

DESIGN AND ANALYSIS OF APPLICATION-SPECIFIC INTRUCTION

SET PROCESSOR FOR HUFFMAN CODING

Nona R Nadibella1, Nyoman Bogi Aditya Karna2, Dong Seong Kim3

1,2 Telkom University, Bandung
3Kumoh National Institute Technology

 nandbella@student.telkomuniversity.ac.id1, aditya@telkomuniversity.ac.id2

Abstract

Microprocessors are much important part of computers and IoT. In technology needs, the

microprocessor is a tool to help the performance in the system on that technology. Technology

requires a microprocessor because the microprocessor has components to produce output according

to the commands given to the microprocessor. In the previous microprocessor design, the

microprocessor has design to run a computer or technological device that requires a large memory

capacity to store data and commands on the microprocessor.

Along with the excessive of using are memory and commands, the microprocessor suffers from

a decrease in performance which causes the microprocessor overkill. Overkill is a problem when the

microprocessor experience a performance slow down due to the large number of commands and

memory that the microprocessor receives. Overkill on the microprocessor also occurs because there

are too many bits, so the microprocessor is no longer relevant in improving its performance. To

overcome this solution, this research design a microprocessor with an instruction set processor

(ASIP) using Huffman Coding so the microprocessor can work according to the instruction ordered.

The software to designing this microprocessor uses Altera Quartus with Verilog HDL as

programming language. This simulation to determine the measurement of microprocessor

performance and determine can accommodate the instructions of Huffman Coding. The

measurement results in Analysis and Synthesis in Altera Quartus, microprocessor design has a spare

element capacity of 6272 elements comparison to the intel 8088 microprocessor. From the

measurement result, the design of this microprocessor can accommodate the inctructions given from

Huffman Coding that the resulting bit do not exceed the required capacity. This thesis is continuation

of Nimas Sekar Fatihah Thesis’s is discusses Huffman Coding.

Keyword : Microprocessor, Altera Quartus, Verilog HDL, ASIP, Huffman Coding.

1. Introduction
 A microprocessor is a computer electronic processing center unit (CPU) made of mini

transistors and other circuits on a semiconductor integrated circuit. However, a generic

microprocessor originally designed for general purpose application that uses many machine

instructions, which in return causes an inefficient power consumption [1]. One aspect that is not

used maximally is the instruction set, where not all machine instruction provided by the generic

microprocessor are needed to run the algorithm. Therefore need ASIP (Application-Specific

Instruction set Processor) which is designed to run the algorithm and its variants.

 In designing this microprocessor, it will produce several components on the microprocessor

such as Control Unit (CU), Memory and Datapath. In designing this microprocessor, using the

Verilog and Quartus programming language methods to display the design output. Verilog is a

hardware description language (HDL). It means, by using HDL can describe any digital

hardware at any level. This level describes a system by concurrent algorithms (behavioral).

 Every algorithm is sequential, which means it consists of a set of instructions that are

executed one by one. In designing this microprocessor, using Altera Quartus II as a software to

view the output of Verilog, analyze the performance of microprocessor and view the block

diagrams. In quartus, there are several features to help user see the output of VHDL coding.

These includes Design Entity, Sythetsis, Functional Simulation, Fitting, Timing Analysis,

Timing Simulation and Programming and Configuration.

1.2 Problem Formulation

 Overkill of microprocessor causes by the use of a simple algorithm on a generic

microprocessor cannot provide maximum performance because not all microprocessor capabilities

are used by the algorithm. One aspect that is not used maximally is the instruction set, where not

all machine instructions provided by the generic microprocessor are needed to run the algorithm.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2021 | Page 11526

1.3 Research Purpose

 Design ASIP for Huffman Coding and measure its performance.

1.4 Research Scope

 Creating a microprocessor with a small number of bits with more velocity.

1.5 Writing Systematic

 This undergraduate thesis is written in the following order.

a. Chapter 1 INTRODUCTION

 This chapter contains background, scope of the study, research objectives, etc.

b. Chapter 2 BASIC CONCEPTS

 This chapter contains an explanation of the basic theory, website, paper and tools.

c. Chapter 3 THE PROPOSED DESIGN

 This chapter contains the design block diagram, design microprocessor, and the methods.

 methods.

d. Chapter 4 RESULT AND ANALYSIS

 This chapter contains an analysis of the results obtained from Verilog HDL coding, instructions

of Huffman Coding and Analysis and Sythesis from Altera Quartus as performance the

microprocessor

e. Chapter 5 CONCLUSION AND SUGGESTIONS

 This chapter concludes this thesis and suggestions of the undergraduate thesis.

