IMAGES LIST

1.1	ITS in General	2
2.1	ITS Scheme	5
2.2	The example of object detection problem at traffic light	6
2.3	The difference between two-stage detector and one-stage detector	
	architecture. (a) is the two-stage detector architecture that imple-	
	ment on R-CNN familiy. (b) is the one-stage detector architecture	
	that implement on FCOS	7
2.4	A brief example of back-propagation process.	10
3.1	System design workflow from the vehicle localization until the at-	
	tribute analysis	12
3.2	Illustration of HRNet Architecture. The vertical and horizontal di-	
	rection correspond to the depth of the network and the scale of the	
	image feature, respectively	13
3.3	Example of labeled dataset.Every image in the dataset contains	
	some object, and every object owns it's bounding box. The bound-	
	ing bos was the colored boxes in the object.	14
3.4	Sample of Car Parts Dataset used in this research. (a) is the image	
	data, (b) is the image data annotaion, and (c) is the car parts dataset	
	classes list that has seventeen classes of car parts	15
3.5	The example center generated from FCOS from a car object	16
3.6	FCOS Process	17
3.7	Kind of IoU	18
3.8	The example of mAP from the object detection process	20
3.9	Main System Flowchart	21
3.10	This figure includes the process of installing dependencies, frame-	
	work, and library, modifying the object classes and testing the de-	
	pendencies, framework, and the library.	22
3.11	This figure contains the process of processing data to match the	
	needs of the detection system and the framework	23
3.12	This figure consist of the setting up configuration process and con-	
	figuration testing for training	24

3.13	Training error using (a) focal loss and (b) cross entropy loss	25
4.1	The proposed training flow on the model.	27
4.2	The graph of experiment result.(a) is the mAP that monitored every	
	3 epoch, and (b) is the inference time monitored also every 3 epoch.	30
4.3	The example of attribute detection result.	30