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Preface

This book introduces new methods to analyze vertex-varying graph signals. In
many real-world scenarios, the data sensing domain is not a regular grid, but a more
complex network that consists of sensing points (vertices) and edges (relating the
sensing points). Furthermore, sensing geometry or signal properties define the
relation among sensed signal points. Even for the data sensed in the well-defined
time or space domain, the introduction of new relationships among the sensing
points may produce new insights in the analysis and result in more advanced data
processing techniques. The data domain, in these cases and discussed in this book,
is defined by a graph. Graphs exploit the fundamental relations among the data
points. Processing of signals whose sensing domains are defined by graphs resulted
in graph data processing as an emerging field in signal processing.

Although signal processing techniques for the analysis of time-varying signals
are well established, the corresponding graph signal processing equivalent
approaches are still in their infancy. This book presents novel approaches to analyze
vertex-varying graph signals. The vertex-frequency analysis methods use the
Laplacian or adjacency matrix to establish connections between the vertex domain
and the spectral (frequency) domain in order to analyze local signal behavior where
edge connections are used for graph signal localization. The book applies combined
concepts from time-frequency and wavelet analyses of classical signal processing to
the analysis of graph signals.

Covering analytical tools for vertex-varying applications, this book is of interest
to researchers and practitioners in engineering, science, neuroscience, genome
processing, just to name a few. It is also a valuable resource for postgraduate
students and researchers looking to expand their knowledge of the vertex-frequency
analysis theory and its applications.

The book consists of 15 chapters contributed by 41 leading researches in the
field. Chapter “Introduction to Graph Signal Processing” provides an introduction
to graph signal processing. A methodology to transform a graph into a collection of
signals and back is presented in Chapter “Transformation from Graphs to Signals
and Back.” The spectral graph wavelet transform, along with a Chebyshev poly-
nomial approximation-based fast implementation algorithm, is given in Chapter
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“The Spectral Graph Wavelet Transform: Fundamental Theory and Fast
Computation.” Chapter “Spectral Design of Signal-Adapted Tight Frames on
Graphs” presents a tight frame spectral design that is adapted to the graph Laplacian
spectral content of a given class of graph signals. Chapter “Wavelets on Graphs via
Deep Learning” introduces a machine learning framework for constructing graph
wavelets that can sparsely represent a given class of signals. Chapter “Oversampled
Transforms for Graph Signals” addresses the oversampled transforms for graph
signals, with oversampling the graph Laplacian and the graph transforms. Chapter
“Local-Set-Based Graph Signal Sampling and Reconstruction” discusses the con-
cepts of a local set and centerless local set and describes several iterative methods to
reconstruct a bandlimited graph signal from decimated data, based on these con-
cepts. Chapter “Time-Varying Graph Signals Reconstruction” presents two batch
reconstruction methods of time-varying graph signals by exploiting the smoothness
of the temporal difference signals, along with their uniqueness and the recon-
struction error analysis. The uncertainty principle in the context of graph signal
processing is presented in Chapter “Uncertainty Principle on Graphs.” In Chapter
“A Filtering Framework for Time-Varying Graph Signals,” three classes of filters
for time-varying graph signals are given and illustrated on application examples in
the design of ideal bandpass filters. Chapter “Vertex-Frequency Energy
Distributions” introduces vertex-frequency energy distributions in graph signal
processing. In Chapter “Shape Analysis of Carpal Bones Using Spectral Graph
Wavelets,” the authors present a graph signal processing approach to the shape
analysis of carpal bones of the human wrist by exploiting local structure infor-
mation among shape features. Chapter “Estimating the Complexity of the Cerebral
Cortex Folding with a Local Shape Spectral Analysis” shows how a local spectral
analysis of the cortical surface mean curvature can address the problem of the
human cerebral cortex folding complexity and provides two gyrification indices by
extending the concept of graph windowed Fourier transform to the framework of
surfaces modeled by triangular meshes. Chapter “Wavelet-Based Visual Data
Exploration” reviews how the wavelet coefficients can be visually interpreted and
explores which visual analytics resources can be leveraged for two real-world
problems: georeferenced urban data and interpersonal contact graphs. In Chapter
“Graph-Based Wavelet Multiresolution Modeling of Multivariate Terrain Data,” a
multiresolution analysis framework is proposed based on a graph-based wavelet
construction, which produces a sequence of intermediate resolution approximations
of the terrain model.

We would like to thank to all contributors for their excellent work, compre-
hensive descriptions of the problems along with valuable and diverse approaches to
the solutions, illustrated through numerous theoretical and real-world experimental
data example. We hope that you will enjoy reading this book on the emerging topic
of vertex-varying graph signal processing.

Podgorica, Montenegro Ljubiša Stanković
Pittsburgh, PA, USA Ervin Sejdić
September 2018

viii Preface



Contents

Part I Introduction

Introduction to Graph Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . 3
Ljubiša Stanković, Miloš Daković and Ervin Sejdić

Part II Vertex-Frequency Theory

Transformation from Graphs to Signals and Back . . . . . . . . . . . . . . . . . 111
Ronan Hamon, Pierre Borgnat, Patrick Flandrin and Céline Robardet

The Spectral Graph Wavelet Transform: Fundamental Theory
and Fast Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
David K. Hammond, Pierre Vandergheynst and Rémi Gribonval

Spectral Design of Signal-Adapted Tight Frames on Graphs . . . . . . . . . 177
Hamid Behjat and Dimitri Van De Ville

Wavelets on Graphs via Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 207
Raif M. Rustamov and Leonidas J. Guibas

Oversampled Transforms for Graph Signals . . . . . . . . . . . . . . . . . . . . . 223
Yuichi Tanaka and Akie Sakiyama

Local-Set-Based Graph Signal Sampling and Reconstruction . . . . . . . . . 255
Yuantao Gu and Xiaohan Wang

Time-Varying Graph Signals Reconstruction . . . . . . . . . . . . . . . . . . . . . 293
Xianghui Mao and Yuantao Gu

Uncertainty Principle on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Bastien Pasdeloup, Vincent Gripon, Réda Alami and Michael G. Rabbat

A Filtering Framework for Time-Varying Graph Signals . . . . . . . . . . . 341
Addison W. Bohannon, Brian M. Sadler and Radu V. Balan

ix



Vertex-Frequency Energy Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 377
Ljubiša Stanković, Miloš Daković and Ervin Sejdić

Part III Applications

Shape Analysis of Carpal Bones Using Spectral Graph Wavelets . . . . . 419
Majid Masoumi, Mahsa Rezaei and A. Ben Hamza

Estimating the Complexity of the Cerebral Cortex Folding
with a Local Shape Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Hamed Rabiei, Frédéric Richard, Olivier Coulon and Julien Lefèvre

Wavelet-Based Visual Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 459
Alcebiades Dal Col, Paola Valdivia, Fabiano Petronetto, Fabio Dias,
Claudio T. Silva and L. Gustavo Nonato

Graph-Based Wavelet Multiresolution Modeling of Multivariate
Terrain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Teodor Cioacă, Bogdan Dumitrescu and Mihai-Sorin Stupariu

x Contents



Editors and Contributors

About the Editors

Prof. Ljubiša Stanković was born in Montenegro in 1960. He received the B.S.
degree in EE from the University of Montenegro (UoM) with the Best Student at
the University award, winning twice the EE student competition in mathematics in
Yugoslavia (1980 and 1982). He obtained the M.S. degree in communications from
the University of Belgrade and the Ph.D. degree in theory of electromagnetic waves
from the UoM.

As a Fulbright grantee, he spent 1984–1985 academic year at the Worcester
Polytechnic Institute, USA. In 1997–1999, he was on leave at the Ruhr University
Bochum, Germany, supported by the Alexander von Humboldt Foundation. At the
beginning of 2001, he was at the Technische Universiteit Eindhoven, the
Netherlands, as a visiting professor. He was a visiting academic at the Imperial
College, London, in 2012–2013.

Since 1982, he has been on the faculty at the UoM, where he has been a full
professor since 1995. He was vice president of Montenegro in 1989–1990. He was
Rector of the UoM in 2003–2008 and the ambassador of Montenegro to the UK,
Ireland, and Iceland from 2011 to 2015.

His current interest is in signal processing. He published several books and about
400 technical papers, more than 150 of them in the leading journals. Professor
Stanković received the highest state awards of Montenegro in 1997 and 2015, for
scientific achievements. He was awarded the best Signal Processing journal award
in 2017 by the European Association for Signal Processing. He is a senior area
editor of the IEEE Transactions on Image Processing, member of the Editorial
Board of Signal Processing (Elsevier), and an associate editor of the IET Signal
Processing. He was an associate editor of the IEEE Signal Processing Letters and
the IEEE Transactions on Signal Processing.

He is a member and of the National Academy of Science and Arts of
Montenegro (CANU) since 1996 (its vice president since 2016), a member of the

xi



European Academy of Sciences and Arts (2011), and a member of the International
Advisory Board of the Alexander von Humboldt Foundation. Stanković is a fellow
of the IEEE since 2012 for contributions to time-frequency signal analysis.

Prof. Ervin Sejdić received B.E.Sc. and Ph.D. degrees in electrical engineering
from the University of Western Ontario, London, Ontario, Canada, in 2002 and
2008, respectively. From 2008 to 2010, he was a postdoctoral fellow at the
University of Toronto with a cross-appointment at Bloorview Kids Rehab,
Canada’s largest children’s rehabilitation teaching hospital. From 2010 until 2011,
he was a research fellow at Harvard Medical School with a cross-appointment at
Beth Israel Deaconess Medical Center. In 2011, Prof. Sejdić joined the Department
of Electrical and Computer Engineering at the University of Pittsburgh (Pittsburgh,
PA, USA) as a tenure-track assistant professor. In 2017, he was promoted to a
tenured associate professor. He also holds secondary appointments in the
Department of Bioengineering (Swanson School of Engineering), the Department
of Biomedical Informatics (School of Medicine), and the Intelligent Systems
Program (Kenneth P. Dietrich School of Arts and Sciences) at the University of
Pittsburgh.

Professor Sejdić is a senior member of IEEE and a recipient of many awards. As
a graduate student, he was awarded two prestigious awards from the Natural
Sciences and Engineering Research Council of Canada. In 2010, he received the
Melvin First Young Investigator’s Award from the Institute for Aging Research at
Hebrew Senior Life in Boston, MA, USA. In February 2016, President Obama
named Prof. Sejdić as a recipient of the Presidential Early Career Award for
Scientists and Engineers, the highest honor bestowed by the US Government on
science and engineering professionals in the early stages of their independent
research careers. In 2017, Prof. Sejdić was awarded the National Science
Foundation CAREER Award, which is the National Science Foundation’s most
prestigious award in support of career-development activities of those scholars who
most effectively integrate research and education within the context of the mission
of their organization.

From his earliest exposure to research, he has been eager to contribute to the
advancement of scientific knowledge through carefully executed experiments and
groundbreaking published work. He is an area editor of the IEEE Signal Processing
Magazine and an associate editor of Biomedical Engineering Online. Professor
Sejdić’s passion for discovery and innovation drives his constant endeavors to
connect advances in engineering to society’s most challenging problems. Hence, his
research interests include biomedical signal processing, gait analysis, swallowing
difficulties, advanced information systems in medicine, rehabilitation engineering,
assistive technologies, and anticipatory medical devices.

xii Editors and Contributors



Contributors

Réda Alami Orange Labs, Lannion, France

Radu V. Balan Department of Mathematics and Center for Scientific Computation
and Mathematical Modeling, University of Maryland, College Park, MD, USA

Hamid Behjat Lund University, Lund, Sweden

Addison W. Bohannon US Army Research Laboratory, Aberdeen Proving
Ground, College Park, MD, USA; Center for Scientific Computation and
Mathematical Modeling, University of Maryland, College Park, MD, USA

Pierre Borgnat Laboratoire de Physique, University of Lyon, Ens de Lyon, Univ
Claude Bernard, CNRS, Lyon, France

Teodor Cioacă University Politehnica of Bucharest, Bucharest, Romania;
University of Bucharest, Bucharest, Romania

Olivier Coulon Institut de Neurosciences de la Timone, Aix-Marseille Université,
Marseille, France

Miloš Daković University of Montenegro, Podgorica, Montenegro

Alcebiades Dal Col ICMC - USP, São Carlos, Brazil

Fabio Dias University of Toronto, Toronto, Canada

Bogdan Dumitrescu University Politehnica of Bucharest, Bucharest, Romania

Patrick Flandrin Laboratoire de Physique, University of Lyon, Ens de Lyon,
Univ Claude Bernard, CNRS, Lyon, France

Rémi Gribonval Univ Rennes, Inria, CNRS, IRISA, Rennes, France

Vincent Gripon IMT Atlantique, Technopole Brest-Iroise, Plouzané, France

Yuantao Gu Department of Electronic Engineering, Beijing National Research
Center for Information Science and Technology (BNRist), Tsinghua University,
Beijing, China

Leonidas J. Guibas Computer Science Department, Stanford University,
Stanford, CA, USA

L. Gustavo Nonato ICMC - USP, São Carlos, Brazil

David K. Hammond Oregon Institute of Technology - Portland Metro,
Wilsonville, OR, USA

Editors and Contributors xiii



Ronan Hamon Laboratoire de Physique, University of Lyon, Ens de Lyon, Univ
Claude Bernard, CNRS, Lyon, France

A. Ben Hamza Institute for Information Systems Engineering, Concordia
University, Montreal, Canada

Julien Lefèvre Institut de Neurosciences de la Timone, Aix-Marseille Université,
Marseille, France

Xianghui Mao Beijing National Research Center for Information Science and
Technology (BNRist) and the Department of Electronic Engineering, Tsinghua
University, Beijing, China

Majid Masoumi Institute for Information Systems Engineering, Concordia
University, Montreal, Canada

Bastien Pasdeloup EPFL, Lausanne, Switzerland

Fabiano Petronetto Federal University of Espirito Santo, Vitória, Brazil

Michael G. Rabbat McGill University, Montréal, QC, Canada

Hamed Rabiei Institut de Neurosciences de la Timone, Aix-Marseille Université,
Marseille, France; Aix Marseille Univ, CNRS, Marseille, France

Mahsa Rezaei Institute for Information Systems Engineering, Concordia
University, Montreal, Canada

Frédéric Richard Aix Marseille Univ, CNRS, Marseille, France

Céline Robardet University of Lyon, Insa Lyon, Univ Claude Bernard, CNRS,
LIRIS, Lyon, France

Raif M. Rustamov Data Science and AI Research, AT&T Labs Research,
Bedminster, NJ, USA; Computer Science Department, Stanford University,
Stanford, CA, USA

Brian M. Sadler US Army Research Laboratory, Adelphi, MD, USA

Akie Sakiyama Tokyo University of Agriculture and Technology, Fuchu, Japan

Ervin Sejdić University of Pittsburg, Pittsburg, PA, USA

Claudio T. Silva NYU, New York, USA

Ljubiša Stanković University of Montenegro, Podgorica, Montenegro

Mihai-Sorin Stupariu University of Bucharest, Bucharest, Romania

Yuichi Tanaka Tokyo University of Agriculture and Technology, Fuchu, Japan

Paola Valdivia ICMC - USP, São Carlos, Brazil

xiv Editors and Contributors



Dimitri Van De Ville Institute of Bioengineering, École Polytechnique Fédérale
de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical
Informatics, University of Geneva, Geneva, Switzerland

Pierre Vandergheynst Ecole Polytechnique Federale de Lausanne, Lausanne,
Switzerland

Xiaohan Wang Huawei Corp., Shanghai, China

Editors and Contributors xv



Part I
Introduction



Introduction to Graph Signal Processing

Ljubiša Stanković, Miloš Daković and Ervin Sejdić

Abstract Graph signal processing deals with signals whose domain, defined by a
graph, is irregular. An overview of basic graph forms and definitions is presented
first. Spectral analysis of graphs is discussed next. Some simple forms of processing
signal on graphs, like filtering in the vertex and spectral domain, subsampling and
interpolation, are given. Graph topologies are reviewed and analyzed as well. Theory
is illustrated through examples, including few applications at the end of the chapter.

1 Introduction

Graph signal processing is an active research area in recent years resulting in many
advanced solutions in various applications. In numerous practical cases the signal
domain is not a set of equidistant instants in time or a set of points in space on a regular
grid. The data sensing domain could be irregular and, in some cases, not related to
the time or space. The data sensing domain is then related to other properties of the
considered system/network. For example, in many social or web related networks,
the sensing points and their connectivity are related to specific objects and their links.
In some physical processes other properties than the space or time coordinates define
the relation between points where the signal is sensed. Even for the data sensed in the
well defined time and space domain, the introduction of new relations between the
sensing points may produce new insights in the analysis and result in more advanced
data processing techniques.

L. Stanković (B) · M. Daković
University of Montenegro, Podgorica, Montenegro
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4 L. Stanković et al.

The data domain, in these cases, is defined by a graph. The graph consists of
vertices, where the data values are defined/sensed, and the edges connecting these
vertices. Graph exploit the fundamental relations among the data based on their
relevant properties. Processing of signals whose sensing domains are defined by
graphs resulted in graph data processing as an emerging field in big data signal
processing today. This is a big step forward from the classical time (or space) series
data analysis.

Here we will present one simplified example for graph signal analysis. Assume
that we measure temperature in a geographical region. The temperature sensing
points are chosen according to a plan and significance of specific areas (for example,
according to the population density). They are illustrated in Fig. 1.

