PENGARUH PAPARAN GAS CO₂ TERHADAP SIFAT LISTRIK *METAL ORGANIC FRAMEWORK* (MOF)

CO₂ Exposure Effect on The Electrical Properties of Metal Organic Framework (MOF)

Calica Rosnaomi¹, Ismudiati Puri Handayani^{2*}, Indra Chandra³, Witri Wahyu Lestari^{4**}

^{1,2,3} Universitas Telkom, Bandung ⁴Departemen Kimia, Fakultas Matematika dan Ilmu Alam, Universitas Sebelas Maret

calicanaomi@students.telkomuniversity.ac.id¹, indrachandra@telkomuniversity.ac.id², iphandayani@telkomuniversity.ac.id^{*}, witri@mipa.uns.ac.id^{**}

Abstrak

Pada penelitian ini dilakukan karakterisasi sifat listrik dari lima jenis Metal Organic Framework (MOF) terhadap paparan gas CO₂, yaitu HKUST-1, ANZ (*Activated Natural Zeolite*), MIL-100(Fe), 20%ANZ@MIL-100(Fe) dan 98%ANZ@HKUST-1. Fabrikasi sampel MOF dideposisi diatas substrat SiO₂ yang bersifat semikonduktif dengan pasta perak sebagai elektrodanya. Seluruh pengujuan sifat listrik MOF dilakukan dalam ruang uji tertutup untuk meminimalkan efek lingkungan terhadap sifat MOF maupun kebocoran CO₂ ke lingkungan. Karakterisasi sifat listrik MOF dilakukan dengan mengamati perubahan arus dan hambatan pada saat tegangan di variasi dari -5 hingga 5 volt, suhu divariasi hingga 230 °C, dan laju gas CO₂ di variasi sebesar 2,5, 5, 7,5 dan 10 L/min. Pengukuran kurva I-V MOF menunjukan sifat listrik semikonduktor pada seluruh MOF. Berdasarkan hasil pengukuran dengan efek suhu pada MOF, suhu kerja MOF terbaik yang didapat yaitu pada 150°C. Efek suhu meningkatkan arus yang mengalir pada MOF. MOF juga menunjukan respon terhadap perubahan hambatan saat beroperasi pada suhu ruang. Berdasarkan nilai respon sampel saat on off gas dan kemampuan merespon pada suhu ruang, sampel MOF berpotensi sebagai material aktif pendeteksi kehadiran gas CO₂.

Kata Kunci: CO₂, Metal Organic Framework, Sifat Listrik

Abstract

The aim of this project is to characterize the electrical properties of five types of Metal-Organic Framework (MOF) exposure to CO_2 namely HKUST-1, ANZ (Activated Natural Zeolite), MIL-100(Fe), 20% ANZ@MIL-100(Fe), and 98% ANZ@HKUST-1. The fabricated MOF samples were deposited on a semiconducting SiO₂ substrate and used silver paste for the electrodes. All measurements of the electrical properties were carried out in a closed test chamber to minimize the environmental effect and the CO_2 leakage. The characterization of the electrical properties of MOF observed the changes in current and resistance when the voltage was varied from -5 to 5 volt, the temperature was heat up to 230, and the CO_2 rate variations were 2.5, 5, 7.5, and 10 L/min. The I-V measurement shows that all MOFs are semiconductor. The best working temperature of the MOF is at 150°C. The effect of temperature increases the current in the MOF. MOF has response to resistance changes when operating at room temperature. Based on the response sample when gas on and gas off and the ability to respond at room temperature, MOF has potential as an active material to detect the presence of CO_2 .

Keywords: CO₂, Metal Organic Framework, electrical properties

1. Pendahuluan

Polusi CO₂ yang ada di lingkungan saat ini sangat tinggi. Rata-rata dalam suatu ruangan kadar CO₂ yang terukur sebesar 580ppm hingga 640ppm [1]. Peraturan Menteri Kesehatan Republik Indonesia Nomor 1077/MENKES/PER/V/2011 menjelaskan bahwa kadar maksimal CO₂ dalam ruangan adalah 1000 ppm (per 8 jam). Polusi CO₂ merupakan masalah lingkungan serius yang dapat merusak metabolism manusia, sehingga dibutuhkan pemantauan yang baik [2]. Beberapa cara telah dikembangkan untuk mengurangi polusi CO₂, salah satunya pernyerapan dengan zeolite, karbon aktif dan silika mesopori [3].

