ABSTRACT

The Soekarno-Hatta Airport Railink, which is located in Tangerang City, is

a train line that unites the train station to Soekarno-Hatta Airport. Most visitors use

smartphones with Long Term Evolution (LTE) technology and use this technology

to perform services such as chatting, browsing, streaming, and checking flight

departure schedules. LTE on the Soekarno-Hatta Airport Railink train, especially

on the railink train line from the Soekarno-Hatta airport train station to the

Batuceper Station, is not optimal so that efforts are needed to improve the LTE

network. One way to increase a network is by making improvements to the service

coverage (coverage).

For this final project, starting to improve the quality of the LTE network

based on the coverage area by using two improvement scenarios, namely physical

tuning and power configuration to areas with signal shortages. In this LTE network

simulation, the parameters analyzed are Reference Signal Received Power (RSRP),

Signal to Noise Ratio (SINR), and throughput at two bad spots located around the

railink train line from Soekarno-Hatta airport train station to the station. Batuceper.

Key Performance Indicator (KPI) is a quality limit of performance

parameters and is used as a reference in this study. The results of research that have

been carried out through a process of improvement through simulation have

increased, such as the average RSRP value has increased from -116.98 dBm to -

94.65 where the KPI target for the RSRP value is -95 dBm. The SINR and

throughput values also increased where the respective values were 4.04 dB to 29.52

dB and 15.163 Mbps to 35.214 Mbps with KPI targets for SINR and throughput of

13 dB and 12 Mbps. All the parameters reviewed have reached the KPI target so

that this research can overcome the weak coverage problem in the railink train line

from Soekarno-Hatta airport train station to Batuceper Station.

Keywords: Airport Train, LTE, Coverage, RSRP, Throughput, SINR, KPI

iv