandasamy K, Neiswanger W, Schneider J, Poczos B, Xing E (2018) Neural archi-
tecture search with bayesian optimisation and optimal transport. In: Advances in
Neural Information Processing Systems

Kanehisa M, Goto S (2000) Kegg: kyoto encyclopedia of genes and genomes. Nu-
cleic acids research 28(1):27–30

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T,
Kawashima S, Okuda S, Tokimatsu T, et al (2007) Kegg for linking genomes
to life and the environment. Nucleic acids research 36(suppl 1):D480–D484

Kang U, Tong H, Sun J (2012) Fast random walk graph kernel. In: SIAM Interna-
tional Conference on Data Mining, pp 828–838

Kang WC, McAuley J (2018) Self-attentive sequential recommendation. In: 2018
IEEE International Conference on Data Mining (ICDM), IEEE, pp 197–206

Kang Z, Pan H, Hoi SC, Xu Z (2019) Robust graph learning from noisy data. IEEE
transactions on cybernetics 50(5):1833–1843

Karampatsis RM, Sutton C (2020) How often do single-statement bugs occur? the
ManySStuBs4J dataset. In: Proceedings of the 17th International Conference on
Mining Software Repositories, pp 573–577

Karamshuk D, Noulas A, Scellato S, Nicosia V, Mascolo C (2013) Geo-spotting:
mining online location-based services for optimal retail store placement. In: Pro-
ceedings of the 19th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pp 793–801

Karita S, Watanabe S, Iwata T, Ogawa A, Delcroix M (2018) Semi-supervised end-
to-end speech recognition. In: Interspeech, pp 2–6

Karpathy A, Fei-Fei L (2015) Deep visual-semantic alignments for generating im-
age descriptions. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 3128–3137

Karypis G, Kumar V (1995) Multilevel graph partitioning schemes. In: ICPP (3), pp
113–122

Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partition-
ing irregular graphs. SIAM Journal on scientific Computing 20(1):359–392

Katharopoulos A, Vyas A, Pappas N, Fleuret F (2020) Transformers are rnns: Fast
autoregressive transformers with linear attention. In: International Conference on
Machine Learning, PMLR, pp 5156–5165

Katz L (1953) A new status index derived from sociometric analysis. Psychometrika
18(1):39–43

References 631

Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, Zwicker JG,
Hamarneh G (2017) Brainnetcnn: Convolutional neural networks for brain net-
works; towards predicting neurodevelopment. NeuroImage 146:1038–1049

Kazemi E, Hassani SH, Grossglauser M (2015) Growing a graph matching from a
handful of seeds. Proc VLDB Endow 8(10):1010–1021

Kazemi SM, Poole D (2018) Simple embedding for link prediction in knowledge
graphs. In: Neural Information Processing Systems, p 4289–4300

Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S, Wu S, Smyth
C, Poupart P, Brubaker M (2019) Time2vec: Learning a vector representation of
time. arXiv preprint arXiv:190705321

Kazemi SM, Goel R, Jain K, Kobyzev I, Sethi A, Forsyth P, Poupart P (2020) Rep-
resentation learning for dynamic graphs: A survey. Journal of Machine Learning
Research 21(70):1–73

Kazi A, Cosmo L, Navab N, Bronstein M (2020) Differentiable graph module (dgm)
graph convolutional networks. arXiv preprint arXiv:200204999

Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular
design 30(8):595–608

Keriven N, Peyré G (2019) Universal invariant and equivariant graph neural net-
works. In: Advances in Neural Information Processing Systems, pp 7090–7099

Kersting K, Kriege NM, Morris C, Mutzel P, Neumann M (2016) Benchmark data
sets for graph kernels

Khezerlou AV, Zhou X, Li L, Shafiq Z, Liu AX, Zhang F (2017) A traffic flow
approach to early detection of gathering events: Comprehensive results. ACM
Transactions on Intelligent Systems and Technology (TIST) 8(6):1–24

Khezerlou AV, Zhou X, Tong L, Li Y, Luo J (2021) Forecasting gathering events
through trajectory destination prediction: A dynamic hybrid model. IEEE Trans-
actions on Knowledge and Data Engineering 33(3):991–1004, DOI 10.1109/
TKDE.2019.2937082

Khrulkov V, Novikov A, Oseledets I (2018) Expressive power of recurrent neural
networks. In: International Conference on Learning Representations

Kiefer S, Schweitzer P, Selman E (2015) Graphs identified by logics with counting.
In: International Symposium on Mathematical Foundations of Computer Science,
pp 319–330

Kilicoglu H, Shin D, Fiszman M, Rosemblat G, Rindflesch TC (2012) Semmeddb:
a pubmed-scale repository of biomedical semantic predications. Bioinformatics
28(23):3158–3160

Kim B, Koyejo O, Khanna R, et al (2016) Examples are not enough, learn to criti-
cize! criticism for interpretability. In: NIPS, pp 2280–2288

Kim D, Oh A (2021) How to find your friendly neighborhood: Graph attention de-
sign with self-supervision. In: International Conference on Learning Representa-
tions

Kim J, Kim T, Kim S, Yoo CD (2019) Edge-labeling graph neural network for few-
shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp 11–20

632 References

Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint
arXiv:13126114

Kingma DP, Welling M (2014) Auto-encoding variational bayes. In: 2nd Interna-
tional Conference on Learning Representations

Kingma DP, Rezende DJ, Mohamed S, Welling M (2014) Semi-supervised learning
with deep generative models. In: Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems-Volume 2, pp 3581–3589

Kingsbury PR, Palmer M (2002) From treebank to propbank. In: LREC, Citeseer,
pp 1989–1993

Kipf T, Fetaya E, Wang KC, Welling M, Zemel R (2018) Neural relational inference
for interacting systems. In: International Conference on Machine Learning, pp
2688–2697

Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv preprint
arXiv:161107308

Kipf TN, Welling M (2017a) Semi-supervised classification with graph convolu-
tional networks. In: International Conference on Learning Representations

Kipf TN, Welling M (2017b) Semi-supervised classification with graph convolu-
tional networks. In: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
OpenReview.net

Kireev DB (1995) ChemNet: A novel neural network based method for graph/prop-
erty mapping. Journal of Chemical Information and Computer Sciences
35(2):175–180

Klicpera J, Bojchevski A, Günnemann S (2019a) Predict then propagate: Graph neu-
ral networks meet personalized pagerank. In: International Conference on Learn-
ing Representations

Klicpera J, Weißenberger S, Günnemann S (2019b) Diffusion improves graph learn-
ing. In: Advances in Neural Information Processing Systems, pp 13,333–13,345

Klicpera J, Groß J, Günnemann S (2020) Directional message passing for molecular
graphs. In: International Conference on Learning Representations

Ko AJ, Myers BA, Coblenz MJ, Aung HH (2006) An exploratory study of how
developers seek, relate, and collect relevant information during software mainte-
nance tasks. IEEE Transactions on software engineering 32(12):971–987

Koch O, Kriege NM, Humbeck L (2019) Chemical similarity and substructure
searches. In: Encyclopedia of Bioinformatics and Computational Biology, Aca-
demic Press, Oxford, pp 640–649

Kohavi R, John GH (1995) Automatic parameter selection by minimizing estimated
error. In: Machine Learning Proceedings 1995, Elsevier, pp 304–312

Koivisto M, Sood K (2004) Exact bayesian structure discovery in bayesian net-
works. The Journal of Machine Learning Research 5:549–573

Koncel-Kedziorski R, Bekal D, Luan Y, Lapata M, Hajishirzi H (2019) Text genera-
tion from knowledge graphs with graph transformers. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp 2284–2293

References 633

Koo DCE, Bonneau R (2018) Towards region-specific propagation of protein func-
tions. Bioinformatics 35(10):1737–1744

Kool W, Van Hoof H, Welling M (2019) Stochastic beams and where to find them:
The gumbel-top-k trick for sampling sequences without replacement. In: Interna-
tional Conference on Machine Learning, PMLR, pp 3499–3508

Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In: Proceedings of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, ACM, pp 426–434

Koren Y (2009) Collaborative filtering with temporal dynamics. In: Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp 447–456

Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recom-
mender systems. Computer 42(8):30–37

Korte BH, Vygen J, Korte B, Vygen J (2011) Combinatorial optimization, vol 1.
Springer

Kosugi S, Yamasaki T (2020) Unpaired image enhancement featuring
reinforcement-learning-controlled image editing software. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol 34, pp 11,296–11,303

Kovács IA, Luck K, Spirohn K, et al (2019) Network-based prediction of protein
interactions. Nature Communications 10(1)

Kremenek T, Ng AY, Engler DR (2007) A factor graph model for software bug
finding. In: IJCAI, pp 2510–2516

Kriege N, Mutzel P (2012) Subgraph matching kernels for attributed graphs. In:
Proceedings of the 29th International Coference on International Conference on
Machine Learning, Omnipress, Madison, WI, USA, ICML’12, p 291–298

Kriege NM, P-L G, Wilson RC (2016) On valid optimal assignment kernels and ap-
plications to graph classification. In: Advances in Neural Information Processing
Systems, pp 1615–1623

Kriege NM, Johansson FD, Morris C (2020) A survey on graph kernels. Applied
Network Science 5(1):6

Krishnan A (2018) Making search easier: How amazon’s product graph is helping
customers find products more easily. ed Amazon Blog

Krishnapuram R, Medasani S, Jung SH, Choi YS, Balasubramaniam R (2004)
Content-based image retrieval based on a fuzzy approach. IEEE transactions on
knowledge and data engineering 16(10):1185–1199

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems
25:1097–1105

Kuhn M, Letunic I, Jensen LJ, Bork P (2016) The sider database of drugs and side
effects. Nucleic acids research 44(D1):D1075–D1079

Kulmanov M, Hoehndorf R (2019) DeepGOPlus: improved protein function predic-
tion from sequence. Bioinformatics

Kumar S, Spezzano F, Subrahmanian V, Faloutsos C (2016) Edge weight prediction
in weighted signed networks. In: 2016 IEEE 16th International Conference on
Data Mining (ICDM), IEEE, pp 221–230

634 References

Kumar S, Ying J, de Miranda Cardoso JV, Palomar D (2019a) Structured graph
learning via laplacian spectral constraints. In: Advances in Neural Information
Processing Systems, pp 11,651–11,663

Kumar S, Zhang X, Leskovec J (2019b) Predicting dynamic embedding trajectory
in temporal interaction networks. In: ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp 1269–1278

Kumar S, Ying J, de Miranda Cardoso JV, Palomar DP (2020) A unified frame-
work for structured graph learning via spectral constraints. Journal of Machine
Learning Research 21(22):1–60

Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar variational autoen-
coder. In: International Conference on Machine Learning, pp 1945–1954

Lacroix T, Obozinski G, Usunier N (2020) Tensor decompositions for temporal
knowledge base completion. In: International Conference on Learning Represen-
tations

Lake B, Tenenbaum J (2010) Discovering structure by learning sparse graphs. In:
Proceedings of the Annual Meeting of the Cognitive Science Society, vol 32

Lamb LC, Garcez A, Gori M, Prates M, Avelar P, Vardi M (2020) Graph neural
networks meet neural-symbolic computing: A survey and perspective. In: Pro-
ceedings of IJCAI-PRICAI 2020

Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2020) ALBERT: A
lite BERT for self-supervised learning of language representations. In: 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020, OpenReview.net

Lanczos C (1950) An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators. United States Governm. Press Office
Los Angeles, CA

Landrieu L, Simonovsky M (2018) Large-scale point cloud semantic segmentation
with superpoint graphs. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 4558–4567

Latif S, Rana R, Khalifa S, Jurdak R, Epps J (2019) Direct modelling of speech
emotion from raw speech. In: Proceedings of the 20th Annual Conference of
the International Speech Communication Association (INTERSPEECH 2019),
International Speech Communication Association (ISCA), pp 3920–3924

Lawler EL (1963) The quadratic assignment problem. Management science
9(4):586–599

Le Cun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD
(1989) Handwritten digit recognition with a back-propagation network. In: Neu-
ral Information Processing Systems, pp 396–404

Le-Khac PH, Healy G, Smeaton AF (2020) Contrastive representation learning: a
framework and review. IEEE Access 8:1–28

Leblay J, Chekol MW (2018) Deriving validity time in knowledge graph. In: Com-
panion Proceedings of the The Web Conference 2018, pp 1771–1776

LeClair A, McMillan C (2019) Recommendations for datasets for source code sum-
marization. In: Proceedings of the 2019 Conference of the North American Chap-

References 635

ter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp 3931–3937

LeClair A, Jiang S, McMillan C (2019) A neural model for generating natural lan-
guage summaries of program subroutines. In: Proceedings of the 41st Interna-
tional Conference on Software Engineering, IEEE Press, pp 795–806

LeClair A, Haque S, Wu L, McMillan C (2020) Improved code summarization via a
graph neural network. In: 28th ACM/IEEE International Conference on Program
Comprehension (ICPC’20)

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel
LD (1989) Backpropagation applied to handwritten zip code recognition. Neu-
ral computation 1(4):541–551

Lecuyer M, Atlidakis V, Geambasu R, Hsu D, Jana S (2019) Certified robustness to
adversarial examples with differential privacy. In: IEEE Symposium on Security
and Privacy, DOI 10.1109/SP.2019.00044

Lee G, Yuan Y, Chang S, Jaakkola TS (2019a) Tight certificates of adversarial
robustness for randomly smoothed classifiers. In: Wallach HM, Larochelle H,
Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp 4911–4922

Lee J, Lee I, Kang J (2019b) Self-attention graph pooling. In: International Confer-
ence on Machine Learning, PMLR, pp 3734–3743

Lee JB, Rossi RA, Kim S, Ahmed NK, Koh E (2019c) Attention models in graphs: A
survey. ACM Transactions on Knowledge Discovery from Data (TKDD) 13(6):1–
25

Lee JB, Rossi RA, Kong X, Kim S, Koh E, Rao A (2019d) Graph convolutional
networks with motif-based attention. In: 28th ACM International Conference on
Information, pp 499–508

Lee S, Park C, Yu H (2019e) Bhin2vec: Balancing the type of relation in hetero-
geneous information network. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp 619–628

Lei T, Jin W, Barzilay R, Jaakkola T (2017a) Deriving neural architectures from
sequence and graph kernels. In: Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp 2024–2033

Lei T, Zhang Y, Wang SI, Dai H, Artzi Y (2017b) Simple recurrent units for highly
parallelizable recurrence. arXiv preprint arXiv:170902755

Leordeanu M, Hebert M (2005) A spectral technique for correspondence problems
using pairwise constraints. In: IEEE International Conference on Computer Vi-
sion, pp 1482–1489

Leskovec J, Grobelnik M, Milic-Frayling N (2004) Learning sub-structures of doc-
ument semantic graphs for document summarization. In: LinkKDD Workshop,
pp 133–138

Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C, Ghahramani Z (2010) Kro-
necker graphs: an approach to modeling networks. Journal of Machine Learning
Research 11(2)

636 References

Letovsky S (1987) Cognitive processes in program comprehension. Journal of Sys-
tems and software 7(4):325–339

Levi FW (1942) Finite geometrical systems: six public lectues delivered in February,
1940, at the University of Calcutta. University of Calcutta

Levie R, Monti F, Bresson X, Bronstein MM (2019) Cayleynets: Graph convolu-
tional neural networks with complex rational spectral filters. IEEE Trans Signal
Process 67(1):97–109

Levin E, Pieraccini R, Eckert W (2000) A stochastic model of human-machine in-
teraction for learning dialog strategies. IEEE Transactions on speech and audio
processing 8(1):11–23

Levy O, Goldberg Y (2014) Neural word embedding as implicit matrix factoriza-
tion. In: Advances in neural information processing systems, pp 2177–2185

Lewis HR, et al (1983) Michael r. garey, david s. johnson, computers and in-
tractability. a guide to the theory of np-completeness. Journal of Symbolic Logic
48(2):498–500

Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoyanov V,
Zettlemoyer L (2020) BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, p
7871, DOI 10.18653/v1/2020.acl-main.703

Li A, Qin Z, Liu R, Yang Y, Li D (2019a) Spam review detection with graph convo-
lutional networks. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp 2703–2711

Li C, Ma J, Guo X, Mei Q (2017a) Deepcas: An end-to-end predictor of information
cascades. In: Proceedings of the 26th international conference on World Wide
Web, pp 577–586

Li C, Liu Z, Wu M, Xu Y, Zhao H, Huang P, Kang G, Chen Q, Li W, Lee DL
(2019b) Multi-interest network with dynamic routing for recommendation at
tmall. In: Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pp 2615–2623

Li F, Gan C, Liu X, Bian Y, Long X, Li Y, Li Z, Zhou J, Wen S (2017b) Tempo-
ral modeling approaches for large-scale youtube-8m video understanding. arXiv
preprint arXiv:170704555

Li G, Muller M, Thabet A, Ghanem B (2019c) Deepgcns: Can gcns go as deep as
cnns? In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp 9267–9276

Li J, Wang Y, Lyu MR, King I (2018a) Code completion with neural attention and
pointer networks. In: Proceedings of the 27th International Joint Conference on
Artificial Intelligence, pp 4159–25

Li J, Yang F, Tomizuka M, Choi C (2020a) Evolvegraph: Multi-agent trajectory
prediction with dynamic relational reasoning. Advances in Neural Information
Processing Systems 33

Li L, Feng H, Zhuang W, Meng N, Ryder B (2017c) Cclearner: A deep learning-
based clone detection approach. In: 2017 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), IEEE, pp 249–260

References 637

Li L, Tang S, Deng L, Zhang Y, Tian Q (2017d) Image caption with global-local at-
tention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 31

Li L, Gan Z, Cheng Y, Liu J (2019d) Relation-aware graph attention network for
visual question answering. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp 10,313–10,322

Li L, Wang P, Yan J, Wang Y, Li S, Jiang J, Sun Z, Tang B, Chang TH, Wang S,
et al (2020b) Real-world data medical knowledge graph: construction and appli-
cations. Artificial intelligence in medicine 103:101,817

Li L, Zhang Y, Chen L (2020c) Generate neural template explanations for recom-
mendation. In: Proceedings of the 29th ACM International Conference on Infor-
mation & Knowledge Management, pp 755–764

Li M, Chen S, Chen X, Zhang Y, Wang Y, Tian Q (2019e) Actional-structural graph
convolutional networks for skeleton-based action recognition. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp 3595–3603

Li N, Yang Z, Luo L, Wang L, Zhang Y, Lin H, Wang J (2020d) Kghc: a knowl-
edge graph for hepatocellular carcinoma. BMC Medical Informatics and Decision
Making 20(3):1–11

Li P, Chien I, Milenkovic O (2019f) Optimizing generalized pagerank methods for
seed-expansion community detection. In: Advances in Neural Information Pro-
cessing Systems, pp 11,705–11,716

Li P, Wang Y, Wang H, Leskovec J (2020e) Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in
Neural Information Processing Systems 33

Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma WY (2008) Mining user similarity based
on location history. In: Proceedings of the 16th ACM SIGSPATIAL international
conference on Advances in geographic information systems, pp 1–10

Li Q, Han Z, Wu XM (2018b) Deeper insights into graph convolutional networks for
semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol 32

Li R, Tapaswi M, Liao R, Jia J, Urtasun R, Fidler S (2017e) Situation recognition
with graph neural networks. In: Proceedings of the IEEE International Confer-
ence on Computer Vision, pp 4173–4182

Li R, Wang S, Zhu F, Huang J (2018c) Adaptive graph convolutional neural net-
works. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32

Li S, Wu L, Feng S, Xu F, Xu F, Zhong S (2020f) Graph-to-tree neural networks
for learning structured input-output translation with applications to semantic
parsing and math word problem. In: Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, Association for Computational Linguistics, On-
line, pp 2841–2852, DOI 10.18653/v1/2020.findings-emnlp.255, URL https:
//www.aclweb.org/anthology/2020.findings-emnlp.255

Li X, Cheng Y, Cong G, Chen L (2017f) Discovering pollution sources and propa-
gation patterns in urban area. In: Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp 1863–1872

https://www.aclweb.org/anthology/2020.findings-emnlp.255
https://www.aclweb.org/anthology/2020.findings-emnlp.255

638 References

Li X, Kao B, Ren Z, Yin D (2019g) Spectral clustering in heterogeneous informa-
tion networks. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol 33, pp 4221–4228

Li X, Wang C, Tong B, Tan J, Zeng X, Zhuang T (2020g) Deep time-aware item
evolution network for click-through rate prediction. In: Proceedings of the 29th
ACM International CIKM, pp 785–794

Li Y, Gupta A (2018) Beyond grids: Learning graph representations for visual recog-
nition. In: Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems, pp 9245–9255

Li Y, King I (2020) Autograph: Automated graph neural network. In: International
Conference on Neural Information Processing, Springer, pp 189–201

Li Y, Tarlow D, Brockschmidt M, Zemel R (2016a) Gated graph seqrlence neural
networks. In: International Conference on Learning Representations

Li Y, Tarlow D, Brockschmidt M, Zemel R (2016b) Gated graph sequence neural
networks. In: International Conference on Learning Representations (ICLR)

Li Y, Vinyals O, Dyer C, Pascanu R, Battaglia P (2018d) Learning deep generative
models of graphs. arXiv preprint arXiv:180303324

Li Y, Yu R, Shahabi C, Liu Y (2018e) Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In: International Conference on Learning
Representations

Li Y, Zhang L, Liu Z (2018f) Multi-objective de novo drug design with conditional
graph generative model. Journal of cheminformatics 10(1):1–24

Li Y, Gu C, Dullien T, Vinyals O, Kohli P (2019h) Graph matching networks for
learning the similarity of graph structured objects. In: International Conference
on Machine Learning, PMLR, pp 3835–3845

Li Y, Liu M, Yin J, Cui C, Xu XS, Nie L (2019i) Routing micro-videos via a tem-
poral graph-guided recommendation system. In: Proceedings of the 27th ACM
International Conference on Multimedia, pp 1464–1472

Li Y, Lin Y, Madhusudan M, Sharma A, Xu W, Sapatnekar SS, Harjani R, Hu J
(2020h) A customized graph neural network model for guiding analog ic place-
ment. In: International Conference On Computer Aided Design, IEEE, pp 1–9

Liang S, Srikant R (2017) Why deep neural networks for function approximation?
In: 5th International Conference on Learning Representations, ICLR 2017

Liang Y, Zhu KQ (2018) Automatic generation of text descriptive comments for
code blocks. In: McIlraith SA, Weinberger KQ (eds) Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence (AAAI-18), AAAI Press, pp
5229–5236