Salah satu material berpori yang dapat dimanfaatkan untuk mendeteksi CO_2 dan gas lainnya yaitu Metal Organic Framework [4]. Metal Organic Framework (MOF) merupakan bahan kristal berpori yang memiliki sifat menyerupai zeolite [5], dan dapat dikoordinasikan dengan beberapa logam dan ligan organik untuk mendapatkan ikatan yang lebih kuat [6,7]. MOF memiliki kemampuan absorpsi [8], porositas tinggi, luas permukaan yang besar

dan struktur yang seragam [9] sehingga MOF dapat dimanfaatkan sebagai penyimpanan dan pemisahan gas [10], katalisis dan sensor gas [11]. Sifat MOF yang konduktif dapat dimanfaatkan sebagai sensor gas. Saat molekul gas terserap oleh MOF, terjadi interaksi antara molekul gas dan sisi aktif logam sehingga resistansi MOF ikut berubah [12]. Seperti MOF-74 memiliki sifat semikonduktor dan mobilitas muatan yang baik [13]. Jae-Hyoung Lee dkk, (2019) juga menunjukan bahwa Mg-MOFs-I dan -II memiliki kemampuan yang baik sebagai sensor gas NO₂ dengan suhu kerja optimal pada 200°C. Waktu respon dan waktu pulih Mg-MOFs-II lebih baik dibanding dengan Mg-MOFs-I karena Mg-MOFs-II memiliki luas permukaan yang lebih luas [14]. Berdasarkan kelebihan MOF tersebut, MOF memiliki kemampuan untuk menjadi sensor gas.

Maka dalam penelitian ini, telah dilakukan karakterisasi sifat listrik dari sampel MIL-100(Fe), HKUST-1, ANZ, 98%ANZ@HKUST-1 dan 20%ANZ@MIL-100(Fe). Seluruh sampel telah sintesis oleh Dr. Witri dan tim dari (Universitas Negri Sebelas Maret) UNS. Karakterisasi sifat listrik yang diamati yaitu perubahan arus, tenganan dan hambatan MOF saat terpapar CO₂. Serta efek suhu kerja pada sifat listrik MOF. Respon seluruh sampel MOF terhadap gas CO₂ juga diamati. Sehingga pontesi MOF sebagai material aktif pendeteksi CO₂ dapat diamati. Seluruh pengukuran dilakukan didalam ruang uji tertutup. Diharapkan dengan dilakukannya penelitian ini, dapat memberikan informasi sifat listrik MOF sebagai material sensor CO₂ dan peluang aplikasi yang lebih luas lagi.

2. Perancangan Penelitian

2.1. Proses Fabrikasi Sampel MOF

Proses fabrikasi sampel dilakukan dengan cara *drop casting*. Tahap pertama serbuk dari masing-masing jenis MOF ditimbang sebanyak 23 mg menggunakan timbangan digital. Setelah itu 23 mg serbuk MOF dikeringkan diatas *hotplate* selama 5 menit pada suhu 70°C secara bertahap. Pengeringan dilakukan untuk menghilangkan kandungan air pada sampel MOF. Selanjutnya 23 mg serbuk MOF dilarutkan dengan 230 µL pelarut isopropanol. Selanjutnya MOF dan pelarut disonikasi menggunakan menggunakan ultrasonikator *probe* sonik selama 90 menit hingga seluruh serbuk MOF tercampur dengan baik dengan pelarut seperti Gambar 1. Sampel MOF yang telah menjadi larutan diambil menggunakan *micropipette* sebanyak 2 µL. Substrat yang digunakan dalam penelitian ini adalah SiO₂. Selanjutnya 2 µL diteteskan langsung diatas substrat SiO₂. Setelah diteteskan diatas substrat, sampel dikeringkan diatas *hotplate* selama 3 menit hingga kering. Selanjutnya, sampel MOF pada substrat dilapisi *silver conductive paste*. Terakhir sampel akan dikeringkan menggunakan *hotplate* pada suhu 70°C hingga *silver paste* kering.

Gambar 1 Proses Fabrikasi Sampel MOF

2.2. Sistem Karakterisasi Sifat Listrik

Pengukuran sifat listrik sampel MOF saat terpapar gas CO₂ dilakukan dalam suatu ruang uji/chamber yang bersifat vakum [15]. Ruang uji berbentuk silinder terbuat dari besi berukuran diameter 8,5 cm dan tinggi 7,5 cm. Ruang uji terdiri dari elemen pemanas, sensor suhu *thermocouple* tipe-K, *inlet* gas dan *outlet* gas. Sistem pemanas menggunakan bahan nikelin yang dikontrol menggunakan Arduino Uno dengan sistem AC *phase control*. Kontrol set point dan suhu dalam ruang uji ditampilkan pada display LCD. Sistem aliran gas CO₂ ditunjukan pada Gambar 2. Gas CO₂ murni yang berasal dari tabung gas akan dialirkan kedalam ruang uji. CO₂ mengalir dari tabung melewati *silica gel*. *Silica gel* diperlukan untuk menyerap kelembapan CO₂. Aliran CO₂ dikontrol dengan Kofloc 8500 dan *flowmeter* CO₂. Selanjutnya gas CO₂ masuk kedalam ruang uji melalui *inlet gas*. Didalam ruang uji terdapat elemen pemanas dan probe yang dapat dihubungkan pada elektroda sampel. Outlet gas pada ruang uji terhubung oleh pompa vakum. Pompa vakum diletakan didalam sebuah kotak *acrylic* berukuran 35 cm x 20 cm

