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Preface

The present book includes extended and revised versions of a set of selected papers
from the 8th International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2020), held in Valletta, Malta, from 25 to 27
February, 2020.

MODELSWARD 2020 received 66 paper submissions from 26 countries, of which
23% were included in this book. The papers were selected by the event chairs and their
selection is based on a number of criteria that include the classifications and comments
provided by the program committee members, the session chairs’ assessment and also
the program chairs’ global view of all papers included in the technical program. The
authors of selected papers were then invited to submit a revised and extended version
of their paper having at least 30% innovative material.

The purpose of the International Conference on Model-Driven Engineering and
Software Development, MODELSWARD 2020, was to provide a platform for
researchers, engineers, academics and industrial professionals from all over the world
to present their research results and development activities in using models and
model-driven engineering techniques for Software Development. Model-Driven
Development (MDD) is an approach to the development of IT systems in which
models take a central role, not only for analysis of these systems but also for their
construction. MDD has emerged from modelling initiatives, most prominently the
Model-Driven Architecture (MDA) fostered by the Object Management Group (OMG).
Within the scope of MDA, technologies have been developed that became the
cornerstones of MDD, such as metamodelling and model transformations. MDD relies
on languages for defining metamodels, such as the Meta-Object Facility (MOF) and
Ecore (developed within the scope of the Eclipse Modelling Framework), and
transformation specification languages such as QVT and ATL.

We are confident that the papers included in this book will strongly contribute to the
understanding of some of the current research trends in Model-Driven Engineering and
Software Development, especially of approaches required to tackle current and future
software development challenges. Thus, this book covers diverse but complementary
topics such as: reasoning about models, provenance of data models, model quality,
generative approaches, model execution and simulation, domain-specific modelling,
and model-based testing and validation

We would like to thank all the authors for their contributions and also the reviewers
who have helped to ensure the quality of this publication.

February 2020 Slimane Hammoudi
Luis Ferreira Pires

Bran Selić
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The Smart Grid Simulation Framework:
Model-Driven Engineering Applied

to Cyber-Physical Systems

David Oudart1(B), Jérôme Cantenot2, Frédéric Boulanger3,
and Sophie Chabridon1

1 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Paris, France
david.oudart@gmail.com

2 EDF R&D, Paris, Palaiseau, France
3 LRI, CNRS, CentraleSupélec, Université Paris-Saclay, Paris, France

Abstract. Smart grids are complex systems for which simulation offers
a practical way to evaluate and compare multiple solutions before deploy-
ment. However, the simulation of a Smart Grid requires the development
of heterogeneous models corresponding to electrical, information process-
ing, and telecommunication behaviors. These heterogeneous models must
be linked and analyzed together in order to detect the influences on one
another and identify emerging behaviors. We apply model-driven engi-
neering to such cyber-physical systems combining physical and digital
components and propose SGridSF, the Smart Grid Simulation Frame-
work, which automates tasks in order to ensure consistency between
different simulation models. This framework consists mainly of a domain
specific language for modeling a cosimulation unit, called CosiML for
Cosimulation Modeling Language, a domain specific language for mod-
eling the functional architecture of a Smart Grid, called SGridML for
Smart Grid Modeling Language, and a tool implementing different trans-
formation rules to generate the files and scripts for executing a cosimula-
tion. Finally, we illustrate the use of SGridSF on the real use case of an
islanded grid implementing diesel and renewable sources, battery stor-
age and intelligent control of the production. We show the sequencing
of automatic generation tasks that minimizes the effort and the risk of
error at each iteration of the process.

Keywords: Cosimulation · FMI · IT · MDE · Smart grid ·
Cyber-physical system

1 Introduction

Tomorrow’s energy systems, or Smart Grids, require the study and development
of safer, controlled components, in order to limit the often costly hardware tests
and deployments in this sector of activity. Simulation is recognized as a practi-
cal way for verifying and validating the systems before deployment. Our work
c© Springer Nature Switzerland AG 2021
S. Hammoudi et al. (Eds.): MODELSWARD 2020, CCIS 1361, pp. 3–25, 2021.
https://doi.org/10.1007/978-3-030-67445-8_1
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4 D. Oudart et al.

responds to the problem of finding tools and methods to simulate a Smart Grid,
and which allow to remain compatible with the constraints, especially economic,
of the industry. Smart Grids are complex systems, combining, like all cyber-
physical systems, heterogeneous behaviors distributed among several models,
themselves developed by persons with different technical profiles and skills. We
consider cosimulation with the Functional Mockup Interface (FMI)1 standard as
the best way to take into account all these models and assess the behavior of a
Smart Grid.

We identified two main challenges to be solved. The first challenge concerns
the heterogeneity of the domains involved. Simulating a Smart Grid requires the
ability to model and simulate electrical, information processing, and telecom-
munications behaviors and to integrate them within an FMI cosimulator. These
behaviors follow different laws of evolution, continuous for the physical compo-
nents and discrete for the digital components. One of the current limitations of
FMI is its incompatibility with the manipulation of discrete signals, resulting
in the absence of compatible Telecom simulators. To overcome this limitation,
we have previously proposed in [12] a method to allow the exchange of discrete
signals between several FMUs. It consists in an encoding component to transform
a discrete signal into two time-continuous signals that can be exchanged over
FMI, and a decoding component to perform the reverse operation and obtain the
discrete-event signal from the FMI discretization of the time-continuous signals.

The second challenge is to ensure the consistency of models produced by
persons specialized in different domains when designing a Smart Grid. We rely
on model-driven engineering and more specifically on model transformation to
maintain the consistency between the design models of a Smart Grid and simula-
tion models. We propose SGridSF, the Smart Grid Simulation Framework tooled
environment, which automates a number of repetitive tasks in order to ensure
consistency between different simulation models. This environment consists of
a domain specific language for modeling a cosimulation unit, called CosiML for
Cosimulation Modeling Language, a tool implementing different transformation
rules to generate the files and scripts for executing a cosimulation, a specific lan-
guage for modeling the functional architecture of a Smart Grid, called SGridML
for Smart Grid Modeling Language, two specific modeling languages, called Allo-
cationML for Allocation Modeling Language and CatalogML for Catalog Mod-
eling Language allowing the definition of a transformation from a model written
in SGridML to a model written in CosiML, and finally a tool implementing
the transformation from three models written in SGridML, AllocationML and
CatalogML into a model written in CosiML.

In the next section, we discuss existing solutions to the two challenges
we mentioned above. Section 3 presents a global overview of the cosimulation
approach and the integration of our Smart Grid Simulation Framework in it.
Section 4 and Sect. 5 respectively present how the CosiML and the SGridML
languages are build and how to use their associated tools. Section 6 illustrates
the approach on a use case. Section 7 presents scenarios to validate our approach.

1 https://fmi-standard.org.

https://fmi-standard.org/
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The present article is an extended version of [12], where we already addressed
the first challenge and a part of the second challenge. Indeed, we presented
the CosiML language and its associated tooling allowing the generation of a
cosimulation platform. This new article presents the other tools provided by our
automated generation framework, especially the SgridML language, and how
they address our second challenge. The use case from [12] is used again and
completed to illustrate the whole approach.

2 State of the Art

In the electrical energy community, the challenge of simulating smart grids is
not new [9,10,18]. However, it usually consists in the interaction of two domains
via two dynamic models. The problem of the synchronization of models and of
their consistency is not specifically addressed by these approaches, but is not
really challenging when limited to two domains.

For the industrial simulation of complex systems and CPS, it is better to rely
on standard technologies, as they address various needs like scalability, modu-
larity or reusability. The Functional Mockup Interface (FMI) [2] and The High
Level Architecture (HLA) [4] are two interoperability approaches allowing the
interconnection of several different simulators in an integrated execution.

If both approaches have been declared as standard, FMI benefits from a
stronger popularity with more than 80 compatible tools2. Its ability to protect
industrial property inside FMUs makes it very attractive for industrial projects
and makes collaborative design easier [7]. FMI defines a simulation unit format
called Functional Mockup Unit (FMU), which embeds a model and an execution
engine along a standard interface to control the execution of the simulation. FMI
cosimulations are driven by a master algorithm, which synchronizes the execution
of the FMUs and the exchange of data at some communication points.

Because a time-step between two communication points can not be null,
FMI is not particularly adapted to reactive systems and discrete-event model-
ing. Current works already propose FMI extensions, such as zero-size steps [3,8],
or absent values [3] to handle discrete-event signals. Optimized master algo-
rithms [15,17] can increase the precision of the simulation while still being com-
pliant with the standard, by trying to locate the occurrence of an event using
the optional rollback FMI feature (reverting the state of an FMU to a previ-
ous communication point), or by optimizing the choice of the time step, which
requires FMUs to be exported as white boxes.

The design of complex systems involves several viewpoints from different
technical domains, therefore several heterogeneous models developed by different
teams are used. In the industry, the interconnection of these models and the
consistency links between them are handled using model driven approaches [1,
14,19]. These approaches mainly aim at facilitating the realization of the final
system, but only few of them include the simulation in the design process [13].

2 https://fmi-standard/tools/.
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The simulation of Smart Grids requires models dedicated to modeling and
design, that describe the system and its architecture at a certain level of abstrac-
tion. More abstract models can be automatically derived by model transforma-
tions into detailed executable models, thus reducing the risk of inconsistency
between models at different levels of abstraction. This automation is particu-
larly beneficial in the case of iterative approaches, every change in the design
models being quickly and easily reflected in the derived models.

We can distinguish two categories in the existing approaches. The first cat-
egory relies on system architecture models and derives them into executable
models, such as the code of the software parts of the system. This encompasses
the model-driven architecture (MDA3), PSAL [1] or the SGAM Toolbox [16].
The second category aims at validating the models through simulation. They
rely on models of the simulation architecture, which makes it possible to keep
the dynamic models of the simulation consistent. Examples in this category are
model composition approaches (Ptolemy II4, ModHel’X5) or current cosimula-
tion solutions [7]. Therefore, approaches based on system architecture models do
not integrate the models of the dynamics of the system, and approaches focused
on simulation do not describe the alignment of the simulation models with the
system architecture. In our work, we propose to reconnect the two activities of
modeling and simulation, and thus link the design models of a Smart Grid to
the simulation models of its behaviour.

3 Overview of the Smart Grid Simulation Framework

3.1 An Approach Based on Model Refinement

One of the main advantages of using a cosimulation environment is to allow
the different experts to develop their own model in autonomy, with a minimal
interference and in parallel with the others [7]. The choice of the FMI standard
ensures the technological compatibility of each simulation unit, or FMU, with
the cosimulation environment, without having to develop a specific connector.
However it does not ensure structural compatibility. All FMUs produced by the
different teams must provide interoperable data structures, namely each input
should match an output, in type and meaning.

An example of a cosimulation approach for smart grids [11] identified several
steps and actors involved in such a process. The first step is to define all the
connections between the simulation models in order to define the interface of the
models for each modeling team. But the compliance verification of the models
and the creation of the cosimulation artifacts (FMUs, configuration files) are
done by hand, which make each iteration time-consuming and error-prone.

The use of a global, architectural model to represent the structural interfaces
of the various simulation units and the coupling constraints between them, allows

3 https://www.omg.org/mda/.
4 https://ptolemy.berkeley.edu/.
5 https://wdi.supelec.fr/software/ModHelX/.

https://www.omg.org/mda/
https://ptolemy.berkeley.edu/
https://wdi.supelec.fr/software/ModHelX/
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the use of syntactic tools to automatically check some validation rules. It also
creates a unique authoritative artifact to coordinate the work of the various
collaborators, and from which more detailed models can be derived.

Following this approach, we developed a toolchain to automate the actions
needed to run a cosimulation starting from a global abstract model. This
toolchain relies on a domain specific language (DSL), CosiML, to specify the
structural interfaces of the simulation units and the configuration of the cosi-
mulation. In our approach, the cosimulation model written with CosiML acts as
an intermediate, platform-independent model from which executable simulation
artifacts can be generated (see Sect. 4).

SGridML is a DSL developed to identify and connect the functional behav-
iors of the Smart Grid together. The different domain experts involved in the
Smart Grid design are meant to collaborate on the development of a behavior
model with SGridML. Then the behavior model is processed to generate the
cosimulation model, according to the mapping defined in the allocation model
and the catalog model, respectively written with AllocationML and CatalogML
(see Sect. 5). Figure 1 illustrates the generation of the cosimulation model and
the relations between the four DSL involved in the model transformation.

Our choice to develop our own languages for this purpose, instead of choosing
an existing one, such as UML, comes from various reasons:

– in an industrial context, general-purpose languages like UML are not well
mastered outside the computer science field,

– such languages contain many concepts, but we only needed a few of them,
– in our approach, adapting UML to model specific concepts would lead to

refining generic concepts through profiles.

It appeared more efficient to define only what we needed than to restrict and
specialize UML to fit our needs.

Fig. 1. Cosimulation model generation, with dependency links.
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Smart Grid Simulation Framework is the name we give to the tool suite
composed by the four languages presented and their associated tools. It is by
construction supporting the phases and steps of a cosimulation approach:

1. Phase 1 constitutes the step sequence resulting in the complete model of
the Smart Grid. First step consists in the definition of the system to model.
Then, the responsability to produce the simulation models is split between
the different expert teams involved. The third step specify the interfaces of
each model and the interactions between them. Finally, the simulation models
can be developed according to these specifications.

2. Phase 2 aims to configure the cosimulation unit to be executable. First the
simulation models have to be available in the executable cosimulation format,
FMU in our case. Then the simulation parameters and coupling constraints
are implemented in the master of cosimulation.

3. Phase 3 consists in the execution and analysis of the cosimulation results.
First the results should be assessed to determine if there has been any design
mistake compared to the initial expectations (simulation or functional errors).
Once the results are validated, further decisions can be make according to the
efficiency of the solution. Either the design of the solution is accepted, or it
need iterative improvement.

Table 1 presents the correspondence between the phases of the cosimulation
approach and the tools of the Smart Grid Simulation Framework.

Table 1. Mapping modeling steps with the Smart Grid Simulation Framework tools.

Step Tool to use

Phase 1: Model the solution

Define a solution Build an SGridML model

Allocating responsibilities Build a CatalogML model and an AllocationML
model.

Define interfaces and
interconnections

Automatically generate the CosiML model

Produce simulation models Buil simulation models based on already built and
generated models

Phase 2: Configuring IMF cosimulation

Adapting models to FMU Update the CatalogML model with simulation model
information and regenerate the CosiML model
Generate the necessary adapters from this CosiML
model

Implement the cosimulation
scenario in the IMF master text

Generate the DACCOSIM configuration script from
the CosiML model

Phase 3: Execute and analyze the results

Evaluate cosimulation results The cosimulation execution script is automatically
generated from the CosiML model

Make iteration decisions Facilitated by all our generation and automation tools
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This remains a qualitative and human work. Nevertheless, the implementation
of iteration decisions is facilitated by all our generation and automation tools.

3.2 Download

Our toolchain is shared on a github repository at: https://github.com/davidouda
rt-pro/SGridSF.

The sources of the CosiML language and generation plugins are available, as
well as the necessary files to replay the cosimulation of the use case presented in
the next section of the article.

4 Modeling and Execution of a Cosimulation Scenario

4.1 CosiML, a DSL for Cosimulation

We implemented CosiML inside the Eclipse Modeling Framework (EMF) using
the Ecore metamodeling language. Figure 2 shows the metamodel of CosiML.
The classical elements of every cosimulation are represented:

CosimulationModel is the root element of the model, it stores the param-
eters of the cosimulation (start time, stop time, time step, etc.) and contains all
the simulation units and their interconnections.

SimulationUnit represents a simulation unit involved in the cosimulation.
It contains the Port elements representing the structural interface of the unit.

Input & Output (Port) represents a port of the simulation unit. It has a
type, an optional default value and a variability, which is the name used by FMI
to characterize the discrete or continuous nature of signals.

Fig. 2. CosiML metamodel.

https://github.com/davidoudart-pro/SGridSF
https://github.com/davidoudart-pro/SGridSF
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Link represents a connection between an output and an input port. A model
can be checked to verify that any two connected ports have the same variability,
and that they are not contained in the same simulation unit.

Several kinds of SimulationUnits can be instantiated in a cosimulation model,
depending on the source format of the simulation unit provided:

ProvidedSimulationUnit is a simulation unit which is completely provided
by the user. Such a simulation unit is directly usable in the cosimulation without
further action. In our case of FMI cosimulation, a ProvidedSimulationUnit is
provided as an FMU resource and we only have to know the path to the artifact.

GeneratedSimulationUnit is a simulation unit which will be generated by
the toolchain from a domain model. The attribute modelPath stores the path
to the domain model. The format of the model and the generator to use for the
generation of the simulation unit are specific to the tool attribute’s value. The
tool is what is used to build the model, for instance a Java or C++ compiler, or a
more complex modeling tool such as OMNeT for communication networks. The
generator is part of our toolchain, and will generate the corresponding FMU,
which includes the generation of adapters for discrete event signals. The gen-
erator relies on naming conventions to access the elements of the model and
adapt them to the structure of the FMU. For instance, a Java with a continu-
ous input signal named X should implement a setX(double value) method. In
order to refer to the model in the generated FMU, the generator uses two generic
attributes: importText defines how to import the model inside the adapter, and
usageText tells how to use the model. Finally, the attribute dependencies stores
the list of all the resource paths required by the model (libraries, data files, bina-
ries) that should be packaged inside the generated simulation unit. Our goal is
to stay generic enough to avoid metamodel modifications when we want to sup-
port a new tool and add a new generator to the toolchain. For instance, a Java
model-based generator would require:
importText = import package.Classname;

and
usageText = Classname,

whereas a C++ model-based generator would require:
importText = #include "filename.h"

and
usageText = ObjectName.
DataSourceUnit a simulation unit generated by the toolchain from a data

file. It only has output ports and will be used as an independent source of timed
data. The attribute dataPath stores the path to the data file. We are considering
that future versions of CosiML and the toolchain may support several format,
but for now we only support CSV files to be used as Scenario units.

CSVSourceUnit a particular Scenario element which refers to a CSV data
file. Attributes separator and decimal define the characters used respectively
as separator and decimal marker for the CSV content.
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4.2 Generation Tools for FMI Cosimulation

We chose the DACCOSIM NG6 software to execute our FMI cosimulation.
It implements a master algorithm that is fully compliant with the standard,
with advanced discontinuity detection features, and intelligent time step strate-
gies [15]. More importantly, it provides a scripting language allowing the automa-
tion of the build and execution of cosimulations. Finally it is designed for dis-
tributed executions, which is very useful for industrial use cases potentially invol-
ving a large number of FMUs [6].

We developed an Acceleo plugin to generate all the files needed to build
the FMI cosimulation from the CosiML model. Figure 3 shows the generation
process of these files from a CosiML model. The generators are configured with
property files, used to specify platform dependent information, such as library
and tool paths.

Whereas CosiML is meant to be fully generated according to the steps defined
in Table 1, it is an independent tool which can be adapted to one’s own simulation
methodology. Because our CosiML metamodel is defined with EMF Ecore, one
can use the Sample Reflective Ecore Model Editor to instantiate a CosiML model
and serialize it in the XMI format, in order to use it with the following associated
tools to generate an executable cosimulation unit:

1. OMNeT Generator: generates all the files needed to build an FMU from
an OMNeT model. It is applied to the GeneratedSimulationUnit instances
with the tool property set to “java”. It generates a JSON configuration
file, compatible with our own C++ plugin of the OMNeT simulation core.
This plugin allows the FMU export of an OMNeT model. It implements the
encoding and decoding components presented in our previous work to allow
discrete signal exchanges over FMI. The generator also produces a script to
build the corresponding FMU.

2. Java-tool Generator: generates all the files needed to build an FMU from a
Java model. It is applied to the GeneratedSimulationUnit instances with the
tool property set to “java”. It generates a Java file defining a class adapting
the user model to the JavaFMI library7, along with a MANIFEST.MF file
defining the proper classpath. It also generates a script to build the corre-
sponding FMU.

3. CSV Scenario Generator: generates the files needed to build an FMU
from a CSV file. It is applied to the CSVScenario instances. It generates a
Java file defining a class loading the CSV file, and implementing the JavaFMI
library, along with the MANIFEST.MF file and the building script, just as
with the Java-tool generator.

4. Cosimulation Scripts Generator: generates the DACCOSIM cosimulation
model in its specific scripting language DNG. It also generates an execution
script, which automates the build of all the FMU not yet generated, and the
launch of the DACCOSIM simulation.

6 https://bitbucket.org/simulage/daccosim.
7 bitbucket.org/siani/javafmi/, a set of component to work with FMI. It especially

provides a builder component generating an FMU from Java code.

https://bitbucket.org/simulage/daccosim
https://bitbucket.org/siani/javafmi/wiki/Home
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CosiML allows the distinction between discrete and continuous data
exchanges, so that the provided generators can automatically implement our
discrete-continuous encoding and decoding components [12] in the generated
wrappers, and adapt the FMU inputs and outputs accordingly (each CosiML
Port with a discrete variability causes the creation of two FMI ports). Our
CosiML toolchain is meant to be extended with other generators to support
more domain specific tools and to be used for cyber-physical systems other than
smart grids. The next section presents the SGridML, AllocationML and Cata-
logML languages, and how they are used to produce the CosiML cosimulation
model.

Fig. 3. Generation process of the cosimulation artifacts, from a CosiML model.

5 Functional Architecture for Smart Grid Simulation

5.1 SGridML

As for CosiML, we have a metamodel of SGridML expressed in the Ecore lan-
guage. This language makes it possible to represent two types of behavior: func-
tional behaviors (for creating and modifying data), and data transmission behav-
iors. This manipulated data represents information regardless of its form: phys-
ical state, digital information, or intangible facts.

Figure 4 shows the complete SGridML metamodel, whose elements are
described below:
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BehaviorModel: Root element, used for model navigation purposes only. It
contains a list of the functional behaviors of the system (function), the
existing connections between these functions (connection), and the possible
transmission behaviors of these connections (transmission).

SimulationBehavior: Element representing an instance of an elementary sim-
ulation behavior, named by its attribute name.

Function: Element derived from SimulationBehavior, representing a func-
tional behavior of the system simulation. It contains an input interface (list
input), and an output interface (list output). These interfaces are described
in a static way, and thus represent all possible data exchanges in and out of
this behavior during the system simulation.

Output & Input: These elements represent a data exchange point, part of the
interface of a functional behavior. An Input is an entry point for a data,
allowing us to provide the behavior that contains it with the data necessary
to its realization. Similarly, an Output is an output point, allowing us to share
a data produced by the behavior that contains it, with the other functional
behaviors of the model. Each element has a name, the type of data that
can be exchanged, and a boolean, dataType, indicating whether the data is
continuous or discrete in nature.

Fig. 4. Ecore metamodel of SGridML.
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Connection: Element representing a connection between an output interface
point of a functional behavior of the model (attribute output), and an input
interface point of another (attribute input). This indicates that a signal
bearing the evolution of a data will be exchanged during the simulation of
the system, between the two connected behaviors. The transmission behavior
of this connection can be specified by its optional attribute transmission.
If this attribute is not specified, the transmission is considered instantaneous
and perfect (without value modification).

Transmission: Element derived from SimulationBehavior, representing a
transmission behavior of the system simulation. Transmitted data may be
altered, i.e. delayed, deleted or modified by this behavior. However, unlike a
functional behavior, a transmission behavior does not have an explicit input
or output interface. We explain the nature of this transmission behavior with
the isContinuous attribute.

DataType: A list representing the different types of data possible. We can have
a relative integer (INTEGER), a real number (REAL), a string (STRING) or a
boolean value (BOOLEAN).

We define an instantiated behavior SimulationBehavior as elementary by
the fact that we do not want to break it down into sub-behaviors, often because
they are too strongly coupled and the definition of their interconnections too
complex.

By connecting these behavioral instances together, we obtain a model of
all the possible data exchanges between the components that will implement
these instances. In the way we use this language, a SimulationBehavior can be
allocated to a simulation unit in an AllocationML model. A constraint of this
use is that a SimulationBehavior must be able to be fully implemented in a
single simulation unit, otherwise this element must be re-decomposed.

Eclipse EMF provides an editor for creating or modifying XMI format models
that conform to an Ecore metamodel: the Sample Reflective Ecore Model Editor.
We use it to develop models in CosiML, or to develop our own concrete syntax.

5.2 AllocationML and CatalogML: Two DSLs to Define
the Transformation

The AllocationML model allows us to map a simulation represented by an
SGridML model to the architecture of a cosimulation represented by a CosiML
model. Indeed, in order to be able to cosimulate the system modeled with
SGridML, the simulation units must respect a minimum interface, and some
interconnections must appear in the cosimulation scenario.

These consistency links can be exploited in several ways, for example, by
developing a verification and error detection tool between an SGridML model
and a CosiML model. A second option, which is the one we choose to develop,
is to generate the necessary elements in a CosiML model to be consistent with
a given SGridML model.
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The generator creates the Ports of the SimulationUnits, and the Links
between them in the CosiML model. Rather than providing this generator with
an incomplete CosiML model to fill it, we prefer to model the elements that can-
not be generated automatically (CosimulationModel and the SimulationUnits)
in reusable component libraries, and to generate the entire cosimulation model.

CatalogML is a DSL developed for this purpose. It is used to define a catalog
of simulation units (SimulationUnit) with an undefined or incomplete interface
(Port).

Figures 5 and 6 show the complete AllocationML and CatalogML metamod-
els, respectively.

Fig. 5. AllocationML metamodel.

Fig. 6. CatalogML metamodel.

The elements of the AllocationML language are :

AllocationModel: Root element of the allocation model, it contains a list of
mappings (mapping). It also contains the simulation parameters, which are
the start date (starttime), end date (stoptime) and the duration of the
time step between the cosimulation communication points (stepsize).

Mapping: Element representing an allocation link between a behavior instance
(simulationbehavior) and a simulation unit (simulationunit).
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We add a generic attribute called parameters, in order to allow the user
to parameterize how a behavior instance is linked to a simulation unit (for
example to detail how to link the input and output data of the behavior
with the model included in the simulation unit). It is up to the user wishing
to bring compatibility with a new tool to define how this field should be
analyzed (parsing operation), if he needs it.

The SimulationBehavior and SimulationUnit elements are not part of
AllocationML. They are imported from the Ecore SGridML and CosiML meta-
models.

The CatalogML language contains only one element, which is:

Catalog: Root element of the model, used as a container for a list of simulation
units (simulationunit).

5.3 Generation of a CosiML Cosimulation Model

The generation of a CosiML cosimulation model requires an SGridML behav-
ior model, a CatalogML catalog model and an AllocationML allocation model.
Figure 1 illustrates the dependencies between these different models.

Some transformation rules are simple: the simulation units of the catalog
model linked by the allocation model are copied into the cosimulation model, as
well as the configuration of the selected cosimulation. But the rules for generating
ports and links are more complex because they require many model paths and
special generation conditions. The principle is as follows. From a SGridML::Con-
nection element of the behavior model:

1. We call In the corresponding SGridML::Input and Out the corresponding
SGridML::Output. We call Fin and Fout the respective SGridML::Function
containers of In and Out. If the connection has a SGridML::Transmission,
we call it T .

2. These grid lines can be allocated to simulation units. Thus, each connection
can be between 0 and three simulation units. We call them A, B and C.
We’re considering a fourth pseudo-simulation unit to mean that a Simulation
Behavior hasn’t been allocated.

3. Depending on how these three SimulationBehaviors can be allocated on
these four SimulationUnits, between zero and two Ports and between zero
and two Links are generated in the CosiML model.

When T is “allocated” on ∅, we consider the connection to be an instanta-
neous transmission. But we decide to prohibit cases where Fin or Fout are not
allocated (the connection is ignored).

For each SGridML::Connection element, Table 2 shows the elements to be
generated in the CosiML output model depending on the allocation of Fin, Fout

and T to A, B, C and ∅. We use the following notation for the ports and links
to be generated:



The Smart Grid Simulation Framework 17

– ∈ A means that the observed grid behavior is allocated to A and ∈ ∅ means
it is not allocated. We write ∈ ∅ for T in cases where T is not allocated, or
does not exist (the connection has no SGridML::Transmission).

–
−−→
Out and

←−
In represent respectively a CosiML::Output and a CosiML::Input

transformed from In and Out (respectively).
−−−−−−→
Out − In represents a

CosiML::Output transformed from the (In,Out) pair.
– A → B represents a CosiML::Link between the generated output ports of A

and the generated input ports of B.
– We do not represent the additional synchronization CosiML:Port generated

in the case of a discrete signal, because it follows the same rules of creation
and connection as the information CosiML::Port.

Table 2. Transforming a Connection element to Port and Link elements.

Input elements Generated elements

Units linked to Connection SimulationBehavior Port Link

FOut FIn T A B C

A ∈ A ∈ A ∈ A – – – –

A, ∅ ∈ A ∈ A ∈ ∅ – – – –

A, B ∈ A ∈ B ∈ B
−−→
Out

←−
In – A → B

∈ A ∈ B ∈ A
−−→
Out

←−
In – A → B

∈ A ∈ A ∈ B
−−→
Out

←−
In

−−−−−−→
Out − In←−−−−−−
Out − In

– A → B → A

A, B, ∅ ∈ A ∈ B ∈ ∅ −−→
Out

←−
In – A → B

A, B, C ∈ A ∈ B ∈ C
−−→
Out

←−
In

−−−−−−→
Out − In←−−−−−−
Out − In

A → C → B

6 Use-Case Cosimulation

6.1 The Use-Case of an Islanded Smart Grid

We chose a real use case from the French power utility to illustrate our contribu-
tion, and validate our toolchain. The system is an island with a power grid that
is independent from the mainland grid, with its own production equipments. A
diesel power plant is the main energy producer, and is complemented by a pho-
tovoltaic farm. The main issue in the configuration is that the renewable energy
supply is intermittent. Indeed, as the photovoltaic source relies on sunlight and
needs a clear sky for its production, it makes it as variable and unpredictable
as the weather. In order to balance the production with the consumption, it has
to be sometimes prevented from producing as much as it could, which causes
economic loss and carbon footprint degradation. Therefore, a chosen solution
is to add a battery storage to damp the variability of the production, with the
purpose of minimizing the limitations of the photovoltaic farm. It could even
allow the operator to shut down the diesel plant for some period and rely only
on the battery and photovoltaic production.
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To maximize the efficiency of the system, we need an Energy Manage-
ment System (EMS) coupled with a Supervisory Control And Data Acquisition
(SCADA) in order to implement an intelligent control of the production. The
EMS monitors the state of the power grid (value of the voltage at various con-
trol points, state of switches), and drives some of its equipments (giving voltage
set-points, limiting the injection of power by a source) through the SCADA.
The EMS can collect other information such as weather and consumption fore-
casts from external information systems, as well as user preferences, in order to
optimize the operation of the grid.

Before telling how the EMS controls the equipments on the grid, we have
to explain how the power flow is established on a power grid. Knowing the
power needed by the consumers, we can set power production set-points to the
various sources of the grid in order to balance the consumption. However, losses
on transmission lines can never be known, so we need at least one equipment
that is not power constrained, and capable of producing the missing power or of
absorbing the unpredictable excess. This equipment is generally the one having
the biggest generator. In our case it is the diesel plant when it is connected to
the grid, and the battery and its converter when it is not.

The EMS sends control signals to the various equipment of the grid:
– photovoltaic farm: the EMS decides if the production needs to be limited and

how much;
– battery : there are two cases for this equipment. When the diesel plant is

coupled to the grid and balances the power on the grid, the EMS controls
the power absorbed or injected by the battery. When the diesel plant is shut
down, the EMS does not control the battery and lets its power converter
balance the power on the grid.

– diesel plant : the EMS decides if it is coupled to the grid (and produces power)
or not. When it is coupled to the grid, it cannot produce less than a minimum
power, so it can happen that the photovoltaic farm has its production limited.
To avoid it, the diesel is turned off when the battery and the photovoltaic
production are able to cover the consumption needs.

Because of all the different modes in which the grid can be, depending on the
weather, on the management of the charge of the battery and on the variability
of the consumption, simulation is very useful to test and validate a design of the
solution, before any deployment on the field and expensive investments.

6.2 Behavior Model with SGridML

The simulation of the islanded smart grid is a good example of a cyber-physical
system involving several knowledge fields, and several teams with different mod-
eling tools. The first step to achieve is the development of the behavior model
with SGridML. A proposition for the functional behaviors involved in the Smart
Grid under design is illustrated in Fig. 7. As shown, all interactions coming
to and from the ControlsComputing behavior are discrete, and realised by the
TelecomTransmission behavior. All other interactions are continuous and real-
ized by the PhysicalTransmission behavior.
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Fig. 7. Behavior model of the islanded power grid to simulate.

6.3 Allocation, Catalog and Simulation Models

Once the functional and transmission behaviors have been identified in the
behavior model, they have to be allocated to a specific simulation unit. We
decided to use four simulation units, that we describe in the catalog model with
CatalogML, as illustrated in Figure 8.

Fig. 8. Simulation units decribed in the catalog model.

The first simulation unit, GridUnit, models the electric behavior. As such,
the GridStateComputing, the EnergyStoring, and the PVPowerComputing
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functional behaviors, as well as the PhysicalTransmission behavior, are allo-
cated to this GridUnit in the allocation model written with AllocationML.
GridUnit evaluates the electrical power state of the grid according to production
and consumption constraints. We are using Modelica8 with the Dymola software
to model the grid power flow because they are well-known tools among electrical
engineers, and they fully support the FMI standard and the export to FMU [5].
GridUnit is therefore an instance of ProvidedSimulationUnit.

The second simulation unit, EmsUnit, models the behavior of the EMS. Only
the ControlsComputing functional behavior is allocated to it in the allocation
model. There is no conventional tool supporting the modeling of reactive sys-
tems and also handling FMI. Complex algorithms are usually modeled with
textual procedural languages such as C or Java. There are tools supporting the
export of such models toward FMU, but they require additional efforts and
specific code refactoring and writing. Our Smart Grid Simulation Framework
supports the automatic transformation of a Java model into an FMU, with the
generation of a wrapper code implementing the JavaFMI Framework library,
and the use of the JavaFMI builder tool. EmsUnit is therefore an instance of
GeneratedSimulationUnit. We developed a first, simple Java algorithm of the
EMS which takes the current state of the grid as input and does not use fore-
casts. It computes controls every 15 min, but continuously monitors the current
state of the grid equipments in case emergency controls are required. Figure 9
shows an activity diagram, illustrating this process.

The third simulation unit, ExternalDataUnit models the independant,
external input data used in our use case cosimulation. The Lightning and
Consuming behaviors are allocated to this unit in the allocation model. We chose
to provide these timed data in a CSV file, transformed to FMU format thanks
to our CSV source generator. Therefore, ExternalDataUnit is an instance of
CSVSourceUnit in the catalog model.

Fig. 9. EMS monitoring process, with periodic and emergency controls.

8 https://www.modelica.org/, component-oriented modeling language based on equa-
tions set declaration.

https://www.modelica.org/
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Finally, the fourth simulation unit, TelecomUnit, models the telecom trans-
mission behavior. TelecomTransmission is allocated to this unit in the allo-
cation model. We are using the OMNeT modeling and simulation software
to develop this simulation model. Hence, TelecomUnit is an instance of
GeneratedSimulationUnit, meant to be use with our OMNeT generator to
produce the required FMU.

6.4 Simulation Models and Cosimulation Model

The development of a behavior model with SGridML, a catalog model with
CatalogML and an allocation model with AllocationML allows us to automat-
ically generate the cosimulation model. This generated model instanciates the
same simulation unit as those described in the catalog model, as well as their
structural interfaces and coupling constraints.

Through the generation of the cosimulation model, we are now able to gene-
rate all the artifacts and scripts to build an executable cosimulation unit. Indeed,
all simulation models can be automatically converted to the FMU format, and a
configuration file as well as a global execution script are generated by the Smart
Grid Simulation Framework.

6.5 Simulation and Decisions

The use case presents two main concerns: 1) how to optimize the characteristics
of the battery in order to implement an efficient management of the production
and keep investment as low as possible? And 2) how to test the efficiency of the
chosen EMS algorithm?

From the CosiML model, the toolchain generates the necessary wrapper files
to build the EmsFmu and CurvesFmu FMUs, as well as the DACCOSIM model
of the cosimulation. In addition, a script is generated to create automatically
the missing FMUs, and to launch the DACCOSIM cosimulation.

In our case, the cosimulation evaluates the behavior of the grid on a full day
(24 hours), as we did in [12]. Figure 10 shows the average and cumulated per-
hour production (over the x-axis) and consumption (below the x-axis) of each
equipment on the day, for particular load and photovoltaic maximal production
curves (and initial conditions).
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Fig. 10. Consumption and production of electricity over a full day. Source: [12].

The energy balance has been ensured all day (no black-outs) meaning our
design solution is effective on this particular scenario. However, between 11am
and 2pm, the photovoltaic production has been limited (see hatched bars). Loo-
king at the results (not shown in the figure), we see that the charge of the battery
was already maximal and could not absorb the extra production. There is con-
sequently a potential for optimizing our solution. Increasing the capacity of the
battery, or improving the algorithm of the EMS are two possible iterations. Once
the models are updated, the execution of the toolchain automatically updates
the simulation artifacts and executes the cosimulation again.

7 Observations

The key motivation behind our work is to reduce the cost of iterations in the
design of systems by automating the cosimulation of the models using a model-
driven approach. To be useful in an industrial context, we need to fulfill the
following requirements: each iterative step of the process must provide a quick
feedback; the upfront modeling cost must be recovered in the following phases
of analysis, maintenance, etc.; business experts must concentrate on their core
skills.

We presented in this paper a toolchain based on a cosimulation DSL to ref-
erence simulation models and characterize some coupling constraints between
them. The various generators allow the generation of simulation units and
deployment scripts from this cosimulation model. Hence, this automated pro-
cess provides the possibility to make changes to the cosimulation scenario with
minimal efforts. We illustrate this through the following industrial scenarios.

In a first scenario, a functional architect has to compare components from
various vendors, for example to find the best EMS solution (EMSGrid in our
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previous use case). To guarantee the correct integration of the simulation model
provided by the vendor, the tender documents include requirements deduced
from the CosiML model. The selection of the right component is simplified
because:

– Using the tool chain, the architect can quickly build a test environment, by
providing input data inside a CSV file, automatically generating a new FMU
and a cosimulation model, then testing multiple configurations easily.

– To select the components to be used in the cosimulation, only the pathFMU
attribute of the ProvidedSimulationUnit must be modified and the new cosi-
mulation set up can be generated.

In a second scenario, we want to involve electrotechnical engineers to build a
load flow model of the power grid (GridFMI in our previous use case). This is pos-
sible without an intensive training because they can use their own specific tools to
build the simulation model (Dymola, PowerFactory, etc.), and there are only few
basic concepts (input, output, discrete or continuous variability) to be explained
in order to build the CosiML model. Once they develop a model conforming
to the CosiML metamodel, they can then use an iterative approach to improve
the model without involving other collaborators, thanks to our toolchain, which
automatically integrates their work to the cosimulation platform.

Finally, in a third scenario, we consider the case of a modification of one
simulation model inducing a modification of the CosiML model, and especially
among the coupling constraints between models (e.g. adding or renaming several
ports). Firstly, the validation rules of our toolchain guarantee the consistency of
the CosiML model. Secondly, the automated execution process of the cosimula-
tion will raise errors until each impacted simulation model makes the necessary
adjustments. Thirdly and finally, the implementation of the adjustments might
be partially done by the generators of the toolchain.

8 Conclusion

By automating some verifications and the generation of cosimulation artifacts,
model driven approaches allow shorter, less costly and less error prone iterations
on a solution design. Our toolchain relies on an abstract CosiML model of the
system to check the consistency of the different simulation units, to generate
adapters for discrete event signals that cannot be used as is in an FMI sim-
ulation, and to generate FMUs from models developed with different tools. It
uses the FMI standard and benefits from its many advantages regarding CPS
simulation in the industry. It can also integrate FMUs exported by some model-
ing tools in the cosimulation, allowing models from different system domains to
be developed with the relevant tools, by experimented teams, while protecting
industrial property inside FMUs.

We developed the SGridML language to allow several people from various
domains to collaborate on an abstract analysis model of the Smart Grid design.
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AllocationML and CatalogML allow the distribution of the behavior of the sys-
tem among different simulation models, whose interfaces and coupling cons-
traints are directly validated by syntaxic rules. In addition, the transformation
between SGridML and CosiML ensures the creation of simulation units consis-
tent with the functional design of the system under study.

The Smart Grid Simulation Framework has been used on a real industrial
case, which involves both continuous and discrete signal exchanges. The included
modeling languages and tools have been designed to be used independently, or to
support new modeling tools and generators. The modular nature of the different
transformations also helps to adapt the generated artifacts to different versions
of FMI. For instance, the support for a more precise detection of discontinuities
in FMI v2.1 may lead to a new adapter for discrete event signals, while keeping
the current one for cosimulations using older versions of FMI.
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Abstract. This work proposes an alternative hardware design approach
that allows the detection of arithmetic overflows at the specification level.
The established hardware design approach describes infinite integer types
at that level while the model describes finite types. This opens a seman-
tic gap between both levels, which means that arithmetic overflows can-
not be detected at the specification level. To address this problem the
CompCert integer library is utilized that describes finite integer types
as dependent types using the proof assistant Coq. Properties that argue
about these finite types can be specified and verified at the specifica-
tion level. This closes the semantic gap the established hardware design
approach suffers from.

Keywords: Hardware designs · Arithmetic integer overflows · Proof
assistants · Functional HDLs · Hardware synthesis

1 Introduction

Circuits are an integral part of our lives. Their area of application extends from
airplanes, to medicine, to toothbrushes. These areas of application lead to an
increasing number of complexity in circuits. As complexity increases, so does the
number of potential errors. For this reason, the increasing complexity needs to
be considered in the development phase of hardware designs from the beginning.

To address the increasing complexity, hardware designs are described at dif-
ferent levels. The established hardware design approach starts with a formal
specification, e.g. in SysML/OCL [21,22,26]. This specification describes the
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functional behavior of the hardware design and allows the verification of proper-
ties that argue about that design [8,9]. After specifying and verifying the design
it is translated to a SystemC model, which is the de facto standard for high-level
synthesis (HLS) [3,24]. This translation step is manually as OCL constraints can-
not be translated automatically into executable SystemC code. The final step
is the translation of the model to an implementation in a low-level hardware
description language (HDL), e.g. Verilog. As SystemC only supports a restricted
synthesizeable subset, this translation step is also manually [2].

The established hardware design approach reveals a semantic gap between
the specification and the model respectively the implementation. The specifica-
tion describes infinite integer types, while the model and the implementation
describe finite integer types. This semantic gap lead to properties that hold for
the specification, but not for the model, e.g. the absence of arithmetic over-
flows. Finite integer types describe a wrap-around or overflow behavior, as they
implement a quotient ring [11,13–15]. As arithmetic integer operations for finite
types are not semantically equivalent to arithmetic integer operations for infinite
types, these operations might lead to unintended behavior, which again lead to
serious problems in the final hardware design implementation. Through the lack
of tool support for automatically detecting arithmetic overflows in the model,
the engineer has to detect them manually.

To address the problem of the semantic gap of the established hardware
design approach an alternative hardware design approach is proposed. This app-
roach describes finite integer types at the specification level using dependent
types [7,17]. These types allow the definition of operations, which detect arith-
metic integer overflows at the specification level. Properties that argue about
these operations can be verified to ensure the reliable detection of these over-
flows. After the verification process a model in the functional hardware descrip-
tion language (HDL) CλaSH can be extracted automatically [6], which again can
be synthesized to an implementation on the Register-Transfer-Level (RTL) [1].
The proposed alternative hardware design approach closes the semantic gap the
established approach has, by describing finite integer types at the specification
level.

To achieve this, we start with a specification for the proof assistant Coq [4,10].
Analog to the established hardware design approach this specification allows the
verification of properties. The finite integer types are described by the CompCert
integer library [19]. This library implements finite types as dependent types [7,
17] and allows the implementation of both signed and unsigned finite types of
arbitrary sizes.

Note that this work extends the work [5] already published by the authors.
For this reason, some figures and listings are borrowed from that work as can
be seen in the captions. The extensions in this work include that, in particular,
there may be no overflow in an arithmetic operation implementing the proposed
function type, because of specified bounds. It is shown how an operation is spec-
ified in this case using the proposed overflow detecting function type. A generic
property that has to be proven to show the absence of the overflow is specified. It
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is also shown why the overflow detecting operation cannot be changed automat-
ically to its corresponding basic arithmetic operation if there is a proof of the
absence of the overflow. Furthermore, the closure of functions that implement
the function type for the proposed overflow detection pattern is specified and
proven. This enables the cascading of overflow detecting operations, analog to
their corresponding basic arithmetic integer operations. An evaluation regard-
ing the impact of the speed and space for a synthesized hardware design that
implements the overflow detection pattern is provided. This evaluation com-
pares a hardware design using the basic arithmetic integer operations with their
corresponding overflow detecting operations and shows the applicability of the
proposed overflow detection pattern.

We present our work as follows: First, we explain the established hardware
design approach and describe the problem we address in this work. Section 3
discusses the related work and why it is not suitable to address the problem of
the established hardware design approach properly. In Sect. 4 and Sect. 5 the
proposed hardware design approach is described, how the considered problem
is addressed and how the CλaSH model is generated. Section 6 describes the
proposed generalizable integer overflow detection pattern. Section 7 evaluates
the proposed approach by comparing basic arithmetic integer operations with
their corresponding operations, which detect overflows, regarding the speed and
consumed space in the final hardware implementations. The Sect. 8 discusses
the result of the evaluation and the applicability of the approach proposed in
this work, while Sect. 9 concludes this work.

2 Motivation

In this section, we briefly review the established hardware design approach which
is the motivation of this work. The established approach relies on a SysML/OCL
specification that is later translated to a SystemC model manually. We show why
the combination of SysML/OCL and SystemC is a problem for the detection of
arithmetic integer overflows.

A traffic light controller serves as a running example to illustrate the estab-
lished hardware design approach as well as the approach proposed in this work.
This controller is inspired by [23].

2.1 The Established Hardware Design Approach

The established hardware design approach starts with a SysML/OCL [21,22,26]
specification, which can later be used for the verification of properties [8,9]. The
structure of the design is described by SysML class diagrams, while the functional
behavior is described by OCL constraints. These constraints are specified as
preconditions and postconditions as well as invariants.

Example 1. Figure 1 shows the SysML class diagram for the traffic light con-
troller that serves as a running example in this work. The controller connects
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three different traffic lights: for the trams, cars and pedestrians. The basis of this
controller are two finite state machines (FSMs), implemented by the switch and
the tick function. The OCL constraints for these state machines can be seen in
Listing 1.1.

Fig. 1. SysML class diagram of the traffic light controller [5]. This controller serves as
a running example in this work.

1 context t r a f f i c L i g h tCon t r o l l e r : : t i c k ( )
2 pre p r e i n c r c oun t e r : s e l f . counter < ( s e l f . de lay −1) ∗ s e l f . cycleTime
3 post i n c r c oun t e r : s e l f . counter = s e l f . counter@pre +s e l f . cycleTime and
4 s e l f . de lay = s e l f . delay@pre and
5 s e l f . cycleTime = s e l f . cycleTime@pre
6
7 context t r a f f i c L i g h tCon t r o l l e r : : t i c k ( )
8 pre p r e r e s e t c oun t e r : s e l f . counter >= ( s e l f . de lay −1) ∗ s e l f . cycleTime
9 post r e s e t c oun t e r : s e l f . counter = 0 and

10 s e l f . de lay = s e l f . delay@pre and
11 s e l f . cycleTime = s e l f . cycleTime@pre
12
13 context t r a f f i c L i g h tCon t r o l l e r : : switch ( )
14 pre pre sw i t ch : s e l f . counter >= ( s e l f . de lay −1) ∗ s e l f . cycleTime and
15 s e l f . tramsLight . value = Red and
16 s e l f . p ede s t r i an sL ight . value = Red and
17 s e l f . ca r sL ight . value = Green
18 post pos t sw i t ch : s e l f . tramsLight . value = Red and
19 s e l f . p ede s t r i an sL ight . value = Red and
20 s e l f . ca r sL ight . value = Yellow
21
22 inv : s e l f . counter > −1
23 inv : s e l f . de lay > 0
24 inv : s e l f . cycleTime > 0

Listing 1.1. OCL constraints for the tick function and the switch function introduced
in Fig. 1. Additionally, the range for the variables, counter, delay and cylcleTime is
restricted by invariants.

The tick function represents the clock in the SysML/OCL specification. As
seen in Listing 1.1, it increases a counter and resets it back to 0 if an upper
bound is reached (pre reset counter). This counter is used to count the amount
of nanoseconds until the switch function is called. The controller considers traf-
fic situations, such as rush hour. For this reason, the delay can be configured
at runtime, which allows the configuration of a dynamic transition time. The
transition time is the time the counter takes to reach its upper bound. Until
that bound is not reached, the counter is increased by the cycleTime as the
OCL constraints pre incr counter and incr counter states. If the upper bound
is reached, the counter is reset to 0 as state by reset counter. In this case, the
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FSM implemented by the switch function moves into a new state where the traf-
fic light for the cars is no longer green, but yellow as stated by the constraints
pre switch and post switch. The cycleTime is constant and indicates the cycle
time of the hardware in nanoseconds (nsec). For example, if the transition time
is 30 s the delay has to be set to 1.500.000.000 with a cycleTime of 20 nsec.

The switch function implements the state transitions for the traffic lights.
This state machine determines whether a traffic light is switched on or off in
order to avoid situations such as the lights for cars and pedestrians are both
green at the same time. The different states for the lights, are encoded as Green,
Yellow and RedYellow and Red. An exemplary state transition is stated by the
pre switch and the post switch constraints as seen in Listing 1.1. Note that the
delay might not always be necessary for the state transition, e.g. the pedestrians
might have a constant transition time while the transition time for the cars rely
on the delay (rush hour). Since this work considers arithmetic integer overflows,
the state machine is not described in detail, as no arithmetic operations are
involved in the state transitions.

After specifying and verifying the behavior of the traffic light controller in
SysML/OCL, a model in SystemC is described. This step is manually as indeed
the SysML structure can be translated automatically in the form of C++
classes1. However, the behavior specified by OCL constraints cannot automati-
cally be translated to executable SystemC code.

Example 2. Listing 1.2 shows the implementation of the tick function in the
SystemC model.

1 sc u in t <32> counter , delay , cycleTime ;
2 State s s t a t e s ;
3
4 void t i c k ( ) {
5 i f ( counter < ( delay −1) ∗ cycleTime )
6 counter = counter + cycleTime ;
7 else
8 counter = 0 ;
9 swi tch ( ) ;

10 }

Listing 1.2. Implementation of the tick function, introduced in Listing 1.1, of the
SystemC model.

As specified by the OCL constraints in Listing 1.1, the SystemC model
increases the counter by the cycleTime until the upper bound is reached, as
seen in Line 5 of Listing 1.2. Otherwise, the counter is reset to 0.

2.2 Considered Problem

To illustrate the problem that motivates this work, we take a look at the safety
property that can be derived from the specification, seen in Listing 1.1. This
safety property holds for the specification, but not for the model and in this
section we show why not.
1 Note that SystemC is a collection of C++ class libraries designed to describe hard-

ware designs.
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Example 3. Listing 1.3 shows the safety property that is derived from the
SysML/OCL specification. This property is specified as an OCL invariant.

1 context t r a f f i c L i g h tCon t r o l l e r
2 inv : s e l f . counter < s e l f . de lay ∗ s e l f . cycleTime

Listing 1.3. Safety property derived from the OCL constraints introduced in
Listing 1.1.

This invariant determines that the counter is less than the multiplication of
the delay and the cycleTime. As the SysML data type Integer is infinite, the
property holds for the specification.

To prove that the safety property holds we show that, if the precondition,
invariants and safety property hold in the pre state and the postcondition holds
in the post state, then the safety property holds in post state as well.

This proof consists of a case analysis of the OCL constraints for the tick
function, seen in Listing 1.1. The notation x’ is used to denote the value of the
variable x in the post state. The self prefix seen in the OCL constraints is also
omitted.

Example 4. In order to show that the safety property, seen in Listing 1.3, holds in
the above specification, we take a look at some assumptions that can be derived
from the specification, seen in Listing 1.1. We assume that the preconditions and
the safety property hold in the pre states and that the postconditions hold in
the post states.

Using these assumptions, we want to prove that if we are in a pre state in
which both the precondition and the safety property hold, and we move to the
post state in which the postcondition holds, then the safety property also holds.

We prove this property by case analysis. The first case is the precondition
pre reset counter and the postcondition reset counter. The second case is the
precondition pre incr counter and the postcondition incr counter. In the first
case the counter is reset to 0 in the postcondition. The invariants state that the
delay and the cycleTime are both greater than 0, so the safety property holds
in the post state. To prove the safety property for the second case, we take a
look at the precondition pre incr counter. Since the monotonicity of the addition
holds in Z, we add cycleTime to both sides of the precondition. This gives us
the postcondition incr counter on the left side. If we dissolve the right side, we
see that the safety property holds in the post state.

counter + cycleTime′ < ((delay′ − 1) ∗ cycleTime′) + cycleTime′

= counter + cycleTime′ < (delay′ ∗ cycleTime′ − cycleTime′) + cycleTime′

= counter + cycleTime′ < delay′ ∗ cycleTime′

Now that we have proven that the safety property holds in the post states
of the SysML/OCL specification, why does it not hold in the SystemC model?
If we consider the case analysis of the proof for the SystemC model, we see that
for the first case the proof holds. However, for the second case the monotonicity
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of the addition does not hold. The SystemC model describes the quotient ring
Z>−1/32Z>−1. This ring describes an integer type of limited size and that is
precisely the reason why the safety property does not hold in the SystemC
model, as the monotonicity of the addition does not hold for quotient rings.

In other words, the multiplication operation in the SysML/OCL specification
is not semantic equivalent to the one in the SystemC model, as in SystemC
all integer types describe a quotient ring: Z/mZ,m ∈ N (signed integer) or
Z>−1/mZ>−1,m ∈ N (unsigned integers). The semantic gap between SysMLs
infinite integer type and SystemCs finite integer types motivates this work and
results in the proposal of an alternative hardware design approach that allows
the description of finite integer types at the specification level.

Example 5. Let us consider again the translation step of the OCL constraints
seen in Listing 1.1 for the SystemC model seen in Listing 1.2. The model assumes
that the implementation of the unsigned integer multiplication operation is the
same as in the specification. This assumption is understandable at first glance,
since the same behavior is apparently described. However, as we have seen above
this is not the case, as the integer type in the specification is infinite, while the
one in the model is finite. As a result, the SystemC model violates the safety
property, shown in Listing 1.3.

This violation bears a direct impact on the change of the configurable delay
at runtime and thus on the transition time of the state machine, which con-
siders traffic situations such as rush hour. For instance, a changed delay might
lead to unintended behavior as the multiplication operation on the quotient
ring sc uint<32> implements a wrap-around behavior. In this case, instead of
increasing the transition time it is decreased which is a serious problem.

A look in the C++ standard2 reveals two different behaviors of integer arith-
metic regarding overflows.

Unsigned integer arithmetic defines total functions and does not overflow.
A result that cannot be interpreted by the resulting data type is reduced by
2n, n ∈ N, where n is the number of bits in the value representation, e.g.
sc uint<32>. Through the modulo operation, arithmetic operations on these
data types implements a wrap-around behavior. So in the case of unsigned arith-
metic the operation might lead to unintended behavior.

Signed integer arithmetic does overflow and defines either total functions or
partial functions, depending on the underlying hardware platform. The functions
are total, if the platform represents the values in the 2’s complement. In this
case, the same wrap-around behavior is implemented as for the unsigned integer
arithmetic. If the platform uses traps3 to indicate an overflow the arithmetic
function becomes partial, as in this case the function does not define a return

2 The current standard for the C++ programming language is specified in ISO/IEC
14882:2017.

3 A trap is a software interrupt that is triggered due to an instruction execution, e.g.
division-by-zero, by the processor.
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value for a pair of input values. As the behavior of signed integer arithmetic is
platform dependent, it is undefined in general.

The term arithmetic integer overflow often refers to both unsigned integer
and signed integer arithmetic [13,15]. For this reason, we use that term in the
rest of this work to address both behaviors.

The basic problem of the semantic gap between SysMLs infinite integer types
and SystemCs finite types motivates our work. To address this problem a seman-
tic equivalent finite type is needed at the specification level as hardware descrip-
tions are finite by design and, therefore, rely on these types. Having such types
at the specification level enables the clear distinction between the correct result
of an arithmetic integer operation and the occurred overflow. We call this dis-
tinction the detection of overflows. As overflows are inevitable on finite integer
types this work proposes an overflow detection pattern by a total function that
makes the distinction between the result of an arithmetic integer operation and
the overflow explicitly.

In the next section, we evaluate the related work and discuss why it is not
suitable to address the problem described above properly. This discussion leads
eventually to the alternative hardware design approach.

3 Related Work

In this section we evaluate and discuss the related work to show why a specifi-
cation in SysML/OCL and a model in SystemC is not suitable to detect integer
overflows properly.

To detect integer overflows in the SysML specification the possibility to define
finite integer types of arbitrary sizes need to be implemented, but this is not the
case in the current standard [22]. Of course, invariants can be used to restrict
SysMLs Integer type by describing a lower and upper bound. But, these bounds
are independent of the integer type used in the SystemC model. For instance,
after the automatic generation of the SystemC class structure from SysML: what
should the equivalent type to SysMLs Integer type be in SystemC? Either a
standard type, like Integer is always represented as sc uint<32>, but in this case
the bounds can never change, or the extracted type of the model is dependent
from the bounds chosen in the specification. Such a restriction can be described
by OCL invariants, but it is not possible to extract these invariants in executable
SystemC code automatically. If these bounds are translated manually to the
SystemC model, they might change during the development phase of the model.
For example, it was discovered that a different type, e.g. sc uint<31>, is needed
which again invalidates the bounds from the specification. The basic problem
is that a SysML/OCL specification describes infinite integer types while the
SystemC model describes finite ones.

To detect integer overflows directly in the SystemC model, the automatic
overflow detection of C++ programs need to be considered. The detection of
overflows by a C++ compiler is quite challenging, because of the low level nature
of C++. The standard allows bit manipulations, which are very common [15].
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This makes it very challenging to detect overflows by the compiler reliably, as
it is not always clear whether such a manipulation is intended by the engineer
or not. Furthermore, the standard defines undefined behavior semantics that
allow optimizations by the compiler [15]. For this reason, C++ compiler can
only detect arithmetic overflows in constant-expression evaluation, but not in
general. As a result, C++ compilers are not suitable to detect arithmetic integer
overflows automatically.

Since there is no support by the compilers static code analysis tools, such as
Astrée [13] or Frama-C [14], should to be considered.

Astrée relies on abstract interpretation [12,16] and aims to prove the absence
of runtime errors, such as integer overflows, in C programs. Abstract interpre-
tation is used to derive a computational abstract semantic interpretation from
a behavior expressed in a programming language. The resulting interpretation
does not contain the actual values, but focuses on dedicated parts of the program.
The scope of the static analysis is determined by these parts and define what
kinds of errors are detected. The limit of abstract interpretation is the analysis
of loops, as loops define an infinite number of paths in the interpretation tree.
SystemC models are C++ programs, which is not the input language of Astrée.
Astrée could, of course, be extended to support C++ programs, but SystemC
describes hardware designs. Such designs rely on parallel execution and run in
infinite loops. As mentioned above, loops create an infinite number of paths in
the interpretation tree. For this reason, Astrée is not suitable to detect integer
overflows in hardware designs.

Frama-C is another static code analysis tool which relies on C Intermediate
Language (CIL) [20] and supports annotations written in ANSI/ISO C Spec-
ification Language (ACSL) [14]. Frama-C enables the application of different
static analysis techniques, such as deductive verification of annotated C pro-
grams by automatic provers, e.g. Z3 [14]. The detection of integer overflows is
supported by the Runtime Error Annotation Generation (RTE) plugin which
includes the generation of annotations by syntactic constant folding in the form
of assertions. RTE seeds these annotations into other plugins, e.g. for generat-
ing weakest-preconditions with proof obligations. Similar to Astrée the input
language for Frama-C is a C program, which could , of course, be extended to
support C++ programs. But the static analysis of the infinite loops hardware
designs rely on is quite challenging. For this reason, Frama-C is not suitable to
detect integer overflows in SystemC models.

As discussed in this section a SysML/OCL specification and a SystemC model
are not suitable to detect integer overflows. The specification describes infinite
types and lacks the definition of finite integer types of arbitrary sizes. The model
describes finite integer types and does not get support by compilers or static
analysis tools for detecting integer overflows. As a result, the engineer need to
detect overflows pro-active and explicitly at the model level.

The problem discussed above in combination with the related work leads to
the following question: Can arithmetic integer overflows in hardware designs be
detected at the specification level?
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4 Proposal of the Alternative Design Approach

In this section, we propose an alternative design approach that addresses the
problem of the semantic gap of the established hardware design approach,
described in Sect. 2.

The alternative approach uses the proof assistant Coq [4,10] to specify and
verify the functional behavior of hardware designs. Coq describes functional
behavior in a specification language, called Gallina, which is based on the Cal-
culus of Inductive Constructions (CiC). This calculus combines a higher-order
logic with a richly-typed functional programming language. As higher-order logic
is too expressive for automatic reasoning, a separate tactic language is used that
provides proof methods, but let the user define his own ones as well. Therefore,
proof assistants are also known as interactive theorem provers.

As discussed in Sect. 2.2 the problem of the established approach is the
semantic gap between the infinite integer types in SysML and the finite inte-
ger types in SystemC. To address this problem we use dependent types [7,17]
to implement finite integer types in Coq. These types are used to functionally
describe the limited size bit vectors for the inputs and outputs of hardware
designs. The idea to describe hardware designs using dependent types is not
new and started back in the 1990s. These types allow a type definition that
relies on an additional value. For instance, the type An defines a vector of the
length n, n ∈ N with elements of the arbitrary type A. We say that A depends on
n that is where the name dependent type comes from. Proof Assistants, like Coq,
allow the definition of dependent types by the user which gives us the opportu-
nity to describe hardware designs with finite integer types at the specification
level. In order to describe such types, we utilized the CompCert integer library
to describe both signed and unsigned integer types of arbitrary sizes [19].

In contrast to the established approach, we use the proof assistant Coq at
the specification level to specify and verify hardware design. Furthermore, we
describe finite integer types using dependent types, which enables the detection of
integer overflows at the specification level. We describe below how the detection
is specified and verified and how a final hardware implementation is generated
automatically from a specification written in Gallina.

4.1 Detection of Integer Overflows

As described in Sect. 2.2, we need an explicit distinction between the correct
result of an arithmetic integer operation, e.g. multiplication, and the occurred
overflow. Therefore, we use a dedicated type which either contains the result of
an operation or indicates an occurred overflow. This data type is called option,
as seen in Listing 1.4, and has two constructors: None and Some which takes an
arbitrary type (A) as parameter.
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1 Induct ive opt ion (A : Type ) : Type :=
2 | Some : A −> opt ion A
3 | None : opt ion A.

Listing 1.4. Definition of the option type in Gallina provided by the Coq standard
library (Coq.Init.Datatypes) [5].

The constructor Some contains the result, while the constructor None indi-
cates the overflow. Consider again the running example introduced in Sect. 2.1.
This example uses a multiplication operation of the type:

n ∈ N ⇒ Unsignedn → Unsignedn → Unsignedn,

where an overflow cannot be distinguished from the actual result. We use
the term basic arithmetic operation for arithmetic integer operations that have
the above type. Using the option type, we create an alternative multiplication
operation, called safe mult seen in Listing 1.5, which has the type:

n ∈ N ⇒ Unsignedn → Unsignedn → option Unsignedn

The safe mult operation returns None in the case of an integer overflow
and Some(A) otherwise. Now, the question is: How are both cases explicitly
distinguished? We take a look at the case where an overflow occurs to answer this
question. Note that both a and b are of the type Unsignedn and x �→ y donates:
x is transformed to y. The function max returns the maximum representable
value of a given data type.

a ∗ b > max(a) �→ b �= 0 ∧ a > max(a)/b

The condition on the left side (x) indicates the intuitive check of an overflow.
If the result of a multiplication is larger than the maximum value of the integer
type of the operand (max(a)) than, obviously, an overflow occurred in the mul-
tiplication. But, if we implement this using finite integer types this condition
always evaluates to true, as by definition there is no larger value of a type than
its maximum. For this reason, we need to transform the left side to the right
side (y). The condition on the right side evaluates only to true in the case of
an integer overflow in the multiplication. If the condition evaluates to false both
operands can be multiplied safely. In order to avoid a division-by-zero error, we
first ensure that b is not equal to zero.

By using the alternative option type definition, described above, and the
transformed condition, we are able to implement a multiplication operation that
detects an occurred overflow, as seen in Listing 1.5.

1
2 De f i n i t i o n sa f e mul t ( a b : Unsigned32 . i n t ) : opt ion Unsigned32 . i n t :=
3 i f (b >? 0%unsigned32 ) && (a >? ( Unsigned32 . max unsigned / b) )
4 then None
5 else Some ( a∗b)
6 .

Listing 1.5. Definition of the safe mult function in Gallina that detects a multi-
plication overflow for 32-bit unsigned values [5].
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Like in the SystemC example, illustrated in Listing 1.2, our multiplication
is defined for 32-bit unsigned values (Unsigned32.int). This type definition was
implemented using the CompCert integer library. As seen in Listing 1.4, our
function implementation returns Some(a*b) in the case no overflow occurs and
None otherwise.

After the definition of the safe mult function in Coq, a proof is needed that
verifies that the definition satisfies its specification. This specification is formu-
lated as theorems in Coq. Two theorems are formulated in order to proof the
safe mult definition: the detection of the occurred overflow and the returning of
the result of the unsigned 32-bit multiplication operation if no overflow occurs.
To verify this, we show that the multiplication defined for 32-bit unsigned values
maps the multiplication for integer values (Z) which is a subset of it, but detects
the occurred overflow. Both theorems are shown Listing 1.6.

1 Theorem de t e c t ove r f l ow :
2 f o r a l l a b : Z ,
3 a <= Unsigned32 . max unsigned /\
4 b <= Unsigned32 . max unsigned /\
5 a ∗ b > Unsigned32 . max unsigned <−>
6 sa f e mul t ( Unsigned32 . repr a ) ( Unsigned32 . repr b) = None .
7
8 Theorem no over f low :
9 f o r a l l a b : Z ,

10 a <= Unsigned32 . max unsigned /\
11 b <= Unsigned32 . max unsigned /\
12 a ∗ b <= Unsigned32 . max unsigned <−>
13 sa f e mul t ( Unsigned32 . repr a ) ( Unsigned32 . repr b) =
14 Some ( ( Unsigned32 . repr a ) ∗ ( Unsigned32 . repr b) ) .

Listing 1.6. Theorems specified Coq to verify that the safe mult function detects the
overflow correct and returns the result of the multiplication otherwise [5].

The theorem detect overflow states: if the two values a and b of type Z are
less than or equal to the maximum value of the unsigned 32-bit integer type
(Unsigned32.max unsigned) and their multiplication is greater than this value,
None is returned. The function Unsigned32.repr comes from the CompCert Inte-
ger library and converts a value of type Z into a value of type Unsigned32.int.
The theorem no overflow states: if two values a and b of type Z are less than or
equal to the maximum value and their multiplication is also less than or equal to
the maximum value, Some(A) is returned. The arbitrary type A is in this case
the type Unsigned32.int.

After specifying and verifying a safe multiplication integer operation, the tick
function, described in Listing 1.1 has to be specified in Gallina. This specified
function has also been changed to use the safe mult function, specified above, as
seen in Listing 1.7. Like for the SystemC model, seen in Listing 1.2, we specified
an unsigned 32-bit integer value (Unsigned32.int), which was described using
the CompCert integer library [19]. The specification of the tick function can be
seen in Listing 1.7.
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1 De f i n i t i o n switch ( s : State ) : State .
2
3 De f i n i t i o n t i c k ( input : Unsigned32 . i n t ∗Unsigned32 . i n t ∗Unsigned32 . i n t ∗ State s )
4 : opt ion Unsigned32 . i n t ∗State :=
5 match input with
6 | ( counter , delay , cycleTime , s t a t e ) =>
7 match sa f e mul t ( delay −1%unsigned32 ) cycleTime with
8 | Some re s => i f counter <? r e s
9 then (Some( counter + cycleTime ) , s t a t e )

10 else (Some(1%unsigned32 ) , switch s t a t e )
11 | => (None , s t a t e )
12 end
13 end .

Listing 1.7. Specification of the tick function in Gallina, which used the safe mult
function introduced in Listing 1.5.

Note that the switch function, seen in Fig. 1, has a different type in the
Coq specification, shown below. Pure functional languages, such as Gallina, do
not allow internal states, in contrast to a SysML specification. For this reason,
the type of the switch function had to be changed. As this work considers the
detection of arithmetic overflows and there are no arithmetic overflows involved
in the state transitions of that function, we omit the function implementation.

Since the unsigned multiplication operation has semantically changed the
question is: How to handle the case where an overflow occurred? The handling
highly depends on the environment the traffic light controller runs in, e.g. return
to a safe state or ignore the new configured delay. As this would be out of scope
for this work, the tick function just returns an instance of the tuple option
Unsigned32.int*State. The first value of the tuple contains an instance of the
type option Unsigned32.int, while the second value of the tuple is the new state.
This state can either be the same as the old one or be changed by the switch
function. The overflow is not handled by this function directly, but is propagated
to the calling function instead. The state remains unchanged in this case.

After defining the tick function in Gallina, the verification of the property
is needed that the definition still satisfies the safety property, shown in List-
ing 1.3. This property had to be translated to Coq first. This transformation
results in the definition of two theorems, which is shown in Listing 1.8. Theorem
safety property no overflow describes the case no overflow occurs and Theorem
safety property overflow describes the case an overflow occurs. The verification
of those theorems proves that the tick function either changes the counter or
propagates the detected overflow.

1 Theorem sa f e t y p rope r t y no ove r f l ow :
2 f o r a l l counter counter ’ de lay cycleTime re s : Unsigned32 . int ,
3 f o r a l l s s ’ : State ,
4 Some( r e s ) = sa f e mul t delay cycleTime <−>
5 t i c k ( counter , delay , cycleTime , s ) = (Some ( counter ’ ) , s ’ ) /\
6 counter ’ = ( delay −1) ∗ cycleTime /\ counter ’ < r e s .
7
8 Theorem sa f e t y p r op e r t y ov e r f l ow :
9 f o r a l l counter delay cycleTime : Unsigned32 . int ,

10 f o r a l l s : State ,
11 None = sa f e mul t ( delay −1) cycleTime <−>
12 t i c k ( counter , delay , cycleTime , s ) = (None , s ) .

Listing 1.8. Theorem in Coq that represents the OCL safety property adapted to
finite integer types.

The first theorem states: if no overflow occurred in the multiplication of delay
and cycleTime, the tick function returns the new counter (counter’ ) and the new
state (s’ ). Note that the new state might be the old state as it depends on a
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condition whether the state is changed or not, as seen in Listing 1.7. The new
counter (counter’ ) is the result of the multiplication of delay -1 and cylceTime
and is less than res, which is essentially the safety property, shown in Listing 1.3.

The second theorem states: if the result of the safe multiplication of delay -1
and cycleTime is None than the tick function returns None as well. The state
remains unchanged in this case, as described above.

In this section, we illustrated how to specify a safe multiplication operation
using dependent types in order to detect an overflow for the 32-bit unsigned val-
ues. This was the problem, we described in Sect. 2.2. The specification of the tick
function, shown in Listing 1.1, was transformed into a Coq specification man-
ually and it was verified that the safety property, shown in Listing 1.3 satisfies
our specification, as seen in Listing 1.8. This shows that we have successfully
addressed the problem of missing finite integer types at the specification level,
as described in Sect. 2.

5 Extraction of the CλaSH Model

In this section, we describe how the specification in Gallina, described above, is
translated to a CλaSH model and finally to an RTL implementation that can be
synthesized on an FPGA.

To illustrate the extraction process from a specification to a model in the
functional hardware description language CλaSH [1,18], we take a look at Coq’s
extended extraction process, proposed in this work [6]. The process allows the
extraction of a specification in Gallina into an executable CλaSH model. The
extraction is done by syntactical replacement, since Gallina is a functional spec-
ification language and follows the same semantic rules as functional program-
ming languages, e.g. Haskell or OCaml. The extraction process has two different
modes. The first mode is that it extracts everything that is related to the func-
tion that should be extracted, such as other called function or data types. The
second mode is the replacement of functions and data types by their semantic
equivalent representations in the target language. This mode is used to intrin-
sic functions or to replace constant functions that have a different syntax. For
instance, the constant function Unsigned32.max unsigned used in Listing 1.6 is
replaced by (232) − 1 in the CλaSH model, as seen in Listing 1.9. The specifi-
cation and verification of a behavior by a proof assistant and the extraction of
this behavior afterwards to executable code is called certified programming [10].

CλaSH borrows its syntax and semantics from the functional programming
language Haskell. Combinational circuits are described as recursive functions and
synchronous sequential ones as a combination of these functions with a finite
state machine, either as a Mealy machine or a Moore machine [1]. After the
CλaSH model was extracted the final RTL (Register-Transfer-Level) implemen-
tation, e.g. in VHDL or Verilog, it can be synthesized automatically. The unique
representation of hardware model and the structured communication between
the components, ensured by the type system of CλaSH, allows the automatic
analysis of models and the final synthesis into a low-level RTL implementation,
e.g. VHDL or Verilog.
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1 switch : : State −> State
2
3 sa f e mu l t : : ( Unsigned 32) −> ( Unsigned 32) −> CLaSH. Prelude .Maybe
4 ( Unsigned 32)
5 sa f e mul t a b =
6 case (CLaSH. Prelude .&&) ( (CLaSH . Prelude .>) (b) (0) )
7 ( (CLaSH. Prelude .>) ( a ) ( ( (CLaSH . Prelude . div ) ( (2ˆ32) −1) b) ) ) of {
8 CLaSH. Prelude .True −> CLaSH. Prelude .Nothing ;
9 CLaSH. Prelude . False −> CLaSH. Prelude . Just ( (CLaSH . Prelude .∗ ) a b)}

10
11 t i c k : : ( ( , ) ( ( , ) ( ( , ) ( Unsigned 32) ( Unsigned 32) ) ( Unsigned 32) ) State ) −>
12 ( , ) (CLaSH. Prelude .Maybe ( Unsigned 32) ) State
13 t i c k input =
14 case input of {
15 ( , ) p s t a t e s −>
16 case p of {
17 ( , ) p0 cycleTime −>
18 case p0 of {
19 ( , ) counter delay −>
20 case sa f e mul t ( (CLaSH. Prelude .−) delay 1) cycleTime of {
21 CLaSH. Prelude . Just r e s −>
22 case (CLaSH. Prelude .<) counter r e s of {
23 CLaSH. Prelude .True −> ( , ) (CLaSH . Prelude . Just
24 ( (CLaSH. Prelude .+) counter 1) ) s t a t e s ;
25 CLaSH. Prelude . False −> ( , ) (CLaSH . Prelude . Just 1) ( switch s t a t e s ) } ;
26 CLaSH. Prelude .Nothing −> ( , )CLaSH . Prelude .Nothing s t a t e s }}}}

Listing 1.9. Extracted CλaSH model of the safe mult and tick function introduced in
Sect. 1.5.

6 Overflow Detection Pattern

In this section, we propose a detection pattern that can be used to detect integer
overflows in different arithmetic operations. The pattern defines a total function
that distinguishes the result of the arithmetic operation from the overflow by
the option type described in Sect. 4.1. The proposed detection pattern is shown
in Listing 1.10.

The pattern requires two definitions. First, a data type that defines two
constructors: None and Some A, where A is an arbitrary finite integer type.
Second, a function of the type: A → A → option A. This function takes two
arguments of the integer type A and returns a value of the previous defined
option type. Where None indicates the overflow and Some a indicates the result
of the operation that was executed. This case analysis is made by a condition
(overflowDetected), e.g. by the one defined in Sect. 4.1 for the multiplication of
unsigned 32-bit values.

1 data opt ion A = None | Some A
2
3 f : A → A → opt ion A
4 f x y = i f <overf lowDetected> x y
5 then None
6 else Some(x <operat ion> y)

Listing 1.10. Proposed overflow detection pattern [5].

The specified function f is used to replace the basic arithmetic operation,
e.g. unsigned multiplication, that is not able to distinguish an overflow from the
correct result. In order to verify that function f distinguishes the overflow from
the correct result, two theorems have to be proven. A proof of the first theorem,
as can be seen in Theorem 1, verifies that for all inputs which cause an overflow
for the performed arithmetic operation None is returned.
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Theorem 1 (Detect Overflow in Integer Arithmetic Operation). ∀x, y
∈ A, where A is an arbitrary finite integer type.

<overflowDetected> x y ⇐⇒ f x y = None

A proof of the second theorem, as can be seen in Theorem 2, verifies that for
all inputs that do not cause an overflow for the performed arithmetic operation
the result of this operation is returned.

Theorem 2 (No Overflow in Arithmetic Integer Operation). ∀x, y ∈ A,
where A is an arbitrary finite integer type.

not (<overflowDetected> x y) ⇐⇒ f x y = Some (x <operation> y)

Now, that we have defined the overflow detection pattern, one question
remains: Is this pattern always necessary?

In the following, we answer this question and explain in which cases it is
necessary and in which one it is not. If we look at the general behavior of
arithmetic integer operations, an overflow might always occur. The result of
an arithmetic operation can potentially be larger than its finite integer type is
able to represent. This might lead to an unintended wrap-around behavior, as
explained in Sect. 2.2. So in general, the overflow detection pattern, described
above, should be applied.

However, there are cases where this pattern can be avoided. First, it has to
be verified that the arithmetic operation that is applied on both operands never
causes an overflow. The theorem that has to be proven can be seen in Theorem 3.

Theorem 3. ∀x, y ∈ A′, where A′ ⊂ A and A is an arbitrary finite integer type.

f x y = Some(x <operation> y)

If and only if this theorem holds, then there is no need to replace the basic
arithmetic operation with the one defined by f. The general steps for the proposed
pattern are the following: first, define the function f for the desired integer type
and operation, second, prove the above theorem, to verify that the chosen subset
of values is never too large to cause an overflow. As described above, this is not
the case in general, but might be in particular.

Now, that we have the proof, that the arithmetic operation defined by func-
tion f never returns an overflow, the question is: Can this proof be used to replace
function f in a specification by its corresponding basic arithmetic operation auto-
matically?

To answer this question, we take a look again at the extraction feature of
Coq. As mentioned above, Coq provides the specification language Gallina and
a tactic language for property proving. The extraction process only extracts the
functional behavior of a specification written in Gallina to an executable target
language. Theorems and Lemmas, which state propositions, are ignored during
this process, as they do not have a semantic equivalent representation in the
target language.
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Thus, it is not possible to automatically replace the defined function f by
its corresponding basic integer operation using a proof without changing Coq’s
entire extraction process. Furthermore, as both functions are semantically not
equivalent such a replacement would effect the entire specification recursively.

As discussed above, the automation process is quite challenging as the type
of function f would change from A → A → option A to A → A → A what
recursively effects the entire specification. A more suitable way is to propagate
the value Some A of function f through the specification. This avoids the recur-
sive changing of all functions depending on f manually as the type of function f
remains the same.

In summary, if and only if Theorem 3 holds, we have a proof that the spec-
ification of function f can be changed to just return Some(x < operation > y)
as no overflow occurs.

6.1 Closure of Functions

As we propose an overflow detection pattern in this work that has the function
type A → A → option A, functions that implement this pattern are no longer
closed. A set is called closed under an operation if an operation performed on
members of a set always produce a member of that set. For this reason, it is
not possible to cascade these functions, e.g. safe mult (safe mult 3 4) 5. In order
to address this problem we implement the option monad in Coq. Monads come
from the mathematical field of category theory and model computations [25]. It
is used as a design pattern in functional languages and represents a specific form
of computation. Analog to the implementations of monads in other functional
languages, e.g. Ocaml, two functions were implemented, seen in Listing 1.11.

Since the cascading of these functions might not always be wanted, we pro-
pose this monad instead of changing the proposed pattern, seen in Listing 1.10.
This allows a greater flexibility between both use cases.

1 De f i n i t i o n r e t {A : Type} (x : A) : opt ion A := Some x .
2
3 De f i n i t i o n bind {A : Type} ( f : A −> A −> opt ion A) (x y : opt ion A)
4 : opt ion A :=
5 match (x , y ) with
6 | (Some x ’ , Some y ’ ) => f x ’ y ’
7 | ( , ) => None
8 end .

Listing 1.11. Definition of the option monad operations.

The option monad contains two functions: ret and bind. The ret function
takes an argument of type a and transforms it into a value of the type option
A. The bind function takes a function of the proposed pattern type (f) and two
arguments of the type option A (x and y). If both arguments contain a value
of the type A, the function f is called with these values. Otherwise, None is
returned.

The option monad applies to all functions that require two arguments and
return the option type. Since it is not restricted to one dedicated type, it can be
used for all functions that implement the proposed overflow detection pattern,
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seen in Listing 1.10. To verify the correct behavior of the bind function, two
theorems were proved.