2. Basic Concepts

2.1 Microprocessor

 A microprocessor is a computer processor where the data processing logic and control are

included on a single integrated circuit or a small number of integrated circuits. Microprocessor

contain both combinational logic and sequential logic. Microprocessors operate on numbers and

symbols represented in the binary number system. A microprocessor accepts binary data as input,

processes the data, and then provides output based on the instructions stored in the memory. The

data is processed using the microprocessors ALU, Control Unit, and register array.

Fig 2.1 Inside of Microprocessor

 The implementation of instruction after they are fetched from memory into instruction

register is done by control unit. As the same suggests, control unit controls all the input and output

signals, and the steps to be carried out for implementation of any program loaded in memory [2].

The ALU is used to carry out arithmetic operations such as Addition Substraction and Logical

operations such as AND, OR, NOT, SRL (shift Right Logical) and SLL (Shift Left Logical) [3].

 In a microprocessor, after the data is calculated and decode in the ALU, then the data will

be forwarded to the data register of register array. A register is one of a small set of data holding

places that are part of the computer processor. Registers have several types, one of them is the

instruction register. Instruction register is a register which holds the current instruction being

executed. It provides opcode to the CU and the ALU [3].

 In working on this thesis, it is necessary to use ASIP in the microprocessor because want

to create an Autonomous CCTV using images as input which must be transmitted to the server. The

purpose of using ASIP is to reduce the size of the image. So that image processing capabilities are

needed in the microprocessor. Creating an Autonomous CCTV requires power consumption to

compress the image size, this power consumption is in the battery. This will use a lot of transistors

on the microprocessor.

2.2 Huffman Coding

 Huffman coding is one of the lossless compression techniques. The idea is to assign

variable-length codes to input characters, lengths, of the assigned codes are beased on the

frequencies of corresponding characters. The most frequent character gets the smallest code and the

least frequent character gets the large code. Huffman Coding has higher compression efficiency than

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2021 | Page 11527

any other methods. The method is shown to be extremely efficient in memory requirements and fast

in searching for the symbol [4]. There are 3 core flows in how Huffman Coding works. First, create

tree using the frequencies of the characters, then generates code for each characters. Last, decoding

is done using the same tree. The steps of Huffman Coding are :

1. Calculate the frequency of each characters in the string.

2. Sort the characters in increasing order of the frequency. Sorted in a priority queue (Q). The

characters sorted according to the frequency.

3. Make each unique characters as a leaf node.

4. Create an empty node (Z).

5. Remove these two minimum frequencies from (Q) and add the sum into the list of

frequencies.

6. Insert (Z) nodes into tree.

7. Repeat steps 3 to 5 for all characters.

8. For each non-leaf node, assign 0 to the leaf edge and 1 to the right edge.

9.

 These instructions were used in Nimas Sekar Fatihah Thesis’s to calculate the frequency

possessed by each instruction.

Instructions Name Description Frequency

ADDI Add Immediate 9ADDIs

SW Store Immediate 7SWs

BEQZ Branch Equal Zero 5BEQZs

BNEZ Branch Not Equal Zero 4BNEZs

LW Load Word 3LWs

SUBI Subtract Immediate 3SUBIs

SGT Set Greater Than 3SGTs

ADD Add 2ADDs

SEQ Set Equal 1SEQs

 Table 2.2 List of Instructions used in Huffman Coding Method

 Based on how Huffman Coding, the frequency on each value needs to be sorted from the

largest to the lowest or vice versa to make it easier to construct Huffman tree. If the value reaches

the greatest point, it starts to swap until the last value, so all the frequency values can be sorted from

the highest to the lowest [5].

2.3 Altera Quartus II

 Altera Quartus II is a programmable logic device design software produced by Altera.

Altera Quartus II enables analysis and synthesis of HDL design, which enables the developer to

compile the designs, performing timing analysis, examine RTL diagrams, simulate a design’s

reaction to different stimuli and configure the target device with the programmer. In Altera Quartus,

there are includes a modular compiler. The compiler module such as Analysis and Synthesis,

Partition Merge, Fitter, Assembler, TimeQuest Timing Analyzer, Design Assistant, EDA Netlist

Writer, Hardcopy Netlist Writer.