Liao L, He X, Zhang H, Chua TS (2018) Attributed social network embedding.
IEEE Transactions on Knowledge and Data Engineering 30(12):2257–2270

Liao R, Li Y, Song Y, Wang S, Nash C, Hamilton WL, Duvenaud D, Urtasun R,
Zemel RS (2019a) Efficient graph generation with graph recurrent attention net-
works. arXiv preprint arXiv:191000760

Liao R, Zhao Z, Urtasun R, Zemel RS (2019b) Lanczosnet: Multi-scale deep graph
convolutional networks. arXiv preprint arXiv:190101484

References 639

Liao R, Urtasun R, Zemel R (2021) A pac-bayesian approach to generalization
bounds for graph neural networks. In: International Conference on Learning Rep-
resentations

Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social net-
works. Journal of the American society for information science and technology
58(7):1019–1031

Licata L, Lo Surdo P, Iannuccelli M, Palma A, Micarelli E, Perfetto L, Peluso D,
Calderone A, Castagnoli L, Cesareni G (2020) Signor 2.0, the signaling network
open resource 2.0: 2019 update. Nucleic acids research 48(D1):D504–D510

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra
D (2015) Continuous control with deep reinforcement learning. arXiv preprint
arXiv:150902971

Lin C, Sun GJ, Bulusu KC, Dry JR, Hernandez M (2020a) Graph neural networks
including sparse interpretability. arXiv preprint arXiv:200700119

Lin G, Wen S, Han QL, Zhang J, Xiang Y (2020b) Software vulnerability detection
using deep neural networks: a survey. Proceedings of the IEEE 108(10):1825–
1848

Lin P, Sun P, Cheng G, Xie S, Li X, Shi J (2020c) Graph-guided architecture search
for real-time semantic segmentation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp 4203–4212

Lin T, Zhao X, Shou Z (2017) Single shot temporal action detection. In: Proceedings
of the 25th ACM international conference on Multimedia, pp 988–996

Lin W, Ji S, Li B (2020d) Adversarial Attacks on Link Prediction Algorithms Based
on Graph Neural Networks. In: ACM Asia Conference on Computer and Com-
munications Security

Lin X, Chen X (2012) Heterogeneous data integration by tree-augmented naı̈ve
bayes for protein-protein interactions prediction. PROTEOMICS 13(2):261–268

Lin Y, Liu Z, Sun M, Liu Y, Zhu X (2015) Learning entity and relation embeddings
for knowledge graph completion. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol 29

Lin Y, Ren P, Chen Z, Ren Z, Yu D, Ma J, Rijke Md, Cheng X (2020e) Meta matrix
factorization for federated rating predictions. In: Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp 981–990

Lin ZH, Huang SY, Wang YCF (2020f) Convolution in the cloud: Learning de-
formable kernels in 3d graph convolution networks for point cloud analysis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp 1800–1809

Ling X, Ji S, Zou J, Wang J, Wu C, Li B, Wang T (2019) DEEPSEC: A uniform
platform for security analysis of deep learning model. In: 2019 IEEE Symposium
on Security and Privacy (S&P), IEEE, pp 673–690

Ling X, Wu L, Wang S, Ma T, Xu F, Liu AX, Wu C, Ji S (2020) Multi-level
graph matching networks for deep graph similarity learning. arXiv preprint
arXiv:200704395

640 References

Ling X, Wu L, Wang S, Pan G, Ma T, Xu F, Liu AX, Wu C, Ji S (2021) Deep
graph matching and searching for semantic code retrieval. ACM Transactions on
Knowledge Discovery from Data (TKDD)

Linial N, London E, Rabinovich Y (1995) The geometry of graphs and some of its
algorithmic applications. Combinatorica 15(2):215–245

Linmei H, Yang T, Shi C, Ji H, Li X (2019) Heterogeneous graph attention networks
for semi-supervised short text classification. In: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp
4823–4832

Liu A, Xu N, Zhang H, Nie W, Su Y, Zhang Y (2018a) Multi-level policy and reward
reinforcement learning for image captioning. In: IJCAI, pp 821–827

Liu B, Niu D, Lai K, Kong L, Xu Y (2017a) Growing story forest online from
massive breaking news. In: Proceedings of the 2017 ACM on Conference on In-
formation and Knowledge Management, pp 777–785

Liu B, Niu D, Wei H, Lin J, He Y, Lai K, Xu Y (2019a) Matching article pairs with
graphical decomposition and convolutions. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp 6284–6294

Liu B, Han FX, Niu D, Kong L, Lai K, Xu Y (2020a) Story forest: Extracting events
and telling stories from breaking news. ACM Transactions on Knowledge Dis-
covery from Data (TKDD) 14(3):1–28

Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li LJ, Fei-Fei L, Yuille A, Huang J,
Murphy K (2018b) Progressive neural architecture search. In: Proceedings of the
European conference on computer vision, pp 19–34

Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K (2017b) Hierarchical
representations for efficient architecture search. arXiv preprint arXiv:171100436

Liu H, Simonyan K, Yang Y (2018c) Darts: Differentiable architecture search. arXiv
preprint arXiv:180609055

Liu J, Chi Y, Zhu C (2015) A dynamic multiagent genetic algorithm for gene regu-
latory network reconstruction based on fuzzy cognitive maps. IEEE Transactions
on Fuzzy Systems 24(2):419–431

Liu J, Kumar A, Ba J, Kiros J, Swersky K (2019b) Graph normalizing flows. arXiv
preprint arXiv:190513177

Liu L, Ma Y, Zhu X, et al (2019) Integrating sequence and network infor-
mation to enhance protein-protein interaction prediction using graph convolu-
tional networks. In: 2019 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp 1762–1768, DOI 10.1109/BIBM47256.2019.8983330

Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2020b) Deep
learning for generic object detection: A survey. International journal of computer
vision 128(2):261–318

Liu M, Gao H, Ji S (2020c) Towards deeper graph neural networks. In: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp 338–348

Liu N, Tan Q, Li Y, Yang H, Zhou J, Hu X (2019a) Is a single vector enough? ex-
ploring node polysemy for network embedding. In: Proceedings of the 25th ACM

References 641

SIGKDD International Conference on Knowledge Discovery & Data Mining, pp
932–940

Liu N, Du M, Hu X (2020d) Adversarial machine learning: An interpretation per-
spective. arXiv preprint arXiv:200411488

Liu P, Chang S, Huang X, Tang J, Cheung JCK (2019b) Contextualized non-local
neural networks for sequence learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol 33, pp 6762–6769

Liu Q, Allamanis M, Brockschmidt M, Gaunt AL (2018d) Constrained graph vari-
ational autoencoders for molecule design. arXiv preprint arXiv:180509076

Liu S, Yang N, Li M, Zhou M (2014) A recursive recurrent neural network for sta-
tistical machine translation. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Balti-
more, MD, USA, Volume 1: Long Papers, The Association for Computer Lin-
guistics, pp 1491–1500

Liu S, Chen Y, Xie X, Siow JK, Liu Y (2021) Retrieval-augmented generation for
code summarization via hybrid gnn. In: 9th International Conference on Learning
Representations

Liu X, Si S, Zhu X, Li Y, Hsieh CJ (2019c) A Unified Framework for Data Poi-
soning Attack to Graph-based Semi-supervised Learning. In: Neural Information
Processing Systems, NeurIPS

Liu X, Pan H, He M, Song Y, Jiang X, Shang L (2020e) Neural subgraph isomor-
phism counting. In: Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp 1959–1969

Liu X, Zhang F, Hou Z, Wang Z, Mian L, Zhang J, Tang J (2020f) Self-supervised
learning: Generative or contrastive. arXiv preprint arXiv:200608218 1(2)

Liu Y, Lee J, Park M, Kim S, Yang E, Hwang SJ, Yang Y (2018e) Learning to
propagate labels: Transductive propagation network for few-shot learning. arXiv
preprint arXiv:180510002

Liu Y, Wan B, Zhu X, He X (2020g) Learning cross-modal context graph for visual
grounding. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol 34, pp 11,645–11,652

Liu Y, Zhang F, Zhang Q, Wang S, Wang Y, Yu Y (2020h) Cross-view correspon-
dence reasoning based on bipartite graph convolutional network for mammogram
mass detection. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp 3812–3822

Liu Z, Chen C, Yang X, Zhou J, Li X, Song L (2018f) Heterogeneous graph neu-
ral networks for malicious account detection. In: Proceedings of the 27th ACM
International Conference on Information and Knowledge Management, pp 2077–
2085

Livshits B, Nori AV, Rajamani SK, Banerjee A (2009) Merlin: specification infer-
ence for explicit information flow problems. ACM Sigplan Notices 44(6):75–86

Locatelli A, Sieniutycz S (2002) Optimal control: An introduction. Appl Mech Rev
55(3):B48–B49

642 References

Loiola EM, de Abreu NMM, Boaventura-Netto PO, Hahn P, Querido T (2007) A
survey for the quadratic assignment problem. European journal of operational
research 176(2):657–690

Lops P, De Gemmis M, Semeraro G (2011) Content-based recommender systems:
State of the art and trends. In: Recommender systems handbook, Springer, pp
73–105

Loukas A (2020) What graph neural networks cannot learn: depth vs width. In:
International Conference on Learning Representations

Lovász L, et al (1993) Random walks on graphs: A survey. Combinatorics, Paul
erdos is eighty 2(1):1–46

Lovell SC, Davis IW, Arendall WB, et al (2003) Structure validation by c geometry:
, and c deviation. Proteins: Structure, Function, and Bioinformatics 50(3):437–
450

Loyola P, Marrese-Taylor E, Matsuo Y (2017) A neural architecture for generating
natural language descriptions from source code changes. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp 287–292

Lü L, Zhou T (2011) Link prediction in complex networks: A survey. Physica A:
statistical mechanics and its applications 390(6):1150–1170

Lu X, Wang B, Zheng X, Li X (2017a) Exploring models and data for remote
sensing image caption generation. IEEE Transactions on Geoscience and Remote
Sensing 56(4):2183–2195

Lu Y, Zhao Z, Li G, Jin Z (2017b) Learning to generate comments for api-based
code snippets. In: Software Engineering and Methodology for Emerging Do-
mains, Springer, pp 3–14

Lucic A, ter Hoeve M, Tolomei G, de Rijke M, Silvestri F (2021) Cf-
gnnexplainer: Counterfactual explanations for graph neural networks. arXiv
preprint arXiv:210203322

Luo D, Cheng W, Xu D, Yu W, Zong B, Chen H, Zhang X (2020) Parameterized
explainer for graph neural network. arXiv preprint arXiv:201104573

Luo D, Cheng W, Yu W, Zong B, Ni J, Chen H, Zhang X (2021) Learning to Drop:
Robust Graph Neural Network via Topological Denoising. In: International Con-
ference on Web Search and Data Mining, WSDM

Luo R, Liao W, Huang X, Pi Y, Philips W (2016) Feature extraction of hyperspectral
images with semisupervised graph learning. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 9(9):4389–4399

Luo R, Tian F, Qin T, Chen EH, Liu TY (2018) Neural architecture optimization.
In: Advances in neural information processing systems

Luo X, You Z, Zhou M, et al (2015) A highly efficient approach to protein inter-
actome mapping based on collaborative filtering framework. Scientific Reports
5(1):7702

Luong T, Pham H, Manning CD (2015) Effective approaches to attention-based
neural machine translation. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, Association for Computational Lin-
guistics, Lisbon, Portugal, pp 1412–1421, DOI 10.18653/v1/D15-1166

References 643

Ma G, Ahmed NK, Willke TL, Yu PS (2019a) Deep graph similarity learning: A
survey. arXiv preprint arXiv:191211615

Ma H, Bian Y, Rong Y, Huang W, Xu T, Xie W, Ye G, Huang J (2020a) Multi-
view graph neural networks for molecular property prediction. arXiv e-prints pp
arXiv–2005

Ma J, Tang W, Zhu J, Mei Q (2019b) A flexible generative framework for graph-
based semi-supervised learning. In: Advances in Neural Information Processing
Systems, pp 3281–3290

Ma J, Zhou C, Cui P, Yang H, Zhu W (2019c) Learning disentangled representations
for recommendation. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-
Buc F, Fox EB, Garnett R (eds) Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp 5712–5723

Ma J, Ding S, Mei Q (2020b) Towards more practical adversarial attacks on graph
neural networks. In: Larochelle H, Ranzato M, Hadsell R, Balcan M, Lin H (eds)
Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual

Ma T, Chen J, Xiao C (2018) Constrained generation of semantically valid graphs
via regularizing variational autoencoders. In: Advances in Neural Information
Processing Systems, pp 7113–7124

Ma Y, Wang S, Aggarwal CC, Tang J (2019d) Graph convolutional networks with
eigenpooling. In: ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, ACM, pp 723–731

Maalej W, Tiarks R, Roehm T, Koschke R (2014) On the comprehension of program
comprehension. ACM Transactions on Software Engineering and Methodology
(TOSEM) 23(4):1–37

Maddison C, Mnih A, Teh Y (2017) The concrete distribution: A continuous relax-
ation of discrete random variables. International Conference on Learning Repre-
sentations

Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2017) Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:170606083

Maglott D, Ostell J, Pruitt KD, Tatusova T (2010) Entrez gene: gene-centered infor-
mation at ncbi. Nucleic acids research 39(suppl 1):D52–D57

Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G
(2010) Pregel: a system for large-scale graph processing. In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, pp 135–
146

Malliaros FD, Vazirgiannis M (2013) Clustering and community detection in di-
rected networks: A survey. Physics reports 533(4):95–142

Man T, Shen H, Liu S, Jin X, Cheng X (2016) Predict anchor links across social
networks via an embedding approach. In: Ijcai, vol 16, pp 1823–1829

Manessi F, Rozza A (2020) Graph-based neural network models with multiple self-
supervised auxiliary tasks. arXiv preprint arXiv:
201107267

644 References

Manessi F, Rozza A, Manzo M (2020) Dynamic graph convolutional networks. Pat-
tern Recognition 97:107,000

Mangal R, Zhang X, Nori AV, Naik M (2015) A user-guided approach to program
analysis. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, pp 462–473

Manning C, Schutze H (1999) Foundations of statistical natural language process-
ing. MIT press

Marcheggiani D, Titov I (2017) Encoding sentences with graph convolutional net-
works for semantic role labeling. In: EMNLP 2017-Conference on Empirical
Methods in Natural Language Processing, Proceedings, pp 1506–1515

Marcheggiani D, Bastings J, Titov I (2018) Exploiting semantics in neural machine
translation with graph convolutional networks. arXiv preprint arXiv:180408313

Maretic HP, Thanou D, Frossard P (2017) Graph learning under sparsity priors. In:
2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Ieee, pp 6523–6527

Markovitz A, Sharir G, Friedman I, Zelnik-Manor L, Avidan S (2020) Graph em-
bedded pose clustering for anomaly detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp 10,539–10,547

Maron H, Ben-Hamu H, Shamir N, Lipman Y (2018) Invariant and equivariant
graph networks. In: International Conference on Learning Representations

Maron H, Ben-Hamu H, Serviansky H, Lipman Y (2019a) Provably powerful graph
networks. In: Advances in Neural Information Processing Systems, pp 2153–
2164

Maron H, Fetaya E, Segol N, Lipman Y (2019b) On the universality of invariant
networks. In: International Conference on Machine Learning, pp 4363–4371

Mathew B, Sikdar S, Lemmerich F, Strohmaier M (2020) The polar framework:
Polar opposites enable interpretability of pre-trained word embeddings. In: Pro-
ceedings of The Web Conference 2020, pp 1548–1558

Matsuno R, Murata T (2018) Mell: effective embedding method for multiplex net-
works. In: Companion Proceedings of the The Web Conference 2018, pp 1261–
1268

Matuszek C (2018) Grounded language learning: Where robotics and nlp meet (in-
vited talk). In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pp 5687–5691

Maziarka Ł, Danel T, Mucha S, Rataj K, Tabor J, Jastrzebski S (2020a) Molecule
attention transformer. arXiv preprint arXiv:200208264

Maziarka Ł, Pocha A, Kaczmarczyk J, Rataj K, Danel T, Warchoł M (2020b) Mol-
cyclegan: a generative model for molecular optimization. Journal of Cheminfor-
matics 12(1):1–18

McBurney PW, McMillan C (2014) Automatic documentation generation via source
code summarization of method context. In: Proceedings of the 22nd International
Conference on Program Comprehension, ACM, pp 279–290

McBurney PW, McMillan C (2016) Automatic source code summarization of con-
text for java methods. IEEE Transactions on Software Engineering 42(2):103–
119

References 645

McBurney PW, Liu C, McMillan C (2016) Automated feature discovery via sen-
tence selection and source code summarization. Journal of Software: Evolution
and Process 28(2):120–145

McMillan C, Grechanik M, Poshyvanyk D, Xie Q, Fu C (2011) Portfolio: finding
relevant functions and their usage. In: Proceedings of the 33rd International Con-
ference on Software Engineering, pp 111–120

Mcmillan C, Poshyvanyk D, Grechanik M, Xie Q, Fu C (2013) Portfolio: Searching
for relevant functions and their usages in millions of lines of code. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 22(4):1–30

McNee SM, Riedl J, Konstan JA (2006) Being accurate is not enough: how accu-
racy metrics have hurt recommender systems. In: CHI’06 extended abstracts on
Human factors in computing systems, pp 1097–1101

Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP,
Mosquera JF, Mutowo P, Nowotka M, et al (2019) Chembl: towards direct depo-
sition of bioassay data. Nucleic acids research 47(D1):D930–D940

Merkwirth C, Lengauer T (2005) Automatic generation of complementary descrip-
tors with molecular graph networks. Journal of Chemical Information and Mod-
eling 45(5):1159–1168

Mesquita DPP, Jr AHS, Kaski S (2020) Rethinking pooling in graph neural net-
works. In: Advances in Neural Information Processing Systems

Mihalcea R, Tarau P (2004) Textrank: Bringing order into text. In: Proceedings of
the 2004 conference on empirical methods in natural language processing, pp
404–411

Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon O, Raju B,
Shahrzad H, Navruzyan A, Duffy N, et al (2019) Evolving deep neural networks.
In: Artificial Intelligence in the Age of Neural Networks and Brain Computing,
Elsevier, pp 293–312

Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S (2010) Recurrent neu-
ral network based language model. In: Kobayashi T, Hirose K, Nakamura S (eds)
INTERSPEECH 2010, 11th Annual Conference of the International Speech Com-
munication Association, Makuhari, Chiba, Japan, September 26-30, 2010, ISCA,
pp 1045–1048

Mikolov T, Deoras A, Kombrink S, Burget L, Cernocký J (2011a) Empirical eval-
uation and combination of advanced language modeling techniques. In: INTER-
SPEECH 2011, 12th Annual Conference of the International Speech Communi-
cation Association, Florence, Italy, August 27-31, 2011, ISCA, pp 605–608

Mikolov T, Kombrink S, Burget L, Černockỳ J, Khudanpur S (2011b) Extensions of
recurrent neural network language model. In: 2011 IEEE international conference
on acoustics, speech and signal processing (ICASSP), IEEE, pp 5528–5531

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:13013781

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed represen-
tations of words and phrases and their compositionality. In: Advances in neural
information processing systems, pp 3111–3119

646 References

Mikolov T CGDJ Chen K (2013) Efficient estimation of word representations in
vector space. In: International Conference on Learning Representations

Miller BA, Çamurcu M, Gomez AJ, Chan K, Eliassi-Rad T (2019) Improving Ro-
bustness to Attacks Against Vertex Classification. In: Deep Learning for Graphs
at AAAI Conference on Artificial Intelligence

Miller GA (1995) Wordnet: a lexical database for english. Communications of the
ACM 38(11):39–41

Miller T (2019) Explanation in artificial intelligence: Insights from the social sci-
ences. Artificial intelligence 267:1–38

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network
motifs: simple building blocks of complex networks. Science 298(5594):824–827

Min S, Gao Z, Peng J, Wang L, Qin K, Fang B (2021) Stgsn—a spatial–temporal
graph neural network framework for time-evolving social networks. Knowledge-
Based Systems 214:106,746

Mir AM, Latoskinas E, Proksch S, Gousios G (2021) Type4Py: Deep similarity
learning-based type inference for Python. arXiv preprint arXiv:210104470

Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint
arXiv:14111784

Mnih A, Salakhutdinov RR (2008) Probabilistic matrix factorization. In: Advances
in neural information processing systems, pp 1257–1264

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves
A, Riedmiller M, Fidjeland AK, Ostrovski G, et al (2015) Human-level control
through deep reinforcement learning. Nature 518(7540):529–533

Mokou M, Lygirou V, Angelioudaki I, Paschalidis N, Stroggilos R, Frantzi M,
Latosinska A, Bamias A, Hoffmann MJ, Mischak H, et al (2020) A novel pipeline
for drug repurposing for bladder cancer based on patients’ omics signatures. Can-
cers 12(12):3519

Momtazpour M, Butler P, Hossain MS, Bozchalui MC, Ramakrishnan N, Sharma
R (2012) Coordinated clustering algorithms to support charging infrastructure
design for electric vehicles. In: Proceedings of the ACM SIGKDD International
Workshop on Urban Computing, pp 126–133

Montavon G, Samek W, Müller KR (2018) Methods for interpreting and understand-
ing deep neural networks. Digital Signal Processing 73:1–15

Monti F, Bronstein M, Bresson X (2017) Geometric matrix completion with recur-
rent multi-graph neural networks. In: Advances in Neural Information Processing
Systems, pp 3700–3710

Monti F, Frasca F, Eynard D, Mannion D, Bronstein MM (2019) Fake news detec-
tion on social media using geometric deep learning. In: Workshop on Represen-
tation Learning on Graphs and Manifolds

Moreno L, Aponte J, Sridhara G, Marcus A, Pollock L, Vijay-Shanker K (2013)
Automatic generation of natural language summaries for java classes. In: 2013
21st International Conference on Program Comprehension (ICPC), IEEE, pp 23–
32

Moreno L, Bavota G, Di Penta M, Oliveto R, Marcus A, Canfora G (2014) Auto-
matic generation of release notes. In: Proceedings of the 22nd ACM SIGSOFT In-

References 647

ternational Symposium on Foundations of Software Engineering, ACM, pp 484–
495

Morris C, Kersting K, Mutzel P (2017) Glocalized Weisfeiler-Lehman kernels:
Global-local feature maps of graphs. In: IEEE International Conference on Data
Mining, IEEE, pp 327–336

Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, Grohe M (2019)
Weisfeiler and leman go neural: Higher-order graph neural networks. In: the
AAAI Conference on Artificial Intelligence, vol 33, pp 4602–4609

Morris C, Kriege NM, Bause F, Kersting K, Mutzel P, Neumann M (2020a) TU-
Dataset: A collection of benchmark datasets for learning with graphs. CoRR
abs/2007.08663

Morris C, Rattan G, Mutzel P (2020b) Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Pro-
cessing Systems 33

Mueller J, Thyagarajan A (2016) Siamese recurrent architectures for learning sen-
tence similarity. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol 30

Mungall CJ, Torniai C, Gkoutos GV, Lewis SE, Haendel MA (2012) Uberon, an
integrative multi-species anatomy ontology. Genome biology 13(1):1–20

Murphy R, Srinivasan B, Rao V, Ribeiro B (2019a) Relational pooling for graph rep-
resentations. In: International Conference on Machine Learning, pp 4663–4673

Murphy RL, Srinivasan B, Rao VA, Ribeiro B (2019b) Janossy pooling: Learn-
ing deep permutation-invariant functions for variable-size inputs. In: International
Conference on Learning Representations

Murphy RL, Srinivasan B, Rao VA, Ribeiro B (2019c) Relational pooling for graph
representations. In: International Conference on Machine Learning, pp 4663–
4673

Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann ma-
chines. In: Fürnkranz J, Joachims T (eds) Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel,
Omnipress, pp 807–814

Nathani D, Chauhan J, Sharma C, Kaul M (2019) Learning attention-based
embeddings for relation prediction in knowledge graphs. arXiv preprint
arXiv:190601195

Nelson CA, Butte AJ, Baranzini SE (2019) Integrating biomedical research and
electronic health records to create knowledge-based biologically meaningful
machine-readable embeddings. Nature communications 10(1):1–10

Neville J, Jensen D (2000) Iterative classification in relational data. In: Proc. AAAI-
2000 workshop on learning statistical models from relational data, pp 13–20

Newman M (2010) Networks: an introduction. Oxford university press
Newman M (2018) Networks. Oxford university press
Newman ME (2006a) Finding community structure in networks using the eigenvec-

tors of matrices. Physical review E 74(3):036,104
Newman ME (2006b) Modularity and community structure in networks. Proceed-

ings of the national academy of sciences 103(23):8577–8582

648 References

Ng A (2011) Machine learning
Nguyen DQ, Nguyen TD, Nguyen DQ, Phung D (2017) A novel embedding model

for knowledge base completion based on convolutional neural network. arXiv
preprint arXiv:171202121

Nguyen HV, Bai L (2010) Cosine similarity metric learning for face verification. In:
Asian conference on computer vision, Springer, pp 709–720

Nickel M, Tresp V (2013) Tensor factorization for multi-relational learning. In:
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, Springer, pp 617–621

Nickel M, Tresp V, Kriegel HP (2011) A three-way model for collective learning
on multi-relational data. In: Proceedings of the 28th International Conference on
International Conference on Machine Learning, Omnipress, Madison, WI, USA,
ICML’11, p 809–816

Nickel M, Jiang X, Tresp V (2014) Reducing the rank in relational factorization
models by including observable patterns. In: Advances in Neural Information
Processing Systems, pp 1179–1187

Nickel M, Murphy K, Tresp V, Gabrilovich E (2016a) A review of relational ma-
chine learning for knowledge graphs. Proceedings of the IEEE 104(1):11–33

Nickel M, Rosasco L, Poggio T (2016b) Holographic embeddings of knowledge
graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 30

Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R (2020) Integrated multi-omics
analyses in oncology: a review of machine learning methods and tools. Frontiers
in oncology 10:1030

Nie P, Rai R, Li JJ, Khurshid S, Mooney RJ, Gligoric M (2019) A framework for
writing trigger-action todo comments in executable format. In: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ACM, pp 385–396

Nielson F, Nielson HR, Hankin C (2015) Principles of program analysis. Springer
Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks

for graphs. In: International Conference on Machine Learning, pp 2014–2023
Nikolentzos G, Meladianos P, Vazirgiannis M (2017) Matching node embeddings

for graph similarity. In: AAAI Conference on Artificial Intelligence, pp 2429–
2435

Ning X, Karypis G (2011) Slim: Sparse linear methods for top-n recommender sys-
tems. In: 2011 IEEE 11th International Conference on Data Mining, IEEE, pp
497–506

Niu C, Wu F, Tang S, Hua L, Jia R, Lv C, Wu Z, Chen G (2020) Billion-scale
federated learning on mobile clients: A submodel design with tunable privacy. In:
Proceedings of the 26th Annual International Conference on Mobile Computing
and Networking, pp 1–14

Norcliffe-Brown W, Vafeias S, Parisot S (2018) Learning conditioned graph struc-
tures for interpretable visual question answering. In: Advances in neural informa-
tion processing systems, pp 8334–8343

References 649

Noroozi M, Favaro P (2016) Unsupervised learning of visual representations by
solving jigsaw puzzles. In: European conference on computer vision, Springer,
pp 69–84

Nowozin S, Cseke B, Tomioka R (2016) f-gan: Training generative neural samplers
using variational divergence minimization. In: Advances in Neural Information
Processing Systems, vol 29

Noy N, Gao Y, Jain A, Narayanan A, Patterson A, Taylor J (2019) Industry-
scale knowledge graphs: lessons and challenges. Communications of the ACM
62(8):36–43

NT H, Maehara T (2019) Revisiting graph neural networks: All we have is low-pass
filters. arXiv preprint arXiv:190509550

Nunes M, Pappa GL (2020) Neural architecture search in graph neural networks. In:
Brazilian Conference on Intelligent Systems, Springer, pp 302–317

Oda Y, Fudaba H, Neubig G, Hata H, Sakti S, Toda T, Nakamura S (2015) Learning
to generate pseudo-code from source code using statistical machine translation
(t). In: 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, pp 574–584

Ok S (2020) A graph similarity for deep learning. In: Larochelle H, Ranzato M,
Hadsell R, Balcan MF, Lin H (eds) Advances in Neural Information Processing
Systems, Curran Associates, Inc., vol 33, pp 1–12

Olah C, Satyanarayan A, Johnson I, Carter S, Schubert L, Ye K, Mordvintsev A
(2018) The building blocks of interpretability. Distill DOI 10.23915/distill.00010,
https://distill.pub/2018/building-blocks

On K, Kim E, Heo Y, Zhang B (2020) Cut-based graph learning networks to dis-
cover compositional structure of sequential video data. In: The Thirty-Fourth
AAAI Conference on Artificial Intelligence, pp 5315–5322

Oono K, Suzuki T (2020) Graph neural networks exponentially lose expressive
power for node classification. In: International Conference on Learning Repre-
sentations

Oord Avd, Kalchbrenner N, Vinyals O, Espeholt L, Graves A, Kavukcuoglu K
(2016) Conditional image generation with pixelcnn decoders. In: Proceedings of
the 30th International Conference on Neural Information Processing Systems, pp
4797–4805

Oord Avd, Li Y, Vinyals O (2018) Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:180703748

Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Camp-
bell NH, Chavali G, Chen C, Del-Toro N, et al (2014) The mintact project—intact
as a common curation platform for 11 molecular interaction databases. Nucleic
acids research 42(D1):D358–D363

Ottenstein KJ, Ottenstein LM (1984) The program dependence graph in a software
development environment. ACM Sigplan Notices 19(5):177–184

Ou M, Cui P, Wang F, Wang J, Zhu W (2015) Non-transitive hashing with latent
similarity components. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp 895–904

650 References

Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving
graph embedding. In: Proceedings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp 1105–1114

Oyetunde T, Zhang M, Chen Y, Tang YJ, Lo C (2017) Boostgapfill: improving the
fidelity of metabolic network reconstructions through integrated constraint and
pattern-based methods. Bioinformatics 33(4):608–611

Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking:
Bringing order to the web. Tech. rep., Stanford InfoLab

Paige CC, Saunders MA (1981) Towards a generalized singular value decomposi-
tion. SIAM Journal on Numerical Analysis 18(3):398–405

Pal S, Malekmohammadi S, Regol F, Zhang Y, Xu Y, Coates M (2020) Non-
parametric graph learning for bayesian graph neural networks. In: Conference
on Uncertainty in Artificial Intelligence, PMLR, pp 1318–1327

Palasca O, Santos A, Stolte C, Gorodkin J, Jensen LJ (2018) Tissues 2.0: an inte-
grative web resource on mammalian tissue expression. Database 2018

Palaz D, Collobert R, et al (2015a) Analysis of cnn-based speech recognition system
using raw speech as input. Tech. rep., Idiap

Palaz D, Doss MM, Collobert R (2015b) Convolutional neural networks-based con-
tinuous speech recognition using raw speech signal. In: 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp
4295–4299

Paliwal A, Gimeno F, Nair V, Li Y, Lubin M, Kohli P, Vinyals O (2020) Reinforced
genetic algorithm learning for optimizing computation graphs. In: International
Conference on Learning Representations

Pan M, Li Y, Zhou X, Liu Z, Song R, Lu H, Luo J (2019) Dissecting the learning
curve of taxi drivers: A data-driven approach. In: Proceedings of the 2019 SIAM
International Conference on Data Mining, SIAM, pp 783–791

Pan M, Huang W, Li Y, Zhou X, Liu Z, Song R, Lu H, Tian Z, Luo J (2020a)
Dhpa: Dynamic human preference analytics framework: A case study on taxi
drivers’ learning curve analysis. ACM Trans Intell Syst Technol 11(1), DOI 10.
1145/3360312

Pan M, Huang W, Li Y, Zhou X, Luo J (2020b) Xgail: Explainable generative ad-
versarial imitation learning for explainable human decision analysis. In: Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Dis-
covery amp; Data Mining, Association for Computing Machinery, KDD ’20, p
1334–1343, DOI 10.1145/3394486.3403186

Pan S, Wu J, Zhu X, Zhang C, Wang Y (2016) Tri-party deep network representa-
tion. In: Proceedings of the Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, pp 1895–1901

Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regularized
graph autoencoder for graph embedding. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pp 2609–2615

Pan W, Su C, Chen K, Henchcliffe C, Wang F (2020c) Learning phenotypic associ-
ations for parkinson’s disease with longitudinal clinical records. medRxiv

References 651

Pandi IV, Barr ET, Gordon AD, Sutton C (2020) OptTyper: Probabilistic
type inference by optimising logical and natural constraints. arXiv preprint
arXiv:200400348

Pang L, Lan Y, Guo J, Xu J, Wan S, Cheng X (2016) Text matching as image recog-
nition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 30

Pang LX, Chawla S, Liu W, Zheng Y (2011) On mining anomalous patterns in
road traffic streams. In: International conference on advanced data mining and
applications, Springer, pp 237–251

Panichella S, Aponte J, Di Penta M, Marcus A, Canfora G (2012) Mining source
code descriptions from developer communications. In: 2012 20th IEEE Interna-
tional Conference on Program Comprehension (ICPC), IEEE, pp 63–72

Paninski L (2003) Estimation of entropy and mutual information. Neural computa-
tion 15(6):1191–1253

Pantziarka P, Meheus L (2018) Omics-driven drug repurposing as a source of inno-
vative therapies in rare cancers. Expert Opinion on Orphan Drugs 6(9):513–517

Park C, Kim D, Zhu Q, Han J, Yu H (2019) Task-guided pair embedding in hetero-
geneous network. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp 489–498

Parthasarathy S, Busso C (2017) Jointly predicting arousal, valence and dominance
with multi-task learning. In: Interspeech, vol 2017, pp 1103–1107

Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural
networks. In: International conference on machine learning, PMLR, pp 1310–
1318

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Te-
jani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: An
imperative style, high-performance deep learning library. In: Advances in Neural
Information Processing Systems, vol 32

Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA (2016) Context encoders:
Feature learning by inpainting. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 2536–2544

Peña-Castillo L, Tasan M, Myers CL, et al (2008) A critical assessment of mus
musculus gene function prediction using integrated genomic evidence. Genome
Biology 9(Suppl 1):S2, DOI 10.1186/gb-2008-9-s1-s2

Peng H, Li J, He Y, Liu Y, Bao M, Wang L, Song Y, Yang Q (2018) Large-scale
hierarchical text classification with recursively regularized deep graph-cnn. In:
Proceedings of the 2018 world wide web conference, pp 1063–1072

Peng H, Pappas N, Yogatama D, Schwartz R, Smith N, Kong L (2021) Random
feature attention. In: International Conference on Learning Representations

Peng Z, Dong Y, Luo M, Wu XM, Zheng Q (2020) Self-supervised graph represen-
tation learning via global context prediction. arXiv preprint arXiv:200301604

Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp 1532–1543

652 References

Percha B, Altman RB (2018) A global network of biomedical relationships derived
from text. Bioinformatics 34(15):2614–2624

Perez E, Strub F, De Vries H, Dumoulin V, Courville A (2018) Film: Visual reason-
ing with a general conditioning layer. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol 32

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social repre-
sentations. In: Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp 701–710

Petar V, Guillem C, Arantxa C, Adriana R, Pietro L, Yoshua B (2018) Graph atten-
tion networks. In: International Conference on Learning Representations

Pham H, Guan M, Zoph B, Le Q, Dean J (2018) Efficient neural architecture search
via parameter sharing. In: International Conference on Machine Learning, pp
4092–4101

Pham T, Tran T, Phung D, Venkatesh S (2017) Column networks for collective clas-
sification. In: Proceedings of the Thirty-First AAAI Conference on Artificial In-
telligence, AAAI Press, AAAI’17, p 2485–2491

Piñero J, Ramı́rez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F,
Furlong LI (2020) The disgenet knowledge platform for disease genomics: 2019
update. Nucleic acids research 48(D1):D845–D855

Pires DE, Blundell TL, Ascher DB (2015) pkcsm: predicting small-molecule phar-
macokinetic and toxicity properties using graph-based signatures. Journal of
medicinal chemistry 58(9):4066–4072

Pletscher-Frankild S, Pallejà A, Tsafou K, Binder JX, Jensen LJ (2015) Diseases:
Text mining and data integration of disease–gene associations. Methods 74:83–89

Pogancic MV, Paulus A, Musil V, Martius G, Rolinek M (2020) Differentiation of
blackbox combinatorial solvers. In: International Conference on Learning Repre-
sentations, OpenReview.net

Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H (2019) Explainabil-
ity methods for graph convolutional neural networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10,772–
10,781

Pradel M, Sen K (2018) Deepbugs: A learning approach to name-based bug detec-
tion. Proceedings of the ACM on Programming Languages 2(OOPSLA):1–25

Pradel M, Gousios G, Liu J, Chandra S (2020) TypeWriter: Neural type prediction
with search-based validation. In: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp 209–220

Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams
T, Latimer J, McNamee C, et al (2019) Drug repurposing: progress, challenges
and recommendations. Nature reviews Drug discovery 18(1):41–58

Putra JWG, Tokunaga T (2017) Evaluating text coherence based on semantic sim-
ilarity graph. In: Proceedings of TextGraphs-11: the Workshop on Graph-based
Methods for Natural Language Processing, pp 76–85

References 653

Qi Y, Bar-Joseph Z, Klein-Seetharaman J (2006) Evaluation of different biologi-
cal data and computational classification methods for use in protein interaction
prediction. Proteins: Structure, Function, and Bioinformatics 63(3):490–500

Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J (2018) Network embedding as matrix
factorization: Unifying deepwalk, line, pte, and node2vec. In: Proceedings of the
eleventh ACM international conference on web search and data mining, pp 459–
467

Qiu J, Chen Q, Dong Y, Zhang J, Yang H, Ding M, Wang K, Tang J (2020a) Gcc:
Graph contrastive coding for graph neural network pre-training. In: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp 1150–1160

Qiu J, Cen Y, Chen Q, Zhou C, Zhou J, Yang H, Tang J (2021) Local clustering
graph neural networks. OpenReview

Qiu X, Sun T, Xu Y, Shao Y, Dai N, Huang X (2020b) Pre-trained models for natural
language processing: A survey. Science China Technological Sciences pp 1–26

Qu Y, Cai H, Ren K, Zhang W, Yu Y, Wen Y, Wang J (2016) Product-based neural
networks for user response prediction. In: 2016 IEEE 16th International Confer-
ence on Data Mining (ICDM), IEEE, pp 1149–1154

Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language un-
derstanding with unsupervised learning. Tech. rep., OpenAI

Radivojac P, Clark WT, Oron TR, et al (2013) A large-scale evaluation of computa-
tional protein function prediction. Nature Methods 10(3):221–227

Raghothaman M, Kulkarni S, Heo K, Naik M (2018) User-guided program rea-
soning using Bayesian inference. In: Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp 722–735

Rahman TA, Surma B, Backes M, Zhang Y (2019) Fairwalk: Towards fair graph
embedding. In: IJCAI, pp 3289–3295

Ramakrishnan R, Dral PO, Rupp M, Von Lilienfeld OA (2014) Quantum chemistry
structures and properties of 134 kilo molecules. Scientific data 1(1):1–7

Ramos PIP, Arge LWP, Lima NCB, Fukutani KF, de Queiroz ATL (2019) Leverag-
ing user-friendly network approaches to extract knowledge from high-throughput
omics datasets. Frontiers in genetics 10:1120

Rastkar S, Murphy GC (2013) Why did this code change? In: Proceedings of the
2013 International Conference on Software Engineering, IEEE Press, pp 1193–
1196

Rastkar S, Murphy GC, Bradley AW (2011) Generating natural language summaries
for crosscutting source code concerns. In: 2011 27th IEEE International Confer-
ence on Software Maintenance (ICSM), IEEE, pp 103–112

Rastkar S, Murphy GC, Murray G (2014) Automatic summarization of bug reports.
IEEE Transactions on Software Engineering 40(4):366–380

Ratti C, Sobolevsky S, Calabrese F, Andris C, Reades J, Martino M, Claxton R,
Strogatz SH (2010) Redrawing the map of great britain from a network of human
interactions. PloS one 5(12)

654 References

Raychev V, Vechev M, Yahav E (2014) Code completion with statistical language
models. In: Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp 419–428

Raychev V, Vechev M, Krause A (2015) Predicting program properties from Big
Code. In: Principles of Programming Languages (POPL)

Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le Q, Kurakin A (2017)
Large-scale evolution of image classifiers. arXiv preprint arXiv:170301041

Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol 33, pp 4780–4789

Ren H, Hu W, Leskovec J (2020) Query2box: Reasoning over knowledge graphs
in vector space using box embeddings. In: International Conference on Learning
Representations

Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object de-
tection with region proposal networks. In: Proceedings of the 28th International
Conference on Neural Information Processing Systems-Volume 1, pp 91–99

Ren Z, Wang X, Zhang N, Lv X, Li LJ (2017) Deep reinforcement learning-based
image captioning with embedding reward. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 290–298

Rendle S (2010) Factorization machines. In: 10th IEEE International Conference on
Data Mining (ICDM), IEEE, pp 995–1000

Rezende DJ, Mohamed S, Wierstra D (2014) Stochastic backpropagation and ap-
proximate inference in deep generative models. In: International conference on
machine learning, PMLR, pp 1278–1286

Rhodes G (2010) Crystallography made crystal clear: a guide for users of macro-
molecular models. Elsevier

Ribeiro LF, Saverese PH, Figueiredo DR (2017) struc2vec: Learning node represen-
tations from structural identity. In: the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp 385–394

Ribeiro MT, Ziviani N, Moura ESD, Hata I, Lacerda A, Veloso A (2014) Multiob-
jective pareto-efficient approaches for recommender systems. ACM Transactions
on Intelligent Systems and Technology (TIST) 5(4):1–20

Ribeiro MT, Singh S, Guestrin C (2016) ” why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, pp 1135–1144

Richiardi J, Achard S, Bunke H, Van De Ville D (2013) Machine learning with
brain graphs: predictive modeling approaches for functional imaging in systems
neuroscience. IEEE Signal Processing Magazine 30(3):58–70

Riesen K (2015) Structural Pattern Recognition with Graph Edit Distance Approxi-
mation Algorithms and Applications. Springer

Riesen K, Fankhauser S, Bunke H (2007) Speeding up graph edit distance compu-
tation with a bipartite heuristic. In: MLG, Citeseer, pp 21–24

Riloff E (1996) Automatically generating extraction patterns from untagged text. In:
Proceedings of the national conference on artificial intelligence, pp 1044–1049

References 655

Rink B, Bejan CA, Harabagiu SM (2010) Learning textual graph patterns to detect
causal event relations. In: FLAIRS Conference

Rizvi RF, Vasilakes JA, Adam TJ, Melton GB, Bishop JR, Bian J, Tao C, Zhang R
(2019) Integrated dietary supplement knowledge base (idisk)

Robinson PN, Köhler S, Bauer S, et al (2008) The human phenotype ontology:
A tool for annotating and analyzing human hereditary disease. The American
Journal of Human Genetics 83(5):610–615

Rocco I, Cimpoi M, Arandjelović R, Torii A, Pajdla T, Sivic J (2018) Neighbour-
hood consensus networks. In: Advances in Neural Information Processing Sys-
tems, vol 31

Rodeghero P, McMillan C, McBurney PW, Bosch N, D’Mello S (2014) Improving
automated source code summarization via an eye-tracking study of programmers.
In: Proceedings of the 36th international conference on Software engineering,
ACM, pp 390–401

Rodeghero P, Jiang S, Armaly A, McMillan C (2017) Detecting user story infor-
mation in developer-client conversations to generate extractive summaries. In:
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE),
IEEE, pp 49–59

Roehm T, Tiarks R, Koschke R, Maalej W (2012) How do professional develop-
ers comprehend software? In: 2012 34th International Conference on Software
Engineering (ICSE), IEEE, pp 255–265

Rogers D, Hahn M (2010) Extended-connectivity fingerprints. Journal of Chemical
Information and Modeling 50(5):742–754

Rolı́nek M, Swoboda P, Zietlow D, Paulus A, Musil V, Martius G (2020) Deep
graph matching via blackbox differentiation of combinatorial solvers. In: Euro-
pean Conference on Computer Vision, Springer, pp 407–424

Rong Y, Bian Y, Xu T, Xie W, Wei Y, Huang W, Huang J (2020a) Self-supervised
graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems 33

Rong Y, Huang W, Xu T, Huang J (2020b) Dropedge: Towards deep graph convolu-
tional networks on node classification. In: International Conference on Learning
Representations