sehinga gas CO_2 yang keluar dari ruang uji tidak meracuni ruangan. Gas CO_2 yang berada didalam acrylic dialirkan ke sumur pembuangan menggunakan selang.

Gambar 2 Sistem Aliran Gas CO₂

Karakterisasi kurva I-V dilakukan dengan menggunakan Keithley 2400. Pengukuran sifat listrik sampel dilakukan dalam 3 kondisi yaitu sifat listrik dengan efek suhu, sifat listrik dengan CO₂ dan sifat listrik tanpa CO₂. Pengukuran sifat listrik dengan efek suhu dilakukan dengan mengatur suhu elemen pemanas. Pada pengukuran sifat listrik dengan dan tanpa efek CO₂, aliran CO₂ divariasikan 2,5L/min, 5L/min, 7,5L/min dan 10 L/min. Kosentrasi CO₂ dialirkan selama 10 menit ditiap variasinya, sehingga seluruh ruang uji jenuh dengan CO₂ dan sampel MOF memiliki waktu untuk menyerap CO₂. Selanjutnya dilakukan pengukuran sifat listrik menggunakan Keithley 2400. Skema pengukuran sifat listrik ditampilkan pada Gambar 3 Sampel berada didalam ruang uji vakum dihubungankan dengan capit buaya menuju *sourcemeter* Keithley 2400. Keithley 2400 harus dihubungkan dengan laptop yang telah terinstall *software KickStart*. Sehingga kurva I-V dapat terlihat dilayar laptop.

Gambar 1 Sistem Pengukuran Sifat Listrik

3. Hasil dan Pembahasan

Sebaran sampel MOF diamati menggunakan mikroskop dengan perbesaran 10 kali. Pada Tabel 1 merupakan citra mikroskop untuk masing-masing sampel MOF tanpa efek CO_2 dan dengan efek CO_2 . Sampel MOF dengan efek CO_2 telah dialiri 10 Liter per menit gas CO_2 selama kurang lebih 10 menit. Dapat diamati bahwa setelah dialiri CO_2 warna dari MOF berubah menjadi sedikit lebih gelap. Perubahan warna pada MOF disebabkan efek suhu dan kelembapan [16].

Tabel 1	Citra MOF	menggunakan	Mikrosko	р
---------	-----------	-------------	----------	---

Jenis Material	Tanpa Efek CO ₂	Dengan Efek CO ₂
HKUST-1	70um	орона страна
MIL-100(Fe)	<u>70m</u>	20µm

Jenis Material	Tanpa Efek CO ₂	Dengan Efek CO ₂
ANZ	<u>70µm</u>	<u></u>
98%ANZ@HKUST1	<u>70µт</u>	<u></u>
20%ANZ@MIL- 100(Fe)	<u>20µт</u>	Фин

3.1. Morfologi dan Analisa Hasil SEM/EDX MOF

Karkterisasi SEM/EDX spektrum dilakukan pada seluruh sampel MOF dengan dan tanpa efek CO₂. Karakterisasi dilakukan di Pusat Penelitian Nanosains dan Nanoteknologi di Institut Teknologi Bandung menggunakan alat SEM HITACHI SU3500. Hasil citra SEM dapat digunakan untuk mengamati permukaan citra sampel MOF. Dan hasil analisa EDX dapat memberikan informasi komposisi sampel MOF. Seluruh sampel MOF dengan efek CO₂ telah dialiri 10L/min CO₂ selama 10 menit.

Material	Tanpa CO ₂	Efek CO ₂
ANZ		SUSPIDION ATEON B
HKUST-1	SUGGOD TIC MVV X15 Dit GE	SUSSO 12.0W X150x SE
MIL-100(Fe)		

Tabel 2 Morfologi SEM MOF dengan dan tanpa CO2

Material	Tanpa CO ₂	Efek CO ₂
98%ANZ@HKUST1		
20% ANZ@MIL- 100(Fe)		