1 Theorem fI fSome :
2 f o r a l l (A : Type ) ,
3 f o r a l l f : (A −> A −> opt ion A) ,
4 f o r a l l x y : opt ion A,
5 f o r a l l x ’ y ’ : A,
6 x = Some (x ’ ) /\ y = Some (y ’ ) −> bind f x y = f x ’ y ’ .

Listing 1.12. Theorem that verifies that the function f is only called by the bind
function if both arguments are of type A.

The first theorem, seen in Listing 1.12, verifies that if both arguments x and
y contain values of type A (x’ and y’) then the bind function calls the function
f with these two values, as seen in Listing 1.12. This theorem verifies that only
in the case were both arguments for f contain values this function is called.

The second theorem, seen in Listing 1.13, verifies that if either the first
argument of the function f (x) or the second (y) is None the bind function
returns None, as seen in Listing 1.13. This theorem verifies that the function f
is not called with invalid values (None).

1 Theorem noneIfNone :
2 f o r a l l (A : Type ) ,
3 f o r a l l f : (A −> A −> opt ion A) ,
4 f o r a l l x y : opt ion A,
5 x = None \/ y = None −> bind f x y = None .

Listing 1.13. Theorem that verifies that in the case of invalid arguments for function
f None is returned by the bind function.

The option monad closes the operations that implement the proposed over-
flow detection pattern, which allows the cascading of these functions. e.g. bind
safe mult (bind safe mult (ret 3) (ret 4)) (ret 5). The cascading of operations
enables the formulation of more complex operations based on the application
of the basic arithmetic operations. The bind function propagates an occurred
overflow through the cascaded operations. At the end of the calculation it can
be evaluated whether the result is correct or if there was an overflow in one of
the operations.

7 Evaluation

In this section, we evaluate the hardware design approach proposed in this work.
The foundation of this evaluation is a comparison of basic arithmetic integer
operations with their corresponding overflow detecting operations regarding their
impact of the speed and consumed space. To determine these values the oper-
ations were specified for both signed and unsigned integer operations and used
by the traffic light controller, seen in Sect. 4.1. The resulting specification was
synthesized on an FPGA using the synthesize process introduced in this work [6].
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7.1 Integer Overflow Detection Implementations

This section introduces the different implementations of the overflow detecting
arithmetic integer operations used for the evaluation. All implementations follow
the pattern introduced in Sect. 6.

1 De f i n i t i o n sa f e add uns igned ( a b : Unsigned32 . i n t ) : opt ion Unsigned32 . i n t :=
2 i f a >? ( Unsigned32 . max unsigned − b)
3 then None
4 else Some ( a+b) .

Listing 1.14. Definition of the safe add unsigned function in Gallina that detects an
overflow in the addition operation for unsigned 32-bit values.

Listing 1.14 shows the implementation that detects an overflow in the addi-
tion operation of two unsigned 32-bit values. The condition that checks whether
an overflow occurs or not, follows the transformation pattern, introduced in
Sect. 4.1.

Listing 1.15 shows the implementation that detects an overflow for signed 32-
bit values. To detect the overflow there are multiple conditions needed, to cover
all possible overflow cases. Since signed integer values are negative or positive the
Signed32.min signed function determines the minimum representable value of
the Signed32 type and the Signed32.max signed function the maximum repre-
sentable value.

1 De f i n i t i on sa f e mu l t s i gned ( a b : Signed32 . i n t ) : opt ion Signed32 . i n t :=
2 i f ( a >? 0%signed32 ) &&
3 (b >? 0%signed32 ) &&
4 ( a >? ( Signed32 . max signed / b) )
5 then None
6 else i f ( a >? 0%signed32 ) &&
7 (b <? 0) &&
8 ( a <? ( s igned32 . min s igned / b) )
9 then None

10 else i f ( a <? 0%signed32 ) &&
11 (b >? 0%signed32 ) &&
12 ( a <? ( Signed32 . min s igned / b) )
13 then None
14 else i f ( a <? 0%signed32 ) &&
15 (b <? 0%signed32 ) &&
16 ( a >? Signed32 . max signed / b)
17 then None
18 else Some( a∗b) .

Listing 1.15. Definition of the safe mult signed function in Coq that detects an
overflow in the multiplication operation for signed 32 bit values.

Listing 1.16 shows the implementation that detects an overflow in the addi-
tion of two signed 32-bit values. As seen in the previous overflow detection imple-
mentations the Signed32.max signed function determines the maximum value
and the Signed32.min signed function the minimum value.
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1 De f i n i t i on sa f e add s i gned ( a b : Signed32 . i n t ) : opt ion Signed32 . i n t :=
2 i f ( a >? 0%signed32 ) &&
3 (b >? 0%signed32 ) &&
4 ( a >? ( Signed32 . max signed − b) )
5 then None
6 else i f ( a <? 0%signed32 ) &&
7 (b <? 0%signed32 ) &&
8 ( a <? ( Signed32 . min s igned −b) )
9 then None

10 else Some ( a+b) .

Listing 1.16. Definition of the safe add signed function in Gallina that detects an
overflow on the multiplication operation for signed 32 bit values.

7.2 Comparison of Integer Arithmetic Operations

In this section, we compare the different arithmetic integer overflow detection
implementations proposed in this work regarding their consumed space in LUTs
and registers and maximum clock frequency. The foundation for this comparison
is the implementation of the traffic light controller, shown in Sect. 4.1, which was
specified in Gallina and synthesized on an FPGA. The comparison is between the
specified controller with the basic arithmetic operations and their corresponding
overflow detecting operations, as seen in Table 1.

Table 1. Evaluation by comparing the consumed space in LUTs and registers and the
maximum clock frequency (Fmax) for signed 32 and unsigned 32 integer operations
used by the traffic light controller, described in Sect. 4.1. The basic operation column
contains the values for the basic arithmetic operations, while the overflow detection
column contains the values for the arithmetic operations introduced in Sect. 4.1 and
Sect. 7.1.

Arithmetic operation Basic operation Overflow detection

LUTs/Registers Fmax LUTs/Registers Fmax

Unsigned multiplication 92/36 72.20 MHz 670/36 65.51 MHz

Unsigned addition 81/36 111.76 MHz 112/36 109.57 MHz

Signed multiplication 112/36 68.19 MHz 122/36 68.84 MHz

Signed addition 81/36 119.82 MHz 148/36 109.24 MHz

Consumed space and maximum clock frequency synthesized for the Cyclone V family
using the Quartus Prime tool chain version 18.1.0.

The values in Table 1 cannot necessarily be seen as fixed values, but as a
relation between the synthesized traffic light controller specification that uses
the basic arithmetic integer operations and the one using the detecting overflow
operations. The concrete values highly depend on the FPGA a design is synthe-
sized for. FPGAs are often optimized for a certain purpose, e.g. speed or larger
space. As seen in the table above, the consumed space in the form of LUTs and
registers differs slightly, except for the unsigned multiplication operation, which
we discuss in a moment. The same goes for the maximum clock frequency that
has a maximum 10 MHz for the signed addition operation.

The overflow detecting unsigned multiplication operation has a significantly
larger amount of LUTs, as during the synthesis process the lpm divide megafunc-
tion is used. Megafunctions are programmable logic devices (PLD) that describe
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a certain functionality, e.g. integer multiplication. These functional blocks are
ready-made, pre-tested and augment hardware designs so the functionality has
not to be implemented again. For unsigned values Quartus Prime includes the
lpm divide block automatically while for signed integer division it does not. This
decision is based on the analysis of the RTL code. For this reason, the amount
of LUTs is significantly higher.

8 Discussion

In this section we discuss the proposed overflow detection pattern and the results
of the evaluation.

The detection pattern, shown in Sect. 6, leads to arithmetic functions that
are no longer closed, since the type of the input values is no longer the type
of the output values. This prevents the cascading of these operations, which
is possible with their corresponding basic arithmetic operations. We addressed
this issue by providing an option monad, as seen in Sect. 6.1. This monad closes
the operations implementing the proposed arithmetic overflow detection pattern.
The closure of functions enables the cascading of those operations which results
in the description of more complex calculations similar to the cascading of basic
arithmetic operations.

According to the results of the evaluation, the impact on the speed and
consumed space by replacing the basic integer arithmetic operations with the
corresponding ones that detects the overflow depends on the used operation
and the integer type. The difference between the basic arithmetic operations
and their corresponding overflow detecting operations for unsigned addition and
signed multiplication is even negligible.

In general, this opens a trade-off between safety oriented and performance
oriented hardware designs. The additional overflow checks clearly have an impact
either on the consumed space or on the maximum clock frequency. But, it
depends on the concrete hardware design whether the safety aspect is impor-
tant enough to except this impact or not. This might not always be the case and
the concrete values regarding the speed and consumed space highly depends on
the chosen FPGA. Note that in larger hardware designs the arithmetic integer
operations represent only a small part of the entire functionality. The impact of
the overflow detecting arithmetic operations compared with their corresponding
basic arithmetic operations become negligible.

In general, our discussion shows that the overflow detection pattern proposed
in this work is applicable. The maximum frequency and the consumed space for
the overflow detecting arithmetic operations are slightly slower or even negligible.
The only exception is the overflow detecting unsigned multiplication operation,
but the Quartus Prime synthesis tool chooses to use the lpm divide megafunc-
tion automatically during the synthesis process which was omitted for the other
operations. But, even in this case, the difference regarding the maximum clock
frequency is only slightly slower than in the other implementations used for the
evaluation.
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9 Conclusion

In this work, the semantic gap between the infinite integer types of a
SysML/OCL specification and the finite integer types of SystemC was addressed.
The issue of this semantic gap might lead to arithmetic overflows in the SystemC
model which are unknown in the specification, as explained in Sect. 2.2. This
gap motivates our work, and we addressed it by the proposal of an alternative
approach which extends the work [5] already published by the authors.

We use the proof assistant Coq [4,10] in combination with the CompCert
integer library [19] to close this gap. The CompCert Integer library describes
both signed and unsigned finite integer types of arbitrary sizes as dependent
types [7,17]. We utilized this library to describe finite integer types in Coq.
This description enables the specification of arithmetic integer operations that
verifiable detect overflows, as described in Sect. 4. These descriptions result in
a generalizable pattern for detecting overflows in arithmetic integer operations.
Furthermore, we provide a method to close the functions that implements the
proposed detection pattern, as described in Sect. 6. This allows the cascading of
operations implementing the proposed overflow detection pattern, analog to their
corresponding basic arithmetic operations to describe more complex calculations.

We evaluated the proposed overflow detection pattern by comparing basic
arithmetic operations with their corresponding overflow detecting operations in
terms of their maximum clock frequency and consumed space. These values
were gathered from an FPGA synthesis process, explained in Sect. 7, which
uses the synthesize process introduced in this work [6]. This evaluation opens
a trade-off between safety oriented and performance oriented hardware designs,
as additional safety checks clearly have an impact on the consumed space and
maximum clock frequency, but the impact is sporadically negligible. For this
reason, we evaluated the proposed approach to address the semantic gap between
infinite and finite integer types as promising.
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Abstract. In automotive embedded software, functions have several perfor-
mance requirements such as timing, energy, safety and reliability. For such com-
plex software architectures, an early evaluation and decision on the best set of
performance configuration (e.g. timing vs energy trade-offs) could save costly
corrections of potential errors in the design. For example, appropriate perfor-
mance analysis workflows and frameworks if employed already during early
design stages, allow us to understand the performance aspects and behavior of
the system depending on software and hardware characteristics. The main input
required for such analysis is the performance-analysis model based on the under-
lying design model. In this context, this chapter presents a workflow for synthesis
of energy-aware timing analysis models for AUTOSAR-based embedded soft-
ware systems developed using the Unified Modeling Language (UML)/Systems
Modeling Language (SysML) domains. A prototype of the model transforma-
tions for the synthesis of the energy-aware timing models and its evaluation in an
automotive use case is presented.

Keywords: Energy-aware timing model · AUTOSAR · Unified modeling
language (UML) · Synthesis · Meta-model · Model transformation

1 Introduction

The Automotive Open System ARchitecture (AUTOSAR) [3] has been created as
a worldwide development partnership of vehicle manufacturers, suppliers, service
providers and companies from the automotive electronics, semiconductor and soft-
ware industry. To achieve the technical goals of modularity, scalability, transferability,
and function reusability, AUTOSAR provides a common software infrastructure based
on standardized interfaces for the different layers [37]. While doing so, AUTOSAR
employs component-based software architecture, for the design and implementation of
automotive software systems. With the standardized layer between application software
and the hardware of an Electronic Control Unit (ECU)1, the software is largely inde-
pendent from any chosen micro controller and car manufacturer, making it reusable for
several individual ECU systems.

1 An embedded system that controls one or more of the electrical systems or subsystems in a
vehicle.
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At this juncture, the automotive industry not only continues to expand rapidly but
also is becoming increasingly complex and heterogeneous with the adoption of multi
and many-core processors systems. Further, in automotive embedded architectures,
functions have several performance requirements such as timing and energy. For such
complex software/system architectures, an early evaluation and decision on the best
set of performance configuration (e.g. timing, timing vs energy trade-offs), could save
costly corrections of potential errors in the design. For example, appropriate perfor-
mance analysis workflows and frameworks if employed already during early design
stages, allow us to understand the performance aspects and behavior of the system
depending on software and hardware characteristics. Further, they help to explore differ-
ent design architectural choices and quantitatively evaluate their implications on system
performance.

On the other hand, the scientific effort provided by academic institutions often
does not match the needs of the industry as the proposed solutions fail to consider
the state-of-the-practice challenges [36]. Some emerging challenges in the context of
performance analysis are, integrating (specification/modeling) performance aspects in
the early design stage, an automated synthesis of performance models (e.g. timing, reli-
ability, safety, energy) and early model-based performance analyses in modeling tools
or specialized performance analyses tools. In this context, this chapter contributes to
the particular aspect of early model-based synthesis of energy-aware timing models in
AUTOSAR-based embedded software systems modeled using UML/SysML domain.

1.1 State-of-the Practice by Automotive Organizations

In the race to provide model-based tool support (e.g. architecture design, automatic
code generation) for AUTOSAR-based Embedded Software Engineering (ESE) in the
Unified Modeling language (UML) [44]/Systems Modeling Language (SysML) [41]
domain, UML tools such as Enterprise architect (EA) [8] and IBM Rhapsody Developer
[17] emerged as front runners. For instance, AUTOSAR-related UML/SysML profiles
for the architectural description of an AUTOSAR model that uses the native AUTOSAR
concepts is supported by Rhapsody and EA. At this juncture, a majority of the state-of-
the-practice in the automotive industry is that, UML is used at higher abstraction levels,
for instance, to create descriptive UML models that describe the overall software and
system architecture.

The descriptive models produced in the UML/SysML domain, are then used for var-
ious purposes such as (a) to produce more fine grained architecture of the prescriptive
models (e.g. using Simulink) and (b) debugging using model execution frameworks2 in
the context of realistic mock-ups of the intended user interface. On the other hand, the
automotive software is loaded with numerous non-functional requirements. During the
software architecture design of such systems, several non-functional parameters need
to be taken into consideration, optimized and fine tuned. Some examples are, studying
timing versus energy trade-offs and minimizing CPU load vs meeting safety goals. To
achieve this, the non-functional properties such as timing, energy and safety need to
be specified in the UML/SysML-based early design model. With this annotated design

2 https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit.

https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit
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model as input, a performance analysis model (such as timing/energy/safety model)
needs to be synthesized. Such an analysis model can then be used for early perfor-
mance validation (such as timing analysis in specialized timing analysis tool [11]) and
trade-off studies.

1.2 Relation to Author’s Previous Work and Novel Contributions

In the above context, a systematic series of steps towards extraction and synthesis of
timing analysis models in AUTOSAR-based embedded system design models which
are developed in UML tools has been presented in [22]. In this book chapter, the work
in [22] is extended and the following novel contributions are presented.

– Extension of the framework introduced in [22] to include energy properties in the
AUTOSAR-design model (developed in UML/SysML tools) with the help of stereo-
types from the MARTE profile [26].

– Mapping of the energy properties to a generic timing-energy meta model.
– A prototype implementation of the model transformations using Atlas Transforma-

tion Language (ATL) [2] in Eclipse Modeling Framework (EMF) [7] for synthesis
of energy-aware timing analysis model from AUTOSAR-based design model.

– Evaluation of the above prototype in a practical automotive use case (introduced in
[22]).

In the remainder of this paper, background and related work is presented in
Sect. 2. The proposed approach for synthesis of energy-aware timing analysis model
for AUTOSAR-based design model developed in UML/SysML domain is presented in
Sect. 3. An experimental evaluation in an automotive case study is presented in Sect. 4.
Section 5 concludes the paper.

2 Background and Related Work

In this section, background and related work pertaining to general modeling options for
automotive embedded software systems is presented in Sect. 2.1. In Sect. 2.2, related
work on model-based timing and energy specifications and a brief background on
AUTOSAR-TE and the MARTE profile are provided. In Sect. 2.3, related work and
background on model-based timing and energy analysis is presented.

2.1 Modeling Automotive Embedded Software Systems

Automotive embedded software applications are different than typical embedded soft-
ware applications that we find on smart devices such as phones, gadgets, etc. In the
automotive applications, real-time complex interactions across multiple-systems such
as braking, steering, suspension, power-train, body-electronics, etc. are extremely cru-
cial. A single feature might need interactions across 20 or more automotive embedded
software applications spread across multiple ECU connected over multiple networking
protocols. No single automotive embedded software application performs on its own, it
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is always part of a much bigger system of systems [27]. To address the increasing com-
plexity in development of such systems, Model Driven Development (MDD) [31], is
considered as the next paradigm shift. In MDD, the requirements are specified as mod-
els at a higher abstraction level (e.g. using UML diagrams). They are then refined, start-
ing from higher and moving to lower levels of abstraction, via model transformations.

Further, MDD methodology also provides support for analysis of non-functional
properties such as timing and reliability parameters. For instance, UML supports
generic system and software modeling and also UML profiles for specific aspects such
as quality analysis. Some examples of employing UML for MDD and examining quality
properties such as timing, energy and reliability are available in [21,23,35].

Matlab/Simulink (M/S) [28] is a popular example for a modeling tool with non-
UML modeling language, which is established in the industry, including the automotive
domain [10]. It is primarily employed for simulation studies and model-based develop-
ment of control loops. Further, the Rubus Component Model (RCM) [5] and EAST-
ADL are among other established solutions used within the vehicular domain.

AUTOSAR Framework. A promising approach is the standardization of the software
architecture used in ECU development [29]. A comprehensive and well- established
solution used in the automotive sector is the AUTOSAR standard [3]. It emphasizes
to shift the ECU development from an ECU-centric approach to a functionality-based
approach. AUTOSAR uses a component-based software architecture, with central mod-
eling elements called Software Components (SWCs or SW-Cs). The SWCs describe a
completed, self-contained set of functionality. The AUTOSAR methodology describes
various steps, namely, System configuration, ECU configuration and component imple-
mentation involved in the development process. It also describes the artifacts created
and interchanged between the steps. In between these steps, the ARXML file format [3]
is used for the exchange of development artifacts, which is an XML-based file format.
The functionality-based approach aims to specify the functions of the complete vehicle
first in the so-called system configuration, and afterwards extract specifications for the
suppliers to implement an ECU. This way, the automotive software can be interchanged
on a function level instead of the ECU level, which increases its reusability.

The various components of the AUTOSAR framework are illustrated together with
the mapping of software components to ECUs, in the system configuration step, in
Fig. 1. The software components (seen at the top of Fig. 1, e.g., SW-C1) are used to
structure the AUTOSAR model and group functionality into individual components.
These components can be connected together, oblivious of the hardware they will be
running on. This is handled by the Virtual Function Bus (VFB), which provides an
abstraction layer for the SWC to SWC communication. Components distributed over
different ECUs however, may use the network bus for communication. This is deter-
mined automatically by the Run-Time Environment (RTE), which is a communication
interface for the software components. The lower part of the Fig. 1 represents the map-
ping of ECUs to SW-Cs in the system configuration step. Here, the ECUs 1, 2..n are
seen communicating over a network bus (e.g. FlexRay, CAN). In each ECU (e.g. ECU
1 in lower part of Fig. 1), the RTE provides interfaces between SW-Cs (e.g. AUTOSAR
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Fig. 1. Mapping of software components to ECUs [3,22].

SW-C 1 and AUTOSAR SW-C 2 in ECU 1) and between SW-C and basic software
(BSW). Further it provides the BSW services (as API abstraction) to SW-C.

The underlying software functions which implement the given requirements are
contained inside the SW-Cs. These are later on implemented manually by the software
developers. The RTE and Basic Software (BSW) which are provided by third-party
AUTOSAR software vendors are at the disposal of the developer for communication
and hardware abstraction. The inner functionality of the application and sensor/actuator
SWCs is defined in Internal Behavior elements. They encapsulate Runnable Entities,
which correspond to atomic functions on the code level that are implemented later in
the development process. The communication between the SWCs is modeled by using
communication ports. In this paper, we deal with the system configuration step and
specification of timing and energy properties in the SW-Cs.

2.2 Model-Based Timing Specification

Alternatives for specifying timing behavior in the UML domain have been introduced
more than a decade ago [31]. Modeling and Analysis of Real-Time and Embedded Sys-
tems (MARTE) [26] is a standardized UML profile, which extends UML and provides
support for modeling the platform, software and hardware aspects of an application.
There are several approaches in the direction of model-based timing specification in
the literature [1,20,33]. But, modeling constraints using AUTOSAR-TE and an auto-
mated extraction of timing parameters, synthesis of an analysis model and analysis of
the timing analysis model in a state-of-the-art timing analysis tool [11], is missing. In
this direction, a workflow for early synthesis of timing models in AUTOSAR-based
automotive embedded software systems has been proposed by the author in [22]. In
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this book chapter, the work in [22] is extended. Thereby, a workflow for synthesis of
energy-aware timing models in AUTOSAR-based embedded software developed using
UML/SysML domains is presented in this paper along with experimental evaluation.

There are also several modeling alternatives in non-UML domains such as SystemC
[4], Event-B3 and Matlab/Simulink [28] to name a few. Unlike UML-based profiles,
support for specification and analysis of timing properties is very limited in SystemC
and Event-B. The newly introduced System Composer toolbox in M/S [42] provides
system engineering capabilities in M/S. It supports creation of custom-defined profiles
and custom-defined scripts to analyze the models based on the stereotype values as in
the case of UML profile mechanisms and tools. However, there are no studies avail-
able yet on the usage of the new features in M/S for energy-aware timing analysis of
automotive embedded software models.

Further, several modeling languages, domain-specific languages and a number of
generic approaches have emerged that include timing behavior. PTIDES [6,45] and
Giotto [15] provide a good basis for defining an approach to model timing requirements.
However, these are often used to analyze system behavior rather than specification of
timing properties. In the following a brief background on AUTOSAR-TE and MARTE
are provided as they are used in this paper to annotate the AUTOSAR design model
with timing and energy properties respectively.

AUTOSAR-Timing Extensions (TE). The AUTOSAR-Timing Extensions (TE) meta-
model is separate from the AUTOSAR metamodel, in order to leave the option whether
to provide timing specifications or not. They feature an event-based model for the
description of the software’s temporal behavior and can be defined on top of a system
architecture. The AUTOSAR release with timing extensions and own timing model,
finds extensive usage in the automotive industry. This is supported by studies including
[9,13,34].

The TE metamodel (Fig. 2) provides five different views for timing specification,
depending on what kind of timing behavior of the AUTOSAR model is described [3].
The five views are VfbTiming, SwcTiming, SystemTiming, BswModuleTiming and Ecu-
Timing. In the experimental evaluation, the SwcTiming view is employed, as in the
system configuration step and timing specification step the SWCs are employed (cf.
Sect. 2.1). SwcTiming view describes the internal behavior timing of software compo-
nents. Further explanation of AUTOSAR methodology and AUTOSAR-TE are not pro-
vided here because of space limitations (interested readers are referred to [3]).

MARTE Profile. The MARTE profile [26] standardized by the OMG [31] is primarily
aimed at modeling and analysis of real time and embedded systems. It is a popular
standard which introduces a domain view for time modeling and defines standard UML
elements to express timing concepts of real time and embedded systems. MARTE also
enhances the UML to support value units with the aid of a Value Specification Language
(VSL). Further, the profile extends the UML to be able to model a platform, on which a
software application is executed and how the deployment of the software to the platform

3 http://www.event-b.org/index.html.

http://www.event-b.org/index.html
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Fig. 2. Overview of AUTOSAR Timing Extensions (TE) metamodel [3].

is made. When modeling a platform, there are (among others) elements for defining
processors, schedulers and threads.

In the context of the work presented in this paper, a decision on the usage of stan-
dardized profiles such as MARTE for practical scenarios relies on important aspects,
among others, such as (1) ease of use of standardized mechanisms (2) support for mod-
eling data, using a specific mechanism, which is required for a basic analysis (e.g.
timing, energy) and (3) support for employing a standardized mechanism in a UML
modeling tool. But, MARTE is an exhaustive profile with hundreds of stereotypes for
annotating aspects pertaining to real-time and embedded software and hardware. There-
fore an alternative is to make use of a custom-defined UML with only a handful of ele-
ments for defining time and energy properties, which may be required for a first-hand
energy-aware scheduling analysis.

Within the scope of this work, on investigating the available alternatives for model-
ing the energy properties in UML/SysML tools, it was found that this can be achieved
with the existing stereotypes of the MARTE profile. Moreover, the MARTE profile is
readily available as a profile-plug-in in UML/SysML modeling tools such as Rhap-
sody [17], EA [8] and Papyrus [32]. Therefore, it is decided to use the existing features
in standardized profiles such as MARTE, rather than reinventing the wheel for non-
functional properties specification employing UML (e.g. by developing a new custom-
defined profile). Further, the new proposals for UML profiles in related work (such as
[12]) indicate that, they are neither open source nor available as a model-based plug-in.
It is clear that such new proposals have negligible reuse potential.
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2.3 Model-Based Timing and Energy Analysis

The specified timing behavior in the design model can be analyzed using dedicated
timing analysis tools. There are several open source tools such as Cheddar [40] and
MAST [14]. Some popular proprietary timing analysis tools include chronSIM [19],
Gliwa T1. timing suite [11] and Timing Architect [43]. These tools are independent of
the modeling languages used. Therefore, they require the timing specifications to be
in a particular format, although some provide import functions for common modeling
languages. However, the timing analysis carried out in such tools are very late it in the
development process. It is imperative to note that the design errors realised from such
late timing analysis would be costly to fix at a later development stage. Hence, an early
model-based timing analysis is necessary to overcome this drawback.

On the other hand, there is no tool support for automated synthesis and export of
AUTOSAR-based timing analysis model (from AUTOSAR-based application design
model in UML tools) to these timing analysis tools. In the literature, AUTOSAR-TE
were used for a model-based timing analysis in works such as [24] and [38]. Further,
a review of the literature shows that there is no systematic model-based approach for
timing or energy analysis of AUTOSAR-based systems. Except for [22], there exists no
related work on early synthesis of timing models for model-based timing analysis of
AUTOSAR-based systems.

Further, a related work in [21] deals with a model-driven workflow for energy-aware
scheduling analysis of IoT enabled use cases. It carries out energy-aware timing analysis
(of UML models) of IoT use cases in state-of-the-art (timing) analysis tools. However,
ready made support for energy-aware timing analysis is not available in any of the state-
of-the-art timing analysis tools. Hence, in [21], an additional tool-plugin is implemented
in a timing analysis tool to include the energy properties and carry out energy-aware
timing analysis. Note that the workflow in [21] deals with the synthesis and analysis
of energy-aware timing models from hand-written IoT code. Thus, in the literature,
there is no published work dealing with the synthesis of energy-aware timing models in
AUTOSAR-based embedded software systems developed using UML/SysML domain.

Addressing this gap and in line with the novelties outlined in Sect. 1.2, in the remain-
der of this paper, the proposed workflow for synthesis of energy-aware timing models
in AUTOSAR-based systems and an experimental evaluation are presented in Sect. 3
and 4 respectively.

3 Workflow for Synthesis of Energy-Aware Timing Models

The proposed workflow for a systematic integration of the energy and timing perfor-
mance requirements in the AUTOSAR-design model and the automated synthesis of
an AUTOSAR-based energy-aware timing analysis model is presented in this section.
A series of steps involved in this systematic synthesis of energy-aware timing analysis
models incorporated in the AUTOSAR development process shown in Fig. 3. The steps
involved in the workflow are described in Sect. 3.1. The custom-defined generic timing-
energy metamodel used in the workflow is described in Sect. 3.2. The mapping among
elements in the AUTOSAR metamodel and the custom metamodel (from Sect. 3.2) w.r.t
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Fig. 3. Steps involved in synthesis of energy-aware timing analysis model incorporated in
AUTOSAR development process.

timing properties is described in Sect. 3.3. Similarly, mapping between MARTE stereo-
types and custom-defined metamodel (from Sect. 3.2) for energy properties is described
in Sect. 3.4. An overview of the M2M transformations used in the workflow is provided
in Sect. 3.5.

3.1 Steps Involved in the Synthesis of an Energy-Aware Timing Analysis Model

The proposed workflow for integrating the energy and timing performance requirements
in the AUTOSAR-design model and the automated synthesis of an AUTOSAR-based
energy-aware timing analysis model is shown in Fig. 3. It comprises of the following
steps:

1. In the first step (step (a) in Fig. 3), it is considered that an initial AUTOSAR-based
design model of the automotive embedded software application under consideration
is already modeled in an UML/SysML tool [8,17]. Note that step-(a) in Fig. 3 is
applied in an early stage of development process. It involves the specification of
the timing and energy requirements in the AUTOSAR-based design model using
AUTOSAR-TE and MARTE profile respectively. The output of this step is a timing
and energy-annotated AUTOSAR-based design model.

2. In line with the main scope of this paper, an AUTOSAR-based energy-aware timing
analysis model needs to be synthesised based on the inputs from step-(a) in Fig. 3.
For this purpose, given the energy-aware timing annotated design model as input,
Model-to-Model (M2M) transformations are implemented for extracting the timing
and energy properties. This results in the synthesis of the AUTOSAR-based energy-
aware timing analysis model (conforming to a generic metamodel, cf. Sect. 3.2).
Thus, the output of step-(b) in Fig. 3 is the synthesized energy-aware timing analysis
model.

Note that this resulting model from step (b) can be used for performance validation
such as energy-aware timing analysis and trade-off studies. Thus the output (model)
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from step (b) may be exported (cf. step (c) in Fig. 3), for instance in XML format, to
industry standard analysis tools [11,43].

3.2 Generic Timing-Energy Metamodel

A metamodel comprising a set of timing and energy properties is required for the
Model-to-Model (M2M) transformations in step-(b) in Fig. 3. A generic, custom-
defined metamodel for energy-aware timing analysis introduced in [21], for energy-
aware timing analysis of IoT-compliant use cases, is employed in this paper to syn-
thesize an energy-aware timing analysis model for AUTOSAR-based embedded soft-
ware systems developed using UML/SysML tools. This metamodel bears similarity to
the AUTOSAR metamodel with respect to the software and hardware architecture ele-
ments. It can be termed as a generic metamodel, as it closely adheres with timing models
used in several timing validation tools [11,43]. A simplified view of the custom-defined
timing-energy metamodel is shown in Fig. 4.

Fig. 4. Excerpt of the timing-energy metamodel [21].

From Fig. 4, it can be seen that the metamodel comprises a package with the ele-
ments required for an energy-aware timing evaluation of a software system, in a hierar-
chy. It consists of elements such as Packages, containing the different model elements
such as Runnables (e.g. an operation), SoftwareComponents, Tasks, Cores, ECUs and
ExecutionPaths. A task may or may not have a trigger, depending on its activation.
Each task and runnable comprises an attribute to store the execution time. This is used
as an input for timing analysis. A result of timing validation, namely the response time
is an attribute for tasks.
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Similarly, the power consumption modes (along with their average power rating)
specified in the UML design model can be mapped to the attribute PowerValue for
a core. Please note that only a simplified (yet sufficient) view of the timing-energy
analysis model is presented here, because of space limitations. Interested readers are
referred to [22] for a detailed description of the timing elements in the metamodel.

3.3 Mapping Among Metamodels for Timing Properties

In this section, the relevant metamodel elements from the custom-defined intermedi-
ate timing-energy metamodel (cf. Sect. 3.2, Fig. 4) are mapped to their counterparts in
the AUTOSAR-TE metamodel [3]. The AUTOSAR Tool Platform4 provides an EMF
model, which contains the element names as per specification. An evaluation version
of this AUTOSAR EMF model is used in this paper for mapping the timing metamodel
elements to the AUTOSAR metamodel elements. It is also used as an input metamodel
for the automated model transformations (cf. Sect. 3.5). A summary of relevant map-
pings of elements is shown in Table 1. In the following, these mappings are described
in more detail.

Table 1. Mapping of timing-related elements in proposed generic metamodel (in Fig. 4) to
AUTOSAR elements.

Nr Timing element in Fig. 4 AUTOSAR element Description

1 Model AUTOSAR Top-level model element

2 Package ARPackage Structuring element

3 SoftwareComponent AtomicSwComponentType Encapsulates functionality

4 Runnable RunnableEntity Executable operation

period Period of TimingEvent Period of operation

coreExecutionTime LatencyTimingConstraint Execution time of runnable

order RtePositionInTask Execution order of runnable

baseCycle RteActivationOffset First runnable execution

repetitionFactor runnable period/task period How often it is executed

5 ECU EcuInstance Electronic control unit

6 Core HwElement Processing core

period OsSecondsPerTick Seconds per clock tick

7 System System Network of ECUs

8 Task OsTask Schedulable unit

priority OsTaskPriority Fixed priority of task

taskType OsTaskSchedule Preemptability of task

synchronizationMechanism OsAlarmCounterRef Reference clock

synchronizationOffset OsAlarmAlarmTime Offset for the reference clock

activation OsAlarmCycleTime Periodic task activation

9 ExecutionPath TimingDescriptionEventChain End-to-end path

4 https://www.artop.org/.

https://www.artop.org/
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1. The top-most element of every AUTOSAR model is the AUTOSAR element. It
denotes the AUTOSAR revision and links to the corresponding XML schema def-
inition. This element is mapped to the Model element, as it represents a dedicated
model. Note that this element in Table 1 is not shown in the Fig. 4.

2. The ARPackage element gets mapped to the Package timing element, as it structures
the different AUTOSAR elements in packages and subpackages.

3. The mapping of software components is straightforward, because these elements
exist similarly as central modeling elements in the AUTOSAR standard. Every
AtomicSwComponentType of the AUTOSAR application model is mapped to a Soft
wareComponent in the timing metamodel. This includes SensorActuatorSwCom-
ponentTypes and ApplicationSwComponentTypes, as they inherit from the atomic
software component type.

4. The Runnable timing elements exist in AUTOSAR inside the InternalBehavior of an
AtomicSwComponentType as RunnableEntities. They represent the executable oper-
ations of the software components.

5. The ECU elements can be mapped to the AUTOSAR EcuInstance. This is used for
linking the software components, and therefore runnables, to their dedicated ECUs,
on which they are later on implemented and executed.

6. The Core elements are mapped to HwElements in the AUTOSAR model. They need
to be linked to a HwCategory of the type ProcessingCore. Each core belongs to an
ECU and is linked to it in the system mapping.

7. The System element in timing metamodel corresponds to a System element
AUTOSAR model. Overall, they represent a top-level element corresponding to a
network of ECUs.

8. Task elements are created in the AUTOSAR Os configuration as OsTasks. A task is
defined as a schedulable unit in timing analysis.

9. The end-to-end ExecutionPaths in the timing metamodel can be represented in the
AUTOSAR model as TimingDescriptionEventChains. These event chains group a
set of events belonging to the activation and termination of runnable entities.

Note that in place of the custom-defined but generic metamodel used in this paper,
an open source metamodel namely, AMALTHEA5, may be employed for M2M related
to timing properties. However, it does not provide ready made support (i.e., elements)
for modeling energy characteristics. Hence, in this paper we have employed our custom-
defined generic metamodel.

3.4 Mapping Between MARTE Stereotypes and Custom-Defined Timing-Energy
Metamodel for Energy Properties

For annotating the energy properties, the underlying CPU configuration modes (with
power consumption values of the microcontroller) are taken into consideration. This
can be obtained from measurements or from data sheets, for instance in the case
of Commercial Off-the-shelf (COTS) products. The mapping between the power
configuration modes for the CPU core can be added using the HWComponent
stereotype from MARTE profile (with tagged value staticConsumption) [26]. The

5 https://www.eclipse.org/app4mc/.

https://www.eclipse.org/app4mc/
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HWComputingResource stereotype (with tagged value resMult) indicating multiplic-
ity of the processing modes, can be additionaly used to link the processing modes to the
cores with the tag value processingUnits of SaExecHost stereotype. Please note that,
the aforementioned stereotypes are selected based on an analysis of support for energy
modeling in MARTE profile and the requirements for a first hand energy-aware timing
analysis of the AUTOSAR-based design models, proposed in this paper.

Table 2. Stereotypes used from MARTE profile for energy/power annotations in the design model
and their mapping to elements in Fig. 4.

MARTE Stereotype Tagged Values Description Mapping to element in Fig. 4

SaExecHost mainScheduler, schedPolicy,
utilization, isSched

CPU core and related
configuration

Core (also HWElement in
AUTOSAR), runnable, task

HwComponent staticConsumption Average power consumption
per processing mode

PowerValue

HwComputingResource resMult Linking various core
configurations

powerConsumptions in
PowerValue

The mapping between the MARTE stereotypes mentioned above and the corre-
sponding elements in the custom-defined timing-energy metamodel in Fig. 4 are shown
in Table 2. Each core element in Fig. 4 may comprise of a PowerValue denoting the
power consumption values of the underlying microcontroller. Thus, the power con-
sumption values specified using the HWComponent stereotype from MARTE profile
with tagged value staticConsumption, are mapped to the PowerValue element denoted
in Fig. 4. The various core configurations and their power values from HWCompo-
nent stereotype represented by the HWComputingResource stereotype correspond to
the multiplicity powerConsumptions in PowerValue element in the metamodel in Fig. 4.
These are required to link the various core configurations (e.g., power configuration
modes). Note that, for a first hand energy-aware timing analysis, the power configu-
ration models of the underlying hardware element (one or more cores) are taken into
consideration.

3.5 Model-to-Model (M2M) Transformations

As seen in Fig. 3, after step (a), a timing and energy annotated AUTOSAR-based design
model is now available in the UML/SysML tool under consideration. It can be exported
from the tool as an ARXML file [3] as input for step (b) in Fig. 3. Note that while employ-
ing Model-to-Model (M2M) transformations, both source and target models must con-
form with their respective metamodels. Here the source model is the timing and energy
annotated AUTOSAR design model obtained from the system description specification
in the UML/SysML tool in ARXML format. This conforms with the AUTOSAR meta-
model [3]. The target metamodel is the custom-defined generic timing-energy meta-
model introduced in Sect. 3.2. During the M2M transformations the timing and energy
properties are extracted from the annotated AUTOSAR-based design model (source
model) and a corresponding instance of the energy-aware timing analysis target meta-
model is synthesized. Note that here both the metamodels are available in EMF format.
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The synthesized analysis model is also available in EMF and XML formats. This model
may now be used for performance validation such as energy-aware scheduling.

In this work, the ATLAS transformation language (ATL) [2] is used for implement-
ing the M2M transformations. ATL is a widely used M2M transformation language
and readily available as a plug-in for Eclipse development environment. Thus, using
ATL a set of rules can be written to transform the AUTOSAR-based design model
to an instance of the intermediate timing-energy meta model, based on the mappings
listed in Table 1 and 2. The ATL implementation of the transformations in the proto-
type implementation of the workflow follows the regular structure of ATL transforma-
tions [2]. As stated earlier, the source model, M2M transformation and target models
each have their own separate metamodels, which are each based on a common meta-
metamodel (ECORE) [7]. The model transformations are implemented as an ATL mod-
ule, AUTOSARinUML2TimingEnergy.atl. These are generic implementations which can
be applied across any use case satisfying the source and target models used in the ATL
implementations. The implementation specifics of this module are explained in detail
in the next section along with examples from the use case.

4 Autonomous Emergency Braking System (AEBS)

This AEBS use case is introduced already in [22]. Since this book chapter is an exten-
sion of the work done in [22], only a brief introduction about the AEBS use case is
provided here. The main purpose of AEBSs is to warn the driver in case of an imminent
frontal collision. This happens through visual and acoustic warning signals as a first
step, followed by a tactile warning as the next level. The AEBS in cars use the Time-
To-Collision (TTC) value [16,25] to estimate the danger of the situation. It is defined
as the time left until a collision happens, if every object continues to move at the same
speed. To calculate TTC, AEBS needs data such as the distance to frontal objects (e.g.
from rador sensors) and wheel speed sensor input at certain speed ranges.

Fig. 5. Control flow and modules of the AEBS.
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The control flow and modules of the AEBS are showin in Fig. 5. The AEBS is
connected to sensors such as speed and radar sensors and actuators such as the warn-
ing LED, speaker and brakes via a software interface. Thus information such as the
speed of the car in ms−1 (from wheel speed sensor), distance in m and relative speed in
ms−1 (from radar sensor) are provided as inputs to the AEBS system. The output from
AEBS system can be referenced using port interfaces, which must be processed by the
corresponding actuator and issue a corresponding output (e.g. applying brakes, issuing
warning signal).

4.1 AUTOSAR Design Model

The AUTOSAR system description of the AEBS is modeled using the IBM Rational
Rhapsody Developer modeling tool [18]. Rhapsody is among the most popular UML
modeling tool with AUTOSAR support used in the automotive industry. It also supports
straight forward usage of the MARTE profile for energy annotations required for the
workflow in Fig. 3. The MARTE profile can be added to the model and its stereotypes
can be applied to the model elements directly, hence the choice of the tool.

CollisionDetection
«ApplicationSwComponentType»

obsPort:IfObstacles

speedPort:IfSpeed
TTCPort:IfTTC

obsPort:IfObstacles

speedPort:IfSpeed
TTCPort:IfTTC

ObstacleLocation
«ApplicationSwComponentType»

distPort:IfDistance

obsPort:IfObstacles

distPort:IfDistance

obsPort:IfObstacles

DriverWarning
«ApplicationSwComponentType»

brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

TTCPort:IfTTC
brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

TTCPort:IfTTC

SpeedFilter
«SensorActuatorSwComponentType»

speedSensorPort:IfSpeedSensor

speedPort:IfSpeed

speedSensorPort:IfSpeedSensor

speedPort:IfSpeed

DistanceFilter
«SensorActuatorSwComponentType»

radarSensorPort:IfRadarSensor

distPort:IfDistance

radarSensorPort:IfRadarSensor
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IfTTC
«SenderReceiverInterface»

«dataElement» ttc:int

IfLED
«ClientServerInterface»

«ClientServerOperation» setLight(on:Boolean):void

IfSpeaker
«ClientServerInterface»

«ClientServerOperation» playWarningSound():void

IfBrake
«ClientServerInterface»

«ClientServerOperation» emergencyBrake():void
«ClientServerOperation» prepareBrake():void
«ClientServerOperation» releaseBrake():void
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IfSpeedSensor
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«ClientServerOperation» getSensorValue():int

IfRadarSensor
«ClientServerInterface»
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Fig. 6. Software components of AEBS in software component diagram modeled in Rhapsody.

The first step in implementing the AUTOSAR design model is to define the software
components, of which the system is composed of as shown in Fig. 6.

– The sensor filter modules on the left-hand side are modeled as SensorActuator-
SwComponentTypes. They have client ports (speedSensorPort, radarSensorPort)
to be able to connect to the corresponding sensors. These ports are typed by
ClientServerInterfaces that provide an operation for retrieving the sensor value. This
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is illustrated by the association between the ports and the interfaces, which is stereo-
typed as a portType. The rest of the modules are modeled as ApplicationSwCompo-
nentTypes, as they do not directly represent a sensor or an actuator.

– The communication between the sensor filters and the CollisionDetection and
ObstacleLocation components happens through sender/receiver ports. The filtered
dataElements get sent to the processing components. Equally, the ObstacleLocation
sends a list of obstacles (comprising of distance and relative speed) to the Collision-
Detection. The communication between CollisionDetection and DriverWarning is
also typed as sender/receiver and the corresponding dataElement is the TTC value.

– In the end, the DriverWarning component is connected by client ports (ledPort,
speakerPort and brakePort) to the three actuators. The corresponding interfaces pro-
vide the necessary operations for the different levels of driver warning, e.g., setting
the warning LED light status (setLight), playing a warning sound (playWarning-
Sound) or performing an emergency brake (emergencyBrake).

Thus, the modules for the AEBS use case shown in Fig. 5 are modeled as AUTOSAR
software components in the UML tool [17], as seen in Fig. 6.

4.2 Timing Specification

The timing constraints of the AEBS are added to the model in Fig. 6 with the help of
AUTOSAR-TE in the UML tool Rhapsody. Figure 7 shows a latency constraint for the
checkTTC runnable entity of the DriverWarning software component (seen at top-right
of Fig. 6). An SwcTiming is created for each software component in the AEBS, which
link to the component’s internal behavior with the l behavior association. Inside these
elements, two TDEventSwcInternalBehaviors are defined for each runnable entity (in
this case, checkTTC of IBDriverWarning). The first event highlights the activation of
the runnable, while the second highlights the termination. This is defined by setting the

DriverWarningTiming
«SwcTiming»

checkTTCActivated
«TDEventSwcInternalBehavior»

checkTTCTerminated
«TDEventSwcInternalBehavior»checkTTCLatencyConstraint

«LatencyTimingConstraint,role_timingGuarantee»

minLatency
«minimum»

cseCode:CseCodeType=3
cseCodeFactor:RhpInteger=3

maxLatency
«maximum»

cseCode:CseCodeType=3
cseCodeFactor:RhpInteger=5

checkTTCEventChain
«TimingDescriptionEventChain»

«l_response»«l_stimulus»

«l_scope»

Application::SoftwareComponents::DriverWarning::IBDriverWarning
1 «SwcInternalBehavior»

checkTTC
1 «RunnableEntity»

«l_runnable» «l_runnable»

«l_behavior»

Fig. 7. Timing attributes for the checkTTC runnable entity.
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tag tdEventSwcInternalBehaviorType of the timing event to either runnableEntityActi-
vated or runnableEntityTerminated. Both these events are now used to form a Timing-
DescriptionEventChain, in which the event chain stimulus is the runnable activation
and the event chain response is the runnable termination.

Finally, the core execution time of the runnable checkTTC is specified by the
checkTTCLatencyConstraint that links to its event chain with l scope. The role timing-
Guarantee stereotype declares that this constraint is the expected execution time instead
of a requirement (role timingRequirement). The related timing information can be given
as maximum and minimum execution time and is specified by ASAM CSE codes [39].
The cseCode specifies the time base (e.g., 2 = 100µs, 3 = 1 ms and 4 = 10 ms) and the
cseCodeFactor determines an integer scaling factor. Thus, in this case, the execution
time of the checkTTC runnable entity lies between 3 ms and 5 ms.

Fig. 8. System diagram containing the system mapping, root software composition and energy
annotations for the hardware elements with processing modes for AEBS use case.

4.3 Specification of Energy Properties

In the custom-defined generic metamodel in Fig. 4, each core may comprise of a power
value denoting the power consumption values of the underlying microcontroller. Based
on the data sheet of the target, the various power ratings for different processor clock
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rates can be obtained. These power consumption values are specified in the design
model using the staticConsumption tagged value of HWComponent, as per the map-
ping introduced in Table 2. For the AEBS use case example in this paper, the power
consumption modes of an ARM processor [30] is taken into consideration (cf. Table 3).
Note that a simple example is used here to demonstrate the direct usage of power con-
sumption values from a COTS product data sheet. For instance, the power consumption
during three active power modes shown in Table 3 namely, 23.1 mW, 76.59 mW and
138.6 mW (corresponding to 12 MHz, 48 MHz and 100 MHz clock frequencies) are
specified in the design model as shown in Fig. 8.

Table 3. Power consumption modes for an ARM single core processor [30].

Processing Mode Clock Frequency Power

1 100 MHz 138.6 mW

2 48 MHz 76.59 mW

3 12 MHz 23.1 mW

4.4 Model Transformations

The generic M2M transformations are implemented in an ATL module, AUTOSAR-
inUML2TimingEnergy.atl. It can be applied to any use case (e.g. AEBS) which satis-
fies the source and target model criteria as in the workflow in Fig. 3. In this module,
there are 9 matched rules for all conditional mappings and 8 lazy rules for all uncondi-
tional mappings. In addition, 15 helpers are implemented which may be invoked by the
transformation rules. Th helpers are often used as getter() and setter() methods. In the
prototype, the helpers are implemented, for instance to resolve computation units (e.g.
nano/milli seconds and milli/micro watts) and to provide assertions for type of model
and timing elements (e.g. a softwareComponent and a runnable). An example for each
type of rule (matched and lazy) and helper, from the prototype implementation of the
M2M transformations in AUTOSARinUML2TimingEnergy.atl is described below.

Matched Rule. The rules consist of a source pattern in the from section and a target
pattern in the to section. The source pattern specifies the type of the source model ele-
ment to be matched and the target pattern contains the output model element that will be
created by the transformation for each source element. In the ATL module AUTOSAR-
inUML2TimingEnergy.atl, for synthesis of energy-aware timing analysis models, the
matched rules are used for source elements such as model, package, classes and for the
elements with applied stereotypes from AUTOSAR profile shown in Table 1.
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Listing 1.1. An example of an ATL matched rule.

1 -- @atlcompiler emftvm
2 -- @path TimingEnergy=/de.uos.te.model/model/timingEnergy.ecore
3 -- @nsURI UML=http://www.eclipse.org/uml2/5.0.0/UML
4 -- @nsURI MARTE=http://www.eclipse.org/papyrus/MARTE/1
5 -- @nsURI AR=http://autosar.org/schema/r4.0/autosar40
6
7 module AUTOSARinUML2TimingEnergy;
8 create OUT: TimingEnergy, from IN : AR
9 rule AtomicSWC2SWComponent extends

10 Identifiable2ICATObject{
11 from
12 input : AR!AtomicSwComponentType
13 to
14 output : TimingEnergy!SoftwareComponent(
15 runnables <- input.internalBehaviors
16 ->collect(ib | ib.runnables)
17 -> flatten())}

A simple example of an ATL matched rule is shown in Listing 1.1. Note that in lines
2–5 the various paths of the metamodels invoked in the ATL module are specified
(either local or at URI-repository resource). The AtomicSWC2SWComponent rule
extends the parent rule Identifiable2ICATObject and thus, its target pattern
is inherited. This means that, the target element SoftwareComponent automatically
receives the name and description attributes from parent rule (i.e., Identifiable-
2ICATObject-not listed here).

In this matched rule, as seen in lines 11–14, a software component in the source
AUTOSAR (meta) model (AR!AtomicSwComponentType) is matched to a tar-
get software component element (TimingEnergy!SoftwareComponent) in the
timing-energy (meta) model. Thereby, an instance of the target element (i.e., a software
component corresponding to the timing-energy analysis meta-model) is created.

Additionally, it receives the runnables (lines 15–17) attribute specified in the
new target pattern, to link to the software component’s runnables. The collect opera-
tion iterates through all internal behavior elements (ib) and returns the list of runnables
for each. As this statement returns a two-dimensional list, the flatten operation
ensures that a list directly containing the runnables is returned and assigned to the
runnables attribute. Use an example to describe here all the rules or later on.

Lazy Rule. Lazy rules are used for source elements that satisfy specific conditions
and must be called explicitly for creating target elements. Listing 1.2 shows an example
of an ATL lazy rule which is used to create a powerValue from a String. It may
be recalled that the power consumption values are specified in the tag values of the
respective MARTE stereotype (as a string). The ATL rule in Listing 1.2 converts this
specified power value as a string to a corresponding model element powerValue in
the generic metamodel (cf. Fig. 4, Sect. 3.3, Table 3, Sect. 4.3 & Fig. 8).
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Listing 1.2. An example of an ATL Lazy rule.

1 lazy rule StringToPowerValue {
2 from
3 string: String
4 using {
5 splitted : Sequence(String) = string.splitPowerConsumption();
6 value: Real = thisModule.valueFromSplitPowerConsumption(splitted);
7 unit: TimingEnergy!PowerUnit =
8 thisModule.unitFromSplitPowerConsumption(splitted);
9 }

10 to
11 timingEneryElement: TimingEnergy!PowerValue (
12 unit <- unit,
13 value <- if value.oclIsUndefined() then
14 OclUndefined
15 else
16 value
17 endif
18 )
19 }

Let us consider an example of power value of processing mode 1, namely 138.6mw
(cf. Table 3). This is specified in the design model using the tagged value static-
Consumption of the HWComponent MARTE stereotype (cf. Table 2 & Fig. 8). The lazy
rule StringToPowerValue in Listing 1.2, splits the above input string 138.6mw
employing the using keyword and expressions in ATL (lines 5–9). The using
keyword and expression can be used to define complex target pattern elements, thus
employed in this lazy rule. Thus, the resulting variables namely unit and value
are assigned to the corresponding target elements in powerValue (cf. powerValue in
Fig. 4) in lines 11–17 of Listing 1.2.

Thus in the example in Fig. 8, the lazy rule StringToPowerValue returns the
power value from a string specified in the tagged value in the stereotypes in model
elements. Thus, the power rating for each processing mode such as 138.6mW, 76.59mW
and 23.1mW specified in Fig. 8 are returned as output for further calculations.

Helpers. Helpers can be used to define (global) variables and functions. Some exam-
ples of include setter(), getter() methods and functions to resolve attributes involving
repetitive pieces of code in one place (e.g. resolving metric units). Helper functions
are Object Constraint Language (OCL) [31] expressions. They can call each other by
recursion or they can be called from within rules.

Listing 1.3. An example of an ATL Helper.

1 helper def: resolveStaticConsumptionFromElement(processingUnit:
2 UML!Element): String = let hwComponent : UML!Stereotype =
3 processingUnit.getHwComponentStereotype() in
4 if not hwComponent.oclIsUndefined() then
5 processingUnit.getValue(hwComponent, ’staticConsumption’)
6 else
7 OclUndefined
8 endif;
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In Listing 1.3, an example of a helper to resolve the tag value staticConsumption
from the MARTE stereotype element HWComponent (cf. Table 2) is presented.
In the example in Fig. 8, this helper reads the input value of the tagged value
staticConsumption, which is highlighted in Fig. 8 in Hardware::Core1 element
and returns the corresponding value of the processing unit.

Similar to the above rules, for the remaining elements in Table 1, a total of 17
ATL rules (9 matched and 8 lazy) and 15 helpers are implemented in the AUTOSAR-
inUML2TimingEnergy.atl module.

4.5 Synthesis of Energy-Aware Timing Analysis Model of AEBS

In the above steps, the AUTOSAR-based design model and its corresponding timing
and energy annotated AUTOSAR-based design model are created in the UML model-
ing tool Rhapsody (cf. step(a) in Fig. 3). This model is exported from the UML tool
in the interchangeable AUTOSAR ARXML format for M2M transformations (cf. step
(b) in Fig. 3). The M2M transformations in AUTOSARinUML2TimingEnergy.atl mod-
ule are invoked in the experimental evaluation directly from the Eclipse development
environment. The synthesized AUTOSAR-based energy-aware timing analysis model
of the AEBS use case is shown in Fig. 9.

Fig. 9. Synthesized energy-aware timing model of AEBS use case.
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The necessary elements for a timing analysis were extracted from the AUTOSAR
design model annotated with timing properties (cf. Fig. 6, 7) according to the mapping
in Table 1. As seen in Fig. 9, the AEBS model is structured by different Packages and the
System element contains the complete software and hardware elements in a hierarchy.
For example, the runnable timeToCollision with its corresponding execution time [5 ms,
7 ms] can be seen highlighted in Fig. 9. This runnable is allocated to the SystemTask,
which is in turn allocated to Core1 of the ECU. Further, the power consumption modes
of the hardware cores are also created corresponding to the annotations in design model.
This is highlighted for core1 and core2 in Fig. 9 with the respective power values (138.6,
76.59, 23.1) for each processing mode.

4.6 Performance Analysis

A quantitative performance analysis of the prototype implementation of the workflow
in Fig. 3 has been carried out by invoking the transformations for the AEBS use case
with varying number of SWCs in the AUTOSAR-based UML design model. This is
because, the number of software components (apart from tasks) may be considered
as a primary factor for computing complexities involved in schedulability analysis of
systems. Further, the number of cores and power consumption modes were also varied
to invoke respective M2M transformations for resolving the power consumption modes.

For varying input sizes namely, SWCs and hardware cores in annotated design
model), time and memory requirement of the ATL module to synthesize the respec-
tive instance of the AUTOSAR-based energy-aware timing analysis model is deter-
mined (cf. Table 4). For varying inputs of SWCs, the number of cores were set to two,
each having three power consumption modes as described in Sect. 4.3. This is because,
the number of SWCs in an AUTOSAR design model can be up to several hundreds.
Whereas, the number of cores and their power consumption modes would not scale
to such values, hence not provided as a separate set of input in Table 4. The aforesaid
experiments were carried out on a standard X-86 based host with Windows-XP OS. The
results indicate that the ATL transformations terminate once the generation of the timing
analysis model is completed. The generation time and memory requirement is bounded
for varying input sizes. This demonstrates the applicability and suitability of the steps
involved in the proposed approach for early model-based synthesis of AUTOSAR-based
energy-aware timing analysis model from AUTOSAR-based design models developed
in UML/SysML tools.

Table 4. Set of inputs, time & memory requirement on a standard X-86 based host for the
AUTOSARinUML2TimingEnergy.atl ATL module.

SWCs Time (s) Memory (MB)

10 26.3 4.1

18 54.2 6.3

23 66.34 8.7

43 136.4 20.7
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5 Conclusion

In this book chapter, a systematic workflow for integration of energy and timing require-
ments in the AUTOSAR-based design model in UML/SysML tools has been presented.
Thereby, employing a series of steps, an automated and early synthesis of energy-aware
timing analysis models is incorporated in the automotive embedded software devel-
opment process. These performance analysis models may be employed for an early
evaluation and decision on the best set of performance configuration and trade-off anal-
ysis (e.g. timing vs energy). Thus, employing such performance analysis workflows not
only allow us to understand the performance aspects and behavior of the systems during
early design stages, but also help to explore different design architectural choices and
quantitatively evaluate their implications on system performance. Fine tuning the mod-
eling of energy and timing parameters, such as specification of energy consumption and
timing budget per function call is one among the items for future work.
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Abstract. Virtual prototyping and co-simulation of mixed analog/ dig-
ital embedded systems have emerged as a promising research topic, in
particular for designing medical appliances. In the paper, we show how
the integration of different, analog and digital, Models of Computation
(MoC) within an UML/SysML based environment, can offer an efficient
assistance for designing a cyber-physical system in a progressive and
systematic manner. For this, we rely on formal verification and abstract
simulation on a high abstraction level, and on Multi-MoC virtual proto-
typing on a lower abstraction level. A realistic echo monitoring system
illustrates (i) the method, (ii) the modeling languages, and (iii) the dif-
ferent verification techniques.

Keywords: Embedded systems · Analog/mixed signal design · Virtual
prototyping

1 Introduction

Embedded systems built upon analog and digital components are also called
Cyber-Physical Systems (CPS). These components are commonly built upon
Application Specific Integrated Circuits (ASIC), Field Programmable Gate
Arrays (FPGA), Digital Signal Processors (DSPs), hardware accelerators, ana-
log/mixed signal (AMS) and radio frequency (RF) circuits on the one hand, and
System on chip (SoC) running the software on general purpose processors on
the other. The large variety of hardware and software combinations to explore
opens up a vast design space which is difficult to handle when designing a CPS.

Often, some parts of the system already exist; for example, some software
stemming from previous versions of an embedded system has to be adapted to
more recent hardware. Additionally, analog and digital designs are developed in
parallel by different teams and have to be integrated.

While in [26], we have already shown how to handle system-level modeling
of Cyber Physical Systems, we now propose a complete method for modeling
and analyzing such systems, that includes high-level models of all hardware
and software components for HW/SW partitioning, and more precise models
once partitioning is done. The handling of different MoCs from a high level of
c© Springer Nature Switzerland AG 2021
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abstraction until a low level, main contribution presented in [25], is extended by
the handling of software that runs on the digital part, and full-system simulation
of the entire system.

The contributions are demonstrated over a realistic case study taken from the
early design phase of an ongoing project inside the EchOpen community [17],
which is focused on the design of a portable and affordable echo-stethoscope,
mostly targeting developing countries. EchOpen is based on the principles of
open hardware and open software. While adhering to a top-down approach of
successive refinement of the model on the different levels, we also use pre-existing
code as an input for our models, both for the application and for the analog part.

The paper first describes the abstractions on our two levels of abstraction
and how they can efficiently be used designing CPS. After discussing related
work in Sect. 2, we introduce the concepts of both digital and analog modeling
in Sect. 3. Our contribution is described in Sects. 4 and 5 and applied to a larger
case study in Sect. 6.

2 Related Work

The following tools target analog/mixed signal or multi-domain design and co-
simulation.

Ptolemy II [35] is based upon the data-flow model. It addresses digital/analog
systems by defining several sub domains. Instantiation of elements controlling
time synchronization between domains is left to the designer. Recently, a co-
simulation framework for timing verification of cyber-physical systems [28] from
Ptolemy models, named Metronomy, has been developed.

Metropolis [6] is also based on high level models and facilitates the sep-
aration of concerns between computation and communication aspects. While
heterogeneous systems are taken into consideration, heterogeneity can only be
represented using processes, mediums, quantities and constraints; hierarchical
models are not allowed.

Metro II [16] is based on hierarchical high-level models. So-called Adapters
are used for data synchronization between components belonging to different
Models of Computation (MoCs), yet the model designer still has to implement
time synchronization. As a common simulation kernel handles the entire process
execution (digital and analog), MoCs are not well separated.

Discrete Event System Specification (DEVS, [12]) is a modular and hierar-
chical formalism for modeling and analyzing general systems. DEVS supports
discrete events and continuous systems. Continuous functions can be described
by differential equations, or hybrid systems. Although a number of platform
implementations based on DEVS exist, ranging from Petri Net over object ori-
ented to Python based approaches, full-system simulation, taking into account
hardware, software and an operating system, is not supported.

Modelica [19] is an object-oriented modeling language for component-oriented
systems containing e.g. mechanical, electrical, electronic and hydraulic compo-
nents. Classes contain sets of equations that can be translated into objects run-
ning on a simulation engine. Yet, since time synchronization is not predefined,
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the simulation engine must manipulate objects in a symbolic way in order to
determine an execution order between components of different MoCs. Linking
simulations with different Models of Computation can be done by using e.g. the
Functional Mock-up Interface [9], closely related to the Modelica tools.

From the Micro Electro Mechanical Systems (MEMS) community [10] stems
an approach which can transform structural SysML diagrams into VHDL-AMS
code. It is thus closely related to our work, but limited to its related domain.
Moreover, VHDL specifications are less flexible than most other approaches for
expressing different Models of Computation, VHDL being essentially a hardware
description language at register transfer level.

SystemC AMS extensions [7,43], is a library of C++ classes based on Sys-
temC [30], extending SystemC with AMS and RF features. In the scope of
the BeyondDreams project [8], a mixed analog-digital systems proof-of-concept
simulator has been developed, following the SystemC AMS extension standard
[18]. Another simulator is proposed in the H-Inception project [29]. All of these
approaches rely on SystemC AMS code i.e. they do not provide a high-level
interface for specifying the application.

UML/SysML based modeling techniques such as MARTE and Gaspard2 [20,
44] are extremely popular for capturing the behavior of embedded systems, but
less widely used for heterogeneous system design [38].

As prototyping on a concrete platform is a slow and costly process, a full-
system virtual platform with a real operating system becomes desirable. More-
over, when targeting co-simulation with a significant software proportion running
on the digital (i.e. MPSoC) part of the virtual platform, full-system simulation is
mandatory : software has to be loaded into different memory sections, parallelism
of tasks and processors has to be handled.

With very few exceptions such as [32,41], UML/SysML-based techniques
do not support refinement until cycle/bit accurate level virtual prototypes nor
provide OS support for full-system simulation. Co-simulation between different
MoC is usually out of scope, too.

3 Basic Concepts

Let us briefly introduce the two fundamental concepts and associated tools
which are the basis of the present contribution. On the one hand, we follow
the multi-level model-based approach of TTool for design (digital) systems [4],
as in our previous contributions [22]. On the other hand, we introduce analog
concepts in the two modeling levels of TTool. We consider two abstraction lev-
els, hardware/software partitioning, when the decision is taken for tasks to be
implemented either in hardware or in software, and software design, considering
hardware and software parts separately and deploying the software on the hard-
ware once the partitioning is done. For digital platforms, TTool can generate a
SystemC-based virtual prototype from the lowest abstraction level. Thus, the
choice of a virtual prototype as a combination of SystemC AMS and System C
was natural.
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Fig. 1. Methodology: Integration in the TTool partitioning level [25,26]. Numbers rep-
resent section numbers in the paper.

3.1 Multi-level Model-Based Design

Model-based engineering of (digital) embedded systems can be performed at
different abstraction levels, grouped into two subsets: functional and partitioning
(high level), software component design and deployment (low level), as shown in
Fig. 1. Specific SysML views and diagrams have already been defined for each
abstraction level [22].

The partitioning level features two sub-levels.

1. The purely functional level relies on logical time where functional operators
describing the behavior of tasks. These operators can describe non determin-
istic behavior, and model in an abstract way the complexity of computations.

2. The (system-level) mapping level gives a physical time to complexity opera-
tions, thus giving a physical time to delays. However, the highly abstracted
hardware components of our approach make these estimations imprecise:
the values obtained—which might be used as a partitioning decision—are
expected to be confirmed during the next levels.

At the software design level, tasks are further detailed and then deployed on
more concrete hardware components. Thus, software deployment is intended
to explore the interaction of software with all other components (digital and
analog). The software design level thus includes two sub-levels.

1. At the software component design level, high-level timing constraints of soft-
ware components can be evaluated by interactive simulation or formal verifi-
cation, still without hardware.

2. The deployment level allows a designer to map software components onto
hardware elements (CPU, memory, etc.) and then generating a virtual pro-
totype. A cycle and bit accurate SystemC-based simulation [3] is then used
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to obtain cycle-precise measurements. Thanks to this low-level simulation,
mapping decisions taken at higher level can be checked again.

To closely analyze the deployment of software components, Analog/Mixed
Signal components have to be precisely described. Indeed, since their semantics
strongly differ from the one of digital components, the interactions between the
two models of computations have to be closely captured. In [25] we further
elaborate on semantic aspects, using SysML diagrams.

3.2 SystemC AMS

SystemC AMS makes it possible to model both digital components and analog
components. Digital components rely on a a Discrete Event (DE) semantics,
while analog components are described with the Timed Data Flow (TDF) Model
of Computation, itself based on the timeless Synchronous Data Flow (SDF)
semantics [31].

Discrete Event Model of Computation. A Discrete-Event (DE) simulation
abstracts a system as a discrete sequence of events in time, where each event sig-
nals a change of state, in contrast to continuous simulation in which the system
state changes continuously over time. A well-known example of a DE framework
is Ptolemy II [35]. DE models in SystemC AMS are essentially SystemC descrip-
tions, using its event-based simulation kernel [30]. DE modules have input and
output ports, and contain SystemC code.

Timed Data Flow Model of Computation. In Timed Data Flow (TDF), continu-
ous functions are sampled at discrete intervals. A TDF module is described with
an attribute representing the time step and a processing function. A processing
function is a mathematical function depending on the module inputs and/or
internal states. At each time step, a TDF module first reads a fixed number
of samples from each of its input ports, then executes its processing function,
and finally writes a fixed number of samples to each of its output ports. TDF
modules have the following attributes:

Fig. 2. TDF cluster with two TDF modules and one DE module [25].
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– Module timestep (Tm) denotes the period during which the module will be
activated. One module will only be activated if there are enough samples
available at its input ports.

– Rate (R). Each module reads or writes a fixed number of data samples each
time it is activated. This number is annotated to the ports and it is known
as the port rate.

– Port timestep (Tp) is the period between module port activation. It also
denotes the time interval between two samples that are read or written.

– Delay (D) D can be assigned to a port to make it store a given number of
samples at each activation, and read or write them in the next activation.

A TDF cluster consists of TDF and DE modules connected by signals, which
transmit the data samples. Figure 2 shows a TDF cluster with the representation
defined in the SystemC AMS standard. [7]. The DE module Y is represented as a
white block, the two TDF modules A and B as gray blocks. TDF ports are black
squares, TDF converter ports are black and white squares, and DE ports are
white squares. TDF signals are arrows. The converter port, shown as black-and
white squares, serves as interfaces between the TDF and DE MoC. The module
timestep of A is 6 ms, its port timestep 2 ms and its rate 3. B has a port and
module timestep of 4 ms and a rate of 1. B has a delay of 1.

The module timestep must be consistent with regards to the rate and time
step of all ports of a module. The relation between timesteps and rates is as
follows, where Tm is the module timestep, Tpi and Tpo are the input and output
port timesteps, Rpi and Rpo the input and output port rates, respectively:

Tm = Tpi × Rpi = Tpo × Rpo

Once this consistency has been validated for a particular cluster by propagating
the parameters downstream and upstream [1], the cluster may operate at any
frequency. In the example shown in Fig. 2, there are TDF ports between A and
B outputs to a converter port. Port rates, delays and timesteps as well as module
timesteps are given for the TDF modules. The equation is satisfied for modules
A (6 ms = 2 ms × 3) and B (4 ms = 4 ms × 1). A valid schedule is the execution
order of the TDF modules, in our case A-B-A-B-B.

3.3 Co-Simulation

TDF clusters can contain TDF and DE blocks; in SystemC AMS, they are
instantiated together in a common SystemC AMS top cell. Whenever TDF and
DE modules coexist in a SystemC AMS specification, they are co-simulated:
the SystemC kernel controls the AMS kernel which runs continuously until
interrupted.

According to [15], when a SystemC AMS simulation is being executed, the
execution of the SystemC DE simulation kernel is blocked while the SystemC
AMS simulation kernel continues running. As a consequence, the DE simulation
time (tDE) does not advance at all, while the TDF simulation time (tTDF ) runs
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according to the time steps of the TDF modules and ports. On access to a TDF
converter port, the SystemC AMS simulation kernel is interrupted and yields to
the SystemC DE simulation kernel. This way, tDE advances until it is equal to
tTDF . In general, tTDF runs ahead of the tDE . Recent contributions have shown
how to check these causality aspects before simulation [2] or even before code
generation [14,26]; the latter approach has been adopted in TTool.

Obviously, the complexity of this co-simulation also depends on the com-
plexity of software components running in the digital part. It is thus a common
situation to run a full-system virtual platform with an operating system and
software loaded into a (simulated) memory.

4 Partitioning Level

The paper proposes further extension of the high-level modeling and verification
capabilities of an existing framework, named TTool [4], in order to better design
such complex applications, where analog parts interact with each other as well
as with the digital domain.

In TTool, functionality and hardware are described with SysML-like dia-
grams, and the behavior of functions is described with activity diagrams [5].
Just like for digital functions, the behavior of each SystemC AMS module is
captured with an extended SysML activity diagrams. Once functions have been
associated with hardware components, C++ simulation code can be generated
automatically from these. In Fig. 1, the red circle points out the analog extensions
at partitioning level, and the orange circles highlight the extensions at software
design level. A separate SystemC AMS prototype is generated for co-simulation
(lower right).

4.1 Functional Modeling and Verification

The following paragraph extends the formalization of the two levels of modeling
and their interaction [23,25].

Structural Modeling. A partitioning P is defined as a set of models P =
(F,A,M), with F a Functional Model, A an Architecture Model, and M a
Mapping Model. The functional model is defined as F = (T,C) where T is a set
of tasks, and C is a set of communications between tasks. A Task t is defined
as t = (Attr,B) with Attr a set of attributes, and B a behavior. From a SysML
point of view, block definition and internal block diagrams are used to capture
functions and architectural components. Mapping is performed with allocations.

Behavioral Modeling. We model all tasks t ∈ T , be they later implemented
in hardware (analog or digital) or software. Essentially, we use an extended form
of activity diagrams as e.g. in [5]. Behavioral diagrams capture control flow in
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the form of e.g. non-deterministic and guarded choices, and general control oper-
ators. Specific operators can be used for read and write operations on channels,
and sending and receiving of events. Data abstraction is a key point: channels do
not convey values, but only a number of samples, while events are used as control
signals. Events can only occur in the digital part or at the interface between the
analog and digital part, the notion of channel in TDF clusters being flow-based.

More formally, a behavior B = (Ctrl, CommOp,CompOp,Con()) consists of
interconnected control operators Ctrl, communication operators CommOp and
complexity operators CompOp modeling the complexity of algorithms through
the description of a min/max interval of integer/float/custom operations. Con :
op �→ op connects operators together. The left hand side of Fig. 3 shows typical
operators of activity diagrams. Their basic translation into SystemC AMS is
given on the right.

Modeling DE Modules. Discrete Event (DE) modules can easily be captured
as functions. A customized activity diagram is associated to each of them, as for
other functions [25].

– To capture the semantics of transfer of data between DE modules, channel
and event communications between functions can be used.

– Choices are obviously modeled with the choice operator. Non deterministic
choices are not allowed. Choices can thus be translated with “if”/“else” state-
ments in SystemC.

– To capture the estimated execution time of the module, we have added a com-
plexity operator abstracting an algorithm. In lower levels (e.g, software com-
ponent design), these operators are expected to be replaced by their related
algorithm.

Modeling Analog Modules. Capturing analog modules at a high abstraction
level is much less obvious, since activity diagrams have a discrete-based seman-
tics. All communication between primitive modules is done by exchange of data
samples via channels, activation is based on data reception; events are not per-
mitted. Between analog modules and the MPSoC, events can be used: thus we
model the fact that the MPSoC regularly requests data from the cluster.

From a behavioral point of view, extended activity diagrams are used as
follows:

– Branches stemming from choices (simulation code relies on “if” statements in
the TDF processing function) can be directly translated into guarded branch
control structures in the activity diagram.

– A TDF Module Timestep is abstracted with a physical delay operator of our
activity diagrams. The schedule, i.e. the execution order of TDF modules in
its cluster, is either estimated or derived from the SystemC AMS model, if
the latter already exists.
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Fig. 3. Relation between operators in extended activity diagrams of the TTool func-
tional level (on the left) and their counterparts in SystemC AMS [25] (on the right).

– Activity diagrams support read and write operations on channels. They allow
to specify a number of data samples written to/read from a channel, which
can be interpreted as the port rate at which samples are written to/read from
a port in TDF.

– Infinite repetition of the cluster schedule (in a data flow-like fashion) is cap-
tured by an infinite loop in the activity diagram.

– To represent transition between TDF and DE, we use composite components
(i.e. composite SysML blocks). A composite component may contain either
TDF or DE modules but not both; converter ports are modeled by composite
ports. TDF converter ports are represented by composite ports.

Port timesteps are not represented in the functional view, neither are delays (in
the sense of SystemC AMS: they are not related to delays in activity diagrams):
they can be used at software/hardware design level only, in the SystemC AMS
representation. The specification of delays makes it possible to calculate the
schedule and enforce causality (see Sect. 3.2).

Figure 3 shows the relation between TDF/DE cluster and activity diagrams.
For the example in Fig. 2, Fig. 4(a) shows the functional view and related

activity diagrams. Block A writes a signal which is read by block B, which
in turn communicates with block Y; the conversion port is represented by a
composite port.
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4.2 Hardware Components

At partitioning level, hardware components are very abstract: communication,
execution and storage nodes are defined separately. A CPU and its operating
systems are defined as a set of parameters such as an average cache-miss ratio, go-
to-idle time, context switch penalty, etc. We take into consideration the following
execution nodes:

– Central Processing Unit (CPU)
– Hardware Accelerator (HWA)
– Field Programmable Gate Array (FPGA)

We relate tasks (i.e. blocks of the Functional View) to architectural blocks using
allocations. A task mapped to a processor will be implemented in software, while
a task mapped to a hardware accelerator or FPGA will be implemented in hard-
ware. In the case of CPUs or FPGAs, several tasks can be mapped to the same
node. However, only one task can be allocated to a hardware accelerator. Simu-
lation of mapping models helps understanding the performance of the mapped
system.

Fig. 4. Functional view: (a) Component task diagram (b, c, d) Activity diagrams.

5 Software Design Level

Once a satisfactory partitioning has been found, the software design level is
intended to refine software functions and to validate them with more concrete



84 D. Genius et al.

hardware components. This latter validation is performed thanks to a model-to-
virtual-prototype transformation described in [22].

5.1 Software Components

In order to switch from the partitioning to the software design level, we generalize
the technique of model refinement described in [23]. We use AVATAR [34], a
SysML-like representation, to represent software. Our implementation does not
entirely comply with the OMG-based SysML, in so far as our block instance
diagrams merge block and internal block diagrams, modify SysML parametric
diagrams to express properties and do not support continuous flows. The software
model S = (T, I) can thus be defined as a set of tasks t and interactions i between
tasks. While a partitioning model expresses algorithms as abstract complexity
operations and communications in terms of their size, a software design model
models the controllers of software tasks in a more precise way.

In the example of Fig. 2, let us suppose that software running on the MP-Soc
consists in one task that sends an integer value to another task. On this level,
block diagram and state machine show the software only, which would yield the
block diagram (left) and state machines (right) in Fig. 5.

Fig. 5. Software design view of the example in Fig. 2.

Algorithms and communications are described in more detail too. Complexity
operators refer to the number of times a computation unit (e.g. the integer com-
putation unit) must be used. Depending on the related execution node capacity,
this results in a number of clock cycles of the related component. These oper-
ators are translated into either a time function TF () or a sub-behavior subB.
More formally, the transformation relation of partitioning behavior to software
design behavior can be expressed as [23]: BP = (Ctrl, Comm,Comp) → BS =
(Ctrl′, Comm′, TF , subB)

When tasks of the functional view are split into several software compo-
nents, the set of control/communication operators the initial functions used may
change. If a Partitioning task t1 is split into multiple Software Design tasks t′11,
t′12, then t1’s communications with other tasks may be to only t′11 or t′12, or
both, and new communications between t′11 and t′12 may be added. In a simple
case, the complexity Comp can be translated exclusively into after operations.
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On the other hand, when the Software Design models add more detail on the
implementation of algorithms, complexities are translated into a ‘sub-behaviors’,
with a mix of control operators, communications, and time functions TF.

5.2 Analog and Digital Hardware Components

A specific SysML block diagram, named “SystemC AMS Panel” in TTool, is used
to capture TDF clusters, including modules and port rates, delays, modules and
port timesteps. It also contains those DE modules intended to be implemented
on FPGA or ASIC, and TDF components. The TTool SystemC AMS panel [27]
was designed to mimic as much as possible the graphical SystemC AMS notation
from [1] as shown in Fig. 2.

Representing Hardware Clocks. As sampling plays a crucial role in the
signal processing part of the EchOpen application, TTool SystemC AMS panel
has been enriched with clocks. From a hardware point of view, a clock is a
boolean signal that changes from 0 to 1 and vice versa at regular intervals. Most
DE modules are thus sensitive to a clock signal, i.e. they read a Boolean value
from a clock port. On the rising edge of the clock, the data arriving on the input
port is transferred to the output port.

The same clock can be shared between several DE modules. It is also very
frequent that the entire system has the same master clock, but there may be
multiple clocks (e.g. for subsampling purpose). In order not to overload diagrams,
we do not draw the interconnection of clock signals to the modules, but indicate
the clock’s name as a parameter in the DE module. A clock can be parameterized
with frequency, units, start time, and other information (left side of Fig. 6).

Signal Processing Data Types. Signal processing applications in general, and
medical imaging electronics in particular, require various data types, which were
not implemented in the initial version of TTool’s AMS extension, more targeted
to control-bound applications like robotics and automotive. An enriched menu
and code generation now covers a wide range of data types, like floating point
or, particularly important for hardware design, bit vectors (right side of Fig. 6).
Lines of code for clock instantiation in the SystemC AMS topcell (the equiva-

lent of a main program which among others instantiates hardware components
and connects them by signals) can be automatically generated from the above
information, thus saving a lot of time compared to a manual implementation.

5.3 Deployment Diagram

The software model can at first be functionally simulated, using the AVATAR
interactive simulator, taking into account temporal operators but ignoring hard-
ware, operating system and middleware.
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Fig. 6. Clock dialog window for DE components (left) Data type menu (right).

In order to get an overview of the entire platform consisting of software
(running on digital components of the MPSoC part), digital and analog compo-
nents in the TDF clusters, SystemC AMS clusters are displayed in the AVATAR
deployment panel. The two simulators, one for the digital part in SystemC [40]
and another for the analog part in SystemC AMS [18], are interconnected by an
interface, guaranteeing correct timing by detecting causality problems early in
the design process [14]. This simulation helps to identify logical modeling bugs,
while the concrete performance can be obtained by generating a C code of the
software tasks and executing it.

Taking up the small introductory example from Sect. 4.1, as shown in (Fig. 7),
we present on the left the AMS representation; the DE block Y is clocked. The
right hand side shows the deployment for two software tasks Block0 and Block1
mapped to the CPU and one integer channel val mapped to memory. We also
have to add the interface to the MPSoC (not shown here).