Rong Y, Xu T, Huang J, Huang W, Cheng H, Ma Y, Wang Y, Derr T, Wu L, Ma T
(2020c) Deep graph learning: Foundations, advances and applications. In: Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ACM, Virtual Event, pp 3555–3556

Rossi A, Barbosa D, Firmani D, Matinata A, Merialdo P (2021) Knowledge graph
embedding for link prediction: A comparative analysis. ACM Transactions on
Knowledge Discovery from Data (TKDD) 15(2):1–49

Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein M (2020) Tem-
poral graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:200610637

Rotmensch M, Halpern Y, Tlimat A, Horng S, Sontag D (2017) Learning a health
knowledge graph from electronic medical records. Scientific reports 7(1):5994

656 References

Rousseau F, Vazirgiannis M (2013) Graph-of-word and tw-idf: new approach to ad
hoc ir. In: Proceedings of the 22nd ACM international conference on Information
& Knowledge Management, pp 59–68

Rousseau F, Kiagias E, Vazirgiannis M (2015) Text categorization as a graph classi-
fication problem. In: Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), pp 1702–1712

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear
embedding. science 290(5500):2323–2326

Rubner Y, Tomasi C, Guibas LJ (1998) A metric for distributions with applications
to image databases. In: Sixth International Conference on Computer Vision (IEEE
Cat. No. 98CH36271), IEEE, pp 59–66

Rue H, Held L (2005) Gaussian Markov random fields: theory and applications.
CRC press

Rui SCLDJZJL T (2005) A character recognition based on feature extraction. Jour-
nal of Chinese Computer Systems, 26(2), 289-292 26(2):289–292

Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Pro-
ceedings of the 31st International Conference on Neural Information Processing
Systems, pp 3859–3869

Sachdev S, Li H, Luan S, Kim S, Sen K, Chandra S (2018) Retrieval on source code:
a neural code search. In: Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp 31–41

Sahu S, Gupta R, Sivaraman G, AbdAlmageed W, Espy-Wilson C (2017) Adversar-
ial auto-encoders for speech based emotion recognition. Proc Interspeech 2017
pp 1243–1247

Sahu SK, Anand A (2018) Drug-drug interaction extraction from biomedical texts
using long short-term memory network. Journal of biomedical informatics 86:15–
24

Saire D, Ramı́rez Rivera A (2019) Graph learning network: A structure learning
algorithm. In: Workshop on Learning and Reasoning with Graph-Structured Data
(ICMLW 2019)

Samanta B, Abir D, Jana G, Chattaraj PK, Ganguly N, Rodriguez MG (2019) Nevae:
A deep generative model for molecular graphs. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol 33, pp 1110–1117

Sanchez-Lengeling B, Wei J, Lee B, Reif E, Wang P, Qian W, McCloskey K, Col-
well L, Wiltschko A (2020) Evaluating attribution for graph neural networks. In:
Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H (eds) Advances in Neural
Information Processing Systems, Curran Associates, Inc., vol 33, pp 5898–5910

Sandryhaila A, Moura JF (2013) Discrete signal processing on graphs. IEEE Trans
Signal Process 61(7):1644–1656

Sangeetha J, Jayasankar T (2019) Emotion speech recognition based on adaptive
fractional deep belief network and reinforcement learning. In: Cognitive Infor-
matics and Soft Computing, Springer, pp 165–174

References 657

Santini S, Ostermaier B, Vitaletti A (2008) First experiences using wireless sen-
sor networks for noise pollution monitoring. In: Proceedings of the workshop on
Real-world wireless sensor networks, pp 61–65

Santos A, Colaço AR, Nielsen AB, Niu L, Geyer PE, Coscia F, Albrechtsen NJW,
Mundt F, Jensen LJ, Mann M (2020) Clinical knowledge graph integrates pro-
teomics data into clinical decision-making. bioRxiv

Sato R (2020) A survey on the expressive power of graph neural networks. arXiv
preprint arXiv:200304078

Sato R, Yamada M, Kashima H (2021) Random features strengthen graph neural
networks. In: Proceedings of the 2021 SIAM International Conference on Data
Mining (SDM), SIAM, pp 333–341

Satorras VG, Estrach JB (2018) Few-shot learning with graph neural networks. In:
International Conference on Learning Representations

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph
neural network model. IEEE transactions on neural networks 20(1):61–80

Schenker A, Last M, Bunke H, Kandel A (2003) Clustering of web documents us-
ing a graph model. In: Web Document Analysis: Challenges and Opportunities,
World Scientific, pp 3–18

Schlichtkrull M, Kipf TN, Bloem P, Van Den Berg R, Titov I, Welling M (2018)
Modeling relational data with graph convolutional networks. In: European se-
mantic web conference, Springer, pp 593–607

Schlichtkrull MS, De Cao N, Titov I (2021) Interpreting graph neural networks for
nlp with differentiable edge masking. In: International Conference on Learning
Representations

Schnake T, Eberle O, Lederer J, Nakajima S, Schütt KT, Müller KR, Montavon G
(2020) Xai for graphs: Explaining graph neural network predictions by identify-
ing relevant walks. arXiv preprint arXiv:200603589

Schneider N, Flanigan J, O’Gorman T (2015) The logic of amr: Practical, unified,
graph-based sentence semantics for nlp. In: Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Tutorial Abstracts, pp 4–5

Schriml LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, Felix V, Jeng
L, Bearer C, Lichenstein R, et al (2019) Human disease ontology 2018 up-
date: classification, content and workflow expansion. Nucleic acids research
47(D1):D955–D962

Schuchardt J, Bojchevski A, Klicpera J, Günnemann S (2021) Collective robustness
certificates. In: International Conference on Learning Representations, ICLR

Schug J (2002) Predicting gene ontology functions from ProDom and CDD protein
domains. Genome Research 12(4):648–655

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy
optimization algorithms. arXiv preprint arXiv:170706347

Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing 45(11):2673–2681

658 References

Schwarzenberg R, Hübner M, Harbecke D, Alt C, Hennig L (2019) Layerwise rele-
vance visualization in convolutional text graph classifiers. In: Proceedings of the
EMNLP 2019 Workshop on Graph-Based Natural Language Processing

Schweidtmann AM, Rittig JG, König A, Grohe M, Mitsos A, Dahmen M (2020)
Graph neural networks for prediction of fuel ignition quality. Energy & Fuels
34(9):11,395–11,407

Schwikowski B, Uetz P, Fields S (2000) A network of protein–protein interactions
in yeast. Nature Biotechnology 18(12):1257–1261

Seide F, Li G, Yu D (2011) Conversational speech transcription using context-
dependent deep neural networks. In: Twelfth annual conference of the interna-
tional speech communication association

Seidman SB (1983) Network structure and minimum degree. Social Networks
5(3):269–287

Selsam D, Bjørner N (2019) Guiding high-performance SAT solvers with unsat-core
predictions. In: International Conference on Theory and Applications of Satisfia-
bility Testing, Springer, pp 336–353

Semasaba AOA, Zheng W, Wu X, Agyemang SA (2020) Literature survey of deep
learning-based vulnerability analysis on source code. IET Software

Seo Y, Defferrard M, Vandergheynst P, Bresson X (2018) Structured sequence mod-
eling with graph convolutional recurrent networks. In: Neural Information Pro-
cessing, Springer, pp 362–373

Shah M, Chen X, Rohrbach M, Parikh D (2019) Cycle-consistency for robust visual
question answering. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 6649–6658

Shang C, Tang Y, Huang J, Bi J, He X, Zhou B (2019) End-to-end structure-aware
convolutional networks for knowledge base completion. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol 33, pp 3060–3067

Shang J, Zheng Y, Tong W, Chang E, Yu Y (2014) Inferring gas consumption and
pollution emission of vehicles throughout a city. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp
1027–1036

Shanthamallu US, Thiagarajan JJ, Spanias A (2021) Uncertainty-Matching Graph
Neural Networks to Defend Against Poisoning Attacks. In: AAAI Conference on
Artificial Intelligence

Sharp ME (2017) Toward a comprehensive drug ontology: extraction of drug-
indication relations from diverse information sources. Journal of biomedical se-
mantics 8(1):1–10

Shehu A, Barbará D, Molloy K (2016) A survey of computational methods for
protein function prediction. In: Wong KC (ed) Big Data Analytics in Genomics,
Springer Verlag, pp 225–298

Shen J, Zhang J, Luo X, et al (2007) Predicting protein-protein interactions based
only on sequences information. Proceedings of the National Academy of Sciences
104(11):4337–4341

Shen K, Wu L, Xu F, Tang S, Xiao J, Zhuang Y (2020) Hierarchical attention based
spatial-temporal graph-to-sequence learning for grounded video description. In:

References 659

Bessiere C (ed) Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, International Joint Conferences on Artificial
Intelligence Organization, pp 941–947, main track

Shen YL, Huang CY, Wang SS, Tsao Y, Wang HM, Chi TS (2019) Reinforcement
learning based speech enhancement for robust speech recognition. In: ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), IEEE, pp 6750–6754

Shen Z, Zhang M, Zhao H, Yi S, Li H (2021) Efficient attention: Attention with
linear complexities. In: Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pp 3531–3539

Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM
(2011a) Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research
12:2539–2561

Shervashidze N, Schweitzer P, Leeuwen EJv, Mehlhorn K, Borgwardt KM
(2011b) Weisfeiler-lehman graph kernels. Journal of Machine Learning Research
12(Sep):2539–2561

Shi C, Li Y, Zhang J, Sun Y, Philip SY (2016) A survey of heterogeneous informa-
tion network analysis. IEEE Transactions on Knowledge and Data Engineering
29(1):17–37

Shi C, Hu B, Zhao WX, Philip SY (2018a) Heterogeneous information network
embedding for recommendation. IEEE Transactions on Knowledge and Data En-
gineering 31(2):357–370

Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J (2019a) Graphaf: a flow-based au-
toregressive model for molecular graph generation. In: International Conference
on Learning Representations

Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22(8):888–905, DOI 10.1109/34.
868688

Shi L, Zhang Y, Cheng J, Lu H (2019b) Skeleton-based action recognition with
directed graph neural networks. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp 7912–7921

Shi M, Wilson DA, Zhu X, Huang Y, Zhuang Y, Liu J, Tang Y (2020) Evolutionary
architecture search for graph neural networks. arXiv preprint arXiv:200910199

Shi W, Rajkumar R (2020) Point-gnn: Graph neural network for 3d object detection
in a point cloud. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp 1711–1719

Shi Y, Gui H, Zhu Q, Kaplan L, Han J (2018b) Aspem: Embedding learning by as-
pects in heterogeneous information networks. In: Proceedings of the 2018 SIAM
International Conference on Data Mining, SIAM, pp 144–152

Shi Y, Zhu Q, Guo F, Zhang C, Han J (2018c) Easing embedding learning by com-
prehensive transcription of heterogeneous information networks. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp 2190–2199

Shibata N, Kajikawa Y, Sakata I (2012) Link prediction in citation networks. Journal
of the American society for information science and technology 63(1):78–85

660 References

Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep
learning. Journal of Big Data 6(1):1–48

Shou Z, Wang D, Chang SF (2016) Temporal action localization in untrimmed
videos via multi-stage cnns. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 1049–1058

Shou Z, Chan J, Zareian A, Miyazawa K, Chang SF (2017) Cdc: Convolutional-
de-convolutional networks for precise temporal action localization in untrimmed
videos. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 5734–5743

Shrivastava S (2017) Bring rich knowledge of people places things and local busi-
nesses to your apps. Bing Blogs

Shu DW, Park SW, Kwon J (2019) 3d point cloud generative adversarial network
based on tree structured graph convolutions. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp 3859–3868

Shu K, Mahudeswaran D, Wang S, Liu H (2020) Hierarchical propagation networks
for fake news detection: Investigation and exploitation. In: International AAAI
Conference on Web and Social Media

Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P (2013) The emerg-
ing field of signal processing on graphs: Extending high-dimensional data analy-
sis to networks and other irregular domains. IEEE Signal Process Mag 30(3):83–
98

Si X, Dai H, Raghothaman M, Naik M, Song L (2018) Learning loop invariants
for program verification. Advances in Neural Information Processing Systems
31:7751–7762

Si Y, Du J, Li Z, Jiang X, Miller T, Wang F, Zheng J, Roberts K (2020) Deep
representation learning of patient data from electronic health records (ehr): A
systematic review. Journal of Biomedical Informatics pp 103,671–103,671

Siddharth N, Paige B, van de Meent JW, Desmaison A, Goodman ND, Kohli
P, Wood F, Torr PH (2017) Learning disentangled representations with semi-
supervised deep generative models. In: Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pp 5927–5937

Siegelmann HT, Sontag ED (1995) On the computational power of neural nets. Jour-
nal of computer and system sciences 50(1):132–150

Silander T, Myllymäki P (2006) A simple approach for finding the globally optimal
bayesian network structure. In: Proceedings of the Twenty-Second Conference
on Uncertainty in Artificial Intelligence, pp 445–452

Sillito J, Murphy GC, De Volder K (2008) Asking and answering questions dur-
ing a programming change task. IEEE Transactions on Software Engineering
34(4):434–451

Silva J (2012) A vocabulary of program slicing-based techniques. ACM computing
surveys (CSUR) 44(3):1–41

Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Determinis-
tic policy gradient algorithms. In: International conference on machine learning,
PMLR, pp 387–395

References 661

Simonovsky M, Komodakis N (2017) Dynamic edge-conditioned filters in convolu-
tional neural networks on graphs. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp 29–38

Simonovsky M, Komodakis N (2018) Graphvae: Towards generation of small
graphs using variational autoencoders. arXiv preprint arXiv:180203480

Simonyan K, Zisserman A (2014a) Two-stream convolutional networks for action
recognition in videos. In: Proceedings of the 27th International Conference on
Neural Information Processing Systems, pp 568–576

Simonyan K, Zisserman A (2014b) Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:14091556

Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:13126034

Singhal A (2012) Introducing the knowledge graph: things, not strings. Official
google blog 5:16

Skarding J, Gabrys B, Musial K (2020) Foundations and modelling of dy-
namic networks using dynamic graph neural networks: A survey. arXiv preprint
arXiv:200507496

Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M (2017) Smoothgrad: remov-
ing noise by adding noise. Workshop on Visualization for Deep Learning, ICML

Socher R, Huang EH, Pennington J, Ng AY, Manning CD (2011) Dynamic pooling
and unfolding recursive autoencoders for paraphrase detection. In: NIPS, vol 24,
pp 801–809

Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with neural tensor net-
works for knowledge base completion. In: Advances in neural information pro-
cessing systems, Citeseer, pp 926–934

Sohn K, Lee H, Yan X (2015) Learning structured output representation using deep
conditional generative models. Advances in neural information processing sys-
tems 28:3483–3491

Song C, Lin Y, Guo S, Wan H (2020a) Spatial-temporal synchronous graph convolu-
tional networks: A new framework for spatial-temporal network data forecasting.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp
914–921

Song L, Zhang Y, Wang Z, Gildea D (2018) A graph-to-sequence model for amr-to-
text generation. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp 1616–1626

Song L, Wang A, Su J, Zhang Y, Xu K, Ge Y, Yu D (2020b) Structural informa-
tion preserving for graph-to-text generation. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp 7987–7998

Song W, Xiao Z, Wang Y, Charlin L, Zhang M, Tang J (2019a) Session-based social
recommendation via dynamic graph attention networks. In: ACM International
Conference on Web Search and Data Mining, pp 555–563

Song X, Sun H, Wang X, Yan J (2019b) A survey of automatic generation of source
code comments: Algorithms and techniques. IEEE Access 7:111,411–111,428

662 References

Sridhara G, Pollock L, Vijay-Shanker K (2011) Automatically detecting and de-
scribing high level actions within methods. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ACM, pp 101–110

Srinivasan B, Ribeiro B (2020a) On the equivalence between node embeddings and
structural graph representations. In: International Conference on Learning Rep-
resentations

Srinivasan B, Ribeiro B (2020b) On the equivalence between positional node em-
beddings and structural graph representations. In: 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, OpenReview.net

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014)
Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research 15(1):1929–1958

Stanfield Z, Coşkun M, Koyutürk M (2017) Drug response prediction as a link pre-
diction problem. Scientific reports 7(1):1–13

Stanic A, van Steenkiste S, Schmidhuber J (2021) Hierarchical relational inference.
In: Proceedings of the AAAI Conference on Artificial Intelligence

Stark C (2006) BioGRID: a general repository for interaction datasets. Nucleic
Acids Research 34(90001):D535–D539

van Steenkiste S, Chang M, Greff K, Schmidhuber J (2018) Relational neural ex-
pectation maximization: Unsupervised discovery of objects and their interactions.
In: International Conference on Learning Representations

Sterling T, Irwin JJ (2015) ZINC 15 – ligand discovery for everyone. Journal of
Chemical Information and Modeling 55(11):2324–2337

Stokes J, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia N, MacNair C,
French S, Carfrae L, Bloom-Ackerman Z, Tran V, Chiappino-Pepe A, Badran
A, Andrews I, Chory E, Church G, Brown E, Jaakkola T, Barzilay R, Collins J
(2020) A deep learning approach to antibiotic discovery. Cell 180:688–702.e13

Su C, Aseltine R, Doshi R, Chen K, Rogers SC, Wang F (2020a) Machine learn-
ing for suicide risk prediction in children and adolescents with electronic health
records. Translational psychiatry 10(1):1–10

Su C, Tong J, Wang F (2020b) Mining genetic and transcriptomic data using ma-
chine learning approaches in parkinson’s disease. npj Parkinson’s Disease 6(1):1–
10

Su C, Tong J, Zhu Y, Cui P, Wang F (2020c) Network embedding in biomedical data
science. Briefings in bioinformatics 21(1):182–197

Su C, Xu Z, Hoffman K, Goyal P, Safford MM, Lee J, Alvarez-Mulett S, Gomez-
Escobar L, Price DR, Harrington JS, et al (2020d) Identifying organ dysfunction
trajectory-based subphenotypes in critically ill patients with covid-19. medRxiv

Su C, Xu Z, Pathak J, Wang F (2020e) Deep learning in mental health outcome
research: a scoping review. Translational Psychiatry 10(1):1–26

Su C, Zhang Y, Flory JH, Weiner MG, Kaushal R, Schenck EJ, Wang F (2021) Novel
clinical subphenotypes in covid-19: derivation, validation, prediction, temporal
patterns, and interaction with social determinants of health. medRxiv

References 663

Subramanian I, Verma S, Kumar S, Jere A, Anamika K (2020) Multi-omics data in-
tegration, interpretation, and its application. Bioinformatics and biology insights
14:1177932219899,051

Sugiyama M, Borgwardt KM (2015) Halting in random walk kernels. In: Advances
in Neural Information Processing Systems, pp 1639–1647

Sukhbaatar S, Fergus R, et al (2016) Learning multiagent communication with back-
propagation. Advances in neural information processing systems 29:2244–2252

Sun C, Gong Y, Wu Y, Gong M, Jiang D, Lan M, Sun S, Duan N (2019) Joint type
inference on entities and relations via graph convolutional networks. In: Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pp 1361–1370

Sun H, Xiao J, Zhu W, He Y, Zhang S, Xu X, Hou L, Li J, Ni Y, Xie G (2020a)
Medical knowledge graph to enhance fraud, waste, and abuse detection on claim
data: Model development and performance evaluation. JMIR Medical Informatics
8(7):e17,653

Sun J, Jiang Q, Lu C (2020b) Recursive social behavior graph for trajectory pre-
diction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp 660–669

Sun K, Lin Z, Zhu Z (2020c) Multi-stage self-supervised learning for graph convo-
lutional networks on graphs with few labeled nodes. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol 34, pp 5892–5899

Sun M, Li P (2019) Graph to graph: a topology aware approach for graph structures
learning and generation. In: The 22nd International Conference on Artificial In-
telligence and Statistics, PMLR, pp 2946–2955

Sun S, Zhang B, Xie L, Zhang Y (2017) An unsupervised deep domain adaptation
approach for robust speech recognition. Neurocomputing 257:79–87

Sun Y, Han J (2013) Mining heterogeneous information networks: a structural anal-
ysis approach. Acm Sigkdd Explorations Newsletter 14(2):20–28

Sun Y, Han J, Yan X, Yu PS, Wu T (2011) Pathsim: Meta path-based top-k simi-
larity search in heterogeneous information networks. Proceedings of the VLDB
Endowment 4(11):992–1003

Sun Y, Wang S, Tang X, Hsieh TY, Honavar V (2020d) Adversarial attacks on graph
neural networks via node injections: A hierarchical reinforcement learning ap-
proach. In: Proceedings of The Web Conference 2020, Association for Comput-
ing Machinery, WWW ’20, p 673–683, DOI 10.1145/3366423.3380149

Sun Y, Yuan F, Yang M, Wei G, Zhao Z, Liu D (2020e) A generic network com-
pression framework for sequential recommender systems. In: Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pp 1299–1308

Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In:
International Conference on Machine Learning, PMLR, pp 3319–3328

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural
networks. Advances in Neural Information Processing Systems 27:3104–3112

Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT press

664 References

Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods
for reinforcement learning with function approximation. In: Advances in Neural
Information Processing Systems, pp 1057–1063

Swietojanski P, Li J, Renals S (2016) Learning hidden unit contributions for unsu-
pervised acoustic model adaptation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 24(8):1450–1463

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke
V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 1–9

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic
M, Doncheva NT, Morris JH, Bork P, et al (2019) String v11: protein–protein
association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic acids research 47(D1):D607–D613

Takahashi T (2019) Indirect adversarial attacks via poisoning neighbors for graph
convolutional networks. In: 2019 IEEE International Conference on Big Data
(Big Data), IEEE, pp 1395–1400

Tang J, Wang K (2018) Personalized top-n sequential recommendation via convolu-
tional sequence embedding. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pp 565–573

Tang J, Qu M, Mei Q (2015a) Pte: Predictive text embedding through large-scale
heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD inter-
national conference on knowledge discovery and data mining, pp 1165–1174

Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015b) Line: Large-scale infor-
mation network embedding. In: Proceedings of the 24th international conference
on world wide web, pp 1067–1077

Tang R, Du M, Liu N, Yang F, Hu X (2020a) An embarrassingly simple approach for
trojan attack in deep neural networks. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp 218–228

Tang X, Li Y, Sun Y, Yao H, Mitra P, Wang S (2020b) Transferring robustness
for graph neural network against poisoning attacks. In: Proceedings of the 13th
International Conference on Web Search and Data Mining, pp 600–608

