
Efek Design Pattern Terhadap Duplicated Code dan Efek

Terusannya Pada Maintainability Aplikasi Berbasis Mobile

Tugas Akhir

diajukan untuk memenuhi salah satu syarat

memperoleh gelar sarjana

dari Program Studi Informatika

Fakultas Informatika

Universitas Telkom

1301174065

Firdaus Ardhana Indradhirmaya

UNIVERSITAS

Telkom

Program Studi Sarjana Informatika

Fakultas Informatika Universitas

Telkom

Bandung

2021

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10308

LEMBAR PENGESAHAN

Efek Design Pattern Terhadap Duplicated Code dan Efek Terusannya Pada

Maintainability Aplikasi Berbasis Mobile

The Effects of Design Pattern on Duplicated Code and its Subsequent Effects on

Maintainability of Mobile Application

NIM: 1301174065

Firdaus Ardhana Indradhirmaya

Tugas akhir ini telah diterima dan disahkan untuk memenuhi sebagian syarat memperoleh

gelar pada Program Studi Sarjana Informatika

Fakultas Informatika

Universitas Telkom

Bandung, 31 Juli 2021

Menyetujui

Pembimbing I Pembimbing II

Dawam Dwi Jatmiko Suwawi, S.T., M.T. Shinta Yulia Puspitasari, S.T., M.T.

NIP: 14890033-1 NIP: 18880124

Ketua Program Studi

Sarjana Informatika,

Dr. Erwin Budi Setiawan, S.Si., M.T.

NIP: 0405117601

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10309

LEMBAR PERNYATAAN

Dengan ini saya, Firdaus Ardhana Indradhirmaya, menyatakan sesungguhnya bahwa Tugas

Akhir saya dengan judul ”Efek Design Pattern Terhadap Duplicated Code dan Efek Teru-

sannya Pada Maintainability Aplikasi Berbasis Mobile” beserta dengan seluruh isinya adalah

merupakan hasil karya sendiri, dan saya tidak melakukan penjiplakan yang tidak sesuai dengan

etika keilmuan yang belaku dalam masyarakat keilmuan. Saya siap menanggung resiko/sanksi

yang diberikan jika dikemudian hari ditemukan pelanggaran terhadap etika keilmuan dalam bu-

ku TA atau jika ada klaim dari pihak lain terhadap keaslian karya.

Bandung, 31 Juli 2021

Yang Menyatakan,

Firdaus Ardhana Indradhirmaya

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10310

Efek Design Pattern Terhadap Duplicated Code dan Efek Terusannya Pada
Maintainability Aplikasi Berbasis Mobile

Firdaus Ardhana Indradhirmaya1 , Dawam Dwi Jatmiko Suwawi2 , Shinta Yulia Puspitasari3

1,2,3 Fakultas Informatika, Universitas Telkom, Bandung

1 firdausai@students.telkomuniversity.ac.id, 2 dawamdjs@telkomuniversity.ac.id,
3 shintayulia@telkomuniversity.ac.id

Abstrak

Kemajuan teknologi mobile yang sangat pesat tidak lepas dari berbagai macam permasalahan, khususnya

pengabaian proses pengembangan aplikasi mobile yang ideal. Hal tersebut telah menimbulkan berbagai

macam masalah, salah satunya adalah meningkatnya jumlah duplicate code, sebuah permasalahan yang

sering terjadi pada aplikasi mobile berbasis android. Selebihnya, hal tersebut juga mengakibatkan menu-

runnya tingkat maintainability pada sebuah aplikasi. Penelitian-penelitian sebelumnya menyatakan bahwa

pembuatan abstract class dapat mengatasi permasalahan duplicate code, namun juga menurunkan ting-

kat maintainability. Tujuan penelitian ini adalah untuk menerapkan dan mengamati efek design pattern,

yang melibatkan pembuatan abstract class, untuk mengatasi permasalahan duplicate code dan juga me-

lihat efek terusannya pada maintainability sebuah aplikasi. Metodologi penelitian yang telah dilakukan

adalah membandingkan tingkat maintainability dan jumlah duplicate code sebelum dan sesudah penerapan

design pattern terpilih. Jumlah baris duplicate code dan ISO 25010 akan digunakan sebagai metrik dupli-

cate code dan maintainability masing-masing. Penerapan template pattern terbukti mampu untuk menekan

jumlah duplicate code, namun gagal untuk meningkatkan atau mempertahankan tingkat maintainability

secara keseluruhan. Fitur inheritance yang digunakan oleh template pattern akan selalu mengakibatkan

metrik depth of inheritance dan coupling untuk memburuk. Selebihnya, efek dari kode yang di abstraksi

memungkinkan terjadinya pemburukan pada metrik cohesion, complexity, dan number of methods. Di-

mana metrik-metrik yang disebutkan berpengaruh terhadap tingkat maintainability, yang meliputi aspek

reusability, modifiability, modularity, testability dan analysability

Kata kunci : design pattern, duplicate code, maintainability, mobile

Abstract

The rapid advancement of mobile technology brings a variety of issues along with it. One of those issues is

neglecting the ideal mobile application development process. Such neglect has caused the increased number

of duplicate codes, the most occurring issue in the android application. Furthermore, it also has caused

the level of maintainability in mobile apps to drop. Previous studies have shown that abstract classes can

decrease code duplication while also decrease the level of maintainability. This research aims to see the

effects of implementing design patterns, most of which involve creating abstract class, to reduce duplicate

code while also observing its subsequent effects on the maintainability aspect of a mobile application. The

amount of duplicate code and the maintainability aspect were measured before and after the implementation

of design pattern. In addition, the number of lines of duplicate code and ISO 25010 were referenced and used

as metrics to measure duplicate code and maintainability, respectively. The template pattern was proven to

reduce duplicate codes but could not maintain or increase the maintainability aspect of an android mobile

application as a whole. The depth of inheritance and coupling metric will always worsen due to the use of

inheritance by the template pattern. Furthermore, the effect of the code being abstracted could negatively

affect the cohesion, complexity, and number of methods metric. The metrics mentioned contributed to the

reusability, modifiability, modularity, testability, and analysability aspect of maintainability.

Keywords: design pattern, duplicate code, maintainability, mobile

1. Introduction

Background

The rapid growth of mobile technology has been inseparable from various challenges in the last ten years

[1]. The increasing demand and complex features in mobile applications cause developers to put aside quality

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10311

during the development process [1]. As a result, the maintainability aspect of mobile applications is neglected

[15]. Moreover, the amount of duplicate code has also increased because of this negligence. Code duplication is

the most occurring issue in Android-based applications [13].

Software are estimated to contain 5% to 50% of duplicate codes in them [14]. The existence of duplicate codes

decrease the evolution, readability, reliability, and design aspects of software [14]. For instance, if a duplicate

code needs to be modified, the developer must change all the scattered duplicate code in the application [14]. The

modification of duplicate codes can increase maintenance costs and the possibility of faults in the system [14]. On

the other hand, a study stated that 76% of duplicate code, classified as replicate and specialize, positively affects

the maintainability aspect of software [11]. The construction of abstract classes, a solution for duplicate code

problems, was observed to increase the system’s complexity, thus decreasing the maintainability aspect [11].

A solution is needed to decrease the amount of duplicate code while also maintaining the maintainability as-

pect of an application. Design patterns are a repeatable solution to a commonly occurring problem in software

design [6]. Most design patterns involve creating an abstract class, which according to Barbosa [3], is a solution

to decrease the number of duplicate codes. Furthermore, Panca [15] observed that the implementation of design

patterns increased the level of maintainability of applications.