Fig. 7. Introductory example AMS (top) and deployment (bottom) representation.
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Now, on the one hand, from the SysML-like representation of SystemCAMS
clusters in TTool, SystemC AMS code is generated. On the other hand, from the
software, C-POSIX threads running on a MPSoC under an lightweight operating
system are generated [3,21].

6 Case Study

The aim of the following section is to illustrate the use of our new extensions
as well as the interactions between the two abstraction levels. By choosing a
complex and realistic system with multiple facets, we show the whole range of
capabilities of our extensions.

The case study stems from the early design phase of a low-cost echo-
stethoscope developed in the EchOpen project [17], where system-level designers
cooperate closely with hardware designers, with the aim of designing low-cost
and portable echography device for pre-echography medical exploration, primar-
ily for emerging countries but also in case of difficult circumstances [33,42]. An
echo-stethoscope is an equivalent of the doctor’s stethoscope that is used to
auscultate the body and reveal diseases, but with ultra-sound signals.

Fig. 8. EchOpen system.

The objective of the system described by Fig. 8 is to acquire ultrasound
signals with a probe (transducer), then to extract the useful signals and to
store them to a memory before sending them by wifi to a smartphone for image
processing.

Signal Acquisition. The signal acquisition is represented by a TDF module
featuring a sine wave generator (SineGenerator) and an Analog to Digital Con-
verter (ADC ), which takes the samples from the probe and converts them into
digital values.

Envelope Detection. The envelope of the ultra-sound power gives the echo-
graphic image. So, the role of envelope detection [36] is to extract the useful
signal: a number of samples are compared to those produced by a sample gener-
ator (sampling rate defined by the designer) and the highest value is extracted
among them. Envelope detection is modeled as digital (DE) blocks.

Finally, the values are transferred by hardware allowing Direct Memory
Access (DMA) in order to be sent to the processor for image processing. The
SPI module, which is in charge of this, waits until the envelope detection for the
whole image is completed and then sends it to the SoC interface.
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Scan Conversion. The scan conversion [39] is used to build the image from
ultrasound signals envelope and is usually done by software, which the echOpen
design team intends to run on a smartphone. That consists of translating a point
from polar coordinates to Cartesian ones in order to display it on a screen. In
fact, it can be viewed as a chain of operations. First, image data is read from the
Envelope Detection hardware. In our setting of early design space exploration,
a data file serves for test purposes. From data read from the file, a data struc-
ture is built, containing the image and several parameters. Two operations are
applied one after another, scan conversion itself and modification of the image
background. Finally, the resulting image, which should be of sufficient quality,
can either be displayed on the smartphone or used for other purpose.

Fig. 9. EchOpen application functional view [25] (left, center) software part (right).

6.1 Partitioning Level

Functional View. Figure 9 shows the functional view. Green blocks represent
functional components connected through ports to data channels (in blue) and
event channels (in mauve). Yellow blocks represent composite components. On
the left of the figure, the analog modules SineGenerator and ADC are shown
as distinct sub components within the SignalAcquisition composite components.
Figure 10 shows selected activity diagrams capturing behavior. The first one,
represents the analog-to-digital converter module ADC, the second is what will
later become a software task reading the image line by line. Computation times
are taken, where possible, from the original SystemC AMS model as explained
in Sect. 4; this is the case for ADC but not for SoC Interface and Acquisition,
which we newly developed.
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Fig. 10. Activity diagrams of selected functional blocks.

Mapping View. While all other functionalities are to be implemented in hard-
ware, scan conversion must be implemented in software running a general pur-
pose CPU. The mapping view thus contains an FPGA, which is at this level of
abstraction simply simulated as a n-core processor, with n being the number of
tasks mapped. An alternative mapping, where all DE tasks are implemented in
software and thus mapped to a second CPU, can easily be evaluated as well.
This modification of the diagrams takes only a few seconds, unlike for a real
ASIC of FPGA implementation.

All diagrams are converted into C++ before being simulated or formally
verified (the simulator can among others generate a reachability graph, which
in our case has around 900 states). The simulation engine is predictive: each
processing element advances at its own pace until a system event (data transfer,
a synchronization event, etc.) invalidates current transactions. Then, the latter
are cut back as much as necessary in the past, and the simulation continues from
the cut transactions.

6.2 Component Design Level

Once the hardware/software partitioning has been decided—in the following we
take as a starting point a possible partitioning shown in Fig. 11—hardware and
software are modeled apart. On the one hand, from the SysML-like represen-
tation of SystemC AMS clusters in TTool, after checking schedulability and
causality [13,26], SystemC AMS code is generated. On the other hand, from
the software, which can be of significant size and require full-system simulation,
Posix threads running on a MPSoC under an lightweight operating system are
generated [3,21].
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Fig. 11. Initial partitioning level architecture and mapping diagram [25].

SystemC AMS Representation. Figure 12 shows TTool’s representation for
our System C AMS model. The block on the lower right represents a General
Purpose Input/Output (GPIO) interface that is responsible for the synchro-
nization with the MPSoC [13]. The blocks from partitioning level can easily be
recognized: these are the blocks of the left and central part of Fig. 9 (sample gen-
erator, comparator, ...). Analog blocks are, like in the SystemC AMS standard
graphical representation, colored in grey.

In Fig. 12, two clocks (see Sect. 5.2) are captured with two specific blocks on
the lower left of the cluster. In order to improve readability, our design choice
was to not show the signals between clocks and the clock input ports of the DE
modules. As shown in Fig. 6, every DE model contains the name of the clock
that commands it. All modules except adcre use my clock, which is the working
frequency (i.e. the global clock) of the digital circuit(a FPGA in our case), while
the latter uses my clock1 for rate conversion (super-sampling of the ADC signal),
which runs at a slower frequency.

Software Component Design. The fact that EchOpen in an open hard-
ware and software project allowed us to access realistic image processing code.
An experimental implementation of the scan conversion software in C already
existed and served as basis for the modeling of the software components in
AVATAR. Fig. 13 shows the AVATAR block-based representation of the scan
conversion software. The first block, Acquisition, reads a fixed number of lines
from the file emitted by the EnvelopeDetection, then builds a structure with
some additional parameters. Sticking to the method described in Sect. 5.1, we
refine the scan conversion part so that the two distinct tasks of image process-
ing, ScanConversion and ChangeBackground, become explicit (sub-tasks in our
terminology). Also, the transmission of the resulting image is now split into two
tasks, SaveOrTransmit, which extracts the image from the data structure and
either stores it or sends it to the mobile network and Disallocation, which frees
the memory of the data structures.



Model-Based Virtual Prototyping of CPS 91

Fig. 12. SystemC AMS representation in TTool.

Note that this data structure model is strongly simplified, since the actual
structure contains sub-structures for tensors, as well as floating point parameters.
Missing in the block diagrams, they are still present in the actual C code that
is inserted in the prototyping part of the block.

Fig. 13. Scan conversion modeled in AVATAR.

Figure 14 shows the acquisition state which makes the connection to the
SystemC AMS cluster. Using an entry code mechanism available for AVATAR
state machine diagram states—inserting C code that is taken over in the gener-
ated POSIX tasks—we represent the reading from the EnvelopeDetection cluster
(Fig. 14) by a read primitive from the GPIO interface. A counter keeps track of
the number of lines that are transmitted from the file and written into the Image
part of the data structure.
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Fig. 14. Acquisition block modeled in AVATAR (left) and entry code (right).

Deployment. On this level, we determine the mapping of blocks to processors,
the mapping of channels to memory banks, the choice of interconnect (bus, mesh
network, ...). Time- and resource- consuming tasks such as the scan conversion
algorithm itself, may be deployed on a dedicated CPU in an exploration process.
Figure 15 shows a deployment on a three-processor platform, where the software
blocks Acquisition, ScanConversion and Transmission are mapped to one CPU
each. In the prototype generated from the deployment diagram, software appli-

Fig. 15. Possible mapping of software tasks on the virtual prototype.

cations (in the case of EchOpen, the scan conversion) run on the CPU(s) of the
digital platform and write or read values from the TDF clusters. Thus, for a
precise simulation of all parts of the system, whether mapped to analog hard-
ware, FPGA or general purpose processors, have to appear in the deployment
diagram. A specific SysML block diagram (grey in the upper right of the figure)
is used to capture the interface to the SystemC AMS cluster.

Validation of the AMS Schedule. From a TDF block diagram, a coherent
schedule can be computed, and causality issues between DE and TDF modules
automatically detected.

Figure 16 shows TTool with SystemC AMS/SystemC co-simulation for the
case study application as featured by the virtual machine available under [24].
On the upper left, the invocation of the two simulators is shown. The lower right
shows the TTY (the console log) of the SystemC simulation, tracing the progress
of the software part. In the background, the TTool AMS panel is shown, with
the validation and code generation window.
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Fig. 16. Tool overview: screen shot of the virtual machine.

Fig. 17. Trace generated from the SystemC simulation.

Validation of the Generated Code. In the work described in [25], the digital
platform running the scan conversion software had not yet been modeled; only
the SystemC AMS part was simulated in a stand-alone manner.

Now, we can validate the full system on both partitioning and software design
level. The integration of SystemC AMS made it necessary to add facilities for
tracing analog, thus continuous, signals, in the virtual prototype. We thus obtain
one trace for the SoCLib part and one for the SystemC AMS part. Figure 17
shows part of the trace for a mono-processor platform, using the gtkwave tool
[11]: a snapshot of the clock signal, the processor command (m 0 is processor
0), the TTY, address and data transmitted from the processor and the signal
transiting via gpio2vci, the GPIO interface between the SystemC and SystemC
AMS parts of the platforms. There is also an analog counterpart of this trace
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tan can be explored by a complementary tool [37] and validated against a hand-
written SystemC AMS model.

7 Discussion and Future Work

We show how to take into account digital and analog aspects of an embedded
system from the very first modeling phases onwards, until a low-level virtual
prototype. For that purpose, we extend TTool with new SysML models able to
capture SystemC AMS components in an abstract way and reuse the existing
simulation and validation methods.

We can now take into account software running on the digital part of the
platform for full-system simulation. Simulation parameters at partitioning level
are initially based on first assumptions; once software design and deployment
levels have been designed, more accurate estimations of the execution time and
valid schedules for TDF clusters can be fed back to the partitioning levels.

What we show here is an extensive case study stemming from the early very
design process of an echo-stethoscope. SystemC AMS itself is an abstraction
of the analog hardware. Meanwhile, the hardware design is detailed further;
a first validation on a FPGA prototype is still under way. Moreover, the real
system uses a WIFI interface. While developing the SystemC AMS models of
the wireless connections, we use read/write on files instead. Most importantly,
once the FPGAs and hardware can be tested and performance evaluated with a
real implementation, we will counter-check our models, then start a more refined
design space exploration of the software.
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eling of analog/mixed signal embedded systems. In: MODELSWARD (2019)

27. Genius, D., Cortés Porto, R., Apvrille, L., Pêcheux, F.: A framework for multi-level
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Abstract. The increasing ability of data-driven science is resulting in a
growing need for applications that are under the control of data-centric
workflows, also known as scientific workflows. The focus of this work
is on provenance collection for these workflows, necessary to validate
the workflow and to determine the quality of generated data products.
However, the act of instrumenting a workflow engine for provenance col-
lection is burdensome. This complex task requires adding hooks to the
workflow engine to capture provenance, which can cause perturbation
in execution. We address the challenge of extracting provenance data
in the form of a knowledge graph from the event logs of the workflows
to record critical information about the applications and the workflows.
We present an ontology-based framework for provenance collection using
the event logs of workflow engine. Further, we reduce provenance use
cases to SPARQL queries over captured provenance knowledge graph.
Performance evaluation demonstrates that the framework is capable of
reconstructing complete data and invocation dependency graphs from
one or various execution traces.

Keywords: Provenance model · Workflow provenance · Provenance
use cases

1 Introduction

The advent of inexpensive specialised devices and sensor networks is promoting
data-driven science by feeding data into scientific applications [29]. Data-driven
scientific workflows are a tool to model such data-driven scientific investigations
where data passes from process to process as it is transformed and used in
complex models [4]. Scientific workflows are tools for specifying and automating
scientific investigations as repetitive experiments [10]. Once specified and shared,
a workflow becomes a useful building block that can subsequently be combined
or modified to develop new experiments [4].

Workflows are implemented in many ways such as bash or Python scripts [25]
and using frameworks such as Apache Spark and its variations [16]. However,
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they are commonly modelled and executed using engines named Scientific Work-
flow Management Systems (SWfMSs) [9]. SWfMSs have become a necessary
tool for many applications, enabling the composition and execution of complex
analysis on distributed resources [7]. Various SWfMSs have been proposed and
developed for specifying and enacting workflows (e.g., Taverna [19], Kepler [2],
Triana [30], and YAWL [31]). These systems leverage distributed and high-
performance computing technologies to provide cutting edge data analytic ser-
vices to the data scientists for implementing data-intensive pipelines [22]. The
underline technologies have evolved a line of research i.e., provenance collection
and representation alongside the research into the workflow systems.

Provenance is defined in Oxford English Dictionary as “the source or ori-
gin of an object; its history and pedigree; a record of the ultimate derivation and
passage of an item through its various owners.” In the context of scientific work-
flows, provenance concerns the reliability and integrity of workflows and their
potentially complex data processes. Understanding provenance of a workflow is
crucial to its users to identify bottlenecks, inefficiencies, learn how to improve
them, and establish trust in data produced by these workflows. Moreover, to
understand a workflow and how it may be used and(or) reproduced for their
needs, scientists require access to some additional resources, such as annota-
tions describing the workflow, datasets used and produced by the workflow, and
provenance traces recording workflow executions.

Scientific workflow engines can integrate provenance component, which is
an elegant solution but requires a significant effort to implement. It requires
modifying the engine architecture to collect provenance data by adding hooks,
which can lead to perturbation in execution. Another method is to collect prove-
nance directly from the event logs of workflow engines. This method allows a
thorough understanding of the provenance collection, storage and access require-
ments before integrating provenance component to these engines and avoid any
performance issues. Furthermore, this approach provides a mean of collecting
provenance of already executed workflows using their event logs. Since workflow
provenance is event-based, i.e., capturing the significant events within a system,
the event log is an essential source of provenance data. Logs are traditionally
beneficial for auditing and identifying the root causes of failures in large systems.
In addition, logs contain essential information about the events occur within a
system, which result in generation of the data objects. It is established that
intelligent logging and careful analysis of logs support extraction of the criti-
cal information about the system [27]. The provenance queries can be answered
through manual analysis of workflows and their execution traces using their event
logs. However, the rapid growth in size of the event logs and the cloud-based
multi-tenant nature of these engines make such solutions increasingly inefficient.

In this paper, we show our work on workflow provenance collection from their
event logs. We present ProvAnalyser1, an ontology-based solution to collect
and query provenance of the scientific workflows. The proposed solution trans-
forms event logs into knowledge graphs using an ontology that supports a set of

1 https://github.com/CSIRO-enviro-informatics/ProvAnalyser.

https://github.com/CSIRO-enviro-informatics/ProvAnalyser
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provenance queries. The initial version of this work is presented in [5]. In this
paper, we extend our work in many ways: we present (1) SWfPROV ontology,
a workflow engine independent model to collect and query the provenance of
scientific workflows. Previously, we used an existing provenance model that has
a few limitations as discussed later in this paper, (2) a generic architecture of a
provenance collection and querying framework and a prototype for SenapsLAND
workflow engine, (3) a revised architecture of ProvAnalyser by using WePROV
provenance API for storage and analysis of provenance data instead of storing
provenance knowledge graph in a local RDF store, (4) improved evaluation by
collecting event logs of six months instead of three months event logs. Further-
more, we included one provenance use case and two provenance queries to analyse
the impact of provenance on a workflow engine and its client applications.

The rest of the paper is organised as follows. In Sect. 2, we discuss the detail
design of ProvAnalyser. In Sect. 3, we present a prototype of ProvAnalyser for
SenapsLAND workflow engine. In Sect. 4, we present provenance use cases and
queries. In Sect. 5, we discuss the steps required for large-scale deployment of
the technology within the organisation. In Sect. 6, we review state-of-the-art and
in Sect. 7, we conclude outlining future directions of research and development.

2 Scientific Workflow Provenance

In this section, we present ProvAnalyser that collects provenance data from event
logs and stores it in an Quad store through WePROV provenance API. The users
can perform analysis and exploration on provenance data through predefined or
customised provenance queries.

2.1 Scientific Workflows

A workflow W is a directed graph, i.e., W = (M, C) where M is a set of nodes
representing workflow modules while the edges C describe dependencies between
the modules. The modules M of the workflow W process data as input and gen-
erates output data. The data D = (I ∪ O) refer to inputs I and outputs O of the
modules M. The data could be structured, semi-structured or even unstructured
data. In order to process D, modules of the workflow W may require execution
parameters P. The general graph model for a workflow introduced above covers
different, more constrained graph models, which coincide with workflow types
used in various domains. For instance, depending on a domain, edges in C may
represent data or control dependencies.

Based on the general workflow model described above, we further define a
generic workflow execution model. In general, we assume that a workflow module
m ∈ M is a black box where we have no knowledge about its semantics or
performed computation. Then, m requires input data Im and parameters Pm to
produce output Om. The execution of a workflow yields an execution trace T .
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Here T is a directed acyclic graph T = (E , UG) where E represents executions of
modules during workflow execution (i.e., activation of modules in the workflow)
and UG represents causal dependencies between these events (i.e., generation
and usage of data of the modules in W).

2.2 Scientific Workflow Provenance Model

To capture the provenance of workflows, we require a data model capable of
capturing provenance metadata. Some generic and extendable provenance mod-
els do exist in the literature. PROV-DM is the World Wide Web Consortium
(W3C)-recommended data model to record inter-operable provenance in hetero-
geneous environments, such as the Web [23]. PROV-DM is generic and domain-
independent and does not cater to the specific requirements of particular systems
or domain applications; rather, it provides extension points through which sys-
tems and applications can extend PROV-DM for their intended domains.

However, Scientific workflows are concerned with capturing provenance from
complex computational pipelines commonly referred to as scientific workflows.
Several recent community efforts have culminated with the development of
generic models to represent the provenance of scientific workflows. To capture
the provenance of scientific workflows, OPMW, Wf4Ever and ProvONE are con-
sidered as the most expressive workflow provenance models [28]. OPMW [13] is a
conceptual model for the representation of prospective and retrospective prove-
nance collected from the execution of scientific workflows. It is a specialisation
of PROV and the OPM provenance models. Wf4Ever [4] extends PROV to
present wfdesc and wfprov ontologies to describe prospective and retrospective
provenance respectively. ProvONE [8] is a data model, built on PROV-DM, for
scientific workflow provenance representation. It provides constructs to model
workflow specification provenance (i.e., a set of instructions specifying how to
run a workflow) and workflow execution provenance (i.e., the record of how
the workflow is executed). ProvONE is a widely accepted workflow provenance
model and is capable of capturing most of the provenance metadata discussed
in Sect. 2.1. However, there are a few limitations that our proposed model aims
to overcome:

– ProvONE models the relationship between processes through Controller
class; However, the model does not specify the ports through which two pro-
cesses connect to each other.

– ProvONE includes some classes that increase the size of the provenance
knowledge graph, generated according to the model, without adding any value
to the model. For instance, Association class in ProvONE connects processes
to its execution and agent. This relationship is modelled as a binary relation-
ship between process-to-execution and execution-to-agent. Such modelling
reduces the size of knowledge graph, hence improving its query processing
time.
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We present SWfPROV - Scientific Workf low PROVenance model shown
in Fig. 1. The generalised workflow model, presented in Sect. 2.1, provides a
basis for the provenance model. This model is designed by following a modular
approach to enable its reusability, and has two main components.

The first component of the model defines Workflow as a set of {Process,
DataLink, Port, Parameter}. These concepts correspond to {Module, Edge,
Data, Parameter} as presented in Sect. 2.1. The various tasks which consti-
tutes a workflow are represented by the Process class. The process can either
be atomic or composite, the later case is specified through the hasSubProcess
self-association. A workflow itself is a process. Each process may have a series of
Ports that function as input (I) or output (O) ports. Processes are connected
through a DataLink. A DataLink connects two processes through two Ports.
The default parameters are represented by a Parameter.

Fig. 1. Core structure of SENProv.

The second component of the model defines Traces as a set of {Execution,
Usage, Generation, Entity, Agent}. An Execution represents the execution of a
Process. If the process is a workflow, the execution represents a trace of workflow
execution. The Usage class belongs to PROV Ontology and is the utilisation
of an entity by execution at an inport. The Generation class also belongs to
PROV Ontology and represents a generation of an entity by execution at an
outport. An Agent is a person responsible for the execution. Its specification
serves attribution and accountability purposes.
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2.3 Architecture

Figure 2 shows the architecture of our proposed solution. It works as follows:

Fig. 2. The ProvAnalyser architecture.

1. For each workflow execution request, all traces related to the very request are
parsed and provenance information (e.g., execution time, workflowId, pro-
cessId, ports, and data ids) is filtered. Log parser and filter component
transforms a verbose event log into concise raw provenance data.

2. Execution mapping and transformation component maps the raw prove-
nance data to SWfPROV and generates structured provenance for that par-
ticular execution trace. This structured provenance is the RDF2 description
of retrospective provenance [18] (i.e., workflow execution).

3. Specification mining and transformation component infers prospective
provenance [18] (i.e., workflow structure) from the retrospective provenance
using SWfPROV. Further, it also links the retrospective provenance associ-
ated with the prospective provenance.

4. The extracted provenance data is stored or updated in a QuadStore3 using
the WePROV provenance API4, which is a CSIRO’s open-source RESTful
provenance API.

5. Provenance analysis component allows users to explore and analyse
provenance by designing provenance use cases, executing them as SPARQL
queries over RDF store, and showcasing the results to their clients.

2 https://www.w3.org/RDF/.
3 http://docs.openlinksw.com/virtuoso/.
4 RESTful API code is available at https://github.com/anilabutt/weprov.

https://www.w3.org/RDF/
http://docs.openlinksw.com/virtuoso/
https://github.com/anilabutt/weprov
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ProvAnalyser supports a range of provenance use cases, such as explain-
ing and reproducing the outcome of a workflow, tracing the effect of a change,
and provenance analytics. It gives a structure to provenance information,
which makes provenance data machine-readable and inter-operable. Moreover,
it reduces the time needed for analysing workflow execution traces and allows
semantic web experts to perform the task, thus distributing the load.

3 SenpsLAND Provenance: A ProvAnalyser Case Study

SenapsLAND5 is a custom build workflow engine designed through the need
of hosting applications from multiple domains (e.g., marine sensing, water man-
agement, and agriculture). The focus of SenapsLAND is on hosting, adapting,
and sharing existing scientific models or analysis code across organisations and
groups who use the sensor, climate, and other time-series data. In lieu of the
dynamic nature of the platform, SenapsLAND considers its workflow prove-
nance, which concerns the reliability and integrity of workflows and their poten-
tially complex data processes. ProvAnalyser is implemented as a provenance web
service to collect and query over data and workflow provenance within Senaps-
LAND.

3.1 Workflows in SenapsLAND

The UML diagram in Fig. 3 represents the conceptual model for a workflow
specification and execution in SenapsLAND.

A workflow is a multi-directed acyclic graph6 made up of vertices and edges,
which are referred as nodes and connections in SenapsLAND. A node can either
be a data node or an operator node. An operator node hosts a model (exe-
cutable code and its supporting files). The operator node has multiple ports,
whereas a data node can only connect to an operator node through a port. Cur-
rently, a data node offers support for multi-stream, document, and grid data
formats. A user group or an organisation puts a workflow execution request.
With a workflow execution request, a user needs to specify a workflow to
execute, a data node (i.e., input data), and a port on which a data node is
connecting to an operator node. A workflow execution id is assigned to the run
when it executes. Each operator node of a workflow is executed and has its
operator node execution id, and corresponding input and output data nodes.
Therefore, one complete workflow execution is composed of all of its operator
nodes executions.

5 https://research.csiro.au/dss/research/senaps/.
6 https://en.wikipedia.org/wiki/Directed acyclic graph.

https://research.csiro.au/dss/research/senaps/
https://en.wikipedia.org/wiki/Directed_acyclic_graph
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Fig. 3. SenapsLAND workflow specification (constructs in blue) and execution (con-
structs in grey) conceptual model UML diagram [5]. (Color figure online)

3.2 SENProv: Provenance Ontology for SenapsLAND

We use SWfPROV model to represent provenance data of SenapsLAND. We
specialise SWfPROV in SENProv to capture the provenance of SenapsLAND
workflows. In this regard, we need to model the relationship of SenapsLAND
constructs with PROM-DM and SWfPROV constructs. Table 1 shows the map-
ping between SenapsLAND and PROV-DM or SWfPROV. In SENProv, each
SenapsLAND class shown in ‘SenapsLAND Concept’ column extends from its
corresponding class presented in ‘SWfPROV/PROV-DM’ column of the table,
and SWfPROV or PROV-DM associations are used to model the corresponding
SenapsLAND associations.

Based on the SenapsLAND conceptual model and its mapping to SWfPROV
and PROV-DM, we present SENProv– an ontology to capture and represent
SenapsLAND workflow provenance. Figure 4 highlights the most important
classes and relationships that make up the SENProv ontology. The green ovals
(i.e., PROV Entities), rectangles (i.e., PROV Activities), and pentagons (i.e.,
PROV Agents) represent the concepts in SenapsLAND whereas yellow and blue
presents PROV-DM and SWfPROV concepts, respectively.
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Table 1. SenapsLAND constructs mapping to SWfPROV and PROV-DM constructs.

SenapsLAND Construct SenapsLAND concept SWfProv/

aspect type PROV-DM

Workflow Class Workflow swf:Workflow

OperatorNode swf:Process

DataNode prov:Entity

Port swf:Port

Model prov:Plan

Property include swf:hasSubProcess

hasPort swf:hasInPort

swf:hasOutPort

Workflow execution Class WorkflowExecution swf:Execution

OperatorNodeExecution swf:Execution

Organisation swf:Agent

Group swf:Agent

Document prov:Entity

Stream prov:Entity

Grid prov:Entity

Property initiatedBy prov:agent

prov:wasAssociatedWith

isPartOf swf:wasPartOf

isConnectedTo prov:hadEntity

wfExecutionTime prov:atTime

opExecutionTime prov:atTime

value prov:value

3.3 SenapsLAND Provenance Knowledge Graph

The provenance is captured from the event logs of SenapsLAND, which are con-
figured for INFO level logging. At INFO level, informational messages that are
most useful are logged for the monitoring and managing an application during
execution. For example, an INFO level message describes an event type, times-
tamp, data used, and data generated by a workflow. Moreover, it considers an
operator node and the model as a black box. Hence, INFO level logging enables
the collection of coarse-grained provenance [18].

An entry in a SenapsLAND event log comprises of three main components:
DateTime – Date and time of an event, EventType – the type of an event
(e.g., EmptyWorkflowCreatedEvent, OperatorNodeAddedEvent, and DataUp-
dateEvent), and Payload – contains the information of an event including
workflow and operator node execution ids, operator node, data nodes, ports,
and data type (depending upon the event type). When a workflow executes
in SenapsLAND, the event log records twelve to fourteen different events for
each operator node of a workflow. However, all the information required to
capture provenance of an operator node execution is available from the pay-
load of ‘ExecutionRequestedEvent’ entry of an execution. Other event type
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Fig. 4. Core Structure of SENProv, showing relationship to PROV-DM and SWfPROV
- The constructs are represented in this diagram using PROV-like elements. (Color
figure online)

entries of an operator node execution record incomplete and(or) duplicate infor-
mation. Therefore, ProvAnalyser extracts the provenance from the payload of
‘ExecutionRequestedEvent’ and ignores other entries of the same operator node
execution id while capturing provenance. The current implementation of Prov-
Analyser records the provenance of only successfully executed workflows; how-
ever, we plan to capture unsuccessful workflow provenance to understand the
root causes of workflow execution failure. This information is obtained from
‘ExecutionSuccessfulEvent’ entry for an operator node execution of a work-
flow.

Provenance extraction from the log files is done by the Log Parser and
Filter component of ProvAnalyser. The entries with event type ‘ExecutionSuc-
cessfulEvent’ are filtered from a log file, the workflow execution Id for each
such event is extracted from the payload and recorded into a ‘Successful
workflows list’. Next, the entries with an event type ‘ExecutionRequestedE-
vent’ are selected to retrieve the provenance of successfully executed workflows.
The information about operator node, connected data nodes, model and ports
are retrieved from the payload as raw provenance data, as shown in Listing 1.1.
Using the SENProv, raw provenance data is transformed into a structured prove-
nance (i.e., an RDF document). ProvAnalyser retrieves prospective and retro-
spective provenance according to the SENProv model, as shown in Listing 1.2
and 1.3, respectively. The structured provenance is subsequently stored using
WePROV provenance API.
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Listing 1.1. Raw Provenance [5].

{"workflowExecId" : "c49ff96d-cc5771b5d689",

"opNodeExecId" : "c49ff96d-forecast.template",

"opExecutionTime" : "2018-07-17T03:43:11.474Z",

"operatorNodeId" : "forecast.template-selector",

"modelId" : "apsim-template-selector",

"Ports" : [

{

"portId" : "location",

"portDirection" : "Input",

"connectedData" : {

"dataNodeId" : "02b5ffde3e18",

"dataNodeType" : "Document" }

}

{

"portId" : "parameters",

"portDirection" : "Input",

"connectedData" : {

"dataNodeId" : "7096195c361f",

"dataNodeType" : "Document" }

}

{

"portId" : "apsim_template",

"portDirection" : "Output",

"connectedData" : {

"dataNodeId" : "673aeb335602",

"dataNodeType" : "Document"}

} ]

}

Listing 1.2. Prospective Provenance.

<c49ff96d-cc5771b5d689> a senaps:Workflow;

<forecast.template-selector> a senaps:OperatorNode;

senaps:host <apsim-template-selector>;

swf:hasInPort <location>;

swf:hasInPort <parameters>;

swf:hasOutPort <apsim_template>.

<apsim-template-selector> a senaps:Model.

<location> a senaps:Port.

<parameters> a senaps:Port.

<apsim_template> a senaps:Port.
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Listing 1.3. Retrospective Provenance.

<c49ff96d-cc5771b5d689> a senaps:WorkflowExecution;

<c49ff96d-forecast.template> a senaps:OperatorNodeExec;

senaps:partOf <c49ff96d-cc5771b5d689>

prov:atTime 2018-07-17T03:43:11;

prov:hadPlan <forecast.template-selector>;

prov:agent <Graincast>.

prov:qualifiedUsage <c49ff96d-02b5ffde3e18-forecast>;

prov:qualifiedUsage <c49ff96d-096195c361f-forecast>;

prov:qualifiedGen <c49ff96d-673aeb335602-forecast>;

prov:used <02b5ffde3e18>;

prov:used <7096195c361f>.

<c49ff96d-02b5ffde3e18-forecast> a prov:Usage;

swf:hadInPort <location>;

prov:hadEntity <02b5ffde3e18>.

<c49ff96d-096195c361f-forecast> a prov:Usage;

swf:hadInPort <parameters>;

prov:hadEntity <096195c361f>.

<c49ff96d-673aeb335602-forecast> a prov:Generation;

swf:hadOutPort <apsim_template>;

prov:hadEntity <673aeb335602>.

<673aeb335602> a senaps:Document;

prov:wasGeneratedBy <c49ff96d-forecast.template> .

<02b5ffde3e18> a senaps:Document;

<7096195c361f> a senaps:Document;

<Graincast> a senaps:Group;

prov:wasAssociatedWith <c49ff96d-forecast.template>.

3.4 Implementation and Performance

In the current implementation of ProvAnalyser, we have automatise the pro-
cess of importing and processing the most recent event logs. Previously, we were
updating our provenance data weekly by importing new log files and extract-
ing structured provenance from them. The previous version had two limitations:
it required human intervention and the system was updated once every week.
We have now fully automated the process to import daily event logs and extract
provenance knowledge graph from them. Secondly, we have updated the backend
storage structure of ProvAnalyser. Instead of maintaining a local RDF repository
for the storage of provenance knowledge graph, we are using WePROV prove-
nance API, which provides built-in features for provenance data validation and
privacy. It allows detailed, system-specific, and less detailed system-independent
provenance to validate through rulesets. The detailed discussion of this API is
out of scope of this paper.

The Provenance Capturing module, implemented in Java (jdk-1.8.0), pro-
cesses the log files and uses Apache’s Jena RDF API (apache-jena-3.7.0) to
extract the provenance and WePROV provenance API to store the structured
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provenance. For the evaluation and testing purposes, we extracted the prove-
nance from SenapsLAND event logs of 180 days. All the processing was per-
formed on a 64-bit Windows 10 Enterprise computer using an Intel Core i7
6600U CPU with 2 cores and 8 GB memory. We processed log files of variable
sizes (i.e., from 3 to 590 MBs), and the execution takes between 2 to 41 s in
parsing and extracting provenance from a log file and storing the provenance
data in the Quad store.

However, the time ProvAnalyser takes to process a log file depends on the
number of successfully executed workflows in the log file and not on its size.
Moreover, we collected provenance for 10951 workflow runs and 564,154 operator
node executions in the Quad store of 4.89 GB from log files of 14.68 GB by using
ProvAnalyser. This result of the provenance-enhanced RDF data being smaller
in size than the raw logs echos other log-to-PROV experiences [6].

4 Querying Workflow Provenance

ProvAnalyser is capable of understanding and validating workflows, and deter-
mines the quality of its data products. Therefore, we present the evaluation use
cases in Sect. 4.1 followed by some sample queries in Sect. 4.2.

4.1 Evaluation Use Cases

Understanding a scientific workflow and reproducing its results are essential
requirements to trust workflows and their results. These two requirements lead
to the reuse of workflows and data generated by them across or within organisa-
tions. Therefore, our focus in this work is to explore use cases addressing these
two essential requirements. For instance, ProvAnalyser should be able to answer
queries like ‘track the lineage of the final output of a workflow’. The lin-
eage of output should explain which workflow(s) generated it, when the output
was generated, who was responsible for it, what dataset(s) and models were used
while generating this output. How did the process use the input data, and how
were the steps configured? The result of this query will enable a user to repeat
a series of steps on original data to reproduce the outcomes. This ability of a
workflow engine is useful for both the clients and developers of a workflow. A
scientist needs a provenance knowledge to assess the reliability of the outcomes
or reuse a model in another workflow. Likewise, a workflow developer could be
interested in investigating whether the workflow execution traces conform to the
workflow structure by executing specific models in a particular order. In this
paper, we also discuss additional use cases related to traceability, attribution,
and provenance analytics. This brings us to discuss the primary use cases for
ProvAnalyser and provide their sample queries.

Use Case 1: Understandability – Explain a Workflow. This use case helps
in understanding the workflow by producing the leading intermediate operators
or models used in the execution of a particular workflow. A scientist could
demand to examine workflow processes in detail to assess the reliability of results
or to reuse operators in another workflow.
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Use Case 2: Reproducibility – Find Information to Reproduce. Organ-
isations may want to reproduce their own or others’ work. A scientist should be
able to begin with the same inputs and methods (models) used previously and
observe if a prior result can be confirmed. This is a particular case of repeatability
where a complete set of information is obtained to verify a final or intermediate
result. In the process of repeating a workflow and especially in reproducing an
output the scientist needs to know which models were used to derive an output
and how a model used the input data.

Use Case 3: Traceability – Trace the Effect of a Change. This use case
traces the effect of a change. It identifies the scope of a change by determining
workflows and their executions that are (or have been) affected. Moreover, trac-
ing the effect can be used to minimise the re-computations to only those parts of
a workflow that are involved in the processing of the changed data or a model.

Use Case 4: Provenance Analytics. Provenance-based analytics help scien-
tists to discover new research opportunities, identify new problems, and chal-
lenges hidden in the traces of workflow executions. Most importantly, it helps
scientists to discover and address anomalies. ProvAnalyser’s current implemen-
tation can partially answer many such provenance analytics related queries.

Use Case 5: Attribution - Assign Responsibility. Attribution is to deter-
mine the responsibility by identifying who authored or executed a workflow.
This information is useful to establish copyright and ownership of data, enable
its citation, or determine liability for erroneous data. This use case is important
for communication between users since it clarifies actions performed by each
collaborator.

4.2 Provenance Queries

In order to demonstrate the effectiveness of the ProvAnalyser, we evaluated the
system against a set of basic provenance related queries that are designed based
on the use case requirements mentioned in the Sect. 4.1. Some of the provenance
queries are:

Query1: What Structure Was Followed by a Given Workflow Execu-
tion Trace? A typical understandability question to be addressed to understand
the outcome of a complex scientific process. Listing 1.4 shows a SPARQL query
to retrieve the structure of a workflow execution trace.
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Listing 1.4. SPARQL to get workflow specification.

PREFIX senaps:<http://www.csiro.au/ontologies/senaps#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX swf:<http://swfprov.csiro.au/>

PREFIX prov:<http://www.w3.org/ns/prov#>

CONSTRUCT {

?sourceOpNode swf:hasOutPort ?outport.

?desOpNode swf:hasInport ?inport.

?dataLink swf:hasSourceProcess ?sourceOpNode.

?dataLink swf:hasTargetProcess ?desOpNode.

?dataLink rdf:type swf:DataLink.}

WHERE {

<wfExecId> senaps:hasSubProcess ?sourceOpNode.

?sourceOpNode senaps:operatorNodeId ?sourceOpNodeId;

swf:hasOutPort ?outport.

?outport senaps:portId ?outportId.

?entityGen swf:hadOutPort ?outport;

swf:hadEntity ?entity.

?entityUsed swf:hadEntity ?entity;

swf:hadInPort ?inport.

?inport senaps:portId ?inportId.

<workflowExecId> swf:hasSubProcess ?desOpNode.

?desOpNode swf:hasInPort ?inport;

senaps:operatorNodeId ?desOpNodeId.

BIND (URI(CONCAT(STR( ?sourceOpNode), \".\",

STR(?outportId), \"_to_\", STR( ?desOpNodeId),

\".\",STR(?inportId))) AS ?dataLink)}

For a workflow execution, the query constructs the detail of a workflow struc-
ture. Consider an example of an execution of Forecast Grains workflow. For
this execution, the result of the query identifies all intermediate operator nodes,
their ports, and how the data were routed among the operator nodes as shown
in Fig. 5.

Fig. 5. A graphical view of a SPARQL query result; the query is given in Listing 1.4.
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Query2: Find What and How to Use Input Data to Result in a Spe-
cific Yield Prediction. Listing 1.5 presents a SPARQL query to answer this
question.

Listing 1.5. SPARQL to find input information.

PREFIX senaps:<http://www.csiro.au/ontologies/senaps#>

PREFIX swf:<http://swfprov.csiro.au/>

PREFIX prov:<http://www.w3.org/ns/prov#>

SELECT DISTINCT ?model (?portId AS ?variableName) ?data

WHERE {

<output> (prov:wasGeneratedBy/prov:used)* ?data.

OPTIONAL {?data prov:wasGeneratedBy ?exec.}

OPTIONAL {?usage swf:hadEntity ?data.

?usage swf:hadInPort ?port.

?port senaps:portId ?portId.

?opNode swf:hasInPort ?port.

?opNode senaps:host ?model. }

FILTER (!bound(?exec)) }

The query returns the details of inputs to a workflow to generate a specific
output, including input ids, ports the inputs were connecting to an operator
node, and the model hosted by an operator node. For instance, for an output
(outputId: <42b838a7-786c-42a0-a4b9-f7dbed9df292>) generated by an exe-
cution of Forecast Grains workflow the query returns all input ports in Fig. 5,
input data provided to these input ports, and models that used these input data.

Query3: Identify all Workflow Executions that Used (a Specific Ver-
sion of) the APSIM Model and Group them by their Organisations.
The result of this query helps to communicate all the organisations which are
likely to be affected by a change in the APSIM model. Listing 1.6 shows the
SPARQL syntax of this query.

Listing 1.6. SPARQL to trace the affect of change.

PREFIX senaps:<http://www.csiro.au/ontologies/senaps#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX swf:<http://swfprov.csiro.au/>

PREFIX prov:<http://www.w3.org/ns/prov#>

SELECT DISTINCT ?orgs ?workflowExec

WHERE {

?opNodes senaps:host senaps:graincast.apsim.

?assoc prov:hadPlan ?opNodes;

prov:agent ?orgs.

?orgs rdf:type senaps:Organisation.

?opExecution prov:qualifiedAssociation ?assoc;

senaps:partOf ?workflowExec.

} Group By ?orgs ?workflowExec

Query4: Is the Behavior in a Second Workflow Execution Conformant
with the Workflow’s Behavior in the First? This query helps to find the
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impact (due to intentional changes in workflows) and(or) cause (due to accidental
changes in workflows) analysis in case of any change in the behavior of workflow
on two separate days. To date, ProvAnalyser can partially answer the query by
providing the implicit workflow structure of two workflow executions using query
presented in Listing 1.4.

Query5: What Users (Agent or Organisation) are Involved in Design-
ing a Workflow? This query is useful to identify copyright and ownership of
a workflow. Listing 1.7 shows the SPARQL syntax of this query. This query
returns agents and organisations of a workflow and its sub-workflows.

Listing 1.7. SPARQL to identify workflow ownership.

PREFIX senaps:<http://www.csiro.au/ontologies/senaps#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX swf:<http://swfprov.csiro.au/>

PREFIX prov:<http://www.w3.org/ns/prov#>

SELECT DISTINCT ?workflowId ?user

WHERE {

?workflowId a swf:Workflow;

prov:wasAssociatedWith ?user.

FILTER (?workflowId = ?workflow)

{

SELECT ?workflow

WHERE {

<workflowId> (swf:hasSubProcess/swf:hasSubProcess)+ ?

↪→ workflow.}

}

}

Query6: Find the Collaborative Researchers Who Collaborated in
Designing Workflows Together? This query retrieves researchers (i.e.,
agents) who collaborate in designing workflows. Listing 1.8 shows the SPARQL
syntax of this query.

Listing 1.8. SPARQL to identify collaborations.

PREFIX senaps:<http://www.csiro.au/ontologies/senaps#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX swf:<http://swfprov.csiro.au/>

PREFIX prov:<http://www.w3.org/ns/prov#>

SELECT DISTINCT ?workflowId ?agent1 ?agent2

WHERE {

?workflowId a swf:Workflow;

?workflowId prov:wasAssociatedWith ?agent1; ?agent1 a prov:

↪→ Agent.

?workflowId prov:wasAssociatedWith ?agent2; ?agent2 a prov:

↪→ Agent.

FILTER (?agent1 != ?agent2)

}
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5 Discussion

Provenance knowledge graph extracted from the event logs can be used to answer
a range of relevant provenance queries and exhibit high usability compared to
the event logs. Nevertheless, some issues are planned to be addressed in the
future.

A significant concern is that provenance collected from then event logs cap-
tures retrospective provenance only i.e., execution traces. A partial prospec-
tive provenance can be extracted using metadata like SWfPROV; however, a
complete prospective provenance and workflow evolution provenance cannot be
inferred from workflow execution traces only. Workflow specification and evolu-
tion provenance are required to address many provenance analytic queries. For
instance, a scientist faces divergent outcomes during reproducibility analysis,
i.e., two executions of the same workflow produce different results. The scien-
tist is interested to know what is (are) the reason(s) of divergent results
of two executions of a workflow? One such reason could be the data or
workflow evolution, or it could be some unintentional changes in the workflow.
For any provenance solution to identify the cause, it should capture the work-
flow evolution and prospective provenance. Our solution ProvAnalyser produces
implicit prospective provenance through reverse engineering, as shown in List-
ing 1.4. However, for conformance checking [24], a user is required to compare the
implicit workflow specifications with explicit workflow specifications manually.
The ProvAnalyser needs to capture workflow retrospective provenance explicitly
to automate the conformance checking.

Another limitation is the unavailability of a user-friendly provenance explo-
ration and analysis mechanism. ProvAnalyser uses SPARQL as the only mecha-
nism to query stored provenance. Although query-based access mechanisms (e.g.,
SPARQL, SQL, XPath or XQuery) are amongst the most popular provenance
access methods [28], it is usable for expert users (people with query language
expertise) or, for näıve users, to answer pre-formulated queries. An appropriate
method of provenance data visualisation or exploration can improve the data
interpretation, facilitate decision making, and lead scientists to unexpected sci-
ence discovery from the provenance traces.

Based on the discussion above, we plan to extend ProvAnalyser to address the
limitations including capturing and storing workflow prospective and evolution
provenance; and a visualisation tool for interactively exploring provenance in
future.

6 Related Work

The provenance of workflows has been investigated in a number of areas, includ-
ing experimental research, business and data analytics [18]. Workflow prove-
nance ability to replicate findings from previous runs, explain surprising results,
and organize results for sharing and interpretation is the biggest motivation
for employing it in science. State-of-the-art scientific workflow engines (e.g.,
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Kepler [1], Taverna [26], WINGS/Pegasus [21], Galaxy [15] and VisTrails [3])
automatically record the provenance of their workflows in the form of execution
traces. Moreover, there are several stand-alone provenance capture and analytics
methods [28]. However, most solutions rely on proprietary formats that make it
difficult to interchange and interoperate provenance information. In addition,
these approaches harvest provenance directly from the system at runtime work-
flow execution traces rather than log archives, requiring instrumentation of the
source code of the systems.

LogMaster [11] uses system logs to extract event correlations to build failure
correlation graphs by using log files to understand the root causes of failures,
SherLog [33] leverages large system logs to analyse source code of the system.
Through integrating fault signals with event messages, Jiaang et al. [20] suggests
a mechanism for root cause analysis of fault in large systems. Xu et al. [32] detect
problems in large scale systems by mining logs along with the source code that
generated the logs. Gaaloul et al. [12] analyses process logs to classify transaction
behaviours in the process and to then optimise and correct the corresponding
recovery function. Similarly, NetLogger [17] captures and analyses event logs
for distributed applications’ performance, but it requires instrumentation of the
source code. All these methods, however, do not gather provenance information
directly from log files.

While logs provide relevant information for the analysis of failures, they can
also be used to collect relevant information about workflows execution and data
objects. To create a web service request citation, Car et al. [6] extracted PROV-O
compliant provenance from the Web service log. Ghoshal and Plale [14] presented
the most relevant approach to ProvAnalyser by exploring the options of deriv-
ing workflow provenance from existing log files. Their emphasis, though, is on
gathering provenance from various forms of distributed applications logs. Our
approach leverages SenapsLAND event logs to capture interoperable provenance
and analyse it to understand and reproduce workflow outputs.

7 Conclusion

In this work, we captured the provenance of scientific workflows from their event
logs to verify the quality of their data products. The event logs are filtered and
transformed into a provenance knowledge graph using a specialised provenance
model. This transformation makes it possible to record the useful information
into a structured, interoperable and workflow system-independent format. The
captured provenance enabled the analysis of workflows’ execution traces to make
them understandable and reusable. Moreover, the provenance recorded to per-
form data and workflow quality assessments and analysis are smaller in volume
than the event log. This reduction in volume indicates the practical scalabil-
ity of this provenance extraction process. While workflow execution provenance
recorded from the event logs can answer most of the user queries, it is not always
enough and, where it is not, workflow prospective provenance can be inferred and
used. The systems can, however, consider collecting prospective and evolution
provenance information in their logs to enable detailed provenance analytics.



118 A. S. Butt and P. Fitch

References

1. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
Kepler scientific workflow system. In: Moreau, L., Foster, I. (eds.) Provenance and
Annotation of Data. IPAW 2006. Lecture Notes in Computer Science, vol. 4145.
Springer, Heidelberg (2006). https://doi.org/10.1007/11890850 1406

2. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an
extensible system for design and execution of scientific workflows. In: Proceedings.
16th International Conference on Scientific and Statistical Database Management,
2004, pp. 423–424. IEEE (2004)

3. Bavoil, L., et al.: VisTrails: enabling interactive multiple-view visualizations. In:
VIS 05 IEEE Visualization, pp. 135–142 (October 2005). https://doi.org/10.1109/
VISUAL.2005.1532788

4. Belhajjame, K., et al.: Using a suite of ontologies for preserving workflow-centric
research objects. J. Web Semant. 32, 16–42 (2015)

5. Butt, A.S., Car, N., Fitch, P.: Towards ontology driven provenance in scientific
workflow engine. In: Proceedings of the 8th International Conference on Model-
Driven Engineering and Software Development, MODELSWARD 2020, Valletta,
Malta, February 25–27, 2020, pp. 105–115 (2020)

6. Car, N.J., Stanford, L.S., Sedgmen, A.: Enabling web service request citation by
provenance information. In: Provenance and Annotation of Data and Processes -
6th International Provenance and Annotation Workshop, McLean, VA, USA, June
7–8, 2016, Proceedings, pp. 122–133 (2016). https://doi.org/10.1007/978-3-319-
40593-3 10

7. Cohen-Boulakia, S., et al.: Scientific workflows for computational reproducibility
in the life sciences: status, challenges and opportunities. Future Gener. Comput.
Syst. 75, 284–298 (2017)

8. Cuevas-Vicentt́ın, V., et al.: Provone: a prov extension data model for scientific
workflow provenance (2015). https://purl.dataone.org/provone-v1-dev. Accessed
12 Dec 2019

9. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: an
overview of workflow system features and capabilities. Future Gener. Comput.
Syst. 25(5), 528–540 (2009)

10. Deelman, E., et al.: The future of scientific workflows. Int. J. High Perform. Com-
put. Appl. 32(1), 159–175 (2018)

11. Fu, X., Ren, R., Zhan, J., Zhou, W., Jia, Z., Lu, G.: LogMaster: mining event
correlations in logs of large-scale cluster systems. In: 2012 IEEE 31st Symposium
on Reliable Distributed Systems, pp. 71–80 (October 2012). https://doi.org/10.
1109/SRDS.2012.40

12. Gaaloul, W., Gaaloul, K., Bhiri, S., Haller, A., Hauswirth, M.: Log-based transac-
tional workflow mining. Distrib. Parallel Databases 25(3), 193–240 (2009)

13. Garijo, D., Gil, Y.: A new approach for publishing workflows: abstractions, stan-
dards, and linked data. In: Proceedings of the 6th Workshop on Workflows in
Support of Large-scale Science, WORKS 2011, pp. 47–56. ACM, New York (2011).
https://doi.org/10.1145/2110497.2110504

14. Ghoshal, D., Plale, B.: Provenance from log files: a bigdata problem. In: Proceed-
ings of the Joint EDBT/ICDT 2013 Workshops, EDBT 2013, pp. 290–297. ACM,
New York (2013). https://doi.org/10.1145/2457317.2457366

15. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for sup-
porting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biol. 11(8), R86 (2010)

https://doi.org/10.1007/11890850_1406
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1007/978-3-319-40593-3_10
https://doi.org/10.1007/978-3-319-40593-3_10
https://purl.dataone.org/provone-v1-dev
https://doi.org/10.1109/SRDS.2012.40
https://doi.org/10.1109/SRDS.2012.40
https://doi.org/10.1145/2110497.2110504
https://doi.org/10.1145/2457317.2457366


ProvAnalyser: A Framework for Scientific Workflows Provenance 119

16. Guedes, T., Silva, V., Mattoso, M., Bedo, M.V., de Oliveira, D.: A practi-
cal roadmap for provenance capture and data analysis in spark-based scientific
workflows. In: 2018 IEEE/ACM Workflows in Support of Large-Scale Science
(WORKS), pp. 31–41. IEEE (2018)

17. Gunter, D., Tierney, B., Crowley, B., Holding, M., Lee, J.: NetLogger: a toolkit for
distributed system performance analysis. In: Proceedings 8th International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (Cat. No. PR00728), pp. 267–273. IEEE (2000)
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Abstract. Background. In Production Systems Engineering (PSE) mod-
els, which describe plants, represent different views on several engineer-
ing disciplines (such as mechanical, electrical and software engineering)
and may contain up to 10,000s of instance elements, such as concepts,
attributes and relationships. Validating these models requires an inte-
grated multi-model view and the domain expertise of human experts
related to individual views. Unfortunately, the heterogeneity of disci-
plines, tools, and data formats makes it hard to provide a technology-
independent multi-model view. Aim. In this paper, we aim at improving
Multi-Model Reviewing (MMR) capabilities of domain experts based on
selected model visualisation methods and mechanisms. Method. We (a)
derive requirements for graph-based visualisation to facilitate review-
ing multi-disciplinary models; (b) introduce the MMR approach to visu-
alise engineering models for review as hierarchical and linked structures;
(c) design an MMR software prototype; and (d) evaluate the prototype
based on tasks derived from real-world PSE use cases. For evaluation
purposes we compare capabilities of the MMR prototype and a text-
based model editor. Results. The MMR prototype enabled performing
the evaluation tasks in most cases considerable faster than the standard
text-based model editor. Conclusion. The promising results of the MMR
approach in the evaluation context warrant empirical studies with a wider
range of domain experts and use cases on the usability and usefulness of
the MMR approach in practice.

Keywords: Multi-disciplinary engineering visualisation · Production
systems engineering · Model-driven engineering · Domain-specific
modeling · Model review · Model quality assurance
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1 Introduction

Engineering models for the design and construction of industrial production
plants or work cells typically follow a hierarchical structure and represent depen-
dencies and connections to related model views and elements, e.g., conveyors
connected to robotic arms [3]. Engineers, e.g., mechanical or electrical engineers,
model their discipline-specific views, which need to be integrated into a common
and comprehensive view on the system later in the process. The size of such
models can reach up to tenthousands of model elements that take up several
GBs of computer memory, making the processing and editing increasingly dif-
ficult. However, assuring the quality of underlying models is a challenging and
critical task for evaluating the correctness of system designs. Model reviews,
comparable to code reviews [1,26] are established software engineering practices,
used increasingly to check for design evolution, logical correctness and complete-
ness of models [38]. However, compared to code reviews that focus on software
code, in model engineering heterogeneous data artefacts have to be analysed
(e.g. spreadsheets, technical documentation in PDFs, or data in standardized
languages, such as AutomationML (AML)).

In Production Systems Engineering (PSE), a simulation engineer builds up
a holistic model, which combines discipline-specific views and parameterises the
model according to provided data. Changes in one discipline can trigger effects
in other disciplines (e.g., using a motor of a different size may require changes
to the mechanical design), so the models are highly dependent on the input.
Therefore, engineers need to propagate system changes in a Round-Trip Engi-
neering (RTE) process [37]. Instead of waiting for the completion of design steps
by colleagues, engineers iteratively push their updates and incorporate changes
of others including the risk of inconsistencies [13] or information losses [27]. Pro-
prietary file formats and description languages make data integration and the
common view on the system model more complex. Simultaneous contributions
to and adaptations of the common view and data model result in big and com-
plex model files, around 30 MBs to several GBs composed of up to potentially
tenthousands of elements, making them hard to process and manage. Moreover,
model inspection and manipulation tools in industry traditionally focus on text-
based representation and are not optimised for human experts or automation
supported operations, such as automated reasoning [33].

Until now, only a few useful alternative approaches for integrated modeling
of PSE structures have been developed: Systems Modeling Language (SysML)1,
based on the Unified Modeling Language (UML) and the AML2 standard, based
on Extensible Markup Language (XML) provide common data formats, used in
the engineering of production systems. As the main concern of our work is the
process of engineering data exchange, we focus on the application of AML, which
is tailored to the exchange of engineering data and implements the industry stan-
dard IEC62714 [16]. Although, AML is already a popular industry format, the

1 SysML: sysml.org.
2 AutomationML: www.automationml.org.

https://sysml.org
https://www.automationml.org
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modeling editing support is limited to text-based and tree-focused capabilities. In
the context of code review this approach seems suitable since traditional editing
tools of software architects rely on textual representations to visualise changes.
However, textual representations are not sufficient for model review because
additional information such as semantic dependencies are required for model
understanding. Our assumption is that making element and attribute changes
and their effects on their related dependencies visible to involved stakeholders
could have the potential to increase data exchange efficiency. The visualisation of
production system models can support the model review process to (a) support
achieving and keeping data consistency, (b) track changes across engineering
disciplines, and (c) facilitate defect detection in multi-disciplinary engineering
models.

Information Visualisation (InfoVis) is a sub research field of computer
science, human-computer interaction, and computer graphics focusing on the
human perception of data and process improvement by implementing best prac-
tices and lessons learned [25]. One main concern of InfoVis is that unstructured
and large data sets are challenging to be analysed by humans experts, if these
data are not represented and optimized for human processing. Graph-based data
visualisations can support effective and efficient model processing [7] and reduce
the cognitive load as well as search time for users. The goal is to support human
experts by providing patterns and highlight data changes.

Therefore, our goal is to apply selected information visualisation methods in
the PSE context to improve the review process of engineering models in the PSE
domain. This work builds on previous work on model inspection, published at
the Modelsward 2020 conference [31]. Based on the Design Design Science Cycle
[36], we analyse requirements of the application use case, develop a software
prototype (i.e., the Multi-Model Reviewing (MMR) prototype) to support multi-
model reviewing capabilities and evaluate it against a standard PSE tool, i.e.,
the AutomantionML Editor (AMLEditor). Therefore, we derived the following
research issues (RIs):

RQ1. Model Visualisation Requirements. What requirements are critical
to facilitate visualising and reviewing multi-disciplinary models in the PSE
domain?
PSE models are complex, including a variety of elements, nested structures,
and dependencies requiring the integration of various tools and data for-
mats [34]. The high complexity makes it hard for human experts to efficiently
manage and review such files. Hence, we propose the application of selected
information visualisation concepts [25], specifically graph-based techniques,
to improve the processing of large-scale models and to improve the collab-
oration of domain experts for better understanding system models and for
decision-making in case of quality issues (such as defects). We discuss funda-
mental findings of the information visualisation community for application
in model engineering in PSE (see Sect. 2). However, these general guidelines
are not tailored to the specific application domain. Therefore, we additionally
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investigate the needs for modeling domain-specific PSE models and common
user actions in the form of use cases as requirements in Sect. 3.

RQ2. Multi-Model Reviewer System Design. What system design facili-
tates the information visualisation of PSE models?
Based on identified requirements and use cases derived from RQ1, we devel-
oped a MMR approach, including a system design and architecture to visu-
alise AML model hierarchies in a space-efficient way. The visualisation is
based on an AML-specific instance model hierarchy. We implemented a cus-
tomized force-directed graph algorithm for efficient space allocation. We
applied modern development principles, such as service-oriented architecture
and the Model View Controller (MVC) pattern. In Sect. 3, we discuss and
introduce functionalities and capabilities of theMMR-prototype.

RQ3. Multi-Model Reviewer Performance Analysis. How does the infor-
mation visualisation prototype approach perform when compared to a PSE
modeling tool?
We compared the MMR software prototype to the AMLEditor, as one exam-
ple of a standard tool for a text-based model editing and a standard tool
for AML data management and editing. We applied the Keystroke-Level
Method (KLM) [7] for evaluating the static performance of both approaches.
KLM is a static measure to analyse data management and editing perfor-
mance regarding the graphical user interface and modeling capabilities by
measuring the time required to correctly conduct selected tasks that reflect
the requirements. An initial analysis shows the advantages of the MMR app-
roach, however extensive additional analysis is further required to strengthen
external validity.

From this work, we expect the following contributions to the model-driven engi-
neering community: i) requirements for the PSE domain as application area, ii)
insights on the MMR approach as foundation for application in other domains
that include models with hierarchical structures, and iii) a system design archi-
tecture for AML graph visualisation.

The remainder of this work is structured as follows: Sect. 2 provides back-
ground information on common visualisation techniques, the data exchange for-
mat AML, and an AML approach for domain-specific data modeling. Section 3
presents identified requirements and common use cases for model editing and
review. We describe the MMR approach based on information visualisation in
the context of PSE in Sect. 4. Section 5 introduces the MMR software prototype
for the graphical model review. Section 6 discusses our research findings and lim-
itations. Section 7 presents related work on domain-specific modeling approaches
and visualisation techniques for the PSE domain. Finally, Sect. 8 concludes and
identifies future work.

2 Background

This section summarizes background on data and graph structures and visual-
ization in Production Systems Engineering (PSE) and AutomationML (AML).
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2.1 Visualisation Techniques for Structural Data

There are multiple well-established visualisation techniques for structural
data [15], also used in PSE artefacts. They include Rooted Trees, Tree Maps,
Radial Trees and Force-directed Tree.

(a) (b)

Fig. 1. Example of (a) Rooted Trees and (b) Radial Trees.

Rooted Trees are tailored for the visualization of hierarchical relations (cf.
Fig. 1a). They typically have a single root node in the top level position. Based
on this top level position, child nodes move downwards. Nodes on the same hier-
archical level share the same vertical depth. However, for large data structures
this representation requires additional functionality for searching vertically in the
tree. Hence, it is challenging to keep the overview on the overall tree structure.

Radial Trees. Compared to the rooted tree, this representation starts from a
central node (Fig. 1b). Based on this root node, all other nodes are grouped in
circles, leading to a more efficient utilization of the available space.

Tree Maps presents data in rectangular formation related to the data size
(Fig. 2a). Although Tree Maps support the presentation of larger data structures
this approach is not well-suited for representing cross-references.

Force-Directed Graphs. (Figure 2b) are devised by algorithms calculating the
position of nodes based on force simulation (the force between nodes, attracting
or repelling each other). The algorithms are optimized for space usage. However,
this method often does not represent graphs that are visually attractive for
human experts.
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(a) (b)

Fig. 2. Example of (a) a Tree-Map and (b) a Force-directed Tree.

2.2 AutomationML – The Open PSE Data Exchange Standard

AutomationML (AML) is a standardised data exchange format for the storage
and exchange of modeling hierarchical structures common to plant structures.
The data format is taking advantage of different industry standards, like IEC
62424, COLLADA and PLCOpenXML to represent the different views needed
for the interdisciplinary design of production systems [9]. Computer-Aided Engi-
neering eXchange (CAEX) supports object orientation [11], with different ele-
ments providing specific functions: System unit classes describe system objects
and can be organised in system unit libraries. RoleClasses define the semantics
of an object. Interface classes describe abstract relations of an object or rele-
vant information that is not covered by the other language concepts. AML files
are described in a hierarchical structure, also called Instance Hierarchy, defined
by a set of Internal Elements (IE). Since AML files are based on Extensible
Markup Language (XML), they can be manipulated in text editors. However,
especially in the context of Production Systems Engineering (PSE), engineering
data artefacts with thousands of components, knowledge extraction and review
tasks can become cumbersome and entail errors through manual manipulation.

An established tool is the AutomantionML Editor (AMLEditor)3. Note that
the editor has been designed to support engineers in managing AML files and
represents the recommended tool in the PSE context. Figure 3 shows the rep-
resentation of tree structure of the AMLEditor (1). On the right (2), shows
the SystemUnitClass libraries, bottom left RoleClass libraries (3) and bottom
right InterfaceClass libraries (4). Individual nodes can be inspected to view
sub-nodes and the side panel helps to understand the project instance hierarchy
(5). The top panel is compromised of edit options, saving, importing etc. (6).
The overall design focuses on text-based representation and structure. However,
a major disadvantage of the editor is the poor utilisation of the given screen
space and limited visualisation of the system model. The tree representation

3 AutomationML Editor: www.automationml.org.

https://www.automationml.org/o.red.c/dateien.html?cat=1
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mostly expands downwards (1), requiring users to scroll and search extensively
for components especially in larger structures. Also, the search function is cur-
rently limited, attribute search is not enabled and complete spelling of names is
required to find elements. Further, the search functionality is quite limited, e.g.,
searching for attribute values of a certain device is not supported yet.

Because AML represents the foundation for modern (a) engineering data
representations and model exchange in PSE and (b) enables a common view on
the system model there is the need to support engineers by improving AML data
management and editing.

2.3 Domain-Specific Data Modeling with AutomationML

In industrial use cases the planning and design of Production Systems (PSs)
is a complex process, involving the collaborative work of several heterogeneous
engineering disciplines. During the work process the engineers exchange data
across the involved disciplines constitute an engineering network.

A common method to manage the collaborative work is the Round-Trip Engi-
neering (RTE) [37] process that proposes a centralised data management system
where domain experts can commit their work progress to a unified data model
and pull updates coming from other disciplines.

Implementing a centralised data management system in the PSE context is
a main challenge because of the discipline-specific tool data and formats that
support only their discipline-specific concepts and model hierarchies. Addition-
ally, these tools are not necessarily compatible with each other, which can lead
to data inconsistencies, information loss, or duplication of data during the data
integration. This makes it difficult to extract and integrate engineering tool data
into a unified model that is also reasonable for other domains. Often, it is also
not possible to reconstruct the original model information without supporting
meta data which provides information about the mapping between the origin
model and the unified model. This leads, to the loss of the previous structure
and semantic meaning.

Lüder et al. [23] propose a data exchange architecture to integrate domain-
specific tools in an engineering network utilising a central data management sys-
tem as described in the RTE process. The unified model in the data management
system follows the IEC 62714 standard [24]. Compared to existing approaches
in asset management such as Siemens COMOS4 the information about local
data models a is persevered and can be partially reconstructed on export to a
domain-specific tool. To enable the reconstruction of local data hierarchies and
structures Lüder et al. [21,22] introduces the modeling concept of defining local
and global views in two separate concept models based on AML:

The local model view is called AML-2 and describes the local discipline-
specific concepts and model hierarchies and defines links and mappings to the
original data sources, e.g., tool data. The common model view is called AML-1
and constitutes the unified model of all described AML-2 models.

4 Siemens COMOS: https://www.siemens.com/comos.

https://www.siemens.com/comos
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Fig. 3. AMLEditor components and a sample instance hierarchy in PSE.

AML-2 Local View Modeling. A key success factor in a PSE project is the strong
inter-connection and integration of the different discipline-specific data. Indeed,
each discipline uses their own concept space and definition for data modelling.
Also, the engineering tools provide their own data models and data formats,
which makes it hard to integrate the data into other model spaces without a
mapping language. AML-2 supports the modelling of local concept and data
hierarchies to ensure the availability of these information for the integration into
the unified model and the export back into local data models.

To describe the local data model with AML-2, we use AML features such as
Role Class (RC) and Role Class Library (RCLib) to describe the semantics of
local concepts. A domain-specific local concept is described as a RC that defines
the concept-related attributes and the mapping to the corresponding source data.
AML Interface Class Libraries (ICLibs) are used to link external artefacts like
technical data-sheets or drawings on instance level. System Unit Classes (SUCs)
are used to define local modeling elements, e.g., a motor or a gear that can be
used to define a specific device. When a local data model is imported the defined
AML-2 model elements are instantiated in a local instance model hierarchy.

AML-1 Hierarchy Modeling. AML-1 contains all RC and Interface Classes (ICs)
defined in the single local AML-2 models. The discipline-specific SUCs, are
grouped together in a common SUC consisting of sub-groups for each local model
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view containing the discipline-specific attributes and semantic links. Sub-groups
specify the sameRCs as the corresponding SUC in the AML-2 concept view.

When a local AML-2 is integrated into an AMl-1 model the existing hierarchy
is flattened into a list of Internal Elements (IEs). The discipline-specific mother-
child relations are defined with Internal Link (ILnk) connected to toMother and
toChild Interfaces.

The flattened list of elements and links between elements allows that all local
hierarchies can be displayed and preserved in the unified model (AML-1). On
top, attributes in sub-groups can be mapped to other attributes in the same
subgroup by a specified mapping language that enables attribute mappings that
enables the data propagation to other discipline-specific model views.

3 Requirements for the Visualisation of Multi-disciplinary
Engineering Data

This section summarises identified requirements for the visualisation and com-
mon use cases for modeling of PSE data.

3.1 Requirements for Engineering Data Visualisation

Information Visualisation aims at increasing human processing and cognition
abilities through different principles and techniques [7]. One mechanism is to
reduce cognitive load for users through displaying less information. Further-
more, search efforts are reduced and the displayed results illustrated in a way
meaningful for the user to minimize required scanning time. Another character-
istic for information visualisation is the recognition of patterns and relationships
in the data. The human perception of patterns in numerical data is limited, so
visual hints have to be provided for better recognition.

Based on the insights of information visualisation research and input from
our company partners, we focused on identifying capabilities for system model
editors in the PSE domain.

R1. Project Hierarchy. AML and PSE-related models use a hierarchical struc-
ture for representing the topology of the plant. Connections are not easily
recognizable, due to the structural organisation and size of files. Thus, a
visualisation approach needs to support a hierarchical project structure by
showing the connections between different nodes to understand the organi-
sation of components.

R2. Cross-references. This requirement describes relationships and dependen-
cies between different concepts and attributes apart from topology. In order
to avoid consistency errors, cross-references between different disciplines need
to be visible. These references are required to be able to visualise dependen-
cies and triggered changes in next steps.
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R3. Representation of Large Data Structures. Typical AML files can
become quite large (up to GBs of structured information in XML format
and several thousands of elements). Therefore, engineers need to have a con-
cise and efficient overview over this structure to assess individual elements.
Possibility to filter irrelevant, but also displaying detailed data for specific
tasks while utilizing the available screen space is required.

R4. Discipline-neutral View. In the context of PSE different disciplines, such
as electrical, mechanical, and software disciplines, have to exchange and edit
data. However, stakeholders might want to focus on local or in other words
discipline-specific views without getting bothered by information that are not
relevant for them. Therefore, discipline-neutral views are needed.

3.2 Context and Use Cases

Traditionally model engineering in PSE has mainly focused on paper plans
and slowly has transformed to the digital era over the last decades. However,
discipline-specific views have prevailed and the integration of engineering data is
still an open challenge in every complex PSE project. Figure 4 displays an app-
roach for a multi-model unification into a common view and thus, identifying
common concepts for holistic system understanding and modeling [29].

On the left and right side we have the local glossaries that represent the local
vocabularies and views of discipline-specific engineers in their specific domain.
In the middle we can see the unified view over all concepts. If concepts can be
semantically linked in a moderated negotiation process, they build up a glos-
sary of common concept models. These concepts are domain-crossing and are
constructed from parameters and values from different views and domains. How-
ever, local characteristics such as names or units might differ between each other
and the identification of mapping relationships is a non-trivial task. The entire
system is constructed from these boundary-crossing concepts that combine the
different discipline-specific concepts relevant to the project.

To achieve this vision, we aim to visualise AML-structures supporting
the Multi-Model Reviewing (MMR) capabilities for improved PSE model
engineering.

To show the feasibility of our approach, we have derived the four basic use
cases from common AMLEditor functionalities for AML data handling. These
basic data management functions consist of importing and exporting AML files,
add, modify and remove functionalities for AML data elements and search for
AML data. Furthermore, we include desired functions not available in the current
version of AMLEditor, such as search via attribute values. To enable model
capabilities, we extend the requirements with the following set of use cases:

UC-1: Import & Export of an AML file. In PSE a round-trip engineering pro-
cess as described in [37] with frequent update cycles of preliminary discipline-
specific designs is required for the engineering of complex PSE systems. There-
fore, the import (UC-1.1) and export (UC-1.2) of AML files is essential for
data management. Users frequently start with the import of an AML file in
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Fig. 4. Multi-disciplinary use case: the common concepts glossary process.

order to view or modify data in the received artefact. The export function
is required for distributing changes to other engineers or stakeholders or to
import data into other software tools for further manipulation.

UC-2: Navigation in Project Data. Engineers have to edit data based on the
designs of other disciplines. In order to be able to view the designs, users
require navigation capabilities to process the data: (UC-2.1) Selection of spe-
cific disciplines or (UC-2.2) the routing of dependencies to other disciplines
are needed for holistic, targeted understanding.

UC-3: Search in Project Data. Since project structures can become large and
complex, a search functionality is relevant for efficient data management:
(UC-3.1) Users can search for a specific name of a component or (UC-3.2)
users can search for a specific attribute value of a component.

UC-4: Modify Project Data. This use case concerns the data modification capabil-
ities and is similar to the Create, Read, Update and Delete (CRUD) functions
for persistent storage: (UC-4.1) to add a component, (UC-4.2) to edit a com-
ponent, (UC-4.3) to move component within the hierarchical structure, or
(UC-4.4) to delete a component.

To support elicited requirements and identified use cases, we developed a
prototypical solution based on a graph-based visualisation to support model
review of AML files.
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4 System Design for Engineering Data Visualisation

This section introduces the Multi-Model Reviewing approach and Multi-Model
Reviewer system design based on the requirements and modeling capabilities as
described in Sect. 3.1.

4.1 Multi-model Reviewing Approach

The Multi-Model Reviewing approach considers four engineering model visuali-
sation aspects to support the model reviewer.

Visualisation of Project Hierarchy. To visualise the project hierarchy (e.g.
the plant structure) the applied approach is a Node-link graph. Users can intu-
itively view the hierarchical structure of the system without the need to train in
this specific method.

Due to space constraints the Radial Tree visualisation was selected from the
different visualisation techniques (see Sect. 2.1). The branches, which represent
different disciplines, are depicted in different colors as shown in Fig. 5. In the
current implementation a maximum of two levels under the root level is shown to
the user to avoid cognitive overload. Additional information such as node names
are available when hovering over the particular node.

Visualisation of Cross-References. The Radial Tree technique is not entirely
suited for visualising cross-references. Our solution is to show cross-references in
a different color than the discipline-specific views.

A cross-reference between mechanical and electrical engineering could con-
cern, e.g., an electrical motor. The electrical view details power supply and
cabling of the motor, while mechanical engineers specify other parameters e.g.
the size dimensions of the motor.

We draw information for cross-references from the InstanceHierarchy and
show connections relative to the selected node. Aside from the selected node,
other nodes are greyed out to focus on the current selection as seen in Fig. 6.

Space-Efficient Visualisation. To declutter the visual space and provide
space-efficient means of visualisation for the PSE context the decisions taken
are explained in the following:

Force-directed graph algorithm combined with radial tree was implemented
to arrange the nodes in an optimal way. For an optimal distribution of nodes,
additional refinements in the force directed graph algorithm were made to
keep child and parent nodes close while ensuring sufficient space between
unrelated nodes without overlapping.

Labels are available but only partially visible: the label for the root node, for
nodes representing views (e.g. Mechanical view), currently selected nodes and
connected nodes to the current selection.
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Fig. 5. Overview on discipline-specific views in a radial tree representation of a multi-
disciplinary AML structure.

Color is used to emphasize the different disciplines. In the figures, the Electrics
view is colored in pink, orphaned nodes (without a parent), are colored in red
to draw the attention to them. The color schema can be adapted for instance
to grayscale in case of addational needs. This would limit the number of
possible discipline branches to six.

Shapes provide additional information concerning node hierarchy in the imple-
mentation:
Circles illustrate components that have one or more sub-components and

belong to the regular project hierarchy.
Squares show components without sub-components.
Triangles represent orphaned nodes.

Size was only used for the root node, being bigger than the others. However
for future work, the number of children nodes or other features could be also
illustrated in the size of nodes to provide quicker visual analysis capabilities.

Discipline-Neutral View. User can switch in the main view between the
general view, showing all disciplines and the entire project hierarchy, and the
selection of single disciplines. Single branches can be clicked to center them and
view connections between all nodes, irrelevant data are getting filtered out. Parts
of the tree that do not belong to the selected discipline are hidden.
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Fig. 6. Visualisation of cross-references between discipline-specific views.

4.2 Multi-Model Reviewer System Design

To support the Multi-Model Reviewing approach the decision was made to build
a modular, light-weight web application to support the modeling capabilities and
apply information visualisation methods to the underlying model. The system
design of the Multi-Model Reviewer is divided into two main parts: the user
interface in a web application and the service backend with a REST-interface.
An overview of the system components is shown in Fig. 7.

User Interface. To support the multi-model reviewer on working with the engi-
neering model, the Multi-Model Reviewer frontend consists of two modules:
(a) aml-graph (b) aml-graph-visualization. The aml-graph-visualization mod-
ule provides components and modules for a general graph visualisation. This
module is utilised by the aml-graph module to provide the model, function-
alities and services to draw and interacting with the AML graph. For the
communication with the service backend a dedicated service is provided.

Service Backend. In the Multi-Model Reviewer service backend an overlying Back-
end REST API is responsible for the communication with the frontend and
provides services for the import and export of an AML graph. Like the fron-
tend, the backend consists of an model and services. An AML graph instance
is persisted by the graph-persistence service to a database.
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Fig. 7. Architectural system design of the Multi-Model Reviewer.

5 Prototype and Evaluation

This section demonstrates the Multi-Model Reviewer prototype and reports on
the evaluation results of the applied graph-based techniques in the PSE domain.

5.1 Multi-Model Reviewer Prototype Implementation

The Multi-Model Reviewer prototype, provides a frontend web application con-
nected to a backend service for data model management and proved the feasibil-
ity of the chose visualisation approach for PSE structures. The frontend is built
using Angular 8 5. Additionally used libraries are Reactive Programming library
RXJS 6 and JavaScript (JS) library Data-Driven Documents (D3)7. The back-
end is built using Spring Boot8. Figure 8 shows the graphical interface, which
is created of a main view, displaying the project hierarchy (1) as well as import
and export functionality (2). Nodes can be double-clicked to re-arrange the view

5 Angular: angular.io.
6 RXJS: reactivex.io.
7 Java Script Library D3: d3js.org.
8 Spring Boot: spring.io/projects/spring-boot.

https://angular.io
https://reactivex.io
https://d3js.org
https://spring.io/projects/spring-boot
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around them. On the top right of the window, detailed information is shown,
such as the name, id or parent node (3). The different discipline-specific views
are shown in (4). Add, remove and edit functions are also supported (5).

Fig. 8. User interface of the Multi-Model Reviewer prototype.

The search function (6) currently supports full text search and search via
element or attribute name and is shown in Fig. 9 (a). Results are listed as real-
time suggestions in a drop-down window under the search bar.

A more detailed demonstration of the different capabilities is shown in the
provided screencasts.9

To investigate the feasibility of our approach initially, a small and simple
AML-data set was created to test the capabilities. The data set consists of 98
components modelled in different views (disciplines).

In comparison to the standard AutomationML Editor, the presented proto-
type has as a main advantage the graphical visualisation of cross-references and
the entire project structure. Users can easily filter for discipline-specific branches
visually and inspect relationships in the context menu. Furthermore, orphaned
nodes can easily be detected. Another feature is the search function that enables
users to search by name or attribute, which is currently not possible in the
AutomationML Editor.

9 Prototype Screencasts: https://qse.ifs.tuwien.ac.at/2019-graph-visualization/.

https://qse.ifs.tuwien.ac.at/2019-graph-visualization/
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In Fig. 9 (b), one main modeling capability is shown, the add function. The
connected views and parameters can be added, as well as parent element, id and
name. Similar dialogues are available for edit and remove actions.

(a)

(b)

Fig. 9. The Search (a) and Add New Element (b) feature in the Multi-Model Reviewer
prototype.

However, there are further features that are not implemented in the cur-
rent version: Not all AML language concepts are yet built into the presented
prototype, for example RoleClasses.

5.2 Multi-Model Review Performance – Evaluation Design

This section described the design of the performance evaluation. We selected a
common human interaction measure, the Keystroke-Level Method (KLM) [8],
for the performance measurement. The aim is to evaluate the time an expert
user needs in a computer system to correctly conduct a routine task (described
in Sect. 3.2). For that a routine task is split into atomic keystroke-level actions.
In Table 1 standardized Operators are shown that reflecting common user inter-
actions in computer systems (such as keystroke or mouse pointing, etc) with
average empirical data. Additionally, Mental Operators, which considers time
frames in which the users stops an action for different reasons (e.g. thinking) are
used. The time efficiency between different systems is measured by adding up
all execution times at the end of an action process recording.

To measure the performance between the AutomationML Editor and the
Multi-Model Reviewer Prototype we created a small but illustrative data set
with 98 components. To imitate the multi-disciplinary engineering environ-
ment, we modeled discipline-specific views such as Functions view, Mechanics
view, Electrics view, Media view and Document view. According to the derived
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Table 1. List of standard KLM operators, associated symbols and estimated execution
time (in seconds) [19].

Symbol Operator Execution time (sec)

K Keystroke 0.12–1.2 (typically 0.28)

T(n) Type sequence of n characters n * K

P Point with mouse to target on display 1.1

B Press or release mouse button 0.1

BB Click mouse button 0.2

H Move hand to keyboard or mouse 0.4

M Mental act of routine thinking 0.6–1.4

W(t) Waiting for the system to respond t

needs following tasks were measured and grouped by the scenarios introduced
in Sect. 3:

UC-1 Import and export of an AML file
Task-1a Import an AML file.
Task-1b Export an AML file.

UC-2 Navigate in project data
Task-2a Show only components relevant to a specific engineering discipline.
Task-2b Show a component with related views.

UC-3 Search in project data
Task-3a Search for a component by name.
Task-3b Search for a component by attribute value.

UC-4 Modify the project data
Task-4a Add a new component.
Task-4b Edit the details of a component.
Task-4c Change the hierarchy of a component.
Task-4d Remove a component.

