
123

S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

Azad Naik
Huzefa Rangwala

Large Scale
Hierarchical
Classi� cation:
State of the Art

SpringerBriefs in Computer Science

Series editors

Stan Zdonik, Brown University, Providence, Rhode Island, USA
Shashi Shekhar, University of Minnesota, Minneapolis, Minnesota, USA
Xindong Wu, University of Vermont, Burlington, Vermont, USA
Lakhmi C. Jain, University of South Australia, Adelaide, South Australia, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
Xuemin Sherman Shen, University of Waterloo, Waterloo, Ontario, Canada
Borko Furht, Florida Atlantic University, Boca Raton, Florida, USA
V. S. Subrahmanian, University of Maryland, College Park, Maryland, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan
Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy
Sushil Jajodia, George Mason University, Fairfax, Virginia, USA
Newton Lee, Institute for Education, Research, and Scholarships in Los Angeles,
California, USA

SpringerBriefs present concise summaries of cutting-edge research and practical
applications across a wide spectrum of fields. Featuring compact volumes of 50 to
125 pages, the series covers a range of content from professional to academic.
Typical topics might include:

• A timely report of state-of-the art analytical techniques
• A bridge between new research results, as published in journal articles, and a

contextual literature review
• A snapshot of a hot or emerging topic
• An in-depth case study or clinical example
• A presentation of core concepts that students must understand in order to make

independent contributions

Briefs allow authors to present their ideas and readers to absorb them with
minimal time investment. Briefs will be published as part of Springer’s eBook
collection, with millions of users worldwide. In addition, Briefs will be available
for individual print and electronic purchase. Briefs are characterized by fast, global
electronic dissemination, standard publishing contracts, easy-to-use manuscript
preparation and formatting guidelines, and expedited production schedules. We
aim for publication 8–12 weeks after acceptance. Both solicited and unsolicited
manuscripts are considered for publication in this series.

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

Azad Naik • Huzefa Rangwala

Large Scale Hierarchical
Classification:
State of the Art

123

Azad Naik
Microsoft (United States)
Redmond, WA, USA

Huzefa Rangwala
George Mason University
Fairfax, VA, USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science
ISBN 978-3-030-01619-7 ISBN 978-3-030-01620-3 (eBook)
https://doi.org/10.1007/978-3-030-01620-3

Library of Congress Control Number: 2018957841

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-01620-3

This book is dedicated to our lovely family
members and to all data mining, machine
learning and artificial intelligence learners.

Preface

This book evolved from the several years of research done by authors in the field
of hierarchical classification. It provides a comprehensive overview of the recent
advancements in large scale hierarchical classification (LSHC) along with state-of-
the-art techniques. LSHC has gained significant interest amongst researchers and
academia due to its profound applications in various fields for organizing large
stream datasets aka Big Data. Dealing with LSHC can be challenging due to several
issues that arise in the large scale settings. This book aims to provide understanding
of the issues along with solutions to solve it. In particular, more focus has been on
two of the most compressing HC problem—hierarchical inconsistency and feature
selection.

This book is intended to benefit the readers with intermediate expertise in data
mining having a background in classification (supervised learning). This book
would be helpful for students and researchers working in multiple disciplines
including computer science and engineering, computational science, bioinformatics,
statistics, etc. We hope you will enjoy reading it.

Redmond, WA, USA Azad Naik
Fairfax, VA, USA Huzefa Rangwala
August 2018

vii

Acknowledgements

Writing a book is harder than we thought and more rewarding than we could
have ever imagined. None of this would have been possible without the love,
encouragement and support from our beloved family members.

We would like to express our sincere thanks to Richa Parihar who has provided
immense help with preparation of figures. Her assistance has been invaluable.

We would also like to thank Springer for the excellent support during the different
stages of preparation of this book, and we would like to thank the senior editor,
Susan Evans, for her support and professionalism.

ix

Contents

1 Introduction . 1
1.1 Large Scale Hierarchical Classification Problem . 3
1.2 Challenges with Large Scale Hierarchical Classification 4
1.3 Summary of Chapters . 11
References . 11

2 Background . 13
2.1 Notations . 13
2.2 Different Approaches for Hierarchical Classification 15

2.2.1 Flat Classification Approach . 15
2.2.2 Local Classification Approach . 17
2.2.3 Global Classification Approach . 19

2.3 Model Learning: General Formulation. 20
2.3.1 Top-Down Hierarchical Classification . 21

2.4 Hierarchical Datasets . 23
2.5 Evaluation Metrics for Hierarchical Classification . 25

2.5.1 Flat Measures . 25
2.5.2 Hierarchical Measures . 26
2.5.3 Area Under the Curve (AUC) . 28

2.6 Literature Review . 28
2.6.1 Hierarchical Orthogonal Transfer . 28
2.6.2 Shrinking Data-Sparse Leaf Node Model Parameters

Toward Data-Rich Ancestor Nodes . 29
2.6.3 Two-Stage Classification for Large-Scale Taxonomy 30
2.6.4 Parent-Child Regularization . 31
2.6.5 Cost-Sensitive Learning . 33
2.6.6 Refined Experts . 35

References . 36

xi

xii Contents

3 Hierarchical Structure Inconsistencies . 39
3.1 Hierarchical Restructuring Experiment . 40
3.2 Reasons for Hierarchical Inconsistencies . 41
3.3 Different Methods for Hierarchy Restructuring . 43

3.3.1 Flattening Approach . 43
3.3.2 Rewiring Approach . 47
3.3.3 Clustering Approach . 52

3.4 Experimental Results and Analysis . 52
3.4.1 Case Study . 52
3.4.2 Accuracy Comparisons: Flat Measures . 53
3.4.3 Accuracy Comparisons: Hierarchical Measures 54
3.4.4 Runtime Comparisons . 55
3.4.5 Level-Wise Error Analysis . 55
3.4.6 Comparison: Rewiring Against Flat and HierCost 57

3.5 Summary of the Chapter . 58
References . 58

4 Large-Scale Hierarchical Classification with Feature Selection 61
4.1 Introduction . 61
4.2 Feature Selection Overview . 62

4.2.1 Feature Selection Approaches. 63
4.2.2 Embedding Feature Selection into LSHC . 65

4.3 Experimental Results and Analysis . 66
4.3.1 Case Study . 66
4.3.2 Accuracy Comparison . 66
4.3.3 Memory Requirements . 69
4.3.4 Runtime Comparison . 70
4.3.5 Effect of Varying Training Size . 72
4.3.6 Level-Wise Error Analysis . 73

4.4 Summary of the Chapter . 73
References . 74

5 Multi-task Learning . 75
5.1 Introduction . 75
5.2 Multi-task Learning Problem Formulation . 76
5.3 Multi-task Learning Using Multiple Hierarchies . 77
5.4 Performance Comparison of STL, SHMTL, and MHMTL 79

5.4.1 Experimental Analysis. 80
5.5 Performance Comparison of STL, MTL, TL, and SSL 81

5.5.1 Experimental Analysis. 84
5.6 Summary of the Chapter . 86
References . 86

Contents xiii

6 Conclusions and Future Research Directions . 89
6.1 Future Research Directions . 89

6.1.1 Extreme Classification . 89
6.1.2 Partial Flattening of Inconsistent Nodes . 90
6.1.3 Multi-Linear Models. 91
6.1.4 Detecting New Categories . 91
6.1.5 Feature Representation Using Deep Learning 92
6.1.6 Large-Scale Multi-task Learning. 92

References . 92

Acronyms

μF1 Micro-F1
BLF Bottom Level Flattening
CATH Class, Architecture, Topology and Homologous
DMOZ Directory Mozilla
FC Flat Classification
FS Feature Selection
GC Global Classification
HBLR Hierarchical Bayesian Logistic Regression
HC Hierarchical Classification
HD High Distribution
hF1 Hierarchical F1
HOT Hierarchical Orthogonal Transfer
hP Hierarchical Precision
hR Hierarchical Recall
HSVM Hierarchical Support Vector Machine
INF Inconsistent Nodes Flattened
IPC International Patent Classification
kNN k-Nearest Neighbor
LCL Local Classifier per Level
LCN Local Classifier per Node
LCPN Local Classifier per Parent Node
LD Low Distribution
LR Logistic Regression
LSHC Large Scale Hierarchical Classification
LSHTC Large Scale Hierarchical Text Classification
MF1 Macro-F1
MHMTL Multiple Hierarchy Multi-task Learning
MLF Multiple Level Flattening
MTL Multi-task Learning
SCOP Structural Classification of Proteins
SHMTL Single Hierarchy Multi-task Learning

xv

xvi Acronyms

SSL Semi-Supervised Learning
STL Single Task learning
SVM Support Vector Machine
TD Top-Down
TE Tree-Induced Error
TL Transfer Learning
TLF Top Level Flattening

Chapter 1
Introduction

Data is everywhere, and it’s generated in various forms (such as texts, images,
videos) and through various means (such as social network, digital devices, Internet,
sensors). The amount of data available is massive. It’s growing continuously year
after year at an exponential rate in almost every field ranging from astronomical data
to biological and web data. In fact over the last 2 years alone, 90% of the data in
the world was generated. According to Domo’s data never sleeps report,1 numbers
are staggering for data generated per minute by users across different services. For
example, 456,000 tweets are tweeted on Twitter, 154,200 Skype calls are made,
527,760 photos are shared on Snapchat, and 4,146,600 YouTube videos are watched
every minute.

In order to extract useful and meaningful information from data, we need to first
organize and structure them. Hierarchical structures/taxonomies provide a natural
and convenient way to organize information. Data organization using hierarchy
has been extensively used in several real-world application domains such as gene
taxonomy2 for organizing gene sequences, DMOZ taxonomy3 for structuring web
pages, international patent classification hierarchy4 for browsing patent documents,
audio taxonomy for organizing music signals [3], and ImageNet5 for indexing
millions of images.

Definition 1.1 Hierarchical structure (or hierarchy) is defined as a set of objects V
and a partial order ≺ over the pairs of elements of V. Partial ordering comes from

1https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1.
2http://geneontology.org/.
3http://www.dmoz.org/.
4http://www.wipo.int/classifications/ipc/en/.
5http://www.image-net.org/.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2018
A. Naik, H. Rangwala, Large Scale Hierarchical Classification: State of the Art,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-030-01620-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01620-3_1&domain=pdf
https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
http://geneontology.org/
http://www.dmoz.org/
http://www.wipo.int/classifications/ipc/en/
http://www.image-net.org/
https://doi.org/10.1007/978-3-030-01620-3_1

2 1 Introduction

Fig. 1.1 Hierarchical structure containing two levels (excluding root node), three internal nodes,
and six leaf nodes. Nodes at higher levels contain generic classes, and it becomes more and more
specific as we go down the level. Examples are assigned to leaf nodes in the hierarchy (shown by
dotted lines)

the parent-child relationship between the elements of V. The following properties
hold true for the hierarchy:

1. Asymmetry—If vi ≺ vj , then vj �≺ vi,∀vi, vj ∈ V .
2. Anti-reflexivity—vi �≺ vi,∀vi ∈ V .
3. Transitivity—If vi ≺ vj and vj ≺ vk , then vi ≺ vk,∀vi, vj , vk ∈ V .

Hierarchical structure assumes that each node in the hierarchy is a generic
type of its children nodes and specific type of its parent node, thereby
implying a hierarchical relationship.

Figure 1.1 shows an example of small hierarchical structure with two levels of
hierarchy (excluding root node), three internal nodes, and six leaf nodes with
instances (or examples) assigned to them. Two main type of relationships exist
within the hierarchy:

1. Parent-child relationship: Two neighboring nodes directly connected by
an edge have parent-child relationship between them. For example, in

1.1 Large Scale Hierarchical Classification Problem 3

Fig. 1.1: Root—Science, Computer—Graphics, Recreation—Baseball

have parent-child relationship.
2. Siblings relationship: Nodes with common parents have siblings relationship

between them. For example, in Fig. 1.1: Computer—Science—Recreation,
Windows—Graphics, Medicine—Space have siblings relationship.

Definition 1.2 Root node—Node in the hierarchy with no parent and at least one
child is known as root node.

Complex hierarchies can have more than one root node. For simplicity, this
book considers hierarchical structure having one root node only.

Definition 1.3 Internal node—Node in the hierarchy having at least one parent and
at least one children is known as internal node. Internal node is also referred as non-
terminal node. In Fig. 1.1—Computer , Science and Recreation node belongs to
internal node.

Definition 1.4 Leaf node—Node in the hierarchy having at least one parent and no
children is known as leaf node. In other words, node that doesn’t belongs to root or
internal node is leaf node. Leaf node is also referred as terminal node. In Fig. 1.1—
Graphics, Windows, Medicine, Space, Baseball and Hockey node belongs to
leaf node.

Once hierarchical structure is available for the dataset, next step is to develop
classifiers (or models) that can automatically classify newly generated unlabeled
examples (or instances) into different nodes within the hierarchy, accurately and
efficiently. Developing classifiers that involves hierarchy with thousands of classes
is not an easy task due to several challenges discussed in Sect. 1.2.

1.1 Large Scale Hierarchical Classification Problem

Classifying unlabeled instances manually is a nontrivial task. In manual classi-
fication, users (typically experts in the field) interpret the meaning of unlabeled
instances, identify the relationships between concepts, and do categorization. While
this gives users more control over classification, manual classification is both
expensive and time-consuming. Moreover, it’s not feasible for large-scale datasets.
To overcome this, automated classification that applies machine learning techniques
for classification is desired. This results in faster, scalable solution for handling large
volumes of data. Figure 1.2 depicts the difference between manual and automated
classification.

Given, a hierarchy containing thousands of classes (or categories) and millions
of instances (or examples), there is an essential need to develop an efficient and
automated machine learning approaches to categorize unlabeled (or unknown)

4 1 Introduction

Fig. 1.2 Difference between manual and automated classification. In manual classification,
humans are experts, whereas in automated classification computers (running machine learning
(ML) algorithms) are experts

instances into hierarchy of classes. This problem is referred to as large-scale
hierarchical classification (LSHC) task. It is an important machine learning problem
that has been researched and explored extensively in the past few years [1, 2, 11, 12].
The objective of this book is to provide a comprehensive overview of the various
developed approaches for dealing with LSHC problem.

1.2 Challenges with Large Scale Hierarchical Classification

Manual annotation of unlabeled instances into hierarchy of classes is a tedious and
cumbersome task. This problem become even more difficult with the exponential
growth rate of data over time. Although, several traditional binary and multi-
class classification techniques have been developed for automated classification,
they are not effective (and scalable) for LSHC problems because they ignore the
implicit inter-class relationships information that are available from the hierarchical
structures. To overcome this shortcoming, various HC approaches have been
proposed in the literature [1, 2, 4, 5, 7, 11, 13]. Although HC approaches improve
performance, there are several factors that make LSHC challenging. In the rest of
the chapter, we will discuss and highlight some of the challenges associated with
LSHC.

1.2 Challenges with Large Scale Hierarchical Classification 5

Fig. 1.3 Difference between single-label and multi-label classification. (a) Single-label classifica-
tion: All instances are assigned to single class only (b) Multi-label classification: Instances may
belong to multiple classes (Ex. 2 in the figure)

Challenges

1. Single-label versus multi-label classification—In single-label classification, each
instance exclusively belongs to only one (single) class, whereas in multi-label
classification instance may belong to several classes (Fig. 1.3). While single-label
classification is easier, multi-label classification is difficult because instance can
be associated with multiple classes that belongs to completely different branches
in the hierarchy.

It should be noted that multi-class and multi-label classification are two
different terminology. Multi-class classification refers to a classification task
with more than two classes. For example, classify a set of flowers which may
be lily, rose, or lotus. Multi-class classification makes the assumption that
each instance is assigned to one and only one label: a flower can be either
rose or a lily but not both at the same time. On the other hand, in multi-
label classification each instance can be assigned to multiple categories. For
example, a movie can be categorized as both comedy and romantic at the same
time.

2. Mandatory leaf node versus internal node prediction—In HC, each instance
can be associated with labels that is on a path from the root node to a leaf
node (full-path prediction) or stop at an internal node (partial-path prediction
[6]). In mandatory leaf node prediction, only full-path predictions are allowed

6 1 Introduction

Fig. 1.4 Difference between mandatory leaf node and internal node prediction. (a) Mandatory leaf
node prediction—All instances belong to leaf nodes. (b) Internal node prediction—Instances may
belong to internal nodes (Ex. 2 and Ex. 5 in the figure)

Fig. 1.5 Hierarchical
structure showing classes
with rare categories

for all instances (or in other words each instance is essentially assigned to
leaf nodes in the hierarchy), whereas in internal node prediction, partial-path
predictions are also allowed for instances (Fig. 1.4). Determining criterion for
assigning instances to internal nodes is a difficult task. Internal node prediction
is also referred to as nonmandatory leaf node prediction or orphan node detection
problem in the literature [10].

3. Rare categories—In real-world problems, many classes having few positive
instances which makes it difficult to learn generalized classification models as it
is prone to over-fitting (Fig. 1.5). LSHC problem involves thousands of categories

1.2 Challenges with Large Scale Hierarchical Classification 7

Fig. 1.6 Power law distribution followed in LSHTC datasets—(a) DMOZ-2010 and (b) DMOZ-
2012

with varying distribution of instances per category. In datasets of such a large
scale, skewed class distribution is observed where plenty of classes have fewer
instances for training (e.g., more than 75% of LSHTC datasets belongs to rare
categories, i.e., classes with less than ten examples) making it considerably
difficult to learn a generalized model. This is known as the rare categories
problem [1] and is more prominent in large-scale datasets because it exhibits
power-law distribution for examples per class as shown in Eq. (1.1). To improve
HC performance, it is necessary to address the issue of rare categories.

P(si > S) ∝ S−γ (1.1)

where si denotes the size of i-th class and γ denotes the power law exponent.
Figure 1.6a and b shows the power-law distribution followed in large-scale
DMOZ-2010 and DMOZ-2012 datasets, respectively.

Although data size is increasing continuously, rare categories (or data spar-
sity) issue remains because more classes are also being added to the hierarchy.

Hierarchical structures are useful for improving performance on rare cat-
egories because they can exploit instances/parameters from parents/siblings
relationships.

4. Feature selection—Real-world datasets often contain features that are either
redundant (providing no useful information) or irrelevant (not able to discrim-
inate between classes) for classification. Identifying discriminative features is
crucial because not only does it improves classification performance but also
improves runtime performance and memory required to store learned models.

8 1 Introduction

Fig. 1.7 Figure showing
useful discriminative features
for node—Science and
Chemistry

However, feature selection is not an easy task, given large-scale datasets are
high-dimensional and have hundreds and thousands of features. Figure 1.7 shows
the importance of feature selection for HC. For discriminating Science from
Animal and Sports class, features like Experiment, Hypothesis, and Theory are
important, whereas features like Computer, Flowers, and Vehicle are irrelevant.
Similarly, for discriminating Chemistry from Physics and Biology class,
Reaction, Chemicals, Mixture are important features.

Features that are useful for discriminating parent node are not necessarily
useful for discriminating children nodes. For example, in Fig. 1.7 although
Experiment, Hypothesis, Theory are discriminating features for parent node
Science, they are not useful for discriminating children node Physics,
Chemistry, Biology because they are common features across all children.

5. Learning with hierarchical relationships—In order to learn generalized model,
we need to incorporate hierarchical relationships information while training
models (or classifiers). Parent-child and sibling relationships are widely used in
literature to improve HC performance. However, incorporating relationships into
model learning is nontrivial, and it may lead to optimization issues where finding
the best solution might be a difficult task.

6. Scalability—Large-scale datasets are characterized by huge number of classes,
features, and instances. Table 1.1 shows different data characteristics about
DMOZ and ImageNet datasets. In order to deal with large-scale datasets, we
need algorithms that are easily scalable by executing in distributed fashion
or utilizing parallelized framework. Due to hierarchical dependencies between
different classes, it is difficult to embarrassingly parallelize model learning,

1.2 Challenges with Large Scale Hierarchical Classification 9

Table 1.1 Large-scale dataset characteristics

#Training #Leaf node Parameter
Dataset examples (classes) #Features #Parameters size (approx)

DMOZ-2010 128,710 12,294 381,580 4,652,986,520 18.5 GB

DMOZ-2012 383,408 11,947 348,548 4,164,102,956 16.5 GB

ImageNet-2012 1.3M 1000 150,528 150,528,000 602 MB

causing runtime performance issue, and it may take several weeks or even months
to train the models.

7. Hierarchical structure inconsistency—Hierarchies are designed by experts based
on the domain knowledge. But in many cases, hierarchies are not suitable for
classification due to presence of inconsistent parent-child/siblings relationships
in the hierarchy. To improve performance we need to restructure the hierarchy to
make it more consistent for classification.