Tao J, Lin J, Zhang S, Zhao S, Wu R, Fan C, Cui P (2019) Mvan: Multi-view atten-
tion networks for real money trading detection in online games. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp 2536–2546

Tarlow D, Moitra S, Rice A, Chen Z, Manzagol PA, Sutton C, Aftandilian E (2020)
Learning to fix build errors with Graph2Diff neural networks. In: Proceedings of
the IEEE/ACM 42nd International Conference on Software Engineering Work-
shops, pp 19–20

Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H,
Cole CG, Creatore C, Dawson E, et al (2019) Cosmic: the catalogue of somatic
mutations in cancer. Nucleic acids research 47(D1):D941–D947

Te G, Hu W, Zheng A, Guo Z (2018) Rgcnn: Regularized graph cnn for point cloud
segmentation. In: Proceedings of the 26th ACM international conference on Mul-
timedia, pp 746–754

References 665

Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for
nonlinear dimensionality reduction. science 290(5500):2319–2323

Teru K, Denis E, Hamilton W (2020) Inductive relation prediction by subgraph
reasoning. In: International Conference on Machine Learning, PMLR, pp 9448–
9457

Thomas S, Seltzer ML, Church K, Hermansky H (2013) Deep neural network fea-
tures and semi-supervised training for low resource speech recognition. In: 2013
IEEE international conference on acoustics, speech and signal processing, IEEE,
pp 6704–6708

Tian Z, Guo M, Wang C, Liu X, Wang S (2017) Refine gene functional similarity
network based on interaction networks. BMC bioinformatics (16)

Torng W, Altman RB (2018) High precision protein functional site detection using
3d convolutional neural networks. Bioinformatics 35(9):1503–1512

Train K (1986) Qualitative choice analysis: Theory, econometrics, and an applica-
tion to automobile demand, vol 10. MIT press

Tramer F, Carlini N, Brendel W, Madry A (2020) On adaptive attacks to adversarial
example defenses. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H
(eds) Advances in Neural Information Processing Systems, Curran Associates,
Inc., vol 33, pp 1633–1645

Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotempo-
ral features with 3d convolutional networks. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp 4489–4497

Trivedi R, Dai H, Wang Y, Song L (2017) Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs. In: International Conference on Machine Learn-
ing, PMLR, pp 3462–3471

Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: Learning representations
over dynamic graphs. In: International Conference on Learning Representations

Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G (2016) Complex embed-
dings for simple link prediction. In: International Conference on Machine Learn-
ing, pp 2071–2080

Tsai YHH, Bai S, Yamada M, Morency LP, Salakhutdinov R (2019) Transformer
dissection: An unified understanding for transformer’s attention via the lens of
kernel. In: Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp 4335–4344

Tsuyuzaki K, Nikaido I (2017) Biological systems as heterogeneous information
networks: a mini-review and perspectives. WSDM HeteroNAM 18 - International
Workshop on Heterogeneous Networks Analysis and Mining

Tu C, Zhang W, Liu Z, Sun M, et al (2016) Max-margin deepwalk: Discriminative
learning of network representation. In: IJCAI, vol 2016, pp 3889–3895

Tu K, Cui P, Wang X, Wang F, Zhu W (2018) Structural deep embedding for hyper-
networks. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol 32

Tu M, Wang G, Huang J, Tang Y, He X, Zhou B (2019) Multi-hop reading compre-
hension across multiple documents by reasoning over heterogeneous graphs. In:

666 References

Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp 2704–2713

Tufano M, Drain D, Svyatkovskiy A, Sundaresan N (2020) Generating accurate
assert statements for unit test cases using pretrained transformers. arXiv preprint
arXiv:200905634

Tzirakis P, Zhang J, Schuller BW (2018) End-to-end speech emotion recognition
using deep neural networks. In: 2018 IEEE international conference on acoustics,
speech and signal processing (ICASSP), IEEE, pp 5089–5093

Ulutan O, Iftekhar A, Manjunath BS (2020) Vsgnet: Spatial attention network for
detecting human object interactions using graph convolutions. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp
13,617–13,626

Vahedian A, Zhou X, Tong L, Li Y, Luo J (2017) Forecasting gathering events
through continuous destination prediction on big trajectory data. In: Proceedings
of the 25th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, pp 1–10

Vahedian A, Zhou X, Tong L, Street WN, Li Y (2019) Predicting urban dispersal
events: A two-stage framework through deep survival analysis on mobility data.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp
5199–5206

Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double
q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol 30

Van Oord A, Kalchbrenner N, Kavukcuoglu K (2016) Pixel recurrent neural net-
works. In: International Conference on Machine Learning, pp 1747–1756

Vashishth S, Yadati N, Talukdar P (2019) Graph-based deep learning in natural lan-
guage processing. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts

Vashishth S, Sanyal S, Nitin V, Talukdar P (2020) Composition-based multi-
relational graph convolutional networks. In: International Conference on Learn-
ing Representations

Vasic M, Kanade A, Maniatis P, Bieber D, Singh R (2018) Neural program repair by
jointly learning to localize and repair. In: International Conference on Learning
Representations

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser u, Polo-
sukhin I (2017) Attention is all you need. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems, Curran Associates Inc.,
Red Hook, NY, USA, NIPS’17, p 6000–6010

Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph
attention networks. In: International Conference on Learning Representations

Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph
Attention Networks. In: International Conference on Learning Representations
(ICLR)

References 667

Velickovic P, Fedus W, Hamilton WL, Liò P, Bengio Y, Hjelm RD (2019) Deep
graph infomax. In: ICLR (Poster)

Veličković P, Ying R, Padovano M, Hadsell R, Blundell C (2019) Neural execution
of graph algorithms. In: International Conference on Learning Representations

Velickovic P, Buesing L, Overlan M, Pascanu R, Vinyals O, Blundell C (2020)
Pointer graph networks. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin
H (eds) Advances in Neural Information Processing Systems, Curran Associates,
Inc., vol 33, pp 2232–2244

Veličković P, Fedus W, Hamilton WL, Liò P, Bengio Y, Hjelm RD (2019) Deep
graph infomax. In: International Conference on Learning Representations

Vento M, Foggia P (2013) Graph matching techniques for computer vision. In: Im-
age Processing: Concepts, Methodologies, Tools, and Applications, IGI Global,
chap 21, pp 381–421

Vignac C, Loukas A, Frossard P (2020a) Building powerful and equivariant graph
neural networks with structural message-passing. arXiv e-prints pp arXiv–2006

Vignac C, Loukas A, Frossard P (2020b) Building powerful and equivariant graph
neural networks with structural message-passing. In: Larochelle H, Ranzato M,
Hadsell R, Balcan MF, Lin H (eds) Advances in Neural Information Processing
Systems, Curran Associates, Inc., vol 33, pp 14,143–14,155

Vincent P, Larochelle H, Bengio Y, Manzagol P (2008) Extracting and compos-
ing robust features with denoising autoencoders. In: Cohen WW, McCallum
A, Roweis ST (eds) Machine Learning, Proceedings of the Twenty-Fifth Inter-
national Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008, ACM,
ACM International Conference Proceeding Series, vol 307, pp 1096–1103, DOI
10.1145/1390156.1390294

Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. In: Neural Information
Processing Systems (NeurIPS), pp 2692–2700

Vinyals O, Bengio S, Kudlur M (2016) Order matters: Sequence to sequence for
sets. In: International Conference on Learning Representations

Vishwanathan SVN, Schraudolph NN, Kondor R, Borgwardt KM (2010) Graph ker-
nels. Journal of Machine Learning Research 11(Apr):1201–1242

VONLUXBURG U (2007) A tutorial on spectral clustering. Statistics and Comput-
ing 17:395–416

Vrandečić D, Krötzsch M (2014) Wikidata: a free collaborative knowledgebase.
Communications of the ACM 57(10):78–85

Vu MN, Thai MT (2020) Pgm-explainer: Probabilistic graphical model explanations
for graph neural networks. arXiv preprint arXiv:201005788

Wald J, Dhamo H, Navab N, Tombari F (2020) Learning 3d semantic scene graphs
from 3d indoor reconstructions. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 3961–3970

Wan S, Lan Y, Guo J, Xu J, Pang L, Cheng X (2016) A deep architecture for seman-
tic matching with multiple positional sentence representations. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol 30

Wan Y, Zhao Z, Yang M, Xu G, Ying H, Wu J, Yu PS (2018) Improving automatic
source code summarization via deep reinforcement learning. In: Proceedings of

668 References

the 33rd ACM/IEEE International Conference on Automated Software Engineer-
ing, ACM, pp 397–407

Wang B, Gong NZ (2019) Attacking graph-based classification via manipulating
the graph structure. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pp 2023–2040

Wang C, Pan S, Long G, Zhu X, Jiang J (2017a) Mgae: Marginalized graph autoen-
coder for graph clustering. In: Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pp 889–898

Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pp 1225–1234

Wang D, Jamnik M, Lio P (2019a) Abstract diagrammatic reasoning with multiplex
graph networks. In: International Conference on Learning Representations

Wang D, Lin J, Cui P, Jia Q, Wang Z, Fang Y, Yu Q, Zhou J, Yang S, Qi Y (2019b)
A semi-supervised graph attentive network for financial fraud detection. In: 2019
IEEE International Conference on Data Mining (ICDM), IEEE, pp 598–607

Wang D, Jiang M, Syed M, Conway O, Juneja V, Subramanian S, Chawla NV
(2020a) Calendar graph neural networks for modeling time structures in spa-
tiotemporal user behaviors. In: Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pp 2581–2589

Wang F, Preininger A (2019) Ai in health: State of the art, challenges, and future
directions. Yearbook of medical informatics 28(1):16–26

Wang F, Zhang C (2007) Label propagation through linear neighborhoods. IEEE
Transactions on Knowledge and Data Engineering 20(1):55–67

Wang G, Dunbrack RL (2003) PISCES: a protein sequence culling server. Bioinfor-
matics 19(12):1589–1591, DOI 10.1093/bioinformatics/btg224

Wang H, Huan J (2019) Agan: Towards automated design of generative adversarial
networks. arXiv preprint arXiv:190611080

Wang H, Schmid C (2013) Action recognition with improved trajectories. In: Pro-
ceedings of the IEEE international conference on computer vision, pp 3551–3558

Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, Xie X, Guo M (2018a)
Graphgan: Graph representation learning with generative adversarial nets. In:
Proceedings of the AAAI conference on artificial intelligence, vol 32

Wang H, Zhang F, Zhang M, Leskovec J, Zhao M, Li W, Wang Z (2019c)
Knowledge-aware graph neural networks with label smoothness regularization
for recommender systems. In: KDD’19, pp 968–977

Wang H, Zhao M, Xie X, Li W, Guo M (2019d) Knowledge graph convolutional net-
works for recommender systems. In: The world wide web conference, pp 3307–
3313

Wang H, Zhao M, Xie X, Li W, Guo M (2019e) Knowledge graph convolutional
networks for recommender systems. In: WWW’19, pp 3307–3313

Wang H, Wang K, Yang J, Shen L, Sun N, Lee HS, Han S (2020b) Gcn-rl circuit
designer: Transferable transistor sizing with graph neural networks and reinforce-
ment learning. In: Design Automation Conference, IEEE, pp 1–6

References 669

Wang J, Zheng VW, Liu Z, Chang KCC (2017b) Topological recurrent neural net-
work for diffusion prediction. In: 2017 IEEE International Conference on Data
Mining (ICDM), IEEE, pp 475–484

Wang J, Huang P, Zhao H, Zhang Z, Zhao B, Lee DL (2018b) Billion-scale com-
modity embedding for e-commerce recommendation in alibaba. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp 839–848

Wang J, Oh J, Wang H, Wiens J (2018c) Learning credible models. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp 2417–2426

Wang J, Luo M, Suya F, Li J, Yang Z, Zheng Q (2020c) Scalable attack on graph data
by injecting vicious nodes. Data Mining and Knowledge Discovery 34(5):1363–
1389

Wang K, Singh R, Su Z (2018d) Dynamic neural program embeddings for program
repair. In: International Conference on Learning Representations

Wang M, Liu M, Liu J, Wang S, Long G, Qian B (2017c) Safe medicine recommen-
dation via medical knowledge graph embedding. arXiv preprint arXiv:171005980

Wang M, Yu L, Zheng D, Gan Q, Gai Y, Ye Z, Li M, Zhou J, Huang Q, Ma C,
Huang Z, Guo Q, Zhang H, Lin H, Zhao J, Li J, Smola AJ, Zhang Z (2019f)
Deep graph library: Towards efficient and scalable deep learning on graphs. In-
ternational Conference on Learning Representations Workshop on Representa-
tion Learning on Graphs and Manifolds

Wang M, Lin Y, Lin G, Yang K, Wu Xm (2020d) M2grl: A multi-task multi-view
graph representation learning framework for web-scale recommender systems. In:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp 2349–2358

Wang Q, Mao Z, Wang B, Guo L (2017d) Knowledge graph embedding: A sur-
vey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering 29(12):2724–2743

Wang Q, Li M, Wang X, Parulian N, Han G, Ma J, Tu J, Lin Y, Zhang H, Liu W, et al
(2020e) Covid-19 literature knowledge graph construction and drug repurposing
report generation. arXiv preprint arXiv:200700576

Wang R, Yan J, Yang X (2019g) Learning combinatorial embedding networks for
deep graph matching. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp 3056–3065

Wang R, Zhang T, Yu T, Yan J, Yang X (2020f) Combinatorial learning of graph
edit distance via dynamic embedding. arXiv preprint arXiv:201115039

Wang S, He L, Cao B, Lu CT, Yu PS, Ragin AB (2017e) Structural deep brain
network mining. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp 475–484

Wang S, Tang J, Aggarwal C, Chang Y, Liu H (2017f) Signed network embedding
in social media. In: Proceedings of the 2017 SIAM international conference on
data mining, SIAM, pp 327–335

Wang S, Chen Z, Li D, Li Z, Tang LA, Ni J, Rhee J, Chen H, Yu PS (2019h) At-
tentional heterogeneous graph neural network: Application to program reiden-

670 References

tification. In: Proceedings of the 2019 SIAM International Conference on Data
Mining, SIAM, pp 693–701

Wang S, Chen Z, Yu X, Li D, Ni J, Tang L, Gui J, Li Z, Chen H, Yu PS (2019i)
Heterogeneous graph matching networks for unknown malware detection. In:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI, pp 3762–3770

Wang S, Li BZ, Khabsa M, Fang H, Ma H (2020g) Linformer: Self-attention with
linear complexity. CoRR abs/2006.04768

Wang S, Li Y, Zhang J, Meng Q, Meng L, Gao F (2020h) Pm2. 5-gnn: A domain
knowledge enhanced graph neural network for pm2. 5 forecasting. In: Proceed-
ings of the 28th International Conference on Advances in Geographic Information
Systems, pp 163–166

Wang S, Wang R, Yao Z, Shan S, Chen X (2020i) Cross-modal scene graph match-
ing for relationship-aware image-text retrieval. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp 1508–1517

Wang T, Ling H (2017) Gracker: A graph-based planar object tracker. IEEE trans-
actions on pattern analysis and machine intelligence 40(6):1494–1501

Wang T, Liu H, Li Y, Jin Y, Hou X, Ling H (2020j) Learning combinatorial solver
for graph matching. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 7568–7577

Wang T, Wan X, Jin H (2020k) Amr-to-text generation with graph transformer.
Transactions of the Association for Computational Linguistics 8:19–33

Wang X, Gupta A (2018) Videos as space-time region graphs. In: Proceedings of
the European conference on computer vision (ECCV), pp 399–417

Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017g) Community preserving
network embedding. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol 31

Wang X, Girshick R, Gupta A, He K (2018e) Non-local neural networks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp
7794–7803

Wang X, Ye Y, Gupta A (2018f) Zero-shot recognition via semantic embeddings and
knowledge graphs. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 6857–6866

Wang X, He X, Cao Y, Liu M, Chua TS (2019j) Kgat: Knowledge graph attention
network for recommendation. In: KDD’19, pp 950–958

Wang X, He X, Wang M, Feng F, Chua TS (2019k) Neural graph collaborative
filtering. In: Proceedings of the 42nd international ACM SIGIR conference on
Research and development in Information Retrieval, pp 165–174

Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019l) Heterogeneous graph
attention network. In: The World Wide Web Conference, pp 2022–2032

Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019m) Heterogeneous graph
attention network. In: The World Wide Web Conference, pp 2022–2032

Wang X, Zhang Y, Shi C (2019n) Hyperbolic heterogeneous information network
embedding. In: Proceedings of the AAAI conference on artificial intelligence,
vol 33, pp 5337–5344

References 671

Wang X, Bo D, Shi C, Fan S, Ye Y, Yu PS (2020l) A survey on heterogeneous
graph embedding: Methods, techniques, applications and sources. arXiv preprint
arXiv:201114867

Wang X, Lu Y, Shi C, Wang R, Cui P, Mou S (2020m) Dynamic heterogeneous infor-
mation network embedding with meta-path based proximity. IEEE Transactions
on Knowledge and Data Engineering pp 1–1, DOI 10.1109/TKDE.2020.2993870

Wang X, Wang R, Shi C, Song G, Li Q (2020n) Multi-component graph convolu-
tional collaborative filtering. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol 34, pp 6267–6274

Wang X, Wu Y, Zhang A, He X, seng Chua T (2021) Causal screening to interpret
graph neural networks

Wang Y, Ni X, Sun JT, Tong Y, Chen Z (2011) Representing document as depen-
dency graph for document clustering. In: Proceedings of the 20th ACM interna-
tional conference on Information and knowledge management, pp 2177–2180

Wang Y, Shen H, Liu S, Gao J, Cheng X (2017h) Cascade dynamics modeling with
attention-based recurrent neural network. In: Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence, pp 2985–2991

Wang Y, Che W, Guo J, Liu T (2018g) A neural transition-based approach for se-
mantic dependency graph parsing. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol 32

Wang Y, Yin H, Chen H, Wo T, Xu J, Zheng K (2019o) Origin-destination matrix
prediction via graph convolution: a new perspective of passenger demand mod-
eling. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp 1227–1235

Wang Y, Liu S, Yoon M, Lamba H, Wang W, Faloutsos C, Hooi B (2020o) Prov-
ably robust node classification via low-pass message passing. In: 2020 IEEE
International Conference on Data Mining (ICDM), pp 621–630, DOI 10.1109/
ICDM50108.2020.00071

Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph embedding by translat-
ing on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol 28

Wang Z, Zheng L, Li Y, Wang S (2019p) Linkage based face clustering via graph
convolution network. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 1117–1125

Wass MN, Barton G, Sternberg MJE (2012) CombFunc: predicting protein function
using heterogeneous data sources. Nucleic Acids Research 40(W1):W466–W470

Watkins KE, Ferris B, Borning A, Rutherford GS, Layton D (2011) Where is my
bus? impact of mobile real-time information on the perceived and actual wait time
of transit riders. Transportation Research Part A: Policy and Practice 45(8):839–
848

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. nature
393(6684):440–442

Wei J, Goyal M, Durrett G, Dillig I (2019) LambdaNet: Probabilistic type inference
using graph neural networks. In: International Conference on Learning Represen-
tations

672 References

Wei X, Yu R, Sun J (2020) View-gcn: View-based graph convolutional network for
3d shape analysis. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 1850–1859

Weihua Hu MZYDHRBLMCJL Matthias Fey (2020) Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint arXiv:200500687

Weininger D (1988) Smiles, a chemical language and information system. 1. intro-
duction to methodology and encoding rules. Journal of chemical information and
computer sciences 28(1):31–36

Weisfeiler B (1976) On Construction and Identification of Graphs. Lecture Notes in
Mathematics, Vol. 558, Springer

Weisfeiler B, Leman A (1968) The reduction of a graph to canonical form and the
algebra which appears therein. Nauchno-Technicheskaya Informatsia 2(9):12–16

Weisfeiler B, Leman A (1968) The reduction of a graph to canonical form and the
algebra which appears therein. NTI, Series 2(9):12–16

Weng C, Shah NH, Hripcsak G (2020) Deep phenotyping: embracing complexity
and temporality—towards scalability, portability, and interoperability. Journal of
biomedical informatics 105:103,433

Weston J, Bengio S, Usunier N (2010) Large scale image annotation: learning to
rank with joint word-image embeddings. Machine learning 81(1):21–35

Whirl-Carrillo M, McDonagh EM, Hebert J, Gong L, Sangkuhl K, Thorn C, Altman
RB, Klein TE (2012) Pharmacogenomics knowledge for personalized medicine.
Clinical Pharmacology & Therapeutics 92(4):414–417

White M, Tufano M, Vendome C, Poshyvanyk D (2016) Deep learning code frag-
ments for code clone detection. In: 2016 31st IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), IEEE, pp 87–98

Williams RJ (1992) Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine learning 8(3-4):229–256

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson
D, Li C, Sayeeda Z, et al (2018) Drugbank 5.0: a major update to the drugbank
database for 2018. Nucleic acids research 46(D1):D1074–D1082

Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometrics
and intelligent laboratory systems 2(1-3):37–52

Woźnica A, Kalousis A, Hilario M (2010) Adaptive matching based kernels for la-
belled graphs. In: Advances in Knowledge Discovery and Data Mining, Springer,
Lecture Notes in Computer Science, vol 6119, pp 374–385

Wu B, Xu C, Dai X, Wan A, Zhang P, Tomizuka M, Keutzer K, Vajda P (2020a)
Visual transformers: Token-based image representation and processing for com-
puter vision. arXiv preprint arXiv:200603677

Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K (2019a) Simplifying
graph convolutional networks. In: International conference on machine learning,
PMLR, pp 6861–6871

Wu H, Wang C, Tyshetskiy Y, Docherty A, Lu K, Zhu L (2019b) Adversarial ex-
amples for graph data: Deep insights into attack and defense. In: Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence,

References 673

IJCAI-19, International Joint Conferences on Artificial Intelligence Organization,
pp 4816–4823

Wu H, Ma Y, Xiang Z, Yang C, He K (2021a) A spatial-temporal graph neu-
ral network framework for automated software bug triaging. arXiv preprint
arXiv:210111846

Wu J, Cao M, Cheung JCK, Hamilton WL (2020b) Temp: Temporal message pass-
ing for temporal knowledge graph completion. In: Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pp
5730–5746

Wu L, Chen Y, Ji H, Li Y (2021b) Deep learning on graphs for natural language pro-
cessing. In: Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technolo-
gies: Tutorials, pp 11–14