5.3 Performance Evaluation Results

This section illustrates a calculation for a representative task in model reviewing
and also the results of all other tasks. The task UC 3.3a: Search for a component
by name is executed in both the AMLEditor and the MMR Prototype and the
corresponding calculations are shown below:

UC 3.3a: Search for a Component by Name

AutomationML Editor. (1) Initiate the search (decide to carry out the task)
M (2) Find, point to and double click (expand) the “Project” component M,
P, 2BB (3) Find, point to and click (select) the “Mechanics view” component
M, P, BB (4) Hit the Ctrl + F keys (actives the search function) T(2) (5)
Find, point to and click the revealed search bar M, P, BB (6) Move hand



A Multi-Model Reviewing Approach 139

from mouse to keyboard H (7) Enter the name of the searched component
(“RJX FRP DCKL JOG01 DIAL”) T(23) (8) Hit the Enter key K (9) Find
the highlighted component M (10) Validate that the component name is the
one that was searched for M

Total time = 6M + 3P + H + K + 4BB + T(25) = 6 * 1.2 + 3 * 1.1 +
0.4 + 0.28 + 4 * 0.2 + 25 * 0.28 = 18.98 s

Multi-Model Reviewer Prototype. (1) Initiate the search (decide to carry out the
task) M (2) Find, point to and click the search bar M, P, BB (3) Move hand
from mouse to keyboard H (4) Enter a part of the searched component’s name
(“01 dial”) T(7) (5) Go through the two results of the revealed search result list
M (7) Recall that the color green is assigned to components of the “Mechanics
view” M (8) Find the result with the green color coding M (9) Find, point to
and click the “Select” button of that search result M, P, BB

Total time = 6M + 2P + H + 2BB + T(7) = 6 * 1.2 + 2 * 1.1 + 0.4 +
2 * 0.2 + 7 * 0.28 = 12.16 s

Table 2 presents the summarized results of all use cases (for details refer
to [30]). These results, measured with the KLM method, show that, except from
two scenarios Import an AML file and Edit the details of a component, the
proposed prototype fares better. These results are promising that the designed
solution could help PSE engineers to manage engineering models more efficiently.
However, this hypothesis must be tested in more detail in future work.

Table 2. Average execution times based on KLM [8] for the tasks (in seconds), per-
formed with AMLEditor and the MMR Prototype solution based on [31].

Tasks AML editor MMR prototype

Task-1a 8.1 9.6

Task-1b 12.4 9.4

Task-2a - 4.4

Task-2b 36.3 13.9

Task-3a 19.0 12.2

Task-3b - 12.4

Task-4a 35.3 22.4

Task-4b 13.2 13.7

Task-4c 9.0 8.7

Task-4d 35.6 10.4
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6 Discussion

This section discusses results of the research questions introduced in Sect. 1.
The goal of this work was to initially study the requirements and needs for
AML modeling in the PSE domain. The heterogeneous data flow and divergent
tool landscape in the PSE domain hinder a seamless data and model integration.
Text-based manipulation is a standard for engineering models, but have their dis-
advantages regarding understandability and transparency of interdependencies
between domains and boundary-crossing objects. Visualisation can help to infer
knowledge that could not be extracted from a pure text-based representation and
support experts in their modeling tasks. This way, common concepts and inte-
gration of discipline-specific views as described in Sect. 3 can be discovered in a
more illustrative and intuitive way to pave the way towards a discipline-crossing
overview and negotiation method. The prototype and developed concepts build
a basis for more advanced use cases and modeling capabilities.

RQ1. Model Visualisation Requirements. What requirements are critical
to facilitate visualising and reviewing multi-disciplinary models in the PSE
domain?
We derived requirements and actions that are usually performed by engineers
in multi-disciplinary environments in Sect. 3. The following requirements
were identified: (a) The ability to represent project hierarchy, (b) The capa-
bility to represent cross-references between components, (c) An efficient way
to represent large data structures and (d) A discipline-neutral view. Further-
more, we derived the following four basic use cases described in Sect. 3.2,
which are representative for the daily work of an engineer in PSE: UC-
1 Import & Export of an AML file, UC-2 Navigate in Project Data, UC-3
Search in Project Data, UC-4 Modify the Project data.

RQ2. Multi-Model Reviewer System Design. What system design facili-
tates the information visualisation of PSE models?
To answer this research question, we designed and developed the Multi-Model
Reviewer prototype, applying graph-based visualisation to AML-hierarchies,
which is described in Sect. 4. The requirements derived from addressing RQ1
were transformed to prototype functionality for AML data handling and man-
agement. Different information visualisation techniques were applied, such
as use of appropriate color, size or form and restriction of displayed data to
reduce cognitive load.

RQ3. Multi-Model Reviewer Performance Analysis. How does the infor-
mation visualisation prototype approach perform when compared to a stan-
dard text-based PSE modeling tool?
We used a comparative analysis for evaluation. The four main use cases
described in RQ1 were measured in both modeling tools, the Multi-Model
Reviewer and AMLEditor. Through the static KLM, we estimated time
required for these tasks of domain experts. Except for import functional-
ity and editing the details of a component, all other tasks are performed
in a quicker way in the Multi-Model Reviewer, the search function is more
extensive.
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Limitations. Threats to validity to this work include that the prototype in its
current form is at an initial stage. The tool only covers the presented use cases
and functionalities. However, for a operational engineering tool advanced fea-
tures have to be introduced to cover and integrate the frequent update cycle
required for complex PSE modeling and move towards an agile working process
in the industrial domain. Such features are consistency and semantics checks,
change tracking or version management. The generated test data was relatively
simple and small in comparison to real-world production system data sets. Fur-
thermore, it does not cover the whole functionality of the AML standard, such
as SystemUnitClasses, RoleClasses, and references to external resources. Addi-
tionally, the visual aspects for graph-based model reviews need to be validated
regarding efficiency and quality assurance factors.

At this stage, the prototype is of academic nature and has not been yet tested
with a significant number of domain experts.

7 Related Work

In this section we discuss related work on domain modeling in PSE and domain-
specific model visualisations.

7.1 Domain Modeling in Production Systems Engineering

Local data models are oftentimes only known to the engineers who model them
in the discipline-specific tools, however for improved standardisation and reuse
of data models, visibility of local data models is necessary [10]. Change and con-
sistency management are essential topics in production systems modeling, but
are challenging due to the multitude and heterogeneity of data sources common
to the PSE domain [12].

Proprietary formats and languages create an additional lock-in effect due
to the incompatibility with tools and artefacts from other domains [2]. The
externalisation of element or attribute changes and effects on interconnected
dependencies (between these elements) to involved stakeholders can increase
system model exchange efficiency and can improve the quality of the overall
engineering model [4]. In multi-disciplinary PSE, system designs and plans are
typically modeled based on hierarchical structures including a set of different
views.

Although, tools help to increase productivity and product quality, there are
still several shortcomings to be addressed: Lack of usability and interoperability
and high complexity require high training effort and lots of domain expertise [6].

However, consistency and changes tracking is a crucial property to guar-
antee high quality of outputs, such as control code or simulation models for
parameter estimation [13]. Mustafa and Labiche also present various require-
ments for a generic traceabilty model, which specific different manipulation tasks
such as modeling traceability between model at elements in different degrees of
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detail [28]. Traceability modeling in heterogeneous systems is also more tailored
to specific formats, such as Ecore [28].

Domain experts can benefit from the combination of textual analysis paired
with visualisation and graph analytics of their domain-specific concepts, [18] per-
forming better than purely text-based approaches concerning knowledge extrac-
tion. Therefore, we aim to visualise the growing hierarchical structure of plant
topologies, as an important step towards increasing the efficiency in domain-
specific modeling in terms of providing a better overview about data model
structures. Vathoopan et al. describe how mechatronic AML models can be
visualised to enable model-based automation engineering [35] and report posi-
tive initial experiences from prototype development.

CAEX [9], a XML-based format for modeling engineering data, is a represen-
tative example for data modeling formats in PSE which needs to be considered
for domain modeling.

7.2 Domain-Specific Model Visualisation

Visualisations have multiple benefits for model management and curation in
domain-specific contexts: Use cases include data analysis, improved querying
capabilities and exploration [14].

Jäger et al. [17] visualised technical dependencies in PSE using cause-effect-
diagrams as a visualisation means. The authors conclude, that not all informa-
tion is always needed for specific tasks, and therefore the facilitation to curate
and select is important. Knowledge graphs are one established form of visuali-
sation of data sets to gain and reason on existing data, that are generated by
different algorithms in semantic web technologies. In [32], the authors presented
a knowledge graph, to semantically analyse Industry 4.0 related standards.

Zoubek et al. [38] discuss the difficulty of developers switching back and forth
between the textual and graphical representation for review tasks. To improve
this, they propose coordinated visualisations to better perceive changes to graph-
ical models and a prototypical implementation in Eclipse Papyrus.

Biffl et al. [5] discuss a model-driven engineering approach for AML and the
subsequent benefits such as versioning and view-linking support. However, they
also point out that additional work has to be done regarding quality assurance
and fault management.

Kovalenko et al. [20] provide an overview on advantages of model-based and
semantic web technologies methods applied to AML. One limitation is that,
there is still a high entry level for engineers who need a sufficient understanding
of these techniques to gain their functionalities. However they also mention that
it could be beneficial to bridge both worlds to benefit from both approaches.

8 Conclusion and Future Work

Visual and graph-based model review and inspection methods and tools in Pro-
duction Systems Engineering have not yet been researched extensively. However,
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the growing complexity of system models speaks in favour of such information
extraction approaches.

Graphical tools for model management can support the engineering pro-
cess and guide the knowledge discovery process and improve quality assurance
in identifying faulty designs. Data integration can be improved by gaining an
understanding of dependencies between disciplines. For improved tool and con-
cept development, domain experts and model engineers’ collaboration is of high
importance. Information visualisation is a growing discipline from which both
communities, the model engineering and PSE industry, can benefit.

The Multi-Model Reviewer tool is the first step towards visual inspection
and multi-model review of AML files. The requirements and findings of applying
information visualisation techniques focused on graph-based approaches in an
industrial context can further increase the model quality in PSE.

The Multi-Model Reviewing approach provides a guideline to visualise
multi-disciplinary engineering models. Discipline-specific model views are linked
into a unified graph and shown in a space-efficient way. Besides a discipline-
neutral view that shows all information, cross-references are highlighted when
a node is selected, and unnecessary parts of the graph are faded. This helps
a multi-model reviewer to focus on the relevant task and displays only needed
information.

Future Work. Empirical data on the management and review activities of large
system models in PSE are needed to base future research on a quantitative foun-
dation. The combination of model-based and semantic approaches (e.g. knowl-
edge graphs) seem to be promising to support domain experts with challenging
tasks in the future.
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Abstract. Deep neural networks (DNNs) are becoming widespread, and
can often outperform manually-created systems. However, these net-
works are typically opaque to humans, and may demonstrate undesir-
able behavior in corner cases that were not encountered previously. In
order to mitigate this risk, one approach calls for augmenting DNNs
with hand-crafted override rules. These override rules serve to prevent
the DNN from making certain decisions, when certain criteria are met.
Here, we build on this approach and propose to bring together DNNs and
the well-studied scenario-based modeling paradigm, by encoding over-
ride rules as simple and intuitive scenarios. We demonstrate that the
scenario-based paradigm can render override rules more comprehensible
to humans, while keeping them sufficiently powerful and expressive to
increase the overall safety of the model. We propose a method for apply-
ing scenario-based modeling to this new setting, and apply it to mul-
tiple DNN models. (This paper substantially extends the paper titled
“Guarded Deep Learning using Scenario-Based Modeling”, published in
Modelsward 2020 [47]. Most notably, it includes an additional case study,
extends the approach to recurrent neural networks, and discusses various
aspects of the proposed paradigm more thoroughly).

Keywords: Scenario-based modeling · Behavioral programming ·
Machine learning · Deep neural networks

1 Introduction

Deep learning technology [20] is bringing about dramatic changes in the world,
by allowing engineers to use automated learning algorithms to create complex
models [21]. Deep learning algorithms can generalize examples of how a desired
system should behave into an artifact called a deep neural network (DNN ). The
DNN is then capable of correctly handling new inputs—including inputs that it
had not encountered previously. In many cases, DNNs have been shown to sig-
nificantly outperform manually-crafted software. Notable examples include the
AlphaGO Go player [64], which defeated some of the world’s strongest human Go
players; systems for image recognition with DNN components that achieve super-
human precision [65]; and systems in various other domains, including recom-
mender systems [16], natural language processing [12], and bioinformatics [10].
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As DNNs are becoming more accurate and easier to create than manually-crafted
systems, their use is expected to grow and intensify in the coming decades.
Recently it has even been proposed to incorporate DNNs in highly critical sys-
tems, such as autonomous cars and unmanned aircraft [7,45].

Although DNNs have been demonstrating extraordinary performance, their
use poses new challenges [1]. A notable difficulty is the extreme opacity of DNNs:
because DNNs are generated by computers and not by humans, we can empir-
ically determine that they perform well, but fully understanding their inter-
nal decision making is highly difficult. As a result, it is nearly impossible for
humans to manually reason about the correctness of DNNs. For example, in
many state-of-the-art systems for image recognition, which appeared highly accu-
rate, it has been observed that slight input perturbations could cause DNN to
make problematic misclassifications [69]. This phenomenon raises serious con-
cerns about these networks’ reliability and safety. In recent years initial attempts
have been made to automatically reason about DNNs using formal methods
(e.g., [19,41,48,50,54,71]), but these approaches currently afford only limited
scalability. Moreover, DNN verification approaches typically focus on detecting
erroneous DNN behaviors, but do not specify how to correct such behaviors after
their discovery—which is also a difficult task.

As an illustrative example, consider the DeepRM system [57]. The goal of
DeepRM is to perform resource allocation: the system has certain available
resources (e.g., memory and CPUs), and also a queue of pending jobs. In each
time step, the system needs to either schedule a pending job and allocate some
of the available resources to this job; or perform a “pass” action, which means
that no new jobs are assigned resources while the system waits for executing
jobs to terminate and free up resources. DeepRM’s goal is to perform scheduling
in a way that maximizes job throughput. In order to achieve this goal, the sys-
tem maintains a model that contains information about resource allocation and
pending jobs, and uses a pre-trained DNN to choose which action to perform in
each step. When compared to manually created state-of-the-art solutions that
tackle the same problem, DeepRM has been shown to perform very well [57].

In spite of its overall satisfactory performance, it has been observed that
the DeepRM system may sometimes behave in undesirable ways. For example,
DeepRM’s creators reported that its DNN controller might sometimes request
that a job x be allocated resources, even though no job x exists in the job
queue. In order to address this issue, override rule were added to DeepRM’s
implementation [58]. An override rule is a small piece of code that can examine
the current state of the system, and then overrides the decision of the DNN
controller when certain conditions are detected. In the case described above, the
override rule will change the controller’s selection to “pass” whenever the DNN
requests to allocate resources to a job that is non-existent. There are additional
override rules included within the DeepRM implementation [58], and also in
implementations of other systems that use DNN controllers (e.g., the Pensieve
system [59]). Further, additional undesirable behaviors have been discovered
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in DeepRM since its release [52]; and removing these behaviors might require
augmenting the system with yet additional override rules.

These cases, and others like them, demonstrate the integral role that override
rules are beginning to play in DNN-based models. Because erroneous behaviors
may be discovered after such models are deployed, override rules may need to
be added, extended, refactored and enhanced at many points throughout the
system’s lifetime. In this paper, we argue that this situation calls for leveraging
suitable modeling techniques, in order to facilitate the creation and maintenance
of override rules—in a way that would increase the system’s overall reliability.

As part of this work we advocate using the scenario-based modeling (SBM )
framework [13,40] in creating override rules. In SBM, the individual behaviors
of a system are modeled as independent scenarios, which are then automatically
interwoven when the model is executed—in a way that produces cohesive sys-
tem behavior. SBM has been shown to afford multiple benefits in the design
and automated maintenance of systems. In addition, it is particularly suited for
incremental development, which is a desirable trait when dealing with override
rules. We propose here an approach and a method for applying SBM to systems
with DNN components, in a way that allows engineers to specify override rules as
SBM scenarios. We discuss the benefits that this approach affords (for example,
through the amenability of SBM to automated analysis [38]), and demonstrate
its applicability on three recently proposed systems. Although we focus here on
systems with DNN components, our proposed approach could be adjusted to
also accommodate systems with additional kinds of opaque components.

The rest of this paper is organized as follows. In Sect. 2 we provide the neces-
sary background on SBM, DNNs and override rules. Next, in Sect. 3 we present
our method for applying SBM to systems with DNN components. In Sect. 4
we describe how the proposed approach is applied to three case-studies. Next,
in Sect. 5 we extend the proposed technique to recurrent neural networks. A
discussion of related work appears in Sect. 6, and we conclude in Sect. 7.

2 Background

2.1 Scenario-Based Modeling

Scenario-based modeling [40] is a modeling approach for creating complex reac-
tive systems. The basic notion at the core of this approach is that of a scenario
object : an object that describes a single behavior, either desirable or undesir-
able, of the system being modeled. Each scenario object is created separately
and independently of other scenarios, and does not directly interact with them;
instead, it only interacts with a global execution mechanism. This global execu-
tion mechanism is the component in charge of managing the execution of a set
of scenario objects, in a way that produces cohesive system behavior.

Several flavors of scenario-based modeling have been proposed, which differ
from each other primarily in the idioms that a scenario object uses to interact
with the execution mechanism, and thus to affect the overall system execution.
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Our work here focuses on the most commonly used idioms, namely the request-
ing, waiting-for and blocking of events [40]. When the system is executed, each
scenario object may declare that it has reached a synchronization point, in which
the global execution mechanism must trigger an event. The object then specifies
three sets of events: events that it requests be triggered; events that it blocks
from being triggered; and events that it does not actively request, but should be
notified in case they are triggered by the global execution mechanism (waited-for
events). The execution mechanism waits for all the individual scenario objects
to synchronize (or, alternatively, just for a subset thereof—depending on the
semantics in use [27]). Then, it selects an event e that is requested and not
blocked for triggering, and informs any relevant scenario object that e has been
triggered.

An example of a small, scenario-based model appears in Fig. 1. This model
belongs to a system that controls the water level in a tank that has hot and
cold water taps. Each of the model’s scenario objects is depicted as a transition
system, whose nodes represent the (predetermined) synchronization points. The
AddHotWater scenario object repeatedly waits for WaterLow events, and
requests three times the event AddHot; and the AddColdWater scenario
object performs a symmetrical operation with cold water. When a model that
includes only the AddHotWater and AddColdWater objects is executed,
three AddHot events and three AddCold events may be triggered in any
order. If an additional requirement is added that the water temperature in the
tank be kept stable, the scenario object Stability may be used to enforce
the interleaving of AddHot and AddCold events through the use of event
blocking. The execution trace that is generated by the resulting model appears
in the event log.

Fig. 1. (From [37]) A scenario-based model of a system that controls the water level
in a tank with hot and cold water taps.

Scenario-based modeling has been implemented on top of a variety of pro-
gramming languages, such as JavsScript [4], Java [39], ScenarioTools [22] and
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C++ [30]. The SBM methodology has been successfully applied to model com-
plex systems, such as robotic controllers [25], cache coherence protocols [32]
and web-servers [30]. For simplicity, in the rest of this paper, we often describe
scenario objects in terms of transitions systems.

We take after the definitions given in [46], and formalize the SBM frame-
work as follows. A scenario object O over event set E is defined as tuple
O = 〈Q, δ, q0, R,B〉, which is comprised of the following components:

– Q is a set of states, each representing one of the predetermined synchroniza-
tion points;

– q0 is the initial state;
– R : Q → 2E and B : Q → 2E map states to the sets of events requested and

blocked at these states (respectively); and
– δ : Q × E → 2Q is a transition function, indicating how the object reacts

when an event is triggered.

Two scenario objects can be composed into a single, combined sce-
nario object, as follows. For objects O1 = 〈Q1, δ1, q10 , R

1, B1〉 and O2 =
〈Q2, δ2, q20 , R

2, B2〉 over a common event set E, we define the composite sce-
nario object O1 ‖ O2 as O1 ‖ O2 = 〈Q1 × Q2, δ, 〈q10 , q20〉, R1 ∪ R2, B1 ∪ B2〉,
where:

– 〈q̃1, q̃2〉 ∈ δ(〈q1, q2〉, e) if and only if q̃1 ∈ δ1(q1, e) and q̃2 ∈ δ2(q2, e); and
– The union of the labeling functions is defined in the natural way; e.g. e ∈ (R1∪

R2)(〈q1, q2〉) if and only if e ∈ R1(q1) ∪ R2(q2), and e ∈ (B1 ∪ B2)(〈q1, q2〉) if
and only if e ∈ B1(q1) ∪ B2(q2).

The composition operator can be applied repeatedly to compose any number of
scenario objects into a single scenario object.

We define a behavioral model M to be a collection of scenario objects,
O1, O2, . . . , On. The executions of M are defined to be the executions of the
composite scenario object, O = O1 ‖ O2 ‖ . . . ‖ On. Each execution of M starts
from the initial state of O; and in each state q visited throughout the execu-
tion an enabled event e is chosen for triggering, if such an event exists (i.e.,
e ∈ R(q)−B(q)). Then, the execution proceeds to a state q̃ ∈ δ(q, e), and so on.

Several extensions have been proposed for the basic variant of SBM described
above. In one such extension, which will be particularly useful in our context,
events are treated as typed variables [51]. For example, an event e can be declared
to be of type integer, allowing a scenario object to request e ≥ 5. Another scenario
object might block e ≥ 7. In this setting, the execution framework employs a
constraint solver, such as an SMT solver [5], in order to resolve the various
constraints and find a value assignment for e. In this case, the event e = 6
might be triggered. We omit here the formal definition of this extension, which
is straightforward; the interested reader is referred to [51].

2.2 Deep Neural Networks and Override Rules

Deep, feed-forward neural networks (DNNs) are directed, weighted graphs, in
which the nodes (also known as neurons) are organized into layers. The first
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and last layers are the input and output layers, respectively, and the multiple
remaining layers are referred to as hidden layers. Each neuron in the network
(except for input neurons) is connected to neurons from the preceding layer, and
each edge is assigned a predetermined weight value (an illustration appears in
Fig. 2). The selection of appropriate weight values is key; this is performed when
the DNN is created during the training phase, which goes beyond the scope of
this paper (for additional details, see [20]). In order to evaluate the DNN, values
are first assigned to its input neurons, and then propagated forward through the
network in an iterative process. In each iteration, values for another layer are
computed using the values assigned to neurons in its predecessor. Eventually,
the values of the output neurons are computed, and these values constitute the
outputs of the DNN which are returned to the user. It is typical for DNNs to
be used as controllers or classifiers, in which case the user usually cares about
which output neuron received the highest value—as this neuron represents the
action, or classification, that the DNN has selected among the possible options.

Fig. 2. (From [47]) A fully connected DNN with 5 input nodes (in green), 5 output
nodes (in red), and 4 hidden layers containing a total of 36 hidden nodes (in blue).
(Color figure online)

For our purpose here, it is usually sufficient to treat DNNs as black boxes,
that transform an input into an output in some unknown way. However, for
completeness, we briefly describe the evaluation procedure of a DNN. After the
input neurons are assigned values, the value of each hidden node is computed
in two steps: first, we compute a weighted sum of the node values from the
previous layer, according to the predetermined edge weights. Then, we apply
a non-linear activation function to this weighted sum [20], and the output of
this activation function becomes the value of the node being computed. One
common activation function is the Rectified Linear Unit (ReLU) [61], computed
by ReLU(x) = max (0, x). Thus, when a neuron’s value is computed using the
ReLU activation function, it is taken to be the maximum between the linear
combination of node values from the previous layer and 0.

Figure 3 depicts a small DNN (with 7 neurons in total), which will serve as a
running example. This DNN acts as a controller: it takes two inputs, x1 and x2,
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computes values for its three hidden neurons v1, v2 and v3, and then computes
its output values y1 and y2, which represent scores for two possible actions. The
hidden nodes v1, v2 and v3 all use the ReLU activation function. We slightly
abuse notation here, and use y1 and y2 to denote both the neurons and the
actions/classes represented by these neurons. The action that is assigned the
higher score is the one selected by the DNN. For example, the input assignment
x1 = 1, x2 = 0 results in output values y1 = 1, y2 = 0, which mean that action
y1 is selected. In contrast, the input assignment x1 = 0, x2 = 1 leads to y1 =
0, y2 = 3, and so action y2 is selected.

Fig. 3. (From [47]) A small neural network with a single hidden layer.

We formalize the notion of an override rule as a triple 〈P,Q, α〉, where: (i)
P is a predicate over the inputs of the network; (ii) Q is a predicate over the
outputs of the network; and (iii) α is an override action. The semantics of an
override rule 〈P,Q, α〉 is that whenever P and Q hold for a network’s evaluation,
then output action α should be the one selected, regardless of the actual output
of the DNN. For example, consider the following override rule

〈x1 > 0 ∧ x2 < x1, true, y2〉.
As we saw previously, for input values x1 = 1, x2 = 0 the DNN normally selects
y1; but, with this override rule, the selection would be changed instead to y2.
Note that this is so because this particular input satisfies the input condition,
i.e. it holds that x1 > 0 and x2 < x1. Our choice of setting Q to true means that
this override rule only examines the DNN’s inputs, and does not depend on its
outputs. If we were to set Q, e.g., to y2 > 10, then the override rule would not
be triggered for x1 = 1, x2 = 0. By adjusting P and Q as needed, this definition
is sufficient for expressing many common override rules, such as those in the
DeepRM example described in Sect. 1.

3 Modeling Override Scenarios

In the case of DeepRM, engineers have added override rules as unrestricted
Python code that resides within the code module that invokes the DNN con-
troller, and then processes its result [58]. Thus, while the DNN component itself
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is clearly structured and well defined, the more recently added override rules
are expressed as arbitrary pieces of code. This coding convention could lead to
several undesirable issues: (i) if the number of override rules was to increase sig-
nificantly, they could become convoluted and difficult to comprehend, maintain
and extend; (ii) the semantics of existing override rules might, in time, become
unclear. For example, does a more recent override rule supersede a previous rule
if both can be applied? Is there a particular order in which override rules should
be checked? Can multiple rules interact with one another? etc; and (iii) the con-
ditions encoded within override rules might, in time, become more complex than
originally intended, thus hiding away some of the model’s logic where engineers
might not know to look for it.

Here, we advocate the modeling of override rules using SBM, in a way
that is designed to mitigate the aforementioned difficulties. SBM is particularly
geared towards incremental modeling, which is a likely scenario when DNNs are
involved: because DNNs are opaque, some of their undesirable behaviors are
likely to be detected only post-deployment, thus requiring that new override
rules be added. Moreover, SBM’s simple semantics serve to guarantee that all
interactions between the override rules are well defined. Finally, a substantial
amount of work has been carried out on automatically analyzing, verifying and
optimizing SBM models; and building on top of this work could prove useful
in simplifying override rules and in detecting conflicts between them, as their
numbers increase.

3.1 Modeling DNNs and Override Rules in SBM

We now propose a method for creating SBM models, in a way that combines
scenario objects with a DNN controller. The core idea is to use a dedicated
scenario object, ODNN , to abstractly represent the DNN within the scenario-
based model. This ODNN is a non-deterministic scenario that models the DNN
controller, and allows it to interact with other scenario objects which are present
in the system. For the sake of simplicity, for now we assume that the set of
possible inputs to the DNN, denoted I, is finite (we relax this limitation later).
Let O denote the set of possible actions from which the DNN chooses. We add
the following new events to our event set E: an input event ei for every i ∈ I, and
an output event eo for every o ∈ O. We introduce the convention that our new
scenario object ODNN repeatedly waits for all input events ei, and then request
all output events eo. This behavior represents the black-box nature of the neural
network component, at least as far as the rest of the model is concerned: engineers
only know that after an input event is triggered, one of the output events will
be selected, without knowing which. However, when the model is deployed, the
execution infrastructure resolves the non-determinism of ODNN by invoking the
actual DNN and triggering precisely the output event that corresponds to the
DNN’s selection. For example, assuming there are only precisely two possible
inputs, e.g. i1 = 〈1, 0〉 and i2 = 〈0, 1〉, the DNN depicted in Fig. 3 would be
represented by the ODNN scenario object that appears in Fig. 4.
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Fig. 4. (From [47]) A scenario ODNN for the neural network in Fig. 3. Events ei1 and
ei2 represent the inputs to the neural network, and events ey1 and ey2 represent its
outputs.

In order to render the resulting model compatible with the actual DNN, we
introduce a convention that states that other scenario objects in the system
may not block any input event ei. These scenario objects may, however, wait-for
these events. A single dedicated scenario object, called a sensor, is responsible
for requesting an input event when it is time for the DNN needs to be evaluated
(e.g., following some user action). By another convention that we introduce, no
scenario object besides ODNN may request any output event eo; however, other
scenario objects in the system may wait-for, or block, these events. During system
execution, it is possible for the neural network to assign the highest output
score to an event that is currently blocked by another scenario object. When
this happens, we resolve the non-determinism of ODNN by selecting another
output event, which represents the output with the next-to-highest score, etc.
If no output events are left unblocked, then the system is deadlocked—and the
execution terminates.

The motivation that underlies our definitions is to allow various scenario
objects to monitor the inputs and outputs of the neural network controller,
by waiting for the input and output events associated with them; and then to
interfere with the DNN’s recommendation by blocking certain output events.
This is precisely the use-case of a typical override rule. We note that a scenario
object may force the neural network to produce some specific output, by blocking
all other possible outputs; alternatively, it may interfere more subtly, by blocking
some events while allowing the DNN to choose among the remaining, unblocked
events.

Recall our earlier assumption that the sets I and O of possible DNN inputs
and outputs, respectively, are finite. In practice, this assumption might become a
limiting factor: for example, considering the override rule described in Sect. 2.2,
the triggering of the override rule was affected by the values assigned to x1 and
x2, and so it is desirable to express these exact values in our model. Of course,
in this case the number of possible value assignments is infinite. To overcome
this limitation we again turn to an extension of the SBM semantics [51], which
allows engineers to treat events as typed variables. We adjust our formulation
slightly: we allow scenario objects in the system to wait-for a single, composite
event, whose triggering indicates that values have been assigned to (all of) the



156 G. Katz

neural network’s inputs or outputs. Scenario objects may then access the fields
of this composite event, which indicate the individual values assigned to each
input or output neuron, and act according to these values.

With this extension in place, the override rule from Sect. 2.2 can be expressed
as the scenario object in Fig. 5. This scenario enforces the following override
rule: whenever x1 > 0 and x2 < x1, output event y2 (and not y1) should be
triggered. Here, the tuple 〈ex1 , ex2〉 represents a single event, whose triggering
indicates that values have been assigned to the neural network’s inputs. This is
a composite event that contains two real values, x1 and x2, that the override
scenario can access and use in order to determine its next state. Output event
ey1 indicates, as before, that the override scenario forbids the neural network
from selecting y1 as its output action.

Fig. 5. (From [47]) A scenario object enforcing the override rule that whenever x1 > 0
and x2 < x1, output event y2 should be triggered.

3.2 Liveness Properties

Override rules are most often used to enforce safety properties. These proper-
ties state that “bad things never happen”. However, sometimes there is a need
to enforce also liveness properties, which state that “good things eventually
happen”. Specifically, this need can arise in the context of online reinforcement
learning [68], in which the DNN controller changes over time. In this context
we may wish to ensure, for example, that the DNN controller eventually tries
out new output actions. If these output actions prove beneficial, the online RL
mechanism will ensure that the neural network controller repeats them in the
future. Liveness properties are relevant also when there are fairness constraints;
for example, we may wish to ensure that in a resource management system, every
pending job is eventually scheduled.

An example in which we wish to enforce liveness properties appears in [52],
where the authors describe the Custard system: a congestion control system,
which uses a neural network controller. Custard monitors the conditions of a
computer network, and then select a bitrate for sending information across
this network—with the goal of minimizing congestion while maintaining high
throughput [43]. In [52], the authors examine Custard in order to determine
whether there exist cases in which the DNN controller chooses a sub-optimal
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sending rate, i.e. a sending rate that does not utilize all available bandwidth,
and never attempts to increase this bitrate. Clearly, such behavior constitutes a
liveness violation, which can be corrected using an override rule.

Using SBM, we can encode the fact that one (or multiple) DNN output
actions should eventually be blocked. Because blocking some actions forces the
DNN controller to pick a different action, it can be used to enforce a liveness
property. In practice, this blocking can be performed by having a scenario object
wait for a sequence of n consecutive rounds in which a particular output event
is triggered, and then block it in round n + 1. An example for n = 3 appears in
Fig. 6: the scenario therein looks for 3 consecutive DNN evaluations where event
y2 is triggered, after which it blocks y2 once, forcing the neural network to select
another output action. An alternative approach is to have the override scenario
block a particular output event with a very low probability [37], thus eventually
blocking that event with probability 1.

Fig. 6. (From [47]) A scenario object that enforces a liveness property for the network
from Fig. 4.

3.3 Automated Analysis

Various studies indicate that using scenario-based modeling may serve to facil-
itate automated formal analysis (e.g., [38]). More specifically, the simple syn-
chronization constructs employed by SBM scenario objects to communicate with
each other render tasks such as automated repair [46], compositional verifica-
tion [28] and model checking [49] simpler than they would be for less restricted
models. We argue that the amenability of SBM to formal analysis adds to its
attractiveness as a formalism for expressing override rules.

We illustrate this claim through one particular use case that involves dead-
lock freedom. As a DNN-based system is deployed and additional override rules
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are slowly added to it, potentially by different engineers, we run the risk that
a certain sequence of inputs to the DNN controller could cause a deadlock. A
simple illustrative example appears in Fig. 5: this figure depicts an override rule
that enforces that whenever x1 > 0 and x2 < x1, output y2 should be selected.
Suppose now that at some later point in time, a different engineer is concerned
about the possibility that the DNN might always advise y2. This engineer then
creates a new override rule, depicted in Fig. 6, to the effect that after 3 consec-
utive y2 events, a different event must be triggered. When run simultaneously,
these two override rules could produce a deadlock: for example, if the neural net-
work is given the inputs x1 = 2, x2 = 1 three consecutive times, both override
rules would be triggered, causing output events ey1 and ey2 to be simultaneously
blocked.

The absence of such deadlocks can be guaranteed through the use of formal
verification. The verification process can be carried out, e.g., after the addition of
each new override rule, or on a periodic basis. Whenever a deadlock is detected,
the counter-example provided by the verification tool could help the modeler in
identifying and altering the conflicting override rules—after which verification
can be run again, in order to ensure that the system is now indeed deadlock free.
Clearly, additional system-specific properties, beyond deadlock freedom, could
also be formally verified.

4 Three Case-Studies

In order to evaluate our approach, we implemented it on top of the BPC frame-
work for scenario-based modeling in C++ [30] (other SBM frameworks could, of
course, be used instead). The BPC package allows engineers to leverage many of
the useful and expressive constructs of C++, while enforcing that they adhere
to the SBM principles: i.e., each scenario is modeled using a separate object, and
inter-scenario interactions are performed strictly through the global execution
mechanism provided by BPC. Here, we used BPC to model override rules for the
DeepRM system for resource management [57], the Pensieve system for adaptive
bitrate selection [59], and the Custard system for congestion control [43].

4.1 Override Rules for DeepRM

The DeepRM system [57] (mentioned in Sect. 1) is a resource allocation system: it
assigns available resources to pending jobs, in order to maximize job throughput.
In order to evaluate our approach we implemented an override rule that prevents
DeepRM’s DNN controller from attempting to assign resources to non-existent
jobs, which is undesirable system behavior that occurs in practice [58].

The BPC code for an override rule that addresses this situation, implemented
as a scenario object, appears in Fig. 7. We assume here that the queue of pending
jobs is of length 5, and we use y0, y1, . . . , y5 to denote the DNN’s output actions.
Output actions y1, . . . , y5 indicate that the job in slot i of the queue should
be selected for resource allocation, whereas the special action y0 is the “pass”
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action—which indicates that no job should be allocated resources at this time.
We denote by x an event that indicates that the neural network needs to be
evaluated on certain input values, which are available as parameters of x. The
job queue’s state is included in the input to the DNN controller. Specifically, we
use x[1], . . . , x[5] to denote Boolean values that indicate whether or not there is
currently a pending job in the corresponding slot of the queue.

Our override scenario object is implemented as a single class, which inherits
from BPC’s special BThread class. The override scenario object uses the spe-
cial bSync() method in order to indicate that it has reached a synchronization
point, and wishes to synchronize with the other scenarios in the model (including
ODNN , the special scenario object that models the DNN controller). The bSync()
method takes as input three Event vectors—the first with the set of requested
events, the second with the set of waited-for events, and the third with the set
of blocked events. The bSync() call then suspends the object’s execution, until
the BPC execution mechanism has selected and triggered an event. Then, if the
event that was triggered was requested or waited-for by a scenario object, that
scenario is woken up and resumes its execution. In that case, the scenario object
can also retrieve the triggered event using the lastEvent() method.

Our override scenario object runs in an infinite loop. In each iteration it
synchronizes and waits for the input event x to be triggered; and once that
triggering has occurred, the scenario examines x to determine which slots of the
job queue are occupied. Finally, it synchronizes once again, in order to block
event yi for any unoccupied slots. Note that this scenario object can never cause
a deadlock, because it never blocks the special “pass” event, y0.

4.2 Override Rules for Pensieve

In online video streaming, a client wishes to download a video from a server
and play it. The video is typically available in multiple levels of quality, known
as definitions, that the client can choose from. The typical client will attempt
to choose the highest definition that is reasonable for the current bandwidth
conditions—i.e., the highest definition for which the video can be viewed with-
out pauses for rebuffering, which are known to be detrimental to the viewer’s
experience. Further, bandwidth conditions might change while the video is being
downloaded and played (e.g., if additional users start using the same physical
link), in which case the choice of definition might need to be adjusted. An algo-
rithm for selecting the definition rates in which a video is to be downloaded
is called an adaptive bitrate (ABR) algorithm. Recently, DNN-based ABR algo-
rithms have been shown to perform exceedingly well when compared to manually
designed solutions [59].

The Pensieve system [59] is one such DNN-based ABR system. The system’s
goal is straightforward: given previous bitrate choices and statistics about how
successful they were (i.e., how quickly parts of the video, called chunks, have
previously been downloaded), the system selects the bitrate in which the next
chunk is to be downloaded. Internally, Pensieve employs a DNN controller that
takes as input: (i) a list of past bitrate selections; (ii) a list of past throughput



160 G. Katz

Fig. 7. (From [47]) A scenario object for preventing the DeepRM DNN controller from
assigning resources to non-existing jobs.

rates (indicating how quickly past chunks were downloaded); (iii) the number
of remaining video chunks to be downloaded; and (iv) the current buffer size,
which indicates how many seconds of already-downloaded content are available
for playing, before rebuffering occurs. The DNN controller has a fixed number
of outputs (6, in our case study), each corresponding to a possible definition in
which the next chunk can be downloaded; and the definition associated with the
output to which the DNN assigns the highest score is the one selected for the
next video chunk.

Despite Pensieve’s overall excellent performance [59], formal verification of
this system has recently revealed many corner cases in which it makes undesirable
bitrate selections [52]. For example, consider the following properties:

– When there is a single video chunk left to download, the client’s buffer is
quite full, and all recently downloaded video chunks were downloaded in the
highest definition available (HD), the last chunk should be downloaded in
HD.

– When there is a single video chunk left to download, the client’s buffer is
nearly empty, and all recently downloaded video chunks were downloaded in
the lowest definition available (SD), the last chunk should be downloaded in
SD.

Both properties describe extreme cases, in which the correct choice of bitrate is
clear: either conditions are excellent and so the best definition should be used,
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or conditions are so poor that the worst definition should be used. However,
even for these simple properties, dozens of violations (i.e., cases where the DNN
selects some other definition) have been discovered [52].

As part of our evaluation, we use scenario-based override rules to enforce
correct system behavior in both of these cases. To this end, we introduce scenario
objects that wait until there are n chunks left in the video; and then monitor
whether they are all downloaded in a fixed definition d. Then, if all chunks
except for the very last one have been downloaded in definition d, the blocking
idiom is applied to enforce that definition d is selected also for the last chunk.
See Fig. 8 for an illustration. Of course, this override rule may be enhanced to
include additional criteria (e.g., constraints on the client’s buffer size) before the
blocking is applied.

4.3 Override Rules for Custard

As we briefly mentioned in Sect. 3.2, Custard is a DNN-based system for con-
gestion control. Custard’s DNN controller receives as input various readings
about the current, and previous, state of the computer network (e.g., loss rates,
throughputs and latency readings). Then, it selects the next sending bit rate.
Custard is a reactive system, in the sense that it was designed to run contin-
uously and use the results of its past decisions (as they are reflected in past
network readings) in order to make its next choice of bitrate.

Due to the opacity of Custard’s DNN controller, one concern is that it might
make selections that are overly conservative. Specifically, we typically wish to
avoid a situation in which the state of the computer network is completely steady,
and yet Custard’s DNN controller never tries to increase the sending bitrate—
and consequently never finds out whether some of the available bandwidth is
currently unused.

Figure 9 depicts a scenario object that prevents the situation described above.
This scenario attempts to identify situations in which the DNN’s inputs and
outputs have been completely steady for the last n = 10 rounds. Once this
situation is detected, the scenario object blocks the previous output action from
being triggered again, forcing the DNN to try an alternative. Note that event x
represents here an input assignment (which is comprised of multiple input values)
on which the neural network has been evaluated; whereas event y represents
the DNN’s output selection. For simplicity, we do not examine here the actual
values of x, and instead only look for steady, repeating assignments (however, in
practice we may wish to apply this override rule only if the computer network’s
conditions are both steady and good, which serves to indicate that there may be
additional, unused bandwidth).

5 Recurrent Neural Networks

5.1 Memory Units

So far, we have focused on models that incorporate feed-forward neural net-
works. These networks, described in Sect. 2.2, are designed so that each of their
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Fig. 8. A scenario object for forcing the Pensieve DNN to maintain the same definition
for the last chunk.



Augmenting Deep Neural Networks with Scenario-Based Guard Rules 163

Fig. 9. (From [47]) A scenario object for enforcing the Custard DNN to choose a
different action if the state has been steady for n = 10 iterations.

evaluations is independent of previous evaluations. This is suitable, for exam-
ple, in image recognition: each image is classified independently, regardless of
how images encountered previously were classified. However, this kind of neural
network might be ill-suited for certain tasks that require context. Consider, for
example, a DNN designed to interpret words that form a sentence, which are
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passed to the DNN one word at a time. As the DNN reads a word, it must
consider the previous words in the sentence in order to properly interpret its
meaning.

To address this need, the machine learning community has designed a variant
of deep neural networks called recurrent neural networks (RNNs) [20]. Much like
its feed-forward counterpart, an RNN is evaluated each time on a set of input
values and produces a set of output values. However, it also maintains, using
internal memory units, some aggregated information from the previous evalua-
tions. This stored information affects the future evaluations of the RNN. RNNs
have proven remarkably useful for a variety of tasks that involve context, such as
machine translation [15], health applications [56], and speaker recognition [70].

We demonstrate the concept of an RNN through a simple example, depicted
in Fig. 10. This network has two input nodes, x1 and x2, two output nodes, y1
and y2, and a single hidden node v. The new construct is the memory unit,
ṽ, which is connected to v. When the network is evaluated on input 〈x1, x2〉, it
computes the output 〈y1, y2〉 using weighted sums and activation functions, same
as before. However, the value stored in the memory unit also participates in this
computation; and once the evaluation is performed, the value computed for node
v is stored in ṽ, to be used in the next evaluation. By convention, we assume
that the memory unit is first initialized to 0. Suppose the network is initially
evaluated on input 〈x1, x2〉 = 〈1, 0〉; for this input, v = 1 and 〈y1, y2〉 = 〈1, 2〉.
The value v = 1 will now be stored in ṽ for the next evaluation. Next, if the
network is again evaluated on 〈1, 0〉, the new value computed for v will be 2, and
now this value will be stored in ṽ; and the network’s outputs will be 〈2, 4〉. It is
straightforward to show that the memory unit in this particular RNNs computes
the sum of the ReLUs of all previously received x1 values.

Fig. 10. A recurrent neural network.

5.2 Undesirable Behaviors in RNNs

Much like with feed-forward neural networks, various models that incorporate
RNN components have been shown to demonstrate undesirable behavior. One
common example is that of adversarial inputs—inputs that the network classi-
fies correctly, but which, when they are slightly perturbed in subtle ways, cause
the network to make severe misclassification errors [69]. Adversarial inputs are
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mostly known to plague feed-forward neural networks that perform image recog-
nition tasks [55,69], but recently they have also been shown to exist in RNNs; for
example, slight perturbations to audio files, which are inaudible to the human
ear, were shown to cause RNN misclassification [11].

These errors, and others, indicate that RNN-based models suffer from the
same intrinsic drawbacks of feed-forward networks: although they perform well
in general, they may behave in undesirable ways in some cases; and because they
are completely opaque to the human eye, manually maintaining, extending and
correcting them is impractical. The verification community has also observed
this and has begun devising techniques for RNN verification [42,74]. However,
just like in the feed-forward case, these techniques can detect a bug but do not
provide a framework for removing bugs after they are detected. It is thus highly
likely that as RNN-based models continue to be deployed in various systems,
override rules will need to be added to these models.

5.3 Override Rules for RNNs

We extend our previous notion of an override rule to the RNN setting, as follows.
We define an RNN override rule as the quadruple 〈P,M,Q, α〉, where: (i) P is a
predicate over the inputs of the network; (ii) M is a predicate over the memory
units of the network; (iii) Q is a predicate over the outputs of the network; and
(iv) α is an override action. The definitions of P , Q and α are as before, but we
now include a fourth element, the predicate M , which can render the activation
of the override rule conditional on the state of the RNN’s memory units. The
semantics of an override rule 〈P,M,Q, α〉 is that whenever P , M and Q hold
for a network’s evaluation, then output action α should be the one selected,
regardless of the actual output of the RNN.

We demonstrate with an example, Consider again the RNN depicted in
Fig. 10, and the following override rule:

〈x1 > 0, ṽ > 0, true, y1〉.

As we saw previously, for input values x1 = 1, x2 = 0 the RNN outputs y1 =
1, y2 = 2, and so y2 is selected. At this point, the override rule is not triggered:
although x1 > 0, the predicate M = (ṽ > 0) does not initially hold, because
ṽ = 0. If the network is again evaluated on x1 = 1, x2 = 0, it would normally
compute y1 = 2, y2 = 4 and select y2; however, now ṽ = 1, the predicate M is
satisfied, and so the override rule is triggered and the network is forced to select
y1 instead.

5.4 Modeling RNN Override Rules in SBM

Similarly to the feed-forward case, we propose SBM as an attractive paradigm
for modeling RNN override rules. We achieve this by again representing the RNN
using a dedicated, non-deterministic scenario, ORNN . This scenario repeatedly
waits for a composite event that represents an assignment to the RNN’s inputs
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and also to its memory units; and then it requests all possible composite events,
each of which represents a possible evaluation of the RNN’s outputs. The inten-
tion is, once more, to simulate the black-box nature of the RNN: we do not
allow the rest of the model to affect (i.e., block) the values of the RNN’s inputs
or memory units, but we allow it to observe (wait for) these values and affect
the RNN’s output values. When the system is deployed, the non-determinism of
ORNN is resolved using the actual input values that the RNN is given, and the
actual values stored in its memory units at that time.

Using this formulation, override rules for the RNN case can again be
expressed as scenario objects. We demonstrate this for the override rule dis-
cussed before, namely

〈x1 > 0, ṽ > 0, true, y1〉,
whose corresponding override scenario is depicted in Fig. 11. The tuple
〈ex1 , ex2 , eṽ〉 represents a single composite event, whose triggering indicates that
values have been assigned to the neural network’s inputs and memory unit. This
composite event contains three real values, x1, x2 and ṽ, that the override sce-
nario can access and use in order to determine its next state. As before, the
blocking of output event ey2 indicates that the override scenario forbids the
selection of y2 as the RNN’s output action.

Fig. 11. An override rule for an RNN.

The same desirable properties that we discussed for the feed-forward case
carry over to RNNs; i.e., (i) RNN override scenario can be used to encode both
safety and liveness override rules; and (ii) automated SBM analysis can be used
to ensure the consistency of override rules.

6 Related Work

Override rules, which are sometimes also referred to as shields, have been applied
ad-hoc in various DNN-enabled systems. Some examples, which we have already
mentioned, include DeepRM [57] and Pensieve [59]. Override rules, and related
forms of runtime monitors, are found also in drones [14], control systems for
robots [62], and in various other formalisms which are not directed particularly at
deep learning [18,26,44,63,73]. In recent years, the formal methods community
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has started studying override rules for systems with DNNs: for example, recent
papers have proposed techniques for synthesizing override rules that affect the
controller in minimal ways [3,72].

SBM and its various aspects, especially those pertaining to the formal analy-
sis of scenario-based models, have been thoroughly studied over the last decade.
These aspects include the automatic verification [31], repair [36], optimiza-
tion [24,29,35,66,67] and synthesis [23] of scenario-based models. SBM has also
played a key role in the Wise Computing initiative [33,34,60], which seeks to
make the computer a proactive team member, capable of developing complex
models hand-in-hand with human engineers.

In this work we focused on SBM as a possible formalism for expressing over-
ride rules. There exists other, related modeling schemes, which could also be used
for similar purposes. For example, the publish-subscribe framework for parallel
composition shares many traits with SBM [17], and could be applied in a sim-
ilar way. Aspect oriented programming [53] is another formalism, which allows
developers to specify and execute cross-cutting program instructions on top of
a base application. Both publish-subscribe and aspect oriented programming,
however, do not directly support the blocking idiom, which appears quite useful
for specifying override rules. Other behavior- and scenario-based models, such
as LEGO Mindstorms leJOS [2], Branicky’s behavioral programming [8], and
Brooks’s subsumption architecture [9], all suggest constructing systems from
individual behaviors. One advantage that the scenario-based approach affords
compared to these formalisms is that it is language-independent, and has been
implemented on top of multiple platforms. It can thus extend, in a variety of
ways, the arbitration and coordination mechanisms in use by these architectures.

Another related formalism is the BIP formalism (behavior, interaction, pri-
ority) [6]. BIP uses the notion of glue for assembling components into cohesive
systems. The goals that BIP pursues are similar to those of SBM, although BIP
focuses mostly on correct-by-construction systems. SBM, in contrast, is more
geared towards executing intuitively-specified scenarios, and resolving the con-
straints that they pose at run-time.

7 Discussion and Next Steps

As the use of DNNs is becoming widespread in multiple and varied systems,
ensuring the safety of these systems is quickly turning into an urgent need—
specifically by using override rules. We argue here that by using modeling
schemes that model together the DNN and its override rules, progress can be
made towards this important goal. We propose to use a scenario-based model-
ing approach for this purpose, explain how a basic scenario-based scheme can
be adjusted to incorporate DNNs, and demonstrate the approach on multiple,
recently-proposed DNNs.

Moving forward, we believe that applying a more structured methodology for
modeling override rules raises the following key question: as the number of over-
ride rules increases and as they become more complex, could they fully capture
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the DNN’s logic and eventually replace it? We believe that the answer is nega-
tive, because override rules typically forbid some specified behavior, but rely on
the DNN controller to prioritize among the remaining possible options. We thus
believe that a more realistic approach is to combine a DNN controller together
with appropriately crafted override rules, in a way that allows engineers to main-
tain, enhance and extend both components throughout the system’s lifetime.

We consider our work to date a first step, which we intend to extend. Specif-
ically, we plan to work on (i) leveraging the other advantages of scenario-based
modeling, specifically its amenability to automated analysis and verification, in
proving the overall correctness of DNN-based models; and (ii) customizing the
idioms of scenario-based modeling, or similar techniques, to better suit integra-
tion with deep neural networks, and guard them in more subtle ways. In the
longer run, we envision that work in this direction will eventually lead to the
creation of DNN-enabled systems that are more robust, reliable, and easier to
maintain and extend.
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Abstract. Process Modeling Languages (PMLs) help to define, struc-
ture and organize operational workflows. The Business Process Model
and Notation 2.0 (BPMN), one of the most prominent PMLs, allows the
definition and execution of process models including distributed partici-
pants and systems. An increasing number of BPMN use cases take place
in unreliable communication environments, where connectivity may be
intermittent or broken. Resilient processes need to avoid failures that
may result in process interruptions or complete breakdowns.

Considering the particular requirements of unreliable communica-
tion environments, this paper addresses shortcomings when modeling
and executing business processes. With resilient BPMN (rBPMN ), the
BPMN meta model is extended to allow resilient process designs by
domain experts. Exemplary realizations of the introduced resilience
strategies use state of the art technologies such as microservices and
container virtualization. A proof-of-concept implementation illustrates
the resilient design and execution of process models, serving as a guide
for other use cases exposed to unreliable communication.

Keywords: Business processes · Meta modeling · Unreliable
communication environments · Microservices · Container
virtualization · BPMN

1 Introduction

The Business Model and Notation 2.0 (BPMN) represents a universal Process
Modeling Language (PML), capable of being customized for the requirements
of different application domains [30]. Besides traditional process modeling for
banks, logistics, and sales, it is being applied to use cases taking place in unre-
liable communication environments. Examples include scenarios in rural areas
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like agriculture, forestry and wildlife monitoring as well as scenarios including
limited devices such as Internet of Things (IoT) and Cyber-Physical Systems
(CPS). Since handling limited, intermittent or failing connectivity is not in the
focus of BPMN, modeling of resilient processes is challenging for domain experts
of many application domains.

When modeling a process taking place in unreliable environments using
BPMN, a significant part of the process model is dedicated to handling com-
munication failures. Alternatives for possibly unavailable message flows have to
be added. Changes to the workflow and its activities may be required. Domain
experts are forced to address communication aspects and loose focus on the
technical objectives of the designated task. Eventually, domain experts may get
stuck at a point where BPMN fails to provide the tools to fix a communication-
related issue. Alternatively, experts modeled a process but are unable to verify
resilient process operation. This may result in process failures or breakdowns at
process runtime.

This paper introduces resilient BPMN (rBPMN), an extension of the BPMN
meta model to enable the design and verification of resilient processes even in the
case of failing connectivity. New modeling elements allow to address the specific
challenges of unreliable communication environments. This includes elements to
move functionality across participants, to add alternatives for failing message
flows and to dynamically adapt process operation according to connectivity at
runtime.

State of the art paradigms and technologies may be used to imple-
ment the resilience strategies introduced by rBPMN. For instance, movable
functionality between participants may be realized by microservices. Being
autonomously operable by self-containing all required dependencies and data
artifacts, microservices represent a convenient way of moving service functional-
ity. Encapsulation of microservices into virtualized containers facilitates service
exchange by including required software platforms and components. Service dis-
covery mechanisms allow to find, load-balance and replace services dynamically.

However, most microservice ecosystems are designed for cloud environments
[24]. While they may replace failing service instances rapidly, they do not have to
cope with intermittent, delayed or broken connectivity on a large scale. microser-
vice ecosystems are typically owned by one organization, having full control
regarding services, data, infrastructure, software, and communication. In con-
trast, many use cases in unreliable communication environments include partic-
ipants of different organizations. Every participant may employ a custom set of
software and communication techniques.

rBPMN has been originally introduced in [26]. This paper covers a revised
version of the rBPMN meta model including optional message flows, mecha-
nisms to describe movable functionality and elaborated concepts for the decision
making on alternatives. Major parts of the paper are dedicated to illustrate real-
ization and evaluation of the resilience strategies of rBPMN. The main research
contributions include:
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1. A revised version of rBPMN including optional message flows, functionality
descriptions and elaborated decision making concepts.

2. Strategies to realize resilient process models (e.g. movement of functionality,
discovery/usage of neighbors/services, decision making on alternatives).

3. Elimination of shortcomings in the resilient execution of business processes
using state of the art paradigms and technologies (e.g. microservices).

4. An agricultural real-world example, illustrating resilient process modeling and
execution in unreliable communication environments.

5. An open source proof-of-concept implementation [25] ready for extension and
adaptation, serving as a guide for other application domains.

The paper is organized as follows: a case study motivates the need for a
BPMN meta model extension in Sect. 2. Concepts and strategies for resilient
process modeling and execution are described in Sects. 3 and 4. An evaluation is
presented in Sect. 5, followed by an overview of related work in Sect. 6. Finally,
a conclusion is presented in Sect. 7.

2 Case Study: An Environmental-Friendly Slurry
Application

An agricultural case study of an environmental-friendly slurry application illus-
trates the shortcomings of BPMN when modeling and executing processes tak-
ing place in unreliable communication environments. Based on regulations of the
European Union, legal guidelines have to be addressed when applying slurry to
fields in Europe. The objective is to prevent over-fertilization and its negative
impact on the environment.

2.1 BPMN Process Model

The slurry application is depicted by the BPMN process model in Fig. 1. It
includes a central process management entity MGMT, a slurry spreader SP and
supporting services.

MGMT creates and deploys the slurry task to SP. During the slurry applica-
tion, MGMT verifies and adapts process operation. Based on the status of SP,
MGMT coordinates supporting vehicles bringing the slurry form the storage
area to the field. Since the case study focuses on operation of SP, the support-
ing vehicles are not part of the BPMN model. When receiving the task log, the
process documentation is created and may be submitted to an authority.

After being initialized by the task deployment of MGMT, SP is driving to
the field. The slurry ingredients (e.g. nitrogen, phosphor, potassium) are iden-
tified using an Online Slurry Analysis Service (OSAS ). Application accuracy is
increased by an Online GPS Correction Service (OGCS ). At the same time, the
process status is transferred from SP to MGMT, which may adapt operation by
sending instructions back to SP.



178 F. Nordemann et al.

Fig. 1. A slurry process modeled in BPMN.

2.2 BPMN Model Weaknesses

The BPMN process model of the slurry application has the potential to work
well in environments featuring reliable connectivity between MGMT, SP, OSAS
and OGCS. However, a typical surrounding of an agricultural slurry process is a
rural area that is lacking cellular communication coverage. Even when combining
infrastructure-based (e.g. cellular networks, WiFi in access-point mode) with
infrastructure-free (e.g. WiFi in ad-hoc mode) communication technologies, there
is no continuous communication path between all process participants at all
times.

In case of intermittent or broken connectivity, message flows between SP
and the other process participants may be significantly delayed or non-existing.
This will result in various critical issues for the process and in particular for
participant SP :

Regarding Message Flows between SP and MGMT . MGMT might not
be able to verify and adjust operation of SP. Coordination of supporting
vehicles may be limited, resulting in process interruptions at SP.

Regarding Message Flows between SP and OSAS . SP might not be able
to request and receive a slurry ingredients analysis, unable to calculate the
slurry output amount. As a result, the process would break down.

Regarding Message Flows between SP and OGCS . SP might not be able
to determine its position with the required accuracy. The slurry application
might fail to comply with legal requirements (e.g. distance to water bodys
during slurry application).
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Sending the initial slurry task from MGMT to SP and sending back the task
log at the process’ end are not considered to fail. SP is located at a farm with
reliable connectivity at the beginning. Transfer of the slurry log can be done
when coming back to the farm at the end of the day.

Concluding observations: The BPMN process model is vulnerable to process
interruptions and breakdowns based on connectivity issues. Domain experts are
not able to verify operation of the model, preventing optimizations for a resilient
execution.

3 Resilient Process Modeling

This section introduces resilient BPMN (rBPMN), a valid BPMN meta model
extension for modeling resilient processes in unreliable communication environ-
ments. After identification of modeling requirements, extension concepts and the
meta model are presented in detail.

3.1 Process Modeling Requirements

Preventing process interruptions and complete breakdowns based on insufficient
connectivity is a main objective of resilient processes. Derived requirement:

Req. M1: Ensure resilient process operation even if connectivity is intermittent
or broken.

Domain experts are most familiar with their processes and are best-suited to
model alternatives for failing message flows. Since they are rarely IT-experts,
integration of and decision making on alternatives should be straightforward
without overloading the model. Derived requirements:

Req. M2: Ability to model alternatives for failing message flows.
Req. M3: Ability to define decision making on available alternatives.

Especially in unreliable communication environments, process conditions
may change unexpectedly and interfere with the process model. Derived require-
ment:

Req. M4: Ability to dynamically identify optimal process operation at runtime.

Resilient modeling requires domain experts to evaluate and optimize process
models at design time. Derived requirement:

Req. M5: Ability to verify resilient process operation at design time.

Communication characteristics are not a key attribute of BPMN - the main
gap when considering process execution in unreliable communication environ-
ments. While message transfers between different participants/systems may be
modeled, no option exists to specify the required Quality of Service (QoS) of a
data transmission. Alternatives for failing message flows may be integrated by
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XOR-Gateways or Business-Rule tasks. However, resulting process models are
prone to lose focus on the problem domain, are often complex and inflexible [26].
In case of insufficient connectivity, BPMN provides no tools to prevent process
breakdowns based on failing message flows. There is no mechanism to verify
resilient operation of a process model. This illustrates the need for a BPMN
meta model extension supporting the challenges of unreliable communication
environments.

3.2 Extension Concepts

rBPMN introduces new modeling concepts to the BPMN meta model. The con-
cepts address the determined requirements for processes in unreliable communi-
cation environments. Extensions allow to describe communication requirements
for message flows, to define alternatives in case of connectivity failures and to
dynamically decide on the optimal alternative available at process runtime.

Fig. 2. rBPMN message flows, tasks and attributes.

Figure 2 depicts the graphical representations of the extension concepts.
rBPMN adds new message flow types to model unreliable communication.
Opportunistic Message Flows (abbreviated: OppMessageFlows) describe possi-
bly intermittent or broken communication segments and may be used in con-
junction with existing BPMN activities and participants. OppMessageFlows may
be annotated with communication requirements and scenario-based connectiv-
ity descriptions to enable evaluation of message flow resilience prior to process
runtime. OppPriorityFlows and OppDecisionFlows represent specializations of
OppMessageFlows to define alternatives in case of broken connectivity. With
OppPriorityFlows, each message flow within an alternatives group is labeled with
a priority for decision making. During process execution, the highest-prioritized
OppPriorityFlow that is available and fulfills the connectivity requirements is
chosen. In contrast, OppDecisionFlows identify the best-suited alternative by
comparing criteria of the available alternatives at process runtime. A criterion is
a characteristic of the corresponding BPMN element (e.g. accuracy, cost or time
of a task).

With required and optional, two variants of the opportunistic message flow
types (OppMessageFlows, OppPriorityFlows, OppDescisionFlows) exist. Using
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the required variant, one of the opportunistic message flows part of an alter-
natives group needs to be available for resilient operation. This is graphically
indicated by a solid circle containing the alternatives group label (cf. Fig. 2). As
a second variant, message flows may be optional in terms of resilient operation.
This is illustrated by opportunistic message flows containing a dashed circle for
the alternatives group label.

rBPMN adds new task types to the BPMN tool pallet:MovTasks, MovSub-
Processes, and MovParticipants (in short: movables) offer movable functionality
to other participants / systems. Functionality is often represented by services,
offering interfaces to perform operations. In case of connectivity issues, the func-
tionality acts as a local backup, allowing process operation to continue. OppTasks
can execute offered functionality locally. OppDynTasks extend flexibility by the
dynamic identification of suitable alternatives at process runtime.

Graphical attributes for seamless (cloud sign) and opportunistic connectivity
(signal bar) of participants with the cloud are defined. The autonomy attribute
of tasks allows to graphically indicate locally moved functionality as a backup
for failing communication. All attributes do not affect process operation. Their
purpose is to graphically point out characteristics of the modeling element.

3.3 Meta Model Extension

The BPMN meta model has been extended to include the new modeling concepts
of Sect. 3.2. Following the guidelines for developing valid BPMN meta model
extensions [41], a Context Domain Model of the Extension (CDME) has been
created. It is split into Fig. 3 and Fig. 4 for better readability.

Figure 3 illustrates the connectivity-related concepts of rBPMN. Opportunis-
tic message flows are based on traditional BPMN message flows. A number of
extension concepts allow to verify resilient process operation at design time:
Every opportunistic message flow is able to describe its message properties (e.g.
message size and interval) and its QoS requirements (e.g. max delivery delay). In
addition, a scenario-based connectivity can be modeled for opportunistic message
flows. This includes expected minimum and average bandwidth, failure proba-
bility and a failure recovery time. The actual resilience verification is described
in the following Subsect. 3.4.

OppMessageGroups define sets of message flow alternatives and configure
them as required or optional. Concepts for a decision engine and decision criteria
allow to examine the best-suited alternative based on connectivity, priorities and
features (e.g. accuracy, cost, time). The extension concepts for communication
and decision making aspects are listed in Table 1.

The CDME of movability-related concepts is depicted in Fig. 4. Movement of
functionality is supported by extending BPMN activities and participants. Mov-
Tasks, MovSubProcesses and MovParticipants may offer functionality to be used
by OppTasks. Alternatively, OppDynTaks may be used to integrate dynamically
appearing participants that have not explicitly been modeled at design time.

Consistency of functionality descriptions is realized by additional concepts.
Either functionality and its interfaces is described directly in process models
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Fig. 3. CDME (part 1) of rBPMN including connectivity-related concepts.

or a reference to an interface description is provided. Extension concepts for
collaboration are elaborated in Table 2.

In accordance to the work of [41] and [4], the CDME may be used as a
foundation to derive the BPMN+X model and the BPMN-XML-schemas. The
publications provide model translation rules and an example to automate the
translation.

Table 1. Extension concepts addressing communication modeling.

Concept Semantics of communication modeling

OppMessageFlow Possibly intermittent or broken communication with other
participants. May be used with existing BPMN concepts

OppPriorityFlow Opportunistic message flow with explicitly defined priority. A
number within the message flow circle states the priority

OppDecisionFlow Opportunistic message flow with implicit, criteria-based decision
making for alternatives. An alphabetic character within the
message flow circle states the decision group

MessageFlowProp. Describes message properties (e.g. frequency, size, relevance)

QoSRequirements Defines QoS requirements for a message flow

QoSPriorityClass Defines a QoS hierarchy, to be used by QoSRequirements

Connectivity Defines a type of connectivity (seamless, opportunistic) for a
participant

ConnectivityProp. Describes connectivity at the time of a message flow

ConnectivityScen. Allows to group ConnectivityProperties to different scenarios

OppMessageGroup Group of OppMessageFlows that defines a set of alternatives

DecisionEngine Chooses OppMessageFlows based on engine configuration

DecisionEngineConf Configures decision engine, assigns DecisionMatrix

DecisionMatrix Foundation of decisions on alternatives, uses DecisionCritera

DecisionCriteria Decision criteria used by decision matrix. Available criteria:
ConnectivityDecision, PiorityDecision, FeatureDecision
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Fig. 4. CDME (part 2) of rBPMN including movable-related concepts.

3.4 Model Resilience Verification

Verifying the resilience of a process model at design time allows domain experts
to identify and optimize imperfections of the model avoiding process failures
at runtime. rBPMN is able to evaluate the resilience i) based on connectivity
estimations or ii) based on connectivity statistics gathered in previous process
executions.

The first step in the resilience verification of a message flow is to calculate
the required number of data frames Nf : the message size Ms is divided by the
frame payload size Fpl in Eq. 1.

Table 2. Extension concepts addressing collaboration modeling.

Concept Semantics of collaboration modeling

MovPraticipant Participant offering movable functionality

MovTask Task offering movable functionality

MovSubProcess Sub-process offering movable functionality

MovCharacteris Technical information regarding functionality movement

OppTask Task capable of executing locally moved functionality

OppDynTask An OppTask that dynamically identifies alternatives (using
functionality descriptions) not explicitly modeled at design time

Autonomy Defines autonomy level for tasks (e.g. 4 OppMessageFlows, 3
with local functionality ⇒ autonomy level of 75%)

Functionality Defines and ensures consistency of functionality

Method Describes method of functionality in process model

Parameter Describes parameter of method directly in model

Method Describes method of functionality directly in model

FuncRef Alternatively describes functionality using external link
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Nf =
⌈
Ms

Fpl

⌉
(1)

With the number of frames on hand, the time it takes to transfer the required
data frames can be calculated. Equation 2 provides a formula to calculate a basic
time Tb by including the minimum bandwidth BWmin in conjunction with the
message size and the frame header size Fh.

Tb =
Ms + Nf ∗ Fh

BWmin
(2)

Alternatively, an advanced time Tadv may be calculated by combining min-
imum bandwidth BWmin, average bandwidth BWavg and their probabilities to
a common bandwidth BW in Eq. 3. Following, BW is combined with a data
transfer failure probability Pf and a failure recovery time Tf (Eq. 4).

BW = BWmin ∗ PBWmin + BWavg ∗ (1 − PBWmin) (3)

Tadv =
Ms + Nf ∗ Fh

BW
+ Pf ∗ Tf (4)

Comparing the maximum delivery delay for a message flow Td with the actual
time required for the transmission Tb/adv reveals whether or not a message flow
i) is resilient (Td ≥ Tb/adv) or ii) is not resilient (Td < Tb/adv).

For repeating message flows, the message flow interval Ti can be divided
by Tb/adv to get the number of messages Nm able to be transferred within the
interval (Eq. 5). Resilience of repeating message flows depends on the required
delivery probability Pd. Operation is resilient for Nm ≥ Pd and not resilient for
Nm < Pd.

Nm =
Td

Tb/adv
(5)

rBPMN has been originally introduced in [26], where a more detailed descrip-
tion of the concepts and calculations can be found. Since first publication,
rBPMN has been revised for required/optional message flows, decision making
and functionality descriptions.

4 Resilient Process Execution

This section identifies requirements for the resilient execution of process models.
Following, solution strategies addressing determined requirements are presented.
The elaborations’ focus is on illustrating how state of the art paradigms, tech-
nologies, and frameworks help to meet the requirements, what shortcomings exist
and how they can be solved.



Resilient Business Process Modeling and Execution 185

4.1 Process Execution Requirements

The requirements for the execution of a resilient process modeled in rBPMN are
identified subsequently.

The start of a process requires an initial set-up configuration to specify
process variables and communication parameters. In unreliable communication
environments, infrastructure-based (e.g. cellular networks, WiFi in access point
mode) and infrastructure-free (e.g. WiFi in ad-hoc mode) technologies are fre-
quently combined to hybrid networks. Configuration settings are required to
operate and access the networks. Derived requirement:

Req. E1: Ability to set-up the initial process and communication configuration
prior to runtime.

rBPMN introduces movable process elements offering functionality to be exe-
cuted locally at other participants. Hence, a mechanism for moving functionality
to interested participants is needed. It should not matter whether the partici-
pants belong to a common or to different organizations. Derived requirement:

Req. E2: Ability to move functionality between participants of different organi-
zations.

A running process needs to recognize neighbor participants dynamically, since
they may be part of the same process model. Also, a process may identify and
use offered functionality of neighbors to adapt its operation to the best-suited
alternatives available. Derived requirements:

Req. E3: Ability to discover participants dynamically at runtime.
Req. E4: Ability to identify and use functionality offered by other participants

at runtime.

Finally, decisions about the best-suited alternatives need to be made at run-
time. Derived requirement:

Req. E5: Ability to decide on the best-suited alternatives for optimal process
execution at runtime (decision making).

The following subsection presents detailed solution strategies to address the
requirements for executing processes.

4.2 Initial Participant Configuration

The strategy for the initial configuration (Req. E1 ) includes a management entity
linebreak (MGMT ) located in the cloud, providing configurations to all partici-
pants. MGMT is contacted by every participant to retrieve their configuration,
including process variables and communication settings. Since network address-
ing may change rapidly and a participant may be part of multiple networks at
the same time, a participant ID is used for identification. Participants transfer
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Fig. 5. Participant configuration and transfer of movable functionality for local execu-
tion during the initial set-up sequence of a process.

their offered, movable functionality to MGMT for distribution to other partici-
pants. Figure 5 summarizes the initial configuration sequence, supposed to take
place before process execution when reliable connectivity is available.

The configuration messages contain relevant data to prepare the participants
for the process execution. Most use cases will find three configuration categories
useful:

i) Process-related instructions such as process variables/parameters, offered
and consumed functionality, IDs of all process participants.

ii) Network-related configuration settings such as addressing, naming, user cre-
dentials, routing settings.

iii) Service-related information such as service and functionality IDs, service
addressing of seamlessly connected participants.

A JSON-formatted example is included in the source code of the proof-of-
concept implementation (Sect. 5.2).

4.3 Movement of Functionality

A local backup of (limited) functionality ensures process operation for partici-
pants even if no connectivity is available (Req. E2 ). Functionality needs to be
movable in the sense of mobile code/code on demand [15]. Depending on the soft-
ware platform and BPMN runtime engine used in a scenario, several approaches
are applicable to design movable process parts:

Engine-bound Process Modules. If all participants agree on the same BPMN
runtime engine, process parts may be exchanged directly as engine modules.
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A common format for process modules are Java-archives (.jar) since many
runtime engines are based on Java. It is important to add all required libraries
to the archive, as they need to be present at other participants.

Microservices. Realizing functionality as a microservice allows convenient func-
tionality movement across participants. All dependencies and data artifacts
required for execution are part of the microservice. BPMN runtime engines
can be integrated into a microservice, eliminating the need for a local runtime
instance at other participants. However, required software platforms such as
Java still need to be present on the remote participants.

Container Virtualization. Mobile code may be realized by container virtual-
ization techniques like docker [9] and rkt [35], especially if different software
platforms and BPMN runtime engines are applied by the participants. The
provided functionality is encapsulated within a container with all its depen-
dencies and can be run locally by other participants. All participants need to
run the required container technology.

For seamless integration into the process, the participants’ service registry
may be used to register and dynamically access the functionality within the
running process. Service registries are part of the service discovery, outlined in
Sect. 4.5. To ensure availability of local components, the initial configuration
sequence moves required functionality to the corresponding participants prior to
process runtime (Fig. 5).

4.4 Discovery of Neighboring Participants

An essential part of process operation is to recognize neighboring participants
(Req. E3 ). Cloud-connectivity of these participants may be opportunistic or non-
existing, often supplemented by high mobility. Neighboring participants may be
part of the process model serving as functionality providers to run/optimize a
process.

The proposed strategy realizes neighbor detection using routing algorithms
for Mobile Ad-hoc Networks (MANETs). Proactive routing algorithms such as
Destination-Sequenced Distance-Vector (DSDV [33]) and Optimized Link State
Routing (OLSR [8]) detect neighbor nodes by picking up periodic hello broad-
cast messages emitted by every node of the network. The frequency of the hello
broadcast determines the speed of neighbor detection and should ensure detec-
tion in a reasonable amount of time, depending on the applied use case. The
frequency can be aligned for every participant separately and is part of the
initial configuration sequence (Sect. 4.2).

Figure 6 illustrates the neighbor discovery mechanism. When a neighbor is
detected by a proactive routing algorithm, its IP-Address is entered into a cus-
tom neighbor participant table. After detection, the participant is identified by
requesting node information on a fixed port (e.g. port 9876). Node information
includes a participant ID and may state the port number of the local service reg-
istry if the participant offers functionality. A custom table is required to group
participants by their IDs, since participants part of multiple networks may have
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diverse IP addressing information. Also, a custom table helps to maintain func-
tionality information offered by neighbors. The offering of functionality will be
discussed in the following subsection.

Fig. 6. Discovery and identification of neighboring participants.

When a participant exits the communication range of the MANET, hello
broadcasts are no longer received by the applied routing algorithm. The par-
ticipant is removed after a timeout period from the neighbor table. Since the
seamlessly connected service providers keep their cloud address settings during
process runtime, their addressing is part of the initial configuration sequence.

4.5 On-Demand Usage of Functionality

After discovering neighboring participants, mechanisms for identification and
usage of offered functionality are required (Req. E4 ).

Identification of Functionality. Offering functionality to other participants
requires having a common understanding of what kind of functionality is pro-
vided and how it is used. The ontology in Fig. 7 is guiding functionality devel-
opment, offering, and usage: Functionality is provided by services, is described
semantically by metadata, includes input/output parameters and has a Path-
URL based on the service’s Base-URL. For identification, every service and func-
tionality is labeled with a unique ID as part of its metadata. Finding suitable
functionality is guided by a taxonomy, grouping services into categories.
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Fig. 7. Ontology describing provisioning of functionality for participants.

Usage of Functionality. Using functionality requires a description of inter-
faces with input and output parameters. While in the days of web services WSDL
[7] and WADL [42] have been used for interface descriptions, application of
technologies like OpenAPI [31] and RAML [34] is common for microservices.
Organizations may standardize interfaces to support interoperability of imple-
mentations. For certain use cases, guidance provided by the HATEOAS principle
of REST may be appropriate. With HATEOAS, the service is offering links for
functionality currently available based on service state information [13].

Due to the opportunistic nature of unreliable communication environments,
the following guidelines have to be followed:

1) Services describe their functionality using metadata.
2) Services are registered in a service registry.
3) Participants with opportunistic connectivity run their own service registry.
4) Every participant runs an information service following a well-defined inter-

face for identification needs/as entry point for usage of service functionality.

The solution strategy to dynamically identify and use functionality is illus-
trated by Fig. 8. A neighboring participant with opportunistic connectivity is
asked for a service list on its service registry port. The returning services are
queried for service metadata to identify the service categories, IDs and inter-
faces. In the case of HATEOAS, functionality links are provided based on the
current state. The functionality may be used by calling the appropriate service
interfaces.

4.6 Dynamic Decision Making on Alternatives

Connectivity of participants is a key factor for deciding on alternatives in a
process. This is solved by a neighbor table based on proactive routing proto-
cols. The neighbor table lists participants that have been reachable in the recent
past. More precise connectivity information may be obtained by periodic mea-
surements of available bandwidth, latency, connection failures, and packet loss.
With this data on-hand, predictions for the future connectivity of individual
participants may help to decide on alternatives.
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Fig. 8. Dynamic identification and usage of service functionality.

Decision making on available alternatives is based on OppPriorityFlows or
OppDecisionFlows in rBPMN. Hence, different strategies for the realization of
decision making are introduced (Req. E5 ).

OppPriorityFlows. The optimal process execution is defined by priorities for
alternatives at design time. When reaching a point of choosing an alternative
at runtime, the alternative with the highest priority that is available in terms
of connectivity is chosen.

OppDecisionFlows. For OppDecisionFlows, the problem of choosing an
alternative can be described as a multi-criteria decision analyses problem
(MCDA). The solution strategy proposes to use a weighted decision matrix
to decide on alternatives. The matrix contains a set of criteria relevant for
the decision, in which every criterion may be weighted regarding its impact
factor. The highest-rated alternative that is available is chosen for process
operation. In the case of OppDynTasks, matching functionality offered by
other participants not part of the original process model is also considered as
an alternative. This results in a loosely coupled service decision making mech-
anism since no adaptation of the actual service implementations is required
to change process operation. Decision making based on OppDecisionFlows is
summarized in Fig. 9.
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Fig. 9. Process of decision making based on OppDecisionFlows.

5 Evaluation

This section evaluates the concepts and strategies for the modeling and execution
of resilient processes. The evaluation is based on the agricultural case study
presented in Sect. 2.

5.1 Adding Resilience to the Slurry Process Model

The BPMN model of the slurry application of Sect. 2.1 can be extended using
rBPMN modeling elements. A domain expert may add opportunistic message
flows wherever there is a chance for connectivity issues. Adding message flow
properties, QoS requirements and connectivity descriptions to opportunistic mes-
sage flows allows to verify resilience of the process model. This has been done
in Fig. 10, showing the result of a resilience analysis on an adapted slurry pro-
cess model. The red/grey parts of the model indicate process failures due to
insufficient connectivity. The slurry application is in danger of failing at the
monitoring, the ingredients analysis and the GPS correction tasks.

A domain expert optimized the process model in Fig. 11. With a Near-
Infrared Spectroscopy Sensor (NIRS ) and a Local GPS Correction Station
(LGCS ), additional alternatives for the slurry ingredients analysis and the GPS
correction have been added. While NIRS is part of the slurry spreader, LGCS
is a station located in the fields proximity. Unreliable connectivity of SP, NIRS,
and LGCS with the cloud is easily identified by the connectivity attributes of
the participants (signal bars in Fig. 11).

The sub-process Control application of MGMT has been designed as movable
functionality, which may be moved to SP and executed there. The same applies
to the slurry ingredients analysis of OSAS. The choices for an analysis service
(alternatives group a) and for a GPS correction service (alternatives group b)
are designed as OppDecisionFlows. The decision for one or another service is
made at runtime, comparing characteristics of the alternatives in a weighted
decision matrix. The available option with the highest accuracy is chosen in this
evaluation. A final analysis confirms resilient operation of the modified process
model (cf. red/grey parts in Fig. 11).
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Fig. 10. A slurry process modeled in rBPMN. The resilience verification of the slurry
model failed due to unavailable message flows. (Color figure online)

Fig. 11. A resilient slurry process model, including message flow alternatives, locally
moved functionality and dynamic decision making. (Color figure online)
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5.2 Realizing a Resilient Slurry Process Execution

The slurry application has been evaluated by a proof-of-concept implementation,
following the architectural overview depicted in Fig. 12. MGMT and the online
services for analysis (OSAS ) and GPS correction (OGCS ) are located in the
cloud. Execution of the MGMT process model is realized by the open source
version of Camunda BPM [6], a BPMN runtime engine. OSAS and OGCS are
implemented as microservices using Spring Boot [40]. A common service registry
implemented in Spring Eureka [40] acts as a broker for all cloud services.

Fig. 12. Architectural overview of the slurry process and its participants. Services are
registered, discovered and used in an unreliable communication environment.

The BPMN runtime module for the sub-process Control application of
MGMT is integrated into a microservice to realize functionality movement to
SP. In contrast, movable functionality of OSAS is designed as a microservice
excluding any BPMN components. The locally moved service instances act as a
backup in case of connectivity issues with the cloud. During local execution, these
services register at the Eureka server instance of SP to be part of the alternatives
decision making. While NIRS and LGCS are also realized as microservices, they
include their own service registries. Since they represent dynamically appearing
participants, they may offer their services to participants (such as SP) using the
participant information service with its well-defined interface (Sects. 4.4/4.5).