Designing a consistent hierarchy is challenging either due to insufficient
domain knowledge or several confounding classes (such as soc.religion.christian
and talk.religion.misc classes in Newsgroup dataset,6 both relate to religion).
Moreover, hierarchy generation based on semantics is susceptible to inconsisten-
cies [8, 9]. This problem is more common for large-scale datasets. To illustrate
in detail, consider the example shown in Fig. 1.8a, it consist of 1000 points
divided into five classes that are generated using Gaussian distribution with
different mean and variance. Figure 1.8b and c shows two different possible
hierarchical structures with these classes. Hierarchy 1 separates examples into
two categories at level 1, namely,

{
(�, �, �),(�, �)

}
which are not consistent for

classification since category (�) is not easily separable from (�, �) (assuming
linear separators), whereas Hierarchy 2 is more consistent since it groups easily
separable classes together. This explains intuitively that inconsistent hierarchical
structure can deteriorate the HC performance. To overcome this problem, it is
necessary to develop methods that remove inconsistencies in the hierarchy prior
to learning models.

Resolving inconsistencies in the predefined (or original or expert defined)
hierarchy serves as the preprocessing step, and any state-of-the-art existing
HC algorithms can be applied on the modified hierarchy.

8. Error propagation—HC rely on several decisions that are made during the
prediction phase. A number of decisions made are equivalent to path from
root to the predicted leaf category. If incorrect decision is made at any point
in the predicted path, it results in error being propagated at the lower levels

6http://qwone.com/~jason/20Newsgroups.

http://qwone.com/~jason/20Newsgroups

10 1 Introduction

Fig. 1.8 (a) Synthetic dataset with five classes (marked with different symbol and color) and two
different hierarchical structure shown in (b) and (c). Hierarchy 2 is better suited for classification
as compared to Hierarchy 1 because in Hierarchy 2 classes are easily separable (assuming
linear classifiers) at each level in the hierarchy

finally resulting in erroneous prediction. This phenomenon is known as error
propagation and is most common in LSHC. Flat classifiers, on the other hand,
rely on a single decision and are not prone to error propagation (even though the
decision to be made is harder).

Due to the above challenges, the LSHC problem, in its most general form, is
not easy to solve. In fact, most of the existing LSHC techniques solve a specific
formulation of the problem. The formulation is induced by various factors such as
number of rare categories, dimension of instances, etc.

References 11

1.3 Summary of Chapters

Chapter 2 discuss about various symbols and notations used in this book and pro-
vides an overview of the various existing HC methods in the literature. In Chap. 3,
various hierarchical structure modification approaches to resolve inconsistencies
within the hierarchy definition have been discussed followed by Chap. 4 that pro-
vides insight into different approaches for integrating information theoretic feature
selection methods into the HC framework. In Chap. 5, we discuss various multi-task
learning approaches for integrating information from multiple hierarchies. Finally,
we conclude and provide various future research directions in Chap. 6.

References

1. Babbar, R., Partalas, I., Gaussier, E., Amini, M.R.: On flat versus hierarchical classification in
large-scale taxonomies. In: Advances in Neural Information Processing Systems, pp. 1824–
1832 (2013)

2. Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large taxonomies. In:
Proceedings of the 32nd international ACM SIGIR conference on Research and development
in information retrieval, pp. 11–18 (2009)

3. Burred, J.J., Lerch, A.: A hierarchical approach to automatic musical genre classification.
Citeseer

4. Cai, L., Hofmann, T.: Hierarchical document categorization with support vector machines. In:
Proceedings of the thirteenth ACM International Conference on Information and Knowledge
Management, pp. 78–87 (2004)

5. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Hierarchical classification: combining bayes with
svm. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), pp.
177–184 (2006)

6. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical classifica-
tion. Journal of Machine Learning Research 7(Jan), 31–54 (2006)

7. Gopal, S., Yang, Y.: Recursive regularization for large-scale classification with hierarchical and
graphical dependencies. In: Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data mining, pp. 257–265 (2013)

8. Naik, A., Rangwala, H.: Filter based taxonomy modification for improving hierarchical
classification. http://arxiv.org/abs/1603.00772 (2016)

9. Naik, A., Rangwala, H.: Inconsistent node flattening for improving top-down hierarchical
classification. In: IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pp. 379–388 (2016)

10. Naik, A., Rangwala, H.: Integrated framework for improving large-scale hierarchical classifica-
tion. In: 16th IEEE International Conference on Machine Learning and Applications (ICMLA),
pp. 281–288 (2017)

11. Silla Jr, C.N., Freitas, A.A.: A survey of hierarchical classification across different application
domains. Data Mining and Knowledge Discovery 22(1–2), 31–72 (2011)

12. Xue, G.R., Xing, D., Yang, Q., Yu, Y.: Deep classification in large-scale text hierarchies.
In: Proceedings of the 31st annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 619–626 (2008)

13. Zhou, D., Xiao, L., Wu, M.: Hierarchical classification via orthogonal transfer. In: Proceedings
of the 28th International Conference on Machine Learning (ICML), pp. 801–808 (2011)

http://arxiv.org/abs/1603.00772

Chapter 2
Background

This chapter provides a description of the various symbol notations used in this
book. We have used consistent symbolic notations across all chapters for easily
grasping the concepts. We also discuss about different methods for solving HC
problem. Many advanced work has been accomplished by the researchers in the
field of HC. However, we will restrict our discussion to those methods that are
useful and widely popular including some of the methods that achieves state-of-
the-art results on large-scale datasets. Finally, we also touch base upon various
available hierarchical datasets and different evaluation metrics used for comparing
the hierarchical classifiers.

2.1 Notations

This section discusses the commonly used notations in this book. Summary of
notations are described in Table 2.1. For ease of understanding, vectors and matrices
are denoted by bold letters. Moreover, for representing matrices we have used
uppercase letters and vectors are represented using lowercase letters.

Specific to the HC problem, N denotes the total number of nodes in the
hierarchy. Total number of training instances is denoted by symbol N , where
N input training pairs are represented using D = {(x(i), y(i))}Ni=1. x(i) ∈ X

corresponds to the i-th input vector in the input domain (space) X and y(i) ∈ Y

corresponds to the true label in the output domain (space) Y . L denotes the total
number of leaf nodes in the hierarchy.

For binary classifiers, learned optimal model weight vectors corresponding to
the n-th node in the hierarchy H is represented using wn. Group of m weight
vectors are represented using the notation [W]m∗d , where d corresponds to the
dimensionality (number of features) of the input vector. For multi-class classifiers,
multiple classifiers are trained at each of the internal node in the hierarchy.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2018
A. Naik, H. Rangwala, Large Scale Hierarchical Classification: State of the Art,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-030-01620-3_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01620-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-01620-3_2

14 2 Background

Table 2.1 Notations

Symbols Description

R Set of real numbers

H Original given hierarchy

N Total number of training examples

N Total number of nodes in the hierarchy

d Dimensionality (number of feature) of input vector

L Set of leaf categories (classes or labels)

X Input domain (space)

Y Output/label domain (space)

x(i) ∈ R
d Input vector for i-th training example where k-th feature is denoted by xk(i)

y(i) ∈ L True label for i-th training example

wn Learned model weight vectors using binary classifiers for n-th node in

the hierarchy

wc
n Learned model weight vectors using multi-class classifiers corresponding

to c-th children of n-th node in the hierarchy (unless stated explicitly)

C(n) Set of children for n-th node in the hierarchy

π(n) Parent of n-th node in the hierarchy

S(n) Set of siblings for n-th node in the hierarchy

A(n) Set of n-th node ancestors including the node itself but excluding root

x̂(i) ∈ R
d Input vector for i-th test example

ŷ(i) ∈ L Predicted label for i-th test example

yn(i) ∈ ±1 Binary label used for i-th training example to learn weight vectors for

n-th node in the hierarchy, yn(i) = 1 iff y(i) = n, −1 otherwise

yc
n(i) ∈ ±1 Binary label used for i-th training example to learn weight vector

corresponding to c-th child of n-th node in the hierarchy, yc
n(i) = 1 iff

y(i) = c, −1 otherwise

Ψn Optimal objective function value for n-th node in the hierarchy

Ψ c
n Optimal objective function value for c-th child of n-th node in the

hierarchy

Therefore, we use the notation wc
n to represent the learned model corresponding

to c-th child of node n, whereas combined model at node n is represented using
Wn = [wc

n]c∈C(n). C(n) denotes the set of n-th node children. Parent and siblings
of node n are denoted by symbols π(n) and S(n), respectively. A(n) denotes the set
of n-th node ancestors including the node itself but excluding root.

For training binary classifiers at node n, we use the binary label yn(i) = ±1 for
i-th training instance where yn(i) = 1 iff y(i) = n and −1, otherwise. Similarly, for
multi-class classifiers, we use the binary label yc

n(i) = ±1 for i-th training instance
where yc

n(i) = 1 iff y(i) = c and −1, otherwise. Predicted label for the i-th test
instance x̂(i) is represented using the notation ŷ(i). Further, Ψn and Ψ c

n denote the
optimal objective function value for n-th node and its c-th children in the hierarchy,
respectively.

2.2 Different Approaches for Hierarchical Classification 15

2.2 Different Approaches for Hierarchical Classification

HC is one of the most important problems in data mining and machine learning
community that has received significant interest among researchers due to its prac-
tical importance (evident from various online large-scale hierarchical classification
challenges such as LSHTC, BioASQ, ImageNet). In general, HC problem can be
formally defined as:

Definition 2.1 (Problem Definition) Given a hierarchy H defined over the
output (label) space Y and a set of N training examples composed of pairs
D={(x(i), y(i))}Ni=1, where (x(i), y(i)) ∈ X × Y , the goal of the hierarchical
classification is to learn a mapping function f : X ∈ R

d → Y that maps the inputs
in the input space X to outputs in the output space Y , such that the function f is
accurately able to predict the output y of an input instance x and generalizes well to
data that is not observed during the training.

HC is the process of classifying unlabeled instances into a hierarchical
organization of classes.

In literature various methods exist to solve the HC problem based on how
the hierarchical relationships information is leveraged during the model learning
[34]. One of the simplest approaches, known as flat classification, disregards the
hierarchical structure and train classifiers for each of the leaf node (categories)
to discriminate from remaining leaf nodes. Other approaches involve utilizing
the hierarchical relationships information during the learning and/or predicting
phase, e.g., local and global classifiers. While local classifiers are trained by
splitting the hierarchical structure into several smaller structures for utilizing
the local relationships, global classifiers are trained by considering the entire
class hierarchy at once. In general, HC approaches can be broadly divided into
three categories—f lat , local, and global classification approaches. Figure 2.1
provides an overview of different HC approaches. More details about these
approaches are discussed in the next few subsections.

2.2.1 Flat Classification Approach

This is one of the simplest and straightforward implementations of the standard
classification algorithm into the HC problem. In this method, we ignore the
hierarchy and train an independent one-vs-rest binary or multi-class classifiers
corresponding to each of the leaf categories that can discriminate it from remaining

16 2 Background

Fig. 2.1 Different approaches for solving HC problem

Fig. 2.2 Flat classification
(FC)

leaf categories as shown in Fig. 2.2. Label prediction ŷ for an unknown test instance
x is done according to the rule shown in Eq. (2.1):

ŷ = argmax
y ∈ Y

f (x, y|w) (2.1)

where the function f : X → Y is parameterized by the model weight vector w.
This approach provides an indirect solution to the HC problem because all the

ancestors associated with the predicted leaf category are also assigned to the test
instance. For example, in Fig. 2.2 an instance classified as B.1 also belongs to
node B and R. Some of the well-known standard formulation of binary [21] and

2.2 Different Approaches for Hierarchical Classification 17

multi-class [10] classifiers that can be used for flat classification are shown in
Eqs. (2.2) and (2.3):

Binary classifier minimize
wl

N∑

i=1

L
(
wl , x(i), y(i)

) + λ
∣∣∣∣wl

∣∣∣∣2
2 (2.2)

Multi-class classifier minimize
{wl}l∈L,{ξi }Ni=1

1

N

N∑

i=1

ξi + λ

L∑

l=1

∣∣∣∣wl

∣∣∣∣2
2 (2.3)

s.t. : wT
li

x(i) − wT
l x(i) ≥ 1 − ξi,

∀l ∈ L − {li},∀i ∈ [1, · · ·, N]
ξi ≥ 0,∀i ∈ [1, · · ·, N]

where λ > 0 is the penalty parameter, L denotes the loss function such as hinge
loss or logistic loss, ξi denotes the slack variables, and

∣∣∣∣ · ∣∣∣∣2
2 denotes the squared

l2-norm.
Although flat classification approach is known for its simplicity and has been

shown to work well in practice for small and well-balanced datasets [43], its
performance suffers when the number of classes (categories) that needs to be
discriminated becomes huge and is not balanced [2], potentially containing lots of
rare categories. It also has a major problem with longer training and prediction time
because it considers all the examples during the model training and invokes all the
models for the leaf categories to make label prediction making it computationally
expensive, especially for large-scale datasets. Flat approach also assumes that
all instances belong to leaf categories, whereas in many real-world applications,
instances don’t necessarily belong to leaf categories (nonmandatory leaf node
prediction problem). For example, given a hierarchy containing a path Root →
Science → Medicine, an article discussing about Science in general should
only be categorized as Root → Science and not Medicine. Another problem
with flat approach is with multi-label classification where instances can belong to
several different categories. In such case, flat classification becomes inefficient and
hierarchical classification is preferred.

2.2.2 Local Classification Approach

This method explores local hierarchical structure information such as parent-child
and siblings relationships during the model learning. Based on how the local
information are extracted during the model learning, local classification approach
can be further categorized into three broad categories—local classifier per node
(LCN), local classifier per parent node (LCPN), and local classifier per level (LCL).

18 2 Background

Fig. 2.3 Local classifier per
node (LCN)

2.2.2.1 Local Classifier per Node Approach

In this approach, binary classifier Ψn is learned for each node n ∈ N (except
root) in the hierarchy H as shown in Fig. 2.3. The dashed squares in the figure
represent binary classifiers. Goal of this approach is to learn the classifiers that
can effectively discriminate between the sibling nodes in the hierarchy. Usually,
for training the classifier at a node, we assign examples belonging to the n-th node
and its descendants as the positive training examples and those belonging to the
siblings of the n-th node and their descendants as the negative examples. However,
in literature different criteria for defining the positive and negative examples have
been used [5, 15, 16].

To make the label prediction of an unknown test instance x, the algorithm
(shown in Eq. (2.9)) typically proceeds in the top-down fashion starting at
the root and recursively selecting the best children till it reaches a terminal
node that belongs to the set of leaf categories L, which is the final predicted
label.

This approach although popular in literature suffers from training a large number
of binary classifiers. Other problem includes inconsistent predictions obtained by
the set of binary classifiers which lead to horizontal and vertical inconsistencies
[32]. Therefore, LCN approach must be coupled with a method to avoid horizontal
and vertical inconsistency.

Horizontal Inconsistency—Inconsistent predictions made by classifiers where
instance may be associated with different nodes in the same level. For
example, in Fig. 2.3 horizontal inconsistent prediction occurs if the prediction
made by classifiers is A, A.1, and A.2.

Vertical Inconsistency—Inconsistent predictions made by classifiers where
instance may be associated with different branches in the hierarchy. For
example, in Fig. 2.3 vertical inconsistent prediction occurs if the prediction
made by classifiers is A, A.1, and B.1.

2.2 Different Approaches for Hierarchical Classification 19

Fig. 2.4 Local classifier per
parent node (LCPN)

2.2.2.2 Local Classifier per Parent Node Approach

In this approach, multi-class classifier is learned for each of the parent nodes in the
hierarchy H as shown in Fig. 2.4. The dashed square in the figure represents multi-
class classifiers. Like local classifier per node approach, the goal of this approach is
to learn classifiers that can effectively discriminate between the siblings. For training
the classifier at each parent node p, we use the examples from its descendants where
each of the children categories C(p) of parent node p corresponds to different
classes. Predicting the label for an unknown test instance x is done in a similar
manner as shown in Eq. (2.9).

2.2.2.3 Local Classifier per Level Approach

In this approach, multi-class classifier is learned for each level in the hierarchy as
shown in Fig. 2.5. Among local approaches, this is the least popular approach in the
literature. For training the classifier at each level, we use the examples from nodes
in the level and its descendants, where different nodes in the level correspond to
different classes. Prediction for an unknown test instance x is done by choosing the
best node at each level in the hierarchy H . Since classifiers at each level makes
independent predictions, there is possibility that this approach may lead to vertical
inconsistency prediction. For example, in Fig. 2.5 inconsistent prediction occurs
if the prediction made by the level 1 classifier is B, whereas the level 2 classifier
predicts A.2 that corresponds to different branch in the hierarchy. In order to make
this approach useful, classification results are complemented with a post-processing
step to resolve such inconsistent predictions. Paes et al. [32] discusses different
approaches for dealing with inconsistencies in LPL.

2.2.3 Global Classification Approach

This approach is often referred as the big-bang approach in the literature [9].
Unlike local approaches, global classification approach learns a single complex

20 2 Background

Fig. 2.5 Local classifier per
level (LPL)

Fig. 2.6 Global classification
(GC)

classification model by taking into account the class hierarchy as a whole as shown
in Fig. 2.6. For predicting the labels of an unknown test instance x, an approach
similar to flat or local methods is followed.

The main advantage of this approach is that there is no need to train a
large number of classifiers. This approach also doesn’t require to deal with the
inconsistency in the prediction of classes. Its main disadvantage is the increased
complexity on learning the global classifier.

2.3 Model Learning: General Formulation

In classification, models are learned by combining two terms—empirical loss and
regularization:

1. Empirical Loss—It controls how well the learned models fit the training data.
2. Regularization—It prevents models from over-fitting and encodes additional

information such as hierarchical relationships.

2.3 Model Learning: General Formulation 21

Generally, model learning can be represented using Eq. (2.4):

minimize
W

L
(
f (X, W), Y

) + λΩ
(
W

)
(2.4)

where L (.) is the loss function and Ω(.) denotes the regularization. λ > 0 is the
hyper-parameter that controls trade-off between loss function and regularization
term. In literature, hinge loss and logistic loss are widely used for classification.
Equations (2.5) and (2.6) show the hinge loss and logistic loss, respectively. For
regularization, l1-norm and l2-norm are popular. It is computed as shown in
Eqs. (2.7) and (2.8). While l1-norm enforces sparsity by only selecting relevant
features, l2-norm squeezes the model parameters to be close to 0, thereby preventing
parameters from taking extremely larger values:

Hinge loss = max
(
0, 1 − yf (x, w)

) = ∣∣1 − yf (x, w)
∣∣+ (2.5)

Logistic loss = 1

ln 2
ln

(
1 + exp

(− yf (x, w)
))

(2.6)

l1-norm = ∣∣∣∣W
∣∣∣∣

1 = |w1| + |w2| + · · · + |wd | (2.7)

l2-norm = ∣∣∣∣W
∣∣∣∣

2 =
√

w2
1 + w2

2 + · · · + w2
d (2.8)

There are multiple ways of selecting positive and negative instances for training
classifier at each node n in the hierarchy. We will discuss two of the most widely
used method:

1. One-versus-rest—In this approach, all instances that belong to children nodes of
node n are treated as a positive, whereas all other instances are considered as
negative for training classifier at node n.

2. One-versus-siblings—In this approach, all instances that belong to children
nodes of node n are treated as a positive, whereas instances from sibling classes
only are considered as negative for training classifier at node n.

Figure 2.7 visually illustrates both these approaches where classifier is being trained
at node A.1.

2.3.1 Top-Down Hierarchical Classification

One of the most efficient approach for solving LSHC problem is using the top-down
methods [22, 26]. In this method, local or global classification method is used for
model training, and the unlabeled instances are recursively classified in a top-down
fashion as shown in Eq. (2.9). At each step, the best node is picked based on the
computed prediction score of its children nodes. The process repeats until the leaf

22 2 Background

Fig. 2.7 Different ways of selecting positive and negative instances for training classifier at node
A.1. Positive instances are shown by solid rectangle, whereas negative instances are shown by
dotted rectangle. (a) One-versus-rest. (b) One-versus-siblings

node representing a certain category (or class label) is reached, which is the final
predicted label.

For internal node prediction problem, predictive threshold can be defined at
each node. If the probability of instance is greater than a defined predictive
threshold (e.g., 0.8) at the node, then the instance is recursively classified to
its lower-level child node for further prediction until threshold is violated or
leaf node is reached.

Defining predictive threshold is a crucial task. Smaller threshold will result
in instances wrongly classified into the lower levels in the hierarchy while
larger threshold will block the instances at higher levels. SCut is one of the
popular method for defining threshold [40].