Problem Statement

The most recurring problem in android applications is duplicate code [13]. Barbosa [3] proposed that the

creation of abstract classes is one of the solutions that can reduce duplicate codes. However, a study conducted

by Juergens [10] found that creating abstract classes negatively impacts the maintainability aspect of applications.

Therefore, there needs to be a solution that can reduce the amount of duplicate code while maintaining or increasing

the level of maintainability of an android application. Hence, this research will answer how the implementation of

design patterns, most of which involved creating abstract classes, reduce duplicate codes and increase or maintain

the maintainability aspect of an android application.

The scope of this research is to only utilize design patterns in order to solve duplicate code problems. Out of all

of the duplicate code problems, only those identified to have a design problem that a design pattern can solve are

refactored. Any other problem and duplicate code that does not correspond to any design pattern will be ignored.

Furthermore, the ranking mechanism in the maintainability measurement system by Barbosa [3] that will be used

in this research will be replaced by trend analysis. Since there is a new maintainability standard (ISO 25010), the

previous ranking system will no longer be accurate to the current maintainability standard.

Research Goal

Design patterns, most of which involved creating abstract classes, fit one of the characteristics described by

Barbosa [3] to decrease the number of duplicate codes. Additionally, design patterns have been observed to

increase the maintainability level of applications [15]. The implementation of design pattern and its effect on

duplicate code will be observed along with the maintainability level of the selected application. The goal is to

determine if the implementation of design pattern can decrease duplicate code, while also increase, or at least

maintain, the maintainability aspect of an android application.

Metrics pertaining to code duplication and maintainability will be measured before and after design patterns

are implemented. The increase and decrease of value in all of the metrics used will help determine whether design

pattern is the solution to this research’s problem.

Paper Structure

In the beginning, this paper explores the various literature the scientific community has on android applications,

mobile applications, duplicate code, maintainability, and static code analyzer. Then, it describes the methodology

and the experiment conducted for this research. Next, the analysis and all of the findings that were discovered

during this research are presented. Lastly, the conclusion of the research.

2. Literature Review

2.1 Challenges of Mobile App Development

Aldayel [1] discussed various challenges during the development process of mobile-based applications. Some

of the challenges mentioned were security, operating system, sensors utilization, cross-platform compatibility,

and limited resources. So, Aldayel [1] designed a guideline to mitigate these issues. The guideline consisted

of planning, requirement gathering, design, architecture, user experience, development, testing, implementation,

maintenance, support, and security.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10312

Shahbudin [19] emphasize that design goals are the key to building and developing high-quality mobile ap-

plications quickly. What is more, a good design can ensure that errors and crashes are avoided. Additionally,

the implementation of design patterns can increase the efficiency, usability, and reusability of components in an

application.

2.2 The Effects of Code Duplication on Maintainability

Monden [14] examined the relationship between duplicate code and software quality. Using an application

that has been continuously developed for the past 20 years as a case study, Monden [14] found that modules with

duplicate codes are less maintainable due to having greater revision number than modules without duplicate codes.

Moreover, Monden [14] found that 5% to 50% of applications consist of duplicate code.

Kapser [11] discovered that 71% of the duplicate code found in the applications they studied had a positive

effect on the maintainability of the applications. What makes Kapser’s [11] research different from other research

is the use of motivation, advantages, disadvantages, management and long-term problems in measuring the impact

of duplicate code on an application.

2.3 Design Pattern

Design patterns are a repeatable solution to a commonly occurring problem in software design [6]. Three

groups that design patterns divide into are creational, structural, and behavioral. The creational design pattern

provides various object creation mechanics, which can increase flexibility, and reuse of existing codes. Some

design patterns that fall into the creational category are the builder method, the factory method, and the singleton

pattern. The structural design pattern provides various ways to assemble objects and classes into larger structures

while keeping these structures flexible and efficient. Facade pattern and decorator pattern are some of the patterns

that fall into this category. Finally, behavioral patterns concerned themselves with algorithms and the assignment

of responsibilities between objects. The majority of design patterns fall into this category, such as template method,

strategy pattern, state pattern, and a lot more.

Panca [15] implemented various design patterns into three different applications. Panca [15] implemented

different design patterns one by one and measured the changes in maintainability and modularity. They conclude

that the more design patterns implemented in the application, the higher the application’s maintainability will be.

However, the level of modularity of the three applications decreases the more design patterns were implemented.

In relative to this research, Panca’s [15] research chooses their application based on domain. In comparison, this

research chooses its application based on whether it has duplicate code problems or not.

2.4 Static Code Analyzer

Metric is an excellent way to understand, monitor, control, predict, and test software development [21]. One

way to collect metrics from software is by analyzing them with a static code analyzer. A tool that analyzed source

code without executing the program [2]. There are a variety of tools with different purposes. For instance, there are

tools to check unit tests, dependency analysis, structural code, bug detection, and much more. For this research,

the static code analyzers that are required are the ones that can detect duplicate code of at least type-1 and the ones

that can measure a variety of object-oriented and traditional metrics. Object-oriented metrics measure the class

and object characteristics, such as coupling, cohesion, and depth of inheritance. On the other hand, traditional

metrics cover a broader range of metrics such as lines of codes and cyclomatic complexity [17].

2.5 Duplicate Code

Duplicate code, also known as code clone, are two or more pieces of code that have similarities [4] in terms of

syntax or functionality [10]. The primary cause duplicate code appears is due to code reuse from one part of the

application to another part [14]. Duplicate code can have several consequences for applications, such as decreased

maintainability and increased maintenance costs.

There are four categories of duplicate code [3]: type-1, type-2, type-3, and type-4. Type-1 duplicate codes

have similar code fragments [3]. However, there might be some variation in white spaces, comments, or layout

[3]. Type-2 duplicate codes have the same code as the original, but with possible variations in the variable name,

constants, class name, and more [3]. Type-3 duplicate codes are codes with its statement changed, added, or

deleted [3]. Finally, type-4 duplicate codes have the same functionality but have different syntax [3].

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10313

2.6 Metric for Measuring Duplicate Code

The duplicate code measurement metric that was used was based on the scientific research by Barbosa [3] and

Heitlager [8]. In both studies, counting the number of LOC (lines of code) was used to measure duplicate code.

In this study, a static code analyzer was used to measure the lines of duplicate code. The lower the duplicate code,

the better the application will be in terms of duplicate code metric.

2.7 Metric for Measuring Maintainability

Heitlager [8] assessed the maintainability index, a metric to measure software maintainability based on Hals-

tead volume, cyclomatic complexity, and lines of codes, to be an ineffective way to measure maintainability. They

argued that it was difficult to know the reason why the maintainability index change. Therefore, they designed a

new maintainability measurement system that improves upon what lacks in the maintainability index. Instead of

creating an equation, they use the maintainability definition from ISO 9126 to break maintainability into smaller

components: analyzability, changeability, stability, and testability. These components are then broken down fur-

ther into metrics that can be easily measured. For example, the analyzability component was made up of volume,

duplication, unit size, and unit testing. That way, developers know exactly which part they need to improve on

to increase the quality of specific components. However, because there is a new maintainability standard, namely

ISO 25010, the component for this research was adjusted into modularity, reusability, analyzability, modifiability,

and testability.

Due to the change in ISO reference, some maintainability components were not discussed in Heitlager’s re-

search. Those components are modularity, modifiability, and reusability. For all of the components that were not

discussed, other papers were referenced to complete the maintainability measurement system. The modularity

component was referenced from Emanuel [5], in which they use coupling and cohesion to represent the compo-

nent. The modifiability component was referenced from Harun [7], in which they also use coupling and cohesion.