Communication between SP, NIRS, and LGCS takes place in a MANET.
OLSR is used as a proactive routing protocol for the identification of neighboring
participants and routing of data. A cellular gateway on SP allows communicating
unreliably with services placed in the cloud. Information exchange between all
participants is based on REST. All participants agreed on standardized interfaces
during the process design phase.

With Spring Boot, Spring Eureka and Camunda BPM, the proof-of-concept
implementation uses widely spread technologies to realize microservices, service
discovery and BPMN process model execution. While usage of these technologies
is a good starting point, extensions have been made to address the solution
strategies presented in Sect. 4.
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Examples for the initial set-up sequence configuration file and the design
of service functionality interfaces with JSON-based data transfer objects are
provided as part of the proof-of-concept. Considerable effort was invested to dis-
cover and identify service alternatives across multiple distributed Eureka servers
in an unreliable network. By querying metadata of reachable service instances,
a network-wide set of alternatives including locally moved functionality is cre-
ated as an input for decision making. Decision making is realized as a decision
matrix, containing weighted characteristics (e.g. operational accuracy) gathered
from metadata of the alternatives. In case of broken connectivity, a new alter-
native is provided instantly by the decision making process.

Figure 13 summarizes the novelties in the proof-of-concept implementation,
serving as a template for other application domains. The code is available on
Github [25].

Fig. 13. Implementation novelties part of the scenario evaluation.

5.3 Discussion of Evaluation Results

The evaluation using an agricultural slurry process has been able to confirm
resilient business process execution in an unreliable communication environment.

The extension concepts of rBPMN allow domain experts to adapt exist-
ing BPMN processes for unreliable communication environments. By using
opportunistic message flows, imperfections of the model may be identified in
a resilience analysis. The addition of alternatives for possibly failing message
flows and the integration of dynamic decision making on available alternatives
lower the risk of process interruptions and breakdowns. Finally, the movement
of functionality across participants allows to continue process operation even if
no connectivity is available.

Integration of state of the art technologies like microservices and container
virtualization helps to implement the resilience strategies in real-world environ-
ments. An on-demand identification and usage of service offering participants
guarantees to include all available alternatives at process runtime. Concepts and
implementation are open for extension and adaptation [25]. All technologies used
in the proof-of-concept are open source.

Deciding on alternatives is realized in a highly dynamic manner by identify-
ing, comparing, rating and selecting alternatives at runtime. A lesson learned at
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this point of implementation is the need to check service availability information
gathered from Eureka service registries. Depending on the Eureka configuration,
services may be shown as available while they already disappeared. Connectiv-
ity checks prior to service usage have been used to rapidly exclude unavailable
services and to decide on a new alternative (cf. Fig. 9).

Instead of querying and combining service information of different Eureka
servers, a single query to the local Eureka server may identify all available ser-
vices by using Eurekas replication mechanism. Services of other Eureka servers
become part of the local server instance. While this principle facilitates service
discovery, replication configuration of servers in highly dynamic scenarios may
be challenging.

Caution is advised when using the Circuit-Breaker-Pattern [14], which is part
of frameworks like Spring. While the pattern helps to avoid overload situations
in cloud environments, it may falsely prevent access to services in dynamic,
intermittent scenarios.

Movement of functionality is illustrated by moving process modules of the
BPMN engine (.jar-files) and Spring-Boot-Microservices. Container virtualiza-
tion may be used alternatively.

Attention is required when configuring network settings. For instance, fre-
quent hello broadcast messages (e.g. every five seconds) may be required to
recognize rapidly moving participants in a scenario.

Adaptation effort for existing microservices or container-based implementa-
tions is reasonable. The implemented methods for participant and service discov-
ery as well as decision making need to be integrated. While Spring Boot, Spring
Eureka and Camunda BPM have been used in the evaluation, other technolo-
gies such as Signavio, jBPM, docker, rkt, Zookeeper, and Consul may be used
as BPM runtime engines, to implement and move microservices and to discover
services. Alternatively, an integration of tools like the Spring Framework with
BPMN runtime engines like Camunda and the rBPMN meta model may simplify
the effort for resilient process execution.

A combination of configuration and deployment aspects into existing deploy-
ment tools such as Kubernets is reasonable. In addition, scientific research on
cross-layer information exchange between application and communication layer
is a promising approach to optimize communication and decision making aspects.
Another interesting topic is to automate configuration by deriving instructions
directly from BPMN/rBPMN process diagrams.

Since rBPMN’s original publication in [26], research has been done on
expanding the resilience verification from message flows towards complete pro-
cess paths of a model. A mechanism to evaluate and rank process paths against
each other based on their resilience is described in [27]. Since resilience may be
an important, but not the only relevant criterion for many business processes,
[28] introduces mechanisms to evaluate other process criteria in conjunction with
resilient operation. As an example, this allows to automatically identify the pro-
cess path with highest accuracy at reasonable cost when having multiple resilient
paths available.
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6 Related Work

BPMN has been in the focus of business process publications since its initial
release in 2006. By 2011, it gained even more attention with the second edition
release [30]. Several publications extended BPMN’s capabilities for various appli-
cation domains [3]. Many contributions give insights into ongoing research by
introducing formal and theoretical concepts. Other contributions provide practi-
cal guidelines for process modeling, implementation, and execution in real-world
scenarios [18,36,39].

Different activities have extended BPMN for application areas related to
unreliable communication environments. Several publications aim to integrate
the Internet of Things (IoT) and Cyber-Physical Systems (CPS) into BPMN by
extending it for sensors, actors and other physical resources [2,17,22,23]. Other
extensions add quality of information and performance aspects [16,20]. Several
publications address process, task and resource reliability [1,10,37]. However,
none of the extensions is focusing on resiliency aspects of communication and
collaboration modeling.

Starting with BPMN 2.0 and associated runtime engines, other approaches
for process execution such as the Web Service Business Process Execution Lan-
guage (BPEL) [43] lost importance. The shifting was accelerated by the rapid
dissemination of the microservice and container virtualization paradigms. The
microservice approach of provisioning functionality in small, self-sufficient pieces
of code and data [24] also gained popularity over Service-Oriented Architectures
(SOAs), which often rely on orchestrating numerous modules to be executable.
While different technologies and frameworks for the development, deployment,
configuration, and execution of microservices exist, none is designed to cope with
the consequences of unreliable communication environments on a large scale.

Establishing communication in unreliable communication environments is
usually based on adding delay-tolerant capabilities to the network [12]. With data
transfers realized by the so-called custody principle, participants may commu-
nicate even if no continuous communication path exists. Using custody, moving
participants transfer data bundles on behalf of other participants [5,11]. Since
most scenarios apply hybrid networks by combining different communication
technologies, the use-case-driven selection and combination of routing algorithms
is challenging [19,21]. Various projects and practical implementations performed
delay-tolerant research [29,32,38]. Literature provides valuable information to
optimize unreliable communication at the network layer, but misses investiga-
tion on integrating/extending business processes with delay-tolerant principles.

7 Conclusion

Resilient modeling and execution of business processes in unreliable communi-
cation environments is challenging. Connectivity issues may interfere process
operation, resulting in delays, failures and complete breakdowns at process run-
time.
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rBPMN, a BPMN extension supporting resilient modeling, introduces strate-
gies avoiding process failures due to connectivity issues. Opportunistic message
flows allow to verify and optimize resilient operation of existing BPMN dia-
grams. By adding and dynamically deciding on alternatives for message flows,
resilience is increased when connectivity failures occur. With movable function-
ality between participants, a last resort mechanism may be used to guarantee
operation in case of communication loss.

Widespread paradigms and technologies such as microservices and container
virtualization may be used to implement rBPMNs resilience strategies. The
paper illustrates concepts for the process configuration, the handling of mov-
able functionality, dynamic service identification and decision making. Existing
cloud-based implementations may be adapted with reasonable effort. The proof-
of-concept implementation is based on an agricultural slurry process. Evaluation
illustrates the ability to dynamically adapt and optimize process operation in
case of connectivity issues to avoid process failures at runtime. Concepts and
implementation may be adapted and extended to other use cases taking place
in unreliable communication environments.
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Abstract. The increasing complexity of modern systems, cost reduc-
tion policies and ever increasing safety requirements are bringing new
challenges to the maintenance domain. In many fields, periodic mainte-
nance actions become either insufficient or too expensive. In this con-
text, Condition-Based Maintenance (CBM) strategies, and Prognostics
and Health Management (PHM) in particular, are offering an interest-
ing alternative by allowing systems to be maintained only when needed.
These strategies rely on a constant monitoring and analysis of the sys-
tems operating conditions in order to detect and identify a failure when
it occurs and even sometimes beforehand.

Nowadays, two main approaches are explored to detect failures in
PHM solutions: one based on machine learning, the other based on exper-
tise and capitalised system knowledge. This work proposes to combine a
Complex Event Processing (CEP), to manage incoming data’s volume-
try and velocity, with an Expert System (ES) in charge of exploiting the
capitalized knowledge. This paper focuses on the configuration of a CEP
from rules contained in a CBM ES using a Model Driven Architecture
(MDA). This configuration is a challenge, especially regarding the man-
agement of rules with temporal parameters and the need for intermediate
results to deal with the rule’s complexity.

Keywords: Maintenance · Knowledge base · Model transformation

1 Introduction

Maintenance is defined as the “combination of all technical, administrative and
managerial actions during the life cycle of an item intended to retain it in,
or restore it to, a state in which it can perform the required function” [1]. In
particular, preventive maintenance describes maintenance action carried out to
assess and/or to mitigate the degradation and reduce the probability of failure
of an item. Condition-based maintenance (CBM) is a specific kind of preventive
c© Springer Nature Switzerland AG 2021
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maintenance assessing the systems physical conditions and analysing them to
identify possible ensuing maintenance actions. Among the many solutions used
for CBM data analysis, the two main strategies are data-driven and Expert
Systems (ES).

Data-driven strategies, mostly consisting of machine learning algorithms,
classify failures from past experience. The drawbacks of these approaches are
the difficulty to explain the result and the large amount of reliable and relevant
failure records required to train the learning algorithm. In fields like aeronautics
where systems reliability is already strong, collecting a large amount of records
of the same failure on identical systems is a very challenging task. However, the
main advantage is the limited domain knowledge required to implement them.

ES approaches reproduce an expert reasoning by exploiting a base of facts
and rules created from capitalised expert knowledge. However, according to [30],
ES have “common defects in efficiency, scalability and applicability”.

In order to solve the scalability issue, in particular from the data ingestion
perspective, [25] proposed to use Complex Event Processing (CEP) to moni-
tor and process the incoming data. The monitoring rules should be provided
by the ES base of facts and transformed into generic rules and Event Process-
ing Language (EPL) rules according to the Model Driven Architecture (MDA)
methodology. However, the transformations proposed do not manage rules acti-
vated over a timeframe observation. For instance, a rule is activated if a condition
is fulfilled continuously or repeats itself several times in a predefined timeframe.
Yet, these kinds of rules can be written in EPL. In order to integrate these rules,
this paper proposes an updated version of the transformations defined in [25].

In Sect. 2, the notions of PHM, ES and CEP will be defined and the moti-
vation behind their combination will be explained. In Sect. 3, the CBM, generic
rules and EPL metamodels will be presented. In the 4th section, the model trans-
formations from these models will be detailed according to the MDA method-
ology. Finally, in Sect. 5, a representative case study is used to illustrate these
transformations while stressing the need for considering timeframe based rules.

2 Use PHM Approach to Detect Failure Symptoms

2.1 Prognostics and Health Management

Modern maintenance is confronted to many challenges. Firstly, the systems
become more and more complex which raises the difficulty in identifying and
preventing failures. Secondly, the safety and availability requirements are get-
ting increasingly demanding. As such, systems reliability is constantly being chal-
lenged. Moreover, cost reduction has become a strategic stake in many industrial
fields and maintenance is not spared.
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In this context, periodic maintenance, also known as time-based mainte-
nance, is becoming insufficient as unnecessary actions become too expensive and
unexpected failures affect availability and reliability [17]. In order to tackle these
challenges, maintenance needs to be performed only when needed. Consequently,
monitoring the systems working conditions in real time should be performed to
detect and identify failures the moment they occur or, in best cases, beforehand.
Prognostics and Health Management is a CBM strategy defined by [29] as “a
method that permits the reliability of a system to be evaluated in its actual
life-cycle conditions, to determine the advent of failure, and mitigate the system
risks”. It is composed of 7 main steps designed to collect, monitor and process
sensor data in order to identify failures and estimate the Remaining Useful Life
(RUL) of the defective system (Fig. 1). This information can then be processed
by a decision support system and displayed to the end user [6,22] .

Fig. 1. PHM 7 steps [19].

The first step is to collect data in the system’s actual life cycle conditions.
This step is critical, as the relevance and quality of the collected data have a
major impact on the quality of any further analysis. The second step is the data
processing. It is meant to clean and transform collected data into more relevant
variables before analysis. The third step is to assess the system’s health status
through anomaly detection based on the processed data. Next, potential fail-
ures and root causes should be identified. Depending on the identified failure, a
degradation model should be chosen and applied to estimate the defective sys-
tems RUL in the prognostics phase. Finally, this information should be provided
to a decision support system and displayed to the end user.
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Although PHM architecture addresses modern maintenance issues, it also
raises several technical challenges. In particular, ingesting and processing a large
amount of incoming sensor data in an acceptable time is no simple task.

2.2 Expert System

In order to assess the system’s health and diagnose failures, two main strategies
can be adopted: data-driven or Expert Systems (ES). Data-driven technolo-
gies mostly rely on learning algorithms to detect anomalies and identify failures
from a set of past records. However, this approach has benefits and drawbacks.
This approach could detect maintenance needs even if the cause or the rea-
son of the malfunction is unknown or not explainable. Nevertheless, the results
obtained from these algorithms are hardly explainable and the confidence on
the result depends on the number and the representativeness of the learning
dataset. Depending on the observed system, collecting the learning dataset can
be challenging, especially in fields like aeronautics where reliability is a major
concern.

This work focuses on system without enough learning dataset but with
available expert knowledge and safety documentation. To exploit this knowl-
edge, we believe that an Expert System (ES) is interesting as explained in
[9,12,17,21,22,28]. An ES is a computer program in which expert knowledge
is implemented for a specific topic in order to solve problems or provide some
advice [16]. ES are composed of a user interface, an inference engine and a
knowledge base [23]. The user interface is meant to allow the user to interact
with the system. The knowledge base structures a set of facts and rules describ-
ing the monitored system as well as the symptom and failures which can affect
it. This component can be implemented using a static and dynamic database.
The static database is meant to collect domain expert knowledge on the system.
This database is stable, even though facts and rules may be added or modi-
fied. It should also be complete, consistent and accurate for the ES to perform
acceptable analysis. The dynamic database, however, is used to “store all infor-
mation obtained from the user, as well as intermediate conclusions (facts) that
are inferred during the reasoning” [20]. Its content is lost at the end of each
execution. An inference engine processes this knowledge base and reaches a con-
clusion. It can be used as a “control structure [...] that allows the expert to
use search strategies to test different hypotheses to arrive at expert system con-
clusions” [23]. Using an ES can thus be considered a solution to capitalize and
exploit the available knowledge on the system. In the maintenance context, the
rules for anomaly detection, diagnostic and prognostic must be applied to the
input data in order to identify failures and estimate the RUL.

Although ES offers a good solution for processing maintenance data, this solu-
tion has scalability limits and can not easily process a large amount of incoming
data [30]. Complex Event Processing (CEP) can be used to fill this gap.
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2.3 Complex Event Processing

Managing the inflow of data is one of the main issues in implementing PHM,
especially on complex systems. As an acceptable monitoring can only be per-
formed when many sensors of different types are set on the system, the volume
and velocity of these inputs are challenging to process. These processing issues
share common characteristics with big data problems defined through the 5V
[18]: volume of the collected data, velocity of its update, veracity of the informa-
tion, variety of the sources and value of the information. To process the input
data with reduced volume and velocity, a CEP can be used.

As described by [11], a CEP engine aims at processing data efficiently to
immediately recognise patterns when they occur. It was first introduced by
Luckham and Fransca [24] to process events at multiple levels of abstraction.
It enables a system to reach passive context-awareness, however, unlike expert
systems, it does not take decisions or recommendations. A CEP engine is based
on a set of complex event processing rules. According to [8,10], each rule enables
to:

– Detect the occurrence of patterns based on presence or absence of linked
events (e.g. incoming data)

– Filter events thanks to conditions;
– Generate new events, called complex events, based on incoming events. These

complex events can be processed as new incoming events.

Depending on the language used to describe the complex event processing rules,
the condition used to filter conditions could be simple (comparison to a thresh-
old) or more complex with some functionality using temporal windows. Regard-
ing the needs of the PHM approach, the use of temporal windows to detect
abnormal situation is a requirement. Thus CEP using rules implementing Event
Processing Languages (EPL) is a suitable option. EPLs are SQL-like languages
designed support CEP solutions by defining events, conditions and patterns in
order to detect interesting behaviors in the data [7]. ESPERTech1 or Siddhi2 are
some examples of well-known EPL-based solutions.

In conclusion, to support PHM, ES and CEP are both useful and comple-
mentary. Indeed, CEP are designed to monitor large amounts of data in real
time and detect patterns based on predefined rules whereas ES allow further
analysis such as diagnostics or prognostics.

2.4 Using CEP and Expert System to Support PHM Approach

As detailed in [25], CEP can be combined with an ES in a PHM architecture.
Indeed, as explained in previous sections, CEP and ES both have advantages and
drawbacks. A CEP is designed to monitor large amounts of data in real time
and detect patterns. Thus a CEP could reduce the flow of data but it could not

1 http://www.espertech.com/.
2 https://docs.wso2.com/display/CEP300/Siddhi+Language+Specification.

http://www.espertech.com/
https://docs.wso2.com/display/CEP300/Siddhi+Language+Specification
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perform a diagnosis. An ES analyses data (to provide diagnostics or prognostics)
and explains the analysis result but the processing could be slow. Therefore,
the combination of the two technologies is relevant in a PHM application. To
combine the two technologies, the anomaly detection rules implemented in the
ES knowledge base should be transformed into EPL rules to be applied by the
CEP according to Figure 2.

Fig. 2. Relation between CEP and expert system adapted from [25].

In this architecture, incoming sensor data with high velocity and volume
should be injected in the CEP. Used as a filter, the CEP then detects the relevant
anomalies based on rules extracted from the ES knowledge base. The detected
events can then be processed by an inference engine to identify the related failure.
This information can then be displayed to the end-user through an interface.

The main issue in combining CEP and ES, is to transform CBM rules into
EPL. Moreover, according to [7], one of the downsides of CEP systems is their
first hand complexity. In order to ease the domain experts work in implementing
CEP solutions despite the lack of EPL knowledge, a meta model for EPL and an
automatic model-to-code solution have been designed to implement the rules in
commercial solutions. The EPL metamodel proposed by [7] is detailed in Fig.3.

This EPL metamodel is composed of four main types of components: the
“SearchConditions”,“Pattern”, “Output” and “Link” elements.

To illustrate these types of components, the following simple examples are
used: if x > y then z and if Mean(k,l,m) > y then z.

The “Link” elements are designed to connect the elements of the three other
components. It is divided into operands (as x, k, l, m, y and also Mean(k,l,m))
and operators (as >). An operator is an operation performed on one or several
operands. Operators can either be Unary, Binary or N-ary depending on the
number of operands they can be applied on.
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Fig. 3. EPL metamodel [7].

The “SearchConditions” component is a collection of “ConditionsElement”.
These elements are rules composed of “ConditionExpression” elements (as x
> y and Mean(k,l,m) > y). These “ConditionExpression” elements are built
from“DataWindow” (as x, y, Mean(k,l,m)), acting as operands, compared with
operators. “DataWindow” are transformations of “WindowElement” (as k, l, m
and x) which are input data.

The “Pattern” component is defined as “a template specifying conditions
which can match sets of related events”. It is used to manage sets of events
occurring in a timeframe. For instance, a “PatternCondition” can count the
occurrence of a specific type of event while the “PatternTimer” specifies the
length of a monitoring timeframe. All these elements can be considered in the
transformation process and thus leads to extend the work of Sarazin et al. [25].

Finally, the “Output” (as z) component specifies the features of the complex
event generated by the rules activation. It can be composed of several events
each possessing properties and generated using expressions.

Further details about the elements of this model are available in Boubeta-
Puig et al. [7].

3 Proposed Model Driven Architecture

The previous sections aim to argue that the use of CEP combined to ES is
relevant to provide a PHM architecture. The combination of the two technologies
is based on conditions used to detect relevant anomalies. Indeed, CEP are used
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to reduce the incoming flow of data to the ES. Therefore, the configuration of
the CEP essentially depends on the ES content. This paper’s proposal is to
automatically configure the CEP from the ES using a model driven architecture
(MDA) [26]. This section presents first the concepts as Model, Metamodel and
Model Transformation, before proposing a model transformation from CBM to
CEP rules based on an MDA methodology.

3.1 Model, Metamodel, Model Transformation

According to [2], a model is a “formal specification of the function, structure
and/or behavior of an application or system”. It should also be noticed that a
single system can be represented by many different models depending on the
point of view adopted [4]. The rules used to create and structure a model are
defined using a metamodel, which is an “explicit specification of an abstraction”
[3]. It defines the concepts manipulated in a model and the relations between
them. A model can thus be considered as an instance of a metamodel and all
models must conform to their own metamodels, conforming themselves to a
metametamodel [5].

In order to differentiate the business concepts manipulated in a system from
the technological platform used to implement them, a model-based methodology
named Model Driven Architecture (MDA) has been defined [26]. This method-
ology can be used in software development to separate the design steps based on
the formalisation of business logic from the the technical implementation steps.
According to the MDA guide, this methodology improves the “portability, inter-
operability and reusability” of the final result. The MDA methodology relies on
four main types of models [2,26]:

– The Computation Independant Model (CIM)
– The Platform Independent Model (PIM)
– The Platform Model (PM)
– The Platform Specific Model (PSM)

The CIM is designed from the formalisation of the business logic by a domain
expert with its own vocabulary. According to the MDA methodology, once the
CIM is defined, the PIM can be designed to include a first level of specification.
The PIM purpose is to make it possible to adapt the CIM to different platforms
of the same kind. The PM describes the platform used to implement the model.
It describes the concepts manipulated in the platform and the structure binding
these concepts together. Finally, the PSM is defined as a “view of a system from
the platform specific viewpoint”. It is the implementation of the PIM on the
platform modeled by the PM. [2].

MDA methodology consists in transforming a CIM to a PIM and a PIM to
a PSM. This process is called model transformation [2]. It can also be defined
as “a transformation operation Mt taking a model Ma as the source model and
producing a model Mb as the target model” [5]. In a model transformation,
all concepts may not be commonly shared by the source and target models.
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Consequently, the first step of a model transformation is to identify the shared
concepts in each model, which correspond to the transformation domain, and the
specific concepts which are not shared (Fig. 4). In the transformation domain,
the concepts are then converted from the source to the target model using trans-
formation/mapping rules. The specific part of the source model can be consid-
ered as capitalized knowledge while the specific concepts of the target model are
additional knowledge that should be implemented from external sources [27].

Fig. 4. Model transformation principle [27].

3.2 Model-Driven Architecture from CBM to EPL Rules

To transform CBM rules into CEP rules, an MDA can be implemented. Accord-
ing to the MDA philosophy, the transformation should be performed in two steps:
the first step is to transform the CBM model into generic rules and the second
step should convert these generic rules into CEP rules. Should alternatives to
modern CEP emerge, the generic rules are designed to improve the transforma-
tion’s adaptability towards new solutions. Consequently, CBM and generic rules
refer to CIMs because the rules contain no platform specification even though
their respective structures are different. However, EPL rules can be assimilated
as a PIM. In [7], a model to code transformation has been presented to con-
vert EPL rules into more specific languages like EQL, CQL, SteamSQL or CCL.
These languages could be considered as PMs and the rules implementations in
these languages would be PSMs.

In this paper, a metamodel for generic rules will be defined and the trans-
formation rules from CBM to generic rules and from generic rules to EPL will
be detailed (Fig. 5).
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Fig. 5. Model transformation from a CBM to EPL rules [25].

The first transformation should convert CBM rules into generic rules. As
such, a metamodel should be used to define and structure the concepts manip-
ulated in a CBM rule. The metamodel chosen has been designed by [13] with
concepts defined from ISO standards. This metamodel describes the different
parts of a CBM solution (Fig. 6). According to this metamodel, a CBM solution
is divided into 5 parts:

– Physical Description
– Functional Description
– Information Sources
– Symptom Analysis
– Maintenance Decision-Making

The “Physical Description” part is composed of all information related to
the systems structure. It describes the different components to the maintain-
able items level which are “the group of parts of the equipment unit that are
commonly maintained (repaired/restored) as a whole” [15].

The “Functional Description” part regroups the functions performed by
the equipment units. For each function, the related functional failures are also
described and the failure modes for each functional failure are provided.

The “Information Sources” block collects all the elements related to infor-
mation gathering. This block contains monitoring variables generated from sen-
sor data, variables, and measurement techniques. These monitoring variables
are meant to be used by the “Symptom Analysis” block for anomaly detection
purpose.

The “Symptom Analysis” block defines the descriptors, symptoms and infor-
mation rules. A descriptor is a “feature, data item derived from raw or processed
parameters or external observation” [14]. A descriptor is produced by processing
one or several monitoring variables. A symptom is a “perception, made by means
of human observations and measurements (descriptors), which may indicate the
presence of one or more faults with a certain probability” [14]. An interpretation
rule is “the description of how the descriptor values have to be interpreted or
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treated in order to get the monitoring outputs (detection, diagnosis, prognosis)
for a failure mode” [13].

Finally, the “Maintenance Decision-Making” block, regroups several CBM
processes divided into three types: anomaly detection, diagnosis and prognosis
activities. The detection element is used to calculate the descriptors values and
spot abnormal behaviors using interpretation rules. It is a “conclusion or group
of conclusions drawn about a system or unit under test” [14]. When an anomaly
is detected, it can trigger a diagnosis process in order to identify the related
failure and the responsible maintainable item. When an anomaly or a diagnostic
process is performed, it can also trigger a prognostics process to estimate the
Remaining Useful Life of a maintainable item. The results of these processes are
collected by a maintenance decision process meant to help the end-user.

Fig. 6. Basic structure for the CBM solution [13].

4 Model Transformation

Once the motivations to combine ES and CEP in a PHM architecture have been
explained, the model transformation from CBM to EPL should be detailed. This
transformation is performed in two steps: the CBM rules are first converted into
generic rules before being transformed into EPL. In this chapter, the metamodel
for generic rules will first be detailed, then the mapping for the first and second
transformations will be described.
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Fig. 7. Generic rules metamodel.

4.1 Generic Rules Metamodel

The first model transformation converts CBM rules into generic rules. As the
metamodel for CBM has been previously presented, the generic rules metamodel
should now be detailed (Fig. 7). The purpose of designing these generic rules is to
improve the transformation adaptability should an alternative to EPL emerge.
This metamodel should define a rule general structure while staying at a con-
ceptual level.

According to this metamodel, input data can be transformed into a variable
using a formula. This variable can then generate a complex variable which can
be created from several variables using a formula and/or by applying timeframe
operators. Two timeframe operators are presented in this metamodel: “during
timeline” which counts the duration of an event are situation in a predefined
timeline and “occurs in timeline” which counts the number of occurrences of an
event in a given timeline. These operators and their aggregation in a complex
variable can be considered a major modification of the version presented in [25]
because it allows the event’s chronology to be considered when defining rules
activation conditions. The generated complex variable can then be used as a
variable. Indeed, a complex variable is a specific kind of variable, which is usually
more expensive to create in terms of duration or calculation.

A condition is a comparison operator (e.g. ≤,≥,=) applied to two operands,
which can be either a constant value or a variable. A complex condition is an aggre-
gation of two simple or complex conditions related by a logical operator (e.g. AND,
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OR). For instance (a ≥ b)OR(c ≤ d) is a complex condition composed of two con-
ditions (a ≥ b) and (c ≤ d) related by the logical operator “OR”. The highest
level complex condition activates a rule which generates an output. This output
can potentially be used as an input for an another rule and inserted as a variable.
Consequently, a business rule could be converted into several generic rules.

Once the generic rules metamodel has been defined, the mapping rules with
the CBM metamodel presented previously can be detailed.

4.2 From CBM Knowledge Base to Generic Rules

As the source and target models for the first transformation, respectively the
CBM and generic rules metamodels, have been defined, the mapping rules can
be detailed. The first step in performing model transformation is to identify the
shared concepts. In the source model, these concepts are:

– the sensor and variables which can be considered as inputs
– measurement techniques as a first input processing
– the monitoring variables which result from input data transformation
– the descriptors which define how the monitoring data should be processed
– the symptoms for rule characterization
– the interpretation rules to define the activation conditions including operators

and threshold values
– the detection, diagnosis and prognosis elements to indicate which actions

should be triggered by the rule activation

In order to connect these elements to target model concepts, mapping rules
should be applied according to Table 1.

Table 1. Transformation rules from a CBM model into generic rules.

CBM model concept Generic rule model concept

Sensor Input data

variable Input data

Measurement technique Formula

Descriptor During dimeline

Occurs in timeline

Formula

Variable

Complex variable

Monitoring variable Variable

Interpretation rules Constant

Comparison operator

Logical operator

Condition

Complex condition

Rule

Output

Symptom Rule

Diagnosis, detection, prognosis Output
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According to this mapping, the source model’s sensor and variable concepts
can be matched as input data in the target model. These input data are then
transformed into a target model variable using a formula. The process is similar
to the generation of the source model’s monitoring variable from measurement
techniques applied to a sensor or variable. As such measurement techniques are
matched with a formula and monitoring variable as a target model’s variable.

A descriptor is processed from the transformation of one or several monitoring
variables using a formula and/or timeline operators. Consequently, a descriptor
is mapped to several target model’s concepts. Depending on the descriptor’s
content, formula and variable instances can be generated or even complex vari-
able with “during timeline” and/or “occurs in timeline” instances. Interpreta-
tion rules define the conditions applied to a descriptor to trigger a maintenance
action.

Similar to descriptors, interpretation rules can be mapped to several target
model’s concepts depending on their content. Indeed, interpretation rules can
be matched with complex conditions and generate the conditions, logical and
comparison operators they are composed of. Should an interpretation rule be too
complex, an output can be generated to be used as variable in a new rule. One
such example will be presented in chapter 5. The symptom component provides
business logic on the state of the system depending on the interpretation rule’s
activation. It can thus be mapped to the target model’s rule. The maintenance
actions can be triggered by the rule activation and can thus be matched as a
rule output.

Once the generic rules are designed, the second transformation into EPL
rules can be performed.

4.3 From Generic Rules to EPL

This section aims at presenting the mapping rules, available in Table 2, from
generic rules to EPL. In this table, the generic rule model concepts of Table 1
have been factorised to simplify the connection with the EPL model concepts. As
a reminder, CEP is designed to monitor large amounts of data in real time and
detect patterns thanks to rules which respect the EPL Metamodel. To achieve
this purpose, a CEP receives incoming data, named “WindowElement”, which
has to be combined with others to create a “DataElement”. The combination of
incoming data could be based on a “PatternExpression” such as the number of
occurrences during a timeframe or others aggregation operators as well as the
identity function. Once a “DataElement” is generated, a CEP aims to identify
a desired pattern referred to as a “SearchCondition” that is a combination of
“ConditionElement”. More extensive details have been presented in Sect. 2.4.

According to these mapping rules, the source model’s input data corresponds
to the target model’s WindowElement. A WindowElement can be transformed
by a PatternExpression, which refers to a formula, in order to provide a DataEle-
ment that refers to a variable. Regarding the complex variables, it is obvious that
they refer to DataWindow because they are generated based on a combination
of variables thanks to aggregation operators. This means that a variable could
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Table 2. Transformation rules from generic rules to EPL.

Generic rule model concept EPL model concept

Input data WindowElement

Variable DataWindow or WindowElement

Formula PatternExpression

Occurs in timeline PatternCondition

During timeline PatternTimer

Complex Variable DataWindow

Constant Operand

Comparison operator Operator

Logical operator Operator

Condition ConditionElement

Complex condition SearchConditions

Rule EPLModel

Output OutputElement

be a WindowElement. Thus depending on the rule, variables could refers to
DataWindow or WindowElement.

The “Occurs in timeline” operator is a pattern condition while the “During
timeline” operator is a PatternTimer. A constant is matched as an operand,
while the logical and comparison operators are matched as operators. A condi-
tion, composed of operands and operators, corresponds to a ConditionElement.
A complex condition, composed of several conditions can be assimilated to a
SearchCondition element. Finally, the rule, activated by a complex condition
and generating a output can be translated as an EPLModel and the source
model’s output as an OutputElement. In addition, the OutputElement could be
used as a new incoming event by CEP as explained in Sect. 2.3. Thus, the gen-
erated output element may then be integrated as a WindowElement of another
rule.

These rules allow generic rules to be transformed into EPL rules. In the next
chapter, examples of such transformations will be presented.

5 Case Study/Illustration

Previously, the motivations behind combining CEP and ES in a PHM solu-
tion have been explained. The metamodels for CBM, generic and EPL rules
have been presented and the mapping rules have been specified according to the
MDA methodology. In this section, a realistic case study with two CBM rules
will illustrate how these transformations should be applied. Events chronology
management will be displayed to demonstrate the value of these transformations
extended from the work of [25].
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5.1 System Description

The proposed case study consists in detecting abnormal situations on a system
in charge of regulating the airflow in a room. To ensure this functionality the
considered system is composed of two actuators A1 and A2 which have to open
or close a “panel”. A2 can be considered as A1 backup. As such they should be
opened and closed at the same time. An abnormal situation is referring to (1)
an abnormal opening or closing of the panel and or (2) to an overpressure in the
room. In order to detect these abnormal situations, data are gathered by sensors
and sent to the PHM architecture. This data is:

– two Boolean variables are used to indicate the actuators position:
• FO: equals 0 if the actuator is not opened and 1 if opened
• FC: equals 0 if the actuator is not closed and 1 if closed

– P: the pressure inside the room.

Therefore, the following input data are available to detect abnormal situa-
tions: A1 FO, A1 FC, A2 FO, A2 FC and P. Based on these data, the following
rules could be used to detect the two kind of abnormal situations:

1. One of the Two Actuators Has Failed: This situation occurs when A1
and A2 are in different positions or it can be due to a loss of signal which
implies that the Boolean value has not been updated. These abnormal situ-
ations could be identified thanks to the following logical expression:

If (A1 FO �= A2 FO) AND (A1 FC �= A2 FC)

2. Risk of Overpressure inside the Room Increases: When the pressure
inside the room increases by 0.14psid in a 500 ms timeframe during at least 1s
or if this same increase occurs 3 times in 10 s. Figure 8 illustrates the detection
of over-pressure in the room. This figure simulates incoming P values each

Fig. 8. Illustration of the detection of overpressure in the room.
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500ms and the value of the two timeframes (1s and 10s) based on the value
of the pressure difference ΔP . If the value of ΔP is over 0.14psi, then each
timeframe increases by 1 and if the value of the timeframe is over the thresh-
old, then an alert of risk of over-pressure has to be identified. This figure
illustrates also that the timeframe value could decrease if ΔP ≤ 0.14psi.

This case study is relevant because the first rule illustrates the transposition
of a rule with several monitored variables in the generic rule metamodel and the
EPL metamodel whereas the second rule illustrates how to interpret the time
windows in the generic and EPL metmamodel.

5.2 Examples of CBM Models

The models of the two previously presented rules are respectively detailed in
Fig. 9.

Fig. 9. CBM model for the two rules.

In the first example, A1 FO, A2 FO, A1 FC and A2 FC are being monitored
and compared in the interpretation rule (A1 FO <> A2 FO)AND(A1 FC <>
A2 FC). The related symptom is called “S1” and triggers a diagnosis action
when the interpretation rule is activated. This example is meant to detail how
to manage several inputs in the transformation process.

In the second example, only the pressure is being monitored. The data gener-
ated form the sensor is transformed by the measurement technique Δ into a mon-
itoring variable ΔP . This monitoring variable generates an identical ΔP descrip-
tor which is used in the interpretation rule (ΔP > 0.14 during 1s) OR (ΔP >
0.14 occurs 3 times in 10s). The symptom related to this rule is “S2” and trig-
gers a diagnosis action. This example is meant to explain how the “during” and
“occurs in timeline” operations are managed in the transformation process.
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5.3 Generic Rules Examples

This section focuses on the transformation from the CBM level to the generic
rules level of the two rules presented in Sect. 5.1. For each example, the mapping
rules will be applied to the source model before presenting the resulting target
model.

Regarding the first rule, used to detect that one of the two actuators has
failed, the mapping between the CBM model elements and the generic rule model
elements is detailed in Table 3. The resulting model is represented in Fig. 10. In
this example, it should be noticed that the source model’s interpretation rules are
transformed into several elements in the target Model. Indeed, the interpretation
rule corresponds to a Complex Condition composed of two conditions linked by

Table 3. Application of transformation rules from CBM to generic rules for the first
rule.

Source model conceptSource element Target element Target model concept

Monitoring variable A1 FO A1 FO Variable

Monitoring variable A1 FC A1 FC Variable

Monitoring variable A2 FO A2 FO Variable

Monitoring variable A2 FC A2 FC Variable

Interpretation rules A1 FO �= A2 FO and
A1 FC �= A2 FC

& Logical operator

�= Comparison operator

A1 FO �= A2 FO Condition (C1)

A1 FC �= A2 FC Condition (C2)

C1 & C2 Complex condition

Prognosis One of the two
actuators has failed

One of the two
actuators has failed

Output

Fig. 10. Generic rule model of the first example.
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Table 4. Application of Transformation Rules from CBM to Generic Rules for the
second rule (model a).

Source model concept Source element Target elementTarget model concept

Variable P P Input data

Measurement techniqueΔ Δ Formula

Monitoring variable ΔP ΔP Variable

Interpretation rules ΔP > 0.14 during 1 s
or ΔP > 0.14 during 3
times in 10 s

0.14 Constant

> Comparison operator

ΔP > 0.14 Condition

ΔP > 0.14 Complex variable

Table 5. Application of transformation rules from CBM to generic rules for the second
rule (model b).

Source model conceptSource element Target element Target model concept

Interpretation rules ΔP > 0.14 during 1 s
or ΔP > 0.14 occurs 3
times in 10 s

ΔP > 0.14 Complex Variable

or Logical operator

1 s During timeline

3 times in 10 s Occurs in timeline

ΔP > 0.14 during 1 s Condition (C1)

ΔP > 0.14 occurs 3
times in 10 s

Condition (C2)

C1 or C2 Complex condition

Diagnosis Risk of over-pressure Risk of over-pressure Output

logical operator. Each condition is composed of two Variables and a Comparison
Operator.

Regarding the second rule, which aims to detect a risk of overpressure inside
the room, this rule is based on occurrences number of pressure variation above
a threshold. If the number of occurrences is greater or equal to 2 in one second
or 3 in ten seconds then the risk has to be detected. In this kind of rules, it is
necessary to define a complex variable and split the CBM rule into two generic
rules at the CIM level in two rules at the PIM level. The first generic rule
should generate a complex variable when the pressure variation is above 0.14
psi. The second generic rule should monitor the number of these occurrences
over a timeframe to detect the overpressure risk. Table 4 details the mapping
from the source model’s elements to the target model’s element whereas the left
part of Fig. 11 corresponds to the part of the target model generating a complex
variable.
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Once the complex variable ΔP > 0.14 psi is generated, the next part of the
second rule could be transformed. Table 5 shows the mapping from the source
model elements to the target model elements illustrated by the right part of
Fig. 11.

Fig. 11. Generic rule models describing the second example.

5.4 Examples of EPL Models

This section focuses on the transformation from generic to EPL rules of the
models presented in Sect. 5.3. These transformations are based on the mapping
rules detailed in Sect. 4.3.

A generic rule model of the first rule, referring to an abnormal situation
caused by the failure of one of the two actuators, has been described in the
previous section. It can now be transformed into an EPL model based on the
mapping rules presented in Table 6. The resulting model is detailed in Fig. 12.

Regarding the second Rule, referring to a risk of overpressure in the room, two
generic rule models have to be transformed. The generic model which generates
the complex variable ΔP >0.14 psi can be converted in the EPL Model presented
in the left part of Fig 13 based on the mapping rules presented in Table 7.

Finally, the model of the second rule detecting a risk of over-pressure in the
room is transformed in the EPL model represented in the right part of Fig. 13
according to the mapping rules listed in Table 8.
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Table 6. Application of transformation rules from generic rule to EPL for the first
rule.

Source model conceptSource element Target element Target model concept

Variable A1 FO A1 FO WindowElement

Variable A1 FC A1 FC WindowElement

Variable A2 FO A2 FO WindowElement

Variable A2 FC A2 FC WindowElement

Logical operator & & Operator

Condition (C1) A1 FO �= A2 FO SearchCondition

Condition (C2) A1 FC �= A2 FC SearchCondition

Complex condition C1 & C2 C1 & C2 SearchElement

Output One of the two
actuators has failed

One of the two
actuators has failed

Output

Fig. 12. EPL rule model for the first example.

Table 7. Application of transformation rules from generic rule to EPL for the second
rule.

Source model conceptSource elementTarget elementTarget model concept

Input data P P WindowElement

Formula Δ Δ PatternExpression

Variable ΔP ΔP DataWindow

Condition ΔP > 0.14 ΔP > 0.14 SearchCondition

ComplexVariable ΔP > 0.14 ΔP > 0.14 OutputElement
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Table 8. Application of transformation rules from generic rule to EPL for the second
rule.

Source model conceptSource element Target element Target model concept

Complex variable ΔP > 0.14 ΔP > 0.14 WindowElement

Logical operator OR OR Operator

During timeline 1 s during: 1 s PatternTimer

Occurs in timeline 3 times in 10 s occurs in 10 s PatternCondition

Condition (C1) ΔP > 0.14 during 1 s ΔP > 0.14 during
1 s

ConditionElement

Condition (C2) ΔP > 0.14 occurs 3 times
in 10 s

ΔP > 0.14 occurs
3 times

ConditionElement

Complex condition C1 or C2 C1 or C2 SearchConditions

Output Risk of over-pressure Risk of
over-pressure

Output

Fig. 13. EPL rule models describing the second example.

6 Summary and Future Work

In the maintenance domain, the multiplication of data sources have boosted the
development of condition-based maintenance (CBM) strategies and given birth
to new approaches such as Prognostics and Health Management (PHM).

Nowadays, two main approaches are explored to detect failures in PHM solu-
tions: one based on machine learning, the other based on expertise and general
domain knowledge. This work focuses on the solutions based on expertise and
capitalised knowledge and thus focuses on systems with few records related to
failures. In such context, the use of Expert Systems (ES), in charge of exploit-
ing the capitalized knowledge, is relevant. Moreover, unlike machine learning
approaches, an ES is able to explain the need for maintenance actions. This
aspect is a key stone for decision in the maintenance domain. However, current
ES have scalability limits regarding the multiplication of data sources and espe-
cially the volumetry and velocity of the incoming data. Therefore, this paper
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proposes to combine the ES with Complex Event Processing (CEP) to tackle
these limits. Indeed, a CEP aims at processing data efficiently to immediately
recognise patterns when they occur. Therefore, a CEP can be used in order to
filter the incoming data and only requests the ES when it is relevant, in other
words a CEP aims to reduce the volumetry and the velocity of the incoming
data for the ES.

Even if the idea to combine ES with CEP is promising, it requires that the
configuration of the CEP, especially the rules, are always in line with the needs
of ES. This requirement implies that the configuration of the CEP has to be
automatically generated from the ES. This paper details the proposed Model
Driven Architecture (MDA) used to generate the CEP configuration from the
ES. This MDA consists in transforming, first, CBM models into generic rules
models before transforming these generic rules models into EPL models. Then
code, as EQL rules for example, can be generated from these EPL models. This
paper focuses on the first two transformations and the need to pass through the
generic rules level due to the CBM rule’s complexity such as the use of temporal
parameters or the need for intermediate results. Due to this complexity, the
transformation of descriptors and interpretation rules concepts of the CBM can
provide lots of different generic rules concepts.

However, the presented work has limitations which have to be addressed.
One of the main challenges in this model transformation is to automatically
generate descriptors from documentation. To deal with this issue, exploiting
resources in text format may be very helpful. To perform this, using comple-
mentary approaches might be necessary to extract and decompose descriptors
into generic rules model instances. Consequently, this transformation could be
improved by the use of Natural Language Processing (NLP), for example the
use of entity named recognition algorithms. In addition, this proposal has, for
now, been tested on case studies such as presented here, however the short-term
planned perspective is now to implement this architecture on a real complex
system.
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Abstract. Modelling and simulation are techniques instrumental in the
engineering and design of complex systems. The reason is that both these
techniques can anticipate possible failures when corrections are less costly
to incorporate. Nevertheless, a correct behaviour is no guarantee, espe-
cially with software systems and their ubiquitous modelling notation:
state machines. Correctness cannot be guaranteed because semantic gaps
result from (1) abstractions in modelling and (2) ambiguities in simula-
tion. Formal verification of a model may thus imply little about the
correctness of the implementation. This situation is all the more seri-
ous with the emergence of Model-Driven Software Engineering and its
penetration in the instrumentation of cyber-physical systems, where ver-
ification of time-domain properties of systems is now paramount. We use
logic-labelled finite-state machines (LLFSMs), a formalism with a precise
semantics. We introduce both model-to-model and model-to-text trans-
formations from LLFSMs to either programming languages or formal-
specification languages for model checkers with minimal semantic gaps.
We describe a transformation in the Atlas Transformation Language
(ATL), producing modules of the NuSMV model checker. The time com-
plexity of this transformation is linear in the total number of states of
an arrangement of LLFSMs. The transformation is so faithful that the
model checker itself can be used as the execution engine of the LLFSMs
models.

Keywords: Formal verification · Model-to-model transformations ·
State machines

1 Introduction

“Systems are inherently complex, and tools such as modelling and simu-
lation are needed to provide the means for gaining insight into aspects of
their behaviour” [6].
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With the emergence of Model-Driven Software Development, there is an expecta-
tion that, for complex software systems, high-level designs would automatically
translate into implementations. The Unified Modeling Language (UML) is pos-
sibly the most frequently used language for modelling the behaviour of software
systems as arrangements of state machines, and this includes the internet of
things (IoT) devices, embedded systems, and smart things [9]. UML state charts
adopted and popularised the Run To Completion (RTC) event-driven seman-
tics [20,24,39]. Moreover, UML has elaborated (on top of the RTC) the handling
of events for all sorts of other compositions with other behaviour models [25].
Unfortunately, such enlargement of UML’s artifacts [13,21] has resulted in the
widening of semantic gaps (larger discrepancies between modelling languages
and their interpretation; both, in the verification or in the execution) and in
more elaborate constructs, that many admit they rarely use. For instance, intro-
ductory videos [1] on using Papyrus [26] admit ignoring most of the options and
elements offered by the modelling tools. In particular, for state machines, it is
suggested [23] that the main use of models is their visualisation aspect, ignoring
completely the executability.

Simulations that do not exhibit failure are no guarantee of correct behaviour.
Hence, there is significant interest to enable formal verification of models. More-
over, with the emergence of Model-Driven Software Engineering and its pene-
tration in the instrumentation of cyber-physical systems, formal verification of
time-domain properties [29] (beyond value-domain properties) of systems is now
paramount.

In this paper, we report on model-to-model (M2M) transformations and
model-to-text (M2Text) transformations directly producing a Kripke structure
for model checking in the SMV language [34], which is the core input language
to the NuSMV [14] and nuXmv [12] model checkers. The transformation is so
faithful that the model checker itself can be used as the execution engine of
the LLFSMs models. That is, we minimise the semantic gaps. Moreover, we use
SMV’s module notation achieving extremely succinct input files for the model
checkers. For example, compared with a former implementation [33] of the gen-
eration of the input files for the model checker, instead of over 110,000 lines of
code, we now generate fewer than 500.

Our contributions are as follows.

1. We detail M2M transformations that reduce the need for sections with states
(see Subsect. 5.1).

2. In Subsect. 5.2, we detail M2M transformations that handle the atomicity of
actions in states for the semantics of LLFSMs when translated to SMV.

3. We automatically generate verification properties of the model (see Sub-
sect. 7.1).

4. We demonstrate that the transformations are efficient (see Subsect. 7.3).

At mipal.net.au/downloads.php, we release the code for prototype implementa-
tion of these transformations. Figure 1 illustrates the M2Text transformations
released with the software. An accompanying video1 illustrates one case study
1 www.youtube.com/watch?v=o2Ut5lAsJe8&feature=youtu.be.

http://mipal.net.au/downloads.php
https://www.youtube.com/watch?v=o2Ut5lAsJe8&feature=youtu.be
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Fig. 1. ATL model-2-text transformations released at mipal.net.au/downloads.php.

where the model is interpreted by the NuSMV model checker and also by our own
interpreter written in LISP. Unlike the conference paper [11], this paper offers
a direct focus on verifying time-domain properties. In particular, in Section 6
we include a new case study of the garage door controller [2]. This case study
has important time-domain aspects. Our transformation in this version can han-
dle integer variables and predefined constants. Most importantly, the model-
2-text transformations produce computation-tree logic (CTL) and linear-time
logic (LTL) properties about the scheduling of modules and the proper execu-
tion of the arrangement (see Subsect. 7.1). This aspect is a fundamental step
in proving the model-2-text transformation is in itself correct. With respect to
the prototypes of implementing the transformations, we now release the model-
2-model transformation in the ATL transformation language that eliminates
the need for sections in states (see Sect. 5.1). We also release EMF-Java tools
that use the generated classes from the meta-model to produce a graphical user
interface (GUI)-enabled emulator of traces produced by the NuSMV [14] and
nuXmv [12] model checkers. We hence establish the minimisation of the seman-
tic gap between the verified model and the execution. Moreover, in Sect. 3, we
provide a full mathematical definition of LLFSMs, which directly delivers the
corresponding meta-model.

2 Adopting Logic-Labelled Finite-State Machines

Despite the attempts to formulate behaviour models as UML state machines,
the interpretation of these models still finds semantic variants, so that even in
the value domain, properties submitted for formal verification may or may not
hold, depending on the particular semantic variant [3]. This discrepancy is a
manifestation of a first type of semantic gap, so that the executable model in
simulation runs differently from the code generated from the model. A second
type of semantic gap occurs when the input for a model checker is produced
from the model using simplifying assumptions to ensure that formal verification

http://mipal.net.au/downloads.php


228 M. Carrillo et al.

is feasible (this is the case of translations that assume the execution will always
have no bound on the available time to resolve the current event and therefore
does not produce the representation of event queues or other mechanisms implied
by the RTC semantics). For instance, STP [4,16] converts STATEMATE’s event-
driven state-charts into SMV by converting events into Boolean event variables
that are true for exactly one time step. In effect, the model being verified is
some form of logic-labelled finite-state machine which is no longer equivalent to
the original RTC semantics. Other researchers have found ambiguities in UML’s
semantics [36]. For instance, in cases where several transitions are enabled, some
researchers have elected to chose randomly which transition shall fire (which
casts serious doubts about the semantics), while others prefer to keep a record of
the editing of the model (and assigning priorities to transitions on such invisible
criteria as the order of inserted transitions while editing the model [36]). In
the time domain, verification with UPPAAL [31] (i.e., timed automata) verifies
time bounds once the system starts processing an event. Verification with timed
automata does not consider the amount of time that the system has to wait for
an event to happen. Thus, verification is limited to best-case scenarios, where, for
all the configurations of event queues, the current event is not affected by timing
deadlines. We attribute the mismatch between UML being formally verifiable
and UML being executable to the original goal of UML to be both human centred
and a tool for communication between human designers, allowing a significantly
loose semantics, with little intention to be executable [13].

A third semantic gap emerges when the constructs by Model-Driven Software
Development are translated by programmers or machines into programming lan-
guages with significantly different constructs: the verified model would have even
less resemblance with the running program:

“The only effective way to raise the confidence level of a program signifi-
cantly is to give a convincing proof of its correctness” [18]

(also cited by Edmund M. Clarke et al. [15]).
We elect here to use arrangements of logic-labelled finite-state machines

(LLFSMs) as the constructs to model behaviour. As a first approximation, we
can imagine LLFSMs as UML’s state charts where transitions are not labelled by
events, but only by guards (without side effects). Thus, each transition is labelled
only by a Boolean expression. This simple change has profound implications (a
summary appears in Table 1).

with the advantage that the computational power is not lost. More precisely,
LLFSMs are extended finite-state machines where the user has the liberty to
choose the action language. In addition, they can be executed concurrently, but
instead of uncontrolled concurrency, the scheduler is predefined ahead of execu-
tion. The result is a sequential executable semantics without the earlier semantic
problems of the RTC semantics of the event-driven UML modelling tools.

“The more complex a system is, the more important it is to make it as
simple as possible. In complex systems, simplicity isn’t achieved by coding
tricks. It’s achieved by rigorous thinking above the code level” [30].



Verification and Simulation of Time-Domain Properties 229

Table 1. Comparison of behaviour models.

LLFMSs UML state charts

Transitions labelled by logic
expressions

Transitions labelled by events

Analogous to time-triggered
(explained in text)

RTC semantics

Sequential semantics (but
concurrent)

fUML attempts to produce executable
semantics

Executable and verifiable
models

Semantic gaps reflected in diverse
execution models

Scale up by concurrent
execution in arrangement

State nesting is one of the fundamental
mechanism for composition

Can produce deliberative
system

Usually leads to the confusion between
reactive system, event-driven system
and real-time system

Communication with
control/status messages

send instantaneous semantics

Moreover, for formal verification, the RTC semantics requires model checkers
to consider all possible sequences of arrival of events and all possible states of
the queue (or queues) that handle(s) the events. Such combinatorial explosion
severely limits the potential for model checking of elaborate models.

Logic-labelled state-machines can be considered an alternative to event-
driven models in an analogous fashion as time-triggered architectures are an
alternative to event-driven systems. However, when timing issues are critical, a
time-trigger architecture is fundamental:

“The safety properties of time-triggered architectures can be formally ver-
ified (which is extremely difficult with event-triggered systems)” [22].

Rushby [37,38] showed that time-triggered architectures are resilient and safe
in all operating circumstances. Thus, time-triggered architectures guide the
design of international safety standards such as IEC 61508 (industrial systems),
ISO 26262 (automotive systems), IEC 62304 (medical systems) and IEC 60730
(household goods) [35].

Although LLFSMs can be scheduled as a time-triggered systems, strictly
speaking, LLFSMs are not identical to time-triggered systems (see Table 1).
The reason is that a “ringlet”s (Definition 8 in Sect. 3) duration is not uniform
across different machines. That is, the time it takes to run a scheduler’s turn
varies depending on (the current state of) the machine in turn. This variation
is caused by the fact that some machines may have more statements in their
section than others, or that a state may have more transitions than others.

In contrast with both LLFSMs and time-triggered architectures, event-driven
systems imply managing queues to store events arriving while handling the cur-
rent event. Such event-driven architectures exhibit many issues regarding time
guarantees [17,28]. But more importantly, in the value domain, all possible orders
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of events and queue’s configurations must be verified (such combinatorial explo-
sion is impractical).

3 Formal Definition of LLFSMs

An arrangement of LLFSMs is a sequence of state machines operating in an
environment. The order of the state machines in such a sequence defines the
execution schedule of such state machines.

Definition 1. An arrangement A = (Q,E,W ) is a triple, where

1. Q is a sequence 〈M1,M2, . . . ,Mk〉 of k logic-labelled finite state machines,
2. E = Es∪Ee ⊆ V is a set of variables, called external variables, formed of two

disjoint sets: the set Es of sensor (input) variables and the set Ee of effector
(output) variables, and

3. W ⊆ V is a set of variables, called shared or whiteboard variables.

To identify the parts of an arrangement A we use a dot, so A.Q is the sequence
of state machines, but if A is understood, we simply write Q.

A logic-labelled finite state machine (LLFSM) is a state machine whose transi-
tions are labelled by logic expressions, typically Boolean expressions in an action
language. Therefore, as long as there is an effective procedure to evaluate the
expressions (even in a multi-valued logic), the formalism applies. (For instance,
LLFSMs have been used with defeasible logic [5].) We therefore do not elaborate
on the semantics of the logic expressions labelling the transitions, but will refer
to them as Boolean expressions.

Definition 2. A logic-labelled finite-state machine (LLFSM), or machine for
short, is a tuple M = (S, T , I, L,F), where

1. S is a set of states,
2. T is a partial transition function,
3. L ⊆ V is a set of (local) variables,
4. I ∈ S is a distinguished initial state, and
5. F ⊆ S is a set of final or accepting states.

Definition 3. The state S of the i-th machine LLFSM in the sequence A.Q is
uniquely identified as Mi.S.

States have sections where code of the action language is placed. The sections
are of three kinds, in a manner analogous to that of OMT and UML.

Definition 4. A state S of a machine Mi in an arrangement has the form
Mi.S = (S,Oei, Oxi,Doi), where
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Oei, Oxi,Doi are respectively called the OnEntry, OnExit, and Internal
sections of the state. Each section is a set of legal instructions (com-
mands) in some programming language (for example, assignments)2 so
that λ(E,W,Mi.L).Oei, λ(E,W,Mi.L).Oxi, and λ(E,W,Mi.L).Doi have
no free variables (that is, all variables occurring in the instructions of a
section of a state are either external variables, whiteboard variables, or the
local variables of the machine Mi that holds the state S).

For convenience, a partial transition function T of an LLFSM M is represented
as a sequence of triplets (Ss, B, St), where

1. Ss, St are states in S, the states of M , and Ss is the source state while St is
the target state (Ss and St could possibly be the same),

2. B is a Boolean expression in some logic language, so that λ(E,W,Mi.L).B
has no free variables (that is, all variables occurring in the Boolean expression
B are either external variables, whiteboard variables or the local variables of
the machine Mi that holds the state S).

Definition 5. If two transitions Tb = (Ssb , Bb, Stb) and Ta = (Ssa , Ba, Sta) in
the transitions T of an LLFSM M , where

T = 〈(Ss1 , B1, St1), (Ss2 , B2, St2), . . . , (Sst , Bt, Stt)〉

are such that Ssb = Ssa (that is, Tb and Ta have the same source state), and
b < a (that is, transition Tb is before Ta), then we say that Tb has precedence
over Ta.

When transitions share a source state, they are evaluated in sequence in
a shared snapshot of the environment. A transition that shares its source state
with others fires only if all transitions that precede it do not fire and its labelling
expression evaluates to true.

Definition 6. Let Ta = (Ss1 , Ba, Sta) be a transition in the transitions T of an
LLFSM M . If T has transitions T1 = (Ss1 , B1, St1), T2 = (Ss1 , B2, St2), . . .,
Tp = (Ss1 , Bp, Stp) preceding Ta (and thus all have the same source state), then
the Boolean expression for Ta is

BA = Ba ∧ ¬(B1 ∨ B2 ∨ . . . ∨ Bp).

Definition 7. A state is final when it has no outgoing transition.

A self-transition (same source and target) is sufficient for a state not to be final.
If a self-transition fires, the OnEntry is not executed again. Once an LLFSM
has reached a final state it will execute its OnEntry, its Internal once and will
be removed from the scheduling in the arrangement. The OnExit code of a final
state is not executed.
2 For the ATL transformation here we use as the action language an extension of

IMP [42] as statements in this language have direct equivalents in CLISP and SMV.
However, implementations of LLFSMs have used Simple-C, Java, C++, and Swift.
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3.1 Semantics

Depending on the action language, variables may be typed. This just means that
the set V of variables is partitioned. For our implementation, we have at least
two types: Boolean variables, and Integer variables since again these are common
types between SMV and CLISP. Specifying the type of a variable corresponds
to specifying its domain of values. We assume that all domains have a special
value ⊥ which will be the default value for all variables (and represents that the
variable has not been assigned a value) [41].

Definition 8. Given an arrangement A = (Q = 〈M1, . . . ,Mk〉, E = Es ∪
Ee,W ), a Kripke state is a valuation of

1. the external variables E = Es ∪ Ee,
2. the whiteboard variables W ,
3. the local variables Li, for each machine Mi,
4. the current state pci ∈ Si, for each machine Mi,
5. a Boolean variable has firedi, for each machine Mi,
6. a variable turn ∈ {1, . . . , k} that indicates which machine holds the current

token of execution (and performs a ringlet; that is, executes its current state).

Valuation for variables means that we have a value qi (which could be ⊥) for the
variable vi.

We note that for model checking, systems are categorised as open or closed [40,
Page 88]. Closed systems have no inputs, and are frequently those that are for-
mally verified. But naturally, software operates in interaction with the environ-
ment. When dealing with an open system, a corresponding closed system is used
by composing the open system with a model of its environment. For the defini-
tion of the next Kripke state in computation we adopt the standard convention
(of modelling the environment) by allowing the valuation of a sensor variable to
remain the same or change non-deterministically to any value in its domain if it
is ⊥, and to remain or change non-deterministically to any value in its domain
(except ⊥) if it is already different from ⊥. External sensor variables will have
a subscript s. External effector variables will have a subscript e. Whiteboard
variables will have a subscript w.

Definition 9. Given a Kripke state, (that provides (1) a value t for turn, (2)
for each Mi, a current state pci, and a value for has firedi, and (3) values (or
⊥) for all external variables, all whiteboard variables, all local variables of each
LLFSM), the descendant Kripke states (next in NuSMV notation) are valuations
(new assignment of values to variables) that are obtained as follows. First, all
local variables of all other machines besides machine Mt retain their values as
the only machine which executes a ringlet whose turn it is. That is,

next(Mj.vu) ← value(Mj.vu) ∀j �= t.

Second, new values are calculated for external variables, whiteboard variables and
the local variables of machine Mt according to the following cases.
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Case has firedi = true. This is the case when a transition fired as the last
action of running the ringlet in machine Mt.
1. A copy C = (E,W,Mt.L) (recall turn = t) (a snapshot is taken) of the

valuation defined by the environment variables, the whiteboard variables
and the local variables for Mt.

2. The current program counter pct (points to a state of Mt) of the current
state-machine indicated by turn = t, is used to select the statements Oepct
of OnEntry section of the t-th machine and Oepct is executed in C =
(E,W,Mt.L) producing a new valuation C1

3. The set of transitions is analysed resulting in two sub-cases.
(a) If the set of transitions of Mt that have source state pct is empty, the

machine is removed from the arrangement.
(b) Otherwise, the transitions of Mt that have source state pct are evalu-

ated in their precedence order in the same valuation C1. We have two
sub-subcases.

i If a transition Ta = (Spcj , B, St) evaluates to true, then the
OnExit section Oxpct is evaluated in the context C1 producing
a new context C2. The next value of the variable has firedt is
set to true.

ii Otherwise, no transition fired. Then, the Internal section Dopct
is evaluated in the context C1 to produce a new context C2.

4. The values of the context C2 are written back to the corresponding external
variables, whiteboard variables and the local variables of Mt.

Case: has firedi = false. The same steps as in the case when has firedi =
true are performed except that Step 2 that executes the OnEntry is skipped
and thus the context for evaluation transitions is the first snapshot C =
(E,W,Mt.L) .
In all cases, the variable turn is updated to turn+1 mod k. In the open exe-
cution the sensor variables are executed with sensor values. In the closed sys-
tem version, several new Krikpe states are produced by generating all possible
combinations of the external sensor variables.

3.2 Timed LLFSMs

Timed LLFSMs allow the predicate after (int) as part of the Boolean expres-
sion of a transition.

The machines are extended so that the information for a Kripke state about
the state of an individual machine is extended. For each machine Mi, besides
the current state pci ∈ Si and has firedi ∈ {true, false}, we now have a time-
stamp ti which records the time of entering the state pci (and before any action
in the OnEntry of pci runs).

The semantics of the predicate after (int) in a transition Bp with source
state S is essentially syntactic sugar for a “less than” comparison between the
current time and the time recorded in the time-stamp ti.

The results should be that, for positive values for the integer argument of
after (int), the first time the transition is evaluated, it will evaluate to false.
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Every subsequent evaluation while in state S will retrieve the current univer-
sal time in the executing hardware as later-time. If the later-time is at least int
seconds later than the time-stamp ti, then the expression after (int) evaluates
to true; otherwise it evaluates to false.

Most importantly, any other transition out of S that fires will reset to a new
value the time-stamp ti as part of the OnEntry section of the arrival state.

4 Value-Domain Versus Time-Domain

The common use of model checking is to eradicate value-domain failures. A
value-domain failure means that an incorrect value is produced [29, Page 139].
A temporal failure, on the other hand, means that a value is computed outside
the intended interval of real time. We already referred to Besnard et al. [3] for
the discussion of semantic gaps and the ambivalent semantics of UML. We refer
to these authors again because of their case study of the level-crossing train (see
Fig. 2). In this case study, a train approaches a level crossing, and presses a first
entrance sensor (called the far-entrance sensor). This should activate railway
signs and road signs. Closer to the crossing, a second entrance sensor (the near-
entrance sensor) activates the lowering down of a gate. Once the train passes, it
presses an exit sensor and the gate lifts and the signals stop shining.

Besnard et al. [3] perform model checking (of the closed representation of
their executable models) in the value domain. In particular, these authors verify
deadlock detection (that the model is deadlock free) as well as four system
requirements.

Property 1. The gate is closed when the train is in the level crossing.
Property 2. The light of the road-sign is active when the train is in the level

crossing.
Property 3. Eventually, the gate will open after being closed.
Property 4. Eventually, the light of the road-sign will turn off after being

activated.

Fig. 2. Scenario of the level-crossing case study [3].
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We emphasise that in the work of Besnard et al. [3] there are no time deadlines in
the expression and verification of the above properties. A significant contribution
of our work is that, in our translation to SMV, we enable integer variables to
function as program counters (and a scheduler) for describing the computation
progress in the model. Thus, by combining these integer variables and bounded
operators of LTL and CTL, we can express and verify properties having explicit
time deadlines. Therefore, we can verify the non-existence of temporal failures.
For instance, by applying our ATL transformation to the LLFSM model of the
level crossing behaviour, we obtain an SMV model where we can verify a variant
of Property 4. This variant considers, in addition to the road sign, the train
position, and is expressed by the following SMV code.

DEFINE
roadSignIsActive := (RoadSign.pcRoadSign = 2);
trainIsPassing := (Train.pcTrain = 4);

LTLSPEC
G (( roadSignIsActive & trainIsPassing) ->

(F[0,8] (! trainIsPassing & (F[0 ,58] roadSignIsInactive ))))

These bounded LTL formula and specific naming of LLFSMs program counters
state that, if the light of the road sign is active and a train is on the level crossing
then, after at most eight Kripke transitions, a train is out of the level crossing
and then, after a maximum of 58 additional transitions, the road sign light turns
off. From here, by a conversion of state transitions to time units, a worst-case
execution time estimate of the statements in OnEntry sections of the model
results in a verified hard real-time bound Property 4.

5 From LLFSMs to SMV Models via ATL
Transformations

We now describe M2Text and M2M transformations that we use to transform
an arrangement of LLFSMs into an SMV model (a set of SMV modules).

5.1 LLFSM with Non-sectioned States Through an M2M
Transformation

We now describe using standard UML diagrams shown in Fig. 3 (constructed
with Papyrus [26]) the algorithm that transforms an LLFSM into an LLFSM
where states do not have sections. This condition is equivalent to all statements
belonging to the OnEntry section. The version of the code released with this
chapter includes an ATL M2M prototype of our transformation, implementing
the semantics described in Definition 9. This implementation is similar to those
that have removed the nesting of states in UML state machines of depth 2 into
UMP state diagrams with no nesting and the Promela language of the Spin
model checker [10]. In that setting, the interlingua semantics of hierarchical
statecharts [19] unfolds a level-2 nesting into essentially a new statechart without
nesting but with states given by the Cartesian product of the container statechart
and the contained statecharts.
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Fig. 3. Schema that defines the M2M transformation that ensures that states do not
have sections (or alternatively, all statements are in the OnEntry section).

5.2 M2M Transformation to Handle a State’s Section Atomically

Which actions (or code and in which action language) are placed in the sections of
the states of LLFSMs is not essential for our discussion. The use of variables and
sequences of assignments is a feature common in extended state machines, but
theoretically, at the cost of having a larger number of states: for every extended
state machine there exists an equivalent FSM (or LLFSM) [27].

We also define an M2M transformation that highlights that the semantics
of actions (code) in LLFSMs are handled atomically. That is, the intermediate
states of the action language inside a state are invisible to all other LLFSMs
concurrently executing. Therefore, we can simplify such statements and their
translation to SMV’s statements. Moreover, this transformation only requires
a syntactic analysis of the statements in a state. Figure 4 illustrates the effect
of the transformation, which is given by the recursive algorithm in Fig. 5. The
algorithm maintains a dictionary that with each variable it associates an expres-
sion. When an assignment statement is found for the first time, the variable on
the left-hand side (LHS) is inserted as the key in the dictionary with the expres-
sion on the right-hand side (RHS) as the associated information. For each new
assignment, the RHS has all free occurrences of variables replaced by the val-
ues in the dictionary before the LHS is updated with the new expression. Note
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that the statements are not executed. Instead, they are nested into the resulting
expressions.

Fig. 4. Since the statements in a section of a state are executed entirely or not at all
in each ringlet, they can be considered atomic.

Fig. 5. Converting an IMP-sequence of statements to SMV.

5.3 Handling Variables

An arrangement of LLFSMs defines a round-robin schedule for the con-
current execution of the state machines in the arrangement (it is possi-
ble to use other schedules, but for now we adhere to Definition 9 where
next(turn)←turn+1 mod k). Thus, there are no race conditions; only one state
machine is executing its ringlet at a time, so there is no need for mutual exclu-
sion. In our transformation from LLFSMs to modules of SMV, however, some
aspects of variables require a special treatment since, in SMV, all variables must
belong to a module and must have an explicit value in each state. In the arrange-
ment, all non-local variables are global. A simple solution would be to place all
global variables (external and whiteboard variables) in the main module in SMV.
However, this is not necessary if there is only one LLFSM in the arrangement
that is a writer to the variable. Therefore, our M2Text transformation assigns
variables in the arrangement to SMV modules as follows:

Variable Is Local to an LLFSM: The variable is declared local in the corre-
sponding SMV module.
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Variable Is a Sensor of the Arrangement: The variable is declared global
in the main SMV module, no LLFSMs writes to this variable. The open SMV
model would manage this variable non-deterministically, taking all possible
values in the next Kripke state. This represents the possibility that the envi-
ronment changes the sensor reading at any time.

Variable Is Written by Only One LLFSM: The variable is declared local
in the corresponding SMV module.

Variable is written by more than one LLFSM: The variable is declared
global in the main SMV module, but would behave deterministically in the
Kripke states.

Because SMV composes modules under synchronous composability, all SMV
modules advance simultaneously. Therefore, when producing an SMV module,
our M2Text transformation must reflect the LLFSM semantics where a variable
is never simultaneously written by more than one LLFSM. We will see in the
next section that we use the value of turn, which becomes a variable in the main
module of the SMV result, to ensure that only one SMV module would update
the LHS of all its statements using next. Moreover, we will use the value of turn
to ensure that only one SMV module can have an effect on any sort of variable
in the model checker.

5.4 The Transformation When There Are No Temporal Transitions

We illustrate the transformation with an arrangement of two LLFSMs that
includes Boolean and arithmetic expression as well as Boolean variables and
integer variables. Figure 6 displays the visualisation that appears in our new
prototype for emulating traces from model checkers. We describe the trans-
formation from LLFSMs that have no sections in states to SMV modules by a
series of rules.

Rule 1: There is an SMV module for each LLFSMs Mi in the arrangement.
There is an SMV module main that holds an integer variable turn with
domain {0, 1, . . . , k − 1} that serves to indicate the only state machine that
will affect values of variables. The SMV module main ensures the round-robin
schedule in the Kripke states with transitions such that, for all i = 0, . . . , k−2,
(turn = i) & (next(turn) = i mod k); while (turn = k) & (next(turn) = 0).

Rule 2: All transitions of the module Mi (besides main) have a test of the form
(turn = i) which effectively ensures that only the transitions in Mi advance
the Kripke state when indeed the value of turn is i.

Rule 3: The main module instantiates the modules of each Mi in the arrange-
ment for i = 1, . . . , k with parameters defined by the specification of Sect. 5.3.

For illustration, the corresponding main module for Fig. 6 declares the vari-
able turn with domain {0, 1}.
MODULE main
VAR turn : 0..1;
MonitorCounter : MonitorCounter(turn , Counter.counter );
Counter : Counter(turn , MonitorCounter.GoDown);
TRANS ((turn = 0) & (next(turn) = 1 )) | ((turn = 1) & (next(turn) = 0 ))
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Fig. 6. Arrangement of two state machines with a global (whiteboard) Boolean variable
GoDown and a global (whiteboard) integer variable counter.

This SMV code, produced by our ATL M2Text transformation, shows how
the SMV module main instantiates the two modules for the two LLFSMs in the
arrangement. This piece of code also shows that the SMV module main schedules
the round-robin cycle through the possible values of the turn variable.

Rule 4:
1. The i-th SMV module will correspond to machine Mi.
2. The j-th state in machine Mi will be identified as the j-th state in the

corresponding SMV module for Mi for j = 1 to the number of states in
Mi (and an additional 0-th dummy state will be identified as the initial
pseudo-state with a transition labelled with true to the initial state of
Mi).

3. The current state pci (see Definition 8) of machine Mi will be identified
by a local variable pc in SMV module Mi.

4. Moreover, a transition in Mi, whose source state is the j-th state, will be
identified with the tuple i, r, where r is the rank of the transition among
the transitions in Mi.

Figure 6 shows the use of these identifiers for machines, states, and transitions
in our running example. What follows now is the detailed description of how
the transformation ensures the running of a ringlet; that is, the effects of the
machine whose turn it is.

Rule 5: Each transition Ti,r with source state S in Mi will result in a Boolean
SMV expression that will guarantee this transition can only fire when it is
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the turn of machine Mi and its current state is s. If the Boolean expression
for Ti,r is bi,r and SMV(bi,r) is the translation of bi,r from IMP to SMV, then
we defined the SMV condition for Ti,r by

condTi,r := (turn = i) & (pci = S) & SMV(bi,r) (1)

Rule 6: For transition Ti,r to fire, no transition with q ≤ r should fire (and
in the case of the SMV module this could be because the source state does
not match the pc or because their Boolean expression is false), thus the
SMV translation for Ti,r corresponds to the conjunction of the negation of
all condTi,q with the affirmation of condTi,r.

Rule 7: The Mis we are considering have no sections in a state. So when no
transition out of a state S fires because the Boolean expressions of all transi-
tions evaluate to false, then machine Mi has no effects, and just misses its
turn. We represent this in the SMV module for Mi by an SMV expression
condDefaulti which is the conjunction of all the negations of all the condTi,q.

Rule 8: When a transition condTi,r fires, the effects of the statements of the
target state are encoded by the corresponding translation of those IMP state-
ments (after the atomicity reduction of Subsect. 4) into SMV statements.

The application of these last rules in our ATL transformation results in the
following module for the MonitorCounter LLFSM from Fig. 6.

MODULE MonitorCounter(turn , counter)
VAR pcMonitorCounter : 0..2;
VAR GoDown : boolean;
INIT (pcMonitorCounter = 0)
DEFINE
condT00 := ((( turn = 0) & ( pcMonitorCounter = 0)) & TRUE);
condT01 := ((( turn = 0) & ( pcMonitorCounter = 1)) & (counter < 1));
condT02 := ((( turn = 0) & ( pcMonitorCounter = 2)) & (counter < 1));
condDefault0 := (!( condT00) & !( condT01) & !( condT02 ));
TRANS
(TRUE &
condT00 & (next(pcMonitorCounter )=1) & (next(GoDown)=FALSE))
|
(!( condT00) &
condT01 & ((next(pcMonitorCounter )=2) & (next(GoDown)=TRUE )))
|
(!( condT00) & !( condT01) &
condT02 & ((next(pcMonitorCounter )=1) & (next(GoDown)= FALSE )))
|
(condDefault0 &
TRUE & (turn =0) & ((next(pcMonitorCounter )= pcMonitorCounter)

& (next(GoDown)= GoDown )))
|
(condDefault0 & TRUE & (turn !=0)

& ((next(pcMonitorCounter )= pcMonitorCounter) & (next(GoDown)= GoDown )))

Note that all condT ensure that it is this machine’s turn (SMV module) and
the current state is the source of the transition. Moreover, with the contrasting
Fig. 6, observe that the transition from the state LetsGoUp (stated ID 1) to the
state LetsGoDown (state ID 2) is transition with ID = (0,1) as this is the 0-th
machine and this is the second transition, but numbering from 0, its numeral is 1.
This transition defines condT01 in the code above (using the Boolean expression
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that labels this transition). In Fig. 6, we see that if the transition fires, the effect
in the target state is for the local variable (as this is the only module that writes
on it) GoDown to change to true. This happens when not condT00 and condT01,
and the code above shows that in this case the next Kripke state will have the
variable GoDown updated accordingly.

5.5 Temporalised Transitions

We now describe the part of our ATL transformation that handles the partic-
ular predicate after that enables timed LLFSMs. These timed LLFSMs were
probably introduced in robotic systems [8,32] as part of the subsumption archi-
tecture under the name of augmented fine-state machines [7]. If the Boolean
expression of a transition T includes the predicate after, we say that it is a
temporalised transition. To translate the semantics of temporalised transition
given in Subsect. 3.2, our ATL transformation defines the following rules.

Fig. 7. Chart of the generic timer LLFSM.

Rule 9: For each temporalised transition (a transition whose Boolean expression
includes the predicate after), there will be an SMV instance of a timer
module. For an occurrence of after(b) in a transition Ti,r with source state
S, the corresponding instance of a timer SMV module receives its turn in the
round-robin schedule. It also receives as input parameter the bound b and a
Boolean variable Mi S ACTIVE (recall that Ti,r means this is the (r + 1)-th
transition in machine Mi).

Rule 10: For each transition Ti,r with source state S, the SMV module corre-
sponding to machine Mi will have the local Boolean variable Mi S ACTIVE
mentioned before; but also an array of variables Mi S BOUND (the array size
is equal to the number of temporalised transitions that share S as a source
state). It also includes an integer variable Mi S STEP that typically has the
value 1, but can have a larger value to model the speed of the timers relative
to the schedule of LLFSMs in the arrangement.
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Rule 11: If an LLFSM Mi has temporalised transitions, its SMV module will
have additional parameters, as many as temporalised transitions in Mi, where
the corresponding instance of the timer communicates that the time-bound
in the corresponding after predicate has been reached.

Rule 12: There will be only one SMV module for a timer if any of the LLFSMs
in the arrangement has a temporalised transition. The SMV module is the
image (by the ATL transformation) of a timer LLFSMs.

Fig. 8. The SMV module for the generic timer for Fig. 7.

Fig. 9. Chart of the door controller LLFSM in the Garage Door arrangement.
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Figure 7 displays the chart of the generic timer and the ATL transformation
for it appears in Fig. 8. This illustrates the M2M transformation once more.
More importantly, we see that the LLFSMs is parameterised. Since there could
be several instances for the same LLFSMs there is a parameter position where
the instance of the LLFSMs is placed in the arrangement.

To illustrate these rules and the timer, we review a case study of a garage
door [2]. The arrangement includes LLFSMs for a sensor that detects when the
door is fully open as well as another for when the door is fully closed. A motor
that can be pulling forwards (opening), backwards (closing) or halted (holding
the door in position). The remote control has three states: idle, commanding a
stop, or commanding a close. An emergency button can be pressed or released,
while a key is locked or unlocked. For reasons of space, we focus only on the
LLFSM for the door controller (Fig. 9). The behaviour is not trivial. Pressing
the emergency button halts and locks the door always, and to unlock the garage
door, the emergency button must be released and the key unlocked. Such release
returns the door to what it was doing at the time of the emergency (for instance,
if it was closing, it resumes closing). Also, users can start opening the door by
pressing the open button on their remote control. Users can stop the opening
by pressing the open button again, and the motor stops. This implies the state
machine of the remote control notices the release of the opening button in the
remote and the second pressing. Pressing the close button will close the door if
it is (partially or completely) open. Closing can be interrupted: by pressing the
close button again, the motor stops. Before we pay attention to the time-domain
verification with this example, we highlight that the model can use predefined
constants for the control signal and the status signal of the motor (such strings
as STOP, FORWARD and BACKWARD) and for the control signal and status
signal of the remote control (strings such as IDLE, OPEN, CLOSE). These
enumerated constants are now generated in a dedicated module of our M2Text
ATL transformation to SMV. We also highlight that we have several integer
variables in our examples of this paper. The garage-door example also illustrates
the capacity to handle a history mechanism in an integer variable.

The LLFSM of Fig. 9 is illustrative of three temporal transitions with
the same source state. Therefore, our M2Text transformation produces three
instances of the timer form Fig. 7 in the main module of the SMV file.