The distance between sensing points is proportional to their distances in Fig. 1a.
The measured temperature at each location is denoted by x(n), Fig. 1b. It is equal

(a)

(b)

(c)

(d)

(e)

Fig. 1 Graph and a signal on the graph illustration



Introduction to Graph Signal Processing 5

to x(n) = s(n) + ε(n), where s(n) is a temperature that would be obtained in the
ideal measuring conditions and ε(n) represents influence of the measurement micro-
location, for example the proximity of trees, concrete structures, or ventilation. This
part of the signal is called noise. We want to average the measured temperatures
in order to reduce the influence of random noise to the temperature at a specific
measurement point. Of course, if we average over a too large area around the consid-
ered sensing point we will lose the local temperature and produce a bias caused by
very distant and probably different temperatures. Therefore, we have to average tem-
peratures from sensing points within a small area around each of the measurement
points. From the sensing locations, we can see that some points have more dense
structures around them, while around some of the sensing locations the structure of
measurement points is sparse. Intuitively we can conclude that it would be the best
to perform averaging over a local region of each point, taking measured values from
its neighborhood, as

y(n) =
∑

m at and around n

x(m).

Graphical illustration of this calculation formula can be obtained by using lines
that connect the considered point with its neighboring points. The sensing locations
included in the calculation of y(1) for the sensing point n = 1 are shown in Fig. 1c.
The matrix form of this calculation, for all sensing points, can be written as

y = x + Ax,

where matrix A indicates what neighboring measurement locations should be
included for each y(n) calculation. This matrix will be referred to as the connectivity
or adjacency matrix. Sensing locations with corresponding connections are shown in
Fig. 1d. The sensing locations and their connectivity, along with the measured signal
at each location, are presented in Fig. 1e.

In the calculation, we may add weights for different measurement points,

y(n) = x(n) +
∑

m �=n

Wnmx(m).

The weights are higher for close points and smaller for distant points. They are zero
outside a specified local area. This case can be represented by lines connecting the
measurement points that are included in averaging each measurement point. Each
line has its weight Wnm . A matrix form of the weighted averaging operation is

y = x + Wx.

If we want the averaging to be appropriately scaled, in order to produce unbiased
estimates, then the sum of all summation coefficients, for each y(n), should be 1. It
means that we can calculate
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y = 1

2

(
x + D−1Wx

)
,

where the elements of diagonal normalization matrix D are Dnn =∑m Wnm . This
matrix is called the degree matrix.

The simple example presented here can be interpreted within the graph signal
processing framework as follows:

• The measurement points are the graph vertices, Fig. 1a.
• The lines indicating mutual relation and connectivity of the measurement points
are the graph edges.

• The vertices and edges form a graph, Fig. 1d. The graph is now the signal domain.
It indicates the points where the signal is measured and how these sensing points
are related to each other. The graph is then used for the analysis and processing of
the measured data.

• The measured temperatures are the signal samples on this graph. They represent
a graph signal Fig. 1e. This signal may have many realizations on the same graph.
It can include noise.

• The presented local averaging, taking into account the location of measurement
points, that is, taking into account the graph structure, is one simple graph signal
processing algorithm (linear first-order graph system).

Now we can use this framework for many different scenarios. For example, we
can perform an opinion poll among the members of a social network. The members
of a social network are the vertices (measurement points). Their friendship relations
are the edges, representing graph connectivity. The answers they give are the graph
signal values. This is then the basis for various graph signal processing algorithms.

The graph-based data processing approach can be applied not only to technologi-
cal, biological, and social networks but its application has also lead to improvements
and new methods in classical signal processing. In these cases the classical signal
domain (that may be represented as a linear or circular graph) is structured in a more
advanced way, considering the sensing points connectivity from their properties or
signal similarity points of view.

In graph signal processing, the first step is to define the graph as a signal domain.
While the data sensing points (graph vertices) are commonly well defined, that is
not the case with their connectivity (graph edges). In some applications, the vertex
connectivity is naturally defined, resulting in an exact underlying graph topology,
such as the various computer, social, road, transportation, and electrical networks. For
some other cases, the data domain definition in a graph form is a part of the problem
itself. The vertex connectivity is not defined in advance. It can be determined based
on the properties of the sensing positions or the acquired data. The definition of
appropriate graph structure is of crucial importance for a meaningful and efficient
application of the graph signal processing approach.

In this chapter, we will review the basic definitions and properties of graphs. Next,
the signal on a graph and basic signal processing techniques in vertex and spectral
domains are described. In the third part, some graph topologies are reviewed and
discussed.
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2 Graphs

Graph theory as a branch in mathematics has existed for almost three centuries.
It has been used for a long time in chemistry, operational research, engineering,
social networks, and computer sciences. The beginning of graph theory applications
in electrical engineering dates back to the mid-XIX century when Kirchoff’s laws
were defined. Recently, graph theory has been a rapidly developing application and
research area in signal processing. A short review of the basic graph definitions and
properties will be presented in this section [1–23].

2.1 Basic Definitions

A graph is defined as a set of vertices V and set of edges B ⊂ V × V connecting the
vertices, where × is a direct product operation.

Examples of graphs with N = 8 vertices V = {0, 1, 2, 3, 4, 5, 6, 7} are presented
in Fig. 2, along with the corresponding edges. The vertices are presented as points
(circles) and the edges are presented as lines. A line between vertices n andm means
that (m, n) ∈ B. The graph from Fig. 2b is described by

V = {0, 1, 2, 3, 4, 5, 6, 7}
B ⊂ {0, 1, 2, 3, 4, 5, 6, 7} × {0, 1, 2, 3, 4, 5, 6, 7}

B = {(0,1),(1,3),(1,7),(2,0),(2,1),(3,2),(3,5),(4,6),(4,7),(5,3),(5,4),(6,5),(7,0),(7,1),(7,3)}.

A graph can be undirected and directed. In the case of undirected graphs, as in
Fig. 2a, it is assumed that the edge connecting the vertex n to the vertex m also
connects the vertexm to the vertex n. This means that if (n,m) ∈ B then (m, n) ∈ B.

In general, this property does not hold for directed graphs. An example of a
directed graph is shown in Fig. 2b. The undirected graphs can be considered as a
special case of directed graphs.

0

1

2
3

4

5

6
7

0

1

2
3

4

5

6
7

(a) (b)

Fig. 2 Examples of: a Undirected graph and b Directed graph
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For a given set of vertices and edges, the graph can be represented by an adjacency
matrix A. This matrix describes the vertices connectivity. If there are N vertices then
A is an N × N matrix. The elements Amn of the adjacency matrix A assume values
Amn ∈ {0, 1}. The value Amn = 0 is assigned if the verticesm and n are not connected
with an edge, and Amn = 1 if these vertices are connected,

Amn =
{
1 if (m, n) ∈ B
0 if (m, n) /∈ B.

The adjacency matrices for the graphs from Fig. 2a, b are

A =

0

1

2

3

4

5

6

7

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0 1
1 0 1 1 1 0 0 1
1 1 0 1 0 0 0 0
0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
1 1 0 1 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 1 2 3 4 5 6 7

, A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1
1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

respectively.
In the case of an undirected graph the adjacency matrix is symmetric

A = AT .

A graph is fully determined by its adjacency matrix, defined for a given set of
vertices. If the vertex numbering is changed it will cause corresponding changes in
the adjacencymatrix. However vertices renumbering does not change the graph itself
(these graphs are isomorphic). Relation between adjacency matrix of original and
renumerated graphs is defined using a permutation matrix P as

A2 = P A1PT . (2)

If we change the vertex numbering as [0, 1, 2, 3, 4, 5, 6, 7] → [3, 2, 4, 5, 1, 0,
6, 7], the corresponding permutation and adjacency matrices of a graph isomorph to
the graph presented in Fig. 2a are
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Fig. 3 An example of a
weighted graph
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P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0 0 1
1 0 0 0 1 1 0 0
1 0 0 1 1 0 1 1
1 0 1 0 0 0 1 0
1 1 1 0 0 1 0 1
0 1 0 0 1 0 0 1
0 0 1 1 0 0 0 0
1 0 1 0 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Relation (2) can easily be checked for this example. A permutationmatrix has exactly
one value equal to 1 in each row and in each column.

In general, the edges can be weighted. If the weights of edges are defined, a
weighted graph is obtained. The set of weights W corresponds to the set of edges
B. A weighted graph is a more general case than the unweighted graph. Commonly,
it is assumed that the edge weights are nonnegative real numbers. If we associate
weight 0 to the nonexisting edges then the graph can be described with a weight
matrix W similar to the adjacency matrix A. A nonzero element Wmn describes an
edge between the verticesm and n and the correspondingweight. The valueWmn = 0
means that there is not an edge between the vertices m and n.

An example of a weighted undirected graph is presented in Fig. 3.
The weight matrix for this graph is

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.54 0.14 0 0 0 0 0.47
0.54 0 0.63 0.35 0.30 0 0 0.31
0.14 0.63 0 0.31 0 0 0 0
0 0.35 0.31 0 0.54 0.43 0 0.13
0 0.30 0 0.54 0 0.54 0.62 0.54
0 0 0 0.43 0.54 0 0.37 0
0 0 0 0 0.62 0.37 0 0

0.47 0.31 0 0.13 0.54 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

In this manner the adjacency matrix A can be considered as a special case of the
weight matrix W where all nonzero weights are equal to 1.
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For undirected graphs the weighting matrix is symmetric,

W = WT .

For directed graphs this property does not hold, in general.
A degreematrix for an undirected graph, denoted byD, is a diagonal matrix where

the diagonal elements Dmm are equal to the sum of weights of all edges connected
with the vertex m

Dmm =
∑

n

Wmn.

In the case of an unweighted and undirected graph, the value of Dmm is equal to
the number of edges connected to the mth vertex.

The degree matrix for the graph from Fig. 3 is

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.15 0 0 0 0 0 0 0
0 2.13 0 0 0 0 0 0
0 0 1.08 0 0 0 0 0
0 0 0 1.76 0 0 0 0
0 0 0 0 2.54 0 0 0
0 0 0 0 0 1.34 0 0
0 0 0 0 0 0 0.99 0
0 0 0 0 0 0 0 1.45

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The Laplacian matrix L of a graph is defined as

L = D − W.

For an undirected graph the Laplacian matrix is symmetric L = LT .
The Laplacian for the graph from Fig. 3 is

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.15 −0.54 −0.14 0 0 0 0 −0.47
−0.54 2.13 −0.63 −0.35 −0.30 0 0 −0.31
−0.14 −0.63 1.08 −0.31 0 0 0 0

0 −0.35 −0.31 1.76 −0.54 −0.43 0 −0.13
0 −0.30 0 −0.54 2.54 −0.54 −0.62 −0.54
0 0 0 −0.43 −0.54 1.34 −0.37 0
0 0 0 0 −0.62 −0.37 0.99 0

−0.47 −0.31 0 −0.13 −0.54 0 0 1.45

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)
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The normalized Laplacian is defined as

LN = D−1/2(D − W)D−1/2.

The normalized Laplacian for the graph from Fig. 3 is

LN =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.35 −0.13 0 0 0 0 −0.36
−0.35 1 −0.42 −0.18 −0.13 0 0 −0.18
−0.13 −0.42 1 −0.22 0 0 0 0

0 −0.18 −0.22 1 −0.26 −0.28 0 −0.08
0 −0.13 0 −0.26 1 −0.29 −0.39 −0.28
0 0 0 −0.28 −0.29 1 −0.32 0
0 0 0 0 −0.39 −0.32 1 0

−0.36 −0.18 0 −0.08 −0.28 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

2.2 Properties of Graphs and Associated Matrices

1. For an undirected graph, the matrices A, W, and L are symmetric.
2. A graph is complete if there is an edge between each pair of vertices. The

adjacency matrix of a complete graph has elements Amn = 1 for all n �= m and
Ann = 0. An example of a complete graph is presented in Fig. 4a.

3. Bipartite graph is a graph where the graph vertices V could be partitioned into
two disjunct sets E and H, V = E ∪ H and E ∩ H = ∅, such that there are no
edges between vertices in the same set. If the vertex ordering is done in a such
way that all vertices belonging to E are before vertices belonging toH then the
adjacency matrix can be written as

A =
[

0 AEH
AHE 0

]
,

where the matrices AEH and AHE define the connections between the vertices
in set E and set H. For an undirected bipartite graph AEH = AT

HE .
An example of a bipartite undirected graph is given in Fig. 4b, with E = {1, 2, 3}
and H = {4, 5, 6, 7}. The graph in Fig. 4b is also a complete bipartite graph
because all possible edges are present.

4. An unweighted graph is regular (or K -regular) if all vertices are with the same
degree K . An example of the regular graph with K = 4 is given in Fig. 4c. The
Laplacian and the normalized Laplacian of a K -regular graph are

L = K I − A and LN = I − 1

K
A.
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(a) Complete graph (b) Bipartite graph (c) Regular graph

(d) Star graph (e) Line graph (f) Circular graph

Fig. 4 Special cases: a complete graph with 8 vertices, b complete bipartite graph, c regular graph
where each vertex is connected to 4 vertices, d star graph, e line graph, f circular graph

5. A star graph has one central vertex that is connected to all other vertices. There
are no other edges. An example of a star graph is given in Fig. 4d. A star graph
is also a complete bipartite graph where there is only one vertex in the first set.

6. A line graph is defined by a series of connected vertices. The first and the last
vertex have a degree equal to 1, while all other vertices are with the degree 2.
An example of a line graph with 5 vertices is presented in Fig. 4e.

7. A graph is circular if each vertex has the degree 2. This graph is also a regular
graph with K = 2. An example of a circular graph with 8 vertices is given in
Fig. 4f.

8. A walk between a vertex n and a vertex m is a connected sequence of edges and
vertices that begins at the vertex n and ends at the vertex m. Edges and vertices
can be included into a walk more than once.
The length of a walk is equal to the number of included edges.
The number of walks between the vertex n and the vertex m of the length K is
equal to the element of matrix AK in the nth row and the mth column.
As an example consider vertex 1 and vertex 5 in the graph from Fig. 5. Consider
the walks of length K = 2. There are two such walks (1 → 3 → 5 and 1 →
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Fig. 5 Walks of length
K = 2 from vertex 1 to
vertex 5
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4 → 5). The element in the second row and the sixth column of matrix A2 is 2
indicating that there are two walks between these vertices.

A2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 1 3 2 0 0 1
2 5 2 3 2 2 1 3
1 2 3 1 2 1 0 3
3 3 1 5 3 1 2 2
2 2 2 3 5 2 1 2
0 2 1 1 2 3 1 2
0 1 0 2 1 1 2 1
1 3 3 2 2 2 1 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

9. The number of walks between the vertices n and m of the length not higher than
K is equal to the element of matrix

BK = A + A2 + · · · + AK

in the nth row and the mth column.
10. The K -neighborhood of a vertex n is defined as a set of vertices that are reachable

from the vertex n in up to K length walks. It can be obtained as a set of positions
of non-zero elements in the nth row of matrix BK . The K -neighborhoods of
vertex 0 for K = 1 and K = 2 are illustrated in Fig. 6.
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Fig. 6 The K -neighborhoods of vertex 0 for: a K = 1 and b K = 2. The neighboring vertices are
shaded
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11. Path is a walk where each vertex can be included only once. The path length is
equal to the number of edges included in a path.

12. Distance between two vertices is equal to the minimal path length between them.
The distance between vertex 1 and vertex 5 for the graph presented in Fig. 5
is 2.

13. The diameter d of a graph is equal to the largest distance between all pairs of
the vertices in the graph. The diameter of a complete graph is d = 1.
For the graph presented in Fig. 5 its diameter is 3.

14. An undirected graph is connected if there exists a walk between each pair of its
vertices.

15. If the graph is not connected, it consists of two ormore connected graphs (compo-
nents). The components represent disjoint graphs. Components produce a block
diagonal form of the adjacency matrix and Laplacian. For M components of a
graph this form would be

A =

⎡

⎢⎢⎢⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · AM

⎤

⎥⎥⎥⎦ and L =

⎡

⎢⎢⎢⎣

L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...

0 0 · · · LM

⎤

⎥⎥⎥⎦ .

Note that the block diagonal form is obtained only if the vertex numbering
follows graph components.
As an example, let us consider a graph derived form Fig. 2a by removing some
edges. This graph is presented in Fig. 7.
The adjacency matrix for this graph is

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 1
0 0 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Fig. 7 A disconnected
graph
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with the corresponding Laplacian

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0 0
−1 −1 2 0 0 0 0 0
0 0 0 3 −1 −1 0 −1
0 0 0 −1 4 −1 −1 −1
0 0 0 −1 −1 3 −1 0
0 0 0 0 −1 −1 2 0
0 0 0 −1 −1 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

These matrices are in a block-diagonal form with two blocks.
If there is an isolated vertex in a graph, then the corresponding row and column
of the matrices A and L will be zero-valued.

16. If we have two graphs defined on the same vertices, with adjacency matrices A1

and A2, we can define a sum of the graphs as a new graph with the adjacency
matrix

A = A1 + A2.

If we want to keep binary values 0, 1 in the adjacency matrix then the logical
(Boolean) summation rule 1 + 1 = 1 should be used in the matrix addition. In
this chapter we will use the arithmetic summation rule only.

17. Kronecker (tensor) product of two disjoint graphs G1 = (V1,B1) and G2 =
(V2,B2) is a graphG = (V,B)whereV = V1 × V2 and

(
(n1,m1), (n2,m2)

) ∈ B
only if (n1, n2) ∈ B1 and (m1,m2) ∈ B2. The adjacency matrix of G is equal to
the Kronecker product of adjacency matrices A1 and A2,

A = A1 ⊗ A2.

The Kronecker product of two simple graphs is illustrated in Fig. 8.
17. Cartesian product (graph product) of two disjoint graphsG1 = (V1,B1) andG2 =

(V2,B2) is a graph G = (V,B), where V = V1 × V2 and
(
(n1,m1), (n2,m2)

) ∈
B only if

m1 = m2 and (n1, n2) ∈ B1 or

n1 = n2 and (m1,m2) ∈ B2.