Finally, the reusability component was referenced from Papamichail [16], which states that reusability is assessed

from complexity, cohesion, coupling, inheritance, documentation, and unit size. Furthermore, the original ranking

system will no longer be accurate, as there are metrics that were not discussed previously. Thus, the ranking system

was replaced with trend analysis.

Table 1. A modified maintainability measurement system with ISO 25010

ISO 25010 Maintainability

Components
Metrics

Coupling Cohesion Complexity Inheritance Unit Size Volume Duplication Unit Testing # of Methods Documentation

Modularity

X

X

X
 Reusability X X X X X

X

Analyzability

X X X X
 Modifiability X X

 Testability X X X

By analyzing the difference before and after the design pattern is implemented, it is possible to gain insights

into which specific metrics and components the design pattern effect. The following are descriptions of the main-

tainability category along with its related metrics:

Modularity

Modularity is the degree to which a system or computer program is composed of distinct components [9].

Emanuel [5] stated that modularity is the internal quality attribute of the software system. Furthermore, modulari-

ty is assessed from the total amount of non-comment lines of code, cohesion, and number of methods, according

to Emanuel [5].

Reusability

Reusability is the degree to which an asset can be used in more than one system or in building other assets [9].

Papamichail [16] stated that the level of reusability is assessed from coupling, cohesion, complexity, inheritance,

documentation, and unit size. However, the documentation part of the metric will not be utilized since the imple-

mentation of the design pattern does not change any part of the documentation for the application. The value of

documentation will always be constant in this study.

Analyzability

Analyzability is the degree of effectiveness and efficiency with which it is possible to assess the impact on

a product or system of an intended change to one or more of its parts [9]. Based on Heitlager [8], the level of

analyzability of a component is assessed by volume, duplicate code, unit size, and unit testing. The unit testing

metric will not be included in the result, as the value will always decrease in this study due to the newly created

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10314

abstract classes and methods will not be covered in the original unit test by the original developers.

Modifiability

Modifiability is the degree to which a product or system can be effectively and efficiently modified without

introducing defects or degrading existing product quality [9]. According to Harun [7], the modifiability of a com-

ponent is assessed from coupling and cohesion.

Testability

Testability is the degree of effectiveness and efficiency with which test criteria can be established for a system

[9]. Based on Heitlager [8], testability can be assessed from complexity, unit size, and unit testing. The unit testing

metric in this component will also be excluded for the same reason as in the analyzability component.

3. Experiment

3.1 Methodology

Below is the flowchart representing the methodology that was followed in this study. In addition, a detailed

explanation for the methodology can be found below the flowchart:

search for static code

analyars

Measure aDC)ficaion

metric after design

patiem implementation

search tor andrOid

appHcation

Implement design

pattern

Malyze duplicate code

Measure initial mem

Yes
>-----.iRebJm app lo Initial state>------�

 Matya resutt

Fig 1. Methodology Flowchart

3.1.1 Determining Static Code Analyzers

Static code analyzers that can detect and measure duplicate code of at least type-1, object-oriented metric,

and traditional metric are required for this study. Based on Lenarduzzi’s [12] selection of static code analyzer,

sonarQube was the analyzer that fits the requirement to detect and measure duplicate code. The rest were unable to

detect duplicate code, outdated, incompatible with the android java version, or has only a narrow scope of detecting

duplicate code. On the other hand, the MetricsReloaded plugin, a static code analyzer tool used by Saifan [18], was

used to measure both object-oriented and traditional metrics due to its ability to measure all the required metrics

for this study.

3.1.2 Determining Android Application

Seventeen apps were analyzed using sonarQube to determine the number of duplicate codes on each of the

applications. The amount of duplicate codes ranges from 0% to 7.9% between the 17 applications. An open-

source expense tracking app with 21 contributors, 261 commits, and 6.3% duplicate code known as MoneyWallet

was chosen as the study case for this study. Unfortunately, due to limited computational power, the top app in this

selection with the highest duplicate code could not be analyzed.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10315

•••••••.•� •• : ... : .. : ! -�; --��--_•±.

3.1.3 Analyze Duplicate Code

The duplicate code analysis from sonarQube was then turned into a diagram to visualize the relationship

between files better. As seen on fig. 2 and fig. 3, each table represents a file with a list of duplicate code ranges in

said file. The line that connects one table to another means that they share the same duplicate codes.

All of the identified duplicate code was then broken down further to gain insights on what code was the

most duplicated in the app. There were six types of duplicate code found: duplicate variable, duplicate method,

duplicate partial method, duplicate interface, duplicate class, and duplicate enum. Duplicate method and duplicate

partial method made up 87.9% of the duplicate code type. Since those two type made up a large percentage of the

duplicate code problem, duplicate method and partial method were the ones that was further analyzed.

The GOF book of design patterns provides a variety of approaches to determine which design pattern to use.

Since this study only focuses on duplicate code problems, three approaches were chosen to fit the scope and

requirement of this study. Those approaches were identifying design problems, matching design problems with

design pattern intent, and identify what varies on the design problem. Only those duplicate code with a design

problem that can be solved with a design pattern will be solved.

�-ob�!

! J i : i
=-���-:···;·····;·····;·-···; ! ! ! ! i

. f·e:::i• --!-+=+·- �.. ..: �-=:� i ; ; ; ' '

r �. --4•� --�----:+·+·l--- 1-+::.;. .. ; 1 ---:- ----
i- ..j-i

---r
i

-··a
.........

-�........�.:----
···r

:�
:-�

..
·-r
-
,
.
-
.:
-·r--··

 �
r°'

�-

Fig 2. Duplicate Code Diagram Fig 3. Duplicate Code Diagram Closeup

3.1.4 Design Pattern Implementation

For this research, there will only be one design pattern solution that can exist and be implemented at a time.

As there were various duplicate cases that were able to be implemented with the template pattern, this ensures

there will be no insights from individual duplicate codes that will be overshadowed. Furthermore, to ensure the

implementation of the design pattern is as objective as possible, the refactoring process was only based on the

duplicate code detected by sonarQube.

For instance, the grey line on the left-hand side of fig. 4 represents the code detected as duplicate by SonarQube.

Two types of duplicate codes were involved, a duplicate method (line 64-72) and a duplicate partial method (line

74-77). The duplicate method could not be implemented with a design pattern, as it contains a private variable.

On the other hand, the duplicate partial method was able to be implemented with a template pattern. It contains a

variant part unique to each subclass and an invariant part that all of the subclasses have in common. Even though

it contains private variables, it was located in the variant part of the pattern; thus, there is no need to modify its

access modifier. To keep this study as objective as possible, only the invariant part detected by SonarQube was

moved to the abstract class. Thus, the super syntax and the branch were moved to the abstract class, while the

codes inside and after the branch were made into individual steps delegated to each of the subclasses. fig. 5

and fig. 6 represent the before and after template pattern was implemented. The abstract class on fig. 7 consists

of the method that contains the duplicate code, the duplicate code itself, and also three empty abstract methods

(steps). The abstract class define the skeleton of an algorithm in a method and implement the invariant part of an

algorithm [6]. Furthermore, fig. 8 displays the class diagram when the template pattern is implemented. Similar

class diagram structures can also be observed across all of the classes that could be implemented with the template

pattern. The three classes on the bottom of fig. 8 are the concrete classes with duplicate codes, while the class they

inherit from is the abstract class. A line can also be observed going out of the abstract class, which points to the

original parent class the concrete class extends from, which now the abstract class extends from. By incorporating

inheritance in its implementation, the template pattern is able to accomplish two tasks. First, it is able to delegate

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10316

� �ir:=���R�NCE_SEmNG

,.

the implementation of the variant steps to the concrete classes. Second, it allows the concrete classes to inherit the

common method and steps.