Timer DoorContro l l er Locked Opening Pressed 16 :
Timer ( turn , 5 , 8 , 1 , DoorContro l l e r . DoorController Locked ACTIVE ) ;

Timer DoorContro l l e r Locked Clos ing Pres sed 19 :
Timer ( turn , 6 , 6 , 1 , DoorContro l l e r . DoorController Locked ACTIVE ) ;

Timer DoorContro l ler Locked PauseReleased 23 :
Timer ( turn , 7 , 7 , 1 , DoorContro l l e r . DoorController Locked ACTIVE ) ;

6 Verification in the Time Domain

The garage-door example provides several interest requirements whose verifica-
tion is required in the time domain. We present here some examples where we
can bound the delay in the system’s reaction. We use an LTL formulation, and
define the following SMV-terms for ease of formulation of the properties.
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DEFINE -- Abbreviations:

doorIsClosed := !OpenSensor .OpenDoorSensorStatus;

OpenButtonPressed := (RemoteControl.RemoteControlStatus = 1);

MotorSpinsForward := (Motor.MotorStatus = 1); MotorSpinsBackwards := (Motor.MotorStatus = 2);

MotorIsStopped := (Motor.MotorStatus = 0);

CloseButtonPressed := (RemoteControl.RemoteControlStatus = 2);

DoorIsOpening := (MotorSpinsForward);

DoorIsClosing := (MotorSpinsBackwards );

DoorIsMoving := (DoorIsOpening | DoorIsClosing );

DoorIsStopped := (! DoorIsMoving );

Requirement 1: If the door is closed, and the open button on the remote
control is being pressed, then the motor will begin to spin forward.
X( (doorIsClosed -- Excepting the first state , if door is closed

& G[0,7] -- and , during 7 transitions (a round of turns),

OpenButtonPressed)-> -- the "open" button on the remote is being pressed ,

F[0,8] -- then: in a future state , after at most 8 transitions ,

MotorSpinsForward ); -- the motor will begin to move forward to open the door.

Requirement 2: If the door is closing, and the “close” button on the remote
control is pressed again, then the door will stop.
X( (MotorSpinsBackward

-- Excepting the first state , if the motor is spinning backwards (to close the door),

& G[0,4] -- and , during 4 transitions ,

CloseButtonPressed)-> -- the "close" button on the remote control is being pressed again ,

F[0,8] -- then: in a future state , after at most 8 transitions:

MotorIsStopped ); -- the motor will stop (and the door stops closing)

Requirement 3: While the door is moving, pressing the emergency button
results in an immediate halt of the door.
X( (DoorIsMoving -- Excepting the first state , if the door is in movement ,

& EmergencyPressed )-> -- and the "emergency" button on the remote control is pressed , then:

(F[0,7] -- in a future state , after at most 7 transitions (a round of turns ):

DoorIsStopped) ) -- the door is stopped (1)

We emphasise that these properties show that within a round of turns (that is,
each LLFSM receives a turn), the system reacts accordingly.

Naturally, there are reciprocal properties for ensuring that once the emer-
gency button is pressed, the system does not resume immediately, but a minimum
amount of time is to occur. This behaviour is what the temporalised transitions
are meant to enforce in the model. The formulation of the LTL properties (anal-
ogous versions in CTL exist for these requirements) depends on what the door
was previously doing at the time the emergency button was pressed. We present
one version of these properties.

Requirement 4: If the garage is locked (while stopped) because the emergency
button was pressed, it must stay there some specified amount of time before
it resumes the movement it was performing when the emergency button was
pressed.
X( G( -- Excepting the first state , in all future states:

(DoorControllerAtLockedState -- if the DoorController is at state "Locked" (10),

& TimerFinishedPause -- and the timer for emergency when door stopped finished

& (G[0,7] DoorController.KeyUnlock)-- and the key stays unlocked for at least 7 transitions

& (G[0,7] !EmergencyPressed )

-- and the emergency button stays unpressed for at least 7 transitions

& EmergencyWhenStopped)->

-- and the emergency button was pressed when the door was stopped , then:

(F[0,8] -- in a future state , after at most 8 transitions:

DoorControllerAtPauseState) )) -- the DoorController will be at state "PauseReleased" (8)

For this property we use the timer instances that are produced by the M2Text
transformation. And in particular, their local variable indicated they have com-
pleted the time counting.
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DEFINE
TimerFinishedPause := Timer_DoorController_Locked_PauseReleased_23.finished;
DoorControllerAtLockedState := ( DoorController.pcDoorController = 10);
DoorControllerAtPauseState := (DoorController.pcDoorController = 8);

7 Formal Verification of the SMV Output and Trace
Emulation

7.1 Verification of the M2Text SMV Output

One important aspect that we add in this paper is that the M2Text transfor-
mation from an arrangement of LLFSMs is not only the corresponding set of
SMV modules. We also automatically generate properties that formally verify
the correctness of the transformation, and in particular of the scheduling. These
properties are generic, but not exactly the same, they depend on the arrange-
ment. For instance, if there are four LLFSMs in the arrangement, the ATL
transformation adds the property
CTLSPEC
AG ((EF(turn =0)) & (EF(turn =1)) & (EF(turn =2)) & (EF(turn =3)))

This property ensures the global condition that from any point in the exe-
cution of the arrangement each LLFSM will have its turn. Similarly, for each
possible value of the turn, we must have the next value in one more (modulo
the number of LLFSMs in the arrangement) in the Kripke structure ensuring
the round-robin scheduling. For instance, in an arrangement with four LLFSMs
the following code is automatically generated.
LTLSPEC
G ( (turn=0 -> X(turn =1)) & (turn=1 -> X(turn =2))

& (turn=2 -> X(turn =3)) & (turn=3 -> X(turn =0)))

7.2 Trace Emulation

To further illustrate the minimisation of the semantic gaps discussed earlier,
we have used the EMF generated Java classes for our meta-model for LLF-
SMs to produce a tool that enables reading a model (an XMI file) as well as
reading a counterexample’s trace (the output of a verification exercise where
the property is false). The model designer can visualise the execution of the
trace in the arrangement of LLFSMs resulting in a more transparent interpre-
tation of the trace and the revision of the behaviour model. The link to a video
showing the emulator working on a trace of garage-door example is available at
mipal.net.au/downloads.php.

This emulation minimises the semantic gap because it is the model checker
that has generated the execution trace. That is, the execution is exactly the
execution of the behaviour in the model checker. The trace emulated by our tool
is directly visualised in the graphical representation of the XMI file (the model).
There are no simplifying assumptions on the model, or any of its constructs.

http://mipal.net.au/downloads.php
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7.3 Complexity

The size of the resulting SMV file is linear in the number k of LLFSMs in the
arrangement since exactly k + 1 modules are produced if there are no tempo-
ralised transitions and no symbolic constants. One SMV module appears in the
output file for each LLFSM and on main module. At most one additional mod-
ule is produced if there are symbolic constants (enumerated types). At most one
generic module for the timer is produced if there are t temporalised constants
(and t-instances of the timer, one for each temporalised transition in main). The
size of the SMV file is quadratic in the largest transition out-degree of a state
(but this is usually bounded by a small constant). The number of transitions out
of a state plays a role because, as specified in Rule 6, for each transition Ti, r,
we must explicitly represent that, Ti, r fires when it is true and all previous
transitions Ti, s (with s < r) have not fired.

8 Final Remarks

Verification in the time domain aims at eradication of time-domain failures.
For many cyber-physical systems, it is insufficient to verify that no incorrect
value is computed; it is also necessary that the correct value be computed by
the required deadline. While event-driven programming has been extremely pro-
ductive to develop GUI-based applications, this setting has the luxury that (1)
human users can usually wait (although many users have noticed occasions when
the system becomes less responsive) and (2) human users can hardly generate a
shower of events. We have presented here efficient ATL-M2Text transformations
that enable time-domain verification of behaviour models. Moreover, we have
argued that these transformations support the spirit of model-driven engineering,
because the model is executed in an unambiguous semantics. The transforma-
tions are so loyal to the model checker itself could be used as the interpreter. Our
EMF application is the ultimate illustration of the minimisation of the semantic
gap. This application uses the ecore generated classes for the meta-model of
LLFSMs on one hand, and the trace of the SMV-enabled model checker on the
other. This is only possible because there is no semantic gap between how the
model checker simulates an arrangement of LLFSMs with no subsection for the
states and the semantics of LLFSMs models.

Naturally, we are not arguing that models of behaviour be executed by inter-
preting them with a model checker. This would imply inefficiencies at run-time
and potential limitations to the actions language of the behaviour models. How-
ever, the clear and small semantics of LLFSMs facilitates the implementation
of compilers that are also loyal to the controlled concurrency of arrangements
of LLFSMs and can provide modern constructs of programming (for instance
object-orientation). This work here opens the door to new ideas. For instance,
test-driven-development suggest building a suite of test that lives along with the
development of a system, from requirements engineering to evolution and main-
tenance. The suite ensures that new features do not incur in regressions. We
envisage that we could also have verification-driven development of behaviour
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models, were the requirements are codified for a model checker and also have a
parallel life with the implementation and maintenance.

References

1. Alhaj, M.: UML modeling using Eclipse Papyrus (2018). https://www.youtube.
com/watch?v=aMiqJXWfAtQ. Accessed 26 May 2020
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Abstract. Strategic Domain-driven Design (DDD) has become an established
practice for system decomposition and service identification in recent years. The
trend towards microservices increased the popularity of DDD patterns such as
Subdomain, Bounded Context, Aggregate and Context Map. In our previous
work, we presented a Domain-Specific Language (DSL) providing a clear and
concise interpretation of the DDD patterns and their combinations. As a machine-
readable description of DDD, the DSL establishes a foundation for system-
atic service decomposition and DDD-based architecture descriptions that can be
refactored and refined by model transformations. The DSL and supporting tools
are implemented in the open source project Context Mapper. In this extended
version of our previous paper we enhance the DSL grammar to allow domain-
driven designers to prototype applications rapidly: they can specify user stories
and/or use cases in the DSL, and model transformations can then derive Sub-
domains and Bounded Contexts automatically. The Context Mapper tool chain
supports the continuous, iterative specification and evolution of Context Maps
and other service design artifacts. Our validation activities included prototyping,
action research, and case studies. This paper illustrates such a transformation
chain on the basis of one of our case studies.

Keywords: Domain-driven design · Domain-specific language ·
Microservices ·Model-driven software engineering · Service-oriented
architecture

1 Introduction

Domain-driven Design (DDD) was introduced in a practitioner book in 2003 [10]. Since
then, the DDD patterns, especially tactical ones such as Entity, Value Object, Aggre-
gate, and Repository, have been used in software engineering to model complex busi-
ness domains. However, strategic DDD has gained even more attention during the last
few years in the context of microservices and enterprise application integration [30]. A
second generation of DDD experts such as Vernon [39] or Tune andMillet [38] provides
advice how to apply the patterns of Evans book in practice.

The decomposition of an application into appropriately sized services is challeng-
ing. Achieving high cohesion within the services and loose coupling between them is
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crucial to keep the application scalable and maintainable. It is not well understood yet
how service interfaces can be identified and which patterns and practices are suitable
to analyze and design service-oriented systems. DDD can play a key role in answering
this question: with patterns such as Bounded Context (an abstraction of systems and
teams developing them) and Context Map, it provides an approach for decomposing a
domain. Context mapping patterns such as Customer-Supplier, Shared Kernel or Open
Host Service can define the relationships between the units of decomposition. However,
the strategic patterns come with a certain ambiguity and different interpretations of how
they shall be applied. The question how concrete (micro-)services shall be derived from
a DDD-based model (and then composed into applications) has only been answered
partially so far [31].

2 Context and Previous Work

How to decompose software systems into cohesive modules (or components and ser-
vices) that are loosely coupled is one of the classic questions and challenges in software
engineering. For instance, Parnas [29] already wrote about how to decompose software
systems into modules in 1972. Research questions that have not been answered satisfy-
ingly yet include a) which criteria are relevant to find good module boundaries and b)
which patterns and practices can be applied to identify the modules or services? [30].
Practitioners in the microservices community suggest to apply the strategic DDD pat-
terns to tackle the problem. They propose to model complex business domains in terms
of Bounded Contexts – a sub-system or module that implements a specific part of the
domain. A Bounded Context establishes a boundary around a domain model that con-
sist of so-called Aggregates: a set of objects/classes such as Entities or Value Objects.
While the terms of the domain may have different meanings outside that boundary, they
are clearly defined within the boundary (the so-called “ubiquitous language”). As we
described in our previous paper [23], the identification of suited Bounded Contexts is
still challenging. Context Maps and context mapping as a practice shall support this
process of finding Bounded Contexts. The strategic DDD patterns are used on Context
Maps to define the relationships between the Bounded Contexts.

Our experience in the industry has shown that a clear understanding of how these
patterns shall work together is often missing, and different stakeholders have different
opinions on how these patterns shall be applied and combined. Based on this observa-
tion, we derived the following hypothesis [23]:

Software engineers and service designers benefit from a precise interpretation of – and
advice on how to apply and combine – the strategic DDD patterns.

We further consider a Context Map an artifact that evolves iteratively. Software
architects and DDD adopters develop a Context Map by increasing their knowledge
about the problem domain step-by-step. This is why we believe that Context Maps
written in a formal language such as our Context Mapper DSL (CML) can be beneficial,
since we can offer automated transformation tools that support the evolution of the
models. It is further possible to generate other representations such as Unified Modeling
Language (UML) diagrams or graphical Context Maps. This has already led us to our
second hypothesis [23]:
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Adopters of DDD benefit from a tool which supports the creation of DDD
pattern-based models in a rigorous and expressive way. They want to transform and

evolve such models iteratively.

In our previous paper [23] we presented a meta-model based on the DDD patterns
and our CML language that implements that model. We illustrated how Context Mapper
users can represent Domains, Subdomains, and Bounded Contexts in CML. We further
proposed a set of semantic rules that reflect our interpretation of how the strategic DDD
patterns can be combined. Those semantic rules have been implemented as validators
for the CML language.

In this paper, we present an extended version of the CML Domain-specific Lan-
guage (DSL) [23] that allows to prototype Domains and Bounded Contexts rapidly on
the basis of use cases [8] and/or user stories [2]. Furthermore, we demonstrate how we
validated the usefulness of the language and our hypothesis above by implementing
model transformations that support the rapid prototyping. This paper illustrates such a
process on an exemplary case.

The remainder of the paper is structured in the following way. Section 3 explains
important DDD concepts briefly. It further introduces the meta-model behind the CML
language [23] and discusses related work. Section 4 explains our first contribution: the
DSL syntax including the latest extensions for feature modeling with use cases and user
stories. In Sect. 5 we introduce a set of model transformations that support rapid pro-
totyping of Domains and Bounded Contexts explained with an exemplary case. This
section does a) suggest transformations to derive Bounded Contexts automatically with
tool-support, and b) validate whether our language can serve as a foundation for evolv-
ing DDD Context Maps step-by-step. Section 6 discusses further validation activities
and outlines pros and cons of the presented approach. Section 7 concludes and outlines
future work.

3 Domain-Driven Design (DDD) Essence, Meta-model

Since Evans has published his original DDD book [10], other – mostly gray – literature
on this topic has been published. Our analysis and interpretation of the patterns is based
on the books of Evans [10] and Vernon [39]. Our personal professional experience [20]
has influenced the meta-model as well. Additional patterns of Evans’ DDD reference
[11], which has been published a fews years after his first book, were also considered.
We further studied publications of context mapping experts such as Brandolini [5] and
Plöd [31,32].

3.1 Motivating Example

Strategic Domain-driven Design (DDD) can be used to decompose the problem domain
of a software system into multiple Subdomains and the so-called Bounded Contexts. It
also allows architects to define the relationships between Bounded Contexts, e.g., how
they work together. To explain pattern concepts (and also, in Sect. 4, the DSL syntax)
we use a fictitious insurance software scenario. Figure 1 illustrates the Context Map of
the scenario inspired by the visualizations of Vernon [39], Brandolini [5] and Plöd [31].
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Fig. 1. Insurance Scenario Example Context Map [21].

Figure 1 also highlights a number of design issues that arise when refining the Con-
text Map and domain design. For instance, for each component (or context), it has to
be decided whether to buy a software product (or install free software), rent the desired
functionality as a cloud service offered by a cloud provider or build it. Connectors (here:
relationships between contexts) may have a direction and require integration technolo-
gies such as message exchange formats and protocols (such as JSON over HTTP, XML
over a mesage queue, etc.). Many data management decisions are required as well (copy
or access patters, ownership, update frequencies, etc.). DDD and Context Maps can help
identify the need for such decisions, and can also document the decision outcome.

3.2 DDD Patterns

A Bounded Context defines an explicit boundary within which a particular domain
model, implementing parts of Subdomains, applies. This boundary affects team organi-
zation as well as physical manifestations such as code bases and database schemata. The
internal design of a Bounded Context is specified with the tactic DDD patterns, includ-
ing the Aggregate pattern. An Aggregate is a cluster of domain objects (such as Entities,
Value Objects, and Services) which is kept consistent with respect to specific invariants
and typically also represents a unit of work regarding system (database) transactions. A
Context Map provides a global view over all Bounded Contexts which are related to the
one a team is working on.

The DDD relationship patterns allow modelers to describe how two Bounded
Contexts and their development teams work together. The Partnership relationship
describes an intimate mutual relationship between two Bounded Contexts, since the
resulting product of the two can only fail or success as a whole. A Shared Kernel rela-
tionship indicates that two contexts are very closely related and the two domain models
overlap at many places. This pattern is often implemented as a shared library that is
maintained by both teams.
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Upstream-downstream relationships are marked with a U for upstream and a D
for downstream in our illustration in Fig. 1. The terms upstream and downstream
are used to describe relationships in which only one Bounded Context influences the
other; the upstream influences the downstream. Thus, the downstream Bounded Con-
text depends on the domain model of the upstream Bounded Context, but not vice versa.
A Customer-Supplier relationship is given if the downstream Bounded Context in an
upstream-downstream relationship has power regarding the implementation decisions
of the upstream. The supplier respects the requirements of the downstream in its devel-
opment plans.

The patterns Published Language (PL), Open Host Service (OHS), Anticorruption
Layer (ACL) and Conformist (CF) are used to describe the interaction between Bounded
Contexts in an upstream-downstream relationship. Figure 1 shows them as labels of
relationship ends. A Bounded Context can offer an OHS to grant access to a subsys-
tem as a set of open APIs if multiple other Bounded Contexts require access to the
same functionality. The PL pattern advises to use a well-documented shared language
for communication and translation. Serving as a wrapper, an ACL protects the domain
model of a Bounded Context from changes to another one it depends on. In contrast to
an ACL, a context applying CF decides to simply conform to the domain model of the
other context and must therefore always adjust its model to follow changes of the other
context. Due to space limitations we do not explain all pattern details here, but refer the
reader to the literature [10,11,31,39].

3.3 DDD Meta-model for Context Mapper

The meta-model presented in this section is based on the previously explained DDD
patterns and our own analysis and understanding regarding how they can be combined.
The model is illustrated in Fig. 2. It is implemented by our DSL and the Context Mapper
tool introduced in Sect. 4.

The most central element in our meta-model is the Context Map. A Context Map
shows Bounded Contexts and their relationships. A Bounded Context implements parts
of one or many Subdomains, which can be Core Domains, Supporting Domains or
Generic Subdomains. Both a Subdomain and a Bounded Context benefit from a state-
ment regarding the vision and purpose of their own part of the domain. Hence, we apply
the Domain Vision Statement pattern. We further include the Knowledge Level pattern
on the level of a Bounded Context. The Responsibility Layers pattern is implemented
by assigning single responsibilities to Bounded Contexts.

We distinguish between symmetric and asymmetric relationships between Bounded
Contexts: We call asymmetric relationships upstream-downstream relationships in our
meta-model. This is in line with the terminology in the DDD literature. In an upstream-
downstream relationship only one context depends on the other. Likewise, only one
Bounded Context influences the other; the upstream-downstream metaphor indicates
an influence flow between teams and systems as discussed by [31]. The Partnership
and Shared Kernel patterns, on the other hand, describe symmetric relationships. The
Bounded Contexts involved in such relationships are mutually dependent on another.

The remaining patterns Published Language (PL), Open Host Service (OHS), Anti-
corruption Layer (ACL) and Conformist (CF) are roles taken by the upstream or
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Fig. 2. Context Mapper: Strategic DDD Meta-Model (UML class diagram) [23].

downstream context within an upstream-downstream relationship. OHS and PL are pat-
terns implemented by the upstream, which exposes parts of the model to be used by
the downstream. The CF and ACL patterns are implemented by the downstream, which
decides to either conform to the model exposed by the upstream or protect itself from
changes (ACL).

According to our analysis, the Customer-Supplier pattern is a special case of
upstream-downstream. We indicated this in Fig. 2 by distinguishing between Customer-
Supplier and generic upstream-downstream relationships.

In addition to this meta-model we presented a set of semantic rules in our previ-
ous paper [23]. Those rules reflect our own interpretation of the DDD patterns and
state which combinations are allowed and which are not allowed according to this
interpretation.

3.4 Architectural Viewpoints

Bounded Contexts are created for different reasons and can be seen from different per-
spectives. Brandolini [5] presents a comprehensive introduction into context mapping
and explains different scenarios for the evolution of Bounded Contexts. In our DSL
we implemented an additional attribute context type to reflect different reasons for cre-
ation. We see these types as different viewpoints corresponding to the 4+1 view model
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Table 1. FAST Context Types.
Type Description and Mapping to Related Work

Feature or Function This is a Bounded Context representing a feature or requirement which has been identified by
the Object-oriented Analysis (OOA). In terms of the 4+1 model [25], it represents a context
from the Scenario viewpoint. The system context view (level 1) of the C4 model shows such
contexts and their relationships

Application Such a Bounded Context represents a certain application. It is evolved by Object-oriented
Design (OOD) and from our understanding reflects the Logical and Development viewpoint in
terms of 4+1 [25]. The C4 model does not differentiate between features or applications.
Therefore application contexts map to the system context view as well (level 1). Its tactic
DDD content (Aggregates with their Entities, Services, etc.) can be seen as C4 components

System A Bounded Context representing an physical system, container, or application tier. This type
maps to the physical and/or process viewpoint in the 4+1 model [25]. The latter perspective is
concerned with the way systems communicate and integrate with each other, for example by
implementing Enterprise Integration Patterns (EIP) [18]. System Bounded Contexts
correspond to the containers in the container diagram of C4

Team A Team context represents a small organisational unit. A new context of this type might be
created when a team has to be split to scale the company. This cross-cutting perspective is
inspired by Conway’s Law [9], stating that a systems design copies the communication
structures of an organization. There are no corresponding concepts in 4+1 or C4

of software architecture [25]. Simon Brown’s C4 model [6] is another but very similar
approach to visualize software architecture from different perspectives. Table 1 lists the
four context types, Feature, Application, System and Team and compares them with
the perspectives of 4+1 and C4.

The model transformations presented in Sect. 5 make use of the types Feature and
System; the design of Application contexts remains manual work (requiring creativity
and problem solving skills). The rapid prototyping process leads from user requirements
to a Feature Bounded Context first. Later, the context specifications get more detailed
and we switch the perspective to systems. Section 5 explains the process in detail.

3.5 Related Work

Decomposing monolithic systems into microservice architectures [42] is a topic with a
huge attention within the last years not only in the industry but in the academic field
as well [4,13,14,17,19,28]. Furthermore, DDD with its Bounded Contexts promises
to ease this challenging task [13,19,26,28,30,33]. However, there are not many tools
which support modeling and specifying a system formally in terms of the strategic DDD
patterns in order to decompose it in a structured manner.

Rademacher [34] presents a formal modeling language based on UML. The UML
profile which extends meta-classes with stereotypes for DDD patterns shall be used for
modeling microservice architectures. They further aim to derive code from their UML
models in future projects. However, the profile seems to focus on modeling Bounded
Contexts with the tactical DDD patterns. The strategic patterns concerning the relation-
ships between the contexts are not mentioned explicitly.

Le et al. [27] propose a DDD approach using meta-attributes to capture domain-
specific requirements. The meta-attributes are implemented as Java annotations. Their
aim is to overcome gaps between different domain models of different stakeholders such
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as domain experts, designers and programmers. This approach mainly aims to support
the software designing process on a tactical level as well. Furthermore, it differs from
our approach in the sense that it does not explicitely expresses DDD patterns.

A few projects implementing DSLs for tactic DDD patterns exist, such as Sculptor1,
fuin.org’s DDD DSL2 and DSL Platform3. Further approaches and projects based on
annotations exist as well. None of these covers the strategic DDD patterns concerning
the relationships between Bounded Contexts.

Informal graphical representations of Context Maps and the strategic DDD patterns
were introduced by Brandolini [5] and Vernon [39]. Plöd proposed a formal graphical
notation for Context Maps [31], which has not been implemented in a tool yet.

A less formal approach towards the identification of Bounded Context is “Event
Storming”, invented by Brandolini4. In our online documentation5 we discuss how
event storming results can be formalized with Context Mapper. More advice how to
decompose a system into Bounded Contexts can be found in the gray literature6,7,8.
However, the authors of these online resources focus on providing advice, best prac-
tices and heuristics, but do not offer formal approaches and concrete transformation
tools as Context Mapper does.

4 Context Mapper DSL (CML)

We implemented the Context Mapper9 tool that allows software architects to model
systems according to the DDD meta-model introduced in the previous section. The
following DSL examples are based on the insurance scenario introduced in Sect. 3. The
complete example can be found in our examples repository10.

4.1 Domains and Subdomains

Before thinking in terms of Bounded Contexts, DDD practitioners typically start dis-
covering and analyzing a domain by decomposing it into Subdomains. As we explain
in Sect. 5, we call this the domain analysis phase.

Domains and Subdomains in CML are declared as illustrated in Listing 4.1. A Sub-
domain is of the type Core Domain, Supporting Subdomain or Generic Subdomain
according to our meta-model and [10].

1 http://sculptorgenerator.org/.
2 https://github.com/fuinorg/org.fuin.dsl.ddd.
3 https://docs.dsl-platform.com/dsl-concepts.
4 https://ziobrando.blogspot.com/2013/11/introducing-event-storming.html.
5 https://contextmapper.org/docs/event-storming/.
6 https://leanpub.com/ddd-by-example/.
7 https://medium.com/nick-tune-tech-strategy-blog/.
8 https://github.com/ddd-crew/.
9 https://contextmapper.org/.
10 https://github.com/ContextMapper/context-mapper-examples/.

http://sculptorgenerator.org/
https://github.com/fuinorg/org.fuin.dsl.ddd
https://docs.dsl-platform.com/dsl-concepts
https://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
https://contextmapper.org/docs/event-storming/
https://leanpub.com/ddd-by-example/
https://medium.com/nick-tune-tech-strategy-blog/
https://github.com/ddd-crew/
https://contextmapper.org/
https://github.com/ContextMapper/context-mapper-examples/
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Listing 4.1. Subdomain Syntax in CML.

Domain Insurance {
Subdomain CustomerManagementDomain {

type = CORE_DOMAIN
domainVisionStatement = "Customer-related entities..."

Entity Customer
Entity Address
Service CustomerService {

createCustomer;
changeAddress;

}
}

Subdomain PolicyManagementDomain {
type = CORE_DOMAIN

Entity Contract
Entity Policy

}

Subdomain PrintingDomain {
type = SUPPORTING_DOMAIN

}
}

The CML language allows users to specify which Entities (domain objects) are part
of which Subdomains. With Services it is further already possible to declare operations
that will be required.

4.2 Bounded Contexts

From the domain analysis with the Subdomains as result we typically move onto the
stratgic DDD phase where the models become more concrete and organized within
Bounded Contexts. Listing 4.2 shows the declaration of the CustomerManagementCon-
text as an example for a Bounded Context in CML. A Bounded Context has a type
as already explained in Sect. 3. The following attributes are implementations of the
Domain Vision Statement and the Responsiblity Layers patterns. The user can further
specify the implementation technology of a Bounded Context. A Bounded Context con-
sists of one or more Aggregates. Inside the Aggregates the language supports the usage
of all tactical DDD patterns to fully specify the domain model of the Bounded Context.
The implementation of CML inside the Aggregates is based on the Sculptor11 project.

Listing 4.2. Bounded Context Syntax in CML.

BoundedContext CustomerManagementContext implements CustomerManagementDomain {
type = FEATURE
domainVisionStatement = "The customer context ..."
responsibilities = "Collects and exposes customer data",

"Manages the customers addresses"
implementationTechnology = "Java, JEE Application"

Aggregate Customers {
Entity Customer {

aggregateRoot

11 http://sculptorgenerator.org/.

http://sculptorgenerator.org/
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String firstname
String lastname

}
}

}

With the implements keyword we refer back to the analysis part and specify which
Subdomains are implemented by a specific Bounded Context. Note that a Bounded
Context not necessarily implements a complete Subdomain.

4.3 The Context Map

The central and most important structure of CML is the Context Map which specifies
the relationships between Bounded Contexts. Listing 4.3 shows a small example of a
Context Map written in CML. The contains keyword indicates the Bounded Contexts
that are added to the Context Map. They can then be used to declare relationships.

Listing 4.3. Context Map Syntax in CML.

ContextMap {
contains CustomerManagementContext, PolicyManagementContext

CustomerManagementContext [U,OHS,PL]->[D,CF] PolicyManagementContext {
implementationTechnology = "RESTful HTTP"

}
}

Listing 4.3 also features an exemplary upstream-downstream relationship. The end-
points of this relationship apply three more patterns, Open Host Service (OHS), Pub-
lished Language (PL) and Conformist (CF).

4.4 Relationship Syntax

For symmetric relationships the syntax uses an arrow directing to both Bounded Con-
texts (< − >), whereas asymmetric relationships use an arrow (− > or < −) point-
ing from the upstream towards the downstream. In all cases, the relationship roles are
declared within brackets as illustrated in Listing 4.3. Note that the declaration of the
implementation technology is optional and we omit it in the following examples.

Partnership. Listing 4.4 shows an example for the Partnership (P) pattern, which is a
symmetric relationship.

Listing 4.4. Partnership Pattern Syntax in CML

RiskManagementContext [P]<->[P] PolicyManagementContext

Shared Kernel. The second symmetric relationship is the Shared Kernel (SK). The
syntax is identical to the Partnership. Listing 4.5 illustrates an example.

Listing 4.5. Shared Kernel Pattern Syntax in CML.

PolicyManagementContext [SK]<->[SK] DebtCollection
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Generic Upstream-Downstream Relationship. As already mentioned, the upstream-
downstream (or asymmetric) relationships use an arrow from the upstream towards the
downstream, expressing the influence flow. This syntax states which Bounded Context
is upstream and which one is downstream in an expressive way. The arrowhead can be
placed either on the left or on the right. Thus, the declaration examples in Listings 4.6
and 4.7 are semantically equal.

Listing 4.6. Upstream-Downstream Relationship in CML (1).

PrintingContext [U]->[D] PolicyManagementContext

Listing 4.7. Upstream-Downstream Relationship in CML (2).

PolicyManagementContext [D]<-[U] PrintingContext

Upstream-Downstream Roles. The upstream and downstream roles Open Host Ser-
vice (OHS), Published Language (PL), Anticorruption Layer (ACL) or Conformist (CF)
are listed within the brackets after the upstream (U) and downstream (D) specification.
Listing 4.8 illustrates an example with the OHS and PL patterns on the upstream side
and the ACL pattern on the downstream side.

Listing 4.8. Upstream-Downstream Relationship with Roles.

PrintingContext [U,OHS,PL]->[D,ACL] PolicyMgmtContext

Customer-Supplier Relationship. The customer-supplier relationship is a special case
of an upstream-downstream relationship in which the upstream is called supplier and the
downstream is called customer. The syntax is therefore almost identical to the generic
upstream-downstream relationship; to state that the upstream-downstream relationship
is a customer-supplier relationship the user has to add the abbreviations S for supplier
and C for customer. These abbreviations must appear behind the U/D, but before the
relationship roles, as shown in Listing 4.9.

Listing 4.9. Customer-Supplier Relationship in CML (1).

SelfServiceContext [D,C,ACL]<-[U,S,PL] CustomerMgmtContext

However, since the upstream in a customer-supplier relationship is always the sup-
plier and the downstream is always the customer, it is also possible to omit the U and D
abbreviations in this case. Thus, the declaration in Listing 4.10 is semantically equal to
the one in Listing 4.9.

Listing 4.10. Customer-Supplier Relationship in CML (2).

SelfServiceContext [C,ACL]<-[S,PL] CustomerMgmtContext

4.5 Expressing User Requirements

In addition to the CML concepts presented above and in our previous publication [23],
we enhanced Context Mapper to express features in the form of use cases [8] or user
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stories [2]. This grammar feature allowed us to realize the rapid prototyping process
introduced in Sect. 5.

Listing 4.11 illustrates a user story written in CML. The syntax corresponds to the
“role-feature-reason” format invented at Connextra in the UK and published by the
Agile Alliance [2]. Note that we extended the template with the “with its” and “for
a” parts so that one can model attributes and references to other entities. These ele-
ments are not part of the original template [2]. However, they are optional in CML; we
hypothesize that both domain experts and software designers can adopt such an exten-
sion (which is subject to validation).

Listing 4.11. User Story in CML.

UserStory ManageCustomers {
As an "Insurance Employee"

I want to "create" a "Customer" with its "firstname", "lastname"
I want to "update" an "Address" for a "Customer"
I want to "create" a "Contract" for a "Customer"

so that "I am able to manage the customer data and offer them contracts."
}

In addition, to reduce code duplication CML allows modellers to add multiple “I
want to” parts per user story as shown in Listing 4.11. This is a slight deviation from
the original template [2] as well. Listing 4.12 illustrates how the same user requirement
can be formulated as a use case in CML.

Listing 4.12. Use Case in CML.

UseCase ManageCustomers {
actor "Insurance Employee"
interactions

"create" a "Customer" with its "firstname", "lastname",
"update" an "Address" for a "Customer",
"create" a "Contract" for a "Customer"

benefit "Being able to manage the customers data and offer them contracts."
scope "Insurance Application"
level "Summary"

}

The attributes actor, interactions, and benefit cover the same information as the
user story format seen before. With the additional attributes scope and level we support
expressing use cases according to the brief or casual format suggested by A. Cockburn
[8].

We have shown the core concepts of CML Context Maps above. Due to space limi-
tations we cannot present all abilities of our language. CML currently also supports an
alternative syntax to declare relationships for A/B testing purposes. All language fea-
tures are documented online12 and the complete insurance example can be found in our
examples repository13. In the next section we introduce one approach how we validated
our modeling language and our hypothesis by providing transformation tools that allow
users to prototype an application in terms of DDD patterns rapidly.

12 https://contextmapper.org/docs.
13 https://github.com/ContextMapper/context-mapper-examples.

https://contextmapper.org/docs
https://github.com/ContextMapper/context-mapper-examples
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5 Language and Tool Extension: Rapid Prototyping

The Context Mapper DSL (CML) is based on the Xtext14 language framework. The
models behind the textual representation are Eclipse Modeling Framework (EMF) [37]
models. Therefore, we can support the evolution of CML models by providing model
transformations [22]. Starting from the user story [2] or use case [7] syntax introduced
in Sect. 4, we designed and implemented three novel model transformations that support
rapid prototyping. The transformations do not aim at replacing human design work
but capture some proven analysis and design heuristics from the literature and online
resources.

Fig. 3. Rapid Prototyping Transformation Steps.

Figure 3 illustrates the steps and provided transformations. A domain modeler can
specify requirements in the form of user stories [2] or use cases [8] as an initial step. The
following model transformations support him/her in deriving Subdomains and Bounded
Contexts from these requirements. Hence, the CML language is able to represent all
stages of the process: requirements (use cases and/or user stories), Subdomains, and
Bounded Contexts (of the different architectural viewpoints explained in Sect. 3).

The Exemplary Case. In order to validate our use case grammar we modeled a case of
A. Cockburn’s book [8] in CML. The following Listing 5.1 shows the use case “Get paid
for car accident” (we stay in the insurance domain) written in our DSL. The interactions
in the CML use case correspond to the six steps described by Cockburn [8].

Listing 5.1. “Get paid for car accident” in CML.

UseCase Get_paid_for_car_accident {
actor "Claimant"
interactions
"submit" a "Claim" with its "date", "amountClaimed", "desc" for a "Policy",
"verifyExistanceOf" "Policy" with its "startDate", "endDate" for a "Contract",
"assign" an "Agent" with its "personalID", "firstName", "lastName" for "Claim",

14 https://www.eclipse.org/Xtext/.
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"verify" "Policy" for a "Contract",
"pay" "Claimant" with its "firstName", "lastName",
"close" "Claim" for "Claimant"

benefit "Claimant submits claim and and gets paid from the insurance company."
scope "Insurance company"
level "Summary"

}

Step 1: Derive Subdomains from Requirements. Context Mapper offers a model
transformation that produces a Subdomain definition given a set of requirements or
features as shown in Listing 5.1 as input. From the use case in Listing 5.1 the transfor-
mation creates the Subdomain illustrated by Listing 5.2.

Listing 5.2. Subdomain Derived From Use Case.

Domain Insurance_Application {
Subdomain ClaimsManagement {

domainVisionStatement "Aims at promoting: A claimant submits a claim and ..."
Entity Claim {

Date date
Double amountClaimed
String description
- Agent agent

}
Entity Policy {

Date startDate
Date endDate
- List<Claim> claims

}
Entity Contract {

- List<Policy> policies
}
Entity Agent {

Long personalID
String firstName
String lastName

}
Entity Claimant {

String firstName
String lastName
- List<Claim> claims

}
Service AccidentService {

submitClaim;
verifyExistanceOfPolicy;
assignAgent;
verifyPolicy;
payClaimant;
closeClaim;

}
}

}

The transformation uses the verbs, Entity names, and attributes mentioned in the inter-
actions to derive the elements of the Subdomain. The user selects the use cases and
user stories that will be jointly mapped to a single Subdomain, thereby controlling the
placement of Entities and Services. This makes it possible to group by high cohesion,
low coupling criteria at an early stage, while still analyzing the domain and the require-
ments. These placement decisions can be revised later on. The goal of this step is to
break the domain down into sets of Entities and operations that belong together accord-
ing to the business/domain. For example: typical Subdomains in the insurance domain
are customers, contracts/policies, claims.
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The mapping of the transformation from Listing 5.1 to Listing 5.2 (Step 1) is triv-
ial. Figure 4 illustrates it more explicit. The single interactions contain a verb, an entity
name, entity attributes, and optionally a reference to another Entity. Based on this infor-
mation we derive Entities with attributes and references, and Services with operations
for the Subdomain. For example, the interaction shown in Fig. 4 leads to the Entity
called Claim and the Service operation called submitClaim in the resulting Subdomain.

Fig. 4.Model transformation mapping: Use Case to Subdomain (Entities and Services).

Step 2: Derive Feature Bounded Context. This step is performed by application
designers and software architects when transitioning from analysis to design. Context
Mapper can derive a Bounded Context of the type Feature (see Architectural Viewpoints
in Sect. 3) automatically from the Subdomain illustrated above (Step 2).

In this transformation step the user can select a set of Subdomains to be mapped
into one Bounded Context; one Bounded Context can implement parts of multiple Sub-
domains [39]. In case multiple Subdomains are involved, we map each Subdomain into
one Aggregate of the Bounded Context. The transformation further increases the level
of detail in the Service operations and introduces parameters and return types. The
resulting Bounded Context for our example use case is shown in Listing 5.3. Thus, the
input of the transformation are multiple Subdomains and the output is one Bounded
Context. The user is in control again and decides which Subdomains shall be imple-
mented as one Bounded Context. The purpose of this step is to organize the implemen-
tation of the Subdomains.

Listing 5.3. Bounded Context (Feature) Derived From Subdomain.

BoundedContext ClaimsManagement implements ClaimsManagement {
domainVisionStatement "Realizes the following subdomains: ClaimsManagement"
type FEATURE
/* Contains the entities and services of the ’ClaimsManagement’ subdomain.

* TODO: You can now refactor the aggregate, for example by ...
* TODO: Add attributes and operations to the entities.

* TODO: Add operations to the services.
* Find examples and further instructions on our website:

* https://contextmapper.org/docs/rapid-ooad/ */
Aggregate ClaimsManagementAggregate {

Service Get_paid_for_car_accidentService {
boolean submitClaim (@Claim claim);
boolean verifyExistanceOfPolicy (@Policy policy);
boolean assignAgent (@Agent agent);
boolean verifyPolicy (@Policy policy);
boolean payClaimant (@Claimant claimant);
boolean closeClaim (@Claim claim);

}
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Entity Claim {
String date
String amountClaimed
String description
ClaimId claimId
- List<Agent> agentList

}
Entity Policy {

String startDate
String endDate
PolicyId policyId
- List<Claim> claimList

}
Entity Contract {

ContractId contractId
- List<Policy> policyList

}
Entity Agent {

String personalID
String firstName
String lastName
AgentId agentId

}
Entity Claimant {

String firstName
String lastName
ClaimantId claimantId
- List<Claim> claimList

}
}

}

The generated Bounded Context contains “TODO” hints/comments that help the
modeler to refine and detail the design. Note that the transformation produces generic
parameter and return types in case they cannot be mapped to Entities automatically.
Context Mapper users can indicate that they refined the Bounded Context setting its
type to Application. The transformation in the next step supports contexts of the type
Feature as well as Application as input.

Given such a Bounded Context of the type Feature, Context Mapper is already able
to generate a running Java application in a few steps. We do not discuss code generation
in this paper, but we documented how users can generate a Java application using Con-
text Mapper and JHipster15 in our online tutorial16. The tool generates one Microservice
for each Bounded Context in the CML model.

Step 3: Derive System Bounded Contexts. Bounded Contexts of the type Feature
represent a boundary around specific features as already explained in Sect. 3. In this
chain described here, we map Bounded Contexts of the type Feature one-to-one to
Bounded Contexts of the type Application. Therefore, Step 3 in our transformation pro-
cess already changes the architectural viewpoint to physical systems; Bounded Contexts
of the type System. Currently, Context Mapper offers a transformation to transform a
Feature Bounded Context (or Application Bounded Context) into two System Bounded
Context: a frontend and a backend system. Listing 5.4 illustrates the result for our use
case. Note that we do not repeat the contents of the Aggregates to save space at this

15 https://www.jhipster.tech/.
16 https://contextmapper.org/docs/jhipster-microservice-generation/.

https://www.jhipster.tech/
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point. Based on the domain model seen in Listing 5.3 this transformation generates an
Aggregate in the backend context and a view model (technically an Aggregate as well)
in the frontend context. The transformation takes one Bounded Context as input and
produces two new Bounded Contexts. The goal of this step is to break an application
down into its deployment units, tiers, or technical building blocks.

Listing 5.4. Bounded Context (System) Derived From Feature Context.

ContextMap {
contains ClaimsManagementFrontend, ClaimsManagementBackend

ClaimsManagementBackend [ PL ] -> [ CF ] ClaimsManagementFrontend {
implementationTechnology "RESTful HTTP"
exposedAggregates ClaimsManagementAggregate

}
}

BoundedContext ClaimsManagementBackend implements ClaimsManagement {
domainVisionStatement "Realizes the following subdomains: ClaimsManagement"
type SYSTEM
implementationTechnology "Java, Spring Boot"
Aggregate ClaimsManagementAggregate {

// removed contents to save space
}

}

BoundedContext ClaimsManagementFrontend implements ClaimsManagement {
domainVisionStatement "Realizes the following subdomains: ClaimsManagement"
type SYSTEM
implementationTechnology "Angular"
Aggregate ViewModel {

// removed contents to save space
}

}

In addition, the transformation in Step 3 creates a Context Map with a relationship that
illustrates the information flow between the frontend and the backend system.

Steps 4 to N: Continue Decomposing into Subsystems. Finally, we offer a transfor-
mation “Split System Context Into Subsystems” that allows users to further decompose
a system into more subsystems or deployment units. The input for this transformation
is always one Bounded context, and the output are two Bounded Contexts (split one
into two). For example: one could split the backend tier into a domain logic and a
database tier.

Besides the transformations presented above we realized a set of Architectural
Refactorings (ARs)17 [36] that support the continuous improvement of the design. They
allow Context Mapper users to further split ormergeBounded Contexts and Aggregates,
or extract parts of the domain model into new Bounded Contexts. We discuss our ARs
in a separate paper [24] in more detail. All these transformation tools supported us in
applying the presented modeling language in case studies and self experiments with the
goal to validate the practicability of the DSL. The next section lists all our validation
activities in more detail and discusses strengths and weaknesses of the approach.

17 https://contextmapper.org/docs/architectural-refactorings/.

https://contextmapper.org/docs/architectural-refactorings/
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6 Validation and Discussion

Goals and Techniques. We validated our approach according to Shaw’s recommen-
dations [35] with the goal to demonstrate correctness, usefulness and effectiveness
according to the validation type “experience” [35]. Having designed our meta-model we
implemented a prototype, the first version of our DSL, to validate the model. We made
the tool available for download allowing practitioners to evaluate it (including ourselves
when working in industry projects). To validate the implementation we applied empiri-
cal validation techniques such as prototyping, case study [40], and action research [3].

Conducted Validation Activities. The prototypical implementation of the tools
allowed us to evaluate the language, its abilities, and our hypothesis that the DSL can
provide a foundation for service design and system decomposition.

We conducted several self-experiments and action research, including modeling
Cockburn’s sample use case [8] explained in the previous Sect. 5. We also demon-
strated the tool to DDD thought leaders [39], peers and interested practitioners; one
of the authors demonstrated another end-to-end example of the rapid prototyping chain
at ICWE 202018. Feedback from these demonstrations was continuously incorporated
into our research cycles and development sprints. Since November 2018 we published
50 Context Mapper releases.

Next, the rapid OOAD/DDD toolchain was used in a two-hour service design work-
shop with five software architects with multiple years of experience in professional
services (enterprise application development and integration); they were familiar with
strategic and tactic DDD. One of the authors received a list of three service design ques-
tions (also outlining one user story/use case) two days before the workshop: a) should
services be flexible and generic/broad or specific and narrow? b) how does database
design and the service autonomy tenet influence service granularity? c) should system
or business transactions (sagas) be used? He was able to model the story and sample
DDD designs for a) and b) within one hour (supported by the transformations). Question
c) was also discussed but pertains to the service implementation rather than the API, so
was deemed out of scope. The draft model was shown in the workshop and another
story modeled. This helped ground the discussion and focus on a concrete example.

During the implementation of the Context Mapper tool we also applied action
research to validate and improve the DSL iteratively and with short feedback cycles.
One of the authors modeled the Lakeside Mutual19 project, an example application for
microservice API patterns (MAP) [43], with CML to validate the tool with a practical
application. As another case study we modeled the “Cargo Tracking” sample appli-
cation [10] to validate the tool and its compatibility with the original DDD concepts.
Furthermore, we conducted a case study on a real-world project in the health-care sector
[16]. The hardened syntax was also used to model another case, the microservices in an
existing production system for document management. An architect of the system and
one of the paper authors cooperated for this validation activity. Previous models were
updated to feature and re-validate the revised syntax. We further used the tool as part

18 https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html.
19 https://github.com/Microservice-API-Patterns/LakesideMutual.
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of an exercise accompanying the DDD lesson of the software architecture course at our
institution and collected the feedback of the nearly 20 exercise participants. Thereby we
were able to evaluate the simplicity of the DSL and improve the syntax and tooling. The
observations conducted by modeling these applications influenced the improvements of
our DSL substantially. The CML syntax introduced in Sect. 4 is a revised version which
improved writability, readability and consistency with meta-model and DDD patterns
in comparison to the first version [21].

In addition to our own validation activities, we made the Context Mapper tool avail-
able to the DDD community and collected feedback via issues on GitHub. Context
Mapper is available for the Eclipse IDE20 as well as for Visual Studio Code21. Via Git-
pod22, Eclipse Theia23, and the Visual Studio Code extension, we can even offer a Web
IDE running in the browser. According to the Eclipse marketplace Context Mapper has
been installed over 40 times per month in the last three months (March, April, and May
2020). We only released the Visual Studio Code extension recently but already had 40
downloads within the first two weeks, according to the marketplace statistics.

Validation Results. The five architects in the service design workshop challenged
whether a graphical representation would be better suited, whether application services
(DDD pattern) should be placed inside or outside aggregates, whether such a tool could
be used as an excuse for not engaging with end users (the whole point of DDD: establish
a conversation and a common language). The conclusion from this validation activity
was that the general approach can be useful in education and early project stages, but
should not replace careful business analysis and coding in Java or other languages. Sup-
port for roundtripping and a careful synchronization of manual and tool supported steps
in agile (iterative, incremental) practices were seen to be critical success factors for a
broader adoption. Attendees appreciated the representation of the patterns in the DSL;
the story extension with attributes and relationships was accepted.

In general, our intermediate validation activities so far suggest that both our hypoth-
esis mentioned in Sect. 2 hold true. Discussions with DDD experts have further con-
firmed that controversial debates regarding the original pattern definitions and how
the patterns can be combined exist among the practitioners, which supports our first
hypothesis stating that architects and adopters benefit from a precise interpretation. The
validation results gained from our case studies also support our second hypothesis that
a modeling language such as CML can be helpful to model (micro-)service-oriented
architectures with strategic DDD.

Threats to Validity. Regarding construct validity [40] there might be a risk that ques-
tions in our workshops or exercise lessons were misinterpreted by the participants. We
tried to mitigate this threat by selecting experienced architects that are familiar with the

20 https://marketplace.eclipse.org/content/context-mapper.
21 https://marketplace.visualstudio.com/items?itemName=contextmapper.context-mapper-
vscode-extension.

22 https://www.gitpod.io/.
23 https://theia-ide.org/.

https://marketplace.eclipse.org/content/context-mapper
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topic and DDD. However, in our exercise lessons with the less experienced students
there might be a risk for misunderstandings. We consider it unlikely that the opinions
of the workshop participants, exercise participants, and DDD experts were influenced
by factors unrelated to our approach (internal validity [40]). Threats to external validity
[40] do exist, since we mainly relied on feedback of users that are familiar with DDD.
Therefore, the validation results could vary in case we validate with other potential users
(not familiar with DDD). We mitigated this threat a bit by using the tool with students at
our university. However, future validation activities should include even more potential
users that are experienced with software architecture but not DDD specifically. In addi-
tion, many of our experiments were self-experiments; since Context Mapper is an open
source project, we do not know all our users, but have received direct feedback from six
companies and teaching institutions located in different European countries (so we can
consider the diversity threat and possible interest bias to be mitigated somewhat).

Analysis of Validation Results: Pros and Cons of DSL and Tools. We consider the
conformance of the language and our terminology with the original DDD patterns to
be a strength of the proposed approach. DDD adopters can familiarize themselves with
the language easily. Our validation activities further indicate that the tool can increase
the productivity in context mapping, especially when the map has to be improved itera-
tively. The model transformations can improve such a process in comparison to drawing
by hand. This support for iterative model evolution is also a reason why we consider the
approach conform with agile practices [1]. However, members of the agile community
may argue that the approach is non-conforming with “working software over compre-
hensive documentation” [1]. Therefore, we can consider this a weakness and strength
at the same time. Another strength is that we are able to generate architecture visualiza-
tions on different levels of abstraction out of the DSL-based models. Communicating
software architecture always requires different perspectives and levels of abstraction
depending on the audience. The “model-code” gap [12] can be considered a weakness
of DSL- and generator-based approaches is general. Generated code typically changes
and the original architecture descriptions tend to become outdated quickly. In addition,
the approach requires an Integrated Development Environment (IDE) with editor sup-
port. This can be costly, especially if multiple IDEs have to be supported. However, we
still consider the approach based on DDD future-proof, since technology-independent
domain modeling is always relevant in software engineering. The presented approach
is independent of any programming languages, architectural styles, or frameworks.

7 Summary and Outlook

In our previous paper [23] we presented Context Mapper, our approach to describe
integration architectures and service decompositions in terms of strategic DDD patterns.
As our research contributions, we proposed a) a meta-model and semantic rules based
on the DDD patterns aiming for a concise interpretation of the patterns and how they
can be combined, and b) a DSL and supporting tools to model Bounded Contexts and
their relationships as well as Aggregates.
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This extended version of the original paper introduced language improvements and
enhancements that allow users to start modeling on the level of use cases and user sto-
ries. Additionally, we introduced model transformations that a) support Context Map-
per users in modeling DDD Subdomains and Bounded Contexts rapidly, and b) illustrate
how the Context Mapper DSL (CML) can be used as a foundation for systematic service
decomposition approaches. The Context Mapper tool further allows to generate code,
visual Context Maps and other architecture diagrams (not presented in this paper). In
addition, the rapid prototyping transformations demonstrate how we apply and validate
the DSL in practical cases.

Besides the rapid prototyping transformations we implemented several Architec-
tural Refactorings (ARs)24 (discussed in another paper [24]) that support the users in
improving the architecture models iteratively.

Validation results collected via implementation, action research, and case studies
suggest that Context Mapper can support architects in their modeling work and deci-
sion making effectively and efficiently. The existing results and user feedback further
led to the syntax enhancements presented in this paper. However, additional validation
activities will be required to finally confirm our hypothesis that Context Mapper can be
beneficial in agile architecting and modeling environments.

In our future work we plan to further improve the language and tool so that soft-
ware architects can evolve their designs with additional transformations and architecture
refactorings [41] in an iterative and incremental manner. A reverse engineering library
shall close the “model-code” gap [12] and provide model generation from existing or
generated source code. This shall ease the application of the tool in brownfield projects
that plan to refactor monoliths to microservices and/or migrate to the cloud. The inte-
gration of a systematic service decomposition approach similar to Service Cutter [15]
shall propose new decompositions (Context Maps) that improve coupling and cohesion
between contexts automatically.
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Abstract. The continuous improvement of the performance of comput-
ing units makes it possible to cope with increasingly complex tasks.
This results in more complex software systems. However, the develop-
ment of such highly complex systems is difficult to achieve using tradi-
tional approaches. Concepts like model-driven software development can
weaken this problem in these constructive phases. However, new chal-
lenges arise for the testing of development artifacts. In order to be able to
perform a real shift left of verification and validation tasks towards early
phases of development, we present a semi-formal approach that enables
users to execute test cases against the system under development (SUD)
on the model-level. Grounded on an Integrated Model Basis which is cre-
ated and maintained during development, test reports are automatically
derived. This opens up a wide range of possibilities for early and targeted
troubleshooting.

Keywords: Test execution · Model-based testing · Domain-specific
modeling · Integrated model basis · Model-driven software development

1 Introduction

Due to the rapid development of hardware, more and more complex tasks can
be mastered. As the complexity of the tasks steadily increases, the complexity
of the software that handles these tasks is growing. In order to handle this
increased complexity of the software development, a new trend has emerged in
development practices.

In contrast to purely code-based approaches, many development tasks are
nowadays handled by model-based ones. These techniques are characterized by
the concepts of abstraction and automation, thus reducing complexity for the
user. Considerable progress has been made in the areas of executable models,
especially in the formal verification of suitable models, and in model-based test-
ing. This gives insights into the planned system in early phases of development
and enables developers to take appropriate and possibly early (counter-) mea-
sures, since defects introduced into the system in early phases of development
usually cause significantly higher costs for elimination (time and money) [5,23].
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Further, Jones et al. [13] show how the worst-case scenario of very late discovery
of such defects is the rule rather than the exception. Thus, verification in early
phases of development is significant.

1.1 Problem Statement

The mentioned approaches in the model context either place high demands on
the modeling languages used or work effectively on code artifacts derived from
models or even platform specific artifacts. If one tries to put this into the con-
text of Model-Driven Architecture (MDA), instances of the Platform-Specific
Model (PSM) or Implementation-Specific Model (ISM) level are usually used for
this purpose [15]. Especially for semi-formal test activities no effective shift left
towards early development phases can be achieved, due to missing execution or
simulation concepts.

We want to achieve this kind of functionality by implementing an approach
to perform tests against the system based on model artifacts associated with the
Platform-Independent Model (PIM). This enables the possibility to detect cer-
tain types of defects even earlier and thus reduce the overall costs. In contrast to
purely specification-based tests (black-box), information about the implemen-
tation can be used at this point, allowing more targeted testing in the sense
of gray-box testing. This can be seen as a kind of guidance for the modeler in
addition to classical test results.

Up to our knowledge, there is no semi-formal approach that offers such func-
tionalities. Based on an integrated set of model artifacts of different domains, like
system development and testing, our Abstract Test Execution (ATE) approach
is implemented. Therefore, the modeling expert specifies correlations between
elements of the system model and the test model. From this Integrated Model
Basis, an analysis-specific representation can be derived by using Model-to-
Model (M2M) transformations. On the basis of these transformed model rep-
resentations as well as the updated mapping information captured by the Inte-
gration Model, the concept of ATE is applied. Similar to classical testing, reports
are created for the test runs, documenting the results of the execution to support
troubleshooting.

In contrast to the related conference paper [10], the following sections draw
a holistic picture of the concepts around the ATE approach. Furthermore, the
ATE itself is more detailed and reworked with a lightweight formalization. This
is followed by a critical discussion.

1.2 Outline

Following the previously presented introduction and problem statement, the
remaining contents are structured as follows. In the course of Sect. 2 the foun-
dations are described. This includes the introduction of our running example
(Sect. 2.1) which demonstrates the details of our approach. Further, the Inte-
grated Model Basis (IMB) is presented throughout Sects. 2.2 and 2.3, using the
running example to give a more intuitive understanding of the concepts. The
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main contribution, namely the Abstract Test Execution, is introduced in Sect. 3.
Thereby, the structure of Subsects. 3.2 to 3.6 reflects the overall structure of the
underlying process. Following Sect. 3, a mixed qualitative evaluation/discussion
of concepts is presented in Sect. 4. In order to set our approach in context to
other research, related work is discussed in Sect. 5. Finally, a conclusion is drawn
and a road map for future topics is elaborated.

2 Foundations

In order to detail the approach outlined in the previous chapter, the necessary
foundations, including the running example, are presented. In particular, the
different model artifacts which are part of the concept are explained. An overview
is given in Fig. 1.

Fig. 1. Model artifacts in the context of abstract test case execution.

In the upper part of the figure the Requirements Model is shown, representing
the starting point of any development. In the context of Model-Driven Software
Development (MDSD), both System and Test Models are built upon this basis.
Different types of modeling languages can be applied to create these artifacts,
such as General Purpose Modeling Languages (GPML) or Domain-Specific Mod-
eling Languages (DSML). In this case, the use of two separate model artifacts
is considered to support the automation of subsequent processing steps. There-
fore, it is necessary to define a well-formed relation between these model artifacts,
achieved by the integration component placed in the middle of the figure, namely
the Integration Model. All of these models represent possible interaction points
with the user (User-Specific Integrated Model Basis) For details see Sect. 2.2.

In addition, derived from the User-Specific Integrated Model Basis through
Model-to-Model (M2M) transformations, a so-called Analysis-specific Integrated
Model Basis is introduced (for details see Sect. 2.3). Essentially, the System and
Test Models are mapped to an internal metamodel, which was designed for the
subsequent automated processing (for details see Sect. 2.3).



276 R. Pröll et al.

2.1 Running Example - Automatic Door Control System

As already mentioned, the running example serves for illustrating the different
aspects of our approach. In order to keep this intuitively understandable and
clear, we have chosen a simple example from everyday life. Due to its simplicity,
there are no structural artifacts of the System Model. It is a door control system,
where its control logic is represented by the state machine in Fig. 2.

Fig. 2. Behavior system model for the automatic door control syste.

The control logic defines three different states, namely Open, Closed and
Locked. The door is able to query the status of a sensor, which reveals if the
door is open or closed (open). This is supplemented by a sensor for detecting
movement at close range (motionDetected). Besides the sensors of the system,
a conventional lock is provided for manually locking of the door, which sends
a lockCmd to the door control unit on actuation. Apart from the event-driven
points of interaction, a time-triggered component is part of the door control unit.
Precisely, as soon as a timer of ten seconds has elapsed, the closing of the door
is initiated, unless motion is detected by the sensor.

Starting with this System Model artifact, the proposed running example
is extended and constantly used in the following sections to illustrate certain
aspects of our contributions.

2.2 User-Specific Integrated Model Basis

As already mentioned above, the so-called User-specific Integrated Model Basis
(Omni Model for short) represents the data side of the approach. In particular,
this combination of model artifacts represents the action point for the users
of the subsequent automated processing chain. In principle, any development
model can be integrated, provided their metamodels are completely available.
This approach forces the separation of concerns on the model-level, which has a
positive impact on the significance of the resulting tests [25]. An essential role
and the minimal amount of model information is given by the System Model,
the Test Model and the integration of these two artifacts modeled within the
Integration Model. In this context, most of the relevant aspects of these artifacts
have already been introduced in earlier publications by Rumpold and Pröll (for
details see [27,28]).
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System Model. In the context of MDSD, this model covers both structural
and behavioral aspects of the SUD. Different modeling languages can be used,
depending on the application domain and the expertise of the developers. E.g.
GPMLs such as the SysML [19] or DSMLs used in the context of the embedded
MDSD tool radCase [7] from IMACS can be used.

Test Model. The same applies to the model artifacts concerning test model-
ing. The choice of the metamodel should be based primarily on aspects such
as expertise of the test engineers and sufficient tool support. E.g. GPML-based
approaches such as the UML Testing Profile [21] or proprietary modeling lan-
guages can be used.

Other Domain-Specific Development Models. The combination of different mod-
els is not limited to the two domains already mentioned. If information about
e.g. temporal behavior, safety or security of the SUD is considered in separate
DSMLs, it can be linked to the Integrated Model Basis. Even if this informa-
tion has no direct influence on the processing and thus results of the ATE, such
information can be included in the context of post-processing. For subsequent
troubleshooting, correction and, under certain circumstances, transitive defect
effects can be determined.

Integration Model. This model artifact provides the link between the sets of
different domain-specific models. In order to map the relationships between the
models, the structural decomposition of the instantiated SUD is primarily mod-
eled. This enables purely structural mappings between instance- and component-
related parts of the different models. Beyond the structural mappings, additional
information on elements of the structural decomposition can be added to the
Integration Model (see aspects concept in [26]).

In addition, these mappings between models participating in the Integrated
Model Basis can be specified for behavioral model elements. These mappings rep-
resent a key concept in the implementation of the ATE, since this enables the
synchronization of different types of models of the same behavioral aspect. I.e.
a series of synchronization points (so-called IMSyncPoints) is defined for each
behavior model, which are connected to elements of the System Model as well as
the Test Model. Furthermore, different types of synchronization points are distin-
guished. Besides the conventional IMSyncPoints there are IMSyncEntryPoints
and IMSyncExitPoints representing the entry and the exit of a synchronization
sequence respectively. The level of detail or completeness of these mappings has
a decisive influence on the test results determined in the context of the ATE.
Therefore, careful modeling must be carried out to avoid deducing false conclu-
sions from the corresponding results.

Application to the Running Example. In order to illustrate the concepts of
the Integrated Model Basis, the concrete instances of the models in the context
of the Automatic Door Control System will be discussed below.
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Fig. 3. Excerpt of the user-specific integrated model basis for the automatic door
control system.

Figure 3 shows the relationships between the individual model instances. On
the left side of the figure, the state machine previously introduced in Fig. 2 repre-
sents the behavioral model of the SUD. The model elements arranged in the middle
of this figure show synchronization points and thereby specify the behavioral map-
pings across the development domains. On the right side, a activity chart based
Test Model consisting of Test Steps and Verification Points (VP) is conducted. In
principle, two different test cases can be derived (see right side of Fig. 7) from this
model, which are evaluated against the system as part of the ATE.

2.3 Analysis-Specific Integrated Model Basis

In Fig. 1 the user-specific and the analysis-specific view of the model basis was
shown.Basically, the analysis-specific representation of the IntegratedModelBasis
decouples the algorithmic implementation from the specifics of the respective
application context. In contrast to the manual modeling of the model artifacts, the
analysis-specific variant is derived automatically. This is done by a set of transfor-
mation steps describing a model transformation. These steps are specified on the
metamodel-level. The components of this target metamodel, relevant for ATE as
well as the concepts of the transformations, are explained in the following.

Analysis-Specific Metamodel. In order to be able to map multiple models
in the context of model-centric testing, the Execution Graph ++ (EGPP) meta-
model was developed. In the context of Pröll et al. [26] the metamodel simulta-
neously representing the structure, control flow and data flow information of a
system, was introduced. Basically, the control flow information is described by
nodes (EGPPNode) and edges (EGPPTransition). In addition, structure informa-
tion can be modeled by nesting these control flow structures, since special nodes
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(EGPPGraph) can contain control flow (sub-)graphs. The data flow information
(EGPPTaggedData) completes the information set andannotates nodes and edges of
the model. In particular, the annotated data are atomic with regard to the included
expressions, such that only one expression is captured per node/edge.

In general, an instance of the EGPP describes behavior by sequences of states,
which can be applied to both a Test Model and a System Model. Each of these
states consists of an active node of the control flow and a set of variable assign-
ments. A variable state is updated by the assignments of the active node, assum-
ing the intermediate guards could be fulfilled. If an assignment is made in the
node, it is further identified by a EGPPInputNode, if only a condition is checked,
a EGPPOutputNode is modeled. The latter type of node is used when mapping
Test Models, particularly to check the current state from a data flow perspective.
In case of the control flow perspective, IMSyncPoints concept of the Integration
Model is evaluated. If such a connection between EGPPNodes of a Test Model
and a System Model is specified, an additional condition is imposed on the con-
trol flow. Especially in case of IMSyncEntryPoints or IMSyncExitPoints this
means that the evaluation of the test case against the system has to start or end
at the referenced points of the control flow.

Model-to-Model Transformations. As shown in Fig. 1, both the original
System and the Test Model are transformed into the EGPP metamodel by a
horizontal exogenous M2M transformation. Different patterns are implemented
such that a uniform representation is created for both aspects independent of
the user-specific metamodel. The basic concepts of these patterns are shown in
Fig. 4. Further, it is crucial that the transformation rules defined for this purpose
do not change the semantics of the original models, but at best refines them.

Fig. 4. EGPP model patterns for system and test context.

On the left side of Fig. 4, the System Model is considered. In case of purely
structuring model elements of the original model, a construct is created in the
EGPP context, which cyclically embeds all included components (SSM) and
behavioral models (SBM) in its flow. In contrast, the behavioral models are not



280 R. Pröll et al.

enriched with any synthetic control structures, as long as the original model
already provides a defined initial and final state. At this point, it is important
to preserve the original specification of system states.

In contrast, the right side of the graph shows the pattern for the Test Model.
Here, the different test levels are aligned to the integration levels of the System
Model. In this hierarchy the highest level model is the System Test Model (STM),
which specifies consistent test cases at the integration level, but can include lower
integration levels, such as an Integration Test Model (ITM). This is done through
all the integration levels considered down to the unit level, which is illustrated
in the right-hand part of Fig. 4.

In addition to the control flow and structure-giving patterns, the data flow
is transformed realized in the form of a pseudo-code-like language, which is out
of scope for this contribution. According to this language the EGPPTaggedData
elements are filled with information during the transformation.

In addition to the M2M transformations of the System and Test Mod-
els, the mapping information is updated between artifacts of these modeling
domains captured by the integration model. This update includes the creation
of new mappings between transformed model elements of the respective EGPP
instances, provided that their original model elements are already part of a map-
ping relation specified by the Integration Model. Normally, no manual interven-
tion is necessary, provided that the M2M transformations are specified com-
pletely regarding the conventions mentioned above.

Application to the Running Example. The application of these transfor-
mation rules converts the Integrated Model Basis already introduced in Fig. 3
into the following variant (see Fig. 5).

Fig. 5. Excerpt of the analysis-specific integrated model basis for the automatic door
control system.
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Basically, the two graphs are very similar, since the original model elements
have been transformed into EGPPNodes. Model elements with sharp corners rep-
resent EGPPInputNodes and round corners represent EGPPOutputNodes. Excep-
tions are the dashed model elements of the Integration Model, arranged in the
middle of this figure. The annotated data flow information is stored in the code
fragments, which reflects the EGPPTaggedData. Furthermore, an explicit final
state was added to the original System Model, which can be reached by all
original states.

3 Abstract Test Execution

Several input artifacts are required to perform the process of Abstract Test Exe-
cution. These input artifacts are given by the Analysis-Specific Integrated Model
Basis. As mentioned in Sect. 2.3, this model basis mainly consists of two model
artifacts which are interconnected by a third model artifact, namely the Inte-
gration Model.

3.1 Overall Process

Both main artifacts, namely the System Model and the Test Model, are instance
models of the EGPP metamodel. The System Model describes the structure and
behavior of the system, while the Test Model represents the intended behavior of
the system. The Integration Model can be used to define so called IMSyncPoints
and is based on a corresponding metamodel. IMSyncPoints are used to define
entry points and exit points of the execution of abstract test cases.

The test cases are derived from the Test Model. The process is detailed in
the following Sect. 3.2.

Fig. 6. Overall ATE process.
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The process of ATE uses the System Model, the Integration Model and the
generated set of abstract test cases to perform testing. The general approach is
visualized in Fig. 6. Every abstract test case contained in the generated set is
evaluated one after the other. This evaluation process of each abstract test case
consists of multiple steps, which ultimately result in a test report.

At first, the abstract test case is merged into the System Model. Different
cases for the merging exist which results in a vast range of different paths describ-
ing the majority of all possible data flows and control flows. We identify some
basic merging rules, which are described in Sect. 3.3. Besides the merging process,
the data flow and the control flow of these paths are assessed. Therefore, basic
data flow specific faults are taken into account as well as control flow specific
characteristics. This baseline is detailed in Sect. 3.4. In addition, the preliminary
results gathered by this analysis are collected and classified. The result classes
are described in Sect. 3.5.

Then, one of these preliminary results is chosen to be the representative result
of the ATE. Finally, a human-readable test report is generated from the repre-
sentative result. These steps are detailed in Sect. 3.6. For further understanding,
all the mentioned process steps are illustrated along the running example.

3.2 Preprocessing and Derivation of Abstract Test Cases

A model is viewed as a graph consisting of nodes and edges. A Test Model com-
prises two kinds of nodes and unidirectional edges. As described in Sect. 2.2, such
models are structurally based on activity diagrams that can preserve a chain of
events by transforming them into a fixed sequence of nodes enclosed by an ini-
tial and a final node. Contained nodes are connected by unidirectional edges.
Generally, a distinction is made between nodes that contain instructions which
either send stimuli to the SUT or check whether certain outputs of the system
meet predefined conditions. Due to the abstract nature of the ATE approach,
we distinguish between instructions that modify variables of the SUT or check
for certain variable values. Nodes included in a Test Model can either contain
one instruction that is capable of modifying exactly one system variable or any
number of conditions to challenge the system state. The former are called Test
Steps while the latter are referred to as Verification Points. During transfor-
mation from the user-specific input model to its analysis-specific EGPP-based
form, it is ensured that non-atomic nodes are transferred into an atomic form.
Furthermore, nodes of type Test Step are transformed into EGPPInputNodes
while Verification Points are converted into EGPPOutputNodes as described in
Sect. 2.3. Depending on the Test Model as an EGPP-based artifact, a data flow
analysis is performed which is able to mimic combinations of structural as well
as data flow coverage metrics to derive sets of abstract test cases.
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Fig. 7. EGPP representation of running example.

In the context of the running example, two test cases are extracted from
the Test Model (see Fig. 5) and presented in Fig. 7. The test case on the left
hand side checks whether the internal system variable open is set to true while
the system state is initialized as Open. The other test case determines whether
the system switches correctly into the Locked system state after initializing the
system to the Closed state and sending the lockCmd = true stimulus to it.

3.3 Path Merging Based on Integrated Model Basis Mappings

Like the Test Model described in Sect. 3.2, the System Model supports different
model elements. Generally speaking, the System Model can have nodes that
contain instructions that modify the system state and conditional transitions
that restrict the change of system states (referred to as Guards).

Nodes of the System Model and Test Steps of the Test Model contain instruc-
tions capable of altering the system state. Verification Points of a Test Model
and instructions of guarded transitions of the System Model share the same kind
of instructions to validate the system state. Overall, the Test Model and the Sys-
tem Model contain two different kinds of instructions which represent the basic
blocks of the merging process.

Furthermore, the EGPP-based structure of the System Model and Test Model
is defined by an initial node and a final node. This common structure of the mod-
els naturally specifies the entry point and exit point for ATE. However, due to
the potentially multi-layered structure of the input models (cf. Sect. 2.3) more
than two entry and exit point pairs may exist. Therefore, we introduce the pos-
sibility to specify explicit connections between both models to determine the
entry point as well as the exit point of the ATE to restrict the number of model
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artifacts taken into account. In contrast to the fact that end connections are
mandatory for the control flow analysis of ATE, the definition of entry connec-
tions are optional. In addition, entry connections can be used to initialize the
system state different to the initial system state as visualized in Fig. 7.

After the determination of an entry point for the ATE, the merging process
is carried out step by step. Every step inserts one node of the test case into the
system. The process starts by merging the first node of the test case into the
System Model and ends with the test case being completely merged. Depending
on the System Model, several possibilities exist for inserting a node of the test
case into the System Model. The most basic merging approach is to take every
permutation into account but this can lead to a state explosion. In order to
tackle this challenge, the merging process performs the following rules:

1. The sequence of nodes of the test case and System Model is kept.
2. Incoming transitions of a system node are not separated by nodes of the test

case
3. Verification Points are inserted after nodes of the System Model
4. Test Steps of a segment are inserted directly after the leading Verification

Point

Generally speaking, these rules limit the set of permutations without loss of
generality on the final result of the ATE. The effect of the rules is discussed in
Sect. 4. Moreover, we name the set of all permutations the path space P and the
subset of permutations created by applying the rules as the limited path space
Plim.

The first rule ensures that the control flow of the system is maintained by
keeping the general structure of the test case during merging. Subsequently,
nodes of the test case can only be inserted into the System Model, if the given
order of test nodes is preserved, which represents the first step of limiting the
path space.

The second rule is used to imitate more classical testing approaches. From
a classical testing point of view, stimuli are sent to the system to initialize a
change of system state. In more detail, the stimuli are used to satisfy some
condition which guard the change of system state. From our abstract testing
point of view, nodes of the test case can be inserted directly before a node of
the System Model or before an incoming transition of a node of the System
Model. In order to preserve the behavior of classical testing, rule two allows the
insertion of nodes of the test case before an incoming transition of the system
model which is used to imitate the classical testing approach.

The third rule aligns with entrenched code-based testing activities. From a
classical testing point of view, a test case must interact with the SUT to verify
its functionality. In consequence, if the test case does not interact with the SUT,
the test case fails. Due to the abstract nature of this approach, test cases may
be defined that rely on induced variables by the test cases rather than variables
induced by the system. This could potentially lead to a test case that is falsely
successful. To reduce the risk of such test cases, rule three is defined (cf. Sect. 4).
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The last rule leads to a significant reduction of the path space. Two aspects
come into play. First, due to the abstract nature of this approach, time-dependent
variables are out of scope. As a result, the sequence of Test Steps of a Segment can
be ignored since Test Steps represent stimuli to the system which are affected by
timing. Here, a Segment refers to all nodes between two successive Verification
Points. Second, stimuli to the system are bound to a change of system state.
Therefore, if more than one node of the System Model is contained in a Segment,
the test may fail by mistake. To cope with this problem, we allow the over-
assignment of variables to declare all assignments of variables induced by Test
Steps of a Segment as valid. A more in-depth description of the over-assignment
of variables and the resulting effect can be found in Sect. 4.

Fig. 8. Limited tree of paths of the running example.

To visualize the merging process, a tree can be formed which contains the
limited subset of permutations Plim. Figure 8 shows the path tree of the running
example. For better understanding, the Segments of the path p1 are visualized
by dashed boxes. In addition, nodes of the System Model and Test Model are
visualized by squares which have rounded or sharp corners. The former repre-
sent nodes that contain instructions which verify the system state. The latter
illustrates nodes that consist of instructions which modify the system state. The
naming refers to Fig. 7 while the following sections utilize the abbreviations in
brackets. Guarded transitions are referenced by their respective identifier αx,
which can also be found in Fig. 7. Due to loops in the representative System
Model, the tree of paths contains an infinite number of paths. Therefore, nodes



286 R. Pröll et al.

labeled with γ or δ can be substituted by nodes enclosed by the box with the
same label.

3.4 Evaluation of Path Space

In reality, paths are not evaluated as a whole. Instead, the evaluation process is
triggered after a new Segment is formed by injecting a Verification Point into
the System Model.

The analysis of such a segment is carried out with the help of a combination
of data flow and control flow analysis. The former is used to determine whether
the instructions of guarded transitions and Verification Points can be fulfilled.
The latter is used to check if the test case is solvable from a structural point of
view and if the final system state is reached after the data flow is completely
analyzed.

Generally, data flow analysis is an approach of collecting information about
possible values of system variables. We use this analysis to execute and eval-
uate the instructions contained in the nodes of the segment currently being
analyzed. During this process, several faults can be detected. We define D :=
{d1, d2, d3, d4, d5, d6} as the set of data flow based faults. In the following, these
cases are described.

d1 Instruction of node not solvable
d2 Guard of transition not solvable
d3 Undeclared or uninitialized variable
d4 Missing end point for data flow analysis
d5 Guard contains time-dependent variable
d6 Guard fulfilled by over-assigned variable

As previously detailed, several paths emerge which are likely to solve the test
case. Test cases contained in the resulting Plim consists of nodes of the EGPP
Test Model and nodes and transitions of the EGPP System Model. The merg-
ing process removes the boundaries between these models, which causes the
evaluation to distinguish only between variable-verifying instructions (VVI) and
variable-modifying instructions (VMI). Such verifying instructions are Boolean
expressions which can be evaluated to true or false. On the one hand, we con-
sider the latter result as unwanted behavior and register a fault in the event of
such a case. On the other hand, if the Boolean expression results in true, the
associated Guard or Verification Point is successfully solved.

Algorithm 3.1 presents the procedure to evaluate a Segment which is detailed
in the following. However, one of the requirements for the ATE is that an end
connection is specified in the Integration Model that defines the desired exit
point as specified in Sect. 3.3. If no end connection is defined, the fault d4 is
reported and the segment evaluation of the path is skipped.

If a variable-verifying instruction fails as part of a transition, the fault d2 is
registered, otherwise if it is part of a node, the fault d1 is registered. However,
as a first step of evaluating instructions, affected variables need to be resolved.
If they are not initialized or undeclared, the fault d3 is listed.
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Algorithm 3.1: evalSegment(s.)

procedure evalSegment(s)
for each e ∈ getElements(s)

do

⎧
⎪⎪⎨

⎪⎪⎩

if instanceof(getInst(e), V MI)
then storeValuesOfElement(e)
else if instanceof(getInst(e), V V I)
then verifyElement(e)

persistLastStoredVariableValues()

procedure verifyElement(e)
if newFaultsRegistered(checkPreconditions(e))
then return

if instanceof(e, node)

then
{
if ! verifyInst(getInst(e)) XOR isOverassigned(getInst(e))
then registerFault(d1, e)

else if instanceof(e, edge)

then

⎧
⎪⎪⎨

⎪⎪⎩

if verifyInst(getInst(e))

then
{
if isOverassigned(getInst(e))
then registerFault(d6, e)

else registerFault(d2, e)

procedure checkPreconditions(e)
for each v ∈ getVariables(getInst(e))

do

⎧
⎪⎪⎨

⎪⎪⎩

if isTimeDependentVariable(v)
then registerFault(d5, e)

if size(getStoredValues(v)) == 0
then registerFault(d3, e)

procedure isOverassigned(i)
for each v ∈ getVariables(i)

do
{
if size(getStoredValues(v)) > 1
then return (true)

return (false)

procedure storeValuesOfElement(e)
if instanceof(e, node)
then store(getLHS(getInst(e)),

eval(getRHS(getInst(e)),
getPermutatedVariableAssignments(getInst(e))))

procedure verifyInst(i)
for each va ∈ getPermutatedVariableAssignments(i)

do
{
if eval(i, va)
then return (true)

return (false)
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Due to the fact that this approach is based on data flow and control flow
analysis, time-dependent variables are out of scope. In general, however, there
are test cases that rely on such variables. In order to be able to evaluate such test
cases, the over-assignment of variables within a segment is allowed, which leads
to multiple valid values at a time. However, after a segment is evaluated, only the
value last-set remains valid, while the others are invalidated. Further, the usage
of over-assigned variables is only allowed to evaluate verifying instructions of
transitions, but in any case a fault is logged. If the instruction can be fulfilled by
over-assigned variables, the fault d6 is noted, otherwise the fault d5 is captured. If
an over-assigned variable is used to solve such an instruction of a node, the fault
d1 is added to the set of registered data flow faults for this path. As presented,
the topic of over-assigned variables is addressed in detail in Sect. 4.

On the one hand the data flow of the path is analyzed, on the other hand
control flow analysis is used to structurally evaluate the path. Due to the end
connections contained in the Integration Model, it can be distinguished if the
system has reached the desired system state after the last node of the test case
is merged into the System Model. The result is categorized into one of four
fault classes. The set of the characteristics based on control flow is defined as
C := {c1, c2, c3, c4}.

c1 All verifying instructions of path are fulfilled and the last verification point
is solved by the instructions of one of the marked system nodes

c2 All verifying instructions of the path are fulfilled and the last verification
point could be satisfied using the instructions of one of the marked system
nodes

c3 At least one verification point of the path could not be fulfilled, but a system
node marked as exit point is part of the path

c4 At least one verification point of the path is not solvable and no system node
marked as exit point is part of the path

In general, we distinguish between test cases that can or cannot be fulfilled.
If the test case can be fulfilled, it is differentiated whether the last verification
point and the instruction of the system node used to fulfill the VP are connected
by an end connection. If the test case is not solvable, it is determined whether
an end node is generally found or not. These cases result in the four control flow
specific fault classes listed above.