The adjacency matrix of a Cartesian product of two graphs is

A = A1 ⊗ IN2 + IN1 ⊗ A2,

where A1 and A2 are the adjacency matrices of graphs G1 and G2, respectively.
The numbers of vertices in G1 and G2 are denoted by N1 and N2, respectively.
The Cartesian product of two simple graphs is illustrated in Fig. 9.
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Fig. 9 Cartesian product of two graphs

2.3 Eigenvalue Decomposition of the Adjacency Matrix

Graph matrices can be decomposed using the eigenvalue decomposition. A column
vector u is an eigenvector of the adjacency matrix A if

Au = λu

holds, where the constant λ is called the eigenvalue, corresponding to the
eigenvector u.

The previous relation can be written as (A − λI)u = 0. A nontrivial solution for
u exists if

det ||A − λI|| = 0.

The determinant det ||A − λI|| is a polynomial of λ. It is called the characteristic
polynomial of matrix A,

P(λ) = det ||A − λI|| = λN + c1λ
N−1 + · · · + cN .
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Order of the characteristic polynomial is equal to the number of vertices N .
Eigenvalues are the roots of the characteristic polynomial, P(λ) = 0. In general,
there are N eigenvalues λ0, λ1, . . . ,λN−1. In some cases the eigenvalues can be
repeated meaning that the zeros of algebraic multiplicity higher than one exist in the
characteristic polynomial. Denote distinct eigenvalues as μ1, μ2, . . . ,μNm , and their
corresponding algebraic multiplicities as p1, p2, . . . , pNm , where p1 + p2 + · · · +
pNm = N is equal to the order of the considered matrix/polynomial and Nm ≤ N is
the number of distinct eigenvalues. The characteristic polynomial can be written in
a form

P(λ) = (λ − μ1)
p1(λ − μ2)

p2 · · · (λ − μNm )pNm .

The minimal polynomial of the considered matrix is obtained from the charac-
teristic polynomial by reducing algebraic multiplicities of each eigenvalue to 1. Its
form is

Pmin(λ) = (λ − μ1)(λ − μ2) · · · (λ − μNm ).

Properties of the Characteristic and Minimal Polynomial

• The characteristic polynomial order is equal to the number of vertices.
• For λ = 0, P(0) = det(A) = (−λ0)(−λ1) · · · (−λN−1).

• A sum of the eigenvalues is equal to the sum of diagonal elements of matrix A. It
means that c1 = 0 for the characteristic polynomial of the adjacency matrix.

• Coefficient c2 in P(λ) is equal to the number of edges multiplied by −1.
• Degree of the minimal polynomial Nm is larger than the graph diameter. As an
example consider a connected graph with only two distinct eigenvalues λ0 and
λ1. The minimal polynomial order is 2. It means that the diameter of this graph is
d = 1. This is a complete graph.

• For a connected graph the multiplicity of the largest eigenvalue is 1.

The characteristic polynomial of the adjacency matrix for the graph from
Fig. 2a is

P(λ) = λ8 − 15λ6 − 18λ5 + 33λ4 + 60λ3 + 16λ2 − 6λ

with eigenvalues (−2.193,−1.75,−1.321,−0.796, 0, 0.204, 1.796, 4.06). Themin-
imal polynomial is equal to characteristic polynomial Pmin(λ) = P(λ).

The characteristic polynomial of the adjacency matrix for the graph from
Fig. 7 is

P(λ) = λ8 − 10λ6 − 8λ5 + 24λ4 + 34λ3 + 3λ2 − 12λ − 4

with eigenvalues (− 1+√
5

2 ,−1.4728,−1,−1,−0.4626,
√
5−1
2 , 2, 2.9354). There is

an eigenvalue of multiplicity higher than 1. The minimal polynomial is

Pmin(λ) = λ7 − λ6 − 9λ5 + λ4 + 23λ3 + 11λ2 − 8λ − 4.
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If all eigenvalues are distinct (of algebraic multiplicity 1), instead of N equa-
tions Auk = λkuk , k = 0, 1, . . . , N − 1, we can write one matrix equation for the
adjacency matrix

AU = U���

or
A = U���U−1,

where ��� is a diagonal matrix with eigenvalues on the diagonal and U is a matrix
composed of eigenvectors uk as columns. Since one coefficient of the eigenvec-
tor can be arbitrarily chosen, common choice is such that ‖uk‖22 = 1 for each
k = 0, 1, . . . , N − 1.

For an undirected graph, the matrix A is symmetric. The eigenvalues of a sym-
metric matrix are real-valued. For undirected graphs, if matrix A is diagonalizable
then

U−1 = UT .

All real symmetric matrices are diagonalizable. The adjacency matrix of an undi-
rected graph is always diagonalizable. The square matrix is diagonalizable if all
its eigenvalues are distinct (this condition is sufficient, but not necessary). For some
directed graphs, when the eigenvalues of algebraic multiplicity higher than one exist,
the matrix A may not be diagonalizable. In such cases the algebraic multiplicity is
higher than the geometrical multiplicity of the considered eigenvalue and the Jordan
normal form could be used.

The set of the adjacency matrix eigenvalues is called the graph adjacency spec-
trum.

For the graph presented in Fig. 2a, the graph adjacency spectrum is given in Fig. 10.
The spectrum of the graph adjacencymatrix transformedwith perturbationmatrix (3)
is given in Fig. 11. We can see that vertex renumbering with the perturbation matrix
does not change the eigenvalues. The eigenvectors are also the same with coefficient
reordering induced by the vertex renumbering.

The DFT Basis Functions as a Special Case of Adjacency Matrix Eigenvectors

The eigenvalue decomposition for the directed circular graph presented in Fig. 19
will follow from the definition Auk = λkuk . For this particular graph it reduces to

uk(n − 1) = λkuk(n),

where uk(n) are the elements of vector uk . A solution of this linear difference
equation is

uk(n) = 1√
N
e j2πnk/N and λk = e− j2πk/N , k = 0, 1, . . . , N − 1. (11)

The eigenvectors correspond to the DFT basis function in this case.
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Fig. 10 Eigenvaluesλk and corresponding eigenvectors uk(n) for the adjacencymatrix of the graph
presented in Fig. 2a. The eigenvectors are shown on the vertex index line (left) and on the graph
(right)
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Fig. 11 Eigenvaluesλk and corresponding eigenvectors uk(n) for the adjacencymatrix of the graph
presented in Fig. 2a with vertex renumbering [0, 1, 2, 3, 4, 5, 6, 7] → [3, 2, 4, 5, 1, 0, 6, 7]
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Decomposition of Matrix Powers and Polynomials

The eigenvalue decomposition of the adjacency matrix AA = A2 is

A2 = U���U−1U���U−1 = U���2U−1,

assuming that U−1 exists, that is, that matrix A is diagonalizable.
This form can easily be generalized for an arbitrary integer power

An = U���nU−1.

In general, for any matrix function f (A) that can be written in a polynomial form

f (A) = h0A0 + h1A1 + h2A2 + · · · + hN−1AN−1

the eigenvalue decomposition is

f (A) = U f (���)U−1.

The proof is evident using the matrix power and linearity properties.

2.4 Eigenvalue Decomposition of the Laplacian

Eigenvalue decomposition can be done for the Laplacian aswell. Herewewill use the
same notation for the eigenvalues and eigenvectors, as general mathematical forms,
although they are not related to the eigenvalues and eigenvectors of the adjacency
matrix. For an undirected graph the Laplacian can be written as

L = U���UT or LU = U���,

where��� is a diagonal matrix with the Laplacian eigenvalues andU is thematrix of its
eigenvectors (as columns), with U−1 = UT . Note that the Laplacian of an undirected
graph is always diagonalizable since it is a real symmetric matrix.

Each eigenvector uk of a Laplacian satisfies

Luk = λkuk .

The set of the Laplacian eigenvalues is called the graph spectrum (or graph Lapla-
cian spectrum).

The Laplacian spectrum of the graph from Fig. 2a is presented in Fig. 12, along
with the corresponding eigenvectors. The Laplacian spectrum of the disconnected
graph from Fig. 7 is plotted in Fig. 13.
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Fig. 12 Eigenvalues λk and corresponding eigenvectors uk(n) for the Laplacian of the graph
presented in Fig. 2a. The eigenvectors are shown on the vertex index line (left) and on the graph
(right)
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Fig. 13 Eigenvalues λk and corresponding eigenvectors uk(n) for Laplacian of the graph presented
in Fig. 7
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Properties of the Laplacian Eigenvalue Decomposition

• Since the Laplacian is defined in such a way that the sum of each row (col-
umn) elements is zero, then at least one eigenvalue of the Laplacian is zero with
the corresponding eigenvector u0 = [1, 1, . . . , 1]T /

√
N = 1/

√
N . The relation

Lu0 = 0 u0 is always satisfied.
• Multiplicity of zero as an eigenvalue of the Laplacian is equal to the number of
connected components in a graph. For example, if λ0 = λ1 = 0 then the graph is
not connected. If λ2 > 0 then there are two connected components in this graph.

• Sum of the eigenvalues is equal to the trace of the Laplacian matrix. For the
normalized Laplacian the sum of its eigenvalues is equal to N if there are no
isolated vertices.

• Coefficient cN in the Laplacian characteristic polynomial

P(λ) = det ||L − λI|| = λN + c1λ
N−1 + · · · + cN

is equal to 0. Coefficient c1 is equal to the number of edges multiplied by −2.
The characteristic polynomial of the Laplacian for graph from Fig. 2a is

P(λ) = λ8 − 30λ7 + 374λ6 − 2500λ5 + 9618λ4 − 21106λ3 + 24094λ2 − 10712λ

with eigenvalues (0, 1.134, 3.054, 3.317, 4, 5.679, 6.342, 6.473). In this case all
eigenvalues are of multiplicity one so the minimal polynomial is equal to charac-
teristic polynomial Pmin(λ) = P(λ).
The characteristic polynomial of the Laplacian for the graph from Fig. 7 is

P(λ) = λ8 − 20λ7 + 163λ6 − 692λ5 + 1611λ4 − 1944λ3 + 945λ2.

with eigenvalues (0, 0, 3 − √
2, 3, 3, 3, 3 + √

2, 5). Eigenvalue 0 is ofmultiplicity
2 and eigenvalue 3 is of multiplicity 3, so the minimal polynomial is

Pmin(λ) = λ5 − 14λ4 + 70λ3 − 146λ2 + 105λ

• Graphs with the same spectrum are called isospectral or cospectral graphs. Con-
struction of isospectral graphs that are not isomorph is an interesting topic in graph
theory. A complete graph is uniquely defined by its spectrum.

• For a K -regular graph the eigenvectors of the Laplacian and adjacency matrix are
the same, while for the eigenvalues the relation

λ(L)
k = K − λ(A)

k .

holds. It follows from UT LU = UT (K I − A)U.
• Eigenvalues of the normalized Laplacian LN = I − D−1/2AD−1/2 satisfy the rela-
tion

0 ≤ λ ≤ 2.
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The upper bound equality holds if and only if the graph is a bipartite graph.
• The eigenvalues and eigenvectors of the normalized Laplacian of a bipartite graph
with vertices E and H satisfy the relation (graph spectrum folding)

λk = 2 − λN−k

uk =
[

uE
uH

]
and uN−k =

[
uE

−uH

]
,

(12)

where uk is the eigenvector and uE is its part indexed on the first set of vertices,
while uH is the part of eigenvector uk indexed on the second set of vertices.
In order to prove this property, we can write the adjacency and the normalized
Laplacian matrices of an undirected bipartite graph in block forms

A =
[

0 AEH
AT

EH 0

]
and LN =

[
I LEH

LT
EH I

]
.

The eigenvalue relation is

LNuk =
[

uE + LEHuH
LT
EHuE + uH

]
= λk

[
uE
uH

]
.

From this relation we get LEHuH = (λk − 1)uE and LT
EHuE = (λk − 1)uH,

resulting in

LN

[
uE

−uH

]
= (2 − λk)

[
uE

−uH

]
.

It completes the proof of the property.

Fourier Analysis as a Special Case of the Laplacian Spectrum

For the undirected circular graph from Fig. 4f the eigenvalues of the Laplacian are

λk =
{
2 − 2 cos(π(k + 1)/N ) for odd k

2 − 2 cos(πk/N ) for even k.

Note that for k = 0 we have λ0 = 0. Most of the eigenvalues are of algebraic mul-
tiplicity 2, i.e., λ1 = λ2, λ3 = λ4, and so on. If N is odd then λN−2 = λN−1. For an
even N we have λN−1 = 2 of algebraic multiplicity 1.

The corresponding eigenvectors u0, u1, . . . , uN−1, are

uk(n) =

⎧
⎪⎨

⎪⎩

sin(π(k + 1)n/N ) for odd k, k < N − 1

cos(πkn/N ) for even k

cos(πn) for odd k, k = N − 1,

(13)

where k = 0, 1, . . . , N − 1 and n = 0, 1, . . . , N − 1.
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Note that an arbitrary linear combination of eigenvectors u2k−1 and u2k , 1 ≤ k <

N/2 is also an eigenvector since the corresponding eigenvalues are equal. Having
this fact in mind we can write an alternative set of the eigenvectors as

uk(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for k = 0

cos(π(k + 1)n/N ) + j sin(π(k + 1)n/N ) for odd k, k < N − 1

cos(πkn/N ) − j sin(πkn/N ) for even k, k > 0

cos(πn) for odd k, k = N − 1,

where j2 = −1. It can be easily checked that this set of eigenvectors is orthonormal
and the eigenvectors correspond to the DFT basis functions.

2.5 Vertex Ordering, Coloring, and Segmentation

The ordering of vertices of a graph can be arbitrary. This is an important difference
from classical signal processing where the ordering is assumed and inherent. Any
change or data ordering would produce significant changes in the classical signal
processing results, in general. In the previous section we have seen (Figs. 10 and 11)
that a reordering of the vertices will imply corresponding indices reordering within
each eigenvector.

However, the presentation of a graph signal, in any other form than the presenta-
tion which uses the graph as the domain, would benefit from an appropriate vertex
ordering. This is of particular importance in vertex-frequency graph signal represen-
tations.

Here we will describe a possible method of vertex ordering. It is based on the
Laplacian eigendecomposition. The aimof this vertex ordering is to get the smoothest
possible representation of the eigenvectors, corresponding to low eigenvalues, if the
vertices are represented sequentially. The smoothness of a graph signal can be defined
using the Laplacian quadratic form. The Laplacian quadratic form of an eigenvector
is equal to the corresponding eigenvalue

uT
k (Luk) = uT

k (λkuk) = λk .

Thiswill be discussed in details in Sect. 3.6. The eigenvector corresponding toλ0 = 0
is constant (maximally smooth for any vertex ordering) and it is not appropriate for
the vertex ordering. The next smoothest eigenvector is u1 with eigenvalue λ1. The
aim here is to order vertices in a such way that the presentation of this vector, as
a function of the vertex index, is also maximally smooth. This can be achieved by
sorting the values of u1 into a nondecreasing order (the second eigenvalue λ1 is called
the Fiedler value or algebraic connectivity, while the corresponding eigenvector u1

is known as the Fiedler vector). The order of vertices in the sorted u1 corresponds to
its smoothest presentation.
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As an example, consider the vector u1 in Fig. 12.We see that there are big changes
of the subsequent values of u1(n) with the presented vertex ordering, for example,
the change from u1(6) to u1(7) is significant. The representation of u1(n) would be
smoother if we sort the values of u1(n) and appropriately reorder the vertices. This
kind of reordering for the graph presented in Fig. 12, would produce vertex order

[6, 5, 4, 3, 7, 1, 2, 0]

instead of the presented order [0, 1, 2, 3, 4, 5, 6, 7]. With this vertex ordering, the
presentation of u1(n) would be smoother.

In general, the spectral similarity of vertices can be defined using more than one
eigenvector. Coefficients uk(n), k = 0, 1, . . . , N − 1 are assigned to the vertex n.
We can assign an N dimensional spectral vector

qn = [u0(n), u1(n), . . . , uN−1(n)]T

to each vertex n. If u0 is omitted then qn = [u1(n), . . . , uN−1(n)]T .

The spectral similarity between vertices n andm is defined using norm-two ‖qn −
qm‖2. We can restrict spectral similarity to a few lower-order (smooth) spectral
coefficients. If we restrict the spectral similarity to the two (or three) smoothest
coefficients then the spectral vector is qn = [u1(n), u2(n)]T in the two-dimensional
case (or qn = [u1(n), u2(n), u3(n)]T for the three dimensional case).

From this point we can proceed in two ways:

• The first one is to keep the original vertex positions and to color them according to
the spectral vector qn . Single color vertex coloring using values of u1 for the vertex
color intensity is presented in Fig. 14. Based on this coloring we can clearly see
three graph segments, {0, 1, 2}, {3, 4, 7}, and {5, 6}. Three color vertex coloring,
using u2, u3, and u4 for the Minnesota graph is given in Fig. 15. Eigenvectors u0

and u1 are omitted in the Minnesota graph case, since corresponding eigenvalues
are λ0 = λ1 = 0. The graph segmentation can be done by grouping vertices with
similar colors, using appropriate thresholds, and assigning the vertices from each
group to segments (with constant colors).

• Another approach is to use the spectral vector qn as a position of a vertex in a new
space (Laplacian eigenmaps or LE). In the case of two or three dimensional spectral
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Fig. 14 Vertex coloring in a graph with some weak connections using the Laplacian eigenvector
u1 and corresponding intensities of red color
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Fig. 15 Vertex three-dimensional coloring in the Minnesota road-map graph using the Laplacian
eigenvectors {u2, u3, u4} as the coordinates in the RGB coloring system
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Fig. 16 The Minnesota road-map graph with new two-dimensional vertex positions defined by the
Laplacian eigenvectors {u2, u3} as the vertex coordinates (the 2D Laplacian eigenmap)
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Fig. 17 TheMinnesota road-map graph with new thee-dimensional vertex positions defined by the
Laplacian eigenvectors {u2, u3, u4} as the vertex coordinates (the 3D Laplacian eigenmap)

vectors, this approach can be used to graphically present vertex spectral similarity.
For the Minnesota graph, the Laplacian eigenmap for the two-dimensional case is
given in Fig. 16, and for the three-dimensional case in Fig. 17.