Tabel 3 Presentase Kandungan Unsur pada MOF

Matarial			Tanp	a CO ₂					Efek	CO_2		
Iviaterial	C	0	Al	Si	Cu	Fe	С	0	Al	Si	Cu	Fe
ANZ	2,82%	48,1%	5,3%	43,6%	-	-	0,9%	50,1%	5,9%	42,9%	-	-
HKUST-1	43,3%	29,6%	-	11,3%	15,6%	-	44,4%	29,4%	-	5,1%	20,9%	-
MIL-100(Fe)	46,4%	35,1%	-	1,3%	-	17%	43,2%	28,9%	-	14,8%	-	13%
98%ANZ@HKUST-1	4,6%	47,4%	4,9%	42,8%	0,05%	-	1%	50,8%	6,5%	40,8%	0,6%	-
20%ANZ@MIL100(Fe)	36,7%	29%	0,6%	27,3%	-	6,1%	36,9%	29,4%	0,7%	26,3%	0,1%	6,3%

Tabel 2 menunjukan morfologi seluruh sampel MOF tanpa dan dengan efek CO₂. Berdasarkan citra SEM tanpa dan dengan CO₂ tidak terlihat perubahan apapun pada morfologi. Pada Tabel 3 juga menunjukan hasil analisa EDX seluruh sampel MOF. Begitu pula dengan hasil analisa EDX. Penambahan unsur C dan O setelah dialiri 10L/min CO₂ selama 10 menit tidak menunjukan peningkatan yang signifikan. Hal tersebut dapat terjadi karena waktu pengujian EDX berjarak 3 minggu setelah sampel diberi aliran CO₂. Dapat diasumsikan bahwa CO₂ sudah menguap dan tidak terperangkap lagi oleh MOF. Sehingga sedikit penambahan unsur C pada HKUST-1 dan 20%ANZ@MIL-100(Fe), unsur O pada ANZ, 98%ANZ@HKUST-1 dan 20%ANZ@MIL-100(Fe) disebabkan oleh pengotor. Unsur-unsur selain C and O merupakan unsur penyusun dari masing-masing sampel [17,18].

3.2. Sifat Listrik MOF dengan Variasi Suhu

Pada penelitian ini juga diamati pengaruh suhu terhadap sifat listrik MOF. Pengukuran dilakukan secara berubah terhadap variasi suhu, dan tiap variasi suhu dilakukan pengukuran berulang. Pengukuran sifat listrik dilakukan pada suhu 26°C (suhu ruang), 50°C, 100°C, 150°C, 200°C dan 230°. Tegangan input divariasi dari - 5Volt sampai 5Volt dengan resolusi 0,5Volt. Pengukuran dimulai dengan membuat kondisi ruang uji menjadi vakum, menggunakan pompa vakum. Ruang uji divakum terlebih dahulu untuk menghilangkan gas-gas atau pengotor didalam ruang uji, sehingga pada saat pengukuran ruang uji berada dalam kondisi vakum. Selanjutnya suhu kerja pada ruang uji diatur hingga suhu stabil. Setelah suhu stabil pengukuran arus dilakukan menggunakan Keithley 2400. Hasil pengukuran sifat listrik sampel HKUST-1, MIL-100(Fe), ANZ, 98%ANZ@HKUST-1 dan 20%ANZ@MIL-100(Fe) ditunjukan pada Gambar 4.

Gambar 4 Kurva I-V (a) HKUST-1, (b) ANZ, (c) MIL-100(Fe), (d)98% ANZ@HKUST dan (e) 20% ANZ@MIL-100(Fe) dengan efek suhu

Tabel 4 Inital Alus Faua Vallasi Sull	Tabel	4 Nilai	Arus	Pada	Variasi	Suhu
---------------------------------------	-------	---------	------	------	---------	------