ŷ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

initialize n := Root

while n /∈ L

n := arg maxq∈C(n) fq(x)

return n

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.9)

Top-down (TD) methods are popular for large-scale problems owing to their
computational benefits where only the subset of classes in the relevant path are
considered during prediction phase. It also doesn’t suffer from inconsistencies

2.4 Hierarchical Datasets 23

problem (horizontal, vertical) because only the best child node is selected at each
path down the level. In the past, top-down methods have been successfully used to
solve HC problems [14, 20, 25]. Liu et al. [26] performed classification on large-
scale Yahoo! dataset and analyzed the complexity of the top-down approach. In
Secker et al. [33], a selective classifier top-down method is proposed where the
classifier to train at particular node is chosen in a data-driven manner.

It is important to note that for multi-label predictions, multiple paths can be
followed in TD methods based on prediction probabilities.

2.4 Hierarchical Datasets

There are lot of hierarchical datasets available for testing the performance of HC.
Range of datasets vary from shallow to deep hierarchies, few to high-dimensional
features, balanced to skewed distribution, and text to image. In this section we
discuss some of the datasets that are often used for evaluating the HC performance.

Datasets

1. NEWSGROUP (NG)1—It is a collection of approximately 20,000 news docu-
ments partitioned (nearly) evenly across 20 different topics such as baseball,
electronics, and graphics.

2. CLEF [12]—Dataset contains medical images annotated with Information
Retrieval in Medical Applications (IRMA) codes. Each image is represented
by the 80 features that are extracted using local distribution of edges method.
IRMA codes are hierarchically organized.

3. IPC2—Collection of patent documents organized in International Patent Clas-
sification (IPC) hierarchy. This is an example of imbalanced, high-dimensional
dataset.

4. DIATOMS [13]—Diatom images that was created as the part of the ADIAC
project. Features for each image is created using various feature extraction
techniques mentioned in [13]. This dataset have examples that are assigned to
internal nodes in the hierarchy.

5. RCV1 [24]—It is a multi-label text classification dataset extracted from Reuters
Corpus of manually categorized newswire stories. This is an example of multi-
label dataset.

1http://qwone.com/~jason/20newsgroups/.
2http://www.wipo.int/classifications/ipc/en/.

http://qwone.com/~jason/20newsgroups/
http://www.wipo.int/classifications/ipc/en/

24 2 Background

Fig. 2.8 Distribution of examples per categories in DMOZ dataset. (a) DMOZ-SMALL. (b)
DMOZ-2010. (c) DMOZ-2012

6. LSHTC (DMOZ-SMALL, DMOZ-2010, and DMOZ-20123)—Multiple web
documents organized in various classes using the hierarchical structure. Dataset
has been released as the part of the PASCAL Large Scale Hierarchical Text
Classification (LSHTC)4 challenge in the year 2010 and 2012. DMOZ datasets
are characterized by high-dimensional features with more than 75% of the classes
belonging to rare categories (i.e., classes having ≤ 10 examples as shown in
Fig. 2.8). Moreover, DMOZ-2010 and DMOZ-2012 are large-scale datasets with
more than 10,000 classes. For all the datasets, the hierarchy has a tree structure
and the internal nodes define a virtual category tree, i.e. the examples are assigned
to only leaf nodes directly.

Table 2.2 shows various statistics about discussed datasets.

3http://www.dmoz.org/.
4http://lshtc.iit.demokritos.gr/.

http://www.dmoz.org/
http://lshtc.iit.demokritos.gr/

2.5 Evaluation Metrics for Hierarchical Classification 25

Table 2.2 Dataset statistics

Total #Training #Test Avg. #labels
Dataset nodes #Categories Levels instances instances #Features per example

NG 28 20 3 11,269 7505 61,188 1

CLEF 88 63 3 10,000 1006 80 1

IPC 553 451 3 46,324 28,926 1,123,497 1

DIATOMS 399 311 3 3119 1054 371 1

RCV1 117 101 5 23,149 781,265 48,728 3.18

DMOZ-SMALL 2388 1139 5 6323 1858 51,033 1

DMOZ-2010 17,222 12,294 5 128,710 34,880 381,580 1

DMOZ-2012 13,963 11,947 5 383,408 103,435 348,548 1

Usually small percentage of training instances are used as the validation set.
It is used to tune model parameters, select features, and make other decisions
regarding the learning algorithm.

2.5 Evaluation Metrics for Hierarchical Classification

Accuracy is one of the widely used metrics for evaluating classifier performance.
It is defined as the ratio of correct predictions and total predictions. The major
disadvantage of using accuracy as the evaluation metric is that if the number
of positive and negative examples is imbalanced, then accuracy doesn’t provide
reliable results. Classifier can achieve high accuracy by predicting all examples as
the majority class. Real-world datasets are often imbalanced and therefore accuracy
cannot be used. To overcome this problem, other measures that rely on precision and
recall are often used. Below we will discuss some of the most widely used measures
for evaluating the HC performance.

2.5.1 Flat Measures

Standard set-based measures [39] Micro-F1 (μF1) and Macro-F1 (MF1) are
commonly used for evaluating the HC performance. To compute μF1, we sum up
the category-specific true positives (T Pc), false positives (FPc), and false negatives
(FNc) for different categories and compute the μF1 score as

P =
∑

c∈L T Pc∑
c∈L(T Pc + FPc)

26 2 Background

R =
∑

c∈L T Pc∑
c∈L(T Pc + FNc)

μF1 = 2PR

P + R
(2.10)

Definition 2.2 True positive for category c (T Pc)—The number of examples that
belongs to category c and correctly predicted by model.

Definition 2.3 False positive for category c (FPc)—The number of examples that
doesn’t belong to category c and incorrectly predicted by model.

Definition 2.4 False negative for category c (FNc)—The number of examples that
belongs to category c and incorrectly predicted by model.

Unlike μF1, MF1 gives equal weightage to all the categories so that the
average score is not skewed in favor of the larger categories. MF1 is defined as
follows:

Pc = T Pc

T Pc + FPc

Rc = T Pc

T Pc + FNc

MF1 = 1

|L|
∑

c∈L

2PcRc

Pc + Rc

(2.11)

where, |L| is the number of categories (classes).
Flat measures, although useful, suffer from one major drawback. As shown

in Fig. 2.9, in flat measures all misclassified examples are treated equally while
evaluating the performance metric. Intuitively, for HC this doesn’t make much
sense because degree of misclassification is an important factor to consider while
evaluating HC performance. Models doing misclassification into neighborhood
classes are comparatively better than ones misclassifying into farther classes.

2.5.2 Hierarchical Measures

Different from flat measures that penalize each of the misclassified examples
equally, hierarchical measures take into consideration hierarchical distance between
the true and predicted label for evaluating the classifier performance [23]. Misclas-
sifications that are closer to the actual class are less severe than misclassifications
that are farther from the true class with respect to the hierarchy (e.g., instance from
Hockey class misclassified as the Baseball class is less severe in comparison to
the Hockey misclassified as Cat because Hockey and Baseball class belongs
to common parent category Sports, whereas Cat class which is child of Animal

2.5 Evaluation Metrics for Hierarchical Classification 27

Fig. 2.9 Both misclassification are treated equally in flat measures. (a) Misclassification 1. (b)
Misclassification 2

class belongs to completely different branch in the hierarchy). The hierarchy-based
measures include hierarchical F1 (hF1) (harmonic mean of hierarchical precision
(hP), hierarchical recall (hR)) and tree-induced error (T E) [11], which are defined
as follows:

hP =
∑N

i=1

∣∣∣A
(
ŷ(i)

) ∩ A
(
y(i)

)∣∣∣
∑N

i=1

∣∣∣A
(
ŷ(i)

)∣∣∣

hR =
∑N

i=1

∣∣∣A
(
ŷ(i)

) ∩ A
(
y(i)

)∣∣∣
∑N

i=1

∣∣∣A
(
y(i)

)∣∣∣

hF1 = 2 ∗ hP ∗ hR

hP + hR
(2.12)

T E = 1

N

N∑

i=1

δ
(
ŷ(i), y(i)

)
(2.13)

where A
(
ŷ(i)

)
and A

(
y(i)

)
are, respectively, the sets of ancestors of the predicted

and true label which include the label itself, but do not include the root node. δ(a, b)

gives the length of undirected path between categories a and b in the hierarchy.

Tree-induced error is an error measure—the lower its value, the better the
model.

28 2 Background

2.5.3 Area Under the Curve (AUC)

It is used in classification analysis to determine which of the evaluated models
predict the classes best. An example of AUC is receiver operating characteristic
(ROC) curve and precision-recall curve. ROC curve is widely used and it is created
by plotting the true positive rates against false positive rates. AUC is then computed
by taking area under the ROC curve [35]. The closer AUC for a model comes to
1, the better it is. So models with higher AUC scores are preferred over those with
lower AUC scores.

2.6 Literature Review

There have been numerous work proposed in the literature to address the problem of
HC. Table 2.3 shows the summarized snapshot of different methods. In this section,
we will review in detail some of the most popular methods.

2.6.1 Hierarchical Orthogonal Transfer

Classifying sibling classes at lower level becomes difficult as the depth of the
hierarchy increases. This is because classes become more similar to each other. To
address this problem, a hierarchical SVM learning formulation has been proposed
by Zhou et al. in the paper [41]. It enforces the learned model parameters of each
node to be orthogonal to all its ancestor nodes at higher levels. Orthogonality
between the i-th node and its ancestor nodes j ∈ A(i) is incorporated by introducing

Table 2.3 Summarization of different HC methods categorized by issue addressed

Reference Issue addressed

Zhou et al. [41], Gopal et al. [19] Learning with hierarchical relationships

McCallum et al. [27], Naik et al. [28] Rare categories

Xue et al. [38], Anveshi et al. [7], Scalability

Gopal et al. [17]

Anveshi et al. [8] Scalability, rare categories, multi-label

Naik et al. [29], Babbar et al. [1] Scalability, feature selection

Gopal et al. [18] Scalability, learning with hierarchical relationships

multi-label

Naik et al. [30, 31], Rohit et al. [3] Hierarchical inconsistency

Bennett et al. [4], Zhu et al. [42] Error propagation

Cesa-Bianchi et al. [6], Vens et al. [37] Multi-label

2.6 Literature Review 29

the regularization constraints |wT
i wj | into the minimization objective function.

Optimization formulation for their proposed approach can be represented using
Eq. (2.14):

minimize : 1

2

N∑

i,j=1

K ij |wT
i wj | + λ

N

N∑

k=1

ξk (2.14)

subject to : wT
i x(k) − wT

j x(k) ≥ 1 − ξk,

∀i ∈ A
(
y(k)

)
,∀j ∈ S(i),∀k ∈ [1, · · ·, N]

where : ξk ≥ 0,∀k ∈ [1, · · ·, N]

where λ > 0 is a penalty parameter, ξk are the slack variables, and K ij ≥ 0 captures
the hierarchical structure relationships. More precisely, K ij = 0, if node i is neither
an ancestor nor a descendant of node j ; otherwise K ij > 0.

2.6.2 Shrinking Data-Sparse Leaf Node Model Parameters
Toward Data-Rich Ancestor Nodes

Insufficient examples available for training at the leaf categories is one of the main
reasons for inferior classification performance. To overcome this, a well-established
statistical technique known as shrinkage is explored in the paper by McCallum
et al. [27]. Learned model parameter estimates of the data-sparse leaf nodes are
generalized by enforcing the parameter smoothness with the data-rich ancestor
nodes. Probabilistically, the marginal probability of generating an input instance
x(i) given the model parameters for leaf categories

[
W

]
L∗d

= [wT
1 , · · ·, wT

L] is
given by the sum of total probability over individual components using the equation
shown in Eq. (2.15):

P
(
x(i)|W) =

∑

l∈L

P (l|W)P
(
x(i)|l; W

)
(2.15)

where P
(
x(i)|l; W

)
can be computed as the product of probability estimates for

individual input component as shown in Eq. (2.16):

P
(
x(i)|l; W

) = P(|x(i)|)
|x(i)|∏

k=1

P
(
xk(i)|l; W

)
(2.16)

Given the initial parameter estimates of the learned model weight vectors
corresponding to class l and its ancestor as

{
wi

l

}
i∈A(l)

, parameter smoothing can

30 2 Background

Fig. 2.10 Flowchart for two-stage classification

be applied by shrinking the learned parameters of class l to its ancestor categories
as per the rule shown in Eq. (2.17):

wl =
∑

i∈A(l)

λi
lw

i
l (2.17)

where λi
l denotes the shrinkage parameter.

2.6.3 Two-Stage Classification for Large-Scale Taxonomy

LSHC problems are characterized by the extremely large and deep hierarchy.
As the hierarchy size increases, learning models for every node in the hierarchy
becomes difficult task. To address this issue, Xue et al. [38] proposed two-stage
classification (referred to as deep classification) approach as shown in Fig. 2.10.
For each test document, in the first stage (also known as search stage), a set of
candidate categories is retrieved based on similarity to the test document. Then the
second stage (also known as classification stage) builds a classifier on the hierarchy
restricted to the set of categories fetched in first stage (as shown in Fig. 2.11)
and classifies the test document using the restricted hierarchy. Although pruning
reduces the hierarchy to a manageable size, one severe drawback of this approach is
having to train a different classifier for each test document. Some of the important
observations pointed out in this paper is as follows:

1. Deep classification method is very effective at lower levels in the hierarchy (or
deep hierarchy).

2.6 Literature Review 31

Fig. 2.11 Figure showing an example of restricted hierarchy that is generated from the set of
selected candidate categories

Fig. 2.12 Micro-F1
performance score at different
levels in the hierarchy as the
number of candidate
categories increases

2. As the number of candidate categories chosen by the search stage increases,
chances for finding the correct label for test example in the classification stage
increase but with increase in evaluation time. Further, improvement is much more
at lower levels in the hierarchy (deep hierarchy) as shown in Fig. 2.12.

2.6.4 Parent-Child Regularization

Traditional methods for classification learn classifiers for each leaf node (task) to
discriminate one class from the other. This method works well iff dataset is small
and well-balanced and there are sufficient positive examples per class to learn
generalized discriminant function. However, these conditions are not applicable for
large-scale problem as datasets are often unbalanced with lots of rare categories
(more than 75% of LSHTC datasets belongs to rare categories as shown in Fig. 2.8).
To deal with these issues, Gopal et al. proposed regularization framework [18] that
incorporates interclass dependencies to improve classification.

32 2 Background

In this approach, hierarchical dependencies between different classes are
exploited by enforcing the model parameters (weights) of each class to be similar
to their parent in regularization. Depending upon loss function used for classifiers
training, two different methods were proposed, HR-SVM and HR-LR. HR-SVM
uses hinge loss whereas HR-LR uses logistic loss. The proposed formulation of
their approach is shown in Eqs. (2.18) and (2.19):

HR-SVM minimize
W

∑

n∈N

1

2
||wn − wπ(n)||2 + λ

∑

l∈L

N∑

i=1

∣∣1 − yl(i)wT
l x(i)

∣∣+

(2.18)

HR-LR minimize
W

∑

n∈N

1

2
||wn − wπ(n)||2

+ λ
∑

l∈L

N∑

i=1

log
(

1 + exp
(− yl(i)wT

l x(i)
))

(2.19)

where : yl(i) =
{

1 if x(i) belongs to class l ∈ L

−1 otherwise

HR-SVM and HR-LR methods are examples of global classification approach
since all model parameters are learned together. It gives state-of-the-art performance
results on LSHTC datasets. It can also be easily parallelized making it suitable for
large-scale problem. Parallelization is achieved by optimizing the alternate even
and odd levels at subsequent iterations. This is possible because each node is
independent of all other nodes except its neighbor. Steps for parallel optimization
are as follows:

1. Fix odd-level parameters, optimize even levels in parallel
2. Fix even-level parameters, optimize odd levels in parallel
3. Repeat until convergence

Proposed formulation can also be extended to graph by first finding the minimum
graph coloring [Np-hard] and repeatedly optimizing nodes with the same color in
parallel during each iteration.

To demonstrate the effectiveness of this approach, experimental results are
provided below for HR-SVM and HR-LR. Figures 2.13 and 2.14 show the per-
formance comparison of HR-SVM (and HR-LR) against equivalent flat baseline
SVM (and LR) models. Clearly, HR-SVM (and HR-LR) outperforms SVM (and
LR) for all datasets. Computationally, HR-SVM (and HR-LR) is expensive to train
in comparison to SVM (and LR) because complex global optimization is involved
in the training of HR-SVM (and HR-LR).

For completeness, Table 2.4 shows the performance comparison of HR-SVM
and HR-LR approach against other HC approaches. Again, HR-SVM provides best
results with few exceptions where HBLR is better. Although HBLR is superior

2.6 Literature Review 33

Fig. 2.13 Percentage performance improvement of HR-SVM over SVM for various datasets

Fig. 2.14 Percentage performance improvement of HR-LR over LR for various datasets

for some datasets, it is computationally expensive and hence not scalable for large
datasets. Also, HBLR is not applicable on multi-label datasets.

2.6.5 Cost-Sensitive Learning

Although recursive regularization has been shown to be effective in improving
the HC performance, they induce large-scale optimization problems which require
specialized solutions [7]. Even though distributed optimization methods are able
to scale well to extremely large-scale scenarios, the global optimization of all the
model parameters in an integrated fashion incurs communication overhead, which
can sometimes be considerable. To address these shortcomings, we need a solution

34 2 Background

Table 2.4 Micro-F1 performance comparison [18]

Datasets HR-SVM HR-LR TD [26] HSVM [36] HOT [41] HBLR [19]

CLEF 80.02 80.12 70.11 79.72 73.84 81.41
RCV1 81.66 81.23 71.34 NA NS NA

IPC 54.26 55.37 50.34 NS NS 56.02
DMOZ-SMALL 45.31 45.11 38.48 39.66 37.12 46.03
DMOZ-2010 46.02 45.84 38.64 NS NS NS

DMOZ-2012 57.17 53.18 55.14 NS NS NS

DMOZ-2011 43.73 42.27 35.91 NA NS NA

SWIKI-2011 41.79 40.99 36.65 NA NA NA

LWIKI 38.08 37.67 NA NA NA NA

NA not applicable, NS not scalable

that decouples models so that they can be trained in parallel while being effective
in HC. Cost-sensitive learning approach provides alternative solution that addresses
this issue.

Misclassifications made by the classifiers are not equal for all instances in
the sense that nearby misclassifications are less severe than those farther in
the hierarchy. This approach incorporates misclassification cost into the loss
function while learning models. Cost assigned is based on the severity of mis-
classification. For example, Dog misclassified as Cat has lower misclassifica-
tion cost in comparison to Dog misclassified as Soccer . Learning models for
cost-sensitive learning is similar to flat method but with cost value associated
with each instance in the loss function as shown in Eq. (2.20). This approach
is also referred to as HierCost in the paper [8], and there are many variants
depending on how the misclassification cost is computed. One of the commonly
used methods for assigning misclassification cost is based on the hierarchical
distance.

Ψn = min
wn

[N∑

i=1

ωn
i log

(
1 + exp

(− yn(i)wT
n x(i)

)) + λ

2
‖wn‖2

2

]
(2.20)

where ωi
n is the importance of example i for training a model at node n.

HierCost approach can be further extended to improve classification performance
for the skewed category distribution in large-scale datasets where majority of the
classes belong to rare categories. Imbalance cost which is defined using squashing
function can be added to the loss function (in addition to misclassification cost)
while optimization. Resultant effect of adding imbalance cost is that misclassi-
fication made for rare categories is severely penalized in comparison to classes
with lots of examples, thereby avoiding decision boundaries favoring large classes.
For illustrative purpose, Figs. 2.15 and 2.16 show the performance comparison of
HierCost with flat LR model and other hierarchical models.

2.6 Literature Review 35

Fig. 2.15 Percentage performance improvement of HierCost over LR for various datasets

Fig. 2.16 (a) Micro-F1 and (b) Macro-F1 performance comparison of HierCost over TD-LR and
HR-LR for various datasets

2.6.6 Refined Experts

Hierarchical classification problem suffers from two significant challenges—error
propagation and increasingly complex nonlinear decision surfaces at higher levels
in the hierarchy. To overcome this problem, Bennett et al. [4] proposed the method of

36 2 Background

refined experts, where refinement method is used to eliminate the error propagation
by changing the training distribution based on cross-validation results. Further,
expert extraction of meta-features at lower levels is done to improve the decision
boundary at higher levels. Combining both of these steps into TD classification
settings is referred by the author as refined experts. Empirical evaluation of their
proposed approach shows an improvement up to 30% in F1 score.