Overall, a set O := {R1, . . . , R|Plim|} is iteratively formed containing result
sets R := DH ∪ CNI derived from the segments of the paths p included in the
limited path space Plim. The set R consists of the set DH := D × H containing
the detected data flow faults D combined with hints H on their cause and a
set CNI := C × {NI} of control flow characteristics C with the symbol NI
as a pair. This symbol signals the absence of a hint resulting in the extended
set HNI := H ∪ {NI}. Generally, hints can be instructions or variables of the
System Model and Test Model.
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R1 = {(d2, α1), (d1, lT ), (c4, NI)}
R2 = {(d2, α1), (d2, α2), (d1, lT ), (c4, NI)}
R3 = {(d2, α1), (d2, α2), (d2, α1), (F1, lT ), (c4, NI)}
R4 = {(d2, α1), (d2, α2), (d1, lT ), (c3, NI)}
R5 = {(d1, lT ), (c4, NI)}
R6 = {(c1, NI)}
R7 = {(d2, α1), (d1, lT ), (c4, NI)}
R8 = {(d2, α3), (d1, lT ), (c3, NI)}

In context of the running example, the set of detected faults and characteristics
stated above are based on the paths px given by Fig. 8. In this case, the set of
hints is defined as H = {O,C,L, α1, α2, α3, α4, oT, lF, l, lT}. The result sets Rx

are directly derived from their respective paths by their identifier px → Rx with
x ∈ {1, . . . , 8}.

For Example, the set R1 consist of three elements. The first elements gives
information that the guard open == false && motionDetected == true could
not be satisfied. The second element can be interpreted in that way that the
Verification Point locked == true is not solvable. The last element marks the
evaluation of this path as finished and states that at least one Verification Point
could not be fulfilled and the test case could not be solved structurally, since an
end connection exits which connects the Verification Point lockedTrue with the
system state Locked, but this system state is not part of the analyzed path.

3.5 Result to Verdict Mapping

The next step covers the classification of the result sets R ∈ O. For this purpose,
we define the set of verdicts V := {v1, v2, v3, v4}. In general, we distinguish
between the four verdicts Passed (v1), Probably Passed (v2), Inconclusive (v3)
and Failed (v4). The test verdicts Passed, Inconclusive and Failed are based on
TTCN-3’s verdict set [8], extended by the new test verdict Probably Passed. We
justify the extension of the classical verdict set to signal the existence of aspects
which cannot be evaluated due to the abstract nature of this approach.

A path that is classified as Passed fulfills all variable-verifying instructions
contained in the path based on its data flow. The classifications Probably Passed
and Inconclusive indicate that some information is missing. In the case of Incon-
clusive, these information can be added to the source models by the modeler.
Otherwise, this information cannot be provided in the case of Probably Passed,
as the exact runtime behavior of the system cannot be determined by the ATE.
We leave this feature over to code-based testing mechanisms. The last verdict
marks paths where the evaluation of variable-verifying instructions leads to a
negative result (false).
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M : R → V

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1, if ∃(f, h) ∈ R. f = c1 ∧ |R| = 1
v2, if ∃(f, h) ∈ R. f = di such that i ∈ {5, 6}∧

∀(f, h) ∈ R. f �= dj such that j ∈ {1, 2, 3, 4}
v3, if ∃(f, h) ∈ R. f = di such that i ∈ {3, 4}∧

∀(f, h) ∈ R. f �= dj such that j ∈ {1, 2}
v4, otherwise

The presented verdicts are concluded by the cases of the function shown
above. It is used to derive a verdict from a result set. Generally, a pessimistic
approach is chosen for the determination of verdicts. For example, a missing end
connection d4 does not necessarily lead to a failing test case, but considering the
displayed function, it is marked as Inconclusive, although the missing connection
has no effect on the data flow on the one hand. On the other hand, this feature
can significantly impact the runtime of the ATE, which may result in the test
case not being able to be analyzed by the ATE in the worst case. To prevent
such behavior, the classification process is based on very strict and pessimistic
rule set, in the sense that the worst possible result is always expected which
reflects the core classical testing approaches.

Table 1. Mapped results of the running example.

Rx R1 R2 R3 R4 R5 R6 R7 R8

M(Rx) v1 v1 v1 v1 v1 v4 v1 v1

Table 1 shows the results of determining the verdicts of the result sets of the
running example. Here, seven out of eight result sets are classified as Failed. The
remaining result set R6 derived from the path p6 is marked as Passed.

3.6 Result Selection and Test Report

The last step of the ATE is the selection of one result set as the final result of
the ATE. In contrast to the pessimistic approach of the verdict determination,
the process of result selection follows a more optimistic approach. Here, the
best result set is selected based on their classification. The best case describes
result sets that are identified as Passed, in contrast to the worst case, which is
a result set marked as Failed. In addition, test cases rated as Inconclusive can
be improved by enriching the model in that way that the test case may pass
later. Furthermore, test cases assessed as Probably Passed cannot be improved
by adding information. Therefore, we define that the verdict Probably Passed
represents a better case than the verdict Inconclusive. As a result, the verdicts
are weighted as follows: v4 > v3 > v2 > v1.

Σ : O → Obest :={Ri — ∃Ri∀Rj . i, j ∈ {1, . . . , |Plim|}
such that i �= j ∧ M(Ri) ≥ M(Rj) ∧ |Ri| < |Rj |}
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In general, the selection of the best result set as the final test report for the
test case is performed in two steps. For this purpose, the function Σ is defined
to select in the first step the happy cases Obest ⊆ O. Second, if |Obest| > 1 the
result sets R ∈ Obest which represents the path with the least steps is chosen as
the test report. In context of the running example O = ORE , Σ(ORE) = {R6}
with M(R6) = v4 which indicates that the test case presented as the running
example passed.

Subsequently, the test report reflects the faults and characteristics derived by
the ATE to give the modeler hints on possible causes. Therefore, our approach
can be seen as Gray-Box Testing as detailed in Sect. 1.

4 Qualitative Evaluation and Critical Discussion

Following the introduction of basics and implementation of the Abstract Test
Execution, the approach will be further evaluated qualitatively and critically
discussed in the course of this chapter. At the beginning the evaluation of Hage-
mann et al. [10] should be mentioned, which has already been carried out in the
context of the conference contribution. In the course of that evaluation, excerpts
from the Automotive Light Control System, originally utilized by Peleska et al.
[22], were used to demonstrate the proof of concept. There, a wide variety of
defects were introduced into the model through a mutation analysis. Then test
cases capable of detecting these defects were tested against the mutated system
models using our approach. As a result, this demonstrated the ability of the
approach to verify test cases against the system model in an abstract way. This
was subsequently done for other parts of the system model, which supports the
drawn picture. The same approach was applied to the Ceiling Speed Monitoring
model of the University of Bremen, again showing the same possibilities and
limitations [3].

In order to provide a meaningful extension of the previous findings on our
approach to Abstract Test Execution, a qualitative evaluation is carried out.
Here, the results gathered so far are compared to the state of the art and put
in relation to the technical background of the approach. In order to be able to
conduct such a discussion in a reasonable manner, a brief overview of the state
of the art is given in advance, which should be seen in relation with the content
of the section on related work.

In today’s software development, different kinds of tests are performed
depending on the applied development process and the desired level of inte-
gration of the software. Depending on the integration level, different knowledge
bases are assumed and usually special techniques are used to derive possible
test cases from development artifacts. The palette here ranges from black box
to white box procedures. In order to execute such test cases, the SUT must be
available in a (partially) executable version. Depending on the test level, con-
cepts such as mocking or stubbing are often used to simulate system parts which
are missing or lie outside the development context. In contrast to this, the con-
cept of Abstract Test Execution, where only model artifacts are used to derive
the test results, is used.
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Fig. 9. Path space limited by rule one.

Based on the findings in Sect. 3, we identify that the limitation of path space
by merging rules and subsequently their potential impact on the test report
needs to be discussed. For better understanding, a path space is generated from
the minimal System Model Init → [S1]

x−→ [S2] and Test Model Init → [TS] →
(V P ) → End. The System Model consists of the two system nodes S1 and S2

with the exception that S2 is guarded by x. The Test Model includes the node TS
as a Test Step and the node V P as a Verification Point. The representative and
slightly limited tree of paths is shown in Fig. 9. It is derived by taking merging
rule one into account. This fundamental tree of paths represents all cases that
could come into play. The included paths can be identified by a letter attached
to the end node of each path. In addition, paths that violate the remaining rules
are flagged by the numerical identifier of the violated rule. Since the first rule
guarantees the consistency of the test cases, the importance of this rule does not
need to be discussed further.

The second rule is another approach to reduce the level of abstraction and
to bring the approach of ATE more in line with classical testing approaches.
Unlike rule one which focuses on the sequence of nodes, this rule focuses on the
sequence of edges or guarded edges in particular. From the viewpoint of classical
testing, stimuli applied to the system are used to trigger a change of the system
state. In case of ATE, such stimuli are expressed as Test Steps. Furthermore,
the change of system state is usually bound to conditions. The Test Steps are
then used to fulfill the conditions bound to a specific system state to change the
system state to that state. Such conditions are modeled by enriching edges of the
System Model with instructions. Previously, we referred to such enriched edges
as guarded transitions or Guards. Unguarded edges can therefore be ignored,
since the change of system state is not bound to any condition. Subsequently, if
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a guarded edge is inserted before the Test Step that simulates stimuli required
to satisfy the guard of the edge, the path can never be fulfilled as represented
by the paths b and c. In addition, paths e and h exist where the guarded edge
is inserted before the Verification Point VP. In this case, the paths are able to
meet the requirements of the test cases, since instructions contained in guards
generally cannot change the data flow. However, the paths g and i exists which
are not excluded by appliance of rule two. As a result, the paths e and h can be
excluded without harming the final result of ATE.

Since test cases in which a Verification Point can be fulfilled without the
use of system nodes can be considered a bad test design, such test cases can be
excluded. Structurally, this can be done by forced insertion of Verification Points
after nodes of the System Model. For this purpose, rule three is conducted. The
enforcement of this rule prevents verification points from being injected between
the initial node and the first system node during merging process. Generally,
this leads to the path space always being shortened by exactly one path. In case
of the generic path space, the path j is therefore excluded.

The fourth and last merging rule excludes the most paths from the path
space shown in Fig. 9, but may affect the outcome of the ATE as described in
Sect. 3.4. In this context, this rule has the power to exclude six of the represented
ten paths. In general, rule four is used to dictate the structure of segments. A
segment consists of system nodes and Test Steps followed by a Verification Point.
This rule forces test steps of a segment to be inserted before the system nodes of
the segment. This results in the structure that a segment starts with Test Steps
followed by system nodes and ends with a Verification Point. This change is gen-
erally not problematic and mimics a more natural approach of testing. However,
if more than one guarded system node is included in the segment the analysis
may inadvertently fail. We justify this rule with the abstract character of this
approach and the resulting incompatibility with time-dependent system states.
Since Test Steps simulate stimuli to trigger system changes that are inseparably
linked to time aspects, the concept of the over-assignment of variables is intro-
duced to overcome the incapability of temporal considerations. Here, variables
can have more than one valid value during segment analysis as presented in
Sect. 3. This solves the problem of temporal incompatibility, since the needed
stimuli to solve a test case are delivered at the right time, but due to the uncer-
tainty factor, test cases solved with the help of such variables are marked to
maintain the pessimistic evaluation of the ATE approach.

In conclusion, the limited path space Plim of the generic Test Model and
the generic System Model holds the two paths g and h which underlines the
possibility that the instruction of the Verification Point VP verifies either the
system state S1 or the system state S2.

5 Related Work

In the context of test execution at model level, the execution of the modeled
functionality itself plays a central role. This was originally applied in the engi-
neering context and is known as Model-In-The-Loop Testing [24]. Furthermore,



294 R. Pröll et al.

it is important to be able to manipulate the execution of the model with stimuli,
as well as to verify the system state (internal or external). In literature, there
are many ways of doing this, but there are some parts that differ significantly
from our approach.

First, approaches are discussed that consider the model artifacts as input and
convert the model into code for execution. For example, this is the basis for the
simulation/execution of Matlab/Simulink models, which are therefore converted
into C code [6,14]. The same applies to the approach of Anlauf et al., which is
based on so-called Extensible Abstract State Machines [1]. In comparison to the
approach presented, however, this type of execution is not applicable to other
original models. Zentai et al. have implemented this in a similar way in the
context of the MDA-oriented test methodology using the IBM Rhapsody tool
and its simulation capabilities [29]. This mitigates the above mentioned problem
of input models, but still requires the detour via code representation.

A similar variant for the execution of model artifacts is given by the Founda-
tional Subset for UML (fUML), which represents a subset of UML that has been
substantiated with clean semantics [18,20]. In particular, execution engines have
been implemented for this modeling language, which no longer requires upstream
translation into code artifacts [9]. This was implemented by Arnaud et al. and
extended by more formal concepts like symbolic execution [2]. Similarly, Iftikhar
et al. introduced a virtual machine for the execution of timed automata [12].
The disadvantages of such approaches are the same as those mentioned above.

In the context of execution engines, there are approaches that rely on model
interpreters. In most cases, a internal model artifact is created for this pur-
pose, which is derived from the input model. Within the MoMuT::UML project,
for example, UML models are translated into Object Oriented Action Scripts
(OOASs) for the purpose of mutation analysis, which in turn are animated by
an interpreter [16]. The test cases are evaluated in this context by means of
conformance checks on these representations. This evaluation is realized in par-
ticular by formal approaches, which in turn entails limitations.

In contrast to these approaches are the formal verification approaches, which
are not the same as executing and testing a SUT, but have a similar goal. In
particular, such approaches place special demands on the input models, which
usually severely limits their applicability. Various model checking approaches
have been presented for decades, but most of them are strongly optimized for the
respective application context [4,11,12,17]. At this point, again, our presented
approach is much more flexible and does not require the detailed knowledge of
formal technologies.

6 Conclusion and Outlook

Within the scope of this work, we have presented a promising approach to the
challenges initially displayed. Especially the ability to perform tests in early
phases of model-centric software development represents a significant improve-
ment. Based on the presented foundations regarding modeling and analysis-
specific constructs, the concept of Abstract Test Execution was presented, which
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performs a comprehensive analysis of the System Model in the context of previ-
ously generated test cases. In particular, the concept behind the integrated eval-
uation of control and data flow properties was presented in detail. The results
of this analysis can be compared to a classical test report. In contrast, the range
of verdicts has been extended to explicitly represent novel evaluation results in
the modeling context and to introduce no room for interpretation within the set
of possible results. In the course of the discussion on the presented approach,
the meaningfulness of the concept as well as its limitations were particularly
emphasized.

At the same time, these limitations indicate possible starting points for
improvements and extensions of the current approach. On the one hand, the
approach could be extended by concepts that allow time considerations to be
carried out on the basis of runtime estimates. For this purpose, however, the
model has to be enriched with information or at least given access to data about
execution times on the target platform or target technology used. However, this
is in some ways contradictory to our overarching goal of applying the approach
as early as possible in order to receive early and automated feedback.

On the other hand, the approach could be improved in such a way that not
only a set of test cases is evaluated against the System Model, but a complete
test model. From a technical point of view, this could result in a significant
performance gain, since test sequences that appear in several test cases could be
evaluated once.

An abstract view on the presented approach could be a possible development
towards an automated decision support for model-centric software development
approaches. Based on the collected test results of the Abstract Test Execution,
this could for example include concrete suggestions for improving or extending
the current model.
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LNCS, vol. 7019, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24580-0 11

23. Planning, S.: The economic impacts of inadequate infrastructure for software test-
ing. National Institute of Standards and Technology (2002)

24. Plummer, A.R.: Model-in-the-loop testing. Proc. Inst. Mech. Eng. Part I: J. Syst.
Control Eng. 220(3), 183–199 (2006)

25. Pretschner, A., Philipps, J.: 10 methodological issues in model-based testing. In:
Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-
Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 281–291. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11498490 13
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2 ITA, São José dos Campos, Brazil

Abstract. Use case driven analysis is the corner stone of software and
systems modeling in UML and SysML, respectively. A use case diagram
identifies the main functions to be offered by the system and showcases
the interactions between in-system use cases and out-system users. Iden-
tifying and organizing use cases requires good abstraction skills. There-
fore, many students and industry practitioners face methodological prob-
lems in writing good use cases. Many books and tutorials have addressed
the subject. Nevertheless, integration of use case elaboration principles
into a UML or SysML tool still remains an open issue. This paper pro-
poses solutions and discusses implementation in a methodological assis-
tant named UCCheck. The latter helps use case diagrams designers to
rely on formalized rules and reuse of previous diagrams to create and
review their use case diagrams. Implemented in Python, UCCheck is
interfaced with the free SysML software TTool and with Cameo Systems
Modeler, leaving doors open for other UML or SysML tools.
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1 Introduction

Adoption of Model-Based Systems Engineering approaches is a challenging
issue for systems and software manufacturers. Implementing a MBSE approach
requires working on a triptych (language, tools, method). Ranging from formal
methods to diagrammatic notations such as UML [28] and SysML [27], many
papers have discussed model simulators, formal verification tools, and code gen-
erators. By contrast, little work has been published on tools that may assist
UML and SysML diagrams designers in implementing a method.

Experience in teaching UML and SysML [9,24,37] has confirmed that mod-
eling requires good abstraction skills. Considering traditional V life cycle, this
statement particularly applies to analysis when the ‘What the system should
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do’ question must be answered. The question remains unanswered as long as
the high level functions and services to be offered by the system are not defined
at the right abstraction level. This is a challenging issue for use case diagram
designers.

The art of writing good use case diagrams has been discussed by many
authors (see, e.g., [2,6,9,14,21]). A use case diagram could be good from a
syntactic semantic point of views in regards of its compliance with the UML or
SysML standard. The soundness of use case may further be assessed in regards
of methodological guidelines applied by the team in charge of elaborating the
UML or SysML models. Use case diagrams additionally impact other diagrams,
particularly sequence and activity diagrams that enable documenting use case
using scenarios and a flow-chart fashion, respectively.

How to assist SysML and UML diagram designers in writing good use case
diagrams is the subject of this paper. Contributions include a set of rules for
writing good use cases, solutions for constructing use case diagrams relying on
formalized rules and repositories of previously designed use case diagrams, and
solutions for checking use case diagrams a posteriori. A methodological assis-
tant named UCCheck [30] implements the proposals elaborated in this paper.
UCCheck is coded in Python and interfaced with free software TTool [36] from
Telecom Paris and Cameo Systems Modeler from Dassault Systems [4].

This paper extends [30] to provide the reader with a more exhaustive list
of guidelines for use case diagram construction. This paper further details the
structure of the methodological assistant, and provides a complete depiction of
the functions implemented by UCCheck.

This paper is organized as follows. Section 2 identifies difficulties in writ-
ing good use case diagrams. Section 3 discusses the design and implementation
of UCcheck. Section 4 discusses a case study. Section 5 surveys related work.
Section 6 concludes the paper and outlines future work.

2 Design Guidelines for Use Case Diagrams

OMG (Object Management Group) and INCOSE (International Council on
Systems Engineering) have jointly defined SysML, a System Modelling Lan-
guage that is now an international standard at OMG [27] and one of the pillars
of Model-Based Systems Engineering (MBSE). The SysML standard at OMG
defines a notation, not the way of using it, leaving doors open for application
to various domains, e.g. real-time systems, and to the methods or processes
practitioners of these application domains are familiar with.

The way of using SysML has therefore regularly questioned in the literature.
Surveying all contributions goes beyond the scope of this paper, which focuses
discussion on use case diagrams. The latter are the corner stone of use case
driven analysis, a fundamental step in the method associated with UML and
SysML.

Despite of its early introduction in the UML standard [28], use case diagrams
have often remained misunderstood, as testimonied by teaching experiences [24].
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This is partly not surprising. Unlike state machines diagrams that can be ani-
mated by a simulator and therefore debugged, use case diagrams are indeed
developed in context of uncertainty. UML and SysML tools usually check use
case diagrams against elementary syntax errors but do not supply any assistance
for appreciating the abstraction level and pertinence of the functions modeled
by the use cases. Nor these UML and SysML tools help appreciating the rele-
vance of associations linking pairs of use cases or associations linking use cases
to actors modeling the environment of the system.

The need therefore exists for guidelines and tool assistance. These issues are
discussed by the remainder of the paper.

2.1 Use Case Diagrams

A SysML (resp. UML) use case diagram identifies the main functions and services
to be offered by a system (resp. a piece of software). A use case defines the
interactions between a system (resp. software) to be developed and a role external
to that system (a human or another external system). Use case analysis ([19])
plays an important role in requirement analysis in modern software and systems
engineering.

A box defines the boundary of the system or software, and names it. On
Fig. 1 the system is named Real-Time System Controller. The ellipses depict
the use cases that contain the names of the functions or services to be offered.
On Fig. 1, Perform Computation is a use case.

Fig. 1. Source [30]: Use Case Diagram for real-time systems.
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A use case diagram defines relations between pairs of use cases. On Fig. 1,
the extend relation makes InformUsers and StoreResults an option of
PerformComputation. The include relation from PerfomComputation
to AcquireInputs states each computation demands to acquire values from
sensors.

A use case diagram also shows the system or software interacts with its envi-
ronment, the latter being depicted by a set of actors. On Fig. 1, a link connects
use case AcquireInputs to actor Sensors.

2.2 Rules and Guidelines for SysML/UML Use Case Diagrams

This section summarizes the rules and guidelines that will be addressed by the
methodological assistant.

Meaning of Actors and Use Cases. Actors and use cases should respect the
following semantic rules [16,22,28]:

– Actors represent a particular role that interacts with the system, not a specific
physical entity. Thus, a physical instance can play multiple roles.

– Actors must belong to the external environment, that is, they cannot be part
of the system being developed.

– Use cases must represent a high-level functionality, defined as a function that
produces an observable result to the actor.

– Use cases should state the functions performed by the system, not the func-
tions performed by the actors.

Names of Actors and Use Cases. According to SySML/UML specification,
actors and use cases names must obey the following characteristics [28]:

– Names must start with a capital letter.
– Names must be unique and not duplicated in the diagram.
– Actors name must contain a common noun since they represent roles.
– Use cases name must start with a verb since they represent functionalities.

Layout. To maintain consistency with the definitions presented in Sect. 2.2, the
layout and position of the elements on the diagram must observe the following
principles [8,16,23]:

– The diagram should have a border to distinguish what is part of the system
and what is not.

– Actors must be positioned outside the border, as they are external to the
systems.

– Use cases must be positioned inside the border, as they represent functions
performed by the system.

– Primary actors, whose goals are directly fulfilled by the system, should be
positioned to the left of the border.

– Secondary actors, who support the system or who indirectly benefit from it,
should be positioned to the right.
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Relationships Between Elements. Elements are linked by relation-
ships, which can be of four types: association, include, extend and
generalization. Globally, relations in the diagram must comply with the sub-
sequent rules [18,28]:

– There cannot be isolated elements in the diagram.
– Elements cannot be related to themselves, that is, self relationships are not

allowed.
– Between two elements, there must be only one relation, that is, double rela-

tionships are not allowed.
– Each relationship can only connect elements of a certain type:

• Association relationship can only be defined between one actor and one
use case.

• Include and Extend relationships can only be defined between two use
cases.

• Generalization can be defined between two actors or between two use
cases.

– Generalization must be acyclical, irreflexive and transitive.

Meaning of Relationships. In order to model a correct use case diagram,
it is essential to properly understand the difference in meaning of the three
relationships that can occur between two use cases [28]:

– Include relationships link one base use case, called including use case, to an
included use case. The latter represents part of the behavior of the base use
case. Consequently, the functionality expressed by the base use case always
needs the functionality of the included use case to happen.

– Extend relationships links one extending use case to an extended use case.
The former represents an additional behavior of the extend use case, that is
necessary under certain conditions. Therefore, the extended functionality can
happen without the extending one.

– Generalization relationships links one general use case to generalized use
cases. The latter inherit all the behavior of the general use case and is
expanded by supplementary information. The additions express a way that
the base functionality can be performed.

Unnecessary Relationships. Due to the transitive nature of the relationships
between use cases and of the generalization between actors, one should be careful
not to add unnecessary relationships to the diagram. This increases the diagram’s
complexity and the difficulty of understanding. With respect to unnecessary
relations, guidelines are as follows: [18].

– An actor that is associated to a use case does not need to be associated to its
refined use cases (included, extending or generalized). The communication is
implicitly stated.
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– Based on previous item, if an actor is associated to all refined use cases
of a base use case, it is recommended to associate the actor to the base
functionality instead.

– A generalized actor does not need to be associated to the use cases already
linked to the general actor from whom he inherits his behavior.

Warning Patterns. Holt [16] presents three patterns that may indicate incom-
pleteness or incorrectness in a use case diagram and should be observed carefully.

– An actor associated to use cases may be too high level, perhaps representing
multiple rules. It is suggested to decompose its roles and replace it with the
new actor.

– Two actors associated to the same set of use cases may be representing the
same interaction with the system. Perhaps, specific instances of stakeholders
were used. If this is the case, they must be replaced by generic roles.

– A use case associated to all actors may be too high level, representing on its
own the whole functionality of the system. It is suggested to decompose it
into other use cases.

Coherence. One of the benefits of the model-centric approach is the ability to
keep a traceability across the different levels of abstraction of a model, from the
requirements to the final product. The traceability is ensured with coherence
rules. For the use case diagram, the following has to be observed [16]:

– Each use case must be documented by at least one associated scenario, either
by means of a textual description, a sequence diagram or an activity diagram.

Combining the previous rule with the possible relationships between use
cases, the following can be proposed:

– Included use cases should participate in all sequence and activity diagrams
used to document the including use case, since they represent part of the
behavior.

– Extending use cases, on the other, have an optional behavior. Therefore, there
must be at least one scenario for the extended use case where conditions are
not satisfied, and the extending use case will not take part in.

– Refined use cases (included, extending or generalized) not be documented
without their based use cases.

2.3 Generic Use Case Diagram

To create a generic use case diagram for a large variety of systems, one needs to
keep in mind that:

– A system has a nominal behavior.
– A system may enter downgraded modes.
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– A system must run a set up procedure before starting its execution.
– A system must run a shutdown procedure before being moved or updated,

and more generally maintained and serviced.
– Maintenance is a normal concern when one is designing a system.

Relying on previous principles, Fig. 1 depicts a generic use case diagram for a
real-time system controller that receives inputs from sensors and triggers output
devices, part of the latter being in charge of informing the user and the supervisor
of the system.

The use case diagram in Fig. 1 depicts the set-up, shutdown and maintenance
phases that are usually concealed by the use case diagrams presented in papers
or books addressing real-time systems modeling. One may note that Fig. 1 does
not mention degraded modes: they will be addressed in sequence or activity
diagrams associated with the use case diagrams. These documentation-purpose
sequence and activity diagrams are not presented in this paper. Discussion is
limited on use case diagrams for themselves.

2.4 Difficulties for Beginners

SysML textbooks and tutorials usually recommend a four-step process to create
a use case diagram:

1. Define the boundary of the system;
2. Identify the actors as external entities that interact with the system;
3. Identify the use cases from the actors’ goals;
4. Establish the connections between actors and use cases, and set up relations

between pairs of use cases.

This methodology is usually explained through an example for a simple sys-
tem [38]. Such explanations help beginners to see clearer, but often when in
front of a screen or in front of a white piece of paper, beginners have difficul-
ties to get things started. Studies conducted with students allowed to identify
difficulties with choosing the right type of relationship, defining the direction of
the extend relationship and proper naming of elements [6,16,21]. These results
were confirmed by our own experience.

Maintaining the use cases at the right level and not confusing high-level func-
tions and elementary actions is a major difficulty. When thinking of a hot drink
distribution system, for example. One may think of high-level functions such as
‘selection of hot drink’ with lower-level functions such as ‘establish contact with
the credit card server at the company’. Indeed such a confusion might lead to an
unbalanced design of the system, on one hand looking at main functions and at
the other hand looking at implementation details. The structure of the use case
diagram induces functional decomposition and consequent insertion of low-level
functions that do not generate value for the actors [16].

Another important problem for the students is to appreciate what is supposed
to be in the box and what is supposed to be outside of the box (i.e. what is part
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of the system to be developed and what is an external role). Thinking again of
the hot drink distribution system, typically the preparation of a hot drink may
be part of the design, but the way the credit card company accepts or not the
requested payment is not. This notion has shown to be a real blocking point,
since students sometimes feel that they need to be able to design all in the same
diagram. This point is related to the basics of design, but the abstraction level
may pose problems of understanding, in particular if different subsystems are
developed. In such cases, a beginner may mix up internal and external roles.

Other common beginners’ errors may include the absence of verbs in use
case names and the use of proper names for actors rather than a common name
representing a role.

With experience, the identification of use cases becomes easier as the designer
can rely on past models. One way therefore to help beginners is to provide various
examples of use case diagrams. However, the number of examples needed to cover
multiple domains may be very large. A better solution is to provide generic
diagrams, which can be adapted to similar systems. These diagrams can be
designed by experts based on experience, and then be provided to beginners to
serve as guides. An assistant for use case diagrams should manage a repository
of example diagrams, helping to retrieve and customize them. In addition, an
assistant for use case diagrams should not only guide the identification of actors
and use cases, but also verify the diagram compliance with SysML/UML syntax
or semantics, and systems engineering guidelines.

3 Methodological Assistant

3.1 Overview

This section describes the two assistance strategies that were explored in order
to help the design of better use case diagrams.

The first proposition is named a posteriori, since it focuses on improving
use case diagrams previously designed in an external SysML modeling tool. The
a posteriori assistant is built onto the verification module. It checks diagram
compliance with SysML/UML rules and modelling guidelines. In addition to the
basic checks typical of Type Checkers, the assistant manages to address semantic
compliance through a user interface. In other words, the assistance helps the
user to decide whether the modeled elements comply with SysML definitions
or not. The goal was to address the most common errors committed by SysML
practitioners, in particular by beginners.

The a posteriori assistant helps to reinforce SysML/UML concepts and
improves an previously made diagram. However, it does not address difficulties
that arise when creating a diagram from scratch. One of the main difficulties for
beginners is to identify the actors and use cases at a good level of abstraction,
that is, use cases that provide value to actors.

The second proposition, named a priori, supports the creation of correct
use case diagrams. The a priori assistant attempts to reproduce the analogical
reasoning employed by experienced system architects. The user departs from a
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generic diagram, created by experts, and only has to identify the corresponding
elements for a particular system. The program is built onto the creation module
and uses continuous checking to prevent errors during design. Additionally, the
insertion module was developed to store the generic diagrams in a database.

The methodological assistant is developed using Python and the Tkinter
library for user interfaces. The rest of this section details the different mod-
ules of the tool, where each module corresponds to a specialized user interface.
Figure 2 summarizes the main steps of each module and the common function-
alities between them.

3.2 Verification Module

The Verification module takes a selected use case diagram in XML format. It
identifies its elements and verifies them against SysML rules and guidelines.

Fig. 2. Structure of the methodological assistant.

A first procedure before analysis is to extract the diagram elements from
the XML file and store the relevant information in an object-oriented structure.
In the structure conceived, the diagram is represented as a class that possesses
components and connectors. Components have as attribute: name, type and
position in the diagram, given by Cartesian coordinates. Actors and use cases,
for example, are represented as components. Connectors, on the other hand, have
name, type and references to each one of the two components being linked. They
represent association, include, extend and generalization relationships. The name
of the diagrams in the model and their respective types is also extracted. They
will be used to ask the user about the linkage between use cases and scenarios.
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The objective of the pre-processing step is to achieve independence from the
modelling tool. Up to now, the module accepts XML files generated by two
modeling tools: TTool [36], a free software developed by Telecom Paris, and
CAMEO Systems Modeler [4], a tool developed by NoMagix, now a subsidiary
of Dassault Systèmes. To extend the assistant to a new SysML/UML, one needs
only to write the script that translates the XML file to the class structure.

Rules and guidelines addressed by the verification module are summarized in
Sect. 2.2. Some of the aforementioned items can be verified automatically using
only the information available in the diagram and in Python libraries. Each of
these points was addressed by its proper function. Other rules require extra user
information, which is requested through an interface. The interface is also used
to exhibit the analysis results and improvement suggestions. The verification
strategy for each group is detailed below.

Initial checks of actors and use cases names are performed automatically by
the assistant through Python build-in string functions. These include verifying
that names begin with capital letters and that they do not appear more than
once in the same diagram.

With the help of Python libraries for natural language processing, it is possi-
ble to inspect the grammatical class of elements names. Actors should be named
by common nouns. Use cases should start with a verb. The possible word class is
obtained through nltk library, that uses Wordnet lexical database as reference.
For actors’ names, only the last word is analyzed, since we suppose that the others
are qualifiers. Besides, this procedure helps to identify the possible use of proper
nouns to nominate actors. Generally, these words will not be found in the Wordnet
database.

Furthermore, the lexical database can be exploited to evaluate the semantic
uniqueness of the actors’ names. First, the assistant shows the possible defini-
tions offered by the library for each actor’s last word. Then, the user selects the
most appropriate one. Finally, the assistant calculates the semantic closeness of
the definitions though the Leacock-Chodorow similarity function. Hence, it is
possible to warn about the presence of actors who perform the same role, or
similar roles, even if their names are not identical.

Only with the information available in the diagram, it is not possible to verify
if actors and use cases follow the meaning expected by the modeling language,
that is, whether actors represent external roles and use cases represent high-level
functions of the system. These points require external user confirmation through
checkbox on the interface. Although prone to errors, the questions encourage user
reasoning and reinforce SysML language concepts.

Likewise, initial checks on relationships structure is done automatically only
with the information available in the diagram. These include detection of isolated
elements, self/double relations, type improperness, cyclic dependence (suggest
unnecessary relationships) and the mentioned warning patterns. The verification
functions exploit the similarity between a use case diagram and a graph. It thus
becomes possible to employ network, a Python library to analyze graphs and
networks, to identify cycles and obtain the descendants of a certain node.
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The semantic check of the relationships is also user-dependent. The strategy
consists in asking the user what idea he/she wanted to convey with the relation-
ship. For each pair of refined use case to base use case, the user is asked if the
refined one is needed every time the base use case happens, is optional or is a spe-
cialization, or type, of the base use case. These ideas correspond respectively to
the include, extend and generalization relationship. The assistant compares
the user’s response with the type used and warns in the event of a mismatch. The
rationale of the proposed strategy is to not use directly the SysML/UML nomen-
clature, which poses problems for beginners. Instead, the questions explore to
idea behind the relationship type, which is less prone to confusion and helps to
reinforce nomenclature learning.

The layout inspection follows a similar approach. By comparing the position
values in Cartesian coordinates, it is possible to automatically check if actors
and use cases are positioned correctly in relation to the border. However, aspects
related to meaning, to mention the positioning of primary or secondary actors,
require asking the user what the classification of each actor is. The assistant then
checks the consistency between the position and the classification and warns in
case of mismatch.

Lastly, the coherence rules state that, for a complete model, each use case
must be documented in at least one scenario. Automatically, it is possible to
identify the other diagrams available in the model. Then, the user is required to
link the use case to the corresponding documentation, which can be a sequence
diagram, an activity diagram or a textual description. Additionally, the connec-
tion must be coherent with the relations between pairs of use cases. For example,
an included use case should appear in all the scenarios of the including use case,
because there is a necessary relation between the two. On the other hand, an
extended use case should only appear in some specific scenarios. Together, these
checks reinforce the completeness of the model and the meaning of the relation-
ships between use cases.

In general, the points that demand user information are those that analyze
semantic aspects. The assistant considers the user’s responses to update the
status of each check, so that the user can know what remains to be verified and
where the error is. The details of the interface and the observations made by the
assistant are presented through a case study in Sect. 4.1.

3.3 Import Module

The Import module receives a use case diagram in XML format and stores its ele-
ments into a relational database. First, the same pre-processing script described
in Sect. 3.2 is applied to interpret the XML file. Then, the queries to add new
diagrams to the database are based on the class structure, and thus inherit the
modeling tool independence. Similarly to Sect. 3.2, the module accepts, by now,
files from TTool and from CAMEO Systems Modeler. Any new transcription
script will be compatible with both the Verification module and the Insertion
module.
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A graphical interface asks the user whether the inserted files are references
or examples. A reference is defined as a general diagram for a group of similar
systems and can be used to guide the conception of new diagrams. An example
is a diagram for a specific system, which must be associated with the name of a
general group.

The Python library sqlite3 is used to build the database and execute
queries. The communication with the database uses the Structured Query Lan-
guage (SQL). The queries are used to insert a new file to the database, and to
recovers its elements when requested. Moreover, the benefits of working with
database are scalability, i.e. a relation database is able to handle a large number
of diagrams, and the opportunity to execute more complex queries. For instance,
it is easy to state queries to find diagrams that contain certain actors or use cases.

3.4 Creation Module

The Creation module guides the user on the identification of actors, use cases and
relationships based on a reference use case diagram chosen from the database.
A graph is then used to represent the new diagram designed.

In the first place, the user must select a reference diagram from the database.
To help with the selection, the interface displays the name of the example systems
stored in the database and associated with each generic group.

The assistant automatically retrieves the elements (actors and use cases) in
the reference diagram. After that, the user must choose which elements he/she
wants to reuse and shall rename them according to the system being modeled.
The new name is inputted in an entry widget and checked against the naming
conventions detailed in Sect. 3.2 before being accepted.

One actor in the reference diagram can give rise to multiple actors in the
new diagram. In addition, the user can enter other actors that he/she considers
not to be on the suggestion list. Regarding use cases, each suggestion can only
generate one new element. In particular, the use case suggestion list is optimized
based on to the chosen actors. Only use cases that communicate with at least
one of the selected actors are suggested to the user.

After actors and use cases identification, the program recovers the existing
relationships in the reference diagram between the selected elements. Then, it
depicts a graph representation of the designed diagram, with its elements and
connections. The user may add other connections manually, and the figure will
be automatically refreshed. Only relationships that respect the rules detailed in
Sect. 3.2 are allowed by the assistant.

Next to the graph representation, the assistant points out improvement sug-
gestions and errors to be revised. This may happen when an element is created
without referencing any other in the diagram. As a consequence, no relationship
may be automatically recovered. The wizard shall warn isolation and request
manual connection. Another example occurs when the assistant identifies two
actors associated with the same group of use cases. It then asks whether they
cannot be grouped into one common general actor.
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4 Case Study

4.1 A Posteriori Assistance

In this section, the functionalities and benefits of the verification module are
illustrated through a case study for an agricultural drone. The first version of its
use case diagram, which is submitted for examination by the module, is shown
in Fig. 3. It contains purpose-made errors that will by identified by the assistant.

Fig. 3. Source [30] - Initial use case diagram for an agricultural drone.

Figure 3 depicts a system with two main functions: control drone and
spread pesticides. These main use cases are refined with extending and
included use cases. The actor Buyer is interested in the two main functions.
The actor Farmer is interested in pesticide application. The actor operator is
responsible for controlling the drone. An actor named Customer can be seen
isolated in the diagram.

To initiate the verification process, the first step is to select the XML file
that contains the diagram to be analyzed. Only files in which the assistant was
able to identify a use case diagram are accepted. It will then extract the relevant
elements. In the case of multiple use case diagrams in the model, only one can be
checked at once. Section 3.2 explains how to extend the assistant for unsupported
modelling tools.
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The interface of the verification assistant is organized into tabs, as shown
in Fig. 4, each tab for one group of rules. The General tab overviews the use
case diagram and the points to be verified. These points are structured in a
checklist that delineates the step-by-step verification and helps to quickly locate
the mistake. Additionally, a table summarizes the quantities of each element in
the diagram, among actors, use cases and relationships. This table helps the
user the level of abstraction of the diagram. Having more than 20 use cases may
indicate the representation of too low-level functions.

The next two tabs are focused on actors and use cases. Figure 4 depicts the
interface designed to collect user information and show the results of the actor’s
checks. Initial checks mentioned at Sect. 3.2 are performed automatically by the
assistant and non-conformities are indicated with X marks. The checkboxes on
the right are used to ask the user if the elements comply with the language
definition – actors should represent external roles and use cases should express
high-level functions that produce an observable result to an actor. The assistant
warns if one of the checkboxes is not selected. Finally, the Check correlation
button launches the semantic correlation analysis based on Wordnet database.
The use case check tab follows a similar structure, without the correlation func-
tionality.

Fig. 4. Source [30]: Extract of Actor Tab for verifying the name and meaning of the
actors.

For our case study, it was possible to identify syntactical errors. For instance,
actor operator does not start with a capital letter. Further, use case Adjustment
in strong wind must be rephrased with the verb Adjust. The program also
pointed out that the actor Customer is isolated in the diagram.

Besides, through answering the questions, the user noticed some incorrect use
cases: Control valves was too low-level and could be removed, and Control
drone was in the point of view of the user and should be rewritten as the
real function performed by the drone, which is Change direction by remote
control. An interface with guided questions allows the assistant to go beyond
a type checker.

The result of the semantic analysis of actors’ names is presented through a
heatmap and colors should be interpreted qualitatively. The more intense the
color, the more similar the two words. Results in the principal diagonal are not
relevant, because they represent the correlation of a word to itself. For our case
study, a high correlation is seen between the names Customer and Buyer in
Fig. 5. Since the actor Customer is also isolated, one could hypothesize that the
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user changed the name of actor from Customer to Buyer but forgot to delete
the old one. In this case, the correction applied is to remove the isolated actor
from the diagram. However, in other situations, the problem may be a missing
relationship. The user must decide the appropriate actions to be taken, supported
by the assistant’s information.

Fig. 5. Semantic similarity between actors names. High correlation between Customer

and Buyer indicate that they may represent the same role.

The Relationships tab addresses the correctness of the relationships
between elements of the use case diagram. It is possible to automatically ver-
ify some basic properties, such as no double linkage between the same pair of
elements, no cycles, and correct type of elements for each type of relationship
(for example, an association can only be defined between one actors and one
use case). These checks guarantee no relationship was left unintentionally and
enable further verification.

For our case study, it was identified the incorrect use of an association to
link two use cases. This relation needs to be changed to either an include, an
extend or a generalization relationship - the only possibilities between use
cases. The user chooses to change the association to an include relationship.
Then, he/she must correct the diagram on the modeling tool and resubmit the
new XML file to the assistant.

The correctness of the basic properties allows verifying whether the type of
relationships between use cases agrees with the desired meaning. The interface
designed for this analysis is portrayed in Fig. 6. Each relationship is written
from the main use case to the refined use case. For each pair, the user must
answer whether it is a necessary, an optional or a specialization relation, and the
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assistant warns in case the answer does not correspond respectively to include,
extend or generalization relationship in the diagram. The user is also asked if
the relation is written in the correct direction or not, that is, from the broad one
to the specific one. If the user identifies that the use cases names do not follow
the desired order, it implies that the corresponding relationship was drawn in
the wrong direction.

Fig. 6. Source [30]: Extract of Relationships Tab for verifying connection properties.

For the diagram in Fig. 3, the user identifies two reverse relations, and one
incorrect meaning: the use case Return to base should be rewritten to rep-
resent an optional action, performed only in case of bad weather conditions.
With the right set of questions, the assistant reinforces inspection on commonly
misunderstood points.

Furthermore, the tool contributes for a cleaner diagram by identifying auto-
matically the unnecessary relations described in Sect. 2.2. No unnecessary rela-
tionship was found in our case study.

Finally, by analyzing relationships, the assistant may identify the warning
patterns explained in Sect. 2.2. Actors and use cases that are connected to all
elements may be too high-level. Actors that are associated to the same set of
use cases may be redundant, which means they represent similar roles.

For our case study, the assistant identified that actor Buyer is a too high-level
one. This means that either the diagram conveys the point of view of Buyer and
the latter should not appear, or that Buyer represents multiple roles and should
be decomposed, or that some use case is missing. A decomposition of actor Buyer
would lead to actors that are either similar to Farmer or to Operator, in the
sense that they would be connected to the same set of use cases. Thus, the user
finds out that actor Buyer actually combines two roles already in the diagram
and can be removed.

The layout tab checks for the presence of a border. Moreover, it veri-
fies whether the actors are positioned according to categorization into primary
actors, whose goal is fulfilled by the system, and secondary actors, who support
the system. Although this actors’ classification is not a language standard, it
is a common practice among SysML/UML community that conveys additional
information. This classification requires user input: for each actor, the user must
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select whether they are primary or secondary actors. No error was identified for
our case study.

The coherence tab certifies that each use case is documented by at least
one scenario. This is accomplished by asking the user to associate each use
case to the corresponding detailed description, which can be done through a
textual description, a sequence diagram or an activity diagram. The names of
the sequence and activity diagrams comprised in the same XML file of the use
case diagram are retrieved automatically by the assistant. When no diagrams
are found, the linkage is not available.

Additionally, the correspondence must be coherent with the type of relation-
ships between two use cases. For example, an included use case should appear in
all the scenarios of the including use case, because there is a necessary relation
between the two. On the other hand, an extended use case should only appear
in some specific scenarios. Together, these checks reinforce the completeness of
the model and the meaning of the relationships between use cases.

In summary, the case study demonstrated the assistant’s ability to improve
the diagram. Syntactical errors are fixed and unnecessary relationships are
removed. The meaning of actors, use cases and relationships are reinforced
through the questions proposed by the tool. The warning patterns (one ele-
ment related to all the others, and actors associated to the same use cases)
contribute to identify possible missing elements or too high-level and unneces-
sary ones. Finally, the coherence matching helps to ensure that each use case is
documented in at least one scenario.

One limitation of the verification module is the dependence on user’s inputs,
which may be not correct. Further work should explore how to automate the
user-dependent checks. One idea is to use information from other diagrams. For
instance, the context diagram could be used to verify whether an actor is an
external entity to the system. Analysis of sequence diagrams could be used to
verify association between actors and use cases. Another research axis consists
in employing artificial intelligence techniques, notably natural language process-
ing, to analyze semantic compliance. For instance, some words may identify the
optional character of extending use cases.

4.2 A Priori Assistance

The functionalities of the creation assistant and its potential benefits for begin-
ners will be demonstrated through a case study for a mobile phone camera. This
system will use as a starting point the generic use case diagram for real-time
systems, shown in Fig. 1.

The first step in the creation module consists in filling up basic information
about the model (author, date and system’s name) and choosing the use case
diagram to use as reference. The generic diagram for real-time systems was
previously inserted into the database through the insertion module.

The user proceeds to actor identification using the interface presented in
Fig. 7. The list of suggestions corresponds to the actors in the reference diagram.
Based on the suggestions, the user must identify the corresponding actors in the
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context of the system being modeled and name them accordingly. The given
name must start with a capital letter, be unique and contain a common noun.

To insert a new actor to the diagram, the user first selects one actor from the
suggestion list; then, he/she gives a new name appropriate to the context and
clicks on “Add actor” button; when the button is pressed, the assistant checks
the name against naming rules before accepting it. The user is informed of the
error in case of noncompliance.

For a cellphone camera, the following actors are identified: Touch Screen
takes the role of the sensor that receives capture order and triggers the “Take
photograph” functionality; in its turn, the “Take photograph” function is exe-
cuted by the Camera Module, which corresponds to the actuator. Two storage
devices are possible: the cellphone’s Internal Memory and External Memory.
The user of the system plays the role of taking and visualizing the photo: it
will be called Photographer. The supervisor performs the role of starting and
closing the application and will be identified as the Cellphone Owner. Often,
these two different roles are performed by the same person in the physical world.
No maintenance actor was added, since it is not of interest to the part of the
system being conceived.

Having a list of suggestions from a generic use case diagram simplifies actor
identification, by transforming it to an analogy exercise, and helps to achieve
diagram completeness. By combining insertion with a verification procedure,
the assistant guarantees the syntactic correctness of actors’ names.

Fig. 7. Source [30]: Selecting actors relying on a generic diagram.

Next, the user proceeds to use case identification. The process is similar to
that used for actors, except that each suggestion only derives one use case. For
each suggested use case, the user must choose whether or not to add it to the
diagram, and by what name. The name must start with capital letter, be unique
and start with a verb. The suggestion list is optimized based on the actors added.
In our case study, since no maintenance actor was chosen, the use cases related
to maintenance will not be suggested to the user.
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For the cellphone camera system, the following adaptations were made.
The use case Run Set Up Procedure became Open Camera App. Similarly, Run
Shut Down Procedure became Close Camera App. The use case Acquire
Inputs was adapted to Get image, Perform Computation to Take Photograph,
Inform Users to Show Image and, lastly, Store Results became Store Photo.

Automatically, the program retrieves the existing relationships in the ref-
erence file and draws a graph corresponding to the new diagram. Blue nodes
represent actors, red nodes represent use cases, and relationships are given by
edges. Next to the graph, the assistant displays errors and suggestions for pos-
sible improvements, such as isolated elements or too high-level ones, according
to the warning patterns in Sect. 2.2. Figure 8 exhibits the use case diagram
representation generated by the assistant for the case study.

Fig. 8. Source [30]: Graph representation of the use case diagram created through the
assistance for the cellphone camera. Suggestions for improvements and warnings of
missing elements are displayed next to the graph.

Relationships may be managed through three tables: the first one for relations
between actors, the second one for relations between use cases, and the third one
for associations between actors and use cases. The tables may be understood as
matrices that display all the possible pairs of elements of the comprised types.

For the first two, the rows represent the main elements (base use case or
general actor) and the columns, the refined ones. The cell corresponding to the
intersection of two elements stores the type of relationship between them. For
example, if there is an extension relationship between two use cases, the cell
whose row corresponds to the extended use case (base one) and whose column
corresponds to the extending use case stores the value is extended by, and the
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reciprocal cell stores the value extends. Thus, one can read the table from rows
to columns, e.g. the base use case is extended by the extending use case. For the
association table, actors are listed in the rows, and use cases in the columns.
The association relationship is indicated by a checkbox.

These tables are automatically semi-filled by the assistant based on the exist-
ing relationships in the reference diagram. The user should criticize the rela-
tionships set out and modify them according to the system in consideration.
For example, functions that are optional for some real-time systems may be
systematically executed in particular ones. Then, the user manually changes
from extend to include relationship. For a cellphone camera, the use case Show
image will always happen, even if for other types of cameras it may be optional.

The facilities offered by the creation assistant includes guiding identification
of actors and use cases through analogical reasoning, and minimizing deviations
from SysML/UML rules by means of on-going checking. Nonetheless, a drawback
of the procedure is to rely on the existence of a generic diagram. Future work may
address how to obtain generic diagrams automatically from a series of example
diagrams using case-based reasoning and ontologies.

Up to now, it is not possible to export the graph representation of the use case
diagram to an XML file compatible with modelling tools due to the positioning
problem. The library used to build the graph applies an automatic positioning
algorithm to improve readability. However, an automatic layout of use case dia-
grams, compliant with SysML/UML standards, is a complex problem and is a
research subject on its own [12].

5 Related Work

5.1 Experiences with Use Case Diagrams

In [24], Moisan and Rigault discuss an experience in teaching object-oriented
modeling and UML in academia and industry. The authors identify a risk with
use cases: to go too far in the functional decomposition, entering into low level
system details, forgetting about the external actors. In [9], Costain and McKenna
report difficulties encountered by their students in using use case diagrams. First
identified difficulty is possible confusion between include and extend relations.
Main problems are related with actors: distinguishing between primary and sec-
ondary actors, determining the associations between actors and use cases, and
determining the granularity of use cases.

In [11], Dolques et al. discuss a Relational Concept Analysis approach to
refactor a use case diagrams by introducing generalized actors and use cases
to factorize relations. In [15], Fauzan et al. combine structural information and
lexical information for measuring similarities among use case diagrams. The
authors use Wordnet, WuPalmer, and Cosine Similarity to semantically measure
lexical information based on text extracted from actors and use cases.

In [2], Beimel and Kedmi-Shahar discuss experiences in encouraging students
to develop a Conceptual Mental Model (CMM) before developing the use case
diagram itself. A CMM is a tangible visual representation of the user’s beliefs
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and expectations (in other words, the user’s mental model) about the system
to be developed. The authors particularly discuss a controlled experiment test-
ing whether creation of a CMM prior to the creation of a use case diagram
improves identification of functional system requirements, relations, and actors
in terms of correctness, completeness, and non redundancy of the use case dia-
gram. Participants who produced a use case diagram after producing a CMM
performed significantly better in defining system requirements, relations and
actors, as expressed in their use cased diagrams, compared to participants who
produced a use case diagram without first producing a CMM.

Several studies have been conducted on verification of UML/SysML dia-
grams. Unfortunately, research has tended to focus on analysis of scenarios rather
than of use case diagrams. Scenarios can be either modeled by sequence or activ-
ity diagrams, or documented by a textual explanation of the use case. Analy-
sis techniques include graph transformation [20,39], logical verification [20] and
grammar formalization [5,7].

In [39] and [20], the authors focused on verifying the correctness and com-
pleteness of a scenario, but they did not address a syntactical verification of UML
standards. On the other hand, Chanda [5] investigated the use of formalization
to verify syntactical rules, however no computational tool is proposed. The study
in [7] complements the prior by proposing the use of natural language techniques
to transform a use case description in the formal model. Deep natural language
analysis is not necessary for the proposed assistant, since it works with use case
diagrams, in which phrases are simpler and follow a structure - for example, to
identify the verb of a use case, extracting the first word of the sentence should
be enough.

Some modeling tools have incorporated basic checks for use case diagrams.
For example, verification of double relationships and of repeated elements is
available in Cameo System Modeler. The assistant discussed in this paper is
different from Cameo by the broader spectrum of points to be verified, and by
the dialogue with the user of the assistant, asking him or her questions such as
“Is this actor really an external entity?”

Many attempts have been made on how to automate the creation of use
case diagrams. Certain studies proposed its derivation from other textual doc-
uments through natural language processing. The transformation process has
been applied to requirement [33], use case descriptions [13] and user stories [14].
The drawback of these proposals is that the quality of the use case diagram
highly depends on the quality of the textual documents. Additionally, in a sys-
tem engineering logic, these documents are supposed to be conceived from the
use case diagram, and not the opposite.

Other studies proposed the reuse of previous diagrams using case base rea-
soning (CBR) [35] or ontology [3] approaches. From an initial draft of a use case
diagram, it was possible to retrieve the most similar diagram from a database.
CBR was developed starting from the idea that human beings think and reason
using analogies and examples [1]. The use of CBR for assisting designers for use
cases refers back to the suggestion made in Sect. 2.4, the use of examples of use
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case diagrams. It was noted that the number of examples needed to cover mul-
tiple domains might be very large, which is certainly a blocking point. However,
having these examples being used in the form of cases by a case-based reasoning
system takes this blocking point away.

Finally, some authors examined the problem of UML design from the edu-
cational point of view. In [6] and [21] the authors point out the common mis-
takes made by students in SysML/UML courses. In [29], Ramollari proposed
an object-oriented modelling tool suitable for students. The tool, called Studen-
tUML, includes design and verification of some UML diagrams, as the sequence
and class diagram. Particularly, the use case diagram is not addressed. Verifi-
cation is only available for diagrams drawn in the platform. With respect to
creation, the assistant proposed in this article differs from Ramollari’s tool by
the guidance functionality that is provided to beginners. Actually, StudentUML
works like other modelling tools, but it offers a simpler interface and further
verifications.

6 Conclusions

A MBSE approach relies on a triptych (language, tool, method). In terms of
language, this paper focuses on use case diagrams and more precisely on the
version of them supported by the OMG-based languages UML and SysML. In
terms of tool and method, the authors of this paper make a 3-fold statement:
(1) use case diagrams have been existing for many years; (2) their use is the
cornerstone of the use case driven analysis step of the methods associated with
UML and SysML, and (3) Nevertheless, many people still have difficulties in
writing good use cases.

Previous three statements provide the rationale behind the design and proto-
typing of a methodological assistant that help UML and SysML model designers
to create and review their use case diagrams. The tool named UCcheck helps
constructing use case diagrams relying on formalized rules and repositories of
previously designed use case diagrams. It also check use case diagrams a poste-
riori and suggests improvements.

UCcheck is a free software coded in Python. UCcheck was first interfaced
with TTool, the free software from Telecom Paris that we used to draw the use
case diagrams in Fig. 1 and Fig. 3. TTool has further been applied for teaching,
enhancing the expression power of SysML [31], and for tooling the first steps of
the life cycle of systems [10,32]

The use of UCcheck is not restricted to TTool. Indeed, UCcheck stores use case
diagrams using an intermediate form that is not specific to one particular UML or
SysML tool. An interface exists for Cameo Systems Modeler, a tool from Dassault
Systems. Similarly, UCcheck can be interfaced with other SysML tools such as
Enterprise Architect [34] and Rhapsody [17].

UCcheck nowadays supports current versions of UML and SysML uses case
diagrams. A new version of SysML is in preparation at OMG. Known as ‘SysML
2’ [26], next version of SysML is claimed to be less dependent on UML and
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globally more compliant with system engineers needs. At the time of writing
this paper, there is no clear evidence that SysML use case diagrams will evolve
in terms of syntax or semantics. Would this happen, UCCheck will be updated
accordingly at the condition the tools UCCheck is interfaced with evolves too.

In Sect. 5 the use of case base reasoning (CBR) was mentioned. Reusing
previous experience is an interesting option for guiding through design (see for
example [25]). Case-based reasoning tries to contribute by solving a new problem
by remembering a previous similar situation and by reusing information and
knowledge of that situation, and this approach looks promising for extending the
work on guiding designers through the earliest phases of setting up use-cases.

Acknowledgements. Baptiste Labarthe has contributed to UCcheck software
development.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Commun. 7(1), 39–52 (1994)

2. Beimel, D., Kedmi-Shahar, E.: Improving the identification of functional system
requirements when novice analysts create use case diagrams: the benefits of apply-
ing conceptual mental models. Requir. Eng. 24, 483–502 (2019). https://doi.org/
10.1007/s00766-018-0296-z

3. Bonilla-Morales, B., Crespo, S., Clunie, C.: Reuse of use cases diagrams: an app-
roach based on ontologies and semantic web technologies. IJCSI Int. J. Comput.
Sci. Issues 9(2), 1–6 (2012)

4. Casse, O.: SysML in Action with Cameo Systems Modeler. ISTE Press, Elseiver,
London (2018)

5. Chanda, J., Kanjilal, A., Sengupta, S., Bhattacharya, S.: Traceability of require-
ments and consistency verification of UML use case, activity and class diagram: a
formal approach. In: 2009 Proceeding of International Conference on Methods and
Models in Computer Science (ICM2CS), pp. 1–4. IEEE (2009)

6. Chren, S., Buhnova, B., Macak, M., Daubner, L., Rossi, B.: Mistakes in UML
diagrams: analysis of student projects in a software engineering course. In: Pro-
ceedings of the 41st International Conference on Software Engineering: Software
Engineering Education and Training, pp. 100–109. IEEE Press (2019)

7. Christiansen, H., Theil, C., Tveitane, K.: From use cases to UML class diagrams
using logic grammars and constraints. In: RANLP, vol. 7, pp. 128–132 (2007)

8. Cockburn, A.: Structuring use cases with goals. J. Object-Orient. Program. 10(5),
56–62 (1997)

9. Costain, G., McKenna, B.: Experiencing the elicitation of user requirements and
recording them in use case diagrams through role-play. J. Inf. Syst. Educ. 22(4),
367–380 (2019)

10. Daigmorte, H., de Saqui-Sannes, P., Vingerhoeds, R.A.: A SysML method with
network dimensioning. In: 5th IEEE International Symposium on Systems Engi-
neering (ISSE 2019) (2019)

11. Dolques, X., Huchard, M., Nebut, C., Reitz, P.: Fixing generalization defects in
UML use case diagrams, Sevilla, Spain, pp. 247–258 (2010)

12. Eichelberger, H.: Automatic layout of UML use case diagrams. In: Proceedings of
the 4th ACM Symposium on Software Visualization, pp. 105–114. ACM (2008)

https://doi.org/10.1007/s00766-018-0296-z
https://doi.org/10.1007/s00766-018-0296-z


A Methodological Assistant for UML and SysML Use Case Diagrams 321

13. El-Attar, M., Miller, J.: Producing robust use case diagrams via reverse engineering
of use case descriptions. Softw. Syst. Model. 7(1), 67–83 (2008). https://doi.org/
10.1007/s10270-006-0039-3

14. Elallaoui, M., Nafil, K., Touahni, R.: Automatic transformation of user stories into
UML use case diagrams using NLP techniques. Proc. Comput. Sci. 130, 42–49
(2018)

15. Fauzan, R., Siahaan, D., Rochimah, S., Triandini, E.: Use case diagram similarity
measurement: a new approach, pp. 3–7, July 2019

16. Holt, J., Perry, S.: SysML for systems engineering, vol. 7. IET (2008)
17. IBM-Rhapsody (2020). https://www.ibm.com/ca-en/marketplace/architect-for-

systems-engineers
18. Ibrahim, N., Ibrahim, R., Saringat, M.Z., Mansor, D., Herawan, T.: On well-

formedness rules for UML use case diagram. In: Wang, F.L., Gong, Z., Luo, X., Lei,
J. (eds.) WISM 2010. LNCS, vol. 6318, pp. 432–439. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16515-3 54

19. Jacobson, I.: Object-Oriented Software Engineering - A Use Case Driven Approach.
Addison-Wesley, Boston (1992)

20. Klimek, R., Szwed, P.: Formal analysis of use case diagrams. Comput. Sci. 11,
115–131 (2010)

21. Kruus, H., Robal, T., Jervan, G.: Teaching modeling in SysML/UML and problems
encountered. In: 2014 25th EAEEIE Annual Conference (EAEEIE), pp. 33–36.
IEEE (2014)

22. Lilly, S.: Use case pitfalls: top 10 problems from real projects using use cases. In:
Proceedings of Technology of Object-Oriented Languages and Systems-TOOLS 30
(Cat. No. PR00278), pp. 174–183. IEEE (1999)

23. Marchese, F.: Use Case Diagrams Tutorial. Pace University. http://csis.pace.edu/
∼marchese/CS389/L9/Use%20Case%20Diagrams.pdf

24. Moisan, S., Rigault, J.-P.: Teaching object-oriented modeling and UML to vari-
ous audiences. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 40–54.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12261-3 5

25. Netten, B., Vingerhoeds, R., Koppelaar, H., Boullart, L.: Expert assisted discrete
optimization of composite structures. In: European Simulation Symposium, pp.
143–148 (1993)

26. Object-Management-Group: Systems modeling language (SysML) v2 RFP (2017)
27. OMG: OMG Systems Modeling Language. Object Management Group (2017).

https://www.omg.org/spec/SysML/1.5
28. OMG: OMG Unified Modeling Language (OMG UML) Version 2.5. Object Man-

agement Group (2018). https://www.omg.org/spec/UML/2.5/PDF
29. Ramollari, E., Dranidis, D.: StudentUML: an educational tool supporting object-

oriented analysis and design. In: Proceedings of the 11th Panhellenic Conference
on Informatics, pp. 363–373 (2007)

30. Rizzo Aquino, E., de Saqui-Sannes, P., Vingerhoeds, R.A.: A methodological assis-
tant for use case diagrams. In: 8th MODELSWARD: International Conference on
Model-Driven Engineering and Software Development (2020)

31. de Saqui-Sannes, P., Apvrille, L.: Making modeling assumptions an explicit part of
real-time systems models. In: The 8th European Congress Embedded Real Time
Software and Systems (ERTS2) (2016)

32. de Saqui-Sannes, P., Vingerhoeds, R.A., Apvrille, L.: Early checking of SysML
models applied to protocols. In: 12th International Conference on Modeling, Opti-
misation and Simulation, MOSIM 2018, Toulouse, France (2018)

https://doi.org/10.1007/s10270-006-0039-3
https://doi.org/10.1007/s10270-006-0039-3
https://www.ibm.com/ca-en/marketplace/architect-for-systems-engineers
https://www.ibm.com/ca-en/marketplace/architect-for-systems-engineers
https://doi.org/10.1007/978-3-642-16515-3_54
http://csis.pace.edu/~marchese/CS389/L9/Use%20Case%20Diagrams.pdf
http://csis.pace.edu/~marchese/CS389/L9/Use%20Case%20Diagrams.pdf
https://doi.org/10.1007/978-3-642-12261-3_5
https://www.omg.org/spec/SysML/1.5
https://www.omg.org/spec/UML/2.5/PDF


322 E. R. Aquino et al.

33. Seresht, S.M., Ormandjieva, O.: Automated assistance for use cases elicitation from
user requirements text. In: Proceedings of the 11th Workshop on Requirements
Engineering, WER 2008, vol. 16, pp. 128–139 (2008)

34. SparkSystems: Entreprise-architect (2019). https://www.sparxsystems.com/
products/ea/

35. Srisura, B., Daengdej, J.: Retrieving use case diagram with case-based reasoning
approach. J. Theoret. Appl. Inf. Technol. 19(2), 68–78 (2010)

36. TTool: An open-source UML and SysML toolkit (2020). https://ttool.telecom-
paris.fr

37. Vacharajani, V., Pareek, J.: A proposed architecture for automated assessment of
use case diagrams. Int. J. Comput. Appl. 108(4), 1–6 (2019)

38. Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis,
Design. Elsevier, Amsterdam (2011)

39. Zhao, J., Duan, Z.: Verification of use case with petri nets in requirement anal-
ysis. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova,
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Abstract. Distributed ledger technologies, e.g. blockchains, are an
innovative solution to the problem of trust between different parties.
Smart contracts, programs executing on these ledgers present new chal-
lenges given their non-traditional execution context – blockchains. The
immutability of smart contracts once they are deployed makes their pre-
deployment correctness essential. This can be achieved through verifica-
tion methods, which attempt to answer conclusively whether the code
respects some specification. Another approach is model-driven develop-
ment, where the specification is used directly to create a correct-by-
const-ruction implementation. A specification may however still need to
be verified to ensure it satisfies some properties. Verifying properties pre-
deployment is ideal, however it may not always be possible to do com-
pletely, depending on the complexity of the smart contract. Traditionally
upon failure of a verification attempt the only option is to attempt a dif-
ferent verification method. Recent approaches instead enable the trans-
formation of the verification problem into a smaller problem, reducing the
load of subsequent verification attempts. We have previously proposed
an automata-theoretic approach to reason systematically about this kind
of residual analysis for (co-)safety properties, while we have implemented
an intraprocedural data-flow approach for Java programs. In this paper
we extend our approach for Solidity smart contracts, present a corre-
sponding tool, evaluate the approach with several new case studies, and
compare it with existing approaches.

Keywords: Smart contracts · Verification · Partial verification ·
Residual analysis · Static analysis · Runtime verification

1 Introduction

Distributed ledger technologies (DLTs), including blockchains, present new chal-
lenges for programming. DLTs act as immutable ledgers which several mutually
untrusting entities can use as a single source of truth. DLTs can also act as both
a store and execution context for programs (e.g. on the Ethereum blockchain
[30]), usually called smart contracts. These public programs can be used to reg-
ulate some business process or the interaction between multiple parties in an
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open, transparent, automatic, and deterministic manner. An important issue is
then the well-behaviour of these smart contracts, especially since they are usu-
ally immutable when deployed. Smart contracts that behave in an undesirable
way can lead to loss in terms of real-world value (see [5] for a survey). Ensuring
well-behaviour of smart contracts is an important new area of study. Focusing on
Ethereum [30], a popular blockcahin aiming to operate as a “world computer”,
we find two main strands of approaches to well-behaviour of smart contracts: (i)
model-driven development (MDD); and (ii) verification techniques.

Smart contracts in Ethereum are deployed as Ethereum VM bytecode, how-
ever they are generally programmed in Solidity1, a Javascript-like language.
Although smart contracts are limited in size, they tend to get complicated
quickly, especially due to certain non-traditional aspects of the semantics of
the language (e.g. reverting of transactions upon gas being exhausted, and calls
to external functions that can act on the local state). One approach to han-
dle the complexity of programming smart contracts is to take an abstraction
step further and specify models instead of writing code directly [23,24,29,31]—
model-driven development (MDD). These kind of approaches allow for a spec-
ification model to (semi-)automatically be used to produce an implementation,
ensuring correctness by construction. Other approaches instead verify a specifi-
cation against manually written Solidity code to identify violations or confirm
compliance [11,12,19,26–28]. This can both be done by analysing the code or by
instrumenting the code to identify (and possibly reverting) violations at runtime.

These two approaches are not independent of each other. A model may need
to be verified to satisfy other properties, for example to ensure compliance of a
modelled business process with some regulations. The runtime verification app-
roach of instrumenting smart contracts with monitors can also be used to enforce
a property at runtime, adapting smart contracts to be correct-by-construction,
similar to MDD.

In this paper we are interested in model-based analysis of smart contracts,
remaining agnostic of whether these are extracted automatically from smart
contract code or used for MDD. Ideally we want to perform this analysis before
deployment. However, sound and complete analysis can be too expensive, in
terms of memory and/or time, especially since a smart contract may have
dynamic dependencies on data and code in other blockchain locations. When
static analysis does not scale up to the problem at hand we can instead perform
runtime verification or enforcement of the property. This is however not ideal,
since instrumenting a smart contract adds more code that needs to be deployed
to the blockchain and adds computation to be performed at runtime, which can
be costly on Ethereum. Our solution here is to a hybrid approach to verification:
use runtime verification only on the part of the program not proven safe statically
[7,18].

We take an automata-based approach, using symbolic automata to model
both the program and the property being verified. Similar symbolic automata
have been used in Ethereum in the context of MDD [23,24] and verification [11],

1 https://solidity.readthedocs.io/.

https://solidity.readthedocs.io/
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and thus our approach here is applicable to optimise existing work almost out of
the box. We consider correctness conditions for how static analysis can be used
to reduce both the monitor logic and the required event instrumentation. We
consider several such reduction, or residual, operations. Furthermore we have
implemented this work in the solidClarva2 tool.

This paper is an extension of [9]. The contributions of this paper, going
beyond our previous work, include: (i) a version of the model language used in [9]
that reflects the semantics of transaction failure in Solidity smart contracts; (ii)
a tool implementing thee analysis for Solidity; (iii) a more extensive evaluation
of the approach; and (iv) a comparison of this work with existing approaches to
the verification of smart contracts.
1 contract SmartAuctionHouse{

2 address owner;

3 bool ongoing;

4 mapping(int => uint) offers;

5 ...

6
7 modifier isOwner (){

8 require(owner == msg.sender);

9 _;

10 }

11
12 function startAuction(int itemID , uint startOffer) public isOwner {...}

13 function bid() public payable {...}

14 function declareWinner () public isOwner {...}

15 function callBid () public isOwner {...}

16 }

Listing 1.1. Auction smart contract implementation extract (full version in [9]).

In Sect. 2 we describe formally our approach to smart contract verification.
In Sect. 3 we discuss the way we combine static and runtime verification through
creating residual problems, describe a tool implementing this in Sect. 4, and
evaluate the approach in Sect. 5. We discuss this work in Sect. 6, contrast it with
related work in Sect. 7, and conclude in Sect. 8.

2 Smart Contract Verification

There are several approaches one can take in verifying smart contracts. Here
we take an automata-theoretic approach, where smart contracts and properties
are all specified as automata, with the objective being to check that the model
refines the required property.

Traditional approaches to represent models and properties use finite-state
automata, with transitions triggered by events (corresponding to program
actions). Here instead we use symbolic automata, where in addition to a finite set
of explicit states, we consider a possibly infinite set of implicit states. Symbolic
automata are more succinct and expressive than finite-state automata, e.g. with

2 https://www.github.com/shaunazzopardi/solidity-static-analysis.

https://www.github.com/shaunazzopardi/solidity-static-analysis
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Fig. 1. Automata modelling the interface of the smart contract, with shaded states
marking call states [9].

symbolic automata we can give a finite representation of an automaton that
accepts the language anbn for any n, which is impossible to do with finite-state
automata.

We will be representing smart contracts in terms of control-flow automata
(CFAs) and their properties in terms of dynamic event automata (DEAs). These
automata are complementary: a CFA produces events that are processed by a
DEA. We keep the implicit states of the symbolic automata abstract since their
structure is tangential to our analysis here, however they can be thought of as
being a set of variable bindings.

We describe formally these automata in the rest of this section. Throughout,
we will be using the example of a smart contract implementing the business
process of an auction house. A high-level view of this smart contract is given in
Listing 1.1, with the low-level implementation of two of its functions given in
Listing 1.2 and Listing 1.3.

The definitions in this section are largely from [9], but optimised for smart
contracts.

2.1 Control-Flow Automata

We represent Solidity smart contracts in terms of control-flow automata (CFAs).
These automata simply encode the control-flow of the program in the structure
of the automaton, with program step-wise logic encoded in transition labels, and
function calls through state labels.

Transition labels are triples of: (i) a condition that must hold for the
transition to be taken; (ii) a statement that transforms the implicit variable
state; and (iii) a monitor event triggered after the statement executes, written:
condition � statement � event.

Another feature of CFAs is the possibility to call other CFAs. Calls may be
of two types: (i) a normal call; or (ii) a delegate call. In Solidity a delegate call
executes another smart contract’s function on the caller’s variable state, while
a normal call executes another smart contract’s function on the state of the
callee. This is also relevant to the notion of reverting of a call. In Solidity, calls
can fail—if a delegate call fails, then the original transaction also fails, however
if a normal call fails, execution continues in the original CFA [30]. We handle
this logic in the semantics we give to CFAs.
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1 function s ta r tAuct ion ( int itemID ,

uint s t a r tO f f e r ) public

isOwner{
2 require ( ! ongoing ) ;

3 require ( ! f i n i s h e d [ id ] ) ;

4 o f f e r s [ itemID ] = s t a r tO f f e r ;

5 id = itemID ;

6 ongoing = true ;

7 }
Listing 1.2. startAuction implemen-

tation [9]. Fig. 2. startAuction CFA [9].

1 function bid ( ) public payable{
2 require ( ongoing ) ;

3
4 i f ( o f f e r s [ id ] < msg . value &&

winner [ id ] != address (0 ) ){
5 winner [ id ] . t r a n s f e r ( o f f e r s [ id

] ) ;

6 winner [ id ] = msg . sender ;

7 o f f e r s [ id ] = msg . value ;

8 }
9 }

Listing 1.3. bid implementation [9]. Fig. 3. bid CFA [9].

Definition 1. A CFA, of type CFA, is a tuple 〈Ω,S, s0, E, calls,dcalls,→〉,
where:

(a) Ω is a set of implicit variable states;
(b) S is the set of explicit states;
(c) s0 ∈ S is the initial explicit program state;
(d) E ⊆ S is the set of end states, we use sE as a variable ranging over this set;
(e) calls,dcalls : S �→ (Ω → CFA)3 identify states associated, respectively, with

normal calls and delegate calls; and
(f) →: S × Cond× Stmt× Σ → S is the deterministic transition relation (where

Cond = Ω → Bool, and Stmt = Ω → Ω).

We write s
c�st�e−−−−→ s′ for (s, c, st, e, s′) ∈→. We use P or M for CFAs. We

use the function methods : CFA → 2CFA for the set of methods transitively
called by M4.

Figure 2 and Fig. 3 give an example encoding of two Solidity functions as
CFAs (gray events will be removed by the analysis we define in Sect. 3.2). In
turn, Fig. 1 encodes the interface of a smart contract, allowing its functions to
be called in any sequence.

3 �→ is used to denote a partial function.
4 In this paper we will be limiting our analysis to when this is finite, which is sufficient

for smart contracts.
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We give CFAs an operational semantics with configurations as a pair of a
sequence of states and the current variable state.

States are tagged with either ↑ or ↓ (S↑↓ def= S × {↑, ↓}). A directed state s↓

denotes that if s state is a call state, then its call is yet to be executed, dually
s↑ denotes that any call pf s has already been entered and exited from.

Transitions in the semantics are tagged by pairs of events and variable states,
denoting the triggered monitored events and the variable state at that point in
time. In the semantics we give to CFAs we only consider the traces that reach
end configurations. Then we ignore infinite loops, that would never be recorded
to the blockchain.

Definition 2. The operational semantics of a CFA is given with configurations
as pairs of directed states and implicit states (S↑↓ × Ω), transitions labeled by
pairs of events, and implicit states (Σ × Ω), and characterised by:

(i) Given a transition s1
c�st�e−−−−→ s2, with c holding on ω, and s1 not being an end

state, then a configuration (s↑
1, ω) transitions to (s↓

2, st(ω)) with 〈e, st(ω)〉:

s1
c�st�e−−−−→ s2 s1 �∈ E c(ω)

(s↑
1 : ss, ω)

〈e,st(ω)〉−−−−−→ (s↓
2 : ss, st(ω))

(ii) A call is recorded by the semantics if it reaches an end state:

s ∈ dom(calls) M = calls(s)(ω) ∃sE ∈ EM , ω′ ∈ Ω · (s↓
0M

, ω) ⇒ (s↑
E , ω′)

(s↓ : ss, ω)
〈ε,ω〉−−−→ (s↓

0M
: (s↑ : ss), ω)

(iii) Delegate calls are always entered:

s ∈ dom(dcalls) M = dcalls(s)(ω)

(s↓ : ss, ω)
〈ε,ω〉−−−→ (s↓

0M
: (s↑ : ss), ω′)

(iv) Upon an end state being reached with any associated call being resolved, and the
state being part of a nested call, then execution continues from the calling state:

sE ∈ E ss �= 〈〉
(s↑

E : ss, ω)
〈ε,ω〉−−−→ (ss, ω)

(v) If the state is not associated with a call or delegate call, or if a call cannot reach
an end state, then the state is marked with ↑5:

otherwise

(s↓ : ss, ω)
〈ε,ω〉−−−→ (s↑ : ss, ω)

5 Here we use the otherwise condition for simplicity to denote the situation when no
other rule applies.
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We use s for an element of S↑↓. We write (s , ω) for (〈s 〉, ω), and use ⇒
for the transitive closure of →.

Then we can identify the prefixes of a smart contract’s behaviour, which will
be the object of verification.

Definition 3. The behaviour of CFA P starting with implicit state ω of length
i ∈ N is the trace tP,ω,i defined formally as follows:

tP,ω,i
def
=

{
pre(ews, i) (s↓

0P
, ω)

ews⇒ (s↑
EP

, ω′) ∧ i < len(ews)

〈〉 otherwise

where pre(ews, i) gives the prefix of ews with length i if defined, otherwise it
is the empty trace, and len : (Σ × Ω)∗ → N gives the length of a trace.

2.2 Dynamic Event Automata

A control-flow automaton defines the behaviour of a smart contract. However,
when doing verification, we are not generally interested in the exact low-level
semantics, but rather that the program obeys some high-level specification (e.g.
the input-output behaviour of functions). For this purpose we use dynamic event
automata (DEAs). These are structurally similar to CFAs, but semantically they
differ in that DEAs instead characterise the set of traces that should not be
exhibited. DEAs abstract over behaviour of the program that is irrelevant to
the specification, allowing specifications that do not unduly limit the low-level
implementation.

Instead of an end state, DEAs have bad states. As an optimisation, DEAs
also have accepting states which are used to identify prefixes that cannot have
a violating continuation. These can be used to abort monitoring early, avoiding
waste of resources.

Transitions are also tagged by three labels: (i) an event; (ii) a guard on the
CFA and DEA variable state; and (iii) an action on the DEA variable state,
represented with event | guard �→ action. A transition is taken if the CFA
triggers the corresponding event and the guard holds on the variable states,
after which the action transforms the current DEA variable state.

Figure 4 illustrates DEA properties we require out of Listing 1.1.

Definition 4. A DEA is then a tuple π
def= 〈Θ,Ω, q0, θ0, B,A,→〉, where:

(a) Θ is a set of implicit variables states;
(b) Ω is the set of explicit state;
(c) q0 ∈ Q is the initial explicit monitor state;
(d) θ0 ∈ Θ is the initial implicit monitor state;
(e) B,A ⊆ Q are respectively the set of explicit bad and accepting states, we use

qB for a bad state; and
(f) →: Q × (Σ) × Guard × Act → Q is the deterministic transition function

(where Guard = Θ × Ω → Bool, and Act = Θ × Ω → Θ).
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We write q
e|g �→a−−−−→ q′ for (q, e, g, a, q′) ∈→.

We give an operational semantics to DEAs in terms of configurations as pairs
of DEA states and variable states. These configurations evolve according to the
DEA transitions until an end or accepting state is reached.

Fig. 4. Several properties expected of the auction smart contract, with bad states
marked with a cross[9], and grey labels which will be removed by the analysis presented
in Sect. 3.2.
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Definition 5. The operational semantics of a DEA is given with configurations
of type Q × Θ, with transitions labeled by elements of Σ × Ω, and characterised
by:

(i) A configuration (q, θ), given a transition q
e|g �→a−−−−→ q′, evolves to a configura-

tion (q′, a(ω, θ)) only if the guard g holds on θ:

q
e|g �→a−−−−→ q′ q �∈ A ∪ B g(ω, θ)

(q, θ)
〈e,ω〉−−−→ (q′, a(ω, θ))

(ii) if a bad or accepting state has been reached, or there is no outgoing transition
with a guard that holds on the current implicit state, the configuration does
not evolve:

q ∈ A ∪ B

(q, θ)
〈e,ω〉−−−→ (q, θ)

�g, q, a · q
e|g �→a−−−−→ q′ ∧ g(ω, θ)

(q, θ)
〈e,ω〉−−−→ (q, θ)

We overload ⇒ for the transitive closure of →.

We use DEAs to identify the set of traces that reach a bad state.

Definition 6. The bad traces of property π are those traces that reach a bad
state in π: B(π)

def
= {t ∈ Σ × Ω | ∃qB ∈ B, θ ∈ Θ · (q0, θ0)

t⇒ (qB , θ)}.