3 Signals on Graphs

In classical signal processing, signal is sampled at successive, equally spaced, time
instants. The ordering of signal samples is then obvious with x(n) being preceded by
x(n − 1) and succeeded by x(n + 1). The time distance between samples is consid-
ered as the basic parameter in various processing algorithms. This relation between
sampling instants can be represented in a graph form. The vertices correspond to the
instants when the signal is sampled and the edges define sampling (vertex) ordering.
The fact that sampling instants are equally spaced can be represented with same
weights for all edges (for example normalized to 1). Graphical illustration of this
signal is given in Fig. 18.
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Fig. 18 Graph representation of a classical time-domain signal
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Fig. 19 a A circular graph. b A periodic signal on a graph. Signal values are presented as vertical
lines starting from the corresponding vertex
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Fig. 20 a A signal on an undirected circular graph. b Undirected arbitrary graph. Signal values are
presented as vertical lines starting from the corresponding vertex

In digital signal processing algorithms, periodicity of the analyzed signals is usu-
ally assumed, meaning that sample x(N − 1) is succeeded by x(0). This case corre-
spond to the circular graph, Fig. 19. This model is used in many common transforms,
like DFT, DCT, wavelets, and corresponding processing algorithms based on these
transforms.

Signal on a graph is defined by associating real (or complex) values x(n) to each
vertex, Fig. 20. Signal values can be arranged in a vector form
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x = [x(0), x(1), . . . , x(N − 1)]T .

The graph is considered as a generalized signal domain.
In general, any linear processing of a graph signal at a vertex n can be defined as

a linear combination of the signal value x(n) at this vertex and the signal samples
x(m) at vertices around this vertex

y(n) = x(n)h(n, n) +
∑

m∈Vn

x(m)h(n,m),

where Vn is the set of vertices in the neighborhood of vertex n. This form is highly
vertex-varying. Only in a specific case of regular graphs can it be vertex invariant.
Then Vn is a K -neighborhood of the vertex n with h(n,m) = h(n − m).

For a general graph we can define a vertex-invariant filtering function, using
shifts on a graph. Various forms of signal shifts on a graph will be introduced in the
next sections. They are used to introduce efficient graph signal processing methods
[24–38].

3.1 Adjacency Matrix and Graph Signal Shift

Consider a graph signal x. Its sample at a vertex n is x(n). The signal shift on a
graph can be defined as the movement of the signal sample from the vertex n along
all walks, with the length equal to one. The movement is done for all vertices. The
signal shifted in this way is denoted by x1. Its values can be defined using the graph
adjacency matrix as

x1 = Ax (14)

As an illustration of a signal and its shifted version, consider classical signal
processing, where the adjacency matrix is defined by graph Fig. 19a. The original
signal x is presented in Fig. 21a. The shifted version of this signal x1 is shown in
Fig. 21b. Two simple signals on an undirected graph are presented on the left of
Fig. 22a. The corresponding shifted signals with x1 = Ax are presented on the right
of Fig. 22b.

A signal shifted by two is obtained by a shift for one of the shifted signals. The
resulting, twice shifted, signal is

x2 = A(A x) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the graph
signal already shifted for m − 1

xm = Axm−1 = Am x.
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Fig. 21 a A signal on the directed circular graph. b A shifted version of the graph signal from a
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Fig. 22 a Two simple signals on an undirected graph. b Shifted versions of the graph signals
from a

3.2 Systems Based on a Graph Shifted Signals

A system on a graph can be implemented as a linear combination of a graph signal
and its graph shifted versions. The output signal from a system on a graph can be
written as

y = h0A0 x + h1A1 x + · · · + hM−1AM−1 x =
M−1∑

m=0

hmAm x (15)

where A0 = I, by definition.
The system coefficients are h0, h1, . . . , hM−1. For a circular (classical signal

processing) graph this relation reduces to the well known FIR filter,

y(n) = h0x(n) + h1x(n − 1) + · · · + hM−1x(n − M + 1). (16)
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Fig. 23 A vertex domain signal filtering example. An input graph signal (left) and the output signal
obtained as y = 1.0 x + 0.5 Ax (right)

Having in mind that the matrix Am describes walks of the length m in a graph,
the output graph signal y(n) is calculated as a linear combination of the input graph
signal values within M − 1 neighborhood of the considered vertex n.

It is obvious that the system order M − 1 should be lower than the number of
vertices N in the case when the minimal and characteristic polynomial are of the
same degree. In general, the system order M − 1 should be lower than the degree
Nm of the minimal polynomial of the adjacency matrix A.

Any system of order M − 1 ≥ Nm can be reduced to a system of order Nm − 1.
If the systemorder is higher or equal to the degree ofminimal polynomialM − 1 ≥

Nm then there exist more than one system producing the same output signal for a
given input signal. All of these systems are called equivalent. This topic will be
addressed in Sect. 3.4.4 dealing with the filter design in the spectral domain.

As an example consider a graph signal Fig. 23(left) and a linear system on this
graph with coefficients h0 = 1, h1 = 0.5. The output graph signal is presented in
Fig. 23(right).

In general, a system on a graph is defined in the vertex domain by

y = H(A)x.

This system is linear since

H(A)(a1x1 + a2x2) = a1y1 + a2y2.

A system on a graph is shift invariant if

H(A)(Ax) = A(H(A)x).
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A system on a graph defined by

H(A) = h0A0 + h1A1 + · · · + hM−1AM−1 (17)

is linear and shift invariant since AAm = AmA.

3.3 Graph Fourier Transform Based on the Adjacency Matrix

In the classical signal analysis the signals are often analyzed and processed in the
spectral (Fourier) domain. The spectral domain approach to signal processing has
lead to many simple and efficient algorithms in classical signal processing.

The spectral analysis and processing approach can be extended to the graph signals
as well. Spectral domain representations of the graph signals can be based on the
adjacencymatrix or Laplacian spectral decomposition. Both of these approaches will
be described in this and the next section, respectively.

The graph Fourier transform of a signal x is defined as

X = U−1x (18)

where U is a matrix with eigenvectors of the adjacency matrix in its columns. Denote
elements of vector X as X (k), for k = 0, 1, . . . , N − 1. If U−1 = UT the element
X (k) is a projection of the considered signal to the kth eigenvector, as a graph signal
decomposition basis function,

X (k) =
N−1∑

n=0

x(n)uk(n). (19)

Therefore the graph Fourier transform can be understood as a signal decomposition
onto the set of eigenvectors as orthonormal basis functions.

The inverse graph Fourier transform is obtained as

x = U X (20)

or

x(n) =
N−1∑

k=0

X (k)uk(n). (21)

In the case of a circular graph from Fig. 19, this transform reduces to the standard
discrete Fourier transform (DFT), Eq. (11). It is the reason why the transform (19)
and its inverse (21) are referred to as the graph discrete Fourier transform (GDFT)
and inverse graph discrete Fourier transform (IGDFT).
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Consider a system on a graph (15). If we use the spectral representation of the
adjacency matrix A = U���U−1 we will get

y = h0U���0U−1 x + h1U���1U−1 x + · · · + hM−1U���M−1U−1 x (22)

or
y = U

(
h0���

0 + h1���
1 + · · · + hM−1���

M−1
)
U−1 x = U H(���)U−1 x. (23)

By left multiplying this relation with U−1 we get

U−1y = H(���)U−1 x (24)

If the GDFTs of the input and output graph signal

X = U−1x, Y = U−1y

are used, we will obtain the spectral domain system relation as

Y = H(���) X (25)

or
Y (k) = (h0 + h1λk + · · · + hM−1λ

M−1
k )X (k).

The transfer function of a system on a graph is defined by

H(λk) = Y (k)

X (k)
= (h0 + h1λk + · · · + hM−1λ

M−1
k ). (26)

The classical signal analysis system (16) is obtained with the adjacency matrix
whose eigenvalues areλk = e− j2πk/N , defined by (11). Note that any classical system
whose transfer function can be described using the DFT with periodicity N can be
written in this form with M = N .

Similar to the z transform in the classical signal processing, we can introduce
system transfer function in the z-domain for systems on graphs.

The z-domain transfer function of a system on a graph is defined as

H(z−1) = Z{hn} = h0 + h1z
−1 + · · · + hM−1z

−(M−1). (27)

Obviously
H(λk) = H(z−1)

∣∣
z−1=λk

and we can use results defined for the classical z-domain transfer function.
Definition of the z-transform for arbitrary graph signals x(n) and y(n) that would

satisfy the relation Y (z−1) = H(z−1)X (z−1) is not straightforward. It will be dis-
cussed later in Sect. 3.9.
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3.4 Filtering in the Adjacency Matrix Spectral Domain

3.4.1 Normalization

The energy of a graph shifted signal is ‖x1‖22 = ‖Ax‖22 . The graph shift does not
satisfy isometry property. In general, the energy of shifted signal is not the same as
the energy of the original signal, ‖Ax‖22 �= ‖x‖22 . In processing graph signals it is
commonly desirable that a graph shift does not increase the signal energy.

Using the matrix norm-two it can be easily shown that the ratio of energies of the
graph shifted and the original signal satisfies the relation

max

{‖Ax‖22
‖x‖22

}
= max

{
xT AT Ax

‖x‖22

}
= λ2

max. (28)

where λmax = maxk |λk |.
If we do not want that the energy of a graph shifted signal ‖Ax‖22 exceeds the

energy of the original graph signal ‖x‖22 thenwe should use the normalized adjacency
matrix

Anorm = 1

λmax
A

in the graph shift operation and in any system on a graph. This normalization does
not make the shift on graph operation isometric. The energy of the shifted signal is
less than or equal to the energy of the original graph signal. The equality is achieved
only for a very specific signal proportional to the eigenvector that corresponds to
λmax.

The basic shift on a graph is then defined by using normalized adjacency
matrix as

x1 = Anormx. (29)

A system on a graph with the normalized adjacency matrix is of the form

y =
M−1∑

m=0

hmAm
norm x. (30)

3.4.2 Spectral Domain Filtering

The filtering relation, as a special kind of a system on a graph, can be written as

y =
M−1∑

m=0

hmAm
norm x = H(Anorm)x.
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Its spectral domain form follows from the decomposition of H(Anorm) as

y = H(Anorm)x = UH(���)U−1x

with
U−1y = H(���)U−1x,

as
Y = H(���)X,

where X = U−1x and Y = U−1y are the graph Fourier transforms of the input and
output signal, respectively. The transfer function of a filter on a graph is again

H(λk) = Y (k)

X (k)
= h0 + h1λ

1 + · · · + hM−1λ
M−1,

where λk are the eigenvalues of the normalized adjacency matrix Anorm .

3.4.3 Spectral Ordering of the Adjacency Matrix Eigenvectors

For proper low-pass and high-pass filtering we have to establish the spectral order.
This means that we have to establish a criterion to classify the eigenvectors, corre-
sponding to the basis functions, as slow varying or fast varying. In classical Fourier
analysis, the basis functions are ordered according to the frequency. Low-pass (slow
varying) basis functions are the functions with small frequencies. The frequencies
of the graph eigenvectors, as functions for signal decomposition, are not defined.
We have to find another criterion to classify the eigenvectors. Again, an inspiration
will be found in the classical Fourier analysis. In that case, instead of the frequency,
energy of the signal change can be used as an indicator of the speed of a signal change
in time.

The energy of a signal (a basis function) u(n) change in classical analysis can be
defined as the energy of the first difference

EΔu =
N−1∑

n=0

|u(n) − u(n − 1)|2.

Lower values of E�u means that u(n) is slow-varying. Value E�u = 0 indicates, in
classical signal analysis, that the signal is constant. Large values of E�u are associated
with fast signal changes in time. This form is also called the norm-two total variation
of a signal. If the energy of a basis function u(n) change is large it means that this
eigenvector can be considered as the one belonging to the higher spectral content of
the signal.
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In graph signals the first graph difference can be defined as a difference of the
graph signal and its graph shift. For an eigenvector u, its form is

���u = u − u1 = u − Anormu.

The energy of signal change is the energy of the first graph difference of signal u

EΔu = ‖u − Anormu‖22 (31)

=
∥∥∥∥u − 1

λmax
Au

∥∥∥∥
2

2

=
∥∥∥∥u − 1

λmax
λu

∥∥∥∥
2

2

= |1 − λ

λmax
|2 (32)

For eigenvectors Au = λu and ‖u‖22 = 1 hold.
The energy of signal change isminimal forλ = λmax and increases asλ decreases,

Fig. 10.
After we have established a criterion for the eigenvector ordering, based on the

corresponding eigenvalues, we will define an ideal low-pass filter. This filter should
pass unchanged all signal components (eigenvectors) whose changes are slower than
the one defined by the cut-off eigenvalue λc. It should stop all signal components
(eigenvectors) whose variations are faster than the one defined by the cut-off eigen-
value. The ideal low-pass filter is defined as

f (λ) =
{
1 for λ > λc

0 for other λ.

As an example, consider a signal on a graph presented in Fig. 2a. The graph
signal is obtained as a linear combination of two adjacency matrix eigenvectors x =
3.2u7 + 2u6 (adjacency matrix eigenvectors of the considered graph are presented
in Fig. 10). The signal is presented in Fig. 24a. The signal is corrupted by a white
Gaussian noise with signal-to-noise (SNR) ratio SN Rin = 2.7dB. The noisy graph
signal is presented in Fig. 24b. The noisy signal is filtered by using an ideal spectral
domain graph filter with a cut-off eigenvalue λc = 1. The output signal, presented
in Fig. 24c, is obtained. The output SNR is SN Rout = 18.8dB.

The energy of signal change criterion is consistent with the classical DFT based
filtering when λk = exp(− j2πk/N ) and λmax = 1. In that case the decision on the
low-pass and high-pass basis functions is made based on E�u value and a given
threshold.

3.4.4 Spectral Domain Filter Design

Let the desired graph transfer function beG(���). A systemwith this transfer function
can be implemented either in the spectral domain or in the vertex domain.
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Fig. 24 Signal filtering example. Original signal (a), noisy signal (b) and filtered signal (c). An
ideal low-pass filtering with two highest eigenvalues in the pass-band is applied

In the spectral domain the implementation is straightforward. It can be performed
in the following three steps:

1. Calculate the GDFT of the input graph signal X = U−1x,
2. Multiply the GDFT of the input graph signal by G(���) to get Y = G(���)X, and
3. Calculate the output graph signal as the inverse GDFT, y = UY.

This procedure may computationally be very demanding for large graphs. In the
case of a large graph it would be easier to implement the desired filter (or its close
approximation) in the vertex domain.
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For the implementation in the vertex domain, we have to find the coefficients
h0, h1, . . . , hM−1 in (15) such that its spectral representation H(���) is equal (or
approximately equal) to G(���). This is done in the following way. The transfer
function of the vertex domain system is given by (26) as H(λk) = h0 + h1λ1

k +
· · · hM−1λ

M−1
k . It should be equal to the desired transfer function G(λk), for

k = 0, 1, . . . , N − 1. This condition leads to a system of linear equations

h0 + h1λ1
0 + · · · hM−1λ

M−1
0 = G(λ0)

h0 + h1λ1
1 + · · · hM−1λ

M−1
1 = G(λ1)

...

h0 + h1λ1
N−1 + · · · hM−1λ

M−1
N−1 = G(λN−1).

(33)

The matrix form of this system is

Vλ h = g, (34)

where Vλ is the Vandermonde matrix form of eigenvalues λk ,

h = [h0, h1, . . . , hM−1]T

is the vector of the system coefficients that we want to calculate, and

g = [G(λ0),G(λ1), . . . ,G(λN−1)]T = diag(G(���)).

Now we will comment on the solution of system (33), (34).

Comments on the System of Equations Solution

1. Consider the case when all eigenvalues are distinct (minimal polynomial is equal
to characteristic polynomial, Pmin(λ) = P(λ)).

(a) If the filter order is such that M = N , then the solution of (33) is unique,
since the Vandermonde determinant is always nonzero.

(b) If the filter order is such that M < N , then system (33) is overdetermined.
The solution of (33) is obtained in the mean squared sense only (as it will
be described later in this section).

2. If some of the eigenvalues are of a degree higher than one (minimal polynomial
order Nm is lower than N ) system (33) reduces to a system of Nm linear equations
(by removing multiple equations for the repeated eigenvalues λ).

(a) If the filter order is such that Nm < M ≤ N the system is underdetermined.
In that case M − Nm filter coefficients are free variables. The system has an
infinite number of solutions. All obtained filters are equivalent.

(b) If the filter order is such that M = Nm the solution of system (33) is unique.
(c) If the filter order is such that M < Nm the system (33) is overdetermined

and the solution is obtained in the mean squared sense.
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3. Any filter of an order M > Nm has a unique equivalent filter whose order is
Nm . It can be obtained by setting free variables to zero, hi = 0 for i = Nm,

Nm + 1, . . . , N − 1.

Solution of the System

For M = N = Nm the solution of system (33) or (34) is

h = V−1
λ g.

For the overdetermined case (when M < Nm) the mean-square approximation of
h = [h0, h1, . . . , hM ]T is obtained by minimizing the squared error

e = ‖Vλh − g‖22 .

From ∂e/∂hT = 0 we get

ĥ = (VT
λ Vλ)

−1VT
λ g = pinv(Vλ)g.