References

1. Babbar, R., Maundet, K., Schölkopf, B.: Tersesvm: A scalable approach for learning compact
models in large-scale classification. In: Proceedings of the 2016 SIAM International
Conference on Data Mining, pp. 234–242 (2016)

2. Babbar, R., Partalas, I., Gaussier, E., Amini, M.R.: On flat versus hierarchical classification in
large-scale taxonomies. In: Advances in Neural Information Processing Systems, pp. 1824–
1832 (2013)

3. Babbar, R., Partalas, I., Gaussier, E., Amini, M.R., Amblard, C.: Learning taxonomy adaptation
in large-scale classification. The Journal of Machine Learning Research 17(1), 3350–3386
(2016)

4. Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large taxonomies. In:
Proceedings of the 32nd international ACM SIGIR conference on Research and development
in information retrieval, pp. 11–18 (2009)

5. Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a comprehen-
sive study. Journal of Intelligent Information Systems 28(1), 37–78 (2007)

6. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical classifica-
tion. Journal of Machine Learning Research 7(Jan), 31–54 (2006)

7. Charuvaka, A., Rangwala, H.: Approximate block coordinate descent for large scale hier-
archical classification. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, pp. 837–844 (2015)

8. Charuvaka, A., Rangwala, H.: Hiercost: Improving large scale hierarchical classification with
cost sensitive learning. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML/PKDD), pp. 675–690 (2015)

9. Costa, E., Lorena, A., Carvalho, A., Freitas, A.: Top-down hierarchical ensembles of classifiers
for predicting g-protein-coupled-receptor functions. In: Advances in Bioinformatics and
Computational Biology, pp. 35–46. Springer (2008)

10. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass
problems. Machine learning 47(2–3), 201–233 (2002)

11. Dekel, O., Keshet, J., Singer, Y.: Large margin hierarchical classification. In: Proceedings of
the twenty-first International Conference on Machine Learning (ICML), p. 27 (2004)

12. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Hierarchical annotation of medical
images. Pattern Recognition 44(10), 2436–2449 (2011)

13. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Hierarchical classification of diatom
images using predictive clustering trees. Ecological Informatics 7, 19–29 (2012)

14. Dumais, S., Chen, H.: Hierarchical classification of web content. In: Proceedings of the 23rd
annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 256–263 (2000)

15. Eisner, R., Poulin, B., Szafron, D., Lu, P., Greiner, R.: Improving protein function prediction
using the hierarchical structure of the gene ontology. In: Proceedings of the 2005 IEEE
Symposium on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB), pp. 1–10 (2005)

References 37

16. Fagni, T., Sebastiani, F.: On the selection of negative examples for hierarchical text categoriza-
tion. In: Proceedings of the 3rd Language and Technology Conference (2007)

17. Gopal, S., Yang, Y.: Distributed training of large-scale logistic models. In: Proceedings of the
30th International Conference on Machine Learning (ICML), pp. 289–297 (2013)

18. Gopal, S., Yang, Y.: Recursive regularization for large-scale classification with hierarchical and
graphical dependencies. In: Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data mining, pp. 257–265 (2013)

19. Gopal, S., Yang, Y., Bai, B., Niculescu-Mizil, A.: Bayesian models for large-scale hierarchical
classification. In: Advances in Neural Information Processing Systems, pp. 2411–2419
(2012)

20. Holden, N., Freitas, A.A.: A hybrid particle swarm/ant colony algorithm for the classification
of hierarchical biological data. In: SIS, pp. 100–107 (2005)

21. Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coordinate descent
method for large-scale linear SVM. In: Proceedings of the 25th International Conference on
Machine Learning (ICML), pp. 408–415 (2008)

22. Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In:
Proceedings of the Fourteenth International Conference on Machine Learning (ICML), pp.
170–178 (1997)

23. Kosmopoulos, A., Partalas, I., Gaussier, E., Paliouras, G., Androutsopoulos, I.: Evaluation
measures for hierarchical classification: a unified view and novel approaches. Data Mining
and Knowledge Discovery 29(3), 820–865

24. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for text
categorization research. Journal of machine learning research 5(Apr), 361–397 (2004)

25. Li, T., Ogihara, M.: Music genre classification with taxonomy. In: IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. v–197 (2005)

26. Liu, T.Y., Yang, Y., Wan, H., Zeng, H.J., Chen, Z., Ma, W.Y.: Support vector machines
classification with a very large-scale taxonomy. ACM SIGKDD Explorations Newsletter 7(1),
36–43 (2005)

27. McCallum, A., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classification by
shrinkage in a hierarchy of classes. In: Proceedings of the 15th International Conference on
Machine Learning (ICML), vol. 98, pp. 359–367 (1998)

28. Naik, A., Rangwala, H.: A ranking-based approach for hierarchical classification. In: IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10 (2015)

29. Naik, A., Rangwala, H.: Embedding feature selection for large-scale hierarchical classification.
In: Proceedings of the IEEE International Conference on Big Data, pp. 1212–1221 (2016)

30. Naik, A., Rangwala, H.: Hierflat: flattened hierarchies for improving top-down hierarchical
classification. International Journal of Data Science and Analytics 4(3), 191–208 (2017)

31. Naik, A., Rangwala, H.: Improving large-scale hierarchical classification by rewiring: A data-
driven filter based approach. Journal of Intelligent Information Systems (JIIS) pp. 1–24 (2018)

32. Paes, B.C., Plastino, A., Freitas, A.A.: Improving local per level hierarchical classification.
Journal of Information and Data Management 3(3), 394 (2012)

33. Secker, A., Davies, M.N., Freitas, A.A., Timmis, J., Mendao, M., Flower, D.R.: An experimen-
tal comparison of classification algorithms for the hierarchical prediction of protein function.
Expert Update (the BCS-SGAI Magazine) 9(3), 17–22

34. Silla Jr, C.N., Freitas, A.A.: A survey of hierarchical classification across different application
domains. Data Mining and Knowledge Discovery 22(1–2), 31–72 (2011)

35. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification
tasks. Information Processing and Management 45(4), 427–437 (2009)

36. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured
and interdependent output variables. Journal of machine learning research 6(Sep), 1453–1484
(2005)

37. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical
multi-label classification. Machine learning 73(2), 185 (2008)

38 2 Background

38. Xue, G.R., Xing, D., Yang, Q., Yu, Y.: Deep classification in large-scale text hierarchies.
In: Proceedings of the 31st annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 619–626 (2008)

39. Yang, Y.: An evaluation of statistical approaches to text categorization. Information retrieval
1(1–2), 69–90 (1999)

40. Yang, Y.: A study of thresholding strategies for text categorization. In: Proceedings of the 24th
annual international ACM SIGIR conference on Research and development in information
retrieval, pp. 137–145 (2001)

41. Zhou, D., Xiao, L., Wu, M.: Hierarchical classification via orthogonal transfer. In: Proceedings
of the 28th International Conference on Machine Learning (ICML), pp. 801–808 (2011)

42. Zhu, S., Wei, X.Y., Ngo, C.W.: Error recovered hierarchical classification. In: Proceedings of
the 21st ACM international conference on Multimedia, pp. 697–700 (2013)

43. Zimek, A., Buchwald, F., Frank, E., Kramer, S.: A study of hierarchical and flat classification
of proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7(3),
563–571 (2010)

Chapter 3
Hierarchical Structure Inconsistencies

Hierarchies are useful for improving classification performance. It provides useful
structural relationships among different classes that can be exploited for learning
generalized classification models. In the past, researchers have demonstrated the
usefulness of hierarchies for classification and have obtained promising results [2,
4, 6, 9, 16]. Utilizing the hierarchical structure has also been shown to improve the
classification performance for rare categories (having ≤ 10 examples) as well [8].

Top-down HC methods that leverage the hierarchy during the learning and
prediction process are effective approaches to deal with large-scale problems [6].
Classification decision for top-down methods involves invoking only the models in the
relevant path within the hierarchy. Though computationally efficient, these methods
have higher number of misclassifications due to error propagation, [10] i.e., error made
at higher levels cannot be corrected at the lower levels. In many situations, hierarchies
used for learning models are not consistent due to the presence of inconsistent nodes
and links resulting in excessive error propagation. As a result, HC approaches are
outperformed by the flat classifiers that completely ignore the hierarchy [19, 22].
Figure 3.1 shows an example of inconsistent nodes and links at node A. Learning
generalized classifier at node A becomes difficult due to heterogeneity of classes
which in turn results in many misclassifications at this node.

Definition 3.1 Inconsistent node—Nodes in the hierarchy that contain exam-
ples from other branches in the hierarchy are known as inconsistent nodes.
In general, inconsistent node is a heterogeneous mixture of examples from
different classes making it difficult to learn generalized classifier. Node A

in Fig. 3.1 is inconsistent because it contains categories A.2 and A.3 which
should belong to nodes C and B, respectively, because of similarities between
examples.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2018
A. Naik, H. Rangwala, Large Scale Hierarchical Classification: State of the Art,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-030-01620-3_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01620-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-01620-3_3

40 3 Hierarchical Structure Inconsistencies

Fig. 3.1 [Best viewed in color] Hierarchy with inconsistent node and links (marked in red).
Similar classes are shown using the same color

Definition 3.2 Inconsistent link—Parent-child link in the hierarchy that
makes parent node inconsistent is known as inconsistent link. In Fig. 3.1 links
A − A.2 and A − A.3 are inconsistent because A.2 and A.3 shouldn’t be the
children of parent node A.

3.1 Hierarchical Restructuring Experiment

Flat classification works well for well-balanced datasets with smaller number of
categories, but it has expensive train/prediction cost. On the other hand, HC is
computationally efficient and is preferable for large-scale datasets. It also performs
well for rare categories by leveraging hierarchical structure. However, for some
benchmark datasets, flat methods (and its variant) have a good performance in
comparison to hierarchical methods. This observation provides motivation to look
into alternative perspective for solving HC problem rather than learning complex
models. To this end, deeper analysis was performed in identifying the impact of
hierarchical structure on HC performance. Basically, the following questions are
critical to answer before we explore further on modifying hierarchical structure to
improve classification performance:

1. Can predefined experts hierarchy always be trusted to achieve good classification
performance?

2. Can hierarchy be tweaked (or adjusted) to improve the performance?

To investigate, case study was done on pruned hierarchy of Newsgroup dataset.1

Figure 3.2a shows the expert-defined hierarchy, and Fig. 3.2b shows the adjusted

1http://qwone.com/~jason/20Newsgroups.

http://qwone.com/~jason/20Newsgroups

3.2 Reasons for Hierarchical Inconsistencies 41

Fig. 3.2 Different hierarchies generated for subset of newsgroup dataset. (a) Semantically defined
experts hierarchy and (b) adjusted hierarchy

hierarchy where Science node is deleted and its children Crypt and Electronics

are linked to Root and Comp node, respectively. HC performance results (trained
using LR models) showed that adjusted hierarchy has comparatively better perfor-
mance in comparison to expert-defined hierarchy. This analysis provided insights
that hierarchy can be modified to improve upon HC performance.

Data-driven hierarchy is more desirable over predefined experts hierarchy for
achieving better HC performance.

3.2 Reasons for Hierarchical Inconsistencies

Most of the HC methods often use hierarchy during the learning process to design
appropriate loss function for classification. Their performance can be severely
affected if the hierarchy used for learning is not well-suited for classification
purpose. In majority of the cases, the hierarchy used for training is manually
designed by the domain experts that reflects the human view of the domain.
This manual process of hierarchy creation suffers from various design issues
and introduces inconsistencies that makes it unsuitable to achieve high classifi-
cation accuracy. Some of the major reasons behind hierarchical inconsistencies
includes:

1. Hierarchy is designed for the sole purpose of easy search and navigation without
taking classification into consideration.

2. Hierarchical groupings of categories is done based on semantics, whereas
classification depends on data characteristics such as term frequency.

3. A priori it is not clear to domain experts when to generate new nodes (i.e.,
hierarchy expansion) or merge two or more nodes to common parents (i.e., link
creation) in the hierarchy, and it is often left at the discretion of domain experts
to decide which results in certain degree of arbitrariness.

42 3 Hierarchical Structure Inconsistencies

4. Consistent hierarchy design for datasets with large number of categories is prone
to errors due to many confounding (confusing) classes.

5. Multiple hierarchies are possible for the same dataset based on experts’ view.
However, there is no consensus regarding which hierarchy is better for classifi-
cation. For example, in categorizing products as shown in Fig. 3.3, the experts
may generate a hierarchy by first separating products based on the company
name (e.g., Apple, Microsoft) and then the product type (e.g., phone, tablet) or
vice versa. Both hierarchies are equally good from the perspective of an expert.
However, these different hierarchies may lead to different classification results.

6. Dynamic changes can affect hierarchical relationships over time, and
therefore modifications within the hierarchy are needed as time passes. For
example, as shown in Fig. 3.4, F lood is subgroup of Geography class,
but when flood occurred in Chennai (India) in the year 2015, it becomes
political news. Therefore, intuitively it makes more sense (and hence more
beneficial for HC task) to make F lood as subgroup of News during that
time.

Fig. 3.3 Two different hypothetical hierarchies (a) and (b) possible from the same set of categories
(Samsung, Microsoft, Phone, Tablet)

Fig. 3.4 Dynamic changes can affect hierarchical relationships

3.3 Different Methods for Hierarchy Restructuring 43

3.3 Different Methods for Hierarchy Restructuring

Several approaches that restructure the hierarchy have been developed in the past.
Figure 3.5 provides the snapshot of different existing approaches in the literature. In
this section, we will discuss in detail some of the most popular methods. Broadly,
all methods can be divided into three categories:

1. Flattening approach
2. Rewiring approach
3. Clustering approach

3.3.1 Flattening Approach

In this approach, inconsistent nodes in the hierarchy are determined and flattened
(removed). Based on different approaches followed for determining inconsistent
nodes, it is further subcategorized:

1. Level flattening [18]—It is one of the approaches used in earlier works of
hierarchy modification, where some of the levels are flattened (removed) from
the original hierarchy prior to learning models. Based on levels flattened, various
methods of hierarchy modification exist:

(a) Top-Level Flattening (TLF)—As shown in Fig. 3.6b, TLF modifies the
hierarchy by flattening the top level in the original hierarchy. Model learning
and prediction for flattened hierarchy is done in similar fashion as TD
methods.

(b) Bottom-Level Flattening (BLF)—Similar to TLF with only difference,
bottom level in the hierarchy is flattened instead of top level as shown in
Fig. 3.6c.

Fig. 3.5 Different approaches for solving hierarchical inconsistencies problem

44 3 Hierarchical Structure Inconsistencies

Fig. 3.6 Various hierarchical structures (b)–(d) obtained after flattening some of the levels from
the original hierarchy shown in (a). “LN” denotes the leaf node in the figure

(c) Multiple-Level Flattening—Multiple levels are flattened in the hierarchy
prior to model learning as shown in Fig. 3.6d.

2. Inconsistent node flattening (INF)—Level flattening approach although useful
up to certain extent suffers from one major drawback—All nodes in the level
are identified as inconsistent and flattened which may not be true, resulting in
suboptimal classification performance. To overcome this, it is more reasonable
to selectively remove some of the inconsistent nodes from the hierarchy based
on certain measures such as SVM margins. Hierarchy modification using this
approach is shown in Fig. 3.7b, and it is more beneficial for classification and has
been theoretically justified in [5].

Gao et al. [5] showed that for any classifier that correctly classifies m random
input-output pairs using a set of D decision nodes, the generalization error bound
with probability estimates greater than 1 - ζ is less than the expression shown in
Eq. (3.1):

δr2

m

[∑

n∈D

(
1

γ 2
n

) log(4em) log(4m) + |D | log(2m) − log(
2

ζ
)

]
(3.1)

where γn denotes the margin at node n ∈ D , δ is a constant term, and r is the
radius of the ball containing the distribution’s support.

3.3 Different Methods for Hierarchy Restructuring 45

Fig. 3.7 Hierarchical structure (b) obtained after flattening some of the inconsistent nodes from
the original hierarchy shown in (a). “LN” denotes the leaf node in the figure

This provides two significant strategies in designing approach to reduce the
generalization error: (a) Increase the margin γn for learned models at node
n ∈ N in the hierarchy, or (b) Decrease the number of decision nodes |D |
involved in making the prediction. For achieving the optimum classification
performance, we need to balance the trade-off between the margin γn and the
number of decision nodes |D |. Two of the extreme cases for learning hierarchical
classifiers are flat and top-down methods. For flat classifiers, we have to make
single decision (i.e., |D | = 1), but margin width γn is presumably small due to
the large number of leaf categories that needs to be distinguished, which makes it
difficult to obtain large margin. For top-down hierarchical classifiers, we have to
make a series of decisions from root to leaf nodes (i.e., |D | ≥ 1) but margin γn

is larger due to the fewer number of categories that needs to be distinguished
at each of the decision nodes. Motivated by this trade-off, flattening-based
method removes some of the inconsistent nodes in the hierarchy H , thereby
increasing the value of margin γn for learned models at node n in the hierarchy,
while minimizing the number of decision nodes to classify an unlabeled test
instance.

Data-driven approach for removing inconsistent nodes in the expert-defined
(original) hierarchy can lead to a generalized hierarchy that achieves higher
classification performance irrespective of the hierarchical classifiers trained. In
INF approach inconsistent nodes are selectively removed from the hierarchy.
The criterion for flattening a node is based on certain measures such as SVM
margins obtained for a node or optimal regularized risk minimization objective
value attained by the model trained for that node on a separate validation set
or degree of error made at the node. If the node n is identified as inconsistent,
then it is flattened, i.e., remove n from the hierarchy and add its children to n’s
parent node. Based on the strategy adapted for identifying inconsistent nodes,
many different approaches for INF hierarchy modification exist.

(a) Maximum-margin-based INF—Hierarchy modification using maximum-
margin-based approach is proposed by Babbar et al. [1]. In this approach,

46 3 Hierarchical Structure Inconsistencies

Fig. 3.8 Modified hierarchy obtained after removing inconsistent nodes from the hierarchy using
Level-INF approach. (a) Original hierarchy (H). (b) Local flattening (Level-INF). (c) Modified
hierarchy

inconsistent nodes are selectively removed from the hierarchy based on SVM
margins rather than removing complete levels. Modified hierarchy obtained
is then used for HC.

(b) Local approach for INF [10]—In this approach, inconsistent set of nodes are
determined for each level based on objective value Ψn obtained for nodes
n at that level. Criterion for flattening nodes is based on different defined
thresholds for each level in the hierarchy. Statistical measures—mean (μ)
and standard deviation (σ)—are used to define optimal threshold. Any node
in the level with objective value greater than mean and standard deviation of
that level is considered as inconsistent and is removed from the hierarchy.
This approach is referred to as Level-INF in the paper. Figure 3.8 shows the
original and modified hierarchy obtained after removing inconsistent nodes
using Level-INF approach.

(c) Global approach for INF [10]—Different from Level-INF approach, global
threshold is defined for the hierarchy instead of each level. Global threshold
is computed by taking mean and standard deviation of objective values
of all internal nodes in the hierarchy. Any nodes with objective value

3.3 Different Methods for Hierarchy Restructuring 47

Fig. 3.9 Modified hierarchy obtained after removing inconsistent nodes from the hierarchy using
Global-INF approach. (a) Original hierarchy (H). (b) Global flattening (Global-INF). (c) Modified
hierarchy

greater than global threshold are identified as inconsistent and removed
from the hierarchy. This approach is referred to as Global-INF in the paper.
Figure 3.9 shows the original and modified hierarchy obtained after removing
inconsistent nodes using Global-INF approach.

3.3.2 Rewiring Approach

Although flattening approach is useful for improving HC performance, it suffers
from one limitation. It cannot deal with inconsistencies that exist in different
parts of the hierarchy. As shown in Fig. 3.10c, rewiring approaches can resolve
inconsistencies that exist in different parts of hierarchy. Different methods exist in
the literature for performing rewiring in the original hierarchy. In this section, we
will discuss some of the well-known methods.

1. Optimal hierarchy search [17]—This is a wrapper-based method that iteratively
modifies the hierarchy by making one or few changes, which are then evaluated

48 3 Hierarchical Structure Inconsistencies

Fig. 3.10 Modified hierarchies obtained after flattening (b) and rewiring (c) approach applied on
the original hierarchy (a). Leaf nodes with high degree of similarities are shown with the same
color and shape

Fig. 3.11 Optimal hierarchy search in hierarchical space. H0 is the predefined (expert defined
or original) hierarchy and H7 is the optimal hierarchy. H1–H6 are the intermediate hierarchies
generated in the process of searching for optimal hierarchy

(on a validation set) by training a classification model to identify if the modified
hierarchy has improved performance. Modified changes are retained if the per-
formance results improve; otherwise the changes are discarded and the process is
repeated. This repeated procedure of hierarchy modification continues until the
optimal hierarchy that satisfies certain threshold criterion is reached (Fig. 3.11).
Hierarchy modification at each step is performed using three defined elementary
operations—promote, demote, and merge as shown in Fig. 3.12. This approach
works on the assumption that optimal hierarchy is near the neighborhood of
predefined hierarchy.