Wu L, Chen Y, Shen K, Guo X, Gao H, Li S, Pei J, Long B (2021c) Graph neural net-
works for natural language processing: A survey. arXiv preprint arXiv:210606090

Wu N, Zhao XW, Wang J, Pan D (2020c) Learning effective road network represen-
tation with hierarchical graph neural networks. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp
6–14

Wu S, Tang Y, Zhu Y, Wang L, Xie X, Tan T (2019c) Session-based recommen-
dation with graph neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol 33, pp 346–353

Wu T, Ren H, Li P, Leskovec J (2020d) Graph information bottleneck. In: Larochelle
H, Ranzato M, Hadsell R, Balcan MF, Lin H (eds) Advances in Neural Informa-
tion Processing Systems, Curran Associates, Inc., vol 33, pp 20,437–20,448

Wu Y, Warner JL, Wang L, Jiang M, Xu J, Chen Q, Nian H, Dai Q, Du X, Yang
P, et al (2019d) Discovery of noncancer drug effects on survival in electronic
health records of patients with cancer: a new paradigm for drug repurposing. JCO
clinical cancer informatics 3:1–9

Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, Leswing K,
Pande V (2018) MoleculeNet: A benchmark for molecular machine learning.
Chemical Science 9:513–530

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2019e) A comprehensive survey on
graph neural networks. CoRR abs/1901.00596

Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2021d) A comprehensive survey
on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems 32(1):4–24

Xhonneux LP, Qu M, Tang J (2020) Continuous graph neural networks. In: Pro-
ceedings of the International Conference on Machine Learning

Xia R, Liu Y (2015) A multi-task learning framework for emotion recognition using
2d continuous space. IEEE Transactions on Affective Computing 8(1):3–14

Xiao C, Choi E, Sun J (2018) Opportunities and challenges in developing deep
learning models using electronic health records data: a systematic review. Journal
of the American Medical Informatics Association 25(10):1419–1428

674 References

Xie L, Yuille A (2017) Genetic cnn. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp 1379–1388

Xie M, Yin H, Wang H, Xu F, Chen W, Wang S (2016) Learning graph-based poi
embedding for location-based recommendation. In: Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management, Asso-
ciation for Computing Machinery, CIKM ’16, p 15–24, DOI 10.1145/2983323.
2983711

Xie S, Kirillov A, Girshick R, He K (2019a) Exploring randomly wired neural
networks for image recognition. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp 1284–1293

Xie T, Grossman JC (201f8) Crystal graph convolutional neural networks for an ac-
curate and interpretable prediction of material properties. Physical Review Letters
120:145,301

Xie Y, Xu Z, Wang Z, Ji S (2021) Self-supervised learning of graph neural networks:
A unified review. arXiv preprint arXiv:210210757

Xie Z, Lv W, Huang S, Lu Z, Du B, Huang R (2019b) Sequential graph neural
network for urban road traffic speed prediction. IEEE Access 8:63,349–63,358

Xiu H, Yan X, Wang X, Cheng J, Cao L (2020) Hierarchical graph matching net-
work for graph similarity computation. arXiv preprint arXiv:200616551

Xu D, Zhu Y, Choy CB, Fei-Fei L (2017a) Scene graph generation by iterative
message passing. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 5410–5419

Xu D, Cheng W, Luo D, Liu X, Zhang X (2019a) Spatio-temporal attentive rnn for
node classification in temporal attributed graphs. In: International Joint Confer-
ence on Artificial Intelligence, pp 3947–3953

Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K (2020a) Inductive representation
learning on temporal graphs. In: International Conference on Learning Represen-
tations

Xu H, Jiang C, Liang X, Li Z (2019b) Spatial-aware graph relation network for
large-scale object detection. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 9298–9307

Xu J, Gan Z, Cheng Y, Liu J (2020b) Discourse-aware neural extractive text sum-
marization. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp 5021–5031

Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y
(2015) Show, attend and tell: Neural image caption generation with visual atten-
tion. In: International conference on machine learning, PMLR, pp 2048–2057

Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi K, Jegelka S (2018a) Representation
learning on graphs with jumping knowledge networks. In: International Confer-
ence on Machine Learning, pp 5453–5462

Xu K, Wu L, Wang Z, Feng Y, Sheinin V (2018b) Sql-to-text generation with graph-
to-sequence model. arXiv preprint arXiv:180905255

Xu K, Wu L, Wang Z, Feng Y, Witbrock M, Sheinin V (2018c) Graph2seq:
Graph to sequence learning with attention-based neural networks. arXiv preprint
arXiv:180400823

References 675

Xu K, Wu L, Wang Z, Yu M, Chen L, Sheinin V (2018d) Exploiting rich syntactic
information for semantic parsing with graph-to-sequence model. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, Brussels, Belgium, pp 918–924

Xu K, Chen H, Liu S, Chen PY, Weng TW, Hong M, Lin X (2019c) Topology
attack and defense for graph neural networks: An optimization perspective. In:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, International Joint Conferences on Artificial Intelligence
Organization, pp 3961–3967, DOI 10.24963/ijcai.2019/550

Xu K, Hu W, Leskovec J, Jegelka S (2019d) How powerful are graph neural net-
works? In: International Conference on Learning Representations

Xu K, Wang L, Yu M, Feng Y, Song Y, Wang Z, Yu D (2019e) Cross-lingual knowl-
edge graph alignment via graph matching neural network. In: Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp 3156–
3161

Xu K, Li J, Zhang M, Du SS, Kawarabayashi Ki, Jegelka S (2020c) What can neural
networks reason about? In: International Conference on Learning Representations

Xu L, Wei X, Cao J, Yu PS (2017b) Embedding of embedding (eoe) joint embed-
ding for coupled heterogeneous networks. In: Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pp 741–749

Xu M, Li L, Wai D, Liu Q, Chao LS, et al (2020d) Document graph for neural
machine translation. arXiv preprint arXiv:201203477

Xu Q, Sun X, Wu CY, Wang P, Neumann U (2020e) Grid-gcn for fast and scalable
point cloud learning. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 5661–5670

Xu R, Li L, Wang Q (2013) Towards building a disease-phenotype knowledge
base: extracting disease-manifestation relationship from literature. Bioinformat-
ics 29(17):2186–2194

Yamaguchi F, Golde N, Arp D, Rieck K (2014) Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy, IEEE, pp 590–604

Yan J, Yin XC, Lin W, Deng C, Zha H, Yang X (2016) A short survey of recent
advances in graph matching. In: Proceedings of the 2016 ACM on International
Conference on Multimedia Retrieval, pp 167–174

Yan J, Yang S, Hancock E (2020a) Learning for graph matching and related com-
binatorial optimization problems. In: Bessiere C (ed) Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, Inter-
national Joint Conferences on Artificial Intelligence Organization, pp 4988–4996

Yan S, Xiong Y, Lin D (2018a) Spatial temporal graph convolutional networks
for skeleton-based action recognition. In: AAAI Conference on Artificial Intel-
ligence, vol 32

Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: Proceed-
ings of IEEE International Conference on Data Mining, IEEE, pp 721–724

Yan Y, Mao Y, Li B (2018b) Second: Sparsely embedded convolutional detection.
Sensors 18(10):3337

676 References

Yan Y, Zhang Q, Ni B, Zhang W, Xu M, Yang X (2019) Learning context graph for
person search. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp 2158–2167

Yan Y, Qin J, Chen J, Liu L, Zhu F, Tai Y, Shao L (2020b) Learning multi-
granular hypergraphs for video-based person re-identification. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp
2899–2908

Yanardag P, Vishwanathan S (2015) Deep graph kernels. In: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ACM, pp 1365–1374

Yang B, Yih W, He X, Gao J, Deng L (2015a) Embedding entities and relations
for learning and inference in knowledge bases. In: Bengio Y, LeCun Y (eds) 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings

Yang B, Luo W, Urtasun R (2018a) Pixor: Real-time 3d object detection from point
clouds. In: Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp 7652–7660

Yang C, Liu Z, Zhao D, Sun M, Chang EY (2015b) Network representation learning
with rich text information. In: IJCAI, vol 2015, pp 2111–2117

Yang C, Zhuang P, Shi W, Luu A, Li P (2019a) Conditional structure generation
through graph variational generative adversarial nets. In: NeurIPS, pp 1338–1349

Yang F, Fan K, Song D, et al (2020a) Graph-based prediction of protein-protein
interactions with attributed signed graph embedding. BMC Bioinformatics
21(1):323

Yang H, Qin C, Li YH, Tao L, Zhou J, Yu CY, Xu F, Chen Z, Zhu F, Chen YZ
(2016a) Therapeutic target database update 2016: enriched resource for bench
to clinical drug target and targeted pathway information. Nucleic acids research
44(D1):D1069–D1074

Yang J, Zheng WS, Yang Q, Chen YC, Tian Q (2020b) Spatial-temporal graph
convolutional network for video-based person re-identification. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp
3289–3299

Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper
T, Kelley B, Mathea M, et al (2019b) Analyzing learned molecular represen-
tations for property prediction. Journal of chemical information and modeling
59(8):3370–3388

Yang L, Kang Z, Cao X, Jin D, Yang B, Guo Y (2019c) Topology optimization based
graph convolutional network. In: Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, pp 4054–4061

Yang L, Zhan X, Chen D, Yan J, Loy CC, Lin D (2019d) Learning to cluster faces
on an affinity graph. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 2298–2306

Yang Q, Liu Y, Chen T, Tong Y (2019e) Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST)
10(2):1–19

References 677

Yang S, Li G, Yu Y (2019f) Dynamic graph attention for referring expression com-
prehension. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp 4644–4653

Yang S, Liu J, Wu K, Li M (2020c) Learn to generate time series conditioned graphs
with generative adversarial nets. arXiv preprint arXiv:200301436

Yang X, Tang K, Zhang H, Cai J (2019g) Auto-encoding scene graphs for image
captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp 10,685–10,694

Yang Y, Abrego GH, Yuan S, Guo M, Shen Q, Cer D, Sung YH, Strope B, Kurzweil
R (2019h) Improving multilingual sentence embedding using bi-directional dual
encoder with additive margin softmax. In: Proceedings of the 28th International
Joint Conference on Artificial Intelligence, AAAI Press, pp 5370–5378

Yang Z, Cohen W, Salakhudinov R (2016b) Revisiting semi-supervised learn-
ing with graph embeddings. In: International conference on machine learning,
PMLR, pp 40–48

Yang Z, Qi P, Zhang S, Bengio Y, Cohen W, Salakhutdinov R, Manning CD (2018b)
Hotpotqa: A dataset for diverse, explainable multi-hop question answering. In:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp 2369–2380

Yang Z, Zhao J, Dhingra B, He K, Cohen WW, Salakhutdinov RR, LeCun Y (2018c)
Glomo: Unsupervised learning of transferable relational graphs. In: Advances in
Neural Information Processing Systems, pp 8950–8961

Yang Z, Ding M, Zhou C, Yang H, Zhou J, Tang J (2020d) Understanding nega-
tive sampling in graph representation learning. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp
1666–1676

Yao L, Wang L, Pan L, Yao K (2016) Link prediction based on common-neighbors
for dynamic social network. Procedia Computer Science 83:82–89

Yao L, Mao C, Luo Y (2019) Graph convolutional networks for text classification.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp
7370–7377

Yao S, Wang T, Wan X (2020) Heterogeneous graph transformer for graph-to-
sequence learning. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp 7145–7154

Yao T, Pan Y, Li Y, Mei T (2018) Exploring visual relationship for image captioning.
In: Proceedings of the European conference on computer vision (ECCV), pp 684–
699

Yarotsky D (2017) Error bounds for approximations with deep relu networks. Neural
Networks 94:103–114

Yasunaga M, Liang P (2020) Graph-based, self-supervised program repair from di-
agnostic feedback. In: International Conference on Machine Learning, PMLR, pp
10,799–10,808

Ye Y, Hou S, Chen L, Lei J, Wan W, Wang J, Xiong Q, Shao F (2019a) Out-of-
sample node representation learning for heterogeneous graph in real-time android
malware detection. In: Proceedings of the Twenty-Eighth International Joint Con-

678 References

ference on Artificial Intelligence, IJCAI-19, International Joint Conferences on
Artificial Intelligence Organization, pp 4150–4156

Ye Y, Wang X, Yao J, Jia K, Zhou J, Xiao Y, Yang H (2019b) Bayes embedding
(bem): Refining representation by integrating knowledge graphs and behavior-
specific networks. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, Association for Computing Machin-
ery, CIKM ’19, p 679–688, DOI 10.1145/3357384.3358014

Yefet N, Alon U, Yahav E (2020) Adversarial examples for models of code. Pro-
ceedings of the ACM on Programming Languages 4(OOPSLA):1–30

Yeung DY, Chang H (2007) A kernel approach for semisupervised metric learning.
IEEE Transactions on Neural Networks 18(1):141–149

Yi J, Park J (2020) Hypergraph convolutional recurrent neural network. In: Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pp 3366–3376

YILMAZ B, Genc H, Agriman M, Demirdover BK, Erdemir M, Simsek G, Karagoz
P (2020) Recent trends in the use of graph neural network models for natural
language processing. In: Deep Learning Techniques and Optimization Strategies
in Big Data Analytics, IGI Global, pp 274–289

Ying J, de Miranda Cardoso JV, Palomar D (2020a) Nonconvex sparse graph learn-
ing under laplacian constrained graphical model. Advances in Neural Information
Processing Systems 33

Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J (2018a) Graph
convolutional neural networks for web-scale recommender systems. In: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pp 974–983

Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J (2018b) Graph
convolutional neural networks for web-scale recommender systems. In: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pp 974–983

Ying R, Bourgeois D, You J, Zitnik M, Leskovec J (2019) Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information process-
ing systems 32:9240

Ying R, Lou Z, You J, Wen C, Canedo A, Leskovec J, et al (2020b) Neural subgraph
matching. arXiv preprint arXiv:200703092

Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J (2018c) Hierarchical
graph representation learning with differentiable pooling. In: Advances in Neural
Information Processing Systems, pp 4800–4810

YLow, JGonzalez, AKyrola, DBickson, CGuestrin, JHellerstein (2012) Distributed
graphlab: A framework for machine learning in the cloud. PVLDB 5(8):716–727

You J, Liu B, Ying Z, Pande V, Leskovec J (2018a) Graph convolutional policy
network for goal-directed molecular graph generation. In: Advances in Neural
Information Processing Systems, pp 6412–6422

You J, Ying R, Ren X, Hamilton W, Leskovec J (2018b) Graphrnn: Generating re-
alistic graphs with deep auto-regressive models. In: International Conference on
Machine Learning, PMLR, pp 5708–5717

References 679

You J, Ying R, Leskovec J (2019) Position-aware graph neural networks. In: Inter-
national Conference on Machine Learning, PMLR, pp 7134–7143

You J, Ying Z, Leskovec J (2020a) Design space for graph neural networks. Ad-
vances in Neural Information Processing Systems 33

You J, Gomes-Selman J, Ying R, Leskovec J (2021) Identity-aware graph neural
networks. CoRR abs/2101.10320, 2101.10320

You Y, Chen T, Sui Y, Chen T, Wang Z, Shen Y (2020b) Graph contrastive learning
with augmentations. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin
H (eds) Advances in Neural Information Processing Systems, Curran Associates,
Inc., vol 33, pp 5812–5823

You Y, Chen T, Wang Z, Shen Y (2020c) When does self-supervision help graph
convolutional networks? In: International Conference on Machine Learning,
PMLR, pp 10,871–10,880

You ZH, Chan KCC, Hu P (2015a) Predicting protein-protein interactions from
primary protein sequences using a novel multi-scale local feature representation
scheme and the random forest. PLOS ONE 10:1–19

You ZH, Li J, Gao X, et al (2015b) Detecting protein-protein interactions with a
novel matrix-based protein sequence representation and support vector machines.
BioMed Research International 2015:1–9

Yu B, Yin H, Zhu Z (2018a) Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In: Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence, pp 3634–3640

Yu D, Fu J, Mei T, Rui Y (2017a) Multi-level attention networks for visual ques-
tion answering. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp 4709–4717

Yu D, Zhang R, Jiang Z, Wu Y, Yang Y (2021a) Graph-revised convolutional net-
work. In: Hutter F, Kersting K, Lijffijt J, Valera I (eds) Machine Learning and
Knowledge Discovery in Databases, Springer International Publishing, Cham, pp
378–393

Yu H, Wu Z, Wang S, Wang Y, Ma X (2017b) Spatiotemporal recurrent con-
volutional networks for traffic prediction in transportation networks. Sensors
17(7):1501

Yu J, Lu Y, Qin Z, Zhang W, Liu Y, Tan J, Guo L (2018b) Modeling text with
graph convolutional network for cross-modal information retrieval. In: Pacific
Rim Conference on Multimedia, Springer, pp 223–234

Yu L, Du B, Hu X, Sun L, Han L, Lv W (2021b) Deep spatio-temporal graph con-
volutional network for traffic accident prediction. Neurocomputing 423:135–147

Yu T, Wang R, Yan J, Li B (2020) Learning deep graph matching with channel-
independent embedding and hungarian attention. In: International conference on
learning representations

Yu Y, Chen J, Gao T, Yu M (2019a) Dag-gnn: Dag structure learning with graph
neural networks. In: International Conference on Machine Learning, pp 7154–
7163

Yu Y, Wang Y, Xia Z, Zhang X, Jin K, Yang J, Ren L, Zhou Z, Yu D, Qing T, et al
(2019b) Premedkb: an integrated precision medicine knowledgebase for inter-

680 References

preting relationships between diseases, genes, variants and drugs. Nucleic acids
research 47(D1):D1090–D1101

Yuan F, He X, Karatzoglou A, Zhang L (2020a) Parameter-efficient transfer from
sequential behaviors for user modeling and recommendation. In: Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp 1469–1478

Yuan H, Tang J, Hu X, Ji S (2020b) Xgnn: Towards model-level explanations of
graph neural networks. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp 430–438

Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G, Huang Y (2010) T-drive: driving
directions based on taxi trajectories. In: Proceedings of the 18th SIGSPATIAL
International conference on advances in geographic information systems, pp 99–
108

Yuan J, Zheng Y, Xie X (2012) Discovering regions of different functions in a city
using human mobility and pois. In: Proceedings of the 18th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pp 186–194

Yuan Y, Liang X, Wang X, Yeung DY, Gupta A (2017) Temporal dynamic graph
lstm for action-driven video object detection. In: Proceedings of the IEEE inter-
national conference on computer vision, pp 1801–1810

Yuan Z, Zhou X, Yang T (2018) Hetero-convlstm: A deep learning approach to
traffic accident prediction on heterogeneous spatio-temporal data. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp 984–992

Yue-Hei Ng J, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R, Toderici
G (2015) Beyond short snippets: Deep networks for video classification. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp
4694–4702

Yun S, Jeong M, Kim R, Kang J, Kim HJ (2019) Graph transformer networks. Ad-
vances in Neural Information Processing Systems 32:11,983–11,993

Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov RR, Smola AJ (2017)
Deep sets. In: Advances in Neural Information Processing Systems, pp 3391–
3401

Zanfir A, Sminchisescu C (2018) Deep learning of graph matching. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp 2684–
2693

Zelnik-Manor L, Perona P (2004) Self-tuning spectral clustering. Advances in neu-
ral information processing systems 17:1601–1608

Zeng H, Zhou H, Srivastava A, Kannan R, Prasanna V (2020a) Graphsaint: Graph
sampling based inductive learning method. In: International Conference on
Learning Representations

Zeng R, Huang W, Tan M, Rong Y, Zhao P, Huang J, Gan C (2019) Graph
convolutional networks for temporal action localization. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp 7094–7103

References 681

Zeng X, Song X, Ma T, Pan X, Zhou Y, Hou Y, Zhang Z, Li K, Karypis G, Cheng
F (2020b) Repurpose open data to discover therapeutics for covid-19 using deep
learning. Journal of proteome research 19(11):4624–4636

Zeng Z, Tung AK, Wang J, Feng J, Zhou L (2009) Comparing stars: On approxi-
mating graph edit distance. Proceedings of the VLDB Endowment 2(1):25–36

Zhang B, Hill E, Clause J (2016a) Towards automatically generating descriptive
names for unit tests. In: Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, ACM, pp 625–636

Zhang C, Huang C, Yu L, Zhang X, Chawla NV (2018a) Camel: Content-aware and
meta-path augmented metric learning for author identification. In: Proceedings of
the 2018 World Wide Web Conference, pp 709–718

Zhang C, Chao WL, Xuan D (2019a) An empirical study on leveraging scene graphs
for visual question answering. arXiv preprint arXiv:190712133

Zhang C, Song D, Huang C, Swami A, Chawla NV (2019b) Heterogeneous graph
neural network. In: Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pp 793–803

Zhang C, Swami A, Chawla NV (2019c) Shne: Representation learning for
semantic-associated heterogeneous networks. In: Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, pp 690–698

Zhang D, Yin J, Zhu X, Zhang C (2016b) Collective classification via discriminative
matrix factorization on sparsely labeled networks. In: Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management,
pp 1563–1572

Zhang D, Yin J, Zhu X, Zhang C (2018b) Metagraph2vec: Complex semantic path
augmented heterogeneous network embedding. In: Pacific-Asia conference on
knowledge discovery and data mining, Springer, pp 196–208

Zhang D, Yin J, Zhu X, Zhang C (2018c) Network representation learning: A survey.
IEEE transactions on Big Data 6(1):3–28

Zhang G, He H, Katabi D (2019d) Circuit-GNN: Graph neural networks for dis-
tributed circuit design. In: International Conference on Machine Learning, pp
7364–7373

Zhang H, Zheng T, Gao J, Miao C, Su L, Li Y, Ren K (2019e) Data poisoning
attack against knowledge graph embedding. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, International
Joint Conferences on Artificial Intelligence Organization, pp 4853–4859

Zhang J (2020) Graph neural distance metric learning with graph-bert. arXiv
preprint arXiv:200203427

Zhang J, Bargal SA, Lin Z, Brandt J, Shen X, Sclaroff S (2018d) Top-down neu-
ral attention by excitation backprop. International Journal of Computer Vision
126(10):1084–1102

Zhang J, Shi X, Xie J, Ma H, King I, Yeung DY (2018e) Gaan: Gated atten-
tion networks for learning on large and spatiotemporal graphs. arXiv preprint
arXiv:180307294

682 References

Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X (2019f) A novel neural source
code representation based on abstract syntax tree. In: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering (ICSE), IEEE, pp 783–794

Zhang J, Zhang H, Xia C, Sun L (2020a) Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:200105140