In the cases when M < Nm the obtained solution ĥ is the mean square solution for
Vλh = g. Since this solution may not satisfy Vλh = g then the designed coefficients
ĝ (its spectrum Ĝ(���))

Vλĥ = ĝ

in general differs from the desired system coefficients g (its spectrum G(���)).
As an example consider the graph from Fig. 2a and the synthesis of a desired filter

whose frequency response would be

g = [1, 1, 0.5, 0.4, 0.1, 0, 0, 0]T .

Consider the following cases: M = 0, 1, 2, 3. The filter is designed for various M
using (33). The solution is obtained according the presented procedure. The results
are shown in Fig. 25. The vertex domain realization of the filter with M = 3 is

y = 0.4456A0 x + 0.2298A1 x − 0.0188A2 x. (35)

For M = N = 8 the exact frequency response ĝ = g is obtained.

Inverse System

An inverse filter H(���) to G(���) is obtained from

H(���)G(���)X = X.

It means that H(λk) = 1/G(λk) for each k if all G(λk) �= 0 and P(λ) = Pmin(λ).
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Fig. 25 Designing a filter with the specified transfer function in the spectral domain. The desired
spectral response G(λk) is presented with blue circles. The designed graph system response Ĝ(λk),
obtained with M + 1 filter coefficients h0, h1, . . . , hM in the vertex domain, is presented with red
asterisks

3.5 Graph Fourier Transform Based on the Laplacian

Like in the case of an adjacency matrix, the spectral decomposition of a graph
signal can be done using the eigenvalue decomposition of the Laplacian L =
U���U−1 or LU = U���. Although the analysis can be done in a unified way for both
the adjacency matrix and the Laplacian based spectral decomposition, due to their
different behavior and importance they will be considered separately.

The graph Fourier transform of a signal x, using the Laplacian eigenvalue decom-
position, is defined as

X = U−1x, (36)

where U is a matrix with the Laplacian eigenvectors. The inverse graph Fourier
transform is

x = U X. (37)

In the case of circular unweighted graph this spectral analysis also reduces to the
standard Fourier transform, but with real-valued basis functions (13).
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3.6 Ordering and Filtering in the Laplacian Spectral Domain

The graph shift and adjacency matrix are related to the first finite difference in
the vertex domain. The eigenvectors (basis functions) variations are related to the
energy of the graph signal change, Sect. 3.4.3. A similar approach can be used for
the Laplacian based decomposition.

In the case of classical time domain signals, the Laplacian on a circle graph repre-
sents the second order finite difference y(n) = −u(n − 1) + 2u(n) − u(n + 1). This
difference can be written in a matrix form as y = Lu. It is obvious that the eigen-
vectors u(n) with small changes should have small cumulative energy of the sec-
ond order difference Eu =∑n((u(n) − u(n − 1))2 + (u(n) − u(n + 1))2)/2. This
value corresponds to the quadratic form of eigenvector u defined by Eu = uT Lu.
This reasoning can be used in the graph signals as well. As a default case for the
Laplacian analysis we will use weighted undirected graphs.

By definition
Lu = λu

or
uT Lu = λuT u = λ = Eu,

since uT u = 1 by definition. It means that the quadratic form of an eigenvector is
equal to the corresponding eigenvalue. Next we will show that it can be used as a
measure of the signal smoothness. By definition

uT Lu =
N−1∑
n=0

u(n)
N−1∑
m=0

Wnm(u(n) − u(m)) =
N−1∑
n=0

N−1∑
m=0

Wnm(u2(n) − u(n)u(m)).

In full summations over n and m we can replace the summation of u2(n) by a half
of the summations of both u2(n) and u2(m) over n and m, since Wnm = Wmn . The
same can be done for u(n)u(m). Then we can write

uT Lu = 1
2

N−1∑
n=0

N−1∑
m=0

Wnm(u2(n) − u(n)u(m) + u2(m) − u(m)u(n)) =
1
2

N−1∑
n=0

N−1∑
m=0

Wnm(u(n) − u(m))2 ≥ 0. (38)

Obviously smalluT Lu = λmeans small variationsWnm(u(n) − u(m))2 in the eigen-
vector for each vertex n. The eigenvectors corresponding to small λ belong to the
low-pass part of a graph signal.

From the previous analysis we may also conclude that the eigenvalues of a Lapla-
cian are nonnegative (positive semi-definite matrix). At least one Laplacian eigen-
value is equal to 0. According to the Laplacian definition we have that the sum of
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each row (column) is equal to 0. It means that for x = 1 we have Lx = 0 = 0 · x.
We can conclude that there is eigenvalue λ0 = 0 with corresponding eigenvector
u0 = 1/

√
N . A vector with all values equal to 1 is denoted by 1.

In general, the smoothness of a graph signal x is defined by the quadratic form

Ex = xTLx.

An ideal low-pass filter in the Laplacian spectrum domain, with a cut-off eigen-
value λc, will be defined as

f (λ) =
{
1 for λ < λc

0 for other λ.

As an example consider a signal on the graph presented in Fig. 3. The graph signal
is obtained as a linear combination of two Laplacian eigenvectors x = 2u0 + 1.5u1.
(Laplacian eigenvectors of the considered graph are presented in Fig. 12.) This signal
is presented in Fig. 26a. The signal is corrupted by a white Gaussian noise. The noisy
graph signal is described by a signal-to-noise (SNR) ratio SN Rin = −1.76dB.Noisy
graph signal is presented in Fig. 26b. Using an ideal spectral domain graph filter, with
a cut-off eigenvalue λc = 2, the noisy graph signal is filtered. The output signal,
presented in Fig. 26c, is obtained. The output SNR, for this signal, is SN Rout =
21.29dB.

A direct relation between the adjacency and Laplacian spectral decomposition
can be established for K -regular unweighted graphs. For these graphs holds

L = K I − A

resulting in
λA = K − λL ,

where the adjacency matrix and the Laplacian eigenvalues are denoted by λA and λL ,
respectively. The eigenvectors are the same. Ordering with respect to λ from the low-
pass to the high-pass part is just opposite for these two graph spectral decompositions.

3.7 Systems on a Graph Defined Using the Laplacian

A system on a graph can be defined using the Laplacian as well

y = h0L0 x + h1L1 x + · · · + hM−1LM−1 x =
M−1∑

m=0

hmLm x. (39)
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Fig. 26 Signal filtering example. Original signal (a), noisy signal (b) and filtered signal (c). Low
pass filtering with two smallest eigenvalues is applied

For an unweighted graph this system form can be related to the adjacency matrix
form using L = D − A.

The spectral domain description of a graph system is obtained using the Laplacian
eigenvalue decomposition,

y =
M−1∑

m=0

hmLm x = H(L)x = UH(���)UT x = UH(���)X = UY, (40)
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where
Y = H(���)X

or
Y (k) = H(λk)X (k), k = 0, 1, . . . , N − 1.

In the vertex domain the nth element of y = UH(���)UT x is

y(n) =
N−1∑

k=0

N−1∑

i=0

x(i)uk(i)H(λk)uk(n) =
N−1∑

i=0

x(i)hn(i), (41)

where
H(λk) = h0 + h1λk + · · · + hM−1λ

M−1
k (42)

and

hn(i) =
N−1∑

k=0

H(λk)uk(n)uk(i) = Tn{h(i)}.

The value of y(n) can be interpreted as a generalized convolution, using a generalized
shift of impulse response in the vertex domain. It can be described by using responses
to the unite delta pulses. Let us consider the delta function located at a graph vertex
m and its spectrum. The delta function at the vertex m is defined as

δm(n) =
{
1 for n = m

0 for n �= m,
(43)

and the corresponding spectrum is given by

Δ(λk) =
N−1∑

n=0

δm(n)uk(n) = uk(m). (44)

Any graph signal can be written as

x(n) =
N−1∑

i=0

x(i)δn(i)

or in a vector form

x =
N−1∑

i=0

x(i)δi ,

where δi is a vector with elements δ(n − i). Then
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y =
M−1∑

m=0

hmLm x = UH(���)UT x =
N−1∑

i=0

x(i)UH(���)UTδi

with elements

y(n) =
N−1∑

i=0

x(i)
N−1∑

k=0

uk(n)H(λk)uk(i) =
N−1∑

i=0

x(i)hn(i).

Calculation of this form of convolution for a vertex n, given by (41), is localized
to the (M − 1) neighborhood of vertex n, according to (40). This is an important
property for large graphs. A generalized convolution for two arbitrary graph signals
will be explained next.

3.8 Convolution of Signals on a Graph

Consider two graph signals x(n) and h(n). A generalized convolution operator of
these two signals on a graph is defined using their spectra [39]. The assumption is
that the spectrum of a convolution

y(n) = x(n) ∗ h(n)

on a graph is equal to the product of the graph signal spectra

Y (k) = X (k)H(k). (45)

The result of the generalized graph convolution operation x(n) ∗ h(n) is equal to the
inverse GDFT of Y (k),

y(n) = x(n) ∗ h(n) =
N−1∑

k=0

Y (k)uk(n) =
N−1∑

k=0

X (k)H(k)uk(n).

In this case

H(k) =
N−1∑

n=0

h(n)uk(n).

A shift on the graph can be defined within the framework of the generalized
convolution. Consider the graph signal h(n) and the delta function located at the
vertex m. Here, we will use hm(n) to denote the shifted version of the graph signal
h(n). The signal corresponding to a shift to a vertex m is equal to
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hm(n) = h(n) ∗ δm(n) =
N−1∑

k=0

H(k)uk(m)uk(n). (46)

The same relation follows from the inverse GDFT of X (k)H(λk),

y(n) =
N−1∑
k=0

X (k)H(k)uk(n) =
N−1∑
k=0

N−1∑
m=0

x(m)uk(m)H(k)uk(n) =
N−1∑
m=0

x(m)hm(n) = x(n) ∗ h(n), (47)

where

hm(n) =
N−1∑

k=0

H(k)uk(m)uk(n) = Tm{h(n)}

plays the role of a shifted signal. Since the definition of H(k) as a GDFT of a signal
h(n) differs from (42) it produces different shift operation. These two shift operations
are denoted by Tm{h(n)} and Tm{h(n)}, respectively.

Consider, for example, the signal with Laplacian GDFT

H(k) = exp(−k/4).

Shifted signals h(n) obtained using hm(n) = Tm{h(n)} are presented in Fig. 27.

3.9 Graph z-Transform of a Signal

The relation between Tm{h(n)} and Tm{h(n)} can be established based on the def-
initions of H(λk) and H(k). For H(λk) defined by (42) the corresponding IGDFT
coefficients h(n)

h(n) =
N−1∑

k=0

H(λk)uk(n)

and the coefficients hn in

H(λk) = h0 + h1λk + · · · + hM−1λ
M−1
k

are not the same, h(n) �= hn .
Vector form of the last two relations is

[h(0) h(1) . . . h(N − 1)]T = UH(���)

H(���) = Vλ[h0 h1 . . . hN−1]T .
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Fig. 27 Graph signal shifts based on the Laplacian eigendecomposition
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The signal h(n) and the coefficients hn can easily be related via

[h0 h1 . . . hN−1]T = V−1
λ UT [h(0) h(1) . . . h(N − 1)]T .

These coefficientswould be the same in the classicalDFT (with directed adjacency
matrix) when λk = exp(− j2πk/N ) and uk(n) = exp( j2πnk/N )/

√
N = λ−n

k /
√
N ,

with hn = h(n) and H(λk) =
N−1∑
n=0

h(n)u∗
k(n).

The previous relation will be used to define the z-transform of a graph signal. For
given signal x = [x(0) x(1) . . . x(N − 1)]T the signal corresponding to a system
transfer function that would have the same GDFT is

[x0 x1 . . . xN−1]T = V−1
λ UT [x(0) x(1) . . . x(N − 1)]T .

The z-transform of these coefficients is

X (z−1) = Z{xn} = x0 + x1z
−1 + · · · + xN−1z

−(N−1). (48)

For this z-transform holds

Y (z−1) = H(z−1)X (z−1).

The output signal y(n) can be obtained as

[y(0) y(1) . . . y(N − 1)]T = UVλ[y0 y1 . . . yN−1]T ,

where the output graph signal y(n) is obtained from the inverse z-transform of the
coefficients yn of Y (z−1) = H(z−1)X (z−1)

Y (z−1) = Z{yn} = y0 + y1z
−1 + · · · + yN−1z

−(N−1).

The z-transform representation may be of interest when the eigenvalues are
complex-valued. They may appear in decomposition of adjacency matrices of undi-
rected graphs. For example, for the graph from Fig. 2b and its adjacency matrix the
eigenvalues are presented in Fig. 28.

The analytic signal and Hilbert transform are defined as

Xa(k) = (1 + sign(Imag(λk))X (k)

Xh(k) = j sign(Imag(λk))X (k)

X (k) = Xa(k) + j Xh(k)

If these relations are applied to the standard DFT with λk = exp(− j2πk/N ) we
would get the classical signal processing definitions.
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Fig. 28 Eigenvalues of the
directed graph adjacency
matrix

3.10 Shift in the Spectral Domain

We can define a shift in the spectral domain in the same way as the shift in the
vertex domain has been defined. Consider a product of two signals x(n)y(n) on an
undirected graph. Its GDFT is

GDFT{x(n)y(n)} =
N−1∑
n=0

x(n)y(n)uk(n) =
N−1∑
n=0

N−1∑
i=0

X (i)ui (n)y(n)uk(n) =
N−1∑
i=0

X (i)Yi (k),

where

Yi (k) =
N−1∑

n=0

y(n)ui (n)uk(n)

can be considered as a shift of Y (k) for i . Obviously Y0(k) = Y (k) up to a constant
factor. This relation does not hold for the shift in the vertex domain.

3.11 Parseval’s Theorem on a Graph

For two signals x(n) and y(n) on an undirected graph and their spectra X (k) and
Y (k), Parseval’s theorem holds
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N−1∑

n=0

x(n)y(n) =
N−1∑

k=0

X (k)Y (k). (49)

To prove Parseval’s theorem on graphs we can write

N−1∑

n=0

x(n)y(n) =
N−1∑

n=0

[
N−1∑

k=0

X (k)uk(n)

]
y(n) =

N−1∑

k=0

X (k)
N−1∑

n=0

y(n)uk(n), (50)

producing Parseval’s theorem. It has been assumed that U−1 = UT for undirected
graphs. This theorem holds for both the Laplacian and the adjacency matrix based
decompositions on undirected graphs.

3.12 Optimal Denoising

Consider a signal composed of a slow-varying signal s and a fast changing
disturbance ε

x = s + ε.

The aim is to design a filter for disturbance suppression (denoising). The output of
this filter is denoted by y.

The optimal denoising task could be defined as a minimization of

J = 1

2
‖y − x‖22 + αyT Ly.

Beforewe solve this problemwewill explain themeaning of terms in the cost function
J . Minimization of the first term 1

2‖y − x‖22 forces that the output signal y is as close
to the available observations x as possible. The second term is a measure of signal
y smoothness. It promotes the solution smoothness (see Sect. 3.6). Parameter α is a
balance between output closeness to x and smoothness of y criterion.

The solution of the minimization problem is

∂ J

∂yT
= y − x + 2αLy = 0

resulting in
y = (I + 2αL)−1x.

The Laplacian spectral domain form of this relation follows with L = UT���U,
Y = UT y, and X = UT x as

Y = (I + 2α���)−1X.



Introduction to Graph Signal Processing 53

The transfer function of this filter is

H(λk) = 1

1 + 2αλk
.

For a small α, H(λk) ≈ 1 and y ≈ x. For a large α, H(λk) ≈ δ(k) and y ≈ const.
is maximally smooth (a constant, without any variation).

Here we will state two more cost function forms used for graph signal denoising.
Instead of the resulting signal smoothness, we may add the condition that its

deviation from a linear form is as small as possible. Then the cost function is

J = 1

2
‖y − x‖22 + α‖Ly‖22 = 1

2
‖y − x‖22 + αyT L2y

resulting in a closed form solution

y = (I + 2αL2)−1x

with the corresponding spectral domain relation H(λk) = 1/(1 + 2αλ2
k).

A combination of the previous two cost function forms may provide additional
flexibility in the transfer function design. If we use

J = 1

2
‖y − x‖22 + αyT Ly + βyT L2y

we would get the transfer function

H(λk) = 1

1 + 2αλk + 2βλ2
k

.

We can change the transfer function form by choosing appropriate values of the
parametersα and β. For example, if wewant the component corresponding toλ1 �= 0
to be unattenuated we would use α + βλ1 = 0. This cost function can be extended
to produce a transfer function for M unattenuated components.

In some applications we would like to promote the sparsity of the resulting signal
change, instead of its smoothness. Then the compressive sensing theory requires that
the quadratic form or the norm-two in the previous equations is replaced with the
forms that promote sparsity. Two possible such cost functions are:

J = 1

2
‖y − x‖22 + α‖Ly‖p

p

and

J = 1

2

N−1∑

n=0

(y(n) − x(n))2 + α

N−1∑

n=0

(
N−1∑

m=0

Wnm(y(n) − y(m))2

)p/2
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with 0 ≤ p ≤ 1. Minimization of these functions can not be done in an analytic way,
like in the case of p = 2. The norm-zero,with p = 0, is the best in promoting sparsity.
For p = 0, the second term in minimization counts and minimizes the number of
nonzero elements inLy. In the secondminimization form the norm-zero promotes the

smallest possible number of nonzero elements of the form
N−1∑
m=0

Wnm(y(n) − y(m))2.

This is the total variations (TV) approach.
The norm-one with p = 1 in previous relations is convex, allowing the gradient

descend methods in the solution, while producing the same solution as with p = 0,
under some conditions.

4 Subsampling, Compressed Sensing, and Reconstruction

Graphs may have a large number of vertices. This number can be of the order of
millions or even higher. The fact that the number of vertices and corresponding
graph signal values can be extremely large makes the problem of subsampling and
compressive sensing crucially important in graph signal processing. The problems
of subsampling and compressive sensing are closely related to the reconstruction
possibility from a reduced set of measurements (signal samples or their linear com-
binations). Here we will present several basic approaches to the subsampling, along
with their relations to classical signal processing [40–58].

