KATA PENGANTAR

Puji syukur penulis ucapkan kepada Tuhan Yang Maha Esa, karena dengan rahmat-Nya

penulis dapat menyelesaikan Proyek Akhir yang berjudul "Rancang Bangun Antena

Mikrostrip Segiempat Peripheral Slits Untuk Jaringan 4G" yang Diajukan sebagai

syarat untuk memperoleh Ahli Madya di Program Studi Teknik Telekomunikasi Akademi

Telkom Jakarta

Tentunya banyak pihak yang membantu penulis agar dapat menyelesaikan proyek akhir

ini dengan tepat waktu. Baik berupa motivasi, saran ataupun kritik yang dapat membuat

penulis menjadi lebih baik lagi. Oleh karena itu, penulis ingin mengucapkan terima kasih

kepada:

1. Allah SWT, yang telah melimpahkan nikmat sehat kepada penulis baik jasmani dan

rohani sehingga penulis dapat menyelesaikan proyek akhir ini dengan tepat waktu.

2. Kedua orang tua yang telah banyak berdoa untuk penulis agar penulis diberi

kelancaran selama proses proyek akhir ini beserta penyusunan Laporannya.

3. Bapak Ir. Hary Nugroho, ST, MT. selaku Direktur Utama Akademi Telkom Jakarta

sekaligus Pembimbing Akademik.

4. Ibu Nadia Media ST,.M.Eng. selaku Dosen Pembimbing Proyek Akhir

5. Bapak Syah Alam Spd, MT. selaku Dosen Pembimbing Proyek Akhir Luar

6. Kepada seluruh dosen yang telah membantu penulis mengembangkan ide dan

pengetahuan yang namanya tidak bisa disebutkan satu persatu.

7. Dan terima kasih kepada teman – teman lainnya yang telah membantu penulis dalam

hal bertukar pikiran atau telah memberikan semangat baik perkataan maupun

perbuatan.

Akhir kata, penulis ingin mengucapkan banyak terima kasih kepada pihak - pihak terkait.

Semoga hal baik yang telah dilakukan terhadap penulis dapat dibalas oleh Tuhan Yang

Maha Esa. Dan penulis berharap, agar laporan ini dapat bermanfaat bagi siapapun.

Jakarta, 22 Agustus 2019

Quraisyi Syihab

NIM: 15160057

vii

DAFTAR ISI

LEMBAR PENGESAHAN	i
PERNYATAAN BEBAS PLAGIARISME	iii
HALAMAN PERNYATAAN PUBLIKASI PROYEK AKHIR	iv
ABSTRAK	V
ABSTRACT	vi
KATA PENGANTAR	vii
DAFTAR ISI	viii
DAFTAR GAMBAR	xi
DAFTAR TABEL	xii
DAFTAR ISTILAH	xiii
DAFTAR SINGKATAN	XV
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	2
1.4 Tujuan Penelitian	3
1.5 Manfaat Penelitian	3
1.6 Metodologi Penelitian	3
1.7 Sistematika Penulisan	4
BAB II LANDASAN TEORI	6
2.1 Pengertian 4G <i>LTE</i>	6
2.2 Antena	7
2.2.1 Pengertian Antena	7
2.2.2 Prinsip Kerja Antena	7
2.2.3 Macam-macam Antena	8

	2.3 Parameter Antena	8
	a. Penguat (<i>Gain</i>)	8
	b. <i>VSWR</i>	<i></i> 9
	c. Return Loss	.10
	d. Bandwidth	10
	2.4 Pengertian Antena Mikrostrip	12
	a. Bentuk Dan Susunan Antena Mikrostrip	.12
	1. Patch	13
	2. Substrat Dielektrik	13
	3. Ground Plane	14
	2.5 Antena Mikrostrip Patch Rectangular	14
	2.6 Teknik Pencatuan	16
	2.7 Microstrip Feedline	16
	2.8 Teknik Pelebaran Bandwidth	17
	2.9 Desain Antena Peripheral Slits	17
BAB I	II PERANCANGAN DAN SIMULASI ANTENA	.19
	3.1 Studi Kasus	19
	3.2 Perancangan Antena	19
	3.3 Diagram Alir Perancangan Antena	22
	3.4 Perancangan Dimensi Patch Rectangular	23
	3.5 Dimensi Saluran Pencatu	25
	3.6 Simulasi Desain Antena Mikrostrip	26
	3.6.1 Rancangan Antena Utama	26
	3.6.2 Hasil Simulasi Antena Utama	27
	3.6.3 Rancangan Antena Dengan Beban Peripheral slits	29