Zhang L, Lu H (2020) A Feature-Importance-Aware and Robust Aggregator for
GCN. In: ACM International Conference on Information & Knowledge Manage-
ment, DOI 10.1145/3340531.3411983

Zhang M, Chen Y (2018a) Link prediction based on graph neural networks. In:
Advances in Neural Information Processing Systems, pp 5165–5175

Zhang M, Chen Y (2018b) Link prediction based on graph neural networks. In: Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, pp 5171–5181

Zhang M, Chen Y (2019) Inductive matrix completion based on graph neural net-
works. In: International Conference on Learning Representations

Zhang M, Chen Y (2020) Inductive matrix completion based on graph neural net-
works. In: International Conference on Learning Representations

Zhang M, Schmitt-Ulms G, Sato C, Xi Z, Zhang Y, Zhou Y, St George-Hyslop P,
Rogaeva E (2016c) Drug repositioning for alzheimer’s disease based on system-
atic ‘omics’ data mining. PloS one 11(12):e0168,812

Zhang M, Cui Z, Neumann M, Chen Y (2018f) An end-to-end deep learning archi-
tecture for graph classification. In: Association for the Advancement of Artificial
Intelligence

Zhang M, Cui Z, Neumann M, Chen Y (2018g) An end-to-end deep learning ar-
chitecture for graph classification. In: the AAAI Conference on Artificial Intelli-
gence, pp 4438–4445

Zhang M, Hu L, Shi C, Wang X (2020b) Adversarial label-flipping attack and de-
fense for graph neural networks. In: 2020 IEEE International Conference on Data
Mining (ICDM), IEEE, pp 791–800

Zhang M, Li P, Xia Y, Wang K, Jin L (2020c) Revisiting graph neural networks for
link prediction. arXiv preprint arXiv:201016103

Zhang N, Deng S, Li J, Chen X, Zhang W, Chen H (2020d) Summarizing chinese
medical answer with graph convolution networks and question-focused dual at-
tention. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: Findings, pp 15–24

Zhang Q, Chang J, Meng G, Xiang S, Pan C (2020e) Spatio-temporal graph struc-
ture learning for traffic forecasting. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol 34, pp 1177–1185

Zhang R, Isola P, Efros AA (2016d) Colorful image colorization. In: European con-
ference on computer vision, Springer, pp 649–666

Zhang S, Hu Z, Subramonian A, Sun Y (2020f) Motif-driven contrastive learning of
graph representations. arXiv preprint arXiv:201212533

Zhang W, Tang S, Cao Y, Pu S, Wu F, Zhuang Y (2019g) Frame augmented al-
ternating attention network for video question answering. IEEE Transactions on
Multimedia 22(4):1032–1041

References 683

Zhang W, Fang Y, Liu Z, Wu M, Zhang X (2020g) mg2vec: Learning relationship-
preserving heterogeneous graph representations via metagraph embedding. IEEE
Transactions on Knowledge and Data Engineering 14(8):1

Zhang W, Liu H, Liu Y, Zhou J, Xiong H (2020h) Semi-supervised hierarchical
recurrent graph neural network for city-wide parking availability prediction. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp 1186–
1193

Zhang W, Wang XE, Tang S, Shi H, Shi H, Xiao J, Zhuang Y, Wang WY (2020i)
Relational graph learning for grounded video description generation. In: Proceed-
ings of the 28th ACM International Conference on Multimedia, pp 3807–3828

Zhang X, Zitnik M (2020) Gnnguard: Defending graph neural networks against ad-
versarial attacks. Advances in Neural Information Processing Systems 33

Zhang X, Li Y, Zhou X, Luo J (2019) Unveiling taxi drivers’ strategies via cgail:
Conditional generative adversarial imitation learning. In: 2019 IEEE International
Conference on Data Mining (ICDM), pp 1480–1485, DOI 10.1109/ICDM.2019.
00194

Zhang X, Li Y, Zhou X, Luo J (2020a) cgail: Conditional generative adversarial
imitation learning—an application in taxi drivers’ strategy learning. IEEE Trans-
actions on Big Data pp 1–1, DOI 10.1109/TBDATA.2020.3039810

Zhang X, Li Y, Zhou X, Zhang Z, Luo J (2020b) Trajgail: Trajectory gener-
ative adversarial imitation learning for long-term decision analysis. In: 2020
IEEE International Conference on Data Mining (ICDM), pp 801–810, DOI
10.1109/ICDM50108.2020.00089

Zhang Y, Zheng W, Lin H, Wang J, Yang Z, Dumontier M (2018h) Drug–drug in-
teraction extraction via hierarchical rnns on sequence and shortest dependency
paths. Bioinformatics 34(5):828–835

Zhang Y, Fan Y, Ye Y, Zhao L, Shi C (2019a) Key player identification in under-
ground forums over attributed heterogeneous information network embedding
framework. In: Proceedings of the 28th ACM International Conference on In-
formation and Knowledge Management, pp 549–558

Zhang Y, Khan S, Coates M (2019b) Comparing and detecting adversarial attacks
for graph deep learning. In: Representation Learning on Graphs and Manifolds
Workshop at ICLR

Zhang Y, Li Y, Zhou X, Kong X, Luo J (2019c) Trafficgan: Off-deployment traffic
estimation with traffic generative adversarial networks. 2019 IEEE International
Conference on Data Mining (ICDM) pp 1474–1479

Zhang Y, Pal S, Coates M, Ustebay D (2019d) Bayesian graph convolutional neural
networks for semi-supervised classification. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol 33, pp 5829–5836

Zhang Y, Defazio D, Ramesh A (2020a) Relex: A model-agnostic relational model
explainer. arXiv preprint arXiv:200600305

Zhang Y, Deng W, Wang M, Hu J, Li X, Zhao D, Wen D (2020b) Global-local
gcn: Large-scale label noise cleansing for face recognition. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7731–
7740

684 References

Zhang Y, Guo Z, Teng Z, Lu W, Cohen SB, Liu Z, Bing L (2020c) Lightweight, dy-
namic graph convolutional networks for amr-to-text generation. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp 2162–2172

Zhang Y, Yu X, Cui Z, Wu S, Wen Z, Wang L (2020d) Every document owns its
structure: Inductive text classification via graph neural networks. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp
334–339

Zhang Z, Wang M, Xiang Y, Huang Y, Nehorai A (2018i) Retgk: Graph kernels
based on return probabilities of random walks. In: Advances in Neural Informa-
tion Processing Systems, pp 3964–3974

Zhang Z, Cui P, Zhu W (2020e) Deep learning on graphs: A survey. IEEE Trans-
actions on Knowledge and Data Engineering pp 1–1, DOI 10.1109/TKDE.2020.
2981333

Zhang Z, Zhang Z, Zhou Y, Shen Y, Jin R, Dou D (2020f) Adversarial attacks on
deep graph matching. Advances in Neural Information Processing Systems 33

Zhang Z, Zhao Z, Lin Z, Huai B, Yuan NJ (2020g) Object-aware multi-
branch relation networks for spatio-temporal video grounding. arXiv preprint
arXiv:200806941

Zhang Z, Zhao Z, Zhao Y, Wang Q, Liu H, Gao L (2020h) Where does it exist:
Spatio-temporal video grounding for multi-form sentences. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10,668–
10,677

Zhang Z, Zhuang F, Zhu H, Shi Z, Xiong H, He Q (2020i) Relational graph neural
network with hierarchical attention for knowledge graph completion. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol 34, pp 9612–9619

Zhao H, Du L, Buntine W (2017) Leveraging node attributes for incomplete rela-
tional data. In: International Conference on Machine Learning, pp 4072–4081

Zhao H, Zhou Y, Song Y, Lee DL (2019a) Motif enhanced recommendation over
heterogeneous information network. In: Proceedings of the 28th ACM interna-
tional conference on information and knowledge management, pp 2189–2192

Zhao H, Wei L, Yao Q (2020a) Simplifying architecture search for graph neural
network. In: Conrad S, Tiddi I (eds) Proceedings of the CIKM 2020 Workshops
co-located with 29th ACM International Conference on Information and Knowl-
edge Management (CIKM 2020), Galway, Ireland, October 19-23, 2020, CEUR-
WS.org, CEUR Workshop Proceedings, vol 2699

Zhao J, Zhou Z, Guan Z, Zhao W, Ning W, Qiu G, He X (2019b) Intentgc: a scalable
graph convolution framework fusing heterogeneous information for recommen-
dation. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp 2347–2357

Zhao J, Wang X, Shi C, Liu Z, Ye Y (2020b) Network schema preserving hetero-
geneous information network embedding. In: Bessiere C (ed) Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20,
International Joint Conferences on Artificial Intelligence Organization, pp 1366–
1372

References 685

Zhao J, Wang X, Shi C, Hu B, Song G, Ye Y (2021) Heterogeneous graph structure
learning for graph neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence

Zhao K, Bai T, Wu B, Wang B, Zhang Y, Yang Y, Nie JY (2020c) Deep adver-
sarial completion for sparse heterogeneous information network embedding. In:
Proceedings of The Web Conference 2020, pp 508–518

Zhao L, Akoglu L (2019) Pairnorm: Tackling oversmoothing in gnns. In: Interna-
tional Conference on Learning Representations

Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H (2019c) T-GCN: A
temporal graph convolutional network for traffic prediction. IEEE Transactions
on Intelligent Transportation Systems 21(9):3848–3858

Zhao M, Wang D, Zhang Z, Zhang X (2015) Music removal by convolutional de-
noising autoencoder in speech recognition. In: 2015 Asia-Pacific Signal and In-
formation Processing Association Annual Summit and Conference (APSIPA),
IEEE, pp 338–341

Zhao S, Su C, Sboner A, Wang F (2019d) Graphene: A precise biomedical litera-
ture retrieval engine with graph augmented deep learning and external knowledge
empowerment. In: Proceedings of the 28th ACM International Conference on In-
formation and Knowledge Management, pp 149–158

Zhao S, Qin B, Liu T, Wang F (2020d) Biomedical knowledge graph refinement
with embedding and logic rules. arXiv preprint arXiv:201201031

Zhao S, Su C, Lu Z, Wang F (2020e) Recent advances in biomedical literature min-
ing. Briefings in Bioinformatics

Zhao T, Deng C, Yu K, Jiang T, Wang D, Jiang M (2020f) Error-bounded graph
anomaly loss for gnns. In: Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, pp 1873–1882

Zhao Y, Wang D, Gao X, Mullins R, Lio P, Jamnik M (2020g) Probabilistic dual
network architecture search on graphs. arXiv preprint arXiv:200309676

Zheng C, Fan X, Wang C, Qi J (2020a) Gman: A graph multi-attention network for
traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol 34, pp 1234–1241

Zheng C, Zong B, Cheng W, Song D, Ni J, Yu W, Chen H, Wang W (2020b) Robust
graph representation learning via neural sparsification. In: International Confer-
ence on Machine Learning, pp 11,458–11,468

Zheng D, Song X, Ma C, Tan Z, Ye Z, Dong J, Xiong H, Zhang Z, Karypis G
(2020c) Dgl-ke: Training knowledge graph embeddings at scale. In: Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp 739–748

Zheng L, Lu CT, Jiang F, Zhang J, Yu PS (2018a) Spectral collaborative filtering.
In: Proceedings of the 12th ACM Conference on Recommender Systems, ACM,
pp 311–319

Zheng L, Li Z, Li J, Li Z, Gao J (2019) Addgraph: Anomaly detection in dynamic
graph using attention-based temporal gcn. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, pp 4419–
4425

686 References

Zheng X, Aragam B, Ravikumar PK, Xing EP (2018b) Dags with no tears: Con-
tinuous optimization for structure learning. Advances in Neural Information Pro-
cessing Systems 31:9472–9483

Zheng Y, Liu F, Hsieh HP (2013) U-air: When urban air quality inference meets
big data. In: Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp 1436–1444

Zheng Y, Capra L, Wolfson O, Yang H (2014) Urban computing: Concepts, method-
ologies, and applications 5(3), DOI 10.1145/2629592

Zhou C, Liu Y, Liu X, Liu Z, Gao J (2017) Scalable graph embedding for asymmet-
ric proximity. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol 31

Zhou C, Bai J, Song J, Liu X, Zhao Z, Chen X, Gao J (2018a) Atrank: An attention-
based user behavior modeling framework for recommendation. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol 32

Zhou C, Ma J, Zhang J, Zhou J, Yang H (2020a) Contrastive learning for debi-
ased candidate generation in large-scale recommender systems. arXiv preprint
csIR/200512964

Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2004) Learning with lo-
cal and global consistency. Advances in neural information processing systems
16(16):321–328

Zhou F, De la Torre F (2012) Factorized graph matching. In: 2012 IEEE Conference
on Computer Vision and Pattern Recognition, IEEE, pp 127–134

Zhou G, Zhu X, Song C, Fan Y, Zhu H, Ma X, Yan Y, Jin J, Li H, Gai K (2018b)
Deep interest network for click-through rate prediction. In: Proceedings of the
24th ACM SIGKDD, pp 1059–1068

Zhou G, Wang J, Zhang X, Guo M, Yu G (2020b) Predicting functions of maize
proteins using graph convolutional network. BMC Bioinformatics 21(16):420

Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Sun M (2018c) Graph neural networks: A
review of methods and applications. arXiv preprint arXiv:181208434

Zhou K, Song Q, Huang X, Hu X (2019a) Auto-gnn: Neural architecture search of
graph neural networks. arXiv preprint arXiv:190903184

Zhou K, Dong Y, Wang K, Lee WS, Hooi B, Xu H, Feng J (2020c) Understanding
and resolving performance degradation in graph convolutional networks. arXiv
preprint arXiv:200607107

Zhou K, Huang X, Li Y, Zha D, Chen R, Hu X (2020d) Towards deeper graph
neural networks with differentiable group normalization. In: Advances in Neural
Information Processing Systems, vol 33

Zhou K, Song Q, Huang X, Zha D, Zou N, Hu X (2020e) Multi-channel graph
neural networks. In: International Joint Conference on Artificial Intelligence, pp
1352–1358

Zhou N, Jiang Y, Bergquist TR, et al (2019b) The CAFA challenge reports im-
proved protein function prediction and new functional annotations for hun-
dreds of genes through experimental screens. Genome Biology 20(1), DOI
10.1186/s13059-019-1835-8

References 687

Zhou T, Lü L, Zhang YC (2009) Predicting missing links via local information. The
European Physical Journal B 71(4):623–630

Zhou Y, Tuzel O (2018) Voxelnet: End-to-end learning for point cloud based 3d
object detection. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp 4490–4499

Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F (2020f) Network-based drug
repurposing for novel coronavirus 2019-ncov/sars-cov-2. Cell discovery 6(1):1–
18

Zhou Z, Kearnes S, Li L, Zare RN, Riley P (2019c) Optimization of molecules via
deep reinforcement learning. Scientific reports 9(1):1–10

Zhou Z, Wang Y, Xie X, Chen L, Liu H (2020g) Riskoracle: A minute-level citywide
traffic accident forecasting framework. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol 34, pp 1258–1265

Zhou Z, Wang Y, Xie X, Chen L, Zhu C (2020h) Foresee urban sparse traffic ac-
cidents: A spatiotemporal multi-granularity perspective. IEEE Transactions on
Knowledge and Data Engineering pp 1–1, DOI 10.1109/TKDE.2020.3034312

Zhu D, Cui P, Wang D, Zhu W (2018) Deep variational network embedding in
wasserstein space. In: Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp 2827–2836

Zhu D, Zhang Z, Cui P, Zhu W (2019a) Robust graph convolutional networks against
adversarial attacks. In: Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery amp; Data Mining, Association for Computing
Machinery, KDD ’19, p 1399–1407, DOI 10.1145/3292500.3330851

Zhu J, Li J, Zhu M, Qian L, Zhang M, Zhou G (2019b) Modeling graph structure in
transformer for better AMR-to-text generation. In: Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
Association for Computational Linguistics, Hong Kong, China, pp 5459–5468

Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: Proceedings of the IEEE international
conference on computer vision, pp 2223–2232

Zhu Q, Du B, Yan P (2020a) Self-supervised training of graph convolutional net-
works. arXiv preprint arXiv:200602380

Zhu R, Zhao K, Yang H, Lin W, Zhou C, Ai B, Li Y, Zhou J (2019c) Aligraph:
a comprehensive graph neural network platform. Proceedings of the VLDB En-
dowment 12(12):2094–2105

Zhu S, Yu K, Chi Y, Gong Y (2007) Combining content and link for classification
using matrix factorization. In: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval, pp 487–
494

Zhu S, Zhou C, Pan S, Zhu X, Wang B (2019d) Relation structure-aware hetero-
geneous graph neural network. In: 2019 IEEE International Conference on Data
Mining (ICDM), IEEE, pp 1534–1539

ZHU X (2002) Learning from labeled and unlabeled data with label propagation.
Tech Report

688 References

Zhu Y, Elemento O, Pathak J, Wang F (2019e) Drug knowledge bases and their
applications in biomedical informatics research. Briefings in bioinformatics
20(4):1308–1321

Zhu Y, Che C, Jin B, Zhang N, Su C, Wang F (2020b) Knowledge-driven drug
repurposing using a comprehensive drug knowledge graph. Health Informatics
Journal 26(4):2737–2750

Zhu Y, Xu Y, Yu F, Liu Q, Wu S, Wang L (2020c) Deep graph contrastive represen-
tation learning. arXiv preprint arXiv:200604131

Zhu Y, Xu Y, Yu F, Liu Q, Wu S, Wang L (2021) Graph Contrastive Learning with
Adaptive Augmentation. In: Proceedings of The Web Conference 2021, ACM,
WWW ’21

Zhuang Y, Jain R, Gao W, Ren L, Aizawa K (2017) Panel: cross-media intelligence.
In: Proceedings of the 25th ACM international conference on Multimedia, pp
1173–1173

Zimmermann T, Zeller A, Weissgerber P, Diehl S (2005) Mining version histories to
guide software changes. IEEE Transactions on Software Engineering 31(6):429–
445

Zitnik M, Leskovec J (2017) Predicting multicellular function through multi-layer
tissue networks. Bioinformatics 33(14):i190–i198

Zitnik M, Agrawal M, Leskovec J (2018) Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics 34(13):i457–i466

Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: A fast
force field generation tool for small organic molecules. Journal of Computational
Chemistry 32(11):2359–2368

Zoph B, Le QV (2016) Neural architecture search with reinforcement learning.
arXiv preprint arXiv:161101578

Zoph B, Yuret D, May J, Knight K (2016) Transfer learning for low-resource neu-
ral machine translation. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp 1568–1575

Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp 8697–8710

Zügner D, Günnemann S (2019) Adversarial attacks on graph neural networks via
meta learning. In: International Conference on Learning Representations, ICLR

Zügner D, Günnemann S (2019) Certifiable robustness and robust training for graph
convolutional networks. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp 246–256

Zügner D, Günnemann S (2020) Certifiable robustness of graph convolutional net-
works under structure perturbations. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery amp; Data Mining, Associa-
tion for Computing Machinery, KDD ’20, p 1656–1665, DOI 10.1145/3394486.
3403217

Zügner D, Akbarnejad A, Günnemann S (2018) Adversarial attacks on neural net-
works for graph data. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp 2847–2856

References 689

Zügner D, Borchert O, Akbarnejad A, Günnemann S (2020) Adversarial attacks
on graph neural networks: Perturbations and their patterns. ACM Trans Knowl
Discov Data 14(5):57:1–57:31

Zügner D, Kirschstein T, Catasta M, Leskovec J, Günnemann S (2021) Language-
agnostic representation learning of source code from structure and context. In:
International Conference on Learning Representations

	Foreword
	Preface
	Book Website and Resources
	To the Instructors
	To the Readers

	Acknowledgements
	Editor Biography
	List of Contributors
	Contents
	Terminologies
	1 Basic concepts of Graphs
	2 Machine Learning on Graphs
	3 Graph Neural Networks

	Notations
	Numbers, Arrays, and Matrices
	Graph Basics
	Basic Operations
	Functions
	Probablistic Theory

	Part I Introduction
	Chapter 1 Representation Learning
	1.1 Representation Learning: An Introduction
	1.2 Representation Learning in Different Areas
	1.2.1 Representation Learning for Image Processing
	1.2.2 Representation Learning for Speech Recognition
	1.2.3 Representation Learning for Natural Language Processing
	1.2.4 Representation Learning for Networks

	1.3 Summary

	Chapter 2 Graph Representation Learning
	2.1 Graph Representation Learning: An Introduction
	2.2 Traditional Graph Embedding
	2.3 Modern Graph Embedding
	2.3.1 Structure-Property Preserving Graph Representation Learning
	2.3.1.1 Structure Preserving Graph Representation Learning
	2.3.1.2 Property Preserving Graph Representation Learning

	2.3.2 Graph Representation Learning with Side Information
	2.3.3 Advanced Information Preserving Graph Representation Learning
	2.4 Graph Neural Networks
	2.5 Summary

	Chapter 3 Graph Neural Networks
	3.1 Graph Neural Networks: An Introduction
	3.2 Graph Neural Networks: Overview
	3.2.1 Graph Neural Networks: Foundations
	3.2.2 Graph Neural Networks: Frontiers
	3.2.3 Graph Neural Networks: Applications
	3.2.3.1 Graph Construction
	3.2.3.2 Graph Representation Learning

	3.2.4 Graph Neural Networks: Organization

	3.3 Summary

	Part II Foundations of Graph Neural Networks
	Chapter 4 Graph Neural Networks for Node Classification
	4.1 Background and Problem Definition
	4.2 Supervised Graph Neural Networks
	4.2.1 General Framework of Graph Neural Networks
	4.2.2 Graph Convolutional Networks
	4.2.3 Graph Attention Networks
	4.2.4 Neural Message Passing Networks
	4.2.5 Continuous Graph Neural Networks

	4.3 Unsupervised Graph Neural Networks
	4.3.1 Variational Graph Auto-Encoders
	4.3.1.1 Problem Setup
	4.3.1.2 Model
	4.3.1.3 Discussion

	4.3.2 Deep Graph Infomax
	4.3.2.1 Problem Setup
	4.3.2.2 Model
	4.3.2.3 Discussion

	4.4 Over-smoothing Problem
	4.5 Summary

	Chapter 5 The Expressive Power of Graph Neural Networks
	5.1 Introduction
	5.2 Graph Representation Learning and Problem Formulation
	5.3 The Power of Message Passing Graph Neural Networks
	5.3.1 Preliminaries: Neural Networks for Sets
	5.3.2 Message Passing Graph Neural Networks
	5.3.3 The Expressive Power of MP-GNN
	5.3.4 MP-GNN with the Power of the 1-WL Test