Moreover, the study case that was used in this research was an android mobile application. Most of the classes

that implemented the template pattern were not positioned on top of the class hierarchy. Thus, causing the abstract

class to be positioned almost at the bottom of the hierarchy. However, design patterns are concepts and are not an

algorithm [20]. As long as the abstract class defines an algorithm and delegates variant steps to the subclass, it can

be classified as a template pattern.

E?Qverride

publicvoidonAttach(Contextcontext){

su�r.onAttach(context);

if (context inshnceof(ontroller) {

ll!Controller•(Controller)context;

}else if (ietP11rentFro1Je:rient() inshnceof(ontroller) {

ll!Controller•(Controller)&etParentFrag.,ent();

71

72

73

f!)Override

publicvoidonCre1 1te(E1NullilbleBundles11vedlnshnceShte) {

76 su�r.onCre11te(S11vedlnst1mceState);

77 if(savedlnstanceState!•null){

78 11CurrentC11te1ory•s11vedlnst11nceShte.1etP,111 r1::el11ble(SS_CURRENT_CATEGORY);

79 }else{

Bundle11r11u ..ents•11:eotAra:uml!'nts();

if (aq:u111ents !• null) {

lll(urre-ntCate-a:ory•ara:u1 1 1 e-nts.a:e-tParce-lable-(ARG_DEFAULT_CATEGORY);

} erse {

lll(urre-ntCate-a:ory•null;

11ParentCatee:oryPickerDi1 1loe:•(P11rentCatee:oryPickerOi11loe:)e:etChildfr11e:mentHat

if(11ParentCateaoryPickerDilllo1••null){

IIIParentCatee:oryPickerDialoe:•ParentCatee:oryPickerDialoe:.newlnstance();

111Pare-ntCate-a:oryPicke-rOialoa:.se-tCallback(this);

Fig 4. SonarQube GUI showing the duplicate

code

Fig 5. Before design pattern was implemen-

ted

Fig 6. After design pattern was implemented

Fig 7. The created abstract class due to the

implementation of template pattern

@PickerTemplate

©categoryPlcker

©RecurrencePld:.er

aStrlngS:S..R£CUflRENCE_5ETIING

1
o RecurrenceSettln!lmRecurenceSetllng

aR«urrencePid.erDiilll()JmR«urrencePicio:etDilllog

: �:t:;�=�����t'ickK{FragmentM,mager.String.R eSettin,g)

evotdooCreateSpecificO

•voidonCreateSli�lns!.VICflStateHull(Bundlt)

•voldonCreateSa\ledlnstanceState()
evoic:lonActiricyCreatl!d(lkndle)
•YOidonS6\oe1nsta�ate(Sutldle)
•YOidf1reC11 1llbackSafelri)
eR«urrencesetting9('tC-tSe1tings()
•StmggetOlalogTag()
evoidshowPicke,Q
evoldonoecach()
evoidonRecwtenc:eSettingCbanged(RecurrerK:eSettlng)

EB

©OvervlewSettlngPlcker

� ��o�!;=���SETTING
ooverv1eWSemng�set1.-.g

oOvelV!eWSettingDialogmOvelviewSenlngDlalog

• O�ervlewSettlngPlckercreatePld(er(FragmentMe,nager,Sttln,g)

•voidcnAtt.ic:h(ContPXI)
•¥oldonC1eateSpeelfic<)
•\'flidonCreateSavedtm1anceSta1eNull(Bunclle)
•voidonCreateSa,.,edtm111nceSta1eO
e\'flldonActlvhyCrea1ed(flun�)

evoidcnSav.lnsti111C41Sta1e(Bundt.)
•"OldfireC4illbeckSaf�)
eOvel'VIPWSettingge1CurrentSenings(}
•St1ing91tDialogT;1oQ
e"OldshowPlckerl)

e¥oidcnDeti!Ch()
•\'OldonO'tffllewseu1ngChenged(OYeMewse1t1ng)

EB

osim;ss_cuRREN'T_CATEGORY
oSUingARG_DEFAULT_CATEGORV

� �:l=��::RVJ>ICKER

aCategorymCuuentCl\eOOf"Y
oP&r"tntca1egoryPieter01ak,omP&r"tntCa1egOf)'Pietero1a1oQ

: ;!,��c:.,�1:,ic:i..tr(F�gmentMon.t1ger.String,C.t11egory)

evoic:looCretneSpecificO

•vOidoncre1:1teS.tlvedlnst�a1eNull(t11Jndle)
e�onCreateSa\ledlnstaooeStateQ

•YOMlonActiYityCreated(Bt.lndle)
•YOidf1reCallbackSalely()
•StrinovetDialogTao{)

evOidonSa\'e1nstanc.estate{Bundle)
eboote;inir.Selected()
e,,ojdMJtC.l��(C.t1 1egory)

eCategorygetCurr�legoryQ
eYoidshowPK:t.erQ
•vOidshQwPld:er(boolelll\,bOolearo)
eYoidahowParentPicker(long,Cmnract.CategoryType)
e,,ojdoriAcliYit�N(intintln1enl)

eYOidonOe1achO

evoic:looCategorySelectOO(Category)

EB

Fig 8. Class Diagram of Template Pattern Implementation

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10317

3.1.5 Analyze Result

All of the metric values were then be compared from before and after implementing the design pattern. A

trend from each metric will then be derived and analyzed to explore the reason behind their changes and how it

affects the duplicate code and maintainability metrics of the application. The result is further discussed in the next

section.

4. Evaluation

4.1 Result

Table 2 represent each of the maintainability components along with its metrics. There were a total of fo-

urteen groups of duplicate code that could be implemented with a design pattern. A total of thirty-four classes

were involved between the fourteen groups. The three columns represent the condition of the class: improve (I),

stagnant (S), and worsen (W). For example, in the number of methods column in the modularity table, there were

twenty-six classes with the same number of methods after implementing the design pattern (stagnant), and eight

classes experienced an increase in the number of methods (worsen).

Table 2. Maintainability Result

 (a) Modularity Component (b) Reusability Component

Modularity (# of Files) Reusability (# of Files)

NCLOC LCOM # of Methods CBO LCOM WMC DIT NCLOC
I S W I S W I S W I S W I S W I S W I S W I S W

34 0 0 0 32 2 0 26 8 0 0 34 0 32 2 16 8 10 0 0 34 34 0 0

(c) Analysabaility Component

Analysability (# of Files)

Total NCLOC Duplicate Code NCLOC

I S W I S W I S W

0 0 34 34 0 0 34 0 0

(d) Modifiability Component

Modifiability (# of Files)

CBO LCOM

I S W I S W

0 0 34 0 32 2

(e) Testability Component

Testability (# of Files)

WMC NCLOC

I S W I S W

16 8 10 34 0 0

The unit size metric (NCLOC) showed an improvement across all of the duplicate case, which positively impact

the modularity, reusability, analysability, and testability components. Likewise, the duplicate code metric showed

an improvement on all of the classes that has duplicate codes and can be implemented with a design pattern,

which positively impact the analysability metric. On the other hand, the volume (Total NCLOC) negatively effect

the analysability component across all of the classes. Similarly, the coupling (CBO) metric negatively impact

the reusability and modifiability component while the depth of inheritance metric (DIT) negatively impact the

reusability component for all of the classes. The implementation of template pattern did not affect the number of

methods metric in most classes, except for the eight classes that experienced an increase in the number of methods,

which negatively impact the modularity component. The same behaviour can also be observed with the cohesion

metric (LCOM), in which the modularity, reusability, and modifiability component were mostly unaffected except

for two of the classes, in which they worsen. Lastly, the complexity metric (WMC) showed a mixture of effects

which impacted the reusability and testability metric.