3.6.4 Hasil Simulasi <i>Return Loss</i> Antena Dengan <i>Periphera</i> Slits	
3.6.5 Hasil Simulasi VSWR Antena Dengan Beban Periphe Slits	
3.7 Hasil Simulasi Iterasi Dari Sisi Panjang <i>Peripheral</i>	32
BAB IV HASIL DAN PEMBAHASAN	34
4.1 Realisasi Antena Mikrostrip	35 35 36 37
4.4 Analisa Perbandingan Hasil Simulasi Dengan Pengujian Di Laboratorium	38
4.4.1 Perbandingan <i>Return Loss</i> Dari Hasil Simulasi Dan Pengujian	38
4.4.2 Perbandingan <i>VSWR</i> Dari Hasil Simulasi Dan Pengujian	39
4.4.3 Perbandingan <i>Gain</i> Dari Hasil Simulasi Dan Pengujian	40
4.5 Perbandingan Antena Yang Diuji Dengan Simulasi	41
BAB V PENUTUP	42
5.1 Kesimpulan	42
5.2 Saran	42
DAFTAR PUSTAKA	vvi

DAFTAR GAMBAR

Gambar 2.1	Prinsip Kerja Antena
Gambar 2.2	Struktur Antena Mikrostrip
Gambar 2.3	Bentuk patch antena mikrostrip
Gambar 2.4	Antena Mikrostrip Patch segiempat
Gambar 2.5	Skema Microstrip Line
Gambar 3.1	Diagram Alir Penelitian
Gambar 3.2	Perhitungan Dimensi Antena Menggunakan PCAAD 5.0
Gambar 3.3	Perhitungan Dimensi Saluran Pencatu Antena Dengan PCAAD
	5.0
Gambar 3.4	Rancang Awal Antena Satu Elemen Peradiasi
Gambar 3.5	Hasil Simulasi Return Loss Antena Utama
Gambar 3.6	Hasil Simulasi VSWR Antena Utama
Gambar 3.7	Design Antena Mikrostrip Dengan Peripheral Slits
Gambar 3.8	Hasil Simulasi Return Loss Antena dengan Peripheral Slits
Gambar 3.9	Hasil Simulasi VSWR Antena Dengan Peripheral Slits
Gambar 4.1	Hasil Fabrikasi Antena Yang Dirancang
Gambar 4.2	Hasil Desain Antena Mikrostrip Menggunakan Visio
Gambar 4.3	Saat Pengujian Antena
Gambar 4.4	Hasil Pengujian Return Loss
Gambar 4.5	Hasil Pengujian <i>VSWR</i>
Gambar 4.6	Grafik Perbandingan Return Loss
Gambar 4.7	Grafik Perbandingan VSWR
Gambar 4.8	Hasil Simulasi <i>Gain</i> Antena
Gambar 4.9	Proses Penguijan <i>Gain</i> Antena

DAFTAR TABEL

Tabel 2.1	Nilai permitivitas relatif beberapa bahan dielektrik
Tabel 3.1	Spesifikasi Substrat yang digunakan
Tabel 3.2	Spesifikasi substrat FR4 Epoxy
Tabel 3.3	hasil simulasi berdasarkan software AWR
Tabel 3.4	Perbandingan hasil simulasi berdasarkan panjang slits.
Tabel 4.1	Perbandingan Antena Yang Diuji Dengan Simulasi

DAFTAR ISTILAH

Wireless adalah jika dari arti katanya dapat diartikan

"tanpa kabel", yaitu melakukan suatu hubungan telekomunikasi menggunakan gelombang elektromagnetik sebagai pengganti media kabel. Selain itu berkembang juga teknologi wireless yang

dipakai untuk mengakses internet.