Matarial	ARUS PADA SAMPEL DENGAN EFEK SUHU (mA)							
Material	26°C	50°C	100°C	150°C	200°C	230°C		
HKUST-1	(-0,18)-0,21±	(-0,41)-0,28	(-1,55)-1,34	(-2,6)-2,43	(-3,27)-2,77	(-3,4)-2,88		
IIKODI I	0,0018×10 ⁻²	$\pm 0,0095 \times 10^{-2}$	$\pm 0,0079 \times 10^{-2}$	±0,003×10 ⁻²	±0,0017×10 ⁻²	±0,0017×10 ⁻²		
$MII = 100(E_{\odot})$	(-39) - 33 nA	(-0,1) - 0,287	(-0,1) - 0,287	(-0,1) - 0,287	(-1,46) - 1,59	(-1,3) - 1,26		
MIL-100(1 ^e)	±0,0016×10 ⁻³	±0,0034×10-3	±0,0040×10 ⁻³	±0,0030×10-3	±0,0032×10 ⁻³	±0,0010×10 ⁻³		
A N/Z	(-0,7)-0,8 uA	(-0,13)-0,12	(-0,5) - 0,57	(-1,52) - 1,59	(-1,7) - 1,73	(-1,79) - 1,8		
AINZ	±0,0041×10 ⁻³	±0,0018×10 ⁻³	±0,0022×10 ⁻³	±0,0015×10 ⁻³	±0,0025×10 ⁻³	±0,0018×10 ⁻³		
20%ANZ@MILL	(-0,63)-0,8 uA +0.0036×10 ⁻³	(-0,86) - 0,25 +0.002×10 ⁻³	(-1,7) - 1,03 +0.0053×10 ⁻³	(-2,02) -1,91 +0.0032×10 ⁻³	(-1,86) - 1,99 +0.0044×10 ⁻³	(-2,11) - 2,27 +0.0018×10 ⁻³		
	(-0.18)-98 µA	(-0.15)-0.39	(-0.74) - 1.26	(-1 41)-1 6	(-1.42) - 1.51	(-1.81) - 1.65		
98%ANZ@HKUST1	±0,0052×10 ⁻³	$\pm 0,0022 \times 10^{-3}$	$\pm 0,0018 \times 10^{-3}$	$\pm 0,0020 \times 10^{-3}$	$\pm 0,0036 \times 10^{-3}$	$\pm 0,0012 \times 10^{-3}$		

Tabel 4 menampilkan besarnya arus yang mengalir disetiap sampel pada variasi suhu dengan akurasi alat ukur (Keithley 2400) ±0,012%. Berdasarkan Tabel 4 diamati apabila suhu kerja dinaikan maka arus yang mengalir cenderung meningkat. Arus yang meningkat juga cenderung akan meningkatkan konduktifitas sampel. Meningkatnya konduktifias dengan meningkatnya suhu menunjukan sampel MOF memiliki sifat semikonduktor. Pada suhu ruang (26°C), arus yang mengalir pada MOF sangat kecil, namun grafik I-V tetap menunjukan sifat semikonduktor. Sifat semikonduktor MOF sesuai dengan literatur, yang dapat berasal dari penambahan unsur logam yang terikat [19,20]. Suhu optimal berdasarkan hasil tersebut berada pada 150°C untuk seluruh sampel. Suhu optimal pada sampel sesuai dengan literatur [21].

3.3. Sifat Listrik MOF terhadap Konsentrasi CO2

Karakterisasi sifat listrik selanjutnya adalah pengujian arus terhadap tegangan untuk seluruh sampel MOF terhadap aliran gas CO₂. Dalam pengukuran ini rentang tegangan input dari -5Volt hingga 5Volt dengan resolusi 0,5Volt. Suhu kerja ditetapkan pada suhu optimal yaitu 150°C \pm 1,6%. Variasi aliran CO₂ yang akan diamati yaitu 2,5 L/min, 5L/min, 7,5L/min dan 10L/min. Pengukuran berubah dilakukan dengan mengvariasikan konsentrasi CO₂ dan pada setiap variasi konsentrasi dilakukan pengukuran berulang sebanyak tiga kali. Hasil pengukuran saat suhu 150°C ditampilkan pada Gambar 5. Pengukuran sifat listrik juga dilakukan pada suhu ruang dengan laju CO₂ 10L/min yang ditunjukan pada Gambar 6.

Gambar 5 Kurva I-V (a)ANZ, (b) 20%ANZ@MIL100-(Fe), (c) MIL-100(Fe), (d)HKUST-1 dan (e) 98% ANZ@HKUST-1 dengan efek CO2 pada suhu 150°C

Gambar 6 Kurva I-V (a)ANZ, (b) 20%ANZ@MIL100-(Fe), (c) MIL-100(Fe), (d) HKUST-1 dan (e) 98% ANZ@HKUST-1 dengan efek CO₂ pada suhu ruang