Note that traces reaching accepting states cannot be in B(π), however there
can still be traces that do not reach accepting states that are not bad states.

We shall be assuming that DEAs are in a structurally optimal form. Any
DEA can simply and efficiently be reduced to optimal form through structural
analysis. The ability to do this is essential for the reduction operators we define
in Sect. 3.

Definition 7. A DEA is in optimal form if: (i) it has no states unreachable from
the initial state: �q ∈ Q·q0 �⇒ q; and (ii) any state that cannot reach a bad state is
accepting with no outgoing transition: ∀q ∈ Q, qB ∈ B · q �⇒ qB =⇒ (q ∈ A ∧ q �→).

The verification problem can then be framed in terms of whether the CFAs
produces any bad traces of the DEA.

Definition 8. A CFA P is said to satisfy a property π if every execution prefix
it generates is not a bad trace of π: P  π

def
= ∀ω ∈ Ω, i ∈ N · tP,ω,i �∈ B(π).



332 S. Azzopardi et al.

3 Synergy of Static and Runtime Verification

Sound and complete verification is ideal, since it can ensure the absence of all
specified errors. Here we are interested in the situation where this is not an
option, for example when it is undecidable or when time and memory resources
are limited.

In this case we have two options that scale up better: sound static analysis
and runtime verification (RV). Sound static analysis does not attempt to be
complete, resulting in an analysis that does not analyse the program state space
at a fine-grained level, avoiding the need for large time and memory resources.
RV instead may be both sound and complete however only with respect to a
single execution trace at runtime. Moreover it compares favourably with other
techniques in terms of time and memory since the focus is only on one execution
trace rather than all the possible traces [20].

Using only static analysis is not viable, since sound techniques can fail to
prove compliance. On the other hand, assuming monitorable properties (like
DEAs), RV can always prove compliance, while it can also be used to enforce
specifications (e.g. by canceling violating transactions). The issue with runtime
enforcement is that it requires synchronous monitoring, where the smart contract
is instrumented with the analysis logic to ensure events are dealt with as they
occur. This instrumentation (and any added storage costs) can cause overheads
at runtime, both in terms of gas added to the smart contract deployment, and
to the cost of executing transactions at runtime.

Our approach here is not just to choose one or the other, but to exploit the
benefits of both. We attempt sound static analysis to show the required property,
accepting that this can fail. Instead of expecting that a failing static analysis
simply returns an unknown verdict we take a partial verification or residual
analysis approach and expect the static analysis to return a residual verification
problem. This residual problem (containing a reduced property and/or reduced
instrumentation) is then proven or enforced using RV. This kind of approach
follows the principle use runtime verification only on the part of the program
not proven safe statically. It ensures that if a property can be proven before
deployment then it is not left to runtime, while it can reduce the runtime effort
required to prove properties that are not fully verifiable pre-deployment.

In this section we consider residual analysis in the context of CFAs and
DEAs, discussing and formally identifying a correctness condition for residual
problems, and giving some residual analyses for CFAs and DEAs. The definitions
and theorems here are largely from [9], proofs can be found in [6].

3.1 Residual Correctness

A verification problem is a program-property pair: (P, π). A residual verification
problem in turn is a transformation of the original program: (P ′, π′). Such a
residual technique is sound if a proof of (P ′, π′) implies that (P, π) holds. The
weakest such soundness condition is that P ′ � π′ =⇒ P � π.
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This condition however has limitations, especially using RV. Consider that
this condition does not ensure that if a trace satisfies the residual property it
also satisfies the original. For example, consider that the original property π has
the set of bad states B(π) = {t1, t2} (and their continuations), while the residual
property π′ has bad traces B(π′) = {t2}. If the program exhibits both traces,
then the sufficiency condition holds. However, if the trace exhibited at runtime
is t1 with monitoring for π′, then no violation will be caught. Thus, we want to
ensure that the condition holds at the level of traces instead of simply at the
level of the program.

Table 1. State invariants for the bid CFA in Fig. 3 [9].

State Data abstraction

s1, sE ongoing

s2, s3 ongoing & offers[id] < msg.value

s4, s5 ongoing & offers[id] < msg.value & winner[id] == msg.sender

We also want violations to be caught by the residual monitor at the same
point in time the original monitor would have caught it, so as not to add to the
execution costs associated with a transaction. These concerns are characterised
by the notion of lockstep equivalence, which essentially requires that the original
and residual property give the same verdict to execution prefixes of the same
length (and same initial variable states).

Definition 9. (P , π) is said to be in lockstep with the pair (P ′, π′) iff execution
traces of P and P ′ from the same implicit state ω are given the same verdict by
π and π′ for every prefix length i: ∀ω ∈ Ω, i ∈ N ·tP,ω,i ∈ B(π) ⇐⇒ tP ′,ω,i ∈ B(π′).

We shall be using this as the correctness condition we require out of the
residual operations we shall be defining.

3.2 Residual Analysis

The residual analysis we present is based on composing a CFA with a DEA.
Through analysing this composition, at a certain level of abstraction, we are
then able to prune some DEA features (transitions and guards), and silence
some CFA events. To enable reasoning about DEA guards against the CFA
implicit (variable) state, we consider state invariants, which can be computed
easily through data-flow propagation algorithms.

We consider conditions required out of the data-flow analysis required to
produce state invariants, after which we describe our control-flow analysis based
on synchronous composition of CFAs and DEAs. We can then characterise some
residual operators based on this composition artifact.
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Data-Flow Analysis. We are interested in abstracting each possible runtime
state of the program, since analysing each possible state can lead to state explo-
sion problems. One choice is to simply abstract each runtime configuration (s, ω)
with state s. However this ignores any data aspects of the runtime behaviour.
Instead, we can abstract each runtime configuration with a pair (s, c) where
c ∈ Cond and c is true for every variable state associated with s at runtime.
Such a condition is said to be a state invariant of s. Recall also we are only
interested in configurations that reach an end configuration (i.e. that are part of
a successful transaction).

Definition 10. A condition c is said to be a state invariant of state s if it
holds on each variable state associated with a state of s in a successful runtime
execution:
∀ω0, ω, ωE ∈ Ω, s ∈ S↑↓ · (s↓

0, ω0) ⇒ (s : ss, ω) ⇒ (s↑
E , ωE) =⇒ c(ω).

We use σ : S → Cond as a function that associates states with state invari-
ants.

For example, Table 1 illustrates some state invariants of Fig. 3 that can be
inferred easily from a simple condition and statement propagation algorithm.

Consider that a DEA transition (e.g. q
e|g �→a−−−−→ q′) triggers after a certain

CFA transition (e.g. s
c�st�e−−−−→ s′) emits an event. In our analysis we can then

check whether the state invariant of s′ allows the DEA guard g to be true or not.
However, s′ may have multiple incoming transitions, leading to a weaker state
invariant. Instead, since a DEA transition executes immediately after a CFA
transition executes, we are only interested in the runtime configurations the
CFA transition induces. To abstract these we can consider the state invariant of
s updated with condition and statement associated with a CFA transition, which
correspond to the configurations that the DEA guard will be checked against at
runtime. We define the condition required out of such an update function.

Definition 11. A procedure that updates a condition with the effects of a
statement, update : Cond × Stmt → Cond, returns a condition that holds on
each variable state that respects the original condition: ∀ω ∈ Ω · c(ω) =⇒
update(c, st)(st(ω))

On the concrete side we can compute g(θ, ω) to check whether DEA guard g
is true for ω and θ. Abstractly we are ignoring θ, but abstracting each ω with a
condition c. To check whether a guard can be true for a condition we require an
appropriate satisfiability checking procedure. We define appropriate conditions
for such a function. We also assume that the function can fail, returning the
unknown verdict ?.

Definition 12. A satisfaction procedure sat : Guard × Cond → {�,⊥,?} is a
procedure that satisfies the following conditions:

(i) Satisfiability implies that if the condition is true on an implicit state, the
guard is also true on the same state: sat(g, c) = � =⇒ (∀ω ∈ Ω, θ ∈ Θ ·
c(ω) =⇒ g(θ, ω)); and



Model-Based Static and Runtime Verification for Ethereum Smart Contracts 335

(ii) Unsatisfiability implies that if the condition is true on an implicit state, the
guard is false on the same state: sat(g, c) = ⊥ =⇒ (∀ω ∈ Ω, θ ∈ Θ · c(ω) =⇒
¬g(θ, ω)).

Control-Flow Analysis. We are interested in over-approximating the execu-
tions of the smart contract, and moreover in whether they satisfy or violate the
required property.

As an abstract interpretation of the execution traces we can take the
CFA itself annotated with state invariants: a state and invariant pair (s, c)
correspond to the set of configurations associated with the state at runtime
{(s , ω1), (s , ω2), ...}.

On function calls we have two choices: (i) we can flatten the CFA and do an
intraprocedural analysis; or (ii) we can over-approximate outside the CFA and
perform an intraprocedural analysis. Here we the latter approach. We analyse
each function CFA separately, and join the results together to remain sound
over the whole smart contract. Each CFA will be extended implicitly to be an
abstract interpretation of the smart contract traces that pass through it. This
will be composed with a DEA, and the paths in this composition then correspond
to the monitored traces at runtime.

We tag transitions in the composition by the respective CFA and DEA tran-
sition labels. Due to intraprocedurality we have to consider the possibility that
(almost) any event can occur before the CFA is entered, after a trace exits from
it, and during a call. In this case, and the case that there is no matching DEA
transition, we mark the respective place in the composition transition with the
empty symbol �.

Definition 13. The abstract intraprocedural composition of a CFA M and a
property π is the transition system with states of type S × Q, transitions labeled
by pairs of CFA and DEA transition labels, with possibly one label missing repre-
sented by the � symbol: ((Cond×Stmt×Σ) ∪ {�}) × ((Σ × Guard × Action) ∪ {�}),
and characterised by the following rules:

1. (s, q) transitions to (s′, q′) if there are transitions between the respective states
in the CFA and DEA, with the same event, and if the abstraction of s updated
with the CFA transition is not incompatible with the DEA guard:

s
c�st�e−−−−→ s′ q

e|g �→a−−−−→ q′ sat(update(σ(s) ∧ c, st), g) �=⊥
(s, q)

c�st�e−−−−→
e|g �→a

(s′, q′)

2. (s, q) transitions to (s′, q) if there are transitions between the respective CFA
states, and if the invariant of s updated with the CFA transition is not incom-
patible with the conjunction of the negation of each guard associated with a
transition from q:

s
c�st�e−−−−→ s′ sat(update(σ(s) ∧ c, st),

∧
q

e|g′ �→a−−−−→q′
¬g′) �=⊥

(s, q)
c�st�e−−−−→

�
(s′, q)
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3. Any configuration with a program state with an outgoing ε-transition asyn-
chronously transitions with that CFA transition:

s
c�st�ε−−−−→ s′

(s, q)
c�st�ε−−−−→

�
(s′, q)

4. Initial, end, and call configurations take any available DEA transition with
events used outside of M6. End and call configurations may transition into
M and back:

s ∈ {s0} ∪ E ∪ dom(calls) e ∈ out(M) q
e|g �→a−−−−→ q′

(s, q) �−−−−→
e|g �→a

(s, q′)

s ∈ E ∪ dom(calls) q, q′ ∈ Q

(s, q) �−→
�

(s0, q) (sE , q′) �−→
�

(s, q′)

We overload ⇒ as its transitive closure and we use �� for a label that is
not �.

The paths in the composition we are interested in are those that start at an
initial state and end in a bad end configuration. These paths abstract exactly
those traces of the program that violate the property. We define formally a
transition relation that captures composition transitions used by or to avoid
such violating paths.

Definition 14. We write (s, q)
x−→
y
→(s′, q′), when:

(i) the transition is in the composition: (s, q)
x−→
y

(s′, q′); and

(ii) (s, q) is reachable from the initial configuration and can reach a bad end
configuration: (s0, q0) ⇒ (s, q) ⇒ (sE , qB).

We say a CFA transition s
x−→ s′ is used on the way to a violation when

(s, q) x−→
y
→ (s′, q′), and similarly for DEA transitions.

Note how we require that only (s, q) can reach a violating configura-
tion, and not (s′, q′). Any such transitions are in fact transitions that help
avoid a violation. Identifying these transitions will be useful when considering
our residual operators, to avoid removing needed property transitions and/or
instrumentation.

A clear result is that if there is no path to a bad configuration in any CFA then
we can conclude that the property is satisfied. We can check for this by checking
if there is a path in a composition that transitions from a good configuration to
a bad one.
6 out : CFA → 2Σ is the function that returns the set of events used shallowly in

CFAs of P that are not the input CFA.
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Theorem 1. �M ∈ functions(P ), s, s′ ∈ SM , qB ∈ B, q ∈ Q \ B · (s, q)
	�−→
	�
→

(s′, qB) =⇒ P  π.

However, since our approach is only sound, the composition will have paths
that are not realizable at runtime. By making our analysis more exact we can
make the composition more complete, and decrease the incidence of such paths.
Here we are considering the case that the composition is not sound and complete,
and thus there are cases for which we cannot determine compliance. For these
cases we want to focus the verification effort on the part of the program that
cannot be proven safe, and the part of the property that has not been proven.

The first residual we define concerns reductions of DEAs.
Consider that any concrete trace can be associated with the set of DEA

transitions it activates at runtime. If we consider only the set of violating traces,
then we can identify the set of DEA transitions used by at least one violating
trace. The sub-DEA created with only these transitions is enough to give a
verdict for these violating traces.

However, we want to ensure that the residual monitor gives a correct verdict
also to compliant traces. Consider that compliant traces either: (i) use a subset
of the DEA transitions used by the violating traces, but simply succeed in not
using transitions whose destination state is a bad state; or (ii) end up in a part
of the DEA that is not used by a violating trace (e.g. a transition towards an
accepting state). To ensure equivalent verdicts for compliant traces we can create
a sub-DEA made of all the DEA transitions of the first kind (i), along with the
DEA transitions that transition into the part identified in (ii). Note, we do not
need all the transitions in this second part, since entering it ensures eventually
a satisfying verdict will be given.

To create an appropriate sub-DEA that monitors equivalently both violating
and compliant traces we can simply consider the sub-DEA created with the
union of transitions of both the above identified sub-DEAs. Here we can simply
characterise this with our notion of a transition being used on the way to a
violation (Definition 14).

Definition 15 (Control-Flow Residual). π\P is the property with the tran-
sitions of π used on the way to a violation in a method of P :

→π\P
def
=

{
q

e|g �→a−−−−→ q′ | ∃M ∈ functions(P ), s, s′ ∈ SM · (s, q)
	�−−−−→

e|g �→a
→ (s′, q′)

}
.

s Greyed out transitions in Fig. 4 represent guards removed with this residual.
For example, for Fig. 4a we are able to show that the declareWinner function
cannot be called successfully immediately after startAuction.

Dually we can reduce a program’s event instrumentation by removing those
events not used on the way to a violation.

Definition 16. P\π is the CFA with the union of:

(i) the transitions of P used on the way to a violation:
→0

def
=

{
s

c�st�e−−−−→ s′| ∃M ∈ functions(P ), s, s′ ∈ SM · (s, q)
c�st�e−−−−→

	�
→ (s′, q′)

}
; and



338 S. Azzopardi et al.

(ii) the rest of the transitions of P silenced: →1
def
=

{
s

c�st�ε−−−−→ s′ |
(s, c, st, e, s′) ∈→π \ →0

}
.

The reduction applies transitively to calls.

Grey events in Fig. 2 and Fig. 3 represent events removed with this residual
operator. For example in Fig. 2 we are able to show that the modification event
of variable id can be turned off in Listing 1.2, since the after(startAuction)
event always occurs after it. This means that in the monitor corresponding to
Fig. 4b the transition between q3 and q1 is always taken, and thus there is never
a violation.

By applying these dual reductions we can produce a reduced verification
problem that is still equivalent to the original one. We can show that the ver-
ification problem reduced with these operators is in lockstep with the original,
since (i) the residual DEA is exactly the part of the original DEA exercised
by violating traces, and simply allows for early satisfaction verdicts for some
compliant traces; and (ii) the removed events could not have participated in a
violation.

Theorem 2. (P\π, π\P ) is in lockstep with (P, π).

Another residual operator we consider is one that identifies property transi-
tion guards that can be determined to always hold true at runtime. This can be
done by inspecting the compositions: if whenever a property transition is used in
the composition there is no alternative, then its guard always holds at runtime.

Definition 17 (Guard Residual). π � P is the property with the union of:

(i) the DEA transitions that are not always activated:

→0
def
=

⎧
⎪⎨

⎪⎩
q

e|g �→a−−−−−→ q′ |
∃M ∈ functions(P ), s, s′, s′′ ∈ SM , q′′ ∈ Q · (s, q)

c�st�e−−−−−−→
e|g �→a

→ (s′, q′)

∧∃l 	= (e, g, a) · (s, q)
c�st�e−−−−−−→

l
→ (s′′, q′′)

⎫
⎪⎬

⎪⎭

and
(ii) the DEA transitions that are always activated with silenced guards:

→1
def
=

{
q

e|true �→a−−−−−−→ q′ | (q, e, g, a, q′) ∈→π\P ∧(q, e, g, a, q′) �∈→0

}
.

Transitions labels with only transition guards greyed out in Fig. 4 represent
guards removed with this residual. For example, for Fig. 4b we are able to show
that any successful trace entering the bid will always satisfy the ongoing con-
dition, which is trivially implied the statement on line 2 in Listing 1.3.

This residual satisfies our required correctness condition, since it is assured
that any removed guard evaluates positively when used at runtime.

Theorem 3. (P, π � P ) is in lockstep with (P, π).
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Fig. 5. Workflow with solidClarva and contractLarva (Dashed lines denote not yet
implemented flows).

Fig. 6. Architecture of solidClarva (Dashed lines denote not yet implemented flows).

4 Tool

The principles and algorithms described in this chapter have been implemented
in the solidClarva tool7, implemented in Haskell.

This tool is meant to be used as a pre-processor for the contractLarva
Solidity runtime verification tool [11,19], as illustrated in Fig. 5.

We have not yet implemented the flow to produce residual-instrumented
smart contracts. This can be implemented by performing the analysis of
solidClarva as part of the instrumentation process of contractLarva. Oth-
erwise, to keep the two tools separate, another choice, illustrated in Fig. 5 with
dashed lines, is to produce a smart contract with points that should not be instru-
mented but rather appropriately annotated and ignored by contractLarva.

4.1 Architecture and Flow

The architecture of solidClarva is illustrated in Fig. 6.
solidClarva uses the Solidity and DEA script parsing modules of

contractLarva to parse the input text files into appropriate intermediate data
structures.

7 https://www.github.com/shaunazzopardi/solidity-static-analysis.

https://www.github.com/shaunazzopardi/solidity-static-analysis
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The CFA data structure is further analysed with a simple data-flow analysis,
that considers the effect of statements on transitions. For example, if a state s
is only accessible through a transition with condition x == 0 and a statement
y = 1, then we can determine that x == 0 ∧ y == 1 is an appropriate state
invariant for s. If s is accessible from multiple transitions, then the propositions
generated in this manner for each transition can be combined disjunctively to
produce an appropriate state invariant. In a similar manner we propagate state
invariants of the previous states. A limitation of our simple analysis is that we
propagate invariants only up to statements that affect them, and avoid dealing
with issues related to loop invariants and variable updates.

The abstract composition module implements the logic of Definition 13, and
exploits the generated invariants to prune the abstract state space to explore.
This requires satisfiability checking of program conditions against DEA guards.
In solidClarva this is implemented using a satisfiability modulo theories (SMT)
solver: z3 [25]. Essentially z3 is able to check the satisfiability of logical formulas,
corresponding to first-order logic with equality, with some background theory. To
use z3 we provide functionality to represent Solidity statements and expressions
as SMT-Lib [13] expressions. For example a condition x = 0 would be translated
into the expression (assert (= x 0)).

The residual analyser module implements the DEA residual operators defined
in Definitions 15 and 17, producing a residual DEA taken from applying both
of these. Currently we have not implemented the instrumentation residual. Its
utility for Solidity smart contracts needs to be re-visited. We have implemented
this in the case of analysis of Java programs [10] in the clarva tool. There, for
each function call event (e.g. entering a function) we created a version of the
function that is unmonitored, and used that version in call sites we wanted to
uninstrument. contractLarva performs instrumentation in a different manner,
placing events inside of a function itself instead of at call sites. This makes
perfect sense in the context of Solidity, since the functions are triggered by
external users and not necessarily with known code. Then, in this case we can
only determine that, for example, a function start event is not needed when we
dually can determine that all transitions in the DEA that correspond to that
event are also not needed. DEA reductions are then enough for DEAs with only
function events.

In Solidity we are however also interested in another kind of event: variable
change events. If a DEA has a transition on such an event, e.g. x@(x == 1)
(which triggers whenever variable x is changed and the new value is 1), then
each location in the smart contract where the mentioned variable, x, changes is
instrumented. Our analysis can help identifying locations that do not need to be
instrumented, e.g. by identifying that the variable change condition will never
hold or by concluding that the event can never occur at the source state of a
DEA transition triggered by a corresponding event. We leave integration of this
analysis into our tool for future work.
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Finally, upon production of a residual DEA, solidClarva simply uses again
the contractLarva parsing modules to compile the intermediate DEA data
structure into a corresponding contractLarva monitor script.

Table 2. Evaluation of analysis with different case studies.

Case study Added gas cost for monitoring

as % of original gas

Added gas cost for residual

monitoring as % of original gas

Deployment cost Transaction

average cost

Deployment cost Transaction

average cost

Auction Fig. 4a 54.89% 33.71% 38.52% 27.78%

Fig. 4b 41.49% 22.49% 0% 0%

Fig. 4c 48.42% 17.59% 0% 0%

Fig. 4d 52.42% 33.66% 52.42% 33.66%

Courier v1-comp 181.5% 55.26% 103.21% 26.49%

v1-viol 185.12% 66.1% 124.76% 62%

v2-comp 120.5% 44.67% 107.32% 21.02%

v2-viol 198.94% 29.69% 108.55% 30.71%

Ether-wallet comp 114.14% 43.57% 0% 0%

viol 114.36% 43.57% 43.83% 31.83%

Token-wallet comp 28.67% 71.36% 0% 0%

viol 77.76% 71.37% 39.38% 31.59%

5 Evaluation

We evaluated our approach and tool with a number of example smart contracts
and specifications8. The motivation behind our analysis is to identify the parts
of the DEA that the program satisfies, reducing the amount of computation that
has to be done at runtime for verification. Then we wish to measure how much
of the property was proven. This could be done by counting the numbers of
property transitions and guards removed. However, this does not necessarily tell
us how lighter computation-wise the residual is compared to the original one.
For this we need a measure of computation.

Ethereum comes with a native measure of computation, gas. Each transaction
in Ethereum in fact costs a pre-determined amount of gas [30], paid in ether (the
Ethereum native token). The cost depends on the type of computation. This
concept is useful since it ensures that any computation in Ethereum eventually
ends (when the gas is all spent).

For our evaluation we then characterise the computation costs of a smart
contract in terms of the needed gas to deploy it, and the (average) cost of exe-
cuting its functions. Then, we calculate the extra computation costs induced
by instrumenting a smart contract by a monitor of the original property, and

8 Available at https://www.github.com/shaunazzopardi/solidity-static-analysis.

https://www.github.com/shaunazzopardi/solidity-static-analysis
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contrast this with that needed for the residual property. The results of our eval-
uation of twelve smart contract and property pairs is illustrated in Table 2. As
can be noted, our analysis can both succeed in proving a property fully and fail
in proving any of the property. In the case that the property is proven partially
the reduced gas cases can be quite significant, even reducing the added costs of
monitoring by almost half that of the original.

6 Discussion

The approach presented here is generally applicable. It is not limited to smart
contracts, in fact we have implemented a similar earlier approach to residual
analysis for symbolic typestate properties of Java programs [8,10]. Moreover,
the effectiveness of the residual operators is only dependent on how complete
the composition is. This means that future efforts can be focused on making the
composition more complete, and the residual operators re-used. The composi-
tion can also be used in the future to identify actual violations, by considering
transitions that are necessarily taken as in Definition 17.

It bears noting that the approach we consider here can be framed as a partial
approach to verification. Verification techniques can be characterised as func-
tions that determine whether a program satisfies a property, possibly failing:
ver : P × Π → {�,⊥, ?}. A partial verification instead returns a reduced veri-
fication problem: partialV er : P × Π → P × Π. If the returned property is the
always-satisfied property (e.g. a DEA without any bad state), or the program
has no event instrumentation, then satisfaction can be determined. If instead the
always-violating property (e.g. a DEA with a bad initial state) is returned, then
violation can be determined. Partial verification then merely generalises verifi-
cation techniques by returning a verification problem that is at least sufficient
to prove the original problem. Some further conditions may be useful to give, to
ensure that the resulting problem is ‘easier’ to prove than the original. In our
case this is self-evident, since the reduced problem is structurally smaller than
the original.

The approach we give is intraprocedural (as is our implementation), however
this approach can be easily extended to the interprocedural case. This can be
done by inlining called methods in the caller CFA, with appropriate call and
return transitions. Another method could be to simply adapt our algorithm to
collect the transitions and instrumentation of the residual verification problem
while analysing the smart contract through a depth-first search on-the-fly of
the interprocedural composition. Intraprocedural analysis is however still useful.
Consider that it can be used in the middle of development, when not all the
functions of the smart contract have been implemented yet. It is also relevant
that not all calls to external smart contracts may be statically determinable,
preventing a full interprocedural representation.

The semantics of Ethereum bytecode depends on the notion of gas, which our
formalism to model smart contracts fails to take into account. Each function call
in Ethereum is executed with a certain amount of gas, and each computation
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or storage of values costs a pre-defined amount of gas [30]. This means that
a function may be executed without the requisite amount of gas, leading to
transaction failure and reversion of its effects. In our approach we are abstracting
away from gas, and simply soundly modeling the effects of a smart contract.

7 Related Work

7.1 Verification Methods for Smart Contracts

We describe approaches to verifying Ethereum smart contracts, for a more com-
plete survey see [4].

Albert et al. present SAFEVM, a tool that exploits existing robust verifi-
cation tools through a translation from smart contracts as EVM bytecode into
C programs [3]. This is done through an intermediate translation of the byte-
code into a control-flow graph representation. SAFEVM verifies assertions in the
smart contract (i.e. reverts and asserts) and array accesses. This approach is
limited since the truth of assertions may depend on the input variables, and thus
have to be enforced at runtime. There is similar work that proposes the use of
existing tools through appropriate translations of Solidity code, e.g. Osterland
and Rose translate Solidity code into PROMELA models and verifies their asser-
tions using the SPIN model checker [26], and Ahrendt et al. propose translating
Solidity into Java and exploiting the KeY theorem prover [1].

Zhang et al. also present the SMARTSHIELD approach that analyses byte-
code, to identify pre-defined insecure patterns [32]. They also go one step further
and transforms the code to correct the identified errors. There are three kinds
of possibly insecure patterns considered: (i) modifying the variable state after
an external call (which has been associated with ill-behaviour because of re-
entrancy); (ii) no checks for out-of-bounds arithmetic operations; and (iii) not
dealing with the possibility of failed external calls. This tool is focused on only
these three properties, unlike our general approach.

A notable general approach for verification of EVM bytecode is that of Park
et al. who present a model checker [27] exploiting KEVM, an executable com-
plete semantics of the Ethereum virtual machine [21]. This approach allows the
specification of functional correctness properties of smart contract functions.
This approach may require some manual introduction of lemmas to aid verifica-
tion. Our approach on the other hand is automated, where instead of requiring
manual input in the case of failure we simply enforce or verify the unproven part
of the property at runtime.

Permenev et al. describe VerX, an approach that verifies temporal properties
of smart contracts, by projecting these into reachability properties, and through
symbolic execution and predicate abstraction [28]. VerX considers smart con-
tracts that are free of re-entrancy (or callbacks) from external smart contracts
while in the middle of local function execution for scalability. In our approach
we do not have such a limitation.

Li et al. present Solythesis, a tool for runtime validation of smart contracts
[22]. Properties in this approach are quantified invariants on smart contract
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variables. Static analysis is employed to determine the set of variables that can
be modified in a way that violates the required invariant. Only the points at
which this can happen are then instrumented code to check and revert in case
of misbehaviour at runtime. The runtime verification tool that we use for the
runtime phase of our workflow has a more general specification language [11],
however with no guarantees of better performance.

Mavridou et al. describe VeriSolid, a model-driven approach to verification of
smart contracts specified as transition systems using state space exploration and
properties defined in computation tree logic [24]. The model language used has
guarded transitions, similar to ours, however we keep ours at a more abstract
level for simplicity and general applicability to other languages. As opposed to
our approach Mavridou et al. also consider liveness and properties about time
variables.

7.2 Partial Verification

For smart contracts we then only find two tools that take a partial verification
approach [22,32] (described above). In literature we also find partial verification
approaches applied to different contexts, which we describe here briefly. These
can be classified generally in terms of whether they deal with event-based or
state-based approaches to verification. The former correspond to methods with
specification languages corresponding to automata with transitions triggered by
program events, while the latter consider instead properties as assertions at
different points in the program.

On the event-based side, an early work that inspired ours is that of Bodden
and Lam with the Clara tool [16]. This tool analyses properties as finite-state
automata (with transitions tagged by events) against Java programs, by iden-
tifying points in the program that do not need to be instrumented. This is
done intraprocedurally by identifying sequences of instrumentation points that
together have no effect on the property, e.g. two instrumentation points may be
removed if the event induced by the second cancels out the effects of the first. A
different approach is taken by Dwyer and Purandare, where sequences of instru-
mentation that always have the same effect on the property are summarised [17].
The work presented here takes a different direction in that we remove property
transitions and event instrumentation that cannot contribute to identifying or
avoiding a violation. We also consider both control-flow and data concerns.

For symbolic automata, in previous work we extended some of Clara’s anal-
yses for properties as symbolic automata [8]. Like Clara, that work ignored data
aspects of the program. StaRVOOrS is an approach for symbolic automata that
takes into account some data concerns but ignores the property control-flow [2].
This approach is complementary to ours, since the property automata consid-
ered by StaRVOOrS are syntactic extensions of ours, with states tagged by Hoare
contracts. Essentially, the analysis considered proves Hoare contracts required
of functions (i.e. whether a post-condition follows from a pre-condition and the
function implementation). When it fails to do so, it strengthens the pre-condition
with what is already known about the function.
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On the state-based side, a main approach is that of Beyer et al., where the
model checking problem is modified to transform the property with a predicate
that characterises the states of the program that are left to prove to satisfy the
property [14]. Then further analysis can be focused on the smaller state space.
This work is further extended to be able to slice from a C program, the part of
the program proven compliant [15]. This allows the approach to be used with
out-of-the-box model checkers. This work has a similar approach to ours, where
verification is focused on smaller parts of the program, however they do not
consider the use of runtime verification.

8 Conclusions and Future Work

We have described an approach to combine inconclusive static analysis steps with
runtime verification in the context of verification of Solidity smart contracts. Our
approach – embodied in solidClarva – is model-based, where the smart contract
is not verified directly but through a corresponding model. The specification we
use is a form of symbolic automaton that consumes program events and variable
state, while maintaining its own variable state.

In the future we intend on implementing an interprocedural approach to
this residual analysis, by flattening the control-flow model we use. Moreover,
we intend on adding a notion of gas in our modeling language, which can be
useful in avoiding the analysis of paths that can be determined to always need
more gas than the allowed gas limit. The runtime verification tool we consider
contractLarva also has room for optimisation. For example, properties that
simply correspond to pre- and post-conditions of a certain function could be
detected and simply implemented with require and assert statements, rather
than the more expensive general instrumentation approach.
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Abstract. A Self-adaptive System (SaS) consists of an autonomic man-
ager which is able to adapt the system’s behavior by operating on a man-
aged sub-system that perceives and affects the environment through its
sensors and actuators, respectively. Self-adaptation may occur at differ-
ent levels, devising a number of knobs that the autonomic manager can
properly regulate in order to produce actuation in response to environ-
ment sensing.

This paper is an extension of our previous work introducing a gener-
alized QN model that allows performance modeling and assessment of
SaSs. We here extend previous work by defining modeling patterns and
controller selection policies to conform to during the instantiation of the
generalized model, resulting into a novel family of QN models aimed at
representing the different parts of the system and the dynamics occur-
ring over and among them.

A controlled experiment addressing a realistic SaS for emergency han-
dling shows that, by adhering to the defined patterns and controller
selection policies, QN models behave as expected, and that the latter
can be immersed into a performance optimization context that opens to
the development of automated solutions to support the identification of
efficient system configurations.

Keywords: Self-adaptive systems · Software architecture · Modeling
patterns · Performance · Queuing networks · SMAPEA QNs

1 Introduction

In the last 15 years, new IT technologies have appeared and many applications
of them have been proposed, where a hw/sw system is immersed in a dynamic
environment subject to uncertainty [14,33]. In this context, the need to face such
an uncertainty has brought to Self-adaptive Systems (SaSs). A SaS is composed
by a managed and a managing sub-system: the former directly interacts with the
environment by perceiving and affecting it by means of sensing and actuating
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components; the latter sub-system implements an autonomic manager which
provides self-adaptation capabilities, that are the ability to adapt the system’s
behavior based on its awareness about the current environmental conditions.
To this aim, the coupling between managed and managing sub-systems usually
takes the form of MAPE-K feedback loop(s) [23], i.e. “an architecture model that
divides the process of adaptation into four phases: Monitor (M), Analyze (A), Plan
(P), and Execute (E). Data that is collected and used during adaptation is stored
in the so-called Knowledge base (K)” [9].

Much work has been done to devise autonomic managers implementing self-
adaptation mechanisms. With this regard, most of existing approaches exploit
Model-Driven Architecture (MDA) principles [25] to abstract the system and
its self-adaptation capabilities. In addition, other kind of notations have been
exploited to model and analyze non-functional attributes – e.g. performance,
reliability and energy [35] – of the managing sub-system and its adaptation
mechanisms.

Among non-functional attributes, performance has gained importance, as
from several literature studies [9,34,35]. Hence, Performance Engineering
approaches have been proposed for modeling and assessing performance of the
managing sub-system, by either coupling MDA and performance modeling nota-
tions or directly working onto a non-functional representation of the SaS – i.e.
adaptation is enabled onto the performance model1.

Besides, techniques of different nature have been leveraged in order to devise
efficient adaptation mechanisms, especially by approaches working directly on
performance models. For instance, Control Theory has been used to introduce
local [5,6] or global [21] MAPE loops for providing formal performance guarantees
in the context of Queuing Networks (QNs) [27]. Furthermore, Machine Learning
allowed to introduce different forms of performance-driven automated reasoning
aimed at deciding about adaptation [7,8,13,17,20,22,26,28].

This paper extends our previous work [3], where we have illustrated how to
cast a SaS to a QN, thus to be able to leverage QN analysis tools and methods
for assessing the performance of such systems, in ways that were not previously
possible. In particular, a generalized QN performance model has been introduced
in previous work [3] that, differently from existing approaches, abstracts both
sub-systems of a SaS, widening the focus of performance analysis from the self-
adaptation mechanisms (in charge of the managing subsystem only) to the whole
SaS. QN stations represent system’s components and are properly visited by job
classes corresponding to the different types of tasks (jobs) they perform, i.e.
Sensing, Actuating and MAPE activities. These latter tasks, whose execution is in
charge of control components within the managing sub-system, are involved in a
MAPE loop implemented by exploiting advanced QN constructs, i.e. class switches,
which enable dynamic job class transformation conforming to the system’s mode
profile [32].

1 As highlighted in previous work [4], the expressiveness of the architectural notation,
as well as the available degree of tool support, heavily affect approach potential in
terms of “what and how” to adapt.
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Previous work is here extended by defining a set of modeling patterns that
allow to instantiate the different parts of the generalized model, thus defining a
novel family of QNs, namely SMAPEA QNs. By conforming to these patterns, it
is possible to model SaSs in terms of their managing and managed subsystems,
and to enable performance analysis based on specific parameters such as work-
load, components service demands, mode-adaptation probabilities and controller
selection policy. The latter define the criteria for routing MAPE jobs to controllers,
which are also devised in this paper.

SMAPEA QNs have been preliminarily evaluated in previous work [3] by show-
ing that they allow to model and assess the performance of a realistic SaS for
emergency handling and they can help in identifying controller selection policies
that may enhance performance. Such preliminary evaluation is here extended
by: (i) matching the considered SaS to the defined modeling patterns and show-
ing that the corresponding SMAPEA QN behaves as expected under controlled
conditions; (ii) considering several controller selection policies, with the main
goal of opening to the development of optimization techniques (e.g. search-space
exploration with genetic algorithms [16]) that might overcome the human in
devising efficient system configurations, thus providing valid support to perfor-
mance modeling, assessment and optimization of SaSs.

The paper is structured as follows: Sect. 2 illustrates a motivating scenario
which needs a SaS with efficient performance. Section 3 firstly illustrates the gen-
eralized SMAPEA QN model and the underlying reference self-adaptation model
and then it describes modeling patterns to instantiate the former. Section 4 pro-
vides an experimentation aimed at showing that SMAPEA QNs can be success-
fully applied to performance modeling and assessment of SaSs and they can
provide valid support to performance optimization of such systems. Section 5
reviews existing approaches exploiting the QNs as performance notation for SaSs.
Section 6 concludes the paper and points out future research intents.

2 Motivating Scenario

Figure 1 shows a motivating scenario in the context of emergency handling,
designed for a real exhibition venue in Alan Turing Building – Department of
Information Engineering, Computer Science and Mathematics – L’Aquila, Italy,
and used to evaluate SMAPEA QNs.

The scenario addresses the problem of monitoring people in a public area
(i.e. a building room), while keeping track of environment temperature and CO2

level, in order to intervene in case an evacuation of the area shall be needed
due to fire detection. People position and movements are detected by CCTV
cameras, whilst date concerning temperature and CO2 levels are measured by
specific sensors. Sensed data are forwarded to an autonomous manager which is
required to be continuously aware of the area and to properly react by affecting
the environment through actuation, based on the situation. To this aim, the
autonomous manager aggregates and analyzes sensed data, in order to establish
if safety thresholds are overcame, thus causing a switching from normal to critical
operational mode.
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In normal mode, actuation consists of displaying a dynamic 2D-
representation of the area on a dashboard, while periodically estimating the
time needed to empty the area through usual exits.

In critical mode, people evacuation is needed. Hence, as a fire is detected,
the autonomous manager contrives an optimal evacuation plan as soon as pos-
sible, resulting into the activation of evacuation signs which indicate the best
evacuation routes while an acoustic alarm alerts people. In addition, the 2D-
representation the dashboard is augmented with additional information useful
to security assistants and, eventually, rescue teams.

Fig. 1. Infrastructure for emergency response [1].

The motivating scenario devises a SaS with a number of Sensing and
Actuating components within the managed sub-system (i.e. CCTV cameras,
temperature and CO2 sensors, dashboard, acoustic alarm and evacuation signs)
interacting with the autonomous manager in the managing sub-system; the latter
implements a MAPE control loop by exploiting a number of control components
performing Monitor, Analyze, Plan and Execute activities.

As can be understood from the description above, the scenario is very chal-
lenging, because it requires the SaS to react quickly, as the latter is immersed
in a safety-critical context. In such a context, performance become a key-aspect,
thus requiring to leverage performance modeling notations and assessment tech-
niques that may help in identifying efficient system configurations. This is the
main goal of SMAPEA QNs, which represent a novel family of QN models for mod-
eling and assessing the performance of SaSs, by considering both their managed
and managing sub-systems, as well as the activities executed by the latter, i.e.
Sense/Actuation and MAPE, respectively.



A Novel Family of Queuing Network Models for Self-adaptive Systems 353

3 SMAPEA Queuing Networks

As mentioned before, the goal of this paper is to introduce a novel family of
QN models to support performance modeling and analysis of SaSs, in terms of
both managing and managed subsystems. To this aim, prior to the definition
of a pattern-based generalized QN model which allows to address a plethora of
SaSs, the underlying reference model for self-adaptation is described.

3.1 Reference Self-adaptation Model

Figure 2 illustrates the self-adaptation model SMAPEA QNs rely on, which comes
from a reworking on the autonomic control loop model proposed by Weyns
et al. [36] and which has been firstly introduced in previous work [3].

Fig. 2. Reference model for self-adaptation [3].

The SaS can perceive the environment by means of sensing components
deployed to a conceptual macro-component named Perception Layer (PL)
located into the managed subsystem. The latter contains another macro-
component as well, namely Application Layer (AL), which contains actuating
components through which the system can affect the environment.

Actuation results from a complex interpretation of what has been perceived
by the system and is aimed at implementing an adaptation of the latter’s behav-
ior. This is in charge of the managing subsystem, which contains the so-called
Intermediate Layer (IL) where a number of control components are deployed to.
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Due to the fact that the managed and managing subsystems operate in syn-
ergy, they are connected by network(s) (see the dashed line).

Conforming to Weyns et al. [36], the adaptation logic is realized through the
four sequential activities of MAPE control loops [23], namely Monitor (M), Analyze
(A), Plan (P) and Execute (E).

Table 1. MAPE Vs. SMAPEA control loops [3].

Order Activities

Weyns et al. [36] Our approach

0 - Sense (measure)

1 Monitor (collect) Monitor (collect)

2 Analyze (determine) Analyze (determine)

3 Plan (prepare) Plan (contrive)

4 Execute (act) Execute (prepare)

5 - Actuate (act)

As from Table 1, two additional activities are devised, namely (0) Sense and
(5) Actuate, both taking place at the managed subsystem, thus widening the
scope of performance modeling and analysis to system boundaries, i.e. where
interactions with the environment occur.

Sense is associated to the term “measure” to distinguish raw data retrieval
from their subsequent aggregation performed during Monitor (“collect”). Plan
is associated to the term “contrive” rather than “prepare”, in order to better
distinguish between conceiving an adaptation and preparing the sequence of
actions needed to Execute the adaptation. The term “act” naturally shifts to
Actuate, that is in charge of the managed subsystem.

SMAPEA activities are thus performed spanning among sensors (responsible for
Sense), controllers (responsible for MAPE) and actuators (responsible for Actu-
ate). This brings to a natural mapping of (i) system’s components onto QN
stations and (ii) activities onto QN job classes, resulting into the generalized
model described in the next section. Distinguishing system topology and the
dynamics occurring into the latter represents an improvement compared to the
work by Weyns et al. [36], where MAPE activities are directly mapped to ad-hoc
components, resulting into an inextricable binding between static and dynamic
aspects of the system.

Concerning the self-adaptation itself, SMAPEA QNs ground on mode-
adaptation. The has been used since more than a decade to devise different con-
figurations among which a system may transit for self-adaptation [30], based on
a mode profile represented by a set of predefined probabilities [32]. For instance,
Fig. 3 shows a mode profile for the motivating scenario.

The system can switch between normal and critical modes with 12%
and 88% probability, respectively. Based on the latter, Sense jobs are trans-
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Fig. 3. Example of self-adaptation within SMAPEA Queuing Networks [3].

formed into mode-specific Monitor jobs, corresponding to the adoption of a
particular mode. MAPE jobs, as well as Actuate ones, shall be thus “instanti-
ated” modulo those two modes, resulting into 10 MAPEA instances, i.e. {Nor-
mal, Critical} Ś{Monitor,Analyze, P lan,Execute,Actuate}.

In addition, Actuate instantiation also depends on the specific type of actua-
tion. For example, the SaS for the motivating scenario has three actuating com-
ponents, namely Dashboard, Alarm and EvacuationSigns; hence, six Actuate-
instances shall be devised, i.e. {Normal, Critical} Ś{DashboardActuate,Alarm
Actuate, EvacuationSignsActuate}. Similarly, Sense instantiation depends on
the specific type of sensing. For example, the considered SaS has three sensing
components, namely CCTVs, CO2 and Temperature; hence three Sense instances
might be devised, i.e. CameraSense, CO2Sense and TemperatureSense.

3.2 Generalized Queuing Network Model for SaSs

Figure 4 depicts the generalized QN conforming to the reference self-adaptation
model of Sect. 3.1, i.e. in terms of PL, AL and IL, their connections and the job
classes visiting them while flowing through the QN.

Fig. 4. Generalized SMAPEA queuing network model [3].

The QN is partitioned in three parts, namely S,MAPE andA, containing PL’s
sensors, IL’s controllers and AL’s actuators, respectively. Such system components
are mapped onto (properly connected and parameterized) stations, whilst SMAPEA
activities naturally map onto job classes visiting those stations.

As PL and AL are at the boundaries, they are connected to source and sink
nodes, namely Sampling and Done, respectively. The latter realize Perceive and
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Affect interactions of Fig. 2, as follows: At the S-side, Sampling emulates envi-
ronmental stimuli by generating SENSE jobs, based on a certain probability dis-
tribution to be specified; At the A-side, Done represents that actuation has been
performed and the environment has been (possibly) affected.2

Notice that a single workload source is illustrated in Fig. 4, meaning that sen-
sors have the same sampling rate, however more workload sources can be intro-
duced for the different areas of the system.

Both PL and the AL are connected to the IL through PL2IL and IL2AL delay
stations, respectively, representing the network(s) between the two sub-systems.

The SMAPEA control loop is implemented by two class-switches, namely
S→M and M→A→P→E→A, placed before and after the IL, respectively.
S→M transforms SENSE jobs into MONITOR to realize mode-based adapta-
tion, whilst M→A→P→E→Atransforms each MAPEA job into a job of the subse-
quent type to progress along the MAPE loop.

Mode-adaptation grounds on the mode-switching probabilities mentioned in
Sect. 3.1 and exemplified in Fig. 3. Mode-specific MONITOR jobs (e.g. Normal
and CriticalMonitor) are generated from SENSE jobs with certain probabili-
ties and then forwarded to the controllers, spending their demands before visiting
M→A→P→E→A. The latter transforms them into ANALY ZE jobs, which are
routed back to S→M . The loop is further iterated by producing the subsequent
mode-specific PLAN , EXECUTE and ACTUATE jobs. ACTUATE jobs are
finally forwarded to the A-side for actuation.

When a MAPE job is forwarded to the IL, one controller among the ones in the lat-
ter must be chosen to serve that job. This choice is referred as Controller Selection
Policy (CSP), and is in charge to S→M . Hence, specifying a CSP for a SMAPEA QN
corresponds to the specification of S→M routing strategies for each job class. Sev-
eral other routing strategies are available, such as random, round-robin, and others
which consider controllers’ metrics at the time the routing is performed (e.g. for-
warding to the controller with the shortest queue length). However, in this paper
we consider probability-based routing strategies only, leaving other strategies as
future work without jeopardizing paper contribution. In fact, a probability-based
strategy for S→M could be exploited to devise different system configurations, as
shown later in Sect. 4.

3.3 Modeling Patterns for SMAPEA QNs

We describe in the following several ways to “instantiate” S-, MAPE- and A-parts
of the generalizedSMAPEAQNmodel, bydefiningmodelingpatterns that allow to
introduce: (i) sensing and actuating components within the managed sub-system
(Sect. 3.3), (ii) controllers within the IL and CSP for S→M (Sect. 3.3). To this aim,
we define Logical Decomposition Units (LDUs) for each of the three parts. An LDU
characterizes configurations of system components within a specific part of the

2 By uppercase words we denote all Sense, Monitor, Analyze, Plan, Exe-
cute and Actuate job classes. E.g., with respect to Fig. 3, MONITOR =
{NormalMonitor, CriticalMonitor}.
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SMAPEA QN and the dynamics occurring in that part. Hence, LDUs can be instan-
tiated and properly connected in order to specify SMAPEA QNs for specific SaSs.

Managed Sub-system. LDUs for S- andA-parts allow to model – respectively –
sensing and actuating components of the managed sub-system by organizing them
into areas. In particular, each LDU devises an area where a cluster of one or more
sensing/actuating components is deployed. For example, a buildingmaybe divided
into several areas (e.g. rooms), each equipped with a cluster of sensing components,
i.e. a CCTV, a temperature sensor and a CO2 sensor, and a cluster of actuating
components, i.e. a dashboard, an alarm and evacuation signs.3

Figure 5 illustrates the LDU for S-part. It contains a number of sensing compo-
nents surrounded by a fork and a join aimed at properly splitting (i.e. fork) Sense
jobs and distributing them among those components. Those jobs arrive at the fork
– see the dashed arrow in Fig. 5 – either directly from a workload source or indi-
rectly, from a preceding fork (not shown in the figure), which also determine the
sampling of sensing components.4

Fig. 5. LDU for S-part.

Figure 5 devises three mutually exclusive positions for delay stations represent-
ing networks between PL and IL. In particular, each sensing component may have a
separate network (case a) or, alternatively, only one delay station may be exploited
– either before (case b) or after the join (case c) – meaning that all the sensing
components within that area use the same network. Choosing among those alter-
natives strictly depends on the particular system and available data. In fact, as can
be noticed from Fig. 5, different job classes result from the three alternatives, hence
different service demands must be specified.
3 Notice that, in general, the number of areas which sensing and actuating components

are deployed to can be different.
4 In the particular case of a cluster with only one sensing component, fork and join can

be omitted, thus making (b) and (c) equivalent.
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Figure 6 shows a generic example with a areas in the S-part, each having a clus-
ter with a number i of sensing components. Delay stations are placed conforming
to case (c) of Fig. 5.

Fig. 6. LDU instantiation for S-part.

Concerning the LDU for A-part, we refer to Fig. 7. Similarly to the S-part,
a number of actuating components are surrounded by a fork and a join, aimed
at properly splitting (i.e. fork) ACTUATE jobs (i.e. fork) and distributing them
among those components.5

Moreover, delay stations representing networks between IL and AL can be posi-
tioned in two mutually exclusive ways, i.e.: (a) before the fork, in case all the actu-
ating components of the cluster use the same network or (b) each actuating com-
ponent is on a separate network.

Figure 8 shows a generic example with a areas in the A-part (possibly corre-
sponding to the ones in Fig. 6), each having a cluster with a number aj of actuating
components. Delay stations are placed conforming to case (a) of Fig. 7.

Managing Sub-system. The LDU for MAPE-part allow to model control com-
ponents of the managing sub-system in terms of local and remote controllers, with
respect to the autonomous system realizing the MAPE control loop.

As from Fig. 9, remote controllers are included between delay stations repre-
senting a network (e.g. a cloud). Instead, no delay nodes are introduced while spec-
ifying local controllers.

The Controller Selection Policy (CSP) that has been previously mentioned in
Sect. 3.2 defines the strategy adopted by S→M to forward incoming jobs to its out-
going paths. While defining a CSP, a number of routing strategies must be specified
for S→M , i.e. one for each MAPE job class flowing through the latter. In particular,
5 As for the S-part, in the particular case of a cluster with only one actuating component,

fork and join can be omitted.
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Fig. 7. LDU for A-part.

Fig. 8. LDU instantiation for A-part.

Fig. 9. LDU for MAPE-part.
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it corresponds to a o × 4m matrix, where o is the number of S→M outgoing paths
and m is the number of system modes. Hence, each column of the matrix defines
the routing strategy for a MAPE job class related to a specific mode, with respect to
S→M outgoing paths (oi).

By reasoning at different level of abstraction, jobs can be routed based on two
dimensions: (i) the MAPE activities they belong to and (ii) the system modes they
refer to. This results into the following four possible combinations:

(1) CSP.equality. All the jobs follow the same (unique) strategy. In other words,
there is no distinction based on the corresponding systemmodes or MAPE activities.
(2) CSP.activities. Jobs belonging to the same MAPE activity (e.g. MONI-
TOR) follow the same routing strategy, independently from system modes.
(3) CSP.modes. Jobs referring to the same system mode (e.g. normal or critical)
follow the same routing strategy, independently fromtheMAPEactivity theybelong
to.
(4) CSP.diversity. Each job follows its own routing strategy, independently
from any other class. This means considering both the MAPE activity and the sys-
tem mode it corresponds to, at the same time.

As noticed before, several routing strategies are available and some of them
allow to introduce run-time self-adaptation, but we only consider probability-
based routing strategies in this paper. We limit the scope with respect to CSP in
order to avoid further complexity needing a deep investigation of possible side-
effects and solutions to overcome them.

At this point, an optimization problem can be defined, concerning the CSP
specification, namely CSP problem. The CSP problem consists in identifying opti-
mal S→M routing strategies for incoming MAPE jobs. The term “optimal” refers to
some performance indices of interest, that usually are the mean system response
times of the different system modes (i.e. ACTUATE jobs). In fact, system modes
are “concurrent”, as the probabilities that the system is operating in each mode
always sum to 100%. Consequently, performance optimization in this context is a
matter of trade-off modulo system modes.

The CSP problem may exist at design- and/or run-time, introducing a fur-
ther dimension (i.e. the CSP) for self-adaptation beside the mode-based one. The
aim at design-time is the identification of system designs with optimal perfor-
mance; instead, the aimat run-time is dynamic system reconfiguration by adapting
S→M routing strategies.

The definition of the CSP problem opens to its automated resolution by means
of, e.g., multi-objective optimization meta-heuristics such as genetic algorithms
[16], as highlighted by the experimentation of Sect. 4.

3.4 Limitations

The SMAPEA QN family in its current form presents a number of limitations.
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The most significant one concerns the fact that the MAPE-part implements a
single MAPE loop where IL components control all the sensing and actuating com-
ponents. On the one hand, this allows to assume that the information which is typ-
ically shared among control components – i.e. the Knowledge – is implicit within
the model, since there is one overall control flow that is managed by the (unique)
MAPE-part.On the other hand, having a singleMAPE loopwouldnot allow tomodel
decentralized architectural patterns, such as the ones introduced by Weyns et al.
[36], where different MAPE loops or part of them interact each other and participate
to the adaptations concerning other portions of the system.

Enabling decentralization within SMAPEAQNs would mean being able to “com-
pose” MAPE-parts of different SMAPEA QNs, each responsible for a set of sensing
and actuating components. Such a composition might result into very large and
complexmodelswhere thedifferent ILs interact by routing their corresponding jobs
among themselves. For this reason, we plan to address decentralized MAPE loops in
the future.

Moreover, although sensing components within the S-part may be clustered
with respect to different areas that the SaS spans over, a unique sampling rate
shared by those components can be specified, which limits SMAPEA QNs model-
ing potential. The definition of ad-hoc sampling rate for specific clusters of sensing
components shall be enabled in the future, however this requires a deep investiga-
tion aimed at identifying additional patterns.

Another important limitation is that SMAPEA QNs are multi-class models con-
taining class-switches and fork/join. For this reason, they cannot be solved with
exact analytical techniques [15], but only by simulation. In practical terms, those
constructs are currently supported by JMT tool-suite [11] only, which thus rep-
resents a “single-point-of-failure”. However, although JMT represents a standard
de-facto, its adoption implies a number of limitations due to absence/inadequacy
of some features that – realistically – might be implemented/enhanced in the
future. For instance, JSimGraph currently lacks features enabling sensitivity
(what-if ) analyses with respect to variations of class-switch routing probabilities
(i.e. S→Mmode-switching probabilities). Furthermore, the what-if analyses that
are currently available are not adequate to conduct significant sensitivity analyses
with respect to variations of service demands, because they address one component
at a time.

Finally, like most of related work exploiting QN as performance modeling nota-
tion [9], our approach suffers from the neglect of reconfiguration times and costs,
due to the fact that only steady states of the system are analyzed.

4 Experimentation

In this section, a controlled experiment is conducted with respect to a realistic case
study from previous work [3], aimed at answering the following Research Questions
(RQs):
RQ1:Can SMAPEA QNs be successfully applied to performancemodeling and assess-
ment of SaSs? To this aim, the SMAPEA QN for the considered case study is firstly
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matched to the patterns illustrated in Sect. 3.3; then we show that, by adhering to
those patterns, the obtained performance model behaves as expected.
RQ2:Can SMAPEA QNs provide valid support to performance optimization of SaSs?
With this regard, a number of system configurations (in terms of different CSPs)
are considered: some of those represent configurations that a human may easily
conceive, whilst others represent more complex configurations which are very hard
for a human to devise. By showing that at least one of the latter configurations
overcome the former ones, we demonstrate that SMAPEA QNs have the potential
for introducing significant added-value to performance optimization of SaSs.

4.1 Subject of the Experimentation

A SMAPEA QN representing a SaS performance model for the motivating scenario
described in Sect. 2 is illustrated in Fig. 10.

Fig. 10. SMAPEA QN for the considered case study [3]. For sake of illustration S → M
routing probabilities are not reported, as they vary during the experiment.

The QN model conforms the patterns introduced in Sect. 3.3 as follows:

– Both S- and A-part devise only one area (i.e. one cluster of components), since
just one room of the building (i.e. the main hall) is considered. We remark
that (shared) sampling is modeled by a deterministic distribution, denoted by
det(k), as the latter describes a constant flow of customers, arriving exactly
every k time units [12].

– S-part has been modeled conforming to case (b) of Fig. 5, whilst theA-part con-
forms to case (b) of Fig. 7.

– MAPE-part has been modeled by instantiating the pattern of Fig. 9 with two
local controllers – namelyCentralController andPeerController – and a remote
controller – namely CloudController – deployed at the cloud by placing it
between Uplink and Downlink delay stations.
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4.2 QN Parameterization

Like any other QN, a SMAPEA QN must be parameterized, i.e. a set of input param-
eters has to be provided. Among those, some depend on the specific system, thus
representing a sort of “control variables” aroundwhich experiments canbedevised.
In particular, the input must be characterized in terms of:

– Workload distribution and corresponding mean values for each source node.
– Service demand distribution and corresponding mean values for each station

(i.e. service centers and delay nodes).
– Class-switching probabilities for S→M , each representing the probability for

the system to operate in a certain mode.
– Routing probabilities for S→M , i.e. a CSP matrix defining how incoming jobs

are forwarded to outgoing paths based on the class they belong to.

Several experimental settings can be thus devised with respect to the input
parameters above. For example, one could be interested in analyzing differ-
ent mode-switching probabilities while varying controllers’ service demands; As
another example, given fixed service demands and mode-switching probabilities,
a sensitivity analysis modulo different workload intensities could be conducted,
aimed at studying different CSPs. The latter setting is adopted for the controlled
experiment, in particular increasing intensities for the (deterministic) workload
distribution are considered, i.e. 2.5 (minimum intensity), 2.25, 2, 1.75, 1.5, 1.25, 1,
0.75, 0.5 (maximum intensity).

Components’ service demands are fixed in the experiment, as well as
S→M class-switching probabilities. Concerning the former, they are all exponen-
tial distributions; transmission and propagation delays for sensing, actuating and
networking components, as well as controllers’ processing times for the different
MAPE activities, have been obtained by means of CAPS [31] simulation tool and
the well-known CPLEX.6

We do not detail here the service demand definition, however it must be
remarked that all the controllers have the same service demands for MAPE job
classes, i.e. they have identical CSP matrices. On the one hand, this allows to
perform the experimentation in a “controlled environment”, i.e. an experimen-
tal setting that is suitable to prove that the SMAPEA QN is correct and behaves as
expected. On the other hand, it avoids unnecessary complexity that may harden
reasoning about the quality of experimental results.

Moreover, it is worth to notice that CriticalPlan has the highest magnitude,
thus making the critical mode crucial in determining a physiological lower bound
to system performance. For this reason, we set mode-switching probabilities of 12%
forNormal and 88% forCritical, respectively, which allow to stress the system dur-
ing emergencies.

Finally, performance indices of interest have to be defined. For a certain type of
performance index, e.g. mean response time, mean throughput, SMAPEAQNs allow
to address it at system level, modulo system modes. In the controlled experiment,

6 http://www.cplex.com/.

http://www.cplex.com/
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we consider the mean system response time for each mode, i.e. for NormalActuate
and CriticalActuate job classes.

4.3 Methodology

The experimentation is divided into two phases.

Phase 1. By means of probability-based CSP.equality, three types of system
configurations are devised, namely centralized, collaborative and hybrid, as
reported in Table 2. Centralized forwards any S→M incoming job to the same
controller; Collaborative equally distributes the load between two out of three
controllers; Hybrid equally distributes the load between all the controllers. Local
and remote versions exist for centralized and collaborative: the former ver-
sions exploit local controllers only (i.e.CentralController and/orPeerController),
whilst the latter – that represent additions with respect to previous work [3] –
involve the remote controller (i.e. CloudController).

Table 2. Human-conceived system configurations (CSP.equality).

Routing Probabilities
Pattern Normal Critical

Name Destination M A P E M A P E
CentralController 1 1 1 1 1 1 1 1
PeerController 0 0 0 0 0 0 0 0
CloudController 0 0 0 0 0 0 0 0
CentralController 0 0 0 0 0 0 0 0
PeerController 0 0 0 0 0 0 0 0
CloudController 1 1 1 1 1 1 1 1
CentralController 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
PeerController 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
CloudController 0 0 0 0 0 0 0 0
CentralController 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
PeerController 0 0 0 0 0 0 0 0
CloudController 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
CentralController 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334
PeerController 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
CloudController 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

The five system configurations defined above can be seen as typical configura-
tions that a human could conceive as, in general, it is very hard for the latter to
devise more complex configurations when service demands are very heterogeneous
(i.e. non-controlled environment), that is what happens in real contexts. However,
being in a controlled environment allows to point out some hypotheses that shall
be met after experiment execution, thus allowing to conclude that SMAPEA QNs
behave as expected (RQ1), i.e.:

H1. Mean response times for CriticalActuate shall be greater than NormalActu-
ate, mostly due to the fact that CriticalPlan service demand has the highest mag-
nitude.
H2. Pattern shall saturate in the following order, as the workload intensity
increases: centralized, collaborative, hybrid, as they involve an increasing
number of controllers (i.e., 1, 2 and 3, respectively).
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H3. Remote versions of the patterns shall be always worse than the corresponding
local versions, as the former involve the additional delay introduced by Uplink
and Downlink.
H4. As consequences of H2 and H3:

H4a. Centralized.remote shall be the worst pattern, as it involves one con-
troller only (i.e. the minimum) that is the remote one.
H4b. Excluding hybrid, Collaborative.local shall be the best pattern, as it
involves the maximum number of controllers and they are all local.

Phase 2. Further system configurations potentially bringing to performance
enhancement may be identified, by exploiting different probability-based CSPs.

For example, let us suppose that saturation shall be avoided. We thus look for
hybrid alternatives, as the one that has been devised during Phase 1 by exploit-
ing CSP.equality is expected to be the configuration able to manage more work-
load intensities than the other ones (H2). Table 3 reports three hybrid alter-
natives – namely hybrid.modes, hybrid.activities and hybrid.diversity –
each adopting a different probability-based CSP. The human-conceived hybrid
pattern – namely hybrid.equality – is reported as well.

Table 3. Alternative system configurations (rows 2–4).

Routing Probabilities
Pattern Normal Critical

Name Destination M A P E M A P E
CentralController 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334
PeerController 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
CloudController 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
CentralController 1 0.334 0.334 1 1 0.334 0.334 1
PeerController 0 0.333 0.333 0 0 0.333 0.333 0
CloudController 0 0.333 0.333 0 0 0.333 0.333 0
CentralController 0 0 0 0 0.334 0.334 0.334 0.334
PeerController 1 1 1 1 0.333 0.333 0.333 0.333
CloudController 0 0 0 0 0.333 0.333 0.333 0.333
CentralController 0.792 0.693 0.399 0.853 0.735 0.981 0.294 0.921
PeerController 0.158 0.02 0.097 0.011 0.196 0.004 0.372 0.062
CloudController 0.05 0.287 0.504 0.137 0.069 0.015 0.334 0.017

The three alternative configurations have been devised as follows:

– Hybrid.activities equally distributes the most demanding MAPE activities,
i.e. Analyze and Plan, whilst the remaining ones – that are less demanding –
are routed like centralized.local.

– Hybrid.modes equally distributes jobs belonging to the most demanding sys-
tem mode, i.e. critical, whilst the ones belonging to normal mode – that is less
demanding – are routed like centralized.local.

– Hybrid.diversity has very heterogeneous routing probabilities and it has
been obtained by running a prototype multi-objective optimization tool rely-
ing on NSGA-II genetic algorithm for search-space exploration [16], aimed at
suggesting sub-optimal system configurations.
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Differently from phase 1, no particular hypotheses can be formulated in this
phase. However, in case at least one of the alternative configurations will result to
a performance improvement, it would be possible to conclude that SMAPEAQNs can
provide a valid support to performance optimization of SaSs (RQ2).

In order to evaluate performance results for alternative system configurations,
we need some criteria to compare the latter to hybrid.equality. To this aim, we
define the concepts of ameliorative, non-ameliorative, non-pejorative and pejora-
tive configuration, by taking into account the confidence interval of 0.9 (i.e. 90%)
that has been used during SMAPEA QNs simulation.7

Denoting by c a system configuration and by rt(c,m,w) its mean response time
for a certain system mode m and a workload intensity w, we have that:

– c′ is ameliorative for modem and workload intensityw with respect to c if 1.1×
rt(c′,m,w) < 0.9 × rt(c,m,w).

– c′ is non-pejorative for mode m and workload intensity w with respect to c if
0.9 × rt(c,m,w) ď 1.1 × rt(c′,m,w) ď rt(c,m,w).

– c′ is non-ameliorative for mode m and workload intensity w with respect to c if
rt(c,m,w) ď 0.9 × rt(c′,m,w) ď 1.1 × rt(c,m,w).

– c′ is pejorative for mode m and workload intensity w with respect to c if 0.9 ×
rt(c′,m,w) ą 1.1 × rt(c,m,w).

The definitions above can be graphically represented as in Fig. 11, where the
two factors 0.812 and 1.222 have been respectively obtained by solving the corre-
sponding equations:

rt(c′,m,w) + 0.1 × rt(c′,m,w) = rt(c,m,w) − 0.1 × rt(c,m,w) (1)

rt(c′,m,w) − 0.1 × rt(c′,m,w) = rt(c,m,w) + 0.1 × rt(c,m,w) (2)

Fig. 11. Classification in terms of ameliorative (A), non-pejorative (NP), non-
ameliorative (NA) and pejorative (P) system configurations.

7 Simulation confidence interval can be seen as the fuzziness degree of the obtained per-
formance indices. For example, 90% confidence interval means that multiple simula-
tions of the same QN model may bring performance indices to “oscillate” within a
range of ±10%.
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4.4 Execution

All the QN models have been developed and simulated within the JSimGraph
tool available within JMT 1.0.3, running onto a machine equipped with an Intel
Core i5 CPU and 16 GB of DDR3 RAM at 1867 MHz. Configuration parameters
for QN simulation can be found within the JSimGraph file (.jsimg) within the
GitHub project available at https://github.com/davewilsonfbc/smapeaqn.moo
(i.e. CCIS-replication-package folder). The latter also provides the prototypal
implementation that has been developed to obtain hybrid.diversity, as well as
experimental results and instructions for replication.

4.5 Results

Phase 1. Table 4 reports the mean response times for the five human-conceived
system configurations devised during Phase 1, under the considered workload
intensities. Results are also plotted in Fig. 12.

Table 4. Performance results for human-conceived system configurations.

Fig. 12. Mean response times for (a) normal and (b) critical mode. Values overcoming
the maximum y value denote saturation.

It can be noticed that the obtained results confirm all the hypotheses devised
in Sect. 4.3. In fact:

https://github.com/davewilsonfbc/smapeaqn.moo
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H1. For each pattern and workload intensity, the mean response time for Criti-
calActuate is always greater than NormalActuate.
H2. As the workload intensity increases, centralized patterns saturate before
collaborative ones (det(1) Vs. det(0.5)). Instead, hybrid never saturates.
H3. Centralized.remote always performsworse than centralized.local. Sim-
ilarly, collaborative.remote always performs worse than collaborative.
local. In such remote patterns, any job spends positive delays at Uplink and
Downlink ; these delays make centralized.remote (resp. collaborative.
remote) “dominated” by centralized.local (resp. collaborative.local) by
construction.8

H4. As a result,

H4a. Centralized.remote actually is the worst pattern.
H4b. Excluding hybrid, collaborative.local actually is the best pattern.

RQ1 can thus be successfully answered, as by adhering to the modeling
patterns of Sect. 3.3, SMAPEA QNs behave as expected.

A further result is that fulfilling the formulated hypotheses allows to point out
some hints that might support decisions about system configuration(s) to adopt,
e.g.:

– At design-time, a trade-off between saturation and response times might be
assessed. For example, collaborative.local provides sub-optimality but sat-
urates with the most intense workload, whilst hybrid does not provide sub-
optimality but never saturates.

– At run-time, a dynamic reconfiguration strategy of the CSP might be devised,
by conveniently changing the CSP based on the current workload intensity. For
instance, collaborative.local could be adopted as sub-optimal configura-
tion for workload intensities that are below det(1); instead, hybrid shall be
exploited for det(1), det(0.75 and det(0.5), in order to maintain a sub-optimal
configuration while avoiding saturation.

As previously mentioned, human-conceived system configurations are trivial
and thus unsuitable in realistic situation. For this reason, assessing if the sup-
port that SMAPEA QNs may provide to performance optimization of SaSs (RQ2) is
whether valid, cannot be done by limiting the scope to such configurations. Hence,
Phase 2 is executed, whose goal is to investigate non-trivial alternative configura-
tions towards optimal performance.

Phase 2. Table 5 reports the mean response times for all the hybrid configura-
tions, under the considered workload intensities. Cells of Table 5 are colored con-
forming to the coloring scheme used in Fig. 11, i.e.: green for ameliorative, yellow

8 A pattern dominates another pattern when the former shows bothNormalActuate and
CriticalActuate mean response times lower than the latter.
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for non-pejorative, pink for non-ameliorative and red for pejorative configurations.
Of course, the column corresponding to hybrid.equality is not colored, as it rep-
resent the comparison term – namely c. Moreover, results are also plotted in Fig. 13
to allow visual comparison of the different hybrid configurations.

Table 5. Performance results for hybrid configurations.

Fig. 13. Alternative system configurations mean response times for (a) normal and (b)
critical mode.

As it can be noticed from Table 5, each of the three alternative configurations
are ameliorative with respect to normal mode and any considered workload inten-
sity. Instead, concerning critical mode:

– Hybrid.diversity and hybrid.activities are, respectively, ameliorative
and non-pejorative, with respect to any considered workload intensity.

– Hybrid.modes is non-pejorative with respect to most of the considered work-
loads, including both the least and most intense ones, while resulting non-
ameliorative with respect to three mid-intense workloads.

Based on the above observations, decisions about system configuration(s) to
adopt may be taken, e.g.:
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– At design-time: (a) Hybrid.modes might be adopted in case optimal perfor-
mance was needed for normal mode; (b) Hybrid.diversitymight be preferred
in case optimal performance was needed for both system modes, especially for
the critical one.

– At run-time, the system might switch between hybrid.activities and
Hybrid.diversity in order to manage normal and critical mode, respectively,
resulting into an optimal run-time CSP.

RQ2 can thus be successfully answered, as solutions to the CSP problem of
different types, showing better performance than human-conceived ones,
can be identified.

As a final remark, the fact that hybrid.diversity is ameliorative in any cir-
cumstance is significant, as it demonstrates that sub-optimal configurations can be
“located anywhere in the search-space”, paving the way to the adoption of meta-
heuristics for search-space exploration.

4.6 Threats to Validity

Possible biases to experimentation can be classified in three categories: construct,
internal, and external validity. As from Mansoor et al. [29], “Construct validity
concerns the relation between the theory and the observation. Internal validity
concerns possible bias with the results obtained by our proposal. Finally, exter-
nal validity is related to the generalization of observed results outside the sample
instances used in the experiment”.

Construct Validity. Each SMAPEA QN involved in the experimentation is simu-
lated once, because each simulation may run to infinite, especially for most intense
workloads. Practically, the maximum observed durations were in the order of 3
hours, that would be infeasible in real context. In case of massive generation of
SMAPEAQN models due to automated search-space exploration, infinite simulation
shall be avoided in order to generate the models in reasonable time.

In order to mitigate unique simulations while investigating alternative system
configurations with enhanced performance, we have classified the latter in terms
of ameliorative, non-pejorative, non-ameliorative and -pejorative, with respect to
hybrid.equality, by considering a simulation confidence interval of 10%.

The last threat to construct validity comes from the fact that only one SaS has
been modeled, spanning over one area only. With this regard, further systems with
different topologies shall be considered to mitigate this threat and assess how per-
formance modeling and analysis of SMAPEA QNs actually scale.

Internal Validity. QN parameterization has been performed with the aim to
“maintain control” over the SMAPEA QNs and their analyses, by means of the
assumptions introduced in Sect. 4.2. Such assumptions allowed to point out a num-
ber of hypotheses that have been verified by experimental results, thus mitigating
threats to internal validity.
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External Validity. SMAPEA QNs involve specific modeling constructs that are
currently available within JMT only, i.e. class-switches and fork/join. This hardens
the porting of SMAPEAQNs into different performance modeling and analysis tools,
as well as their adoption within other approaches for performance optimization of
SaSs. However, such threat is mitigated by the fact that JMT represents a standard
de-facto. Further mitigation may be achieved by providing a user-friendly SMAPEA
QNs modeling and analysis framework and APIs to exploit features such as model
transformation from/to other performance notations.

5 RelatedWork

SMAPEAQN family is related to approaches grounding on the QN paradigm for per-
formance modeling, assessment and enhancement of SaS. Very recently, we have
published a survey of those approaches at the 11th International Conference on
Ambient Systems, Networks and Technologies [2].

Table 6 reports the classification of the surveyed approaches [2], namely:
SimuLizar [8], QoSMOS [13,18], SAFCA [28,37], ICAC [22], Adaptive Queuing
Networks (AQNs) [5,6] and EMPC [21].

Most of the knowledge base came from three literature studies, i.e. Weyns
et al. [35], Becker et al. [9] and Shevtsov et al. [34]: the former two focused on
approaches addressing non-functional concerns by means of formal notations and
Model-Driven Engineering (MDE), respectively, until 2012, whilst the latter’s
scope involved approaches exploiting Control Theory to provide non-functional
formal guarantees, until 2017. However, at the time our survey was written, we
took into account possible evolutions/extensions of the approaches. Moreover, we
investigated the existence of more recent approaches not covered by the three lit-
erature studies above; this allowed us to identify EMPC [21].

Table 6. Classification of related approaches [2].

SimuLizar QoSMOS SAFCA ICAC AQNs EMPC
References [8] [18], [13] [37], [28] [22] [5], [6] [21]
Systematic studies [9] [9], [35] [9] [35] [34] -
Foundations
Foundational QNs, MDE QNs, MDE QNs, MDE QNs, Machine QNs, Control QNs, Control
Paradigms Learning Theory Theory
Application
Design-/Run-time design-time run-time run-time design-time design-time run-time
Adaptation
Pro-/Reactive reactive proactive reactive reactive reactive proactive

Type architecture architecture architecture architecture mode comp./par.
reconfiguration reconfiguration reconfiguration reconfiguration change adaptation

Architecture
Paradigm components SOA concurrent multi-tier components components
Model PCM BPEL (unspecified) - - -
Perf. analysis
Method simulative analytical analytical analytical simulative analytical
Analysis model QN QN LQN LQN QN QN
Transformation yes - - - - yes
Additional models - - - - - yes
Applicability
Analysis Tools yes yes yes yes yes yes
MDE Tools - yes - - - -
Proof-of-Concept yes yes yes - yes -
Case Study prototypal - - yes - yes
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By referring to the classification scheme of Table 6, we here compare SMAPEA
QNs to the knowledge base in the light of the further developments performed in
this paper, pointing out pros and cons, analogies and differences.

All the related approaches are founded on the QN paradigm, meaning that
performance analysis models conform to either typical QNs [27] or Layered QNs
[19] (i.e. a well-known extension of the former). Besides, those approaches ground
on additional paradigms such as MDE (SimuLizar, QoSMOS, SAFCA), Machine
Learning (ICAC) andControlTheory (AQNs,EMPC), bymeans ofwhich they aim
at introducing efficient adaptation mechanisms within the autonomous system of
the SaS. As those approaches focus on the autonomous system and its adaptation
performance, they can be applied either at design- or run-time (i.e. offline/online).
Instead, SMAPEAQNshave been conceived to support both, as suggested in Sect. 4.5
by pointing out decision-making about system configuration(s) to be adopted.
Moreover, the specificity of the adaptation mechanisms makes related approaches
addressing either reactive or proactive SaSs, whilst SMAPEA QNs can be applied in
both cases, as acting before (i.e. proactive) or after (i.e. reactive) an event happens
is implicitly codified into mode-switching probabilities in our context.

The former version of SMAPEAQNs [3] was aimed at providing an instrument to
model the whole SaS (i.e. not only the autonomous system) and assess its perfor-
mance, without explicitly facing the problem of performance enhancement. Such
problem clearly emerged in this paper, corresponding to the so-called CSP prob-
lem (Sect. 3.3), whose resolution is hard for humans, thus opening to the adoption
of additional paradigms beside QNs, e.g. meta-heuristics for search-space explo-
ration.

Defining the CSP problem allowed to introduce, beside mode-switching, a fur-
ther adaptation type in terms of architecture reconfiguration. This brings SMAPEA
QNs closer to SimuLizar, QoSMOS, SAFCA and ICAC, while continuing to rely
on mode-based adaptation as well, similarly to AQNs (mode-switching Vs. mode-
change), although such dimension of self-adaptation has not been experimented
yet, as it represents part of the system’s operational profile – namely mode profile
[32].

Adaptation type depends on the architectural paradigm, e.g. component-
based, Service-Oriented (SOA), concurrent or multi-tier. Based on the archi-
tectural paradigm, different modeling notations for architecting SaSs have been
exploited by the surveyed approaches. For instance, QoSMOS relies on BPEL
[24], as it addresses SOA. Instead, SimuLizar exploits the Palladio Component
Model (PCM) [10] to address component-based SaSs. This latter architectural
paradigm is addressed by AQNs, EMPC and SMAPEA QNs as well, by using QNs
as a performance-oriented architectural notation without distinguishing between
architecture and performance model. On the one hand, working on a performance-
oriented architecturemodel allows to avoid transfor-mation from/to aperformance
analysis model as, e.g., in SimuLizar. On the other hand, architectural notations
may enable more adaptation knobs.9

9 A comparison between working at architecture or performance model side has been
provided in previous work [4].
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Furthermore, additional analysis models and transformation might be needed
also while working on the performance-oriented architecture model, as for EMPC.

Performance analysis methods of related approaches equally distribute
between analytical and simulative. As mentioned in Sect. 3.4, SMAPEAQNs can only
be simulated, as they contain class-switches and fork/join inhibiting analytical res-
olution and, consequently, a rigorous definition in formal terms. However, this does
not jeopardize their applicability, as demonstrated in Sect. 4, where a substantial
experimentation has been conducted onto a realistic case study, differently from
most of related approaches, which rely on proof-of-concepts.

6 Conclusion

This paper is an extension of ourpreviouswork introducing a generalizedQNmodel
that allows performance modeling and assessment of Self-adaptive Systems (SaSs).

Differently from existing approaches, the generalized QN model spans over the
whole SaS, including its Sensing and Actuating components and not only the auto-
nomic manager that controls them by implementing MAPE feedback loop(s). In this
paper, we have defined modeling patterns to conform to during the instantiation
of such a generalized QN model, aimed at representing the different parts of the
system and the dynamics occurring over and among them. Furthermore, we have
defined the concept of (probability-based) Controller Selection Policy (CSP) and
the corresponding optimization problem, which consists in devising an optimal
strategy – in terms of performance – to select which controller of the autonomous
system has to process a MAPE activity.

The above contribution resulted into a novel family of QN models, namely
SMAPEA QNs.

A controlled experiment has been conducted in this paper, with respect to
a realistic case study in the context of emergency handling, which have been
exploited in previous work to preliminarily evaluate SMAPEA QNs. The experi-
ment was aimed at showing that (RQ1) SMAPEA QNs can be successfully applied
to performance modeling and assessment of SaSs and that (RQ2) they may pro-
vide valid support to performance optimization of such systems. To this aim, we
have firstly matched the SMAPEAQN for the case study to the defined modeling pat-
terns, demonstrating that, by adhering to those patterns, the QN model behaves as
expected. Then, have studied some solutions to the CSP problem exploiting CSPs
which are very hard for a human to conceive and showing better performance than
human-conceived ones, demonstrating that SMAPEAQNs may introduce significant
added-value to performance optimization of SaSs.

Several future research directions have been pointed out in the paper. In par-
ticular, we plan to investigate: (i) CSPs of different nature, especially the ones
that adapt during simulation based on controllers’ metrics; (ii) decentralized MAPE
loops [36] involving different interacting ILs; (iii) additional patterns for the S-
part, introducing ad-hoc sampling rates for the different areas where sensing com-
ponents are deployed.
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While investigating such research directions, proper experiments shall be con-
ducted, aimed at enforcing SMAPEA QNs validity. Experiments shall possibly span
over different SaSs and include multiple simulations of QN models.

With respect to the big picture, the final goal is to develop a framework that
allows to: (i) design SMAPEA QNs conforming to predefined patterns and analyze;
(ii) generate huge sets of SMAPEA QNs, aimed at suggesting alternative system
configurations with enhanced performance; (iii) port SMAPEA QN models from/to
other architectural and–or performance notations through model transformation;
(iv) fill the gap between the real system and its abstractions, by deriving SMAPEA
QNs models from existing SaSs and parameterizing the former based on metrics
extracted from the latter.

Enabling those activities would allow to provide an effective support to perfor-
mance engineering of SaSs through SMAPEA QNs.
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