4.1 Subsampling of the Low-Pass Graph Signals

We will start with the simplest case where we can assume that the considered graph
signal is of low-pass type.This signal canbewritten as a linear combinationof K < N
eigenvectors with the slowest changes. For example, for the Laplacian spectrum of
a signal with K nonzero values

X = [X (0), X (1), . . . , X (K − 1), 0, 0, . . . , 0]T

the signal is of form

x(n) =
K−1∑

k=0

X (k)uk(n).

The smallest number of graph signal samples needed to recover this signal is
M = K < N . Assume thatM signal samples are available, K ≤ M < N . The vector
of available graph signal samples will be referred to as the measurement vector.
It will be denoted by y. The set of vertices where the graph signal samples are
available is
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M = {n1, n2, . . . , nM }.

The measurement matrix can be defined using the IGDFT x = U X or

x(n) =
N−1∑

k=0

uk(n)X (k), n = 0, 1, . . . , N .

Keeping the equations corresponding to the available graph signal samples at n ∈
M = {n1, n2, . . . , nM} we get

⎡

⎢⎢⎢⎣

x(n1)
x(n2)

...

x(nM)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

u0(n1) u1(n1) . . . uN−1(n1)
u0(n2) u1(n2) . . . uN−1(n2)

...

u0(nM) u1(nM) . . . uN−1(nM)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X (0)
X (1)

...

X (N − 1)

⎤

⎥⎥⎥⎦ .

The matrix form of this system of equations is

y = AMNX,

where AMN is the measurement matrix and y = [x(n1), x(n2), . . . , x(nM )]T are the
available samples. This system is underdetermined for M < N . It cannot be solved
uniquely for X without additional constraints. Since we have assumed that the signal
contains a linear combination of only K ≤ M the slowest varying eigenvectors, we
can exclude the GDFT coefficients X (K ), X (K + 1), . . . , X (N − 1), since they are
zero-valued and do not contribute to the graph signal samples. Then we can write

⎡

⎢⎢⎢⎣

x(n1)
x(n2)

...

x(nK )

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

u0(n1) u1(n1) . . . uK−1(n1)
u0(n2) u1(n2) . . . uK−1(n2)

...

u0(nM) u1(nM) . . . uK−1(nM)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X (0)
X (1)

...

X (K − 1)

⎤

⎥⎥⎥⎦ .

This system in a matrix form reads

y = AMKXK ,

where the definition of the reducedmeasurement matrixAMK and the reducedGDFT
vector XK is obvious. For K = M this system can be solved. If M > K the system
is overdetermined and the solution is found in the mean squared error (MSE) sense.
This solution is

XK = (AT
MKAMK )−1AT

MKy = pinv(AMK )y,

where pinv(AMK ) = (AT
MKAMK )−1AT

MK is a matrix pseudo-inverse.
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After XK is calculated all GDFT values directly follow by adding the assumed
zero values as X = [X (0), X (1), . . . , X (K − 1), 0, 0, . . . , 0]T . The graph signal is
then recovered at all vertices using x = U X.

The recovery condition is that the inverse (AT
MKAMK )−1 exists. It means that

rank(AT
MKAMK ) = K . (51)

In terms of the matrix condition number, the requirement is

cond(AT
MKAMK ) < ∞.

In the case of noisy measurements, the noise in the reconstructed GDFT coefficients
is directly related to the input noise and the matrix condition number. If we are able
to choose the signal sample positions (vertices), then the sampling strategy should
be to find the set of measurements producing the condition number as close to one
as possible.

As an example of the reconstruction from a reduced set of signal samples, consider
a graph’s signal values at M = 3 vertices

y = [x(0) x(2) x(6)]T = [0.299 0.345 1.361]T .

Assume that the graph signal is of low-pass type with K = 2 lowest nonzero GDFT
coefficients X (0) and X (1). The signal GDFT coefficients can be reconstructed from

⎡

⎣
x(0)
x(2)
x(6)

⎤

⎦ =
⎡

⎣
u0(0) u1(0)
u0(2) u1(2)
u0(6) u1(6)

⎤

⎦
[
X (0)
X (1)

]
.

since the rank of matrix AMK is 2. The matrix condition number value is
cond(AT

MKAMK ) = 1.97.The reconstructed nonzero values of theGDFTare X (0) =
2 and X (1) = 1. The reconstructed graph signal x = U X is presented in Fig. 29.

The classical signal processing downsampling and interpolation relations are
obtained with uk(n) = exp( j2πnk/N )/

√
N .
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Fig. 29 Subsampling of a lowpass graph signal example



Introduction to Graph Signal Processing 57

4.2 Subsampling of the Sparse Graph Signals

4.2.1 Known Coefficient Positions

The previous analysis holds not only for a low-pass type of X, but for a general X
with K nonzero values at arbitrary, known, spectral positions,

X (k) = 0 for k /∈ K = {k1, k2, . . . , kK }

as well. Then the system of equations

⎡

⎢⎢⎢⎣

x(n1)
x(n2)

...

x(nM)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

uk1(n1) uk2(n1) . . . ukK (n1)
uk1(n2) uk2(n2) . . . ukK (n2)

...

uk1(nM) uk2(nM) . . . ukK (nM)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X (k1)
X (k2)

...

X (kK )

⎤

⎥⎥⎥⎦ , (52)

whose matrix form reads y = AMKXK , is solved for the nonzero spectral values
X (k), k ∈ K, in the same way as in the case of low-pass signal presented in Sect. 4.1.

4.2.2 Support Matrices, Subsampling-Upsampling

In graph signal processing literature the subsampling problem is often defined using
the support matrices. Assume that the signal is subsampled in such way that it is
available on a subset of vertices n ∈ M = {n1, n2, . . . , nM } instead on the full set
of vertices. For the subsampled signal we can define its upsampled version, obtained
by adding zeros at vertices where the signal is not available. The subsampled and
upsampled version of the original signal x is

xs = Bx.

The support matrix B is an N × N diagonal matrix with ones at the diagonal posi-
tions corresponding to M = {n1, n2, . . . , nM} and zeros elsewhere. Signal x with
N independent values cannot be reconstructed from its M < N values in xs , with-
out additional constraints. For sparse signals the additional constraint is that the
signal x has only K ≤ M nonzero coefficients in the GDFT domain X = UT x at
k ∈ K = {k1, k2, . . . , kK }. Then

X = CX

holds. The support matrix C is an N × N diagonal matrix with ones at the diagonal
positions corresponding to K = {k1, k2, . . . , kK } and zeros elsewhere. Note that X
is on both sides of this equation, contrary to xs = Bx. The reconstruction formula
follows from

xs = Bx = BUT X = BUT CX.
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with X = pinv
(
BUT C

)
xs . The inversion

X = CX = pinv
(
BUT C

)
xs

for K nonzero coefficients of CX is possible if the rank of BUT C is K (if there are
K linearly independent equations), that is if

rank(C) = K = rank
(
BUT C

)
.

This condition is equivalent to (51) since the nonzero part of matrix BUT C is equal
to AMK in (52).

4.2.3 Unknown Coefficient Positions

The problem is more complex if the positions of nonzero spectral coefficients K =
{k1, k2, . . . , kK } are not known. This problem has been formulated and solved within
compressive sensing theory. The reconstruction problem formulation is

min ‖X‖0 subject to y = AMNX,

where ‖X‖0 denotes the number of nonzero elements in X (�0 pseudo-norm).
The minimization problem can be solved in many ways. Here we will present a

simple, two step solution:

1. Using M � K signal samples, the positions K of nonzero coefficients are esti-
mated.

2. The nonzero coefficients of X at the estimated positions K are reconstructed,
along with the signal x at all vertices.

For the estimation of nonzero positions in Step 1 we can use the projection of
measurements to the measurement matrix

AMN =

⎡

⎢⎢⎢⎣

u0(n1) u1(n1) . . . uN−1(n1)
u0(n2) u1(n2) . . . uN−1(n2)

...

u0(nM) u1(nM) . . . uN−1(nM)

⎤

⎥⎥⎥⎦

defined as
X0 = AT

MNy. (53)

Positions of K largest values in X0 are used as an estimate of the nonzero positions
K. This procedure can also be implemented in an iterative way. In the first iteration
we assume K = 1 and the largest component is estimated and removed. The position
of the second component is then estimated. The first and the second component are
then reconstructed and removed. The procedure is iteratively repeated K times.
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Fig. 30 Compressive sensing on graphs

As an example consider a sparse graph signal with sparsity K = 2 measured at
vertices 2, 3, 4, 5, and 7

y = [0.224 1.206 1.067 1.285 1.116]T .

Measurements (available signal samples) are illustrated in Fig. 30 (upper left sub-
plot). The estimate X0 is calculated according to (53). The positions of two non-zero
coefficients are estimated as positions of two largest values in X0. In the consid-
ered case K = {0, 2}, Fig. 30 (lower left subplot). The GDFT coefficients are then
reconstructed for sparsity K = 2, resulting in X (0) = 2, X (2) = 1.5, Fig. 30 (lower
right). The reconstructed graph signal at all vertices is presented in Fig. 30 (upper
right subplot).

4.2.4 On the Unique Reconstruction Conditions

It is easy to show that the initial estimate X0 will produce correct positions of the
nonzero elements X (k) and the reconstruction will be unique if

K <
1

2

(
1 + 1

μ

)
,

where μ is equal to the maximal value of the inner product of two columns of the
measurement matrix AMN (the coherence index).

A K -sparse signal can be written as x(n) =∑K
i=1 X (ki )uki (n). Its initial estimate

values are



60 L. Stanković et al.

X0(k) =
K∑

i=1

X (ki )
∑

n∈M
uk(n)uki (n) =

K∑

i=1

X (ki )μ(k, ki )

where M = {n1, n2, . . . , nM } and μ(k, ki ) =∑n∈M uk(n)uki (n). If the maximal
possible absolute value ofμ(k, ki ) is denoted byμ = max |μ(k, ki )| then, in theworst
case, the amplitude of the strongest component X (ki ) (assumed with the normalized
amplitude 1), reduced for the maximal possible influence of other equally strong
(unity) components 1 − (K − 1)μ, should be greater than the maximal possible dis-
turbance at k �= ki , being Kμ. From 1 − (K − 1)μ > Kμ, the unique reconstruction
condition follows.

In order to define other unique reconstruction conditions we will consider again
the solution of y = AMNX with a minimal number of nonzero coefficients in X.
Assume that the sparsity K is known. Then a set of K measurements would produce
a possible solution for any combination of K nonzero coefficients in X. If we assume
that we have another set of K measurements, we would get another set of possible
solutions. A common solution in these two sets of solutions would be the solution of
our problem. There are no two different K sparse solutionsX(1)

K andX(2)
K (the solution

is unique) if all possible AT
M2KAM2K matrices are nonsingular. The requirement that

all reduced measurement matrices corresponding to a 2K sparse X are nonsingular
can be written in several forms,

det{AT
M2KAM2K } = d1d2 . . . d2K �= 0

cond{AT
M2KAM2K } = dmax

dmin
≤ 1 + δ2K

1 − δ2K
< ∞

1 − δ2K ≤ dmin ≤
{‖AM2KX2K‖22

‖X2K‖22

}
≤ dmax ≤ 1 + δ2K

where di are the eigenvalues of AT
M2KAM2K , dmin is the minimal eigenvalue, dmax is

the maximal eigenvalue, and δ2K is the restricted isometry constant.
All these conditions are satisfied if dmin > 0 or 0 ≤ δ2K < 1.
In noisy cases robustness is required, and therefore more strict bounds for dmin

and δ2K are required. For example, it has been shown, that 0 ≤ δ2K < 0.41 will
guarantee stable inversion and robust reconstruction of the noisy signals. In addition,
this bound will allow convex relaxation of the reconstruction problem.

Namely, the previous problem can be solved using the convex relation of the
norm-zero to a norm-one formulation

min ‖X‖1 subject to y = AMX.

The solution of these two problem formulation are the same if the measurement
matrix satisfies the previous conditions with δ2K < 0.41. The signal reconstruction
problem can now be solved using gradient-based approaches or linear programming
methods.
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4.3 Linear Combinations of Samples and Aggregated
Sampling

If some spectrum coefficients are strongly related to only a few of the signal samples,
then the signal samples may not be good candidates for the measurements. In that
case linear combinations of all signal samples

y = BMNx = BMNUX = AMNX

should be used. The weighting coefficients BMN for the measurements could be,
for example, the Gaussian random numbers. The reconstruction is obtained as the
solution of

min ‖X‖0 subject to y = (BMNU)X

or the solution of the corresponding convex minimization problem.
A specific form of linear combinations of the graph signals are described as

aggregate sampling. Sampling in classical signal processing can be interpreted on a
directed circular graph (Fig. 19) in the followingway. Consider the signal at an instant
n. If we sense this signal at this vertex/instant only, we get its value y0(n) = x(n).
If we apply the shift operator we get y1 = Ax. If this signal is sampled at the same
vertex n we get y1(n) = x(n − 1). If we continue this shift and sample operation
N times we will get all signal values x(n), x(n − 1), . . . , x(n − N + 1). If we stop
the shifts after M < N steps the signal can still be recovered using the compressive
sensing based reconstruction methods, if the reconstruction conditions are met.

The same procedure can be used on a signal on an arbitrary graph. Assume that
we sample the graph signal at a vertex n and get

y0(n) = x(n).

If the signal is now graph shifted y1 = Ax wewill get a newmeasurement as a shifted
signal value at the considered vertex,

y1(n) =
∑

m

Anmx(m).

If we continue with one more shift we will get

y2(n) =
∑

m

A(2)
nmx(m),

where A(2)
nm are the elements of matrix A2 = AA. If we continue M = N times we

would get a system of N linear equations y = BMNx. From these equations we can
calculate all signal values x(n). If we stop at M < N the signal can still be recovered
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using the compressive sensing based reconstruction methods if the signal is sparse
and the reconstruction conditions are met.

Instead of M signal samples (instants) at one vertex, we may use, for example, P
samples at vertex n and otherM − P samples from a vertexm. Other combinations of
vertices and samples can be used to obtain M measurements and to fully reconstruct
a signal.

4.4 On the Sampling Strategies

Signal sampling strategy is a process that will result in an optimal set of signal sam-
ples which will guarantee a unique reconstruction of a sparse signal. In classical
signal processing, the sampling strategies are based on the minimization of param-
eters defining the solution uniqueness. In the case when the positions of nonzero
GDFT coefficients are known (including the low-pass filtering as a special case) the
requirement is that the rank of the measurement matrix is equal to the signal spar-
sity. In more general cases when the nonzero coefficient positions are not known,
the restricted isometry property is the most commonly used uniqueness criterion.
However, its application in practice is almost impossible, since it is an NP hard com-
binatorial problem (requiring 2K class combinations of N elements). A sampling
strategy that will minimize the coherence index will guarantee the maximal number
of nonzero coefficients reconstruction with a given set of signal samples. This pro-
cess is less computationally intensive. However, the coherence index based criterion
for signal sampling strategy is quite pessimistic.

In graph signals, the application of these sampling strategy criteria is even more
difficult. The number of vertices may be extremely large. Large dimensionality of
the graphs makes these approaches almost unsuitable for graph signal processing.

Subsampling of graphs is of crucial importance in the cases of extremely large
graphs. Several approaches are possible in the graph analysis and graph signal pro-
cessing.

We have already described a possible graph signal oriented subsampling strategy
under the assumption that the GDFT is sparse, with a few nonzero coefficients. Then
the graph signal can be reconstructed with a very reduced number of signal samples
or their linear combinations.

Another class of approaches is graph oriented. The problem is defined as follows.
Given a large, in general directed, graph G with N vertices, the goal is to find a much
simpler graph with similar properties. In this so called down-scale method, the goal
is to define a smaller size graph S with a very reduced number of vertices M � N
that will behave in a similar way as the original large graph. Similarity is defined with
respect to the parameters of interest, like for example, the connectivity or distribution
on graph. The criteria may be related to the spectral behavior of graphs as well.

Several methods are used for graph down-scaling. Some of them will be listed
next:
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• The simplest method for graph down-sampling is a random vertex or random
node (RN) selection method. In this method, a random subset of vertices is used
for analysis and representation of large graphs and signals on them. Vertices are
selected with equal probabilities. This method will produce good results in many
applications. Random selection has been preferred in classical compressive signal
analysis as well.

• Different from theRNmethod,where the vertices are selectedwith a uniformprob-
ability, is the random degree vertex/node (RDN) selection, in which the probability
that a vertex is selected is proportional to the vertex degree. Vertices with more
connections, having larger dn =∑m Wnm , are selected with a higher probability.
This approach is biased with respect to highly connected vertices.

• A similar method to the RDN is based on the vertex rank (PageRank). The PageR-
ank is defined by the importance of the vertices connected to the considered vertex
n (see Sect. 7.8.5). Then the probability that a vertex n will be used in a down-
scaled graph is proportional to the PageRank of this vertex. This method is called
random PageRank vertex (RPN) selection. It is also biased with respect to the
highly connected vertices with a high PageRank.

• A method based on the random selection of edges, that will be left in the simpler
graph, is called the random edge (RE) method. This method may lead to graphs
that are not well connected, with large diameters.

• The RE method may be combined with the random vertex selection to get a com-
bined RNE method. It consists in a random vertex selection followed by a random
selection of one of the edges corresponding to the selected vertex.

• In addition to these methods, more sophisticated methods based on the random
vertex selection and the randomwalks (RW) analysismay be defined. For example,
we can randomly select small subset of vertices and form several random walks
starting from each selected vertex. In this way RandomWalk (RW), Random Jump
(RJ) and Forest Fire graph down-scaling strategies are defined.