Motorial		Arus pada suhu 150°C (mA)						
Material	Tanpa CO ₂	2,5L/min	5 L/min	7,5L/min	10 L/min	Tanpa CO ₂	10 L/min	
HKUST-1	(-1,98)-0,85	(-1,55) - 0,5	(-1,52) - 0,41	(-1,44) -0,3	(-1,55) 0,365	(-0,1)-0,14	(-0,14)-0,14	
	±0,0092×10 ⁻³	±0,0036×10 ⁻³	±0,0014×10 ⁻³	±0,0062×10 ⁻³	±0,0028×10 ⁻³	±0,003×10 ⁻³	±0,002×10 ⁻³	
MIL-100(Fe)	(-0,61) - 0,74	(-0,35) - 0,32	(-0,30) - 0,27	(-0,31) - 0,28	(-0,24) - 0,17	(-0,1)-0,07	(-0,04)-0,05	
	±0,0016×10 ⁻³	±0,0033×10 ⁻³	±0,0042×10 ⁻³	±0,0027×10 ⁻³	±0,0032×10 ⁻³	±0,021×10 ⁻³	±0,003×10 ⁻³	
ANZ	(-2,54) - 2,44	(-1,46) - 1,65	(-1,42) - 1,61	(-1,38) - 1,58	(-1,16) - 1,36	(-0,05)-0,08	(-0,05)-0,06	
	±0,0092×10 ⁻³	±0,0092×10 ⁻³	±0,0047×10 ⁻³	±0,0041×10 ⁻³	±0,0032×10 ⁻³	±0,008×10 ⁻³	±0,004×10 ⁻³	
20% ANZ@MIL-	(-1,3) - 1,3	(-0,97) - 1	(-0,90) -0,96	(-0,82)-0,862	(-0,77) - 0,83	(-0,17)-0,17	(-0,14)-0,14	
100(Fe)	±0,0068×10 ⁻³	±0,0033×10 ⁻³	±0,0045×10 ⁻³	±0,0071×10 ⁻³	±0,0052×10 ⁻³	±0,034×10 ⁻³	±0,007×10 ⁻³	
98%ANZ@HKUST1	(-1,41) - 1,6	(-1,01) - 1,36	(-1,7) - 1,52	(-1,13) - 1,52	(-1,16)-0,92	(-0,07)-0,03	(-0,1)-0,026	
	±0,0082×10 ⁻³	±0,0031×10 ⁻³	±0,0016×10 ⁻³	$\pm 0,0058 \times 10^{-3}$	±0,0024×10 ⁻³	±0,005×10 ⁻³	±0,002×10 ⁻³	

Tabel 5 Nilai Arus pada Variasi Aliran gas CO2

Tabel 5 menampilkan besarnya arus yang mengalir pada tiap variasi konsentrasi. Berdasarkan hasil pengukuran, efek CO₂ menunjukan penurunan arus dengan bertambahnya aliran CO₂. Penurunan arus juga terjadi pada tegangan positif dan tegangan negatif. Terjadi penurunan arus yang cenderung signifikan pada seluruh sampel saat diberikan aliran 2,5 L/min CO₂ untuk sampel MIL-100(Fe). Tetapi perubahan arus saat aliran CO₂ ditingkatkan menjadi 5L/min, 7,5L/min dan 10L/min tidak jauh berbeda. Pengukuran dengan efek CO₂ di suhu ruang juga menunjukan adanya penurunan arus dan arus mengalir lebih kecil dari suhu 150°C. Hasil tersebut tidak sesuai dengan perubahan resistansi MOF terhadap CO₂. Hal ini dapat terjadi karena saat menambah aliran gas CO₂ secara bertahap tidak ada proses vakum. Sehingga CO₂ terakumulasi didalam ruang uji. Dan diperlukan waktu lebih lama untuk MOF merespon CO₂.

3.4. Pengujian Respon MOF terhadap CO₂

Pengujian respon sampel MOF dilakukan dengan mengamati perubahan resistansi terhadap waktu saat MOF dialiri 10L/min CO₂. Pengukuran dilakukan sehingga penulis dapat mengamati respon sampel dalam penelitian awal MOF sebagai sensor gas CO₂. Pengukuran dilakukan didalam ruang uji tertutup sama yang sesifat vakum. Kondisi pengukuran dilakukan pada suhu ruang (30°C) dan debit gas yang mengalir tetap yaitu 10L/min. Pengukuran tidak dilakukan pada suhu kerja optimal MOF (150°C) karena keterbatasan alat dan elemen pemanas. Pengamatan respon MOF dilakukan ketika gas-on dan saat gas-off. Kondisi gas-on ketika MOF dialiri CO₂. Sementara kondisi gas-off ketika ruang uji divakum oleh pompa vakum. Pada pengukuran tegangan bias yang diberikan yaitu 2,5V. Pengukuran dilakukan menggunakan Keithley 2400 dengan pengaturan 2500 *measurement*/0,5 *second*. Hasil pengukuran respon MOF ditunjukan pada Gambar 7. Simbol \uparrow menunjukan kondisi gas-off dan simbol \downarrow menunjukan kondisi gas-on. Hasil respon seluruh sampel MOF terhadap gas-on dan gas-off CO₂ menunjukan sifat menyerupai. Resistani MOF akan menurun saat diberi aliran gas-on dan resistansi akan meningkat ketika gas-off.