4.2 Analysis

4.2.1 Duplicate Code Analysis

After finishing the analysis on the identified duplicate codes, it was discovered that only the template pattern

could be implemented. The limit sonarQube has on detecting duplicate codes and technical limitation were the two

factors why template pattern was the only design pattern able to be implemented. First, sonarQube only considers

a piece of code to be duplicated when at least ten consecutive lines are identical. This setting could not be modified

and was an indication that sonarQube was only able to detect type-1 duplicate codes. SonarQube’s duplicate code

requirement limits the ability to detect duplicate method names. This creates a challenge to identify classes with

the same method name but with different implementation, a design problem that the factory method pattern and

strategy pattern could potentially solve. Even if other classes and methods that were not detected as duplicates

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10318

were analyzed, there were still restraints that prevent the implementation of the design pattern in general. Those

restraints are further described below.

The majority of the identified duplicate code by sonarQube were unable to be implemented by a design pattern.

The reason why the majority of duplicate code were not able to incorporate a design pattern in their designs are as

follows:

a).Duplicated Private Method

There were private methods that were identified as duplicate code by sonarQube. Design patterns such as

factory method patterns and strategy patterns handle duplicate methods by moving them to a separate class.

Moving the method to any other class or changing the access modifier would give access to other classes to

utilize the method, which would defeat the purpose of making the method private in the first place. Private

methods are only allowed to be utilized by their own class.

b).Method Containing Private Variable

Some duplicated methods and duplicated partial methods contain private variables. By abstracting the me-

thod or partial method to a parent class, the private variable would have to be abstracted. Moving the variable

or changing its access modifier would defeat the purpose of making the variable private in the first place.

Implementing a design pattern such as template pattern, factory method pattern, or strategy pattern would

require moving the private variable or manipulate the variable’s access modifier.

c).Extend Different Parent Class

Some of the classes that contain duplicated methods or duplicated partial methods extend from a different

parent class. Design patterns such as template patterns and factory method patterns require the classes

with duplicate code to share the same parent class. If an abstract class was to be created, either for the

implementation of template pattern or factory method pattern, the classes with the duplicate codes will have

to extend from the abstract class. In turn, the abstract class would have to extend from the initial parent class

of the classes with the duplicate codes. If the classes extend from different parent classes, then the abstract

class would have to extend from two different parent classes simultaneously, which is prohibited by the Java

language.

d).Complex Duplicate Code

Some of the partial method duplicates were a part of a complex method with many nested branches. The

codes that were identified as duplicates were part and also inside various nested branches. Causing them to

be unable to be abstracted and made into their method. Duplicate codes that contain partial branches prevent

the implementation of the template pattern.

4.2.2 Design Pattern Effect

The implementation of template pattern on duplicate codes had caused a positive impact on the amount of

duplicate codes. However, there were mixed result regarding the effect it had on the application’s maintainability

aspect as a whole. Though, not only did the characteristic of the template pattern had influenced the value of the

metrics, the duplicate code that was being implemented on also had a role in affecting some of the value of the

metrics. The depth of inheritance, coupling, unit size, duplicate code, cohesion, volume, complexity, and number

of methods metrics were affected differently, which impacted all of the maintainability components in various

manner.

Due to the creation of an abstract class every time a template pattern wanted to be implemented, there was an

increase in the depth of inheritance metric that caused the metric to worsen. By extending an abstract class, the

length from the class that had duplicate codes to its root class increases. Therefore, the reusability component will

always be negatively impacted by implementing the template pattern.

Similarly, the coupling metric was also affected negatively due to the implementation of the template pattern.

By creating an abstract class, it creates dependency between the abstract class and the class with duplicate codes,

since the class with duplicate codes has to extend to the abstract class. This unavoidable behaviour of the template

pattern will negatively impact the reusability and the modifiability components.

The volume metric was also observed to increase in all of the classes that implemented the template pattern.

The increase in volume was caused by the added lines of code needed to create an abstract class. In all of the

duplicate case, the amount of duplicate code abstracted was less than the amount of lines of code added. The

increase in the volume metric negatively affect the analysability component.

On the other hand, the unit size metric was observed to always improve on all of the classes that implemented

the template pattern. The pattern make use of the inheritance feature, in which a default implementation can be

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10319

inherited to all of the subclass that extends from the abstract class. In this case, the duplicate code was treated as

a default implementation, hence it was moved from individual subclasses to the abstract class. Since the duplicate

codes were moved to the abstract class, there were less codes in the class that experienced the duplicate code issue.

The modularity, reusability, analysability, and testability components were all improved due to the reduced code

in each of the classes that implemented the template pattern.

Additionally, the duplicate code metric was also observed to decrease on all of the classes that implemented the

template pattern. When it comes to the template pattern, the code that is abstracted is considered to be invariant,

while the code that each of the subclasses implement is considered to be variant. The duplicate code is considered

to be the invariant part, as it is the code that is constant among the subclasses. Due to the nature of the template

pattern, there will always be less duplicate codes in classes that implement the template pattern. As a result, the

decreasing amount of duplicate codes will always positively impact the analysability component of maintainability.

The cohesion metric mostly showed a constant value before and after the implementation of template pattern,

except for one duplicate case. MetricsReloaded classify related methods by the amount variables they share and

if one methods calls on another method. The plugin then measure cohesion by calculating the total number of

components in the method relation graph. In most cases, the implementation of template pattern did not effect the

cohesion metric, as it did not increase or decrease the amount of shared variable and the amount of calls a method

makes to another method. The duplicate case in question was a switch statement containing two cases, in which

the switch statement was abstracted to the abstract class while the two cases were made into two separate methods

in the subclass. Both of the cases called the same method, which causes the plugin to decrease the cohesion level

of the class since there were two different methods calling another method instead of one method calling another

method twice.

The complexity metric was the only metric that experienced all of the possible conditions in this study. Sixteen

classes were less complex after the implementation because the code that was abstracted decreased the amount of

possible path a method can take. Causing the total amount of complexity of the class to decrease. Eight classes

were unaffected due the the code that was being abstracted did not contribute to the number of path a method can

take in the first place. Thus, moving them to the abstract class showed no affect to the total amount of complexity

of the class. Ten classes were more complex after implementing the template pattern because the original method

was divided into a lot of smaller methods. This caused the complexity of each method to be lower, but it increases

the total amount of complexity of the class.

The majority of classes that implemented the template pattern did not experienced any change in their number

of methods metric, except for eight classes that experience an increase in the total number of methods. When

implementing the template pattern, the method that contained duplicate codes were divided into two parts: invariant

and variant part. In most cases, there were only one invariant and variant part. In which each of the part were made

into its own method and implemented on either the abstract class or the subclass. For the eight classes, they

were observed to contain more than one variant part. Which caused the subclass to contain more method than it

originally had.