4.5 Filter Bank on a Graph

Subsampling of a signal by a factor of 2, followed by the corresponding upsampling,
can be described in classical signal processing by

f (n) = 1

2
(x(n) + (−1)nx(n)) = 1

2
((1 + (−1)n)x(n)).

This is the basic operation used in the filter-banks based signal processing. We can
extend this concept to the graph signals. Consider a graph with the set of vertices V .
The set of vertices can be considered as a union of two disjoint sets V = E ∪ H and
E ∩ H = ∅. The subsampling-upsampling procedure can be done in two steps:

1. Downsample the signal on graph by keeping the signal x(n) values on the vertices
n ∈ E .
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Fig. 31 A Filter bank on a graph signal

2. Upsample the graph signal by setting the values on n ∈ H to zero.

This combined downsampling-upsampling operation produces a graph signal

f (n) = 1

2
(1 + (−1)βE (n))x(n)

or in vector form

f = 1

2
(x + JEx) = 1

2
(I + JE)x,

where JE = diag((−1)βE (n)) and

βE(n) =
{
0 if n ∈ E
1 if n ∈ H.

The spectral representation of this signal in the Laplacian basis functions domain is

F = UT f = 1

2
(UT + JEUT )x = 1

2
(I + JE)X.

If the downsampled-upsampled signal F = (I + JE)X/2 passes through a system
of low-pass analysis and syntheses filters HL(���) and GL(���), Fig. 31, the output is

FL = 1

2
HL(���)(I + JE)GL(���)X.

The same holds for the high-pass part

FH = 1

2
HH (���)(I + JH)GH (���)X.
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The total output is a sum of these two signals, as illustrated in Fig. 31. After
rearranging its terms we get

Y = FL + FH = 1
2 (HL(���)GL(���) + HH (���)GH (���))X+

1
2 (HL(���)JEGL(���) + HH (���)JHGH (���))X. (54)

The prefect reconstruction condition Y = X is achieved if

HL(���)GL(���) + HH (���)GH (���) = 2I

HL(���)JEGL(���) + HH (���)JHGH (���) = 0 (55)

A solution of this system is simple for bipartite graphs. It reduces to

GL(λ)HL(λ) + GH (λ)HH (λ) = 2 (56)

GL(λ)HL(2 − λ) − GH (λ)HH (2 − λ) = 0 (57)

A quadratic mirror filter solution is such that for the designed HL(λ), other filters
are GL(λ) = HL(λ), HH (λ) = HL(2 − λ), and GH (λ) = HH (λ). For this solution
the design equation is

H 2
L(λ) + H 2

L(2 − λ) = 2.

An example of such a system would be an ideal low-pass filter defined by
HL(λ) = 1/

√
2 for λ < 1 and HL(λ) = 0 elsewhere. Since HH (λ) = HL(2 − λ)

holds for systems on bipartite graphs, the reconstruction condition would be satis-
fied. For the vertex domain realization, an approximation of the ideal filter with a
finite neighborhood filtering relation would be required.

5 Time-Varying Signals on Graphs

If we assume that the signal on graph changes in time at each vertex, then we have
a signal xp(n) where n indicates the vertex index and p corresponds to the discrete-
time index. If the signal sampling in time is uniform then the index p corresponds
to pΔt time instant.

In general, this kind of data can be considered within the Cartesian product
framework, as shown in Fig. 9. The resulting graph G = (V,B) follows as a Carte-
sian product of the given graph G1 = (V1,B1) and a simple line (or circular) graph
G2 = (V2,B2) that corresponds to the classical time-domain signal processing.

The adjacency matrix of a Cartesian product of two graphs is

A = A1 ⊗ IN2 + IN1 ⊗ A2,
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where A1 is the adjacency matrix of the given graph G1 and A2 is the adjacency
matrix for the line or circle graph. The numbers of vertices in G1 and G2 are denoted
by N1 and N2.

Next we will consider a simple and important example of a time-varying signal
defined in an iterative way.

5.1 Diffusion on Graph and Low Pass Filtering

Consider the diffusion equation ∂x/∂t = −Lx. Its discrete-time form obtained by
using the backward difference approximation of the partial derivative is

xp+1 − xp = −αLxp+1

or xp+1(I + αL) = xp producing

xp+1 = (I + αL)−1xp.

The forward difference approximation of the diffusion equation results in

xp+1 − xp = −αLxp

or
xp+1 = (I − αL)xp.

It is interesting to note that these iterative forms lead to the quadratic form of
graph signal minimization. The signal quadratic form on a graph is Ex = xLxT , (see
Sect. 3.6). If we want to find its minimum we can use the steepest descent method.
Then the signal value at an instant p is changed in the opposite direction of the
gradient, toward the energy minimum position. The gradient of quadratic form is
∂Ex/∂xT = 2xL, resulting in the iterative procedure

xp+1 = xp − αLxp = (I − αL)xp.

This relation can be used for simple and efficient filtering of graph signals (with the
aim to minimize Ex as the measure of the signal smoothness). If we assume that in
one iteration the input graph signal is xp and the output graph signal is xp+1, then
the spectral domain relation of this system is

Xp+1 = (I − α���)Xp

or
X p+1(k) = (1 − αλk)X p(k).
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Obviously, the low varying components pass through this system since (1 − αλk)

is close to 1 for small λk , while the high varying components with larger λk are
attenuated. Iterative procedure will converge if |1 − αλmax| < 1. In the stationary
case, when

lim
p→∞ X p+1(k) = lim

p→∞(1 − αλk)
p+1X0(k)

all components X p+1(k) tend to 0 except the constant component X p+1(0), since
λ0 = 0. This component defines the stationary state (maximally smooth) solution.
In order to avoid this effect, the iteration process can be used in alternation with

xp+2 = (I + βL)xp+1.

When these two iterative processes are used in a successive order the resulting system
(Taubin’s α − β algorithm) is

xp+2 = (I + βL)(I − αL)xp. (58)

The resulting transfer function in the spectral domain in these two iteration steps is

H(λk) = (1 + βλk)(1 − αλk).

After K iterations the transfer function is

HK (λk) = ((1 + βλk)(1 − αλk))
K . (59)

For some values of α < β, this system can be a good and very simple approximation
of a graph low-pass filter.

The Graph from Fig. 3 and its Laplacian are considered in this example. For the
parameters α = 0.1545, β = 0.1875, the spectral transfer function (59) is presented
in Fig. 32 for the considered graph filter. The results for the following numbers
of iterations K = 1, 5, 10, 20 are shown. We have filtered the noisy signal from
Fig. 26b. The initial noisy signal is denoted as x0. Then x1 = (I − 0.1545L)x0 is
calculatedwith the Laplacian defined by (6). Next x2 = (I + 0.1875L)x1 is obtained.
In the third and fourth iteration, the signal values x3 = (I − 0.1545L)x2 and x4 =
(I + 0.1875L)x3 are calculated. This two-step iteration cycle is repeated K = 20
times. The resulting signal is almost the same as an output of the ideal low-pass filter
presented in Fig. 26c.

6 Random Graph Signals

In this section we will present basic definitions of the random signals on graphs
[59–64]. The conditions for wide-sense stationarity (WSS) will be considered. The
stationarity is related to the signal shift on a graph.We have presented two approaches
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Fig. 32 Filter approximation in the spectral domain for various number of iterations K . The Graph
from Fig. 3 and its Laplacian are considered

to define the shift on a graph (using the adjacency matrix or Laplacian and their
spectral decompositions). The main problem is that the shift on a graph does not
preserve energy (isometry property) ‖Ax‖22 �= ‖x‖22 . In order to define an equivalent
of the WSS on graphs (GWSS) other properties of the WSS signals in the classical
time domain processing are used. This is the reason for providing a short review of
the classic signal processing WSS definitions and properties first.

A real-valued random signal x(n) is WSS if its mean value is time invariant,
μx (n) = E{x(n)} = μx and its autocorrelation function is shift invariant rx (n, n −
m) = E{x(n)x(n − m)} = rx (m).

AWSS random time-domain signal x(n) can be considered as an output of a liner
shift invariant system with impulse response h(n) to a white noise input ε(n) with
rε(n,m) = δ(n − m).

In the time domain, the eigenvectors uk of the shift operator y(n) = x(n − 1) are
the DFT basis functions, A = U���UH . For a random signal, its DFT X = UHx is a
random signal with the autocorrelation matrix Px = E{XXH }, where UH is the DFT
transformation matrix. For WSS signals, the matrix Px is diagonal with the power
spectral density (PSD) values

px (k) = DFT{rx (n)} = E{|X (k)|2}

on diagonal.



Introduction to Graph Signal Processing 69

ForWSS random signalsRx = E{xxH } is diagonalizable with the same transform
matrix U as in X = UHx,

Rx = E{xxH } = E{UX(UX)H } = UE{XXH }UH = UPxUH (60)

since Px is a diagonal matrix for WSS signals.
These properties of theWSS signals in classical analysis will be used for the graph

signals next.

6.1 Adjacency Matrix Based Definition

Consider a white noise signal ε on a graph with samples ε(n). A signal x on the graph
is graph wide sense stationary (GWSS) if it can be considered an output of a linear
and shift invariant graph system H(A) =∑M−1

m=0 hmAm to the white noise input ε,

x = H(A)ε.

The autocorrelation matrix Rx = E{xxH } of a GWSS signal is diagonalizable
with the matrix of the adjacency matrix A eigenvectors

A = U���UH (61)

E{xxH } = UPxUH , (62)

where Px is a diagonal matrix. The values on the diagonal of matrix Px denoted by
px represent the PSD of a graph signal px (k) = E{|X (k)|2}.

In order to prove this property for a signal x = H(A)ε, consider

Rx = E{xxH } = E{H(A)ε(H(A)ε)H } = H(A)HH (A).

Using H(A) = UT H(���)U we get

Rx = UT |H(���)|2U,

what concludes the proof. The diagonal matrix is

Px = |H(���)|2,

with the PSD of this signal
px (k) = |H(λk)|2.

Periodogram on the graph can be estimated using K realizations of the random
signal denoted by xi . It is equal to the diagonal elements of matrix
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P̂x = 1

K

K∑

i=1

XiXT
i = UT 1

K

K∑

i=1

(xixT
i )U.

Consider a system on a graph with spectral domain transfer function H(���).
Assume that the input signal to this system is GWSS with PSD px (k). The PSD
of the output graph signal y(n) is

py(k) = |H(λk)|2 px (k).

Wienner Filter on a Graph

Consider a real-valued signal s as an input to a linear shift-invariant system on a
graph, whose noisy output is

x =
M−1∑

m=0

hmAms + ε.

In the spectral domain the system is described by

X = H(���)S + E.

Assume that the signal and the noise are statistically independent. The noise is a
zero-mean random signal. The aim is to find a filter G(���) such that Y = G(���)X
estimates S in the mean squared sense. We will minimize

e2 = E{‖S − Y‖22} = E{‖S − G(���)X‖22}.

The zero value of the derivative with respect to the elements of G(���) produces

2E{(S − G(���)X)XT } = 0.

Since all matrices are diagonal we may use symbolic matrix division resulting in

G(���) = E{SXT }
E{XXT } = E{S(H(���)S + E)T }

E{(H(���)S + E)(H(���)S + E)T } = H(���)Ps

H 2(���)Ps + Pε

or

G(λk) = H(λk)ps(k)

H 2(λk)ps(k) + E(k)
.

In a non-noisy case, E(k) = 0 for all k, the inverse filter follows, as expected.
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6.2 Spectral Domain Shift Based Definition of GWSS

This approach is based on the shift on a graph defined using the graph filter response

Tm{h(n)} = hm(n) =
N−1∑

k=0

H(λk)uk(m)uk(n). (63)

The matrix form of this relation is

Th = H(L) =
M−1∑

m=0

hmLm = UH(���)UH , (64)

where Tm{h(n)} are the elements of Th .
Note that the filter response function is well localized on a graph. If we use, for

example, the M − 1 neighborhood of the vertex n in filtering defined by H(���), then
only the region within this neighborhood is used in the calculation. The localization
operator acts in the spectral domain and associates the corresponding shift to the
vertex domain.

The definition of the GWSS within this framework reads: The signal is GWSS if
its autocorrelation function is invariant with respect to the shift Tm{rx(n)}

rx (m) = Tm{rx(n)}.

For aGWSS signal the autocorrelationmatrixRx is diagonalizablewith thematrix
of eigenvectors of the Laplacian L

L = U���UT . (65)

For the basic autocorrelation we can assume that

Rx = UPx (���)UH

Tm{rx(n)} =
N−1∑

k=0

px (λk)uk(m)uk(n)

where
Px (���) = URxUH

is a diagonal matrix.
Finally, we will mention one more approach based on the shift operator defined

as Tm = exp( jπ
√

L/ρ). It maps the eigenvalues of the Laplacian L on a unit circle,
preserving the isometry.
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7 Examples of Graphs Topologies

In the previous section, we have assumed that the graph is defined and the signal
processing on the given graph topology is considered. However, the graph topology
is very often a part of the processing problem rather than it being given within the
problem definition. In this case, we may assume that the vertices are given, while the
edges and their weights are part of the problem solution [65–82].

In general, we will consider three possible scenarios for the graph edges:

• The first group of problems is related to the geometry of the vertex positions. In
the cases of various sensing setups (temperature, pressure, transportation, …) the
locations of the sensing positions (vertices) are known and the vertex distances
play a crucial role in data relations.

• The second group consists of problems where the relation among the sensing
positions are physically well defined. Examples of such problems are electric
circuit networks, linear heat transfer, social and computer networks, spring-mass
systems, …. In these cases the edge weights are well defined based on the physics
of the considered problem.

• In the third group we will include the problems where the data similarity plays
a crucial role for the underlying graph topology. Various approaches are used to
define the data similarity.

7.1 Geometric Graph Topologies

For a graph corresponding to a geometric network, the edge weights are related to
the vertices distance. Consider vertices n andm whose positions in space are defined
by position vectors rn and rm . The Euclidean distance between these two vertices is

rnm = distance(m, n) = ‖rn − rm‖2 .

A common way to define the graph weights in such networks is

Wnm =
{
e−r2nm/τ 2

for rnm ≤ κ

0 for rnm > κ,
(66)

where rnm is the Euclidean distance between the vertices n and m, and τ and κ are
constants. The weights tend to 1 for close vertices. The weights are 0 or close to 0
for distant vertices.

The basic idea behind this definition of the edge weights is the assumption that
the signal value measured at vertex n is similar to signal values measured at the
neighboring vertices. According to this definition, the processing of a signal at vertex
n should include close verticeswith higherweights (close to 1)while the signal values
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sensed at farther vertices would be less relevant. They are included with smaller
weighting coefficients or not included at all.

While the Gaussian function, used in (66), is the most appropriate in many appli-
cations, other forms to penalize signal values at the vertices far from the considered
vertex can be used. Examples of such functions are

Wnm =
{
e−rnm/τ for rnm ≤ κ

0 for rnm > κ
(67)

or

Wnm =
{
1/rnm for rnm ≤ κ

0 for rnm > κ.
(68)

The simplest form of the weighting coefficients would be

Wnm =
{
1 for rnm ≤ κ

0 for rnm > κ.
(69)

This form would correspond to an unweighted graph with W = A.
As an example, consider the Minnesota roadmap graph. The edges of the given

adjacency matrix are weighted according to distances using (67) with τ = 25km and
κ is not used since the connectivity is already determined by the given adjacency
matrix.

A simulated signal and its noisy version are given in Fig. 33a, b. The noisy signal
is filtered by low-pass filter in the Laplacian spectral domain using the 50 lowest
changing spectral components. Filtering is also done using the two-step iterative
procedure (58) with 200 iterations using α = 0.1 and β = 0.15. Filtered signals are
presented in Fig. 33c, d. The input SNR is 8.7dB and the output SNR of 23.0 and
23.3dB is achieved.

A more general form of smoothing would be obtained using weights with appro-
priate low-pass filter coefficients in the adjacency or Laplacian spectrum, like for
example the one presented by (15).

In classical signal analysis, using

distance(m, n) = rnm = ‖n − m‖2 = |n − m|,

and Wnm = e−r2nm/τ 2
for rnm ≤ κ and Wnm = 0 for rnm > κ, the value

y = A0x + A1x

produces a Gaussian weighted mean, localized around the vertex (time instant) n
(moving average). For example, for τ = 4 and κ = 8 it would produce the time
domain weighted moving average
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(b)(a)

(d)(c)

Fig. 33 Minnesota roadmap graph: a simulated signal, b noisy signal, c low-pass filtering, and
d iterative filtering example

y(n) = x(n) +
∑

m

Wnmx(n − m) =
8∑

m=−8

e− (n−(n−m))2

16 x(n − m).

Unweighted moving average within −κ ≤ m ≤ κ would be obtained with a large τ .
If the Euclidean distance between pixels is used in an image, we would get a moving
average filtered image with a radial Gaussian window.

7.2 Topology Based on the Signal Similarity

In the previous section the graph weights are defined assuming that the geometric
distance of vertices, where the signal is sensed, is a good and reliable indicator of
the data similarity. That may be the case in some applications like, for example, the
measurements of atmospheric temperature and pressure when the terrain configu-
ration has no influence to the similarity of measured data. However, in general the
geometric distance of vertices may not be a good indicator of data similarity.
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Fig. 34 Original and noisy images (left) and filtered images (right) using frequency domain low-
pass filter and iterative vertex domain filtering. The image is 8bit grayscale. Edge weights are
calculated with κ = √

2 and τ = 20. Low-pass filter in frequency domain is done using an ideal
low-pass filter with 10 lowest spectral components. Iterative filtering (58) is performed with 200
iterations using α = 0.1 and β = 0.15

In some applications like, for example, image processing, the signal value by
themselves can be used as an indicator of the signal similarity, often in combination
with the pixel/vertex distances. If the image intensity values at pixels indexed by n
and m are denoted by x(n) and x(m) then the difference of intensities is defined by

Intensity distance(m, n) = snm = |x(n) − x(m)|.