	5.4 Graph Neural Networks Architectures that are more Powerful than 1-WL Test
	5.4.1 Limitations of MP-GNN
	5.4.2 Injecting Random Attributes
	5.4.2.1 Relational Pooling GNN (RP-GNN) (Murphy et al, 2019a)
	5.4.2.2 Random Graph Isomorphic Network (rGIN) (Sato et al, 2021)
	5.4.2.3 Position-aware GNN (PGNN) (You et al, 2019)
	5.4.2.4 Randomized Matrix Factorization (Srinivasan and Ribeiro, 2020a)(Dwivedi et al, 2020)

	5.4.3 Injecting Deterministic Distance Attributes
	5.4.3.1 Distance Encoding (Li et al, 2020e)
	5.4.3.2 Identity-aware GNN (You et al, 2021)

	5.4.4 Higher-order Graph Neural Networks
	5.4.4.1 k-WL-induced GNNs (Morris et al, 2019)
	5.4.4.2 Invariant and equivariant GNNs (Maron et al, 2018, 2019b)
	5.4.4.3 FWL-induced GNNs (Maron et al, 2019a; Chen et al, 2019f)

	5.5 Summary

	Chapter 6 Graph Neural Networks: Scalability
	6.1 Introduction
	6.2 Preliminary
	6.3 Sampling Paradigms
	6.3.1 Node-wise Sampling
	6.3.1.1 GraphSAGE
	6.3.1.2 VR-GCN

	6.3.2 Layer-wise Sampling
	6.3.2.1 FastGCN
	6.3.2.2 ASGCN

	6.3.3 Graph-wise Sampling
	6.3.3.1 Cluster-GCN
	6.3.3.2 GraphSAINT
	6.3.3.3 Overall Comparison of Different Models

	6.4 Applications of Large-scale Graph Neural Networks on Recommendation Systems
	6.4.1 Item-item Recommendation
	6.4.2 User-item Recommendation

	6.5 Future Directions

	Chapter 7 Interpretability in Graph Neural Networks
	7.1 Background: Interpretability in Deep Models
	7.1.1 Definition of Interpretability and Interpretation
	7.1.2 The Value of Interpretation
	7.1.2.1 Model-Oriented Reasons
	7.1.2.2 User-Oriented Reasons

	7.1.3 Traditional Interpretation Methods
	7.1.3.1 Post-Hoc Interpretation
	7.1.3.2 Interpretable Modeling

	7.1.4 Opportunities and Challenges

	7.2 Explanation Methods for Graph Neural Networks
	7.2.1 Background
	7.2.2 Approximation-Based Explanation
	7.2.2.1 White-Box Approximation Method
	7.2.2.2 Black-Box Approximation Methods

	7.2.3 Relevance-Propagation Based Explanation
	7.2.4 Perturbation-Based Approaches
	7.2.5 Generative Explanation

	7.3 Interpretable Modeling on Graph Neural Networks
	7.3.1 GNN-Based Attention Models
	7.3.1.1 Attention Models for Homogeneous Graphs
	7.3.1.2 Attention Models for Heterogeneous Graphs

	7.3.2 Disentangled Representation Learning on Graphs
	7.3.2.1 Is A Single Vector Enough?
	7.3.2.2 Prototypes-Based Soft-Cluster Assignment
	7.3.2.3 Dynamic Routing Based Clustering

	7.4 Evaluation of Graph Neural Networks Explanations
	7.4.1 Benchmark Datasets
	7.4.1.1 Synthetic Datasets
	7.4.1.2 Real-World Datasets

	7.4.2 Evaluation Metrics

	7.5 Future Directions

	Chapter 8 Graph Neural Networks: Adversarial Robustness
	8.1 Motivation
	8.2 Limitations of Graph Neural Networks: Adversarial Examples
	8.2.1 Categorization of Adversarial Attacks
	Aspect 1: Property under Investigation (Attacker’s Goal)
	Aspect 2: The Perturbation Space (Attacker’s Capabilities)
	Aspect 3: Available Information (Attacker’s Knowledge)
	Aspect 4: The Algorithmic View

	8.2.2 The Effect of Perturbations and Some Insights
	8.2.2.1 Transferability and Patterns

	8.2.3 Discussion and Future Directions

	8.3 Provable Robustness: Certificates for Graph Neural Networks
	8.3.1 Model-Specific Certificates
	Lower Bounds on the Worst-Case Margin

	8.3.2 Model-Agnostic Certificates
	Putting Model-Agnostic Certificates into Practice

	8.3.3 Advanced Certification and Discussion

	8.4 Improving Robustness of Graph Neural Networks
	8.4.1 Improving the Graph
	8.4.2 Improving the Training Procedure
	8.4.2.1 Robust Training
	8.4.2.2 Further Training Principles

	8.4.3 Improving the Graph Neural Networks’ Architecture
	8.4.3.1 Adaptively Down-Weighting Edges
	8.4.3.2 Further Approaches

	8.4.4 Discussion and Future Directions

	8.5 Proper Evaluation in the View of Robustness
	Empirical Robustness Evaluation
	Provable Robustness Evaluation

	8.6 Summary
	Acknowledgements

	Part III Frontiers of Graph Neural Networks
	Chapter 9 Graph Neural Networks: Graph Classification
	9.1 Introduction
	9.2 Graph neural networks for graph classification: Classic works and modern architectures
	9.2.1 Spatial approaches
	9.2.2 Spectral approaches

	9.3 Pooling layers: Learning graph-level outputs from node-level outputs
	9.3.1 Attention-based pooling layers
	9.3.2 Cluster-based pooling layers
	9.3.3 Other pooling layers

	9.4 Limitations of graph neural networks and higher-order layers for graph classification
	9.4.1 Overcoming limitations

	9.5 Applications of graph neural networks for graph classification
	9.6 Benchmark Datasets
	9.7 Summary

	Chapter 10 Graph Neural Networks: Link Prediction
	10.1 Introduction
	10.2 Traditional Link Prediction Methods
	10.2.1 Heuristic Methods
	10.2.1.1 Local Heuristics
	10.2.1.3 Summarization

	10.2.2 Latent-Feature Methods
	10.2.2.1 Matrix Factorization
	10.2.2.2 Network Embedding
	10.2.2.3 Summarization

	10.2.3 Content-Based Methods

	10.3 GNN Methods for Link Prediction
	10.3.1 Node-Based Methods
	10.3.1.1 Graph AutoEncoder
	10.3.1.2 Variational Graph AutoEncoder
	10.3.1.3 Variants of GAE and VGAE

	10.3.2 Subgraph-Based Methods
	10.3.2.1 The SEAL Framework
	10.3.2.2 Variants of SEAL

	10.3.3 Comparing Node-Based Methods and Subgraph-Based Methods

	10.4 Theory for Link Prediction
	10.4.1 γ-Decaying Heuristic Theory
	10.4.1.1 Definition of γ-Decaying Heuristic
	10.4.1.2 Katz index
	10.4.1.3 PageRank
	10.4.1.4 SimRank
	10.4.1.5 Discussion

	10.4.2 Labeling Trick
	10.4.2.1 Structural Representation
	10.4.2.2 Labeling Trick Enables Learning Structural Representations

	10.5 Future Directions
	10.5.1 Accelerating Subgraph-Based Methods
	10.5.2 Designing More Powerful Labeling Tricks
	10.5.3 Understanding When to Use One-Hot Features

	Chapter 11 Graph Neural Networks: Graph Generation
	11.1 Introduction
	11.2 Classic Graph Generative Models
	11.2.1 Erdős–Rényi Model
	11.2.1.1 Model
	11.2.1.2 Discussion

	11.2.2 Stochastic Block Model
	11.2.2.1 Model
	11.2.2.2 Discussion

	11.3 Deep Graph Generative Models
	11.3.1 Representing Graphs
	11.3.2 Variational Auto-Encoder Methods
	11.3.2.1 The GraphVAE Family
	11.3.2.2 Hierarchical and Constrained GraphVAEs

	11.3.3 Deep Autoregressive Methods
	11.3.3.1 GNN-based Autoregressive Model
	11.3.3.2 Graph Recurrent Neural Networks (GraphRNN)
	11.3.3.3 Graph Recurrent Attention Networks (GRAN)

	11.3.4 Generative Adversarial Methods
	11.3.4.1 Adjacency Matrix Based GAN
	11.3.4.2 Random Walk Based GAN

	11.4 Summary

	Chapter 12 Graph Neural Networks: Graph Transformation
	12.1 Problem Formulation of Graph Transformation
	12.2 Node-level Transformation
	12.2.1 Definition of Node-level Transformation
	12.2.2 Interaction Networks
	12.2.3 Spatio-Temporal Convolution Recurrent Neural Networks

	12.3 Edge-level Transformation
	12.3.1 Definition of Edge-level Transformation
	12.3.2 Graph Transformation Generative Adversarial Networks
	12.3.3 Multi-scale Graph Transformation Networks
	12.3.4 Graph Transformation Policy Networks

	12.4 Node-Edge Co-Transformation
	12.4.1 Definition of Node-Edge Co-Transformation
	12.4.1.1 Junction-tree Variational Auto-encoder Transformer
	12.4.1.2 Molecule Cycle-Consistent Adversarial Networks
	12.4.1.3 Directed Acyclic Graph Transformation Networks

	12.4.2 Editing-based Node-Edge Co-Transformation
	12.4.2.1 Graph Convolutional Policy Networks
	12.4.2.2 Molecule Deep Q-networks Transformer
	12.4.2.3 Node-Edge Co-evolving Deep Graph Translator

	12.5 Other Graph-based Transformations
	12.5.1 Sequence-to-Graph Transformation
	12.5.2 Graph-to-Sequence Transformation
	12.5.3 Context-to-Graph Transformation

	12.6 Summary

	Chapter 13 Graph Neural Networks: Graph Matching
	13.1 Introduction
	13.2 Graph Matching Learning
	13.2.1 Problem Definition
	13.2.2 Deep Learning based Models
	13.2.3 Graph Neural Network based Models

	13.3 Graph Similarity Learning
	13.3.1 Problem Definition
	13.3.2 Graph-Graph Regression Tasks

	13.4 Summary

	Chapter 14 Graph Neural Networks: Graph Structure Learning
	14.1 Introduction
	14.2 Traditional Graph Structure Learning
	14.2.1 Unsupervised Graph Structure Learning
	14.2.1.1 Graph Structure Learning from Smooth Signals
	14.2.1.2 Spectral Clustering via Graph Structure Learning

	14.2.2 Supervised Graph Structure Learning
	14.2.2.1 Relational Inference for Interacting Systems
	14.2.2.2 Structure Learning in Bayesian Networks

	14.3 Graph Structure Learning for Graph Neural Networks
	14.3.1 Joint Graph Structure and Representation Learning
	14.3.1.1 Problem Formulation
	14.3.1.2 Learning Discrete Graph Structures
	14.3.1.3 Learning Weighted Graph Structures

	14.3.2 Connections to Other Problems
	14.3.2.1 Graph Structure Learning as Graph Generation
	14.3.2.2 Graph Structure Learning for Graph Adversarial Defenses
	14.3.2.3 Understanding Transformers from a Graph Learning Perspective

	14.4 Future Directions
	14.4.1 Robust Graph Structure Learning
	14.4.2 Scalable Graph Structure Learning
	14.4.3 Graph Structure Learning for Heterogeneous Graphs

	14.5 Summary

	Chapter 15 Dynamic Graph Neural Networks
	15.1 Introduction
	15.2 Background and Notation
	15.2.1 Graph Neural Networks
	15.2.2 Sequence Models
	15.2.3 Encoder-Decoder Framework and Model Training

	15.3 Categories of Dynamic Graphs
	15.3.1 Discrete vs. Continues
	15.3.2 Types of Evolution
	15.3.3 Prediction Problems, Interpolation, and Extrapolation

	15.4 Modeling Dynamic Graphs with Graph Neural Networks
	15.4.1 Conversion to Static Graphs
	15.4.2 Graph Neural Networks for DTDGs
	15.4.3 Graph Neural Networks for CTDGs

	15.5 Applications
	15.5.1 Skeleton-based Human Activity Recognition
	15.5.2 Traffic Forecasting
	15.5.3 Temporal Knowledge Graph Completion

	15.6 Summary

	Chapter 16 Heterogeneous Graph Neural Networks
	16.1 Introduction to HGNNs
	16.1.1 Basic Concepts of Heterogeneous Graphs
	16.1.2 Challenges of HG Embedding
	16.1.3 Brief Overview of Current Development

	16.2 Shallow Models
	16.2.1 Decomposition-based Methods
	16.2.2 Random Walk-based Methods

	16.3 Deep Models
	16.3.1 Message Passing-based Methods (HGNNs)
	16.3.2 Encoder-decoder-based Methods
	16.3.3 Adversarial-based Methods

	16.4 Review
	16.5 Future Directions
	16.5.1 Structures and Properties Preservation
	16.5.2 Deeper Exploration
	16.5.3 Reliability
	16.5.4 Applications

	Chapter 17 Graph Neural Networks: AutoML
	17.1 Background
	17.1.1 Notations of AutoGNN
	17.1.2 Problem Definition of AutoGNN
	17.1.3 Challenges in AutoGNN

	17.2 Search Space
	17.2.1 Architecture Search Space
	17.2.1.1 Micro-architecture Search Space
	17.2.1.2 Macro-architecture Search Space

	17.2.2 Training Hyperparameter Search Space
	17.2.3 Efficient Search Space

	17.3 Search Algorithms
	17.3.1 Random Search
	17.3.2 Evolutionary Search
	17.3.3 Reinforcement Learning Based Search
	17.3.4 Differentiable Search
	17.3.5 Efficient Performance Estimation

	17.4 Future Directions
	Acknowledgements

	Chapter 18 Graph Neural Networks: Self-supervised Learning
	18.1 Introduction
	18.2 Self-supervised Learning
	18.3 Applying SSL to Graph Neural Networks: Categorizing Training Strategies, Loss Functions and Pretext Tasks
	18.3.1 Training Strategies
	18.3.1.1 Self-training
	18.3.1.2 Pre-training and Fine-tuning
	18.3.1.3 Joint Training

	18.3.2 Loss Functions
	18.3.2.1 Classification and Regression Loss
	18.3.2.2 Contrastive Learning Loss

	18.3.3 Pretext Tasks

	18.4 Node-level SSL Pretext Tasks
	18.4.1 Structure-based Pretext Tasks
	18.4.2 Feature-based Pretext Tasks
	18.4.3 Hybrid Pretext Tasks

	18.5 Graph-level SSL Pretext Tasks
	18.5.1 Structure-based Pretext Tasks
	18.5.2 Feature-based Pretext Tasks
	18.5.3 Hybrid Pretext Tasks

	18.6 Node-graph-level SSL Pretext Tasks
	18.7 Discussion
	18.8 Summary

	Part IV Broad and Emerging Applications withGraph Neural Networks
	Chapter 19 Graph Neural Networks in Modern Recommender Systems
	19.1 Graph Neural Networks for Recommender System in Practice
	19.1.1 Introduction
	19.1.2 Classic Approaches to Predict User-Item Preference
	19.1.3 Item Recommendation in user-item Recommender Systems: a Bipartite Graph Perspective

	19.2 Case Study 1: Dynamic Graph Neural Networks Learning
	19.2.1 Dynamic Sequential Graph
	19.2.2 DSGL: Dynamic Sequential Graph Learning
	19.2.2.1 Overview
	19.2.2.2 Embedding Layer
	19.2.2.3 Time-Aware Sequence Encoding
	19.2.2.4 Second-Order Graph Attention
	19.2.2.5 Aggregation and Layer Combination

	19.2.3 Model Prediction
	19.2.4 Experiments and Discussions
	19.2.4.1 Performance Comparison
	19.2.4.2 Effectiveness of Graph Structure and Layer Combination
	19.2.4.3 Effectiveness of Time-Aware Sequence Encoding
	19.2.4.4 Effectiveness of Second-Order Graph Attention

	19.3 Case Study 2: Device-Cloud Collaborative Learning for Graph Neural Networks
	19.3.1 The proposed framework
	19.3.1.1 MetaPatch for On-device Personalization
	19.3.1.2 MoMoDistill to Enhance the Cloud Modeling

	19.3.2 Experiments and Discussions
	19.3.2.1 How is the performance of DCCL compared with the SOTAs?
	19.3.2.2 Whether on-device personalization benefits to the cloud model?
	19.3.2.3 The iterative characteristics of the multi-round DCCL.
	19.3.2.4 Ablation Study of DCCL

	19.4 Future Directions

	Chapter 20 Graph Neural Networks in Computer Vision
	20.1 Introduction
	20.2 Representing Vision as Graphs
	20.2.1 Visual Node representation
	20.2.2 Visual Edge representation
	20.2.2.1 Spatial Edges
	20.2.2.2 Temporal Edges

	20.3 Case Study 1: Image
	20.3.1 Object Detection
	20.3.2 Image Classification

	20.4 Case Study 2: Video
	20.4.1 Video Action Recognition
	20.4.2 Temporal Action Localization

	20.5 Other Related Work: Cross-media
	20.5.1 Visual Caption
	20.5.2 Visual Question Answering
	20.5.3 Cross-Media Retrieval

	20.6 Frontiers for Graph Neural Networks on Computer Vision
	20.6.1 Advanced Graph Neural Networks for Computer Vision
	20.6.2 Broader Area of Graph Neural Networks on Computer Vision

	20.7 Summary

	Chapter 21 Graph Neural Networks in Natural Language Processing
	21.1 Introduction
	21.2 Modeling Text as Graphs
	21.2.1 Graph Representations in Natural Language Processing
	21.2.2 Tackling Natural Language Processing Tasks from a Graph Perspective

	21.3 Case Study 1: Graph-based Text Clustering and Matching
	21.3.1 Graph-based Clustering for Hot Events Discovery and Organization
	21.3.2 Long Document Matching with Graph Decomposition and Convolution

	21.4 Case Study 2: Graph-based Multi-Hop Reading Comprehension
	21.5 Future Directions
	21.6 Conclusions

	Chapter 22 Graph Neural Networks in Program Analysis
	22.1 Introduction
	22.2 Machine Learning in Program Analysis
	22.3 A Graph Represention of Programs
	22.4 Graph Neural Networks for Program Graphs
	22.5 Case Study 1: Detecting Variable Misuse Bugs
	22.6 Case Study 2: Predicting Types in Dynamically Typed Languages
	22.7 Future Directions

	Chapter 23 Graph Neural Networks in Software Mining
	23.1 Introduction
	23.2 Modeling Software as a Graph
	23.2.1 Macro versus Micro Representations
	23.2.1.1 Macro-level Representations
	23.2.1.2 Micro-level Representations

	23.2.2 Combining the Macro- and Micro-level

	23.3 Relevant Software Mining Tasks
	23.4 Example Software Mining Task: Source Code Summarization
	23.4.1 Primer GNN-based Code Summarization
	23.4.1.1 Model Input / Output
	23.4.1.2 Model Architecture
	23.4.1.3 Experiment
	23.4.1.4 What benefit did the GNN bring?

	23.4.2 Directions for Improvement
	23.4.2.1 Example Micro-level Improvement
	23.4.2.2 Example Macro-level Improvement

	23.5 Summary

	Chapter 24 GNN-based Biomedical Knowledge Graph Mining in Drug Development
	24.1 Introduction
	24.2 Existing Biomedical Knowledge Graphs
	24.3 Inference on Knowledge Graphs
	24.3.1 Conventional KG inference techniques
	24.3.2 GNN-based KG inference techniques

	24.4 KG-based hypothesis generation in computational drug development
	24.4.1 A machine learning framework for KG-based drug repurposing
	24.4.2 Application of KG-based drug repurposing in COVID-19

	24.5 Future directions
	24.5.1 KG quality control
	24.5.2 Scalable inference
	24.5.3 Coupling KGs with other biomedical data

	Chapter 25 Graph Neural Networks in Predicting Protein Function and Interactions
	25.1 From Protein Interactions to Function: An Introduction
	25.1.1 Enter Stage Left: Protein-Protein Interaction Networks
	25.1.2 Problem Formulation(s), Assumptions, and Noise: A Historical Perspective
	25.1.3 Shallow Machine Learning Models over the Years
	25.1.4 Enter Stage Right: Graph Neural Networks
	25.1.4.1 Preliminaries
	25.1.4.2 GNNs for Representation Learning
	25.1.4.3 GNNs for the Link Prediction Problem
	25.1.4.4 GNNs for Automated Function Prediction as a Multi-label Classification Problem

	25.2 Highlighted Case Studies
	25.2.1 Case Study 1: Prediction of Protein-Protein and Protein-Drug Interactions: The Link Prediction Problem
	25.2.2 Case Study 2: Prediction of Protein Function and Functionally-important Residues
	25.2.3 Case Study 3: From Representation Learning to Multirelational Link Prediction in Biological Networks with Graph Autoencod

	25.3 Future Directions

	Chapter 26 Graph Neural Networks in Anomaly Detection
	26.1 Introduction
	26.2 Issues
	26.2.1 Data-specific issues
	26.2.2 Task-specific Issues
	26.2.3 Model-specific Issues

	26.3 Pipeline
	26.3.1 Graph Construction and Transformation
	26.3.2 Graph Representation Learning
	26.3.3 Prediction

	26.4 Taxonomy
	26.5 Case Studies
	26.5.1 Case Study 1: Graph Embeddings for Malicious Accounts Detection
	26.5.2 Case Study 2: Hierarchical Attention Mechanism based Cash-out User Detection
	26.5.3 Case Study 3: Attentional Heterogeneous Graph Neural Networks for Malicious Program Detection
	26.5.4 Case Study 4: Graph Matching Framework to Learn the Program Representation and Similarity Metric via Graph Neural Network
	26.5.5 Case Study 5: Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN
	26.5.6 Case Study 6: GCN-based Anti-Spam for Spam Review Detection

	26.6 Future Directions

	Chapter 27 Graph Neural Networks in Urban Intelligence
	27.1 Graph Neural Networks for Urban Intelligence
	27.1.1 Introduction
	27.1.2 Application scenarios in urban intelligence
	27.1.3 Representing urban systems as graphs
	27.1.4 Case Study 1: Graph Neural Networksin urban configuration and transportation
	27.1.5 Case Study 2: Graph Neural Networks in urban anomaly and event detection
	27.1.6 Case Study 3: Graph Neural Networks in urban human behavior inference
	27.1.7 Future Directions

	References