 In designing this microprocessor are using the Analysis and Sythesis feature to see how

VHDL works on this microprocessor. Aims to find out the performance using Analysis and

Synthesis. Quartus II is a development tool of Field Programmable Gate Array (FPGA) and

Complex Programmable Logic Device (CPLD) launched by Altera, provides a fully integrated

development package environment that has nothing to do with the circuit structure but with all the

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2021 | Page 11528

features of digital logic design. In Quartus II, the design of combinational logic circuit is carried out

[6].

2.4. Verilog HDL

 Verilog HDL (Hardware Description Language) is a hardware description language that

can model the behavior and structure of digital systems at multiple levels of abstraction, ranging

from the system level down to that of logic gates, for design entry, documentation and verification

purpose. To implement all the VHDL modules, it is necessary to use VHDL packages which provide

all the necessary data types, operators and functions. It is essential as it provides std_logic and

std_logic_vector data types including their type conversations [7]. The program is loaded into

memory as part of the VHDL model [8].

3. Proposed Design

3.1 System Model

 The system model will explain the parts of the microprocessor and how it works.

3.1.1 Microprocessor

 In the microprocessor, there are several components to perform input and output as well as

executors and drafters. These components are Control Unit (CU), Datapath and Memory. The

microprocessor works because of the instructions that will be ordered by the control unit, then

translated by the ALU and stored in the data register. The final process, these instructions stored in

memory.

3.1.1.1 Control Unit

 Control Unit as control all work on the microprocessor.

Fig 3.1 Control Unit

Fig 3.2 Inside of Control Unit

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2021 | Page 11529

• Program Counter / Instruction Pointer : register recognize the address of the

data/instructions entered into the microprocessor.

• Controller : retrieve the address of data/instructions that are input into the

microprocessor.

• Instruction Register : fetch the address of the data/instruction from the controller

and take it to be decode on the instruction decoder to find out the instructions that

were orderd. Instruction register as a temporary storage place containing binary

numbers.

3.1.1.2 Datapath

 Datapath as a link register in the process of executing an instruction, which is included in

the instruction set.

Fig 3.3 Datapath in microprocessor

Fig 3.4 Inside of Datapath

• Data Register/Register File : logs I/O locations to transfer data to and from I/O locations.

Instructions that are temporarily stored in the instruction register will be sent to the data

register/register file to determine and record the I/O that will transfer these instructions to

the ALU.

• ALU : perform arithmetic and logical operations. Instructions on data registers are sent to

the ALU to be translated into numbers and logic (such as logic and binary gates).

3.1.1.3 Memory

 Memory is an electronic circuit that can stored and provide/represent data/instructions.

Instructions that have been decoded by the ALU are stored in memory on the microprocessor. This

memory is a container/place to accommodate the actual instructions that have performed arithmetic

and logic operations on the microprocessor, which will repeat the instruction command. This

condition is called looping, one of the working properties of microprocessor.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2021 | Page 11530

Fig 3.5 Datapath in microprocessor

3.2 System Block Diagram

 In this block diagram, it starts from control unit as the brain of processor to control the

microprocessor. In control unit, there is controller are obtained next state and control logic with state

register. In designing, the VHDL code has been modifying to accommodate Huffman Coding

instructions so that the microprocessor can work according to the instructions ordered. In the control

unit, the register instruction will send data to the datapath to be interpreted by the ALU of the

command. After being translated by the ALU, the instructions are sent to memory to be stored on

microprocessor. This way of working continues until the next instruction. Because the working

system of the microprocessor itself is looping.

Fig 3.6 Block Diagram of Performance Inside the Microprocessor

3.3 Flowchart

 The following flowchart shows the working principle of the proposed system to be

executed.

Fig 3.7 Flowchart of executing the microprocessor code

 To create the microprocessor in Altera Quartus, it must determine the microprocessor script

code that can accommodate these instructions by looking at the package library for storing Huffman

instructions into the microprocessor. The author determines the microprocessor script code whose

coding architecture is complete so it can modify the library package script code to enter instructions

into the microprocessor script code. The microprocessor script code is simulated on Altera Quartus

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2021 | Page 11531

to see the results of the measurement data on the microprocessor. The simulation results can be seen

in the Analysis & Synthesis features, which can show the total number of logic elements, registers,

and the number of pins of the microprocessor coding.

