ABSTRACT

Whole milk is high in nutrients and water and has a neutral acidity level.

Milk contains glucose and its glucose level needs to be identified or measured

because it is important for information before consumption. To measure sugar

content through dielectric properties in milk has several traditional methods and

will be time consuming and expensive. However, the microwave technique using a

microstrip antenna that functions as a sensor can be useful as a faster method to

determine the dielectric properties of milk.

A microwave monitoring system of liquids using a microstrip sensor system

is proposed to determine the sugar content. Microwaves are electromagnetic waves

with a super high frequency, which is above 3 GHz. The antenna is designed with

the aim of being able to function as a sensor to determine sugar content, so the

frequency of this antenna is 6.8 GHz. When the glucose content of milk changes,

the dielectric properties of the surrounding tissue will also change. These changes

can be calibrated to detect changes in the glucose concentration in a product.

The simulation results of the antenna that have been attached to a glass

object containing milk working at a frequency of 6.8 GHz get the results that the

Return Loss and VSWR are shifted compared to the antenna that is not attached to

the object. The frequency results obtained are then analyzed using the curve fitting

technique. The Curve Fitting equation gets an R-square value of 1, then the

resulting Fourier linear regression model is able to estimate well because getting a

coefficient of determination (R2) value of 1 gives an understanding that only 100%

of the ability of the estimated model or straight-line equation.

Keywords: Pure Milk, *Microstrip, Glucose, Return Loss, VSWR*

iv