5. Conclusion

The implementation of the design pattern, particularly the template pattern, was able to decrease the amount of

duplicate codes in all of the duplicate case. However, it was not able to maintain or increase the maintainability

aspect of the application as a whole. First, The unit size and the duplicate code metric will always improve due to

abstraction of the invariant part to the abstract class. Second, the depth of inheritance and the coupling metric will

always worsen due to the use of inheritance by the template pattern. Third, the volume metric was also observed

to always worsen in this study, due to the amount of code removed was less than the amount of code added to

create an abstract class. Fourth, the effect the cohesion metric have on the application is determined by the codes

that is being abstracted to the abstract class. Fifth, the complexity metrics is reliant on if the abstracted code

contributed to the amount of path a method can take and how many smaller methods will be created. Finally, the

number of methods metric is dependent on how many method implementation will be delegated to the subclass.

In future work, investigating the effect other design patterns have on duplicate codes and its subsequent effects on

the maintainability aspect might prove necessary. Using a mobile application with a more significant amount of

duplicate codes might widen the chance of other design patterns being implemented and the possibility of more

insight being discovered. Lastly, creating a metric that determines the value of implementing a design pattern

on duplicate code will prove useful, as developers can use it to consider weather it is best to implement a design

pattern.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10320

References

[1]A. Aldayel and K. Alnafjan. Challenges and best practices for mobile application development. In Procee-

dings of the International Conference on Compute and Data Analysis, pages 41–48, 2017.

[2]Q. Ashfaq, R. Khan, and S. Farooq. A comparative analysis of static code analysis tools that check java code

adherence to java coding standards. In 2019 2nd International Conference on Communication, Computing

and Digital systems (C-CODE), pages 98–103. IEEE, 2019.

[3]F. S. Barbosa and A. Aguiar. Removing code duplication with roles. In 2013 IEEE 12th International

Conference on Intelligent Software Methodologies, Tools and Techniques (SoMeT), pages 37–42. IEEE, 2013.

[4]X. Chen, A. Y. Wang, and E. Tempero. A replication and reproduction of code clone detection studies. In

Proceedings of the Thirty-Seventh Australasian Computer Science Conference-Volume 147, pages 105–114,

2014.

[5]A. W. R. Emanuel, R. Wardoyo, J. E. Istiyanto, and K. Mustofa. Modularity index metrics for java-based

open source software projects. arXiv preprint arXiv:1309.5689, 2013.

[6]E. Gamma, R. Helm, R. Johnson, J. Vlissides, and D. Patterns. Elements of reusable object-oriented software.

Design Patterns. massachusetts: Addison-Wesley Publishing Company, 1995.

[7]F. B. HARUN. Review of ios architectural pattern for testability, modifiability, and performance quality.

Journal of Theoretical and Applied Information Technology, 97(15), 2019.

[8]I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring maintainability. In 6th international

conference on the quality of information and communications technology (QUATIC 2007), pages 30–39.

IEEE, 2007.

[9]ISO. Iso/iec 25010:2011(en) systems and software engineering — systems and software quality requirements

and evaluation (square) — system and software quality models.

[10]E. Juergens, F. Deissenboeck, and B. Hummel. Code similarities beyond copy & paste. In 2010 14th

European Conference on Software Maintenance and Reengineering, pages 78–87. IEEE, 2010.

[11]C. J. Kapser and M. W. Godfrey. “cloning considered harmful” considered harmful: patterns of cloning in

software. Empirical Software Engineering, 13(6):645–692, 2008.

[12]V. Lenarduzzi, A. Sillitti, and D. Taibi. A survey on code analysis tools for software maintenance prediction.

In International Conference in Software Engineering for Defence Applications, pages 165–175. Springer,

2018.

[13]I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago. How maintainability issues of android

apps evolve. In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME),

pages 334–344. IEEE, 2018.

[14]A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto. Software quality analysis by code clones

in industrial legacy software. In Proceedings Eighth IEEE Symposium on Software Metrics, pages 87–94.

IEEE, 2002.

[15]B. S. Panca, S. Mardiyanto, and B. Hendradjaya. Evaluation of software design pattern on mobile application

based service development related to the value of maintainability and modularity. In 2016 International

Conference on Data and Software Engineering (ICoDSE), pages 1–5. IEEE, 2016.

[16]M. D. Papamichail, T. Diamantopoulos, and A. L. Symeonidis. Measuring the reusability of software compo-

nents using static analysis metrics and reuse rate information. Journal of Systems and Software, 158:110423,

2019.

[17]D. Rodriguez and R. Harrison. An overview of object-oriented design metrics. 2001.

[18]A. A. Saifan and A. Al-Rabadi. Evaluating maintainability of android applications. In 2017 8th International

Conference on Information Technology (ICIT), pages 518–523. IEEE, 2017.

[19]F. E. Shahbudin and F.-F. Chua. Design patterns for developing high efficiency mobile application. Journal

of Information Technology & Software Engineering, 3(3):1, 2013.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10321

[20]A. Shvets. What’s a design pattern?

[21]P. Tomas, M. J. Escalona, and M. Mejias. Open source tools for measuring the internal quality of java

software products. a survey. Computer Standards & Interfaces, 36(1):244–255, 2013.