2. Genetic algorithm for improving performance—Considering only the current
best obtained hierarchy for improving the performance may not be an optimal
approach; therefore Qi and Davison [14] proposed using multiple best perform-
ing hierarchies at each step for improving the performance using genetic-based
algorithm. Author proposed different methods for adapting the genetic operations

3.3 Different Methods for Hierarchy Restructuring 49

Fig. 3.12 Different elementary operations possible in the hierarchy

such as mutations and crossover operations to the hierarchical settings. Experi-
ments on multiple classification tasks showed that their proposed algorithm can
significantly improve classification task. However, the performance is highly
dependent on the hierarchies and the operators selected at each step.

3. Filter-based rewiring approach—One of the major drawbacks of wrapper-based
approaches [12, 14, 17] is that multiple hierarchies need to be evaluated prior
to reaching the optimal hierarchy. This is an expensive process for large-
scale datasets. To overcome this, filter based rewiring approach (rewHier) is
proposed in the paper by Naik et al. [11]. They proposed three basic elementary
operations—node creation, parent-child rewiring, and node deletion as shown in
Fig. 3.13.

Their approach consists of two major steps:

(a) Grouping Similar Class Pairs—To ensure classes with high degree of
similarity are grouped together under the same parent node in the modified
taxonomy, this step identifies the similar class pairs that exist within the
expert-defined hierarchy. Pairwise cosine similarity is used as the similarity
measure as it is less prone to the curse of dimensionality [15]. Moreover, for
computing similarities between two classes (let’s say, class A and class B),

50 3 Hierarchical Structure Inconsistencies

Fig. 3.13 Modified hierarchical structures (b)–(d) obtained after applying elementary operations
to expert defined hierarchy (a). Leaf nodes are marked with “rectangle” and structural changes are
shown in red color

similarity score is first computed between each instance in class A and each
instance in class B and then averaged to get the final similarity score. Once
the similarity scores are computed, set of similar pairs of classes S are
determined using an empirically defined cutoff threshold τ that is determined
from the dataset. For example, in Fig. 3.14a this step will group together
the class pairs with high similarity scores such as S =

[
(religion.misc and

soc.religion.christian), (electronics and windows.x), (electronics and
graphics), · · ·].

Pairwise similarity computation between different classes is one of the
major bottleneck of this step. To make it scalable, similarity computation is
distributed across multiple compute nodes. Given L number of classes, the
total number of pairwise similarities that needs to be computed is given by
Eq. (3.2):

LC2 = L ∗ (L − 1)

2
(3.2)

(b) Inconsistency Identification and Correction—To obtain the consistent
hierarchy, most similar class pairs are grouped together to a common
parent node in this step. Iteratively, starting from the most similar class
pairs, potential inconsistencies (if the pairs of similar classes are in dif-
ferent branches (sub-trees)) are identified and corrected using elementary
operation.

3.3 Different Methods for Hierarchy Restructuring 51

Fig. 3.14 [Best viewed in color] NewsGroup dataset: (a) Expert-defined hierarchy (classes with
high degree of similarities are marked with the same symbols, i.e., circle, star) modified using
various methods. (b) Agglomerative clustering with cluster cohesion to restrict the height to
original height. (c) Global-INF flattening method. (d) Filter-based rewiring (rewHier) method.
Modified structural changes in comparison to baseline expert-defined hierarchy are shown in green
color

52 3 Hierarchical Structure Inconsistencies

3.3.3 Clustering Approach

Clustering-based approaches have also been adapted in some of the studies where
consistent hierarchy is generated from scratch using agglomerative or divisive
clustering algorithms [7, 13, 21]. In this approach, classes are grouped based on
their overall similarity to one another. We will discuss two different approaches for
clustering that generates hierarchy for performing HC:

1. Agglomerative clustering with linear discriminant projection—Li et al. [7]
proposed the use of linear discriminant projection to transform all instances to
lower dimensional space before performing the hierarchical agglomerative clus-
tering, which produces meaningful hierarchy of clusters. Hierarchies generated
using this approach showed improved classification performance, but the main
drawback of their approach is that they ignore the original hierarchical structure
which may carry some important information. In addition, there is no theoretical
guarantee for deciding the number of levels that can be used to achieve the best
classification performance. Moreover, this approach is practically not suitable for
large-scale problems due to the projection step which is not scalable.

2. Divisive clustering with Fisher index criteria—Punera et al. [13] proposed
divisive clustering approach to create hierarchy from the set of predefined
classes. In their approach, first discriminant features are selected using the
Fisher index criteria. Classes are then recursively divided into two clusters using
spherical K-means until all the leaf nodes have instances from only one class.
During the division process, there is possibility of class being split into multiple
classes when it cannot be confidently assigned to either of the two newly created
clusters (i.e., more than certain fraction of the instances from class cannot be
assigned to either cluster). Again, the problem with this approach is scalability
for large-scale problems, and original hierarchy is ignored which might contain
vital information.

3.4 Experimental Results and Analysis

3.4.1 Case Study

To understand the qualitative difference between hierarchy generated using various
approaches discussed in previous section, case study was performed on newsgroup
dataset. The dataset has 11,269 training instances, 7505 test instances, 20 classes,
and 3 levels. Different hierarchical structures (expert defined, clustered, flattened,
and rewired) obtained after applying hierarchy modification are shown in Fig. 3.14d.
To understand the importance of each hierarchy for classification, first top-down HC
model is learned on this hierarchy separately, and then learned model is evaluated
on test dataset. This step is repeated in each of the hierarchy by randomly selecting
five different sets of training and test split in the same ratio as original dataset.

3.4 Experimental Results and Analysis 53

Table 3.1 μF1 and MF1 performance comparison using different hierarchy modification
approaches on newsgroup dataset

Clustering [7] Flattening [10] Rewiring [11]
TD-LR (agglomerative) (Global-INF) (rewHier)

Metric [Fig. 3.14a] [Fig. 3.14b] [Fig. 3.14c] [Fig. 3.14d]

μF1(↑) 77.04 (0.18) 78.00 (0.09) 79.42 (0.12) 81.24 (0.08)
MF1(↑) 77.94 (0.04) 78.20 (0.01) 79.82 (0.07) 81.94 (0.04)

The table shows mean and (standard deviation) in bracket across five runs. Best performing models
are highlighted in bold

The results of classification performance is shown in Table 3.1. It can be
seen that using these modified hierarchies substantially improves the classification
performance in comparison to the baseline expert-defined hierarchy. On comparing
the clustered, flattened, and rewiring hierarchies, the classification performance
obtained from using the rewired hierarchy is found to be significantly better than
the flattened and clustered hierarchy. This is because rewired hierarchy can resolve
inconsistencies by grouping together the classes from different hierarchical branches
that are effective. Hierarchy generated using clustering completely ignores the
expert-defined hierarchy information, which contains valuable prior knowledge
for classification [17], whereas flattening-based approaches cannot group together
the classes from different hierarchical branches (e.g., soc.religion.christian and
religion.misc).

3.4.2 Accuracy Comparisons: Flat Measures

Table 3.2 shows the μF1 and MF1 performance comparison of expert-defined
hierarchy against clustered, flattened, and rewired hierarchy. Since, case study
shows rewiring approaches as the best, experimental results are also included for
rewiring approach proposed by Tang et al. [17] with minor modification. For
reducing the number of operations (and hence hierarchy evaluations), hierarchy
modifications are to the hierarchy branches where maximum classification errors
are encountered. This modified approach is referred as T-Easy in the table.

The rewiring approaches consistently outperform other approaches for all the
datasets across all metrics. For image datasets (CLEF, DIATOMS), the relative
performance improvement is comparatively larger with performance improvement
up to 11% using MF1 scores in comparison to the baseline TD-LR method.

To further quantify the performance gain of rewiring approaches, the table shows
the results of statistical significance test. Tests are performed between rewiring
approaches and the next best performing approach, Global-INF.

In Table 3.2 results with p-values < 0.01 and < 0.05 are denoted by � and �,
respectively. Sign tests were used for μF1 [20] and nonparametric Wilcoxon rank
test for MF1 comparing the F1 scores obtained per class for the rewiring approaches
against Global-INF. Both, the rewiring approaches significantly outperform the
Global-INF method across the different datasets.

54 3 Hierarchical Structure Inconsistencies

Table 3.2 μF1 and MF1 performance comparison using different hierarchy modification
approaches

Clustering Flattening Rewiring methods
Evaluation Baseline agglomerative Global-INF T-Easy rewHier

Dataset metrics TD-LR [7] [10] [17] [11]

CLEF μF1(↑) 72.74 73.24 77.14 78.12 78.00

MF1(↑) 35.92 38.27 46.54 48.83� 47.10�
DIATOMS μF1(↑) 53.27 56.08 61.31 62.34� 62.05�

MF1(↑) 44.46 44.78 51.85 53.81� 52.14�
IPC μF1(↑) 49.32 49.83 52.30 53.94� 54.28�

MF1(↑) 42.51 44.50 45.65 46.10� 46.04�
DMOZ-SMALL μF1(↑) 45.10 45.94 46.61 NS 48.25�

MF1(↑) 30.65 30.75 31.86 NS 32.92�
DMOZ-2010 μF1(↑) 40.22 NS 42.37 NS 43.10

MF1(↑) 28.37 NS 30.41 NS 31.21
DMOZ-2012 μF1(↑) 50.13 NS 50.64 NS 51.82

MF1(↑) 29.89 NS 30.58 NS 31.24

� (�) indicates that improvements are statistically significant with 0.01 (0.05) significance level.
Sign test and nonparametric Wilcoxon rank test were used for statistical evaluation of μF1 and
MF1 scores, respectively. Tests are performed between rewiring approaches and the next best
performing method, Global-INF. These statistical tests are not performed on DMOZ-2010 and
DMOZ-2012 datasets because true labels are not available from the online evaluation system.
“NS” denotes not scalable. Best performing models are highlighted in bold

On comparing two rewiring approaches, rewHier approach shows competitive
classification performance in comparison to the T-Easy approach. For smaller
datasets, the T-Easy approach has better performance because it searches for
the optimal hierarchy in the hierarchical space. However, the main drawback of
the T-Easy approach is that it requires computationally expensive learning-based
evaluations for reaching the optimal hierarchy making it intractable for large, real-
world classification benchmarks such as DMOZ (see detailed discussion in Runtime
Comparisons).

3.4.3 Accuracy Comparisons: Hierarchical Measures

Hierarchical evaluation measures such as hF1 computes errors for misclassified
examples based on the definition of a defined hierarchy. Table 3.3 shows the hF1
scores for the rewiring approaches and next best approach, Global-INF, evaluated
over the original and the modified hierarchy. The rewiring approaches shows the
best performance for all the datasets because it is able to restructure the hierarchy
based on the dataset that is better suited for classification.

3.4 Experimental Results and Analysis 55

Table 3.3 hF1 performance comparison using different hierarchy modification approaches

Flattening Rewiring methods

Hierarchy Global-INF T-Easy rewHier
Dataset used [10] [17] [11]

CLEF Original 79.06 81.43 80.14

Modified 80.87 81.82 81.28

DIATOMS Original 62.80 64.28 63.24

Modified 63.88 66.35 64.27

IPC Original 64.73 67.23 68.34

Modified 66.29 68.10 68.36

DMOZ-SMALL Original 63.37 NS 66.18

Modified 64.97 NS 66.30

DMOZ-2012 Original 73.19 NS 74.21

For DMOZ-2010 dataset hF1 score is not available from the on-line evaluation system and for
DMOZ-2012 dataset modified hierarchy is not supported

Moreover, new hierarchy has better performance over original hierarchy because
restructuring leads to less misclassifications, resulting in hF1 score improvement.

3.4.4 Runtime Comparisons

Table 3.4 shows the training times of the different approaches. From Table 3.4 it
can be seen that TD-LR takes the least time as there is no overhead associated
with modifying the hierarchy, followed by the Global-INF model which requires
retraining of models after hierarchy flattening. Rewiring approaches are most
expensive because of the compute-intensive task of either performing similarity
computation in rewHier approach or multiple hierarchy evaluations using the T-
Easy approach. The T-Easy method takes the longest time due to large number of
expensive hierarchy evaluations after each elementary operations until the optimal
hierarchy is reached. Table 3.5 shows the number of elementary operations executed
using the T-Easy and the rewHier approach. It can be seen that T-Easy approach
performs large number of operations even for smaller datasets (e.g., 412 operations
for IPC datasets in comparison to 42 for the rewHier).

3.4.5 Level-Wise Error Analysis

Table 3.6 shows the level-wise error analysis for TD-LR approach with the original
and rewired hierarchy (rewHier) on CLEF and DMOZ-SMALL datasets. It can be

56 3 Hierarchical Structure Inconsistencies

Table 3.4 Total training time (in minutes)

Flattening Rewiring approaches

Global-INF T-Easy rewHier

Dataset TD-LR [10] [17] [11]
CLEF 2.5 3.5 59 7.5
DIATOMS 8.5 10 268 24
IPC 607 830 26,432 1284
DMOZ-SMALL 52 65 NS 168
DMOZ-2010 20,190 25,600 NS 42,000
DMOZ-2012 50,040 63,000 NS 94,800

Table 3.5 Number of elementary operation executed for rewiring approaches

executed elementary operation Dataset

for hierarchy modification CLEF DIATOMS IPC

T-Easy [17] 52 156 412

(promote, demote, merge)

rewHier [11] 25 34 42

(node creation and deletion, parent-child rewiring)

Table 3.6 Level-wise error analysis for TD-LR approach on CLEF and DMOZ-SMALL with
original and rewired hierarchy (rewHier)

Level Original rewHier

Dataset no. Error (↓) # ME Error (↓) # ME

CLEF L-1 21.27 (0.63) 214 19.68 (0.18) 198

L-2 07.71 (0.42) 240 05.85 (0.16) 212

L-3 11.30 (0.16) 274 05.66 (0.31) 222

DMOZ-SMALL L-1 42.47 (0.32) 789 38.97 (0.13) 724

L-2 14.45 (0.62) 921 11.98 (0.18) 826

L-3 15.14 (0.34) 972 14.72 (0.22) 919

L-4 12.32 (0.02) 1001 09.26 (0.14) 934

L-5 15.66 (0.05) 1020 12.13 (0.24) 961

The table shows mean and (standard deviation) of error rate across five runs. # ME denotes the
average number of misclassified examples up to that level

seen from the table that rewired hierarchy makes fewer errors at each level which
results in less error propagation and better overall classification performance. The
table also shows the average number of misclassified examples (# ME) at each level
in the table for better understanding the difference between the performance of these
two hierarchies.

3.4 Experimental Results and Analysis 57

Table 3.7 Performance comparison with flat method

Flat method TD-LR HierCost [3]

LR Expert defined rewHier Expert defined rewHier

Dataset MF1 hF1 MF1 hF1 MF1 hF1 MF1 hF1 MF1 hF1

CLEF 51.31 80.58 35.92 74.52 47.10 80.14 52.30 82.18 54.20 84.42
DIATOMS 54.17 63.50 44.46 56.15 52.14 63.24 54.16 64.13 55.78 66.31
IPC 45.74 64.00 42.51 62.57 46.04 62.57 50.10 68.45 51.04 69.43
DMOZ-SMALL 30.80 60.87 30.65 63.14 32.92 66.18 32.98 65.58 33.43 66.30
DMOZ-2010 27.06 53.94 28.37 54.82 29.48 56.43 29.81 58.24 30.35 58.93
DMOZ-2012 27.04 66.45 28.54 68.12 29.94 69.00 29.78 69.74 30.27 70.21

Best performing models are highlighted in bold

3.4.6 Comparison: Rewiring Against Flat and HierCost

Table 3.7 shows the MF1 and hF1 performance comparisons of flat LR, TD-LR,
and HierCost [3] approach. The HC approaches are trained using the expert-defined
hierarchy and compared to the one trained with the rewired hierarchy (rewHier).

From Table 3.7 it can be observed that the use of rewHier to train the TD-LR and
HierCost improves the classification performance in comparison to using the expert-
defined hierarchy. The HierCost approach in combination with rewHier outperforms
all the methods on all the datasets. Moreover, TD-LR approach in combination with
rewHier outperforms the flat approach for the large-scale DMOZ datasets with
large numbers of rare categories. Rare categories benefit from utilization of the
hierarchical relationships, and using the corrected hierarchy improves the accuracy
of both the HC approaches.

Figure 3.15 presents the percentage of classes improved for TD-LR and HierCost
HC approaches in comparison to the flat approach on DMOZ datasets containing
rare categories. From the figure it can be observed that both the HC approaches
significantly outperform the flat approach irrespective of the hierarchy being used.
Specifically, >65% of the rare categories classes shows improved performance
with the modified rewHier hierarchy. Moreover, the HierCost approach consistently
outperforms the TD-LR approach because HierCost penalizes the misclassified
instances based on the assignment within the hierarchy.

In terms of prediction runtime, the TD approaches outperform the flat and
HierCost approaches. The flat and HierCost models invoke all the classifiers trained
for the leaf nodes to make a prediction decision. For the DMOZ-2012 dataset,
the flat and HierCost approaches take ∼220 min for predicting the labels of test
instances, whereas the TD-LR model is 3.5 times faster on the same hardware
configuration.

58 3 Hierarchical Structure Inconsistencies

Fig. 3.15 Percentage
improvement of rare
categories classes over flat
method

3.5 Summary of the Chapter

This chapter covers the various methodology for hierarchy modification that is
useful for HC. In particular, flattening, rewiring, and clustering approaches have
been discussed. These approaches are robust and can be adapted to work in
conjunction with any state-of-the-art HC approaches in the literature that utilize
hierarchical relationships.

References

1. Babbar, R., Partalas, I., Gaussier, E., Amini, M.R.: Maximum-margin framework for training
data synchronization in large-scale hierarchical classification. In: Neural Information Process-
ing, pp. 336–343 (2013)

2. Cai, L., Hofmann, T.: Hierarchical document categorization with support vector machines. In:
Proceedings of the thirteenth ACM International Conference on Information and Knowledge
Management, pp. 78–87 (2004)

3. Charuvaka, A., Rangwala, H.: Hiercost: Improving large scale hierarchical classification with
cost sensitive learning. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML/PKDD), pp. 675–690 (2015)

4. Dumais, S., Chen, H.: Hierarchical classification of web content. In: Proceedings of the 23rd
annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 256–263 (2000)

5. Gao, T., Koller, D.: Discriminative learning of relaxed hierarchy for large-scale visual
recognition. In: Proceedings of the International Conference on Computer Vision (ICCV),
pp. 2072–2079 (2011)

6. Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In:
Proceedings of the Fourteenth International Conference on Machine Learning (ICML), pp.
170–178 (1997)

7. Li, T., Zhu, S., Ogihara, M.: Hierarchical document classification using automatically gener-
ated hierarchy. Journal of Intelligent Information Systems 29(2), 211–230 (2007)

References 59

8. Liu, T.Y., Wan, H., Qin, T., Chen, Z., Ren, Y., Ma, W.Y.: Site abstraction for rare category
classification in large-scale web directory. In: Special interest tracks and posters of the 14th
International Conference on World Wide Web, pp. 1108–1109 (2005)

9. McCallum, A., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classification by
shrinkage in a hierarchy of classes. In: Proceedings of the 15th International Conference on
Machine Learning (ICML), vol. 98, pp. 359–367 (1998)

10. Naik, A., Rangwala, H.: Inconsistent node flattening for improving top-down hierarchical
classification. In: IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pp. 379–388 (2016)

11. Naik, A., Rangwala, H.: Improving large-scale hierarchical classification by rewiring: A data-
driven filter based approach. Journal of Intelligent Information Systems (JIIS) pp. 1–24 (2018)

12. Nitta, K.: Improving taxonomies for large-scale hierarchical classifiers of web documents.
In: Proceedings of the 19th ACM International Conference on Information and Knowledge
Management, pp. 1649–1652 (2010)

13. Punera, K., Rajan, S., Ghosh, J.: Automatically learning document taxonomies for hierarchical
classification. In: Special interest tracks and posters of the 14th International Conference on
World Wide Web, pp. 1010–1011 (2005)

14. Qi, X., Davison, B.D.: Hierarchy evolution for improved classification. In: Proceedings of the
20th ACM International Conference on Information and Knowledge Management, pp. 2193–
2196 (2011)

15. Steinbach, M., Ertöz, L., Kumar, V.: The challenges of clustering high dimensional data. In:
New directions in statistical physics, pp. 273–309. Springer (2004)

16. Sun, A., Lim, E.P.: Hierarchical text classification and evaluation. In: Proceedings of the IEEE
International Conference on Data Mining (ICDM), pp. 521–528 (2001)

17. Tang, L., Zhang, J., Liu, H.: Acclimatizing taxonomic semantics for hierarchical content
classification. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data mining, pp. 384–393 (2006)

18. Wang, X.L., Lu, B.L.: Flatten hierarchies for large-scale hierarchical text categorization.
In: Proceedings of the fifth International Conference on Digital Information Management
(ICDIM), pp. 139–144 (2010)

19. Xiao, L., Zhou, D., Wu, M.: Hierarchical classification via orthogonal transfer. In: Proceedings
of the 28th International Conference on Machine Learning (ICML), pp. 801–808 (2011)

20. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of the 22nd
annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 42–49 (1999)

21. Zamir, O., Etzioni, O.: Web document clustering: A feasibility demonstration. In: Proceedings
of the 21st annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 46–54 (1998)

22. Zimek, A., Buchwald, F., Frank, E., Kramer, S.: A study of hierarchical and flat classification
of proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7(3),
563–571 (2010)

Chapter 4
Large-Scale Hierarchical Classification
with Feature Selection

LSHC involves dataset consisting of thousands of classes and millions of training
instances with high-dimensional features posing several big data challenges. Feature
selection that aims to select the subset of discriminant features is an effective
strategy to deal with large-scale problem. It speeds up the training process, reduces
the prediction time, and minimizes the memory requirements by compressing the
total size of learned model weight vectors. Majority of the studies have also shown
feature selection to be competent and successful in improving the classification
accuracy by removing irrelevant features. In this chapter, we investigate various
filter-based feature selection methods for dimensionality reduction to solve the
LSHC problem.