Berdasarkan perubahan hambatan sampel saat kondisi gas-on dan gas-off, nilai sensitivitas dan respon sampel terhadap CO_2 dapat ditentukan. Respon sampel MOF terhadap CO_2 dapat dihitung menggunakan persamaan 1. R_g adalah resistansi setelah dialiri gas CO_2 dan dinyatakan dalam ohm, dan R_o adalah resistansi sebelum dialiri gas CO_2 dan dinyatakan dalam ohm [22]. Waktu respon dan waktu pulih yang diperlukan serta respon sampel MOF terhadap pengaruh gas CO_2 ditampilkan pada Tabel 6

$$\mathbf{R} = \left(\frac{|\mathbf{R}_{g} - \mathbf{R}_{o}|}{\mathbf{R}_{o}}\right) \times 100\% \tag{1}$$

Tiap sampel memiliki waktu respon dan waktu *recovery* yang berbeda. Waktu respon dan waktu *recovery* diamati saat tiga kali gas-on dan tiga kali gas-off dalam waktu sekali pengukuran. Waktu respon menunjukan seberapa cepat MOF merespon CO₂ sebagai analit yang datang, dalam bentuk nilai resistansi yang berubah. Sedangkan waktu recovery merupakan waktu yang diperlukan MOF untuk kembali pada kondisi awal. Waktu sampel MOF merespon CO₂ pada gas-on pertama cenderung lebih lambat dari gas-on selanjutnya. Hal ini dapat disebakan jalur aliran CO₂ dari tabung menuju ruang uji yang panjang sehingga butuh waktu yang lebih lama.

Gambar 7 Perubahan hambatan terhadap waktu MOF saat dialiri 10L/min gas CO2 pada suhu ruang

Motorial	Respon Time (s)			Recovery Time (s)			Deenen Cas (D)		
Material	On 1	On 2	On 3	Off 1	Off 2	Off 3	Respon Gas (R)		
HKUST-1	110	73	86	32	72	112	15%		
MIL-100(Fe)	51	73	56	44	77	84	71%		
ANZ	83	60	50	33	30	33	86%		
98%ANZ@HKUST-1	42	26	26	8	23	24	81,5%		
20%ANZ@MIL-100(Fe)	42	102	64	23	21	66	53%		
HKUST-1 MIL-100(Fe) ANZ 98%ANZ@HKUST-1 20%ANZ@MIL-100(Fe)	110 51 83 42 42	73 73 60 26 102	86 56 50 26 64	32 44 33 8 23	72 77 30 23 21	112 84 33 24 66	15% 71% 86% 81,5% 53%		

Tabel 6 Waktu Respon, Waktu Recovery dan Respon Gas

Sebaliknya pada waktu recovery, gas-off pertama membutuhkan waktu yang lebih singkat dari gas-off kedua dan ketiga. Respon seluruh sampel MOF menunjukan adanya penurunan nilai hambatan setelah terpapar gas CO₂. Adanya respon *open metal sites* dari masing-masing sampel MOF, dengan pusat logam sebagai basa lewis. CO₂ sebagai asam lewis yang bersifat sebagai donor elektron [21]. Setelah CO₂ dihentikan, respon hambatan MOF meningkat. Meskipun hambatan tidak kembali seperti kondisi awal, respon tersebut menunjukan respon sensor gas. ANZ memiliki respon terhadap gas CO₂ paling tinggi yaitu 86%. Dan respon terendah yaitu HKUST-1 karena waktu respon yang lambat dan penurunan hambatan yang tidak signifikan.

4. Kesimpulan

Telah dilakukan pengukuran sifat listik terhadap lima jenis MOF yaitu, HKUST-1, ANZ (*Activated Natural Zeolite*), MIL-100(Fe), 20%ANZ@MIL-100(Fe) dan 98%ANZ@HKUST-1. Sifat listrik yang diamati yaitu perubahan arus, tegangan dan hambatan dengan dan tanpa efek CO₂. Pengukuran sifat listrik MOF dilakukan

didalam ruang uji tertutup dan menggunakan alat ukur Keithley 2400. Pengukuran kurva I-V MOF dengan efek suhu telah dilakukan dan MOF menunjukan sifat listrik semikonduktor. Suhu optimal pengukuran I-V MOF didapat pada 150°C. Namun kurva I-V MOF saat diberi aliran CO₂ menunjukan adanya penurunan arus pada suhu optimal dan suhu ruang (26°C). MOF menunjukan adanya perubahan hambatan terhadap waktu saat diberi aliran CO₂ pada suhu ruang. Hal tersebut menunjukan bahwa MOF dapat merespon kehadiran CO₂ pada suhu ruang. Sehingga MOF memiliki potensi sebagai material aktif dalam mendeteksi CO₂. Pada penelitian selanjutnya dapat dikembangkan ruang uji yang bersifat vakum, jalur CO₂ dapat lebih pendek serta aliran CO₂ yang lebih stabil. Perlu dikaji lebih lanjut lagi pengukuran kurva I-V dengan efek variasi aliran CO₂. Pengujian respon MOF dapat dilakukan terhadap gas lainnya. Sehingga MOF dapat dijadikan material utama dalam sensor gas.