Supplements

Fig 9. Template Pattern Group 3

Fig 10. Template Pattern Group 4

Fig 11. Template Pattern Group 31

Fig 12. Template Pattern Group 51

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10322

Fig 13. Template Pattern Group 54

Fig 14. Template Pattern Group 57

Fig 15. Template Pattern Group 58

Fig 16. Template Pattern Group 63

Fig 17. Template Pattern Group 64

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10323

Fig 18. Template Pattern Group 67

Fig 19. Template Pattern Group 108

Fig 20. Template Pattern Group 124

Fig 21. Template Pattern Group 142

Fig 22. Template Pattern Group 143

Table 3. Code Duplication Type

Type Amount Percentage

Duplicate Variable 37 10.6%

Duplicate Method 152 43.8%

Duplicate Partial Method 153 44.1%

Duplicate Interface 2 0.6%

Duplicate Class 1 0.3%

Duplicate Enum 2 0.6%

Total 347 100%

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10324

Table 4. A Detailed Modularity Result

Duplicate Group

File

Modularity

NCLOC LCOM # of Methods

Before After Before After Before After

3

.../picker/CategoryPicker.java 108 107 1 1 16 18

.../picker/DateTimePicker.java 124 123 1 1 16 18

.../picker/OverviewSettingPicker.java 116 115 2 2 11 13

.../picker/RecurrencePicker.java 80 79 1 1 11 13

4
.../picker/BudgetTypePicker.java 81 80 1 1 12 14

.../picker/ImportExportFormatPicker.java 82 81 2 2 13 15

31
.../pager/BarChartViewPagerAdapter.java 64 62 4 4 6 6

.../pager/PieChartViewPagerAdapter.java 36 34 4 4 6 6

51

.../secondary/CategoryItemFragment.java 178 173 4 4 11 11

.../secondary/EventItemFragment.java 129 124 4 4 6 6

.../secondary/PersonItemFragment.java 121 116 4 4 6 6

54
.../secondary/TransactionItemFragment.java 254 250 6 6 13 13

.../secondary/TransferItemFragment.java 254 250 6 6 13 13

57

.../secondary/DebtItemFragment.java 274 270 4 4 13 13

.../secondary/SavingItemFragment.java 228 223 4 4 13 13

.../secondary/WalletItemFragment.java 208 203 4 4 13 13

58
.../secondary/DebtItemFragment.java 274 270 4 4 13 13

.../secondary/WalletItemFragment.java 208 203 4 4 13 13

63
.../secondary/TransactionModelItemFragment.java 170 164 5 6 11 12

.../secondary/TransferModelItemFragment.java 180 174 5 6 11 12

64
.../secondary/TransactionModelItemFragment.java 170 165 5 5 11 11

.../secondary/TransferModelItemFragment.java 180 175 5 5 11 11

67
.../secondary/RecurrentTransactionItemFragment.java 177 171 5 5 11 11

.../secondary/RecurrentTransferItemFragment.java 187 181 5 5 11 11

108
.../activity/NewEditTransactionActivity.java 916 914 3 3 23 23

.../activity/NewEditTransferActivity.java 697 695 3 3 20 20

124
.../activity/NewEditRecurrentTransactionActivity.java 358 356 1 1 12 12

.../activity/NewEditRecurrentTransferActivity.java 421 419 1 1 12 12

142

.../activity/NewEditRecurrentTransactionActivity.java 358 356 1 1 12 12

.../activity/NewEditRecurrentTransferActivity.java 421 419 1 1 12 12

.../activity/NewEditTransactionModelActivity.java 331 329 1 1 11 11

.../activity/NewEditTransferModelActivity.java 394 392 1 1 12 12

143
.../activity/NewEditRecurrentTransferActivity.java 421 414 1 1 12 12

.../activity/NewEditTransferModelActivity.java 394 387 1 1 11 11

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10325

Table 5. A Detailed Reusability Result

Duplicate Group

File

Reusability

CBO LCOM WMC DIT NCLOC

Before After Before After Before After Before After Before After

3

.../picker/CategoryPicker.java 12 13 1 1 25 26 2 3 108 107

.../picker/DateTimePicker.java 11 12 1 1 30 31 2 3 124 123

.../picker/OverviewSettingPicker.java 9 10 2 2 24 25 2 3 116 115

.../picker/RecurrencePicker.java 6 7 1 1 18 19 2 3 80 79

4
.../picker/BudgetTypePicker.java 6 7 1 1 18 19 2 3 81 80

.../picker/ImportExportFormatPicker.java 6 7 2 2 20 21 2 3 82 81

31
.../pager/BarChartViewPagerAdapter.java 7 8 4 4 10 10 2 3 64 62

.../pager/PieChartViewPagerAdapter.java 6 7 4 4 9 9 2 3 36 34

51

.../secondary/CategoryItemFragment.java 20 21 4 4 29 28 3 4 178 173

.../secondary/EventItemFragment.java 19 20 4 4 20 19 3 4 129 124

.../secondary/PersonItemFragment.java 17 18 4 4 20 19 3 4 121 116

54
.../secondary/TransactionItemFragment.java 29 30 6 6 37 36 3 4 254 250

.../secondary/TransferItemFragment.java 25 26 6 6 37 36 3 4 254 250

57

.../secondary/DebtItemFragment.java 24 25 4 4 42 41 3 4 274 270

.../secondary/SavingItemFragment.java 23 24 4 4 35 34 3 4 228 223

.../secondary/WalletItemFragment.java 21 22 4 4 31 30 3 4 208 203

58
.../secondary/DebtItemFragment.java 24 25 4 4 42 41 3 4 274 270

.../secondary/WalletItemFragment.java 21 22 4 4 31 30 3 4 208 203

63
.../secondary/TransactionModelItemFragment.java 18 19 5 5 23 22 3 4 170 164

.../secondary/TransferModelItemFragment.java 18 19 5 5 24 23 3 4 180 174

64
.../secondary/TransactionModelItemFragment.java 18 19 5 5 23 22 3 4 170 165

.../secondary/TransferModelItemFragment.java 18 19 5 5 24 23 3 4 180 175

67
.../secondary/RecurrentTransactionItemFragment.java 18 19 5 5 22 21 3 4 177 171

.../secondary/RecurrentTransferItemFragment.java 18 19 5 5 23 22 3 4 187 181

108
.../activity/NewEditTransactionActivity.java 64 65 3 3 138 138 14 15 916 914

.../activity/NewEditTransferActivity.java 52 53 3 3 94 94 14 15 697 695

124
.../activity/NewEditRecurrentTransactionActivity.java 38 39 1 1 50 50 14 15 358 356

.../activity/NewEditRecurrentTransferActivity.java 36 37 1 1 57 57 14 15 421 419

142

.../activity/NewEditRecurrentTransactionActivity.java 38 39 1 1 50 50 14 15 358 356

.../activity/NewEditRecurrentTransferActivity.java 36 37 1 1 57 57 14 15 421 419

.../activity/NewEditTransactionModelActivity.java 35 36 1 1 48 48 14 15 331 329

.../activity/NewEditTransferModelActivity.java 33 34 1 1 55 55 14 15 394 392

143
.../activity/NewEditRecurrentTransferActivity.java 36 37 1 1 57 57 14 15 421 414

.../activity/NewEditTransferModelActivity.java 33 34 1 1 55 55 14 15 394 387

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10326

Table 6. A Detailed Analysability Result

Duplicate Group

File

Analysability

Total System NCLOC Duplicate Code NCLOC

Before After Before After Before After

3

.../picker/CategoryPicker.java 78599 78611 14 0 108 107

.../picker/DateTimePicker.java 78599 78611 14 0 124 123

.../picker/OverviewSettingPicker.java 78599 78611 14 0 116 115

.../picker/RecurrencePicker.java 78599 78611 14 0 80 79

4
.../picker/BudgetTypePicker.java 78599 78618 17 0 81 80

.../picker/ImportExportFormatPicker.java 78599 78618 17 0 82 81

31
.../pager/BarChartViewPagerAdapter.java 78599 78608 21 20 64 62

.../pager/PieChartViewPagerAdapter.java 78599 78608 21 20 36 34

51

.../secondary/CategoryItemFragment.java 78599 78603 16 13 178 173

.../secondary/EventItemFragment.java 78599 78603 16 13 129 124

.../secondary/PersonItemFragment.java 78599 78603 16 13 121 116

54
.../secondary/TransactionItemFragment.java 78599 78608 129 125 254 250

.../secondary/TransferItemFragment.java 78599 78608 129 125 254 250

57

.../secondary/DebtItemFragment.java 78599 78602 47 32 274 270

.../secondary/SavingItemFragment.java 78599 78602 28 14 228 223

.../secondary/WalletItemFragment.java 78599 78602 15 0 208 203

58
.../secondary/DebtItemFragment.java 78599 78601 47 32 274 270

.../secondary/WalletItemFragment.java 78599 78601 15 0 208 203

63
.../secondary/TransactionModelItemFragment.java 78599 78610 54 52 170 164

.../secondary/TransferModelItemFragment.java 78599 78610 54 52 180 174

64
.../secondary/TransactionModelItemFragment.java 78599 78607 54 51 170 165

.../secondary/TransferModelItemFragment.java 78599 78607 55 51 180 175

67
.../secondary/RecurrentTransactionItemFragment.java 78599 78605 66 62 177 171

.../secondary/RecurrentTransferItemFragment.java 78599 78605 66 62 187 181

123
.../activity/NewEditTransactionActivity.java 78599 78604 455 453 916 914

.../activity/NewEditTransferActivity.java 78599 78604 470 468 697 695

124
.../activity/NewEditRecurrentTransactionActivity.java 78599 78604 238 233 358 356

.../activity/NewEditRecurrentTransferActivity.java 78599 78604 312 305 421 419

142

.../activity/NewEditRecurrentTransactionActivity.java 78599 78600 238 236 358 356