3.4 System Performance Parameter

 The parameters used in the system as follows :

• Analysis and Synthesis, to determined the performance of microprocessor

• Huffman Coding, to determine the microprocessor can work with Huffman Coding

instructions

• Performance Efficiency, achive the performance efficiency due to optimal chosen machine

instruction process.

4. Result and Analysis

4.1 Result and Analysis

The Huffman Coding method is carried out to determine the optimal performance of the

microprocessor to carry out the instructions given. Microprocessor optimization seen from analysis

and Synthesis on Altera Quartus.

4.2 Result Design and Measurement

 Data analysis looks from the results of Total Logic Elements, Total Combinational

Functions, Dedicated Logic Registers and Total Pins.

Fig 4.1 Final Design of Microprocessor in Altera Quartus Software

Fig 4.2 Result Performancy Measurement of Design Microprocessor

4.3 Analysis Measurement and Comparison Data

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2021 | Page 11532

This analysis data uses a comparison between the design of the microprocessor in the thesis

and the Intel 8088 Microprocessor. Comparison of the microprocessor using the Intel 8088 because

one of an example of a 16-bit microprocessor and includes a processor compatible with computer

motherboards on the market.

SPECIFICATIONS MICROPROCESSOR

DESIGN

MICROPROCESSOR

INTEL 8088

Logic Elements 5719/6272 elements

logic gate = 5719 : 6 = 953

29000 elements

logic gate = 29000 : 6 = 4833

Total Registers 4465/6172 registers 14 registers

Total Pins 18/92 pins 40 pins

Table 4.1 Table of Comparison Data Specification on Microprocessor

source : https://en.wikipedia.org/wiki/intel8088

The microprocessor design in this thesis shows a higher number than the Intel 8088

microprocessor because the capacity provided/estimated at Altera Quartus is 6272 more elements.

Meanwhile, the intel 8088 microprocessor does not have spare element capacity, which means it

only provides element capacity for the entire microprocessor.

The effect of the comparison results of the microprocessor designed in this thesis with the

Intel 8088 microprocessor based on the measurement data is that the microprocessor has more spare

element capacity, as evidenced by the comparison of the results of the designed elements with the

results of the elements provided on Altera Quartus so that they can store instructions and not reduce

the performance of the microprocessor itself.

5. Conclusion

In this Thesis, the microprocessor is designed to accommodate 9 instructions. Because the

preparation of this thesis refers to the Nimas Sekar Fathihah’s Thesis, which is explained using only

the instructions ADD, ADDI, LW, SW, BEQZ, BNEZ, SEQ, SGT, and SUBI. As for the Intel 8088

microprocessor itself, it does not have spare capacity, either in the form of reserves in the registers

or the logic elements on the pins.

References

[1] N. Karna, N. Fatihah, and D. Kim, “generic,” in 2019 International Conference on

Information and Communication Technology Convergence (ICTC), 2019, pp. 612–616.

[2] P. Deshmane, M. Lad, and P. Mhetre, “8 Bit Microprocessor Using VHDL,” vol. III, no.

Iv, pp. 241–246, 2014.

[3] G. R. Gare and K. P. A. L. R, “Custom 8 Bit Microprocessor Designing and Implementation

on FPGA Board,” pp. 113–118, 2016.

[4] R. Praisline Jasmi, B. Perumal, and M. Pallikonda Rajasekaran, “huffman,” in 2015

International Conference on Computer Communication and Informatics (ICCCI), 2015, pp.

1–5.

[5] N. Karna, N. Fatihah, and D. S. Kim, “Evaluation of DLX Microprocessor Instructions

Efficiency for Image Compression,” ICTC 2019 - 10th International Conference on ICT

Convergence: ICT Convergence Leading the Autonomous Future, pp. 612–616, 2019.

[6] H.-y. Shen, J.-h. Liu, and J.-h. Li, “Application of Quartus II in Digital Electronic

Technology Teaching,” no. Amee, pp. 103–106, 2018.

[7] L. Isola, “Design and VHDL Implementation of an Application-Specific Instruction Set

Processor,” 2019.

[8] R. J. Hayne, T. Citadel, R. J. Hayne, and C. Engi, “AC 2011-5 : AN INSTRUCTIONAL

PROCESSOR DESIGN USING VHDL An Instructional Processor Design using VHDL

and an FPGA,” 2011.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2021 | Page 11533