Then the weights can be defined as

Wnm =
{
e−(x(n)−x(m))2/τ 2

for rnm ≤ κ

0 for rnm > κ

where rnm is a geometric distance of the considered pixels/vertices.
An example with these kinds of weights applied to simple image graph filtering

is presented in Fig. 34.
In some applications we are able to collect more than one data set for a given

set of sensing points/vertices. In that case a more reliable measure of data similarity
can be defined. Assume that at each vertex n = 0, 1, . . . , N − 1 we have acquired
P signal values denoted by xp(n). This data set may be a set of multivariate data
or signal measurements in a sequence. Then a good similarity measure function for
real-valued signal at vertices n and m is

s2nm =
∑P

p=1

(
xp(n) − xp(m)

)2
√∑P

p=1 x
2
p(n)

∑P
p=1 x

2
p(m)

.

The graph weights can again be defined using any of the previous penalty func-
tions, for example,

Wnm =
{
e−s2nm/τ 2

for rnm ≤ κ

0 for rnm > κ.
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The function of the form

Wnm =
{
e−snm/τ for rnm ≤ κ

0 for rnm > κ.

is also used quite often.
As an example assume that xp(n) in P observations, p = 1, 2, . . . , P at N vertices

n = 0, 1, . . . , N − 1 are zero-mean random noises with equal variances σ2
x = 1.

Then

s2n,m =
∑P

p=1

(
xp(n) − xp(m)

)2
√∑P

p=1 x
2
p(n)

∑P
p=1 x

2
p(m)

= 2(1 − Rx (n,m))

where

Rx (n,m) = 1

P

P∑

p=1

xp(n)xp(m)

is the normalized autocorrelation function.
The same structure can be used for image classification, handwriting recognition

or in establishing block similarity in large images. In these cases the distance between
image/block n and image/block m is equal to

snm = Image/Block distance(m, n) = ‖xn − xm‖F ,

where ‖x‖F is the Frobenius norm of an image or block matrix x (that is, the square
root of the sum of all its squared elements).

7.3 Correlation Based Graph Laplacian learning

Consider a graph signalwith P independent observations. Denote the observed signal
at vertex n and observation p as xp(n). The column vector with graph signal samples
from the pth observation is denoted by xp. All observations of this graph signal can
be arranged into an N × P matrix

XP = [ x1 x2 . . . xP
]
.

Denote the nth row of this matrix as a row vector yn

yn = [ x1(n − 1) x2(n − 1) . . . xP(n − 1)
]

Then the matrix of observations can also be written as
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XP =

⎡

⎢⎢⎢⎣

y1
y2
...

yN

⎤

⎥⎥⎥⎦ .

The correlation coefficients estimated by averaging over the observations are

Rx (n,m) = 1

P

P∑

p=1

xp(n)xp(m) = 1

P
ynyT

m

or in a matrix form

Rx = 1

P
XPXT

P .

Since the correlation includes signal from all vertices, this matrix accumulates all
correlations obtained through all possible walks from the current vertex to any other
vertex. It means that the correlation coefficient for two vertices will producemislead-
ing results if there exit one or more other vertices where the signal is strongly related
to both of the considered vertices. That is the reason why the correlation overesti-
mates the direct connections. It is not a good parameter for establishing direct links
(edges) between vertices. Additional conditions should be imposed on the correlation
matrix or other statistical parameters should be be used for edge weights estimation.
Next we will present a method for the connectivity (edge weights) estimation based
on the correlations, imposing the sparsity constraint on the weight coefficients.

Consider the vertex 0 with n = 1, Eq. (7.3). We can estimate the edge weights
from this vertex to all other vertices β1m , m = 2, 3, . . . , N by minimizing

J1 = ‖y1 −
N∑

m=2

β1mym‖22 + λ

N∑

m=2

|β1m |

The first term promotes the correlation between the observations y1 at the considered
vertex with n = 1 and the observations ym at all other vertices,m = 2, 3, . . . , N . The
second term promotes sparsity in coefficients β1m (number of nonzero coefficients
β1m). Parameter λ balances these two conditions. Full matrix form of the previous
cost function is

J1 = ‖yT
1 − YT

1 β1‖22 + λ‖β1‖1
where Y1 is obtained from the matrix XP with the first row being removed and

β1 = [ β12 β13 . . . β1N
]T

.

This problem can be solved using commonly defined LASSO minimization as β1 =
lasso(YT

1 , yT
1 ,λ), see the appendix.
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Fig. 35 Groundtruth (left) and estimated weighting matrix (right). The axis index n corresponds
to the vertex n − 1

The minimization is repeated for all vertices with n = 1, 2, . . . , N

Jn = ‖yT
n − YT

n βn‖22 + λ‖βn‖1.

Since this procedure does not guarantee symmetry βnm = βmn the edge weights
could be calculated as Wnm = √

βnmβmn .
As an example, consider the graph from Fig. 3 and P = 10000 observations.

Observations are simulated by assuming white Gaussian external sources with zero-
mean and variance 1 located at two randomly chosen vertices (see Appendix 8.1 and
Fig. 45). An N × P matrix of signal XP is formed. Using its rows the vector yn and
matrixYn are obtained. Thematrix of coefficients βnm follows from lasso(YT

n , yT
n ,λ)

with n = 1, 2, . . . , 8 and λ = 1.7 as

β =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.24 0 0 0 0 0 0.36
0.55 0 0.86 0.22 0 0 0 0.18
0 0.31 0 0.13 0 0 0 0
0 0.19 0 0 0.28 0.18 0 0
0 0.01 0 0.39 0 0.42 0.43 0.36
0 0 0 0.18 0.19 0 0.44 0
0 0 0 0 0.23 0.30 0 0

0.32 0.16 0 0 0.21 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The groundtruth and estimated weights are presented in Fig. 35.
The same experiment is repeated for the unweighted graph from Fig. 2a. The

result is presented in Fig. 36. In this case the obtained values of β are used to decide
weather Amn = 1 or Amn = 0.
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Fig. 36 Groundtruth (left) and estimated adjacency matrix (right) for unweighted graph

7.4 Graph Laplacian Learning with the Smoothness
Constraint

Consider a set of noisy signal values xp(n) in P observations, p = 1, 2, . . . , P on
N vertices n = 0, 1 . . . , N − 1 of an undirected graph. The goal is to get the graph
connectivity (its Laplacian). To this aim we will calculate a signal yp(n) that is
close to the observations xp(n) under the condition that yp(n) is also as smooth as
possible on a graph. This formulation is similar to the one described and explained
in Sect. 3.12. The signal yp(n) can be found by minimizing the cost function

Jp = 1

2
‖yp − xp‖22 + αyT

pLyp, for p = 1, 2, . . . , P.

The difference here is that the Laplacian (graph edges and their weights) is unknown
as well. It has to be determined along with the output signal yp.

Since we have P observations we can form N × P matrices

XP = [ x1 x2 . . . xP
]
and YP = [ y1 y2 . . . yP

]
.

The cost function for the whole set of observations is

J =
P∑

p=1

Jp = 1

2
‖YP − XP‖2F + αTrace{YT

PLYP} + β‖L‖2F ,

where Trace{YT
PLYP} is the matrix form of the term yT

pLyp and the constraint about
the energy of Laplacian ‖L‖2F =∑n

∑
m L2

mn is added in order to keep its values as
low as possible.

It has been assumed that the the Laplacian is normalized. In order to avoid trivial
solutions, the condition

Trace{L} = N
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is used as well, along with

Lmn = Lnm ≤ 0 for n �= m, and
N−1∑

m=0

Lnm = 0.

The problem is jointly convex with respect to the signal and Laplacian. It is solved
in an iterative two-step procedure:

(1) Assume that
YP = XP .

(2) Estimate Laplacian L by minimizing

J1 = αTrace{YT
PLYP} + ‖L‖2F

with given conditions for the Laplacian form.
(3) For the obtained Laplacian in step (2), the signal YP is calculated minimizing

J2 = 1

2
‖YP − XP‖2F + αTrace{YT

PLYP}.

Steps (2) and (3) are iteratively repeated. Step (3) has a closed form solution as
presented in Sect. 3.12.

7.5 Generalized Laplacian Learning

The generalized Laplacian Q is defined as

Q = αI − N,

where N is a nonnegative symmetric matrix and Q is a symmetric positive semidefi-
nite matrix. Any generalized Laplacian can be written as a sum of a standard Lapla-
cian L and a diagonal matrix P

Q = L + P.

The generalized Laplacian allows self-loops on the vertices. They are defined by P.
Consider a set of noisy signals xp(n) and their P observations, p = 1, 2, . . . , P

on N vertices n = 0, 1 . . . , N − 1 of an undirected graph. The main goal is again to
get the graph connectivity (its Laplacian) from the condition that the observed signal
is as smooth as possible on the graph defined by a generalized Laplacian Q. The cost
function to achieve this goal is defined by the signal smoothness function

Jp = xT
pQxp, for p = 1, 2, . . . , P.
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The correlation matrix of the considered observations is Rx = E{xxT } ≈
1
P

∑P
p=1 xpxT

p . The smoothness promoting cost function for all data is

J =
P∑

p=1

xT
pQxp = Trace{XPQXT

P} = Trace{RxQ}.

Next the conditions for the generalized Laplacian should be added (otherwise a
trivial solution would be obtained). For symmetric positive definite matrices, all
eigenvalues must be positive. Since the product of the eigenvalues is equal to det(Q),
this condition is included by adding the term log(det(Q)) to the cost function. Then
the cost function is of the form

J = log(det(Q)) + Trace{RxQ}.

The interpretation of this cost function within the Gaussian random signal and
maximum likelihood estimate is given in Sect. 7.9. This cost function minimizes the
logarithm of the joint probability density function of a graph signal xp under the
Gaussianity assumption,

P(xp) ∼ det(Q) exp

(
−1

2
xpQxp

)
.

Minimization of the cost function J with respect toQ, with ∂ J/∂Q = 0, produces

Q = R−1
x .

Here we have used the relation between the trace of a positive semidefinite matrix
and the trace of its eigenvalue matrix

log(det(Q)) =
N∑

i=k

log(λk) = Trace(log(���)) = Trace(log(Q)).

The solution of the previous equation Q = R−1
x , can be used as the generalized

Laplacian estimate and the graph is obtained.
The weighting matrix corresponding to the inverse correlation matrix Rx , with

positive and small off diagonal values set to zero is shown in Fig. 37 (right). Here we
consider the graph from Fig. 3 and P = 10000 observations. The observations are
simulated by assumingwhite Gaussian external sources with zero-mean and variance
1 located at two randomly chosen vertices (as described in more details in Sect. 7.3).

The correlation function matrix Rx may be singular. It is always singular when
N > P . Also, this formwill not produce amatrix satisfying the conditions to be a gen-
eralized Laplacian. The inverse correlation function may have positive off-diagonal
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Fig. 37 Groundtruth (left) and weighting matrix estimated using inverse correlation (right). The
axis index n corresponds to the vertex n − 1

values. Therefore the previous cost function should have additional constraints. Here
we will present two of them.

In the first approach, a term corresponding to the Lagrange multipliers B is added
so that these values do not change the diagonal elements of Q and provide that all

Qmn = Qnm ≤ 0

for n �= m, with Bnm = Bmn ≥ 0. The diagonal elements of matrix B are Bnn = 0.
Finally, BnmQnm = 0 for all n and m. In this case the minimization solution for the
generalized Laplacian is obtained as

Q = (Rx + B)−1

using the cost function

J = log(det(Q)) + Trace{RxQ} + Trace{BQ}.

Another possible approach corresponds to the classical reconstruction formulation
of a sparse signal. In this case the sparsity constraint on the generalized Laplacian is
added. The cost function is defined as

J = log(det(Q)) + Trace{RxQ} + β‖Q‖1.

This minimization problem can be solved using various methods. One of them is
the graphical LASSO algorithm, an extension of the standard LASSO algorithm to
the graph problems (see appendix). For the same signal as in the previous examples,
the weighting matrix obtained using the graphical LASSO, with positive and small
values set to zero, is shown in Fig. 38 (right).
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Fig. 38 Groundtruth (left) and weighting matrix estimated using graphical LASSO (right). The
axis index n corresponds to the vertex n − 1

7.6 Graph Topology with Some a Priori Knowledge

Consider a random signal x(n) and its P realizations on a graph. Assume that a
random graph signal is a result of white noise signals ε as external sources in each
vertex (in the sense as presented in Fig. 40). Then the external source to the vertex
signal relation is

Lx = ε

or E{εεT } = LE{xxT }LT resulting in I = LRxLT . The solution is

L2 = R−1
x or L = R−1/2

x .

Assume now that the graph signal is considered with a reference vertex. For the
notation simplicity assume, without loss of generality, that the reference vertex is
denoted by N − 1 (the last vertex). Assume also that the value of the graph signal
at this reference vertex is xp(N − 1) = 0 for any p. If this is not the case then we
can achieve this by subtracting xp(N − 1) from each xp(n). This operation will not
change the properties of the graph signal. In this case the correlationmatrix is singular
and assumes the form

Rx =
[

RN−1 0
0 0

]
,

where RN−1 is the correlation of the vertices n = 0, 1, . . . , N − 2. Assuming non-
singular RN−1 the Laplacian can be calculated as

L = R−1/2
x =

[√
R−1

N−1 a

aT −∑N−2
m=0 am

]
,

where the column vector a = [a0 a1 . . . aN−2]T elements are added so that
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N−2∑

m=0

Lnm + an = 0

holds for each row and column. The matrix square root operation is used.
For the graph from Fig. 7 and random graph signal generated using random white

external sources the Laplacian is obtained from

Rx =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.92 2.91 3.53 2.98 2.50 3.08 3.05 0
2.91 3.78 4.61 4.14 3.55 4.43 4.42 0
3.53 4.61 6.27 5.13 4.27 5.33 5.26 0
2.98 4.14 5.13 5.43 4.71 6.05 6.05 0
2.50 3.55 4.27 4.71 4.52 5.73 6.01 0
3.08 4.43 5.33 6.05 5.73 7.76 7.77 0
3.05 4.42 5.26 6.05 6.01 7.77 8.81 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This approach can be generalized to any known

H(L)x = ε

or H(L)ε = x. In this case a matrix polynomial equation has to be solved for the
Laplacian.

7.7 Graph Topology Based on the Eigenvectors

Assume that the available observations of a graph signal xp(n) are graph wide sense
stationary (GWSS). A graph signal’s observations xp are GWSS if they can be
considered as the outputs of a linear and shift invariant system H(A) to thewhite noise
inputs εp, with x = H(A)ε, see Sect. 6.1. The correlation matrix of the observed
signal can be written as

Rx = UT |H(���)|2U,

where U is the matrix of graph eigenvectors L = UT���U. The autocorrelation matrix
estimation is done using all available observations Rx = E{xxT } ≈ 1

P

∑P
p=1 xpxT

p .
From the autocorrelation matrix decomposition we can learn about the graph eigen-
vectors. The same holds for the precision matrix ��� = R−1

x since the inverse matrix
has the same eigenvectors as the original matrix.

In order to estimate the graph connectivity (estimate its Laplacian or adjacency
matrix) we can use the autocorrelation matrix eigenvectors. Since we do not know
H(���), it will be assumed that the graph is defined by the eigenvalues that produces
the smallest number of edges. This can be done byminimizing the number of nonzero
values in L with the given eigenvectors.



Introduction to Graph Signal Processing 85

The minimization problem is

min
λk

‖L‖0 subject to L =
N−1∑

k=0

λkukuT
k .

The convex form of this minimization problem is

min
λk

‖L‖1 subject to L =
N−1∑

k=0

λkukuT
k .

The convex norm-one based form can produce the same solution as the original
norm-zero form if the Laplacian sparsity is low and satisfies some conditions (in the
sense discussed within Sect. 4.2).

Since the eigenvectors are obtained from the correlation matrix decomposition,
the spectral analysis obtained in this way is related to the principal value decom-
position (PVD), where the signal is decomposed onto the set of correlation matrix
eigenvectors.

For the examples with classical signal processing, we have used the Fourier anal-
ysis. The problem formulation presented in this section can be used to define a graph
such that the spectral analysis on this graph leads to some other well known trans-
forms. We will illustrate this method on the Hadamard transform with N = 8 with
eigenvectors

U = 1√
8

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If the eigenvalues are found to minimize the number of nonzero elements in the
Laplacian, we get the graphs for N = 8 and N = 16 as shown in Fig. 39.

7.8 Physically Well Defined Graphs

7.8.1 Resistive Electrical Circuits

One of the oldest applications of graph theory in engineeringwas in electrical circuits
theory. Graph theory based methods for analysis and transformations of electrical
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Fig. 39 Graph whose eigenvectors are the Hadamard transform basis functions for N = 8 and
N = 16

circuits are already part of the classical electrical circuits courses and textbooks.
This approach can directly be applied to other engineering fields, like heat transfer
or mechanical mass strings. It is interesting that some general information theory
problems can be interpreted and solved within the graph approach to the basic elec-
trical circuits framework. In these cases the underlying graph topology iswell defined
and is a part of the problem statement.

The Laplacian can also be consideredwithin the basic electric circuit theory. Since
it can be derived based on the Kirchhoff’s laws, the Laplacian is also known as the
Kirchhoff matrix in electric circuit theory.

Consider a resistive electric circuit. Denote the electric potential in the circuit
vertices (nodes) by x(n). The vertices in an electrical circuit are connected with
edges. The weight of an edge connecting the vertices n and m is defined by the edge
conductanceWnm . The conductances are