REFERENSI

- [1] Petros Spachos, "Real-Time Indoor Carbon Dioxide Monitoring through Cognitive Wireless Sensor Networks", IEEE Sensors Journal · January 2015.
- [2] Basaria Talarosha, "Jendela dan Dampaknya terhadap Konsentrasi CO₂ di dalam Ruang Kelas, Kajian Literatur", Jurnal Lingkungan Binaan Indonesia, ISSN 2301-9247, 2018
- [3] M. Salmasi, S. Fatemi, M. Doroudian Rad, "Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent" Int. J. Environ. Sci. Technol. (2013)
- [4] H. Bohui Ye, "CO2 sensing under ambient conditions using metal- organic frameworks," Mol. Syst. Des. Eng., 2020, 5, 1071–1076, 2020.
- [5] Jian-Rong Li a, "*Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks*," Coordination Chemistry Reviews 255 (2011) 1791–1823, 2011.
- [6] Witri Wahyu Lestari, "Optimasi Sintesis Host Material Berbasis MIL- 100(Fe) Secara Elektrokimia," 2016
- [7] Mingming Liu, Ning Cai, "Development and Applications of MOFs Derivative One-Dimensional Nanofibers via Electrospinning: A Mini-Review", Nanomaterials, 2019.
- [8] T. Ghanbaria, "A Review on Production of Metal Organic Frameworks (MOF) for CO2 Adsorption," 2019.
- [9] Ying Li, An-Shan Xiao, Bing Zou, Hong-Xing Zhang, "Advances of metal–organic frameworks for gas sensing", Polyhedron 154,2018,83–97.
- [10] Jian-Rong Li, Julian Sculley, and Hong-Cai Zhou, "*Metal Organic Frameworks for Separations*", Chem. Rev. 2012, 112, 869–932.
- [11] Lauren E. Kreno, Kirsty Leong, Omar K. Farha, Mark Allendorf, "*Metal Organic Framework Materials as Chemical Sensors*", Chem. Rev. 2012, 112, 1105–1125.
- [12] Hai-Yang Li, Shu-Na Zhao, Shuang-Quan Zang, "Functional metal–organic frameworks as effective sensors of gases and volatile compounds", Chem. Soc. Rev, 2020.
- [13] Lei Sun, Michael G. Campbell, and Mircea Dinca, "*Electrically Conductive Porous Metal–Organic Frameworks*", Angew. Chem. Int. Ed. 2016.
- [14] J.-H. Lee, "Gas Sensing Properties of Mg-Incorporated Metal-Organic Framework," Sensor, 2019.
- [15] Reza Pamungkas Putra Sukanli, "Racang Bangun Alat Uji Sifat Listrik Untuk Karakterisasi Kurva I-V dan Kurva Respon Pada Sensor Gas Untuk Nanomaterial Semikonduktor", ISSN: 2355-9365 *e-Proceeding of Engineering*: Vol.6, No.2, 2019.
- [16] Abhijet K. Chaudhari, "Multifunctional Supramolecular Hybrid Materials Constructed from Hierarchical Self-Ordering of In Situ Generated Metal-Organic Framework (MOF) Nanoparticles", DOI: 10.1002/adma.201501448.
- [17] Witri Wahyu Lestari, "Composite Material Consisting of HKUST-1 and Indonesian Activated Natural Zeolite and its Application in CO2," Open Chem., 2019; 17: 1279–1287, 2019.

- [18] Witri Wahyu Lestari, "Fabrication of composite materials MIL-100(Fe)/Indonesian activated natural zeolite as enhanced CO2 capture material" Chemical Papers, doi.org/10.1007/s11696-021-01558-2, 2021.
- [19] Muhammad Usman, Shruti Mendiratta, Sainbileg Batjargal, "Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal–Organic Framework", ACS Appl. Mater. Interfaces, 2015.
- [20] Barun Dhara, Sanjog S. Nagarkar, Jitender Kumar, "Increase in Electrical Conductivity of MOF to Billion-Fold upon Filling the Nanochannels with Conducting Polymer", J. Phys. Chem. Lett. 2016.
- [21] H. Ina Strauss, "*Metal–Organic Framework Co-MOF-74-Based Host–Guest Composites for Resistive Gas Sensing*," DOI: 10.1021/acsami.8b22002, 2019.
- [22] Marwan Y. Rezk, Jyotsna Sharma, and Manas Ranjan Gartia," *Nanomaterial-Based CO₂ Sensors*", *Nanomaterials* 2020, 10, 2251; doi:10.3390/nano10112251