4.1 Introduction

Many LSHC approaches have been developed in the past to deal with the various
“big data” challenges by (1) training faster models, (2) quickly predicting class
labels, and (3) minimizing memory usage. For example, Gopal et al. [3] proposed
the log-concavity bound that allows parallel training of model weight vectors across
multiple computing units. This achieves significant speedup along with added
flexibility of storing model weight vectors at different units. However, the memory
requirement is still large (∼26 GB for DMOZ-2010 dataset) which requires
complex distributed hardware for storage and implementation. Alternatively, Map-
Reduce based formulation of learning model is introduced [4, 8] which is scalable
but have software/hardware dependencies that limits the applicability of this
approach.

To minimize the memory requirements, one of the popular strategies is to
incorporate the feature selection in conjunction with model training [5, 18]. The
main intuition behind these approaches is to squeeze the high-dimensional features

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2018
A. Naik, H. Rangwala, Large Scale Hierarchical Classification: State of the Art,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-030-01620-3_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01620-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-01620-3_4

62 4 Large-Scale Hierarchical Classification with Feature Selection

into lower dimensions. This allows the model to be trained on low-dimensional
features only, significantly reducing the memory usage while retaining (or
improving) the classification accuracy. This is possible because only subset
of features are beneficial to discriminate between classes at each node in the
hierarchy. For example, to distinguish between subclass chemistry and physics
that belongs to class science, features like chemicals, mixtures, velocity, and
acceleration are important, whereas features like coach, memory, and processor
are irrelevant.

In this chapter, we evaluate different filter-based feature selection methods for
solving LSHC problem. Feature selection serves as the preprocessing step in HC
learning framework prior to training models. Any methods developed for solving
HC problem can be integrated with the selected features, providing flexibility in
choosing the HC algorithm of users’ choice along with computational efficiency
and storage benefits. Based on procedure followed for selecting relevant number of
features at each node, two different formulations are discussed in this chapter: (1)
global feature selection (Global FS) and (2) adaptive feature selection (Adaptive
FS).

4.2 Feature Selection Overview

There have been several studies focused on feature selection methods for
the flat classification problem [1, 6, 7, 10, 14, 17]. However, very few work
emphasize on feature selection for HC problem that is limited to small number
of categories [11, 15]. Figure 4.1 demonstrates the importance of feature selection
for hierarchical settings where only the relevant features are chosen at each of
the decision (internal) nodes. More details about the figure will be discussed in
Sect. 4.3 (case study).

Feature selection aims to find a subset of highly discriminant features that
minimize the error rate and improve the classifier performance. Based on the
approach adapted for selecting features, two broad categories of feature selection
exist, namely, wrapper and filter-based methods. Wrapper approaches evaluate the
fitness of the selected features using the intended classifier. Although many different
wrapper-based approaches have been proposed, these methods are not suitable for
large-scale problems due to the expensive evaluation needed to select the subset of
features [14]. On the contrary, filter approaches select the subset of features based
on the certain measures or statistical properties that do not require the expensive
evaluations. This makes the filter-based approach a natural choice for large-scale
problem. Hence, in this book we have focused on various filter-based approaches
for solving HC problem (discussed in Sect. 4.2.1). In literature, the third category
referred as embedded approaches has also been proposed which is a hybrid of the
wrapper and filter methods. However, these approaches have not been shown to be
efficient for large-scale classification [14], and hence, we do not focus on hybrid
methods in this book.

4.2 Feature Selection Overview 63

Fig. 4.1 Figure demonstrating the importance of feature selection for HC. Green color (sticky
note) represents the top five best features selected using Gini index feature selection method at
each internal node. Internal nodes are represented by orange color (elliptical shape), and leaf nodes
are represented by blue color (rectangular shape)

4.2.1 Feature Selection Approaches

The focus of our study in this chapter is on filter-based feature selection methods
which are scalable for large-scale datasets. In this section, we present four feature
selection approaches that are used for evaluation purposes.

Gini Index It is one of the most widely used methods to compute the best
split (ordered feature) in the decision tree induction algorithm [9]. Realizing its
importance, it was extended for the multi-class classification problem [12]. In our
case, it measure the feature’s ability to distinguish between different leaf categories
(classes). Gini index of i-th feature fi with L classes can be computed as shown in
Eq. (4.1).

Gini-Index(fi) = 1 −
L∑

k=1

(
p(k|fi)

)2 (4.1)

where p(k|fi) is the conditional probability of class k given feature fi .
The smaller the value of Gini index, the more relevant and useful is the feature for

classification. For HC problem, Gini index corresponding to all features is computed
independently at each internal node, and the best subset of features (SF) are selected
using a held-out validation dataset.

Minimal Redundancy Maximal Relevance (MRMR) This method incorporates
the following two conditions for feature subset selection that are beneficial for
classification:

1. Identify features that are mutually maximally dissimilar to capture better repre-
sentation of entire dataset and

2. Select features to maximize the discrimination between different classes.

64 4 Large-Scale Hierarchical Classification with Feature Selection

The first criterion referred as “minimal redundancy” selects features that carry
distinct information by eliminating the redundant features. The main intuition
behind this criterion is that selecting two similar features contains no new infor-
mation that can assist in better classification. Redundancy information of feature set
F can be computed using Eq. (4.2).

RD =
[

1

|SF |2
∑

fi ,fj ∈SF

I (fi, fj)

]
(4.2)

where SF ⊂ F denotes the subset of selected features and I (fi, fj) is the mutual
information that measure the level of similarity between features fi and fj [2].

The second criterion referred as “maximum relevance” enforces the selected
features to have maximum discriminatory power for classification between different
classes. Relevance of feature set F can be formulated using Eq. (4.3).

RL =
[

1

|SF |
∑

fi∈SF

I (fi, L)

]
(4.3)

where I (fi, L) is the mutual information between the feature fi and leaf categories
L that captures how well the feature fi can discriminate between different classes
[10].

The combined optimization of Eqs. (4.2) and (4.3) leads to a feature set with max-
imum discriminatory power and minimum correlations among features. Depending
on the strategy adapted for the optimization of these two objectives, different
flavors exist. The first one referred as “mutual information difference (MRMR-
D)” formulates the optimization problem as the difference between two objectives
as shown in Eq. (4.4). The second one referred as “mutual information quotient
(MRMR-Q)” formulates the problem as the ratio between two objectives and can
be computed using Eq. (4.5).

MRMR-D = max
SF ⊆F

(RL − RD) (4.4)

MRMR-Q = max
SF ⊆F

(RL/RD) (4.5)

For HC problem, the best top SF features (using a validation dataset) are selected
for evaluating these methods.

Kruskal-Wallis (KW) This is a nonparametric statistical test that ranks the
importance of each feature. As a first step, this method ranks all instances across all
leaf categories L and computes the feature importance metric as shown in Eq. (4.6):

KW = (N − 1)

∑L
i=1 ni(r̄i − r̄)2

∑L
i=1

∑ni

j=1 ni(rij − r̄)2
(4.6)

4.2 Feature Selection Overview 65

Algorithm 1: Feature selection (FS)-based model learning for hierarchical
classification (HC)

Data: Hierarchy H , input-output pairs
(
x(i), y(i)

)

Result: Learned model weight vectors:
W = [W1, W2, · · · , Wn], n ∈ N

1 W = φ;
2 /* 1st subroutine: feature selection */
3 for fi ∈ F do
4 Compute score (relevance) corresponding to feature fi using feature selection algorithm

mentioned in Sect. 4.2.1;
5 end
6 Select top k features based on score (and correlations) among features where best value of k

is tuned using a validation dataset
7 /* 2nd subroutine: model learning using reduced feature set */
8 for n ∈ N do
9 /* learn models for discriminating child at node n */

10 Train optimal multi-class classifiers Wn at node n using reduced feature set;
11 /* update model weight vectors */
12 W = [W, Wn];
13 end
14 return W

where ni is the number of instances in i-th category, rij is the ranking of j -th
instances in the i-th category, and r̄ denotes the average rank across all instances.

It should be noted that using different feature results in different ranking and
hence feature importance. The lower the value of computed score KW, the more
relevant is the feature for classification.

4.2.2 Embedding Feature Selection into LSHC

Algorithm 1 presents method for embedding feature selection into the HC frame-
work. It consists of two independent main subroutines: (1) a feature selection
algorithm (discussed in Sect. 4.2.1) for deciding the appropriate set of features
at each decision (internal) node and (2) a supervised learning algorithm for
constructing a TD hierarchical classifier using reduced feature set. Feature selection
serves as the preprocessing step in this framework which provides flexibility in
choosing any HC algorithm.

There are two different approaches for choosing relevant number of features
at each internal node n ∈ N . The first approach referred as “global feature
selection (Global FS)” selects the same number of features for all internal nodes
in the hierarchy where the number of features are determined based on the entire
validation dataset performance. The second approach, referred as “adaptive feature
selection (Adaptive FS),” selects different number of features at each internal node
to maximize the performance at that node. It should be noted that adaptive method

66 4 Large-Scale Hierarchical Classification with Feature Selection

only uses the validation dataset that exclusively belongs to the internal node n (i.e.,
descendant categories of node n). Computationally, both approaches are almost
identical because model tuning and optimization require similar runtime which
accounts for the major fraction of computation.

4.3 Experimental Results and Analysis

4.3.1 Case Study

To understand the quality of features selected at different internal nodes in the
hierarchy, we perform case study on NG dataset. We choose this dataset because
we have full access to feature information. Figure 4.1 demonstrates the results
of top five features that are selected using best feature selection method, i.e.,
Gini index (refer to Figs. 4.2 and 4.3). We can see from the figure that selected
features correspond to the distinctive attributes which help in better discrimination
at particular node. For example, the features like Dod (day of defeat or Department
of Defense), car, bike, and team are important at node Rec to distinguish between
the subclass autos, motorcycles, and sports, whereas other features like windows,
God, and encryption are irrelevant. This analysis illustrates the importance of feature
selection for top-down HC problem.

One important observation that we made in our study is that some of the features
like windows, God, and team are useful for discrimination at multiple nodes in
the hierarchy (associated with parent-child relationships). This observation conflicts
with the assumption made in the work by Xiao et al. [18], which attempts to optimize
the objective function by necessitating the child node features to be different from
the features selected at the parent node.

4.3.2 Accuracy Comparison

Global FS Figures 4.2 and 4.3 shows the μF1 and MF1 comparison of LR
models with l1-norm and l2-norm regularization combined with various feature
selection methods discussed in Sect. 4.2.1, respectively. It can be seen that all
feature selection methods (except Kruskal-Wallis) show competitive performance
results in comparison to the full set of features for all the datasets. Overall, Gini
index feature selection method has slightly better performance over other methods.
MRMR methods have a tendency to remove some of the important features as
redundant based on the minimization objective obtained from data-sparse leaf
categories which may not be optimal and negatively influence the performance. The
Kruskal-Wallis method shows poor performance because of the statistical properties
that are obtained from data-sparse nodes [13].

On comparing the l1-norm and l2-norm regularized models of best feature
selection method (Gini index) with all features, it can be seen that l1-norm models

4.3 Experimental Results and Analysis 67

Fig. 4.2 Performance comparison of LR + l1-norm models with varying percentage (%) of
features selected using different feature selection (Global) methods. (a)–(l) shows the Micro-F1
and Macro-F1 performance on different datasets

have more performance improvement (especially for MF1 scores) for all datasets,
whereas for l2-norm models, performance is almost similar without any significant
loss. This is because l1-norm assigns higher weight to the important predictor
variables which results in more performance gain.

Since feature selection based on Gini index gives the best performance in the rest
of the experiments, Gini index is used as the baseline for comparison purpose. Also,
results for l1-norm models only are shown due to space constraints.

68 4 Large-Scale Hierarchical Classification with Feature Selection

Fig. 4.3 Performance comparison of LR + l2-norm models with varying percentage (%) of
features selected using different feature selection (Global) methods. (a)–(l) shows the Micro-F1
and Macro-F1 performance on different datasets

Adaptive FS Table 4.1 shows the LR + l1-norm model performance comparison
of adaptive and global approaches for feature selection with all features. It can be
seen from the table that adaptive approach-based feature selection gives the best
performance for all the datasets (except μF1 score of newsgroup dataset which
has very few categories). For evaluating the performance improvement of models,
statistical significance test is performed. Specifically, sign test is used for μF1 [16]

4.3 Experimental Results and Analysis 69

Table 4.1 Performance comparison of adaptive and global approach for feature selection based
on Gini index with all features

Dataset Metric Adaptive FS Global FS All features

NG μF1 76.16� 76.39� 74.94

MF1 76.10� 76.07� 74.56

CLEF μF1 72.66 72.27 72.17

MF1 36.73� 35.07� 33.14

IPC μF1 48.23� 46.35 46.14

MF1 41.54� 39.52 39.43

DMOZ-SMALL μF1 40.32� 39.52 38.86

MF1 26.12� 25.07 24.77

DMOZ-2010 μF1 35.94 35.40 34.32

MF1 23.01 21.32 21.26

DMOZ-2012 μF1 44.12 43.94 43.92

MF1 23.65 22.18 22.13

LR + l1-norm model is used for evaluation. Best performing methods are highlighted in bold
� (and �) indicates that improvements are statistically significant with 0.05 (and 0.1) significance
level

Table 4.2 Comparison of memory requirements for LR + l1-norm model

Adaptive FS Global FS All features

Dataset #parameters Size #parameters Size #parameters Size

NG 982,805 4.97 MB 908,820 3.64 MB 1,652,076 6.61 MB

CLEF 4715 18.86 KB 5220 20.89 KB 6960 27.84 KB

IPC 306,628,256 1.23 GB 331,200,000 1.32 GB 620,170,344 2.48 GB

DMOZ-SMALL 74,582,625 0.30 GB 85,270,801 0.34 GB 121,815,771 0.49 GB

DMOZ-2010 4,035,382,592 16.14 GB 4,271,272,967 17.08 GB 6,571,189,180 26.28 GB

DMOZ-2012 3,453,646,353 13.81 GB 3,649,820,382 14.60 GB 4,866,427,176 19.47 GB

Best performing methods are highlighted in bold

and nonparametric Wilcoxon rank test for MF1. Result with 0.05 (0.1) significance
level is denoted by � (�). Tests are between models obtained using feature selection
methods and all set of features. Tests are not performed on DMOZ-2010 and
DMOZ-2012 datasets because true predictions and class-wise performance score
are not available from online web portal.

Statistical evaluation shows that although global approach is slightly better in
comparison to full set of features, they are not statistically significant. On contrary,
adaptive approach is much better with an improvement of ∼2% in μF1 and MF1
scores which are statistically significant.

4.3.3 Memory Requirements

Table 4.2 shows the information about memory requirements for various models
with full set of features and best set of features that are selected using global and

70 4 Large-Scale Hierarchical Classification with Feature Selection

adaptive feature selection. Up to 45% reduction in memory size is observed for all
datasets to store the learned models. This is a huge margin in terms of memory
requirements considering the models for large-scale datasets (such as DMOZ-2010
and DMOZ-2012) are difficult to fit in memory.

It should be noted that optimal set of features is different for global and adaptive
methods for feature selection; hence they have different memory requirements.
Overall, Adaptive FS is slightly better because it selects small set of features that
are relevant for distinguishing data-sparse nodes present in CLEF, IPC, and the
DMOZ datasets. Also, we would like to point out that Table 4.2 represents the
memory required to store the learned model parameters only. In practice, 2–4
times more memory are required for temporarily storing the gradient values of
model parameters that are obtained during the optimization process.

4.3.4 Runtime Comparison

Preprocessing Time Table 4.3 shows the preprocessing time needed to compute
the feature importance using the different feature selection methods. The Gini index
method takes the least amount of time since it does not require the interactions
between different features to rank the features. The MRMR methods are compu-
tationally expensive due to the large number of pairwise comparisons between all
the features to identify the redundancy information. On other hand, the Kruskal-
Wallis method has overhead associated with determining ranking of each features
with different classes.

Model Training Table 4.4 shows the total training time needed for learning
models. As expected, feature selection requires less training time due to the
less number of features that needs to be considered during learning. For smaller
datasets such as NG and CLEF, improvement is not noticeable. However, for larger
datasets with high dimensionality such as IPC, DMOZ-2010, and DMOZ-2012,
improvement is much higher (up to 3× order speedup). For example, DMOZ-2010
dataset training time reduces from 6524 min to mere 2258 min.

Prediction Time For the dataset with largest number of test instances, DMOZ-
2012 takes 37 min to make predictions with feature selection as opposed to
48.24 min with all features using the top-down HC approach.

Figure 4.4 shows the training and prediction time comparison of large datasets
(DMOZ-2010 and DMOZ-2012) between flat LR and the top-down HC approach
with (and without) feature selection. The flat method is comparatively more
expensive than the TD approach (∼6.5 times for training and ∼5 times for
prediction).

4.3 Experimental Results and Analysis 71

Table 4.3 Feature selection preprocessing time (in minutes)

Feature selection method

Dataset Gini index MRMR-D MRMR-Q Kruskal-Wallis
NG 2.10 5.33 5.35 5.42
CLEF 0.02 0.46 0.54 0.70
IPC 15.2 27.42 27.00 23.24
DMOZ-SMALL 23.65 45.24 45.42 34.65
DMOZ-2010 614 1524 1535 1314
DMOZ-2012 818 1824 1848 1268

Best performing methods are highlighted in bold

Table 4.4 Total training time (in minutes)

Feature selection

Dataset Model (Gini index) All features

NG LR + l1 0.75 0.94

LR + l2 0.44 0.69

CLEF LR + l1 0.50 0.74

LR + l2 0.10 0.28

IPC LR + l1 24.38 74.10

LR + l2 20.92 68.58

DMOZ-SMALL LR + l1 3.25 4.60

LR + l2 2.46 3.17

DMOZ-2010 LR + l1 2258 6524

LR + l2 2132 6418

DMOZ-2012 LR + l1 8024 19,374

LR + l2 7908 19,193

Fig. 4.4 Training and prediction runtime comparison of LR + l1-norm model (in minutes)

72 4 Large-Scale Hierarchical Classification with Feature Selection

Table 4.5 Performance comparison of LR + l1-norm model with varying training size (number
of instances) per class on newsgroup dataset

Feature selection

Dataset Train size (Gini index) All features

distribution (per class) μF1 MF1 μF1 MF1

5
27.44 � 26.45 � 25.74 24.33

(0.4723) (0.4415) (0.5811) (0.6868)

10
37.69 � 37.51 � 36.59 35.86

Low (0.2124) (0.2772) (0.5661) (0.3471)

distribution
15

43.14 � 43.80 � 42.49 42.99

(0.3274) (0.3301) (0.1517) (0.7196)

25
52.12 � 52.04 � 50.33 50.56

(0.3962) (0.3011) (0.4486) (0.5766)

50
59.55 59.46 59.52 59.59
(0.4649) (0.1953) (0.3391) (0.1641)

100
66.53 66.42 66.69 66.60

High (0.0346) (0.0566) (0.7321) (0.8412)

distribution
200

70.60 70.53 70.83 70.70
(0.6068) (0.5164) (0.7123) (0.6330)

250
72.37 72.24 73.06 � 72.86
(0.4285) (0.4293) (0.4732) (0.4898)

The table shows mean and standard deviation in bracket across five runs. � (and �) indicates that
improvements are statistically significant with 0.05 (and 0.1) significance level. Best performing
methods are highlighted in bold

4.3.5 Effect of Varying Training Size

Table 4.5 shows the classification performance on newsgroup dataset with vary-
ing training dataset distribution. Models are tested by varying the training size
(instances) per class (tc) between 5 and 250. Each experiment is repeated five times
by randomly choosing tc instances per class. Moreover, adaptive method with Gini
index feature selection is used for experiments. For evaluating the performance
improvement of models, we perform statistical significance test (sign test for μF1
and Wilcoxon rank test for MF1). Results with 0.05 (0.1) significance level is
denoted by � (�).