.../activity/NewEditRecurrentTransferActivity.java 78599 78600 312 310 421 419

.../activity/NewEditTransactionModelActivity.java 78599 78600 280 278 331 329

.../activity/NewEditTransferModelActivity.java 78599 78600 353 351 394 392

143
.../activity/NewEditRecurrentTransferActivity.java 78599 78600 312 305 421 414

.../activity/NewEditTransferModelActivity.java 78599 78600 353 346 394 387

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10327

Table 7. A Detailed Modifiability Result

Duplicate Group

File

Modifiability

CBO LCOM

Before After Before After

3

.../picker/CategoryPicker.java 12 13 1 1

.../picker/DateTimePicker.java 11 12 1 1

.../picker/OverviewSettingPicker.java 9 10 2 2

.../picker/RecurrencePicker.java 6 7 1 1

4
.../picker/BudgetTypePicker.java 6 7 1 1

.../picker/ImportExportFormatPicker.java 6 7 2 2

31
.../pager/BarChartViewPagerAdapter.java 7 8 4 4

.../pager/PieChartViewPagerAdapter.java 6 7 4 4

51

.../secondary/CategoryItemFragment.java 20 21 4 4

.../secondary/EventItemFragment.java 19 20 4 4

.../secondary/PersonItemFragment.java 17 18 4 4

54
.../secondary/TransactionItemFragment.java 29 30 6 6

.../secondary/TransferItemFragment.java 25 26 6 6

57

.../secondary/DebtItemFragment.java 24 25 4 4

.../secondary/SavingItemFragment.java 23 24 4 4

.../secondary/WalletItemFragment.java 21 22 4 4

58
.../secondary/DebtItemFragment.java 24 25 4 4

.../secondary/WalletItemFragment.java 21 22 4 4

63
.../secondary/TransactionModelItemFragment.java 18 19 5 6

.../secondary/TransferModelItemFragment.java 18 19 5 6

64
.../secondary/TransactionModelItemFragment.java 18 19 5 5

.../secondary/TransferModelItemFragment.java 18 19 5 5

67
.../secondary/RecurrentTransactionItemFragment.java 18 19 5 5

.../secondary/RecurrentTransferItemFragment.java 18 19 5 5

108
.../activity/NewEditRecurrentTransactionActivity.java 64 65 3 3

.../activity/NewEditRecurrentTransferActivity.java 52 53 3 3

124
.../activity/NewEditRecurrentTransactionActivity.java 38 39 1 1

.../activity/NewEditRecurrentTransferActivity.java 36 37 1 1

142

.../activity/NewEditRecurrentTransactionActivity.java 38 39 1 1

.../activity/NewEditRecurrentTransferActivity.java 36 37 1 1

.../activity/NewEditTransactionModelActivity.java 35 36 1 1

.../activity/NewEditTransferModelActivity.java 33 34 1 1

143
.../activity/NewEditRecurrentTransferActivity.java 36 37 1 1

.../activity/NewEditTransferModelActivity.java 33 34 1 1

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10328

Table 8. A Detailed Testability Result

Duplicate Group

File

Testability

WMC NCLOC

Before After Before After

3

.../picker/CategoryPicker.java 25 26 108 107

.../picker/DateTimePicker.java 30 31 124 123

.../picker/OverviewSettingPicker.java 24 25 116 115

.../picker/RecurrencePicker.java 18 19 80 79

4
.../picker/BudgetTypePicker.java 18 19 81 80

.../picker/ImportExportFormatPicker.java 20 21 82 81

31
.../pager/BarChartViewPagerAdapter.java 10 10 64 62

.../pager/PieChartViewPagerAdapter.java 9 9 36 34

51

.../secondary/CategoryItemFragment.java 29 28 178 173

.../secondary/EventItemFragment.java 20 19 129 124

.../secondary/PersonItemFragment.java 20 19 121 116

54
.../secondary/TransactionItemFragment.java 37 36 254 250

.../secondary/TransferItemFragment.java 37 36 254 250

57

.../secondary/DebtItemFragment.java 42 41 274 270

.../secondary/SavingItemFragment.java 35 34 228 223

.../secondary/WalletItemFragment.java 31 30 208 203

58
.../secondary/DebtItemFragment.java 42 41 274 270

.../secondary/WalletItemFragment.java 31 30 208 203

63
.../secondary/TransactionModelItemFragment.java 23 22 170 164

.../secondary/TransferModelItemFragment.java 24 23 180 174

64
.../secondary/TransactionModelItemFragment.java 23 22 170 165

.../secondary/TransferModelItemFragment.java 24 23 180 175

67
.../secondary/RecurrentTransactionItemFragment.java 22 21 177 171

.../secondary/RecurrentTransferItemFragment.java 23 22 187 181

108
.../activity/NewEditTransactionActivity.java 138 138 916 914

.../activity/NewEditTransferActivity.java 94 94 697 695

124
.../activity/NewEditRecurrentTransactionActivity.java 50 50 358 356

.../activity/NewEditRecurrentTransferActivity.java 57 57 421 419

142

.../activity/NewEditRecurrentTransactionActivity.java 50 50 358 356

.../activity/NewEditRecurrentTransferActivity.java 57 57 421 419

.../activity/NewEditTransactionModelActivity.java 48 48 331 329

.../activity/NewEditTransferModelActivity.java 55 55 394 392

143
.../activity/NewEditRecurrentTransferActivity.java 57 57 421 414

.../activity/NewEditTransferModelActivity.java 55 55 394 387

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10329

Table 9. A Detailed Duplicate Code Result

Duplicate Group

File
Amount of Duplicate Code

Before After

3

.../picker/CategoryPicker.java 14 0

.../picker/DateTimePicker.java 14 0

.../picker/OverviewSettingPicker.java 14 0

.../picker/RecurrencePicker.java 14 0

4
.../picker/BudgetTypePicker.java 17 0

.../picker/ImportExportFormatPicker.java 17 0

31
.../pager/BarChartViewPagerAdapter.java 21 20

.../pager/PieChartViewPagerAdapter.java 21 20

51

.../secondary/CategoryItemFragment.java 16 13

.../secondary/EventItemFragment.java 16 13

.../secondary/PersonItemFragment.java 16 13

54
.../secondary/TransactionItemFragment.java 129 125

.../secondary/TransferItemFragment.java 129 125

57

.../secondary/DebtItemFragment.java 47 32

.../secondary/SavingItemFragment.java 28 14

.../secondary/WalletItemFragment.java 15 0

58
.../secondary/DebtItemFragment.java 47 32

.../secondary/WalletItemFragment.java 15 0

63
.../secondary/TransactionModelItemFragment.java 54 52

.../secondary/TransferModelItemFragment.java 54 52

64
.../secondary/TransactionModelItemFragment.java 54 51

.../secondary/TransferModelItemFragment.java 55 51

67
.../secondary/RecurrentTransactionItemFragment.java 66 62

.../secondary/RecurrentTransferItemFragment.java 66 62

123
.../activity/NewEditTransactionActivity.java 455 453

.../activity/NewEditTransferActivity.java 470 468

124
.../activity/NewEditRecurrentTransactionActivity.java 238 233

.../activity/NewEditRecurrentTransferActivity.java 312 305

142

.../activity/NewEditRecurrentTransactionActivity.java 238 236

.../activity/NewEditRecurrentTransferActivity.java 312 310

.../activity/NewEditTransactionModelActivity.java 280 278

.../activity/NewEditTransferModelActivity.java 353 351

143
.../activity/NewEditRecurrentTransferActivity.java 312 305

.../activity/NewEditTransferModelActivity.java 353 346

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021 | Page 10330