Transmitter Transmitter adalah suatu tanda ataupun sinyal yang

diberikan ke alat penerima seperti pencatat, dimana dengan cara mengirmkan sinyal ke receiver. Pada umunya, transmitter bekerja menggunakan gelombang

radio.

Receiver merupakan penangkap sinyal dari isyarat yang kita

berikan dari transmitter sehingga dapat dikontrol

sesuai keinginan kita tanpa kabel.

Kompatibel merupakan istilah yang menunjukan bahwa perangkat

itu support ke berbagai device.

Bandwidth Bandwidth adalah suatu nilai konsumsi transfer data

yang dihitung dalam bit/detik atau yang biasanya disebut dengan bit per second (bps). Atau definisi bandwidth yaitu luas atau lebar cakupan frekuensi yang dipakai oleh sinyal dalam medium transmisi. Jadi dapat disimpulkan bandwidth yaitu kapasitas maksimum dari suatu jalur komunikasi yang dipakai

untuk mentransfer data dalam hitungan detik.

Gain adalah isitilah yang menunjukan bahwa parameter

tersebut sebagai penguat sinyal untuk antena.

Return Loss adalah istilah yang menunjukan bahwa parameter

tersebut sebagai acuan apakah antena sudah sesuai

dengan keiinginan atau belum.

VSWR adalah istilah yang menunjukan bahwa parameter

tersebut sebagai acuan apakah antena sudah

matching atau belum.

AWR Design adalah salah satu aplikasi/software yang biasa

Environment digunakan untuk merancang antena mikrostrip. **GSM/EDGE** Teknologi ini banyak diaplikasikan pada t

Teknologi ini banyak diaplikasikan pada telepon genggam. Teknologi ini memanfaatkan gelombang mikro dan pengiriman sinyal yang dibagi berdasarkan waktu, sehingga sinyal informasi yang dikirim akan

sampai pada tujuan.

UMTS/HSPA adalah salah satu teknologi telepon genggam 3G

(generasi ke-3). Sekarang ini bentuk yang paling banyak digunakan adalah W-CDMA yang

distandarisasi oleh 3GPP.

Multipath Fading terjadi ketika sinyal frekuensi radio (RF) mengambil

jalur berbeda dari suatu sumber ke tujuan/penerima. Sebagian dari sinyal langsung ke tujuan sedangkan

Matching

bagian lain terlebih dahulu memantul ke penghalang.

ini sangat dibutuhkan dalam interface pada transmitter dan receiver. Jika rangkaian telah matching, daya yang ditransferkan akan maksimum dan memiliki losses yang kecil. Impedansi matching adalah hal yang penting dalam rentang frekuensi gelombang mikro. Suatu saluran transmisi yang diberi beban yang sama dengan impedansi karakteristik mempunyai standing waveratio (SWR) bernilai satu, sehingga dalam pentransmisian dayanya tanpa ada gelombang yang terpantul.

DAFTAR SINGKATAN

LTE : Long Term Evolution

GSM/EDGE : Global System for Mobile / Enhanced Data rates for GSM

Evolution

UMTS/HSPA: Universal Mobile Telecommunication System / High-Speed

Downlink Packet Access

VSWR : Voltage Standing Wave Ratio

 ΓL : koefisien pantul

zl : impedansi beban

Zo : impedansi karakteristik

Γ : Koefisien refleksi tegangan

 V_0^- : Tegangan yang dipantulkan (*volt*)

 V_0^+ : Tegangan yang dikirimkan (*volt*)

 Z_L : Impedansi beban atau *load* (ohm)

 Z_0 : Impedansi saluran *lossless* (*ohm*)

BW : Bandwidth

fH : frekuensi atas

fL : frekuensi bawah

fc : frekuensi tengah

W: Lebar konduktor

εr : Konstanta dielektrik

c : kecepatan cahaya (3x108)

f0 : Frekuensi kerja antena