It can be seen from Table 4.5 that for low distribution datasets, the feature
selection method performs well and shows improvements of up to 2% (statistically
significant) over the baseline method. The reason behind this improvement is that
with low data distribution, feature selection methods prevent the models from over-
fitting by selectively choosing the important features that helps in discriminating
between the models of various classes. For datasets with high distribution, no
significant performance gain is observed due to sufficient number of available
training instances for learning models which prevent over-fitting when using all the
features.

4.4 Summary of the Chapter 73

Fig. 4.5 Level-wise error analysis of LR + l1-norm model for CLEF, IPC, and DMOZ-SMALL
datasets

4.3.6 Level-Wise Error Analysis

Figure 4.5 shows the level-wise error analysis for CLEF, IPC, and DMOZ-SMALL
datasets with or without feature selection. It can be seen that at topmost level more
error is committed compared to the lower level. This is because at higher levels each
of the children nodes that needs to be discriminated is the combination of multiple
leaf categories which cannot be modeled accurately using the linear classifiers.
Another observation is that adaptive feature selection gives best results at all levels
for all datasets which demonstrates its ability to extract relevant number of features
at each internal node (that belongs to different levels) in the hierarchy.

4.4 Summary of the Chapter

In this chapter, two different approaches for embedding feature selection into HC
framework are discussed. For evaluation, four different easily parallelizable feature
selection methods are discussed. Experimental evaluation shows that with feature

74 4 Large-Scale Hierarchical Classification with Feature Selection

selection significant improvement is achieved in terms of runtime performance
(training and prediction) and memory requirements (especially for large-scale
datasets) without affecting the accuracy of learned classification models.

References

1. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1(3), 131–156
(1997)

2. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression
data. Journal of bioinformatics and computational biology 3(02), 185–205 (2005)

3. Gopal, S., Yang, Y.: Distributed training of large-scale logistic models. In: Proceedings of the
30th International Conference on Machine Learning (ICML), pp. 289–297 (2013)

4. Gopal, S., Yang, Y.: Recursive regularization for large-scale classification with hierarchical and
graphical dependencies. In: Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data mining, pp. 257–265 (2013)

5. Heisele, B., Serre, T., Prentice, S., Poggio, T.: Hierarchical classification and feature reduction
for fast face detection with support vector machines. Pattern Recognition 36(9), 2007–2017
(2003)

6. Joachims, T.: Text categorization with support vector machines: Learning with many relevant
features. In: European Conference on Machine Learning, pp. 137–142 (1998)

7. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial intelligence 97(1),
273–324 (1997)

8. Naik, A., Rangwala, H.: A ranking-based approach for hierarchical classification. In: IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10 (2015)

9. Ogura, H., Amano, H., Kondo, M.: Feature selection with a measure of deviations from poisson
in text categorization. Expert Systems with Applications 36(3), 6826–6832 (2009)

10. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27(8), 1226–1238 (2005)

11. Ristoski, P., Paulheim, H.: Feature selection in hierarchical feature spaces. In: International
Conference on Discovery Science, pp. 288–300. Springer (2014)

12. Shang, W., Huang, H., Zhu, H., Lin, Y., Qu, Y., Wang, Z.: A novel feature selection algorithm
for text categorization. Expert Systems with Applications 33(1), 1–5 (2007)

13. Strobl, C., Zeileis, A.: Danger: High power! exploring the statistical properties of a test for
random forest variable importance. In: In Proceedings of the 18th International Conference on
Computational Statistics (2008)

14. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: A review. Data Classifica-
tion: Algorithms and Applications p. 37 (2014)

15. Wibowo, W., Williams, H.E.: Simple and accurate feature selection for hierarchical categori-
sation. In: Proceedings of the 2002 ACM symposium on Document Engineering, pp. 111–118
(2002)

16. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of the 22nd
annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 42–49 (1999)

17. Zheng, Z., Wu, X., Srihari, R.: Feature selection for text categorization on imbalanced data.
ACM Sigkdd Explorations Newsletter 6(1), 80–89 (2004)

18. Zhou, D., Xiao, L., Wu, M.: Hierarchical classification via orthogonal transfer. In: Proceedings
of the 28th International Conference on Machine Learning (ICML), pp. 801–808 (2011)

Chapter 5
Multi-task Learning

5.1 Introduction

Traditional supervised machine learning methods involve learning mapping func-
tion that can accurately map input data to output label. However, real-world datasets
are complex, and we often encounter situations where multiple tasks (classes) are
related to each other. For example, consider an email spam classification where the
goal is to learn classification model to categorize email as spam or legitimate for
each user. Spam email for one user might be related to the spam email for other
users. Intuitively, it would seem that learning these related tasks jointly would help
us uncover common knowledge and improve generalization performance. In fact,
this intuition is supported by empirical evidence provided by recent developments
in transfer learning (TL) [26] and multi-task learning (MTL) [7, 29].

MTL involves learning of multiple-related tasks, jointly. It seeks to improve the
performance of each task by leveraging the relationships among the different tasks.
It is an advanced concept of Single-Task Learning (STL), most widely used in
classification. In STL, each task is considered to be independent, and the model
parameters are learned independently, whereas in MTL, multiple tasks are learned
simultaneously by utilizing task relatedness as shown in Fig. 5.1. The main intuition
behind MTL is that the training signal present in related tasks can help each of the
task learn better model parameters [3, 7]. It has been shown that MTL improves the
performance of the model, especially when the number of training examples is less
and when the tasks are related [4, 29].

Sharing information between unrelated tasks in MTL might hurt the perfor-
mance. This is due to the phenomenon known as negative transfer.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2018
A. Naik, H. Rangwala, Large Scale Hierarchical Classification: State of the Art,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-030-01620-3_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01620-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-01620-3_5

76 5 Multi-task Learning

Fig. 5.1 Figure shows
difference between (a) Single
Task Learning (STL) and (b)
Multi-Task Learning (MTL)
model training. In STL, each
task is learned independently
whereas in MTL multiple
tasks are learned jointly

MTL captures the intrinsic relatedness between the tasks and hence achieve
better generalization performance, especially when the number of training examples
is less. MTL has been shown to be effective and successfully applied across
multiple applications including medical informatics [38], structural classification
[9], sequence analysis [33], language processing [10], drug discovery [28], web
image and video search [32], and many more [11, 14, 15, 34, 38]. There has been
huge research exploration in the MTL research, and the literature review about the
MTL can be found in Zhou et al. [37].

5.2 Multi-task Learning Problem Formulation

Given a training dataset with N input-output pairs
{(

x(1), y(1)
)
,
(
x(2), y(2)

)
, · · · ,(

x(N), y(N)
)}

, the goal is to learn a mapping function f : X → Y between
the input domain x(i) ∈ X and output domain y(i) ∈ Y . X and Y are input and
output domains, respectively. The objective is to learn a model that minimizes the
loss function on the training data while constraining the model complexity with a
regularization penalty. The learning objective for each of the task t in the regularized

5.3 Multi-task Learning Using Multiple Hierarchies 77

STL can be given as,

min
wt

N∑

i=1

L (wt , x(i), y(i))
︸ ︷︷ ︸

Empirical Loss

+λ Ω(wt)︸ ︷︷ ︸
Regularization

(5.1)

where wt represents the model parameters for t-th task. The regularization term
controls the model complexity, thus safeguarding against the model over-fitting.
Extension of STL is MTL which learns the model parameters of the related task
together. In MTL we are given T tasks with training set defined for each of the
t = 1 . . . T tasks, given by (xt (i), yt (i)) : i = 1, 2, . . . , Nt , and the combined
learning objective is given by,

min
W

T∑

t=1

Nt∑

i=1

L
(
wt , xt (i), yt (i)

)

︸ ︷︷ ︸
Empirical Loss

+λ Ω(W)︸ ︷︷ ︸
Regularization

(5.2)

where Nt is the number of training instances for the t-th task, wt denotes the model
parameters for the t-th task, (xt (i), yt (i)) represents the i-th input and output pair
for t-th task, and W = {wt }Tt=1 is the combined set of model parameters for all
the related tasks. Various multi-task learning methods take this general approach to
build combined models for many related tasks. In Evgeniou et al. [13] the model
for each task is constrained to be close to the average of all the tasks. In multi-task
feature learning and feature selection methods [2, 18, 21, 23], sparse learning based
on lasso [31] is performed to select or learn a common set of features across many
related tasks. However, a common assumption made by many methods [1, 13, 17]
is that all tasks are equally related. This assumption does not hold in all situations.

Therefore, it is sensible to take the task relationships into account in MTL. Kato
et al. [19] and Evgeniou et al. [12] propose formulations which use an externally
provided task network or graph structure. However, these relationships might not be
available and may need to be determined from the data. Clustered MTL approaches
assume that tasks exhibit a group structure, which is not known a priori and seeks
to learn the clusters of tasks that are learned together [16, 30, 36]. Another set of
approaches, mostly based on Gaussian process models, learn the task covariance
structure [6, 35] and are able to take advantage of both positive and negative
correlations between the tasks.

In this chapter, we have focused on the MTL-based models for the purpose of
multi-class classification using multiple hierarchies.

5.3 Multi-task Learning Using Multiple Hierarchies

Hierarchies have become popular structures for data representation. It is so
common that sometimes multiple hierarchies classify similar data. For example,
in protein structure classification, several hierarchies exist for organizing proteins

78 5 Multi-task Learning

Fig. 5.2 Single Hierarchy Multi-Task Learning: related tasks are identified individually within
each hierarchy

Fig. 5.3 Multiple Hierarchy Multi-Task Learning: related tasks are identified across multiple
hierarchies for joint learning

based on curation process or 3D structure. Another example is web-page
classification where several hierarchies (such as DMOZ and Wikipedia) exist
for categorizing web-pages. In order to improve classification performance, we
need to identify related tasks and learn models together. Based on how we leverage
multiple hierarchies for finding related tasks, there are two different ways of MTL
[8].

1. Single Hierarchy Multi-Task Learning (SHMTL)—In SHMTL, each hierarchy is
considered independently for MTL (Fig. 5.2). Relationship between tasks within
a hierarchy is combined individually.

2. Multiple Hierarchy Multi-Task Learning (MHMTL)—In MHMTL, multiple
hierarchies are considered together for MTL (Fig. 5.3). Relationship between
tasks from different hierarchies is extracted using common instances or similarity
metric such as kNN.

5.4 Performance Comparison of STL, SHMTL, and MHMTL 79

5.4 Performance Comparison of STL, SHMTL, and
MHMTL

To illustrate the effectiveness of MTL methods, in this section we will provide and
discuss some of the experimental results from the paper [8]. Experiments have been
performed on protein structures hierarchical database—structural classification of
proteins (SCOP) [22] and class, architecture, topology, and homologous (CATH)
[24] superfamily. Both these databases classify proteins into four major levels. For
experimental evaluations, the following MTL methods have been used:

1. Sparse MTL—In this method, it is assumed that across all the tasks, only a subset
of the features are important for classification [1, 21, 23]. The objective function
for sparse MTL can be represented as,

min
W

T∑

t=1

Nt∑

i=1

L
(
wt , xt (i), yt (i)

) + λ
∣∣∣∣W

∣∣∣∣
2,1 (5.3)

where
∣∣∣∣W

∣∣∣∣
2,1 denotes the l2,1-norm.

l2,1-norm is defined as the l1-norm of the vector of l2-norm over the
weights associated with a particular input dimension.

2. Graph MTL—In this method, edge relationships in the hierarchy are exploited
in the regularization. This method minimizes the difference between all pairs of
related tasks (connected by edges) unlike [13] where all tasks model parameters
are forced to be similar to average of all tasks.

min
W

T∑

t=1

Nt∑

i=1

L
(
wt , xt (i), yt (i)

) + λ
∑

(p,q)∈E

∣∣∣∣wp − wq

∣∣∣∣2
2 (5.4)

where (p, q) ∈ E denotes the edge in the hierarchy.
3. Trace MTL—In this method, trace norm is used in the regularization as shown in

Eq. (5.5). Trace norm forces W to share a low-dimensional subspace, therefore
inducing correlations between the tasks. This formulation has been extensively
studied in the paper by Tong et al. [27].

min
W

T∑

t=1

Nt∑

i=1

L
(
wt , xt (i), yt (i)

) + λ
∣∣∣∣W

∣∣∣∣∗ (5.5)

where
∣∣∣∣W

∣∣∣∣∗ denotes the trace norm.

80 5 Multi-task Learning

4. Graph + Trace MTL—This method is a combination of Graph MTL and Trace
MTL as shown in Eq. (5.6).

min
W

T∑

t=1

Nt∑

i=1

L
(
wt , xt (i), yt (i)

)+λ1

∑

(p,q)∈E

∣∣∣∣wp − wq

∣∣∣∣2
2 +λ2

∣∣∣∣W
∣∣∣∣∗ (5.6)

In all MTL methods discussed above, logistic loss was used as the loss function, and
an l2-norm is added to the regularization objective. l2-norm helps in controlling the
magnitude of model parameters.

5.4.1 Experimental Analysis

Data Representation Spectrum kernel features method [20] (which uses contigu-
ous subsequences of some fixed length k, also known as k-mers) is used to represent
protein sequences into feature vectors of fixed length. Experiments were performed
by setting k = 3 which resulted in 8000 features.

Extracting Cross-hierarchy Relationships Edges are derived between two hier-
archies using consistent protein domains. If a domain is classified by two nodes,
then an edge is added between them.

Results For comparison of different methods, only level 3 (L3) and level 4 (L4)
classification results are included in the results. Figure 5.4 shows the performance
improvements of different MTL methods over STL method. In general MTL
methods have better performance than STL with only exception in case of sparse
MTL methods. This is because sparse formulation attempts to extract sparse features
across all the tasks. It assumes a uniform relationship between all the tasks.

Fig. 5.4 Comparison of STL against different MTL methods. Figure shows AUC scores %
improvements of MTL methods over STL using L3 along with auxiliary L4 tasks in training

5.5 Performance Comparison of STL, MTL, TL, and SSL 81

However, it is unlikely that any subset for the features derived from the protein
sequences are more important for the classification. Similar performance is reported
with considering L3 nodes only.

5.5 Performance Comparison of STL, MTL, TL, and SSL

In this section, we provide experimental results for STL, MTL, transfer learning
(TL), and semi-supervised learning (SSL). For better understanding the material,
we first discuss the problem that we are trying to solve followed by different
formulations that have been used for comparison. Finally, we provide some of the
interesting comparison results for different methods.

Definition 5.1 (Problem Definition) Given multiple hierarchies (DMOZ and
Wikipedia), our goal is to develop models that can classify a master source database
(DMOZ) with accuracy and efficiency (refer to Fig. 5.5). To improve the model
accuracy, all methods (except STL) use an external source Wikipedia dataset in
conjunction with DMOZ dataset. Using external source helps in learning the better
model parameters for source classes, by increasing the number of positive examples,
especially when the number of training examples for a given class is scarce.

Different Approaches for Model Learning

1. Multi-task learning (MTL)—In this method, related tasks for DMOZ and
Wikipedia datasets are learned together as shown in Fig. 5.6. Task relationships

Fig. 5.5 Learn model to classify master source database DMOZ using external source database
Wikipedia

82 5 Multi-task Learning

Fig. 5.6 Joint training in
multi-task learning

across DMOZ and Wikipedia datasets are identified using the non-parametric,
lazy nearest neighbor approach (kNN) [5]. k-related tasks are identified from
Wikipedia dataset corresponding to each task in DMOZ dataset. Tanimoto
similarity (Jaccard index) is used for computing the related tasks. Objective
function for MTL is given by,

min
W

T∑

t=1

Nt∑

i=1

L
(
wt , xt (i), yt (i)

) + λ1
∣∣∣∣wt

∣∣∣∣2
2 + λ2

k∑

j=1

∣∣∣∣wNj (t)

∣∣∣∣2
2

+ λ3

k∑

j=1

∣∣∣∣wt − wNj (t)

∣∣∣∣2
2 (5.7)

where wNj (t) is the model parameters corresponding to j − th-related task.
2. Transfer learning (TL)—It is designed to learn the parameters of the main

task (also know as parent task) based on the transferred parameters from the
related task(s) (also known as children tasks) (refer to Fig. 5.7). Main intuition
behind using TL is that the information contained in the children task can help
in learning the better predictive models for the main task. When transferred
parameters from the child task assist in better learning the predictive models of
the parent task, then it is referred to as positive transfer. However, in some cases if
related tasks are not found correctly, then TL may lead to the predictive models
which are worse than the original predictive models without transfer, and this
type of transfer is known as negative transfer. It has been shown in the work of
Pan et al. [25] that TL improves the generalization performance of the predictive
models provided the related tasks are similar to each other. The goal of TL is
to learn the mapping function f : X → Y from Nt input-output pairs

{(
xt (1),

yt (1)
)
,
(
xt (2), yt (2)

)
, . . . ,

(
xt (N), yt (N)

)}
in such a way so as to minimize the

objective function given by,

5.5 Performance Comparison of STL, MTL, TL, and SSL 83

Fig. 5.7 Knowledge transfer
in Transfer Learning

min
wt

Nt∑

i=1

L
(
wt , xt (i), yt (i)

) + λ1
∣∣∣∣wt

∣∣∣∣2
2 + λ2

k∑

j=1

∣∣∣∣wt − w∗
Nj (t)

∣∣∣∣2
2 (5.8)

where w∗
Nj (t) is the learned model parameters that is transferred from the j − th

child (related) task.
TL differs from MTL in terms of parameter learning behavior. In MTL, all

related task parameters are learned simultaneously, whereas in TL, related task
parameters are learned first which is then transferred to the main task of interest.
TL has also been referred to as asymmetric MTL because of its focus on one of
the tasks, referred to as the parent (or main) task.

3. Semi-supervised learning (SSL)—It involves use of both labeled and unlabeled
data for predicting the parameters of the model (Fig. 5.8). SSL falls in between
unsupervised (no labeled training data) and supervised learning (completely
labeled training data) [39]. SSL works on the principle that the more the
training examples, the better the generality. However, the result of SSL is largely
dependent on how accurately we group the unlabeled data with the labeled data.
The more accurate the grouping of unlabeled data with labeled data, the better
the result. For developing models for DMOZ classes using SSL method, kNN
with Tanimoto similarity is used to find the groupings of unlabeled Wikipedia
dataset with each of the DMOZ class. As such, objective function for learning
t − th task can be represented by,

min
wt

Nt+{Nj }kj=1∑

i=1

L
(
wt , xt (i), yt (i)

) + λ
∣∣∣∣wt

∣∣∣∣2
2 (5.9)

where Nj is the examples from the related tasks that are computed using kNN.

84 5 Multi-task Learning

Fig. 5.8 Semi-supervised
learning

5.5.1 Experimental Analysis

Dataset DMOZ and Wikipedia datasets used in the experiments are available
from the ECML/PKDD 2012 discovery challenge on LSHTC (Track 2 challenge
website).1 The challenge is closed for new submission and the labels of the test set
are not publicly available. Therefore, original training set is split into three parts
(train, validation, test) in the ratio 3:1:1 for performance analysis. To assess the
performance of different methods with respect to the class size (number of training
examples per class), training data is further categorized into low distribution (LD),
with 25 examples per class, and high distribution (HD), with 250 examples per class.
This resulted in DMOZ dataset having 75 classes within LD and 53 classes within
HD.

Results Figures 5.9, 5.10, 5.11, and 5.12 give the performance comparison of
different methods on low distribution and high distribution DMOZ datasets. The
following observations are worth noting from the results.

• STL vs SSL vs TL vs MTL: For LD dataset MTL method significantly
outperforms other methods with improvement up to 15% in μF1 score. This is
because joint learning of classes with scarce examples benefits from other related
classes due to inductive transfer. For HD dataset, even though MTL has the best
result, improvement is much smaller, i.e., <1% because with more training data,
all model converges to similar performance.

• k = 2 vs k = 3 vs k = 4 vs k = 5 vs k = 6: In general, lower value of k gave
better models compared to higher values of k. This is because as the value of k

increases, similarity between the main tasks and the surrogate tasks decreases,
which in turn affects the performance negatively.

Table 5.1 shows the average training time (in second) per class required to learn
the models for the different LD and HD categories. The STL approach has the lowest

1http://lshtc.iit.demokritos.gr/LSHTC3_DATASETS.

http://lshtc.iit.demokritos.gr/LSHTC3_DATASETS

5.5 Performance Comparison of STL, MTL, TL, and SSL 85

Fig. 5.9 Micro-F1 (μF1) comparison of STL against different methods for low distribution
dataset

Fig. 5.10 Macro-F1 (MF1) comparison of STL against different methods for low distribution
dataset

Fig. 5.11 Micro-F1 (μF1) comparison of STL against different methods for high distribution
dataset

86 5 Multi-task Learning

Fig. 5.12 Macro-F1 (MF1) comparison of STL against different methods for high distribution
dataset

Table 5.1 Total training time (in second) for DMOZ dataset

STL # of SSL TL MTL

LD HD kNN LD HD LD HD LD HD

(k = 2) 4.58 62.4 4.54 48.4 9.84 56.8

2.72 44.7 (k = 4) 5.57 62.7 6.40 50.3 15.6 78.7

(k = 6) 6.48 64.3 7.98 54.7 18.8 82.8

STL learns model for each DMOZ class without using Wikipedia dataset; hence it is independent
of kNN value

training times because there is no overhead of incorporating additional constraints
that is involved. SSL models take more time than the corresponding STL models
because of the increased number of training examples. For TL models as well,
runtime increases because it requires learning the models for the neighbors. Finally,
MTL method takes the longest time, since it requires the joint learning of the model
parameters that are updated for each class and related neighbors.

5.6 Summary of the Chapter

This chapter covers various ways to perform MTL for HC problem. Experimental
results show that MTL is useful for improving the generalization performance of
learned models but at the cost of increased runtime complexity.

References

1. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. NIPS p. 19:41 (2007)
2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Machine Learning

73(3), 243–272 (2008)

References 87

3. Baxter, J.: A model of inductive bias learning. JAIR 12, 149–198 (2000)
4. Ben-David, S., Schuller, R.: Exploiting task relatedness for multiple task learning. Learning

Theory and Kernel Machines pp. 567–580 (2003)
5. Bhatia, N., et al.: Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085

(2010)
6. Bonilla, E., Chai, K., Williams, C.: Multi-task gaussian process prediction. NIPS (20(October),

2008)
7. Caruana, R.: Multitask learning. Machine Learning 28(1), 41–75 (1997)
8. Charuvaka, A., Rangwala, H.: Multi-task learning for classifying proteins using dual hierar-

chies. In: Proceedings of the 12th International Conference on Data Mining, pp. 834–839
(2012)

9. Charuvaka, A., Rangwala, H.: Multi-task learning for classifying proteins with dual hierar-
chies. pp. 834–839 (2012)

10. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural
networks with multitask learning. In: Proceedings of the 25th international conference on
Machine learning, pp. 160–167 (2008)

11. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech
recognition and related applications: An overview. In: Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pp. 8599–8603 (2013)

12. Evgeniou, T., Micchelli, C., Pontil, M.: Learning multiple tasks with kernel methods. JMLR
6(1), 615–637 (2005)

13. Evgeniou, T., Pontil, M.: Regularized multitask learning. KDD pp. 109–117 (2004)
14. Ghosn, J., Bengio, Y.: Multi-task learning for stock selection. Advances in Neural Information

Processing Systems pp. 946–952 (1997)
15. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on computer

vision, pp. 1440–1448 (2015)
16. Jacob, L., Bach, F., Vert, J.: Clustered multi-task learning: A convex formulation. NIPS (2008)
17. Jebara, T.: Multi-task feature and kernel selection for svms. ICML p. 55 (2004)
18. Jebara, T.: Multitask sparsity via maximum entropy discrimination. JMLR pp. 75–110 (2011)
19. Kato, T., Kashima, H., Sugiyama, M., Asai, K.: Multi-task learning via conic programming.

NIPS pp. 737–744 (2008)
20. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for svm protein

classification. In: Biocomputing 2002, pp. 564–575. World Scientific (2001)
21. Liu, J., Ji, S., Ye, J.: Multi-task feature learning via efficient l 2, 1-norm minimization. UIA

pp. 339–348 (2009)
22. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: a structural classification of

proteins database for the investigation of sequences and structures. Journal of molecular
biology 247(4), 536–540 (1995)

23. Obozinski, G., Taskar, B., Jordan, M.: Multi-task feature selection. ICML (2006)
24. Orengo, C.A., Michie, A., Jones, S., Jones, D.T., Swindells, M., Thornton, J.M.: Cath–a

hierarchic classification of protein domain structures. Structure 5(8), 1093–1109 (1997)
25. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data

Engineering 22(10), 1345–1359 (2010)
26. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Transactions on knowledge and

data engineering pp. 1345–1359 (2010)
27. Pong, T.K., Tseng, P., Ji, S., Ye, J.: Trace norm regularization: Reformulations, algorithms, and

multi-task learning. SIAM Journal on Optimization 20(6), 3465–3489 (2010)
28. Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., Pande, V.: Massively

multitask networks for drug discovery. arXiv preprint arXiv:1502.02072 (2015)
29. Thrun, S.: Is learning the n-th thing any easier than learning the first? NIPS pp. 640–646 (1996)
30. Thrun, S., Sullivan, J.O.: Clustering learning tasks and the selective cross-task transfer of

knowledge. Learning to learn pp. 181–209 (1998)
31. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society. Series B (Methodological) pp. 267–288 (1996)

88 5 Multi-task Learning

32. Wang, X., Zhang, C., Zhang, Z.: Boosted multi-task learning for face verification with
applications to web image and video search. IEEE conference on Computer Vision and Pattern
Recognition pp. 142–149 (2009)

33. Widmer, C., Leiva, J., Altun, Y., Rätsch, G.: Leveraging sequence classification by taxonomy-
based multitask learning. 14th Annual International Conference, RECOMB, Lisbon, Portugal
pp. 522–534 (April 25–28, 2010)

34. Yu, S., Yu, K., Tresp, V., Kriegel, H.: Collaborative ordinal regression. In Proceedings of the
23rd international conference on Machine learning pp. 1089–1096 (2006)

35. Zhang, Y., Yeung, D.: A convex formulation for learning task relationships in multi-task
learning. In Proceedings of the Twenty-fourth Conference on Uncertainty in AI (UAI) (2010)

36. Zhou, J., Chen, J., Ye, J.: Clustered multi-task learning via alternating structure optimization.
NIPS (2011)

37. Zhou, J., Chen, J., Ye, J.: MALSAR: Multi-tAsk Learning via StructurAl Regularization.
Arizona State University (2011). URL http://www.public.asu.edu/~jye02/Software/MALSAR

38. Zhou, J., Lei, Y., Liu, J., Ye, J.: A multi-task learning formulation for predicting disease pro-
gression. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining pp. 814–822 (2011)

39. Zhu, X.: Semi-supervised learning literature survey. world 10, 10 (2005)

http://www.public.asu.edu/~jye02/Software/MALSAR

Chapter 6
Conclusions and Future Research
Directions

There has been tremendous work in the field of HC and it’s not possible to cover
everything. In this book, we discussed about various problems that are associated
with LSHC along with different approaches to solve it. Specifically, two of the
chapters are devoted to discuss in detail about hierarchical inconsistencies and
feature selection problems. We also discussed about the MTL learning paradigm
that leverage multiple hierarchies classifying the similar types of data. Overall,
our main intention in this book was to provide comprehensive overview about the
LSHC literature that we believe would be helpful for the readers with intermediate
expertise in data mining having a background in classification (supervised learning).
We have put an extra effort to present the contents in as simplistic manner as
possible, providing examples and figures whenever we felt it would be helpful in
understanding the concepts. We hope that readers enjoyed reading this book and
gained substantial knowledge about advancements in LSHC field. Finally, we would
like to encourage the readers to read the paper [1] for gaining better insights about
when to use flat and hierarchical methods for newly created hierarchical datasets.

6.1 Future Research Directions

For interested readers, this section provides useful guidance about various future
research directions for extending LSHC research.

6.1.1 Extreme Classification

Overtime, the number of labels (categories) keeps on increasing. Extreme classi-
fication is the problem of dealing with extremely large label spaces. To motivate

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2018
A. Naik, H. Rangwala, Large Scale Hierarchical Classification: State of the Art,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-030-01620-3_6

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01620-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-01620-3_6

90 6 Conclusions and Future Research Directions

consider the example of social media such as Twitter where new hashtags are being
created by the users frequently. Obviously, when new hashtag appears, they do not
have enough instances to train generalized models for classifying future tweets. In
such cases it would be beneficial to fetch instances from other related hashtags.
Problem that would be interesting to solve is how to determine the related hashtags
from such an extremely large space of hashtags. Many works in this direction have
been proposed in the literature [2, 4, 7, 10, 14, 18]. Similar approach can be extended
to the HC problem where labels (tags) can be organized into the hierarchy, and
mapping of unlabeled tags can be done easily by recursively selecting the best set
of tags in the hierarchy.

Extreme classification problem: given instance, find its most relevant subset
of labels from extremely large label space.

At another level, given streaming data, the following situation can arise which
will lead to interesting learning problems.

1. Assume we are given streaming data with tweets. Before a hashtag gets popular,
users may choose not to use a particular one of interest at all or make up
their own. In this setting, can we reassign previous tweets before the hashtag
originated to the particular hashtag using classification?

2. Given the limited data and treating hashtag assignments as an extreme clas-
sification problem, can we use the data from step 1 to make predictions on
future tweets? Can we know that a tweet generated needs a new hashtag that
does not exist in the previous pool, i.e., orphan prediction, in the classification
literature?

6.1.2 Partial Flattening of Inconsistent Nodes

Removing inconsistent nodes from the original (expert defined) hierarchy is
beneficial for improving the HC performance [1, 16, 19]. However, flattening all
children of the inconsistent nodes may not be an optimal choice for classification.
It is quiet possible that some of the children of inconsistent nodes are actually
benefiting from these nodes by leveraging structural information (especially rare
categories). However, due to overall optimization objective value, the node is
identified as inconsistent, and all its children are flattened. To overcome this
drawback, there is a scope to perform more regressive analysis with partial
flattening of inconsistent nodes where only the subset of children are flattened as
shown in Fig. 6.1.

Validation dataset can be used to identify the subset of children that performs
comparatively better with the inconsistent nodes’ presence.

6.1 Future Research Directions 91

Root

L1

L2

LN LN

L2

LN

(a) Original (expert defined) Hierarchy (b) Inconsistent Node Flattened Hierarchy

(c) Hierarchy with Partial Flattening of Inconsistent Node

LN

L2

LN LN

L1

L2

LN LN LN

L2

LN LN

Root

L2

LN LN

L2

LN LN

L2

LN LN

L1

L2

LN LN LN

L2

LN LN

Root

L1

L2

LN LN

L2

LN LN

L2

LN LN

L1

L2

LN LN LN

L2

LN LN

Fig. 6.1 Different hierarchical structures (b)–(c) obtained by flattening original (expert defined)
hierarchy (a)

6.1.3 Multi-Linear Models

As stated in earlier chapters, TD methods are effective for dealing with LSHC.
However, the performance of TD is poor due to error propagation, i.e., errors made
at the higher levels in the hierarchy cannot be corrected at the lower levels. To
overcome this problem, various methods have been proposed that modify hierarchy
[1, 13] or combine multiple predictions [3, 6] for improving the classification
performance. Still, the margin of errors at higher levels in the hierarchy is more
compared to lower levels [16] because at higher levels, each of the discriminative
node consists of the multiple subcategories which may not be easily separable with
the linear classifiers. Alternatively, nonlinear classifiers [5] can be used to train
models at higher levels, but they are computationally expensive which makes them
unsuitable for large-scale problem.

An ideal classifier must possess the classifying properties of nonlinear classifiers
while being computationally efficient like linear classifiers. Recently, multi-linear
methods have been proposed by Huang and Lin [9] which address this issue for
binary classification problem. Multi-linear models take advantage of both linear and
nonlinear methods. While multi-linear models are more accurate than linear models,
it is also computationally efficient than nonlinear models. One of the logical research
extensions of LSHC work could be to explore multi-linear models for multi-class
HC problem.

6.1.4 Detecting New Categories

Data distribution changes over time, and we need to evolve the hierarchy based
on the new unseen data. When a new category is emerging, it is very likely

92 6 Conclusions and Future Research Directions

that instances from that category cannot be confidently predicted into any of the
subcategories at lower level but stay at the higher-level categories. Detecting such
emerging topics (orphan node prediction problem) is crucial for maintaining the
effectiveness of HC.

6.1.5 Feature Representation Using Deep Learning

In the last few years, deep learning have emerged as a powerful machine learning
tool and has proven to be effective for object recognition in computer vision
and speech recognition problems [12]. In order to achieve superior HC perfor-
mance, deep learning can be exploited for better hierarchical feature representation.
Recently, there has been some work around deep learning to address LSHC problem
[11, 17]. However, there are plenty of scopes for further improvements.

6.1.6 Large-Scale Multi-task Learning

One of the major problems with MTL is that it is computationally expensive
due to joint learning and cannot be scaled for large-scale problems. For reducing
the runtime performance of MTL-based methods, feature selection could be an
effective tool [8, 15, 20]. Large-scale problems have high-dimensional features
which increase the runtime between optimization iterations resulting in longer
runtime. Feature selection would be helpful to reduce the dimensions of instances,
thereby reducing the time taken to complete each iteration and hence improving the
runtime performance. It would also result in improved accuracy (by removing the
effect of irrelevant features) and lesser memory to store the model parameters for
large-scale datasets.

References

1. Babbar, R., Partalas, I., Gaussier, E., Amini, M.R.: On flat versus hierarchical classification in
large-scale taxonomies. In: Advances in Neural Information Processing Systems, pp. 1824–
1832 (2013)

2. Belanger, D., McCallum, A.: Structured prediction energy networks. arXiv preprint
arXiv:1511.06350 (2015)

3. Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large taxonomies. In:
Proceedings of the 32nd international ACM SIGIR conference on Research and development
in information retrieval, pp. 11–18 (2009)

4. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-
label classification. In: Advances in Neural Information Processing Systems, pp. 730–738
(2015)

References 93

5. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery 2(2), 121–167 (1998)

6. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Hierarchical classification: combining bayes with
svm. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), pp.
177–184 (2006)

7. Dekel, O., Shamir, O.: Multiclass-multilabel classification with more classes than examples.˙
In: AISTATS, pp. 137–144 (2010)

8. Heisele, B., Serre, T., Prentice, S., Poggio, T.: Hierarchical classification and feature reduction
for fast face detection with support vector machines. Pattern Recognition 36(9), 2007–2017
(2003)

9. Huang, H.Y., Lin, C.J.: Linear and kernel classification: When to use which? In: SIAM
International Conference on Data Mining (SDM) (2016)

10. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recommendation,
tagging, ranking & other missing label applications. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–944
(2016)

11. Kowsari, K., Brown, D.E., Heidarysafa, M., Meimandi, K.J., Gerber, M.S., Barnes, L.E.: Hdl-
tex: Hierarchical deep learning for text classification. In: Machine Learning and Applications
(ICMLA), 2017 16th IEEE International Conference on, pp. 364–371 (2017)

12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436 (2015)
13. Malik, H.: Improving hierarchical svms by hierarchy flattening and lazy classification. In:

Large-Scale Hierarchical Classification Workshop of ECIR (2010)
14. Mineiro, P., Karampatziakis, N.: A hierarchical spectral method for extreme classification.

http://arxiv.org/abs/1511.03260 (2016)
15. Naik, A., Rangwala, H.: Embedding feature selection for large-scale hierarchical classification.

In: Proceedings of the IEEE International Conference on Big Data, pp. 1212–1221 (2016)
16. Naik, A., Rangwala, H.: Inconsistent node flattening for improving top-down hierarchical

classification. In: IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pp. 379–388 (2016)

17. Peng, H., Li, J., He, Y., Liu, Y., Bao, M., Wang, L., Song, Y., Yang, Q.: Large-scale hierarchical
text classification with recursively regularized deep graph-cnn. In: Proceedings of the 2018
World Wide Web Conference on World Wide Web, pp. 1063–1072 (2018)

18. Prabhu, Y., Varma, M.: Fastxml: A fast, accurate and stable tree-classifier for extreme multi-
label learning. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data mining, pp. 263–272 (2014)

19. Wang, X.L., Lu, B.L.: Flatten hierarchies for large-scale hierarchical text categorization.
In: Proceedings of the fifth International Conference on Digital Information Management
(ICDIM), pp. 139–144 (2010)

20. Zhou, D., Xiao, L., Wu, M.: Hierarchical classification via orthogonal transfer. In: Proceedings
of the 28th International Conference on Machine Learning (ICML), pp. 801–808 (2011)

http://arxiv.org/abs/1511.03260

	Preface
	Acknowledgements
	Contents
	Acronyms
	1 Introduction
	1.1 Large Scale Hierarchical Classification Problem
	1.2 Challenges with Large Scale Hierarchical Classification
	1.3 Summary of Chapters
	References

	2 Background
	2.1 Notations
	2.2 Different Approaches for Hierarchical Classification
	2.2.1 Flat Classification Approach
	2.2.2 Local Classification Approach
	2.2.2.1 Local Classifier per Node Approach
	2.2.2.2 Local Classifier per Parent Node Approach
	2.2.2.3 Local Classifier per Level Approach

	2.2.3 Global Classification Approach

	2.3 Model Learning: General Formulation
	2.3.1 Top-Down Hierarchical Classification

	2.4 Hierarchical Datasets
	2.5 Evaluation Metrics for Hierarchical Classification
	2.5.1 Flat Measures
	2.5.2 Hierarchical Measures
	2.5.3 Area Under the Curve (AUC)

	2.6 Literature Review
	2.6.1 Hierarchical Orthogonal Transfer
	2.6.2 Shrinking Data-Sparse Leaf Node Model Parameters Toward Data-Rich Ancestor Nodes
	2.6.3 Two-Stage Classification for Large-Scale Taxonomy
	2.6.4 Parent-Child Regularization
	2.6.5 Cost-Sensitive Learning
	2.6.6 Refined Experts

	References

	3 Hierarchical Structure Inconsistencies
	3.1 Hierarchical Restructuring Experiment
	3.2 Reasons for Hierarchical Inconsistencies
	3.3 Different Methods for Hierarchy Restructuring
	3.3.1 Flattening Approach
	3.3.2 Rewiring Approach
	3.3.3 Clustering Approach

	3.4 Experimental Results and Analysis
	3.4.1 Case Study
	3.4.2 Accuracy Comparisons: Flat Measures
	3.4.3 Accuracy Comparisons: Hierarchical Measures
	3.4.4 Runtime Comparisons
	3.4.5 Level-Wise Error Analysis
	3.4.6 Comparison: Rewiring Against Flat and HierCost

	3.5 Summary of the Chapter
	References

	4 Large-Scale Hierarchical Classification with Feature Selection
	4.1 Introduction
	4.2 Feature Selection Overview
	4.2.1 Feature Selection Approaches
	4.2.2 Embedding Feature Selection into LSHC

	4.3 Experimental Results and Analysis
	4.3.1 Case Study
	4.3.2 Accuracy Comparison
	4.3.3 Memory Requirements
	4.3.4 Runtime Comparison
	4.3.5 Effect of Varying Training Size
	4.3.6 Level-Wise Error Analysis

	4.4 Summary of the Chapter
	References

	5 Multi-task Learning
	5.1 Introduction
	5.2 Multi-task Learning Problem Formulation
	5.3 Multi-task Learning Using Multiple Hierarchies
	5.4 Performance Comparison of STL, SHMTL, and MHMTL
	5.4.1 Experimental Analysis

	5.5 Performance Comparison of STL, MTL, TL, and SSL
	5.5.1 Experimental Analysis

	5.6 Summary of the Chapter
	References

	6 Conclusions and Future Research Directions
	6.1 Future Research Directions
	6.1.1 Extreme Classification
	6.1.2 Partial Flattening of Inconsistent Nodes
	6.1.3 Multi-Linear Models
	6.1.4 Detecting New Categories
	6.1.5 Feature Representation Using Deep Learning
	6.1.6 Large-Scale Multi-task Learning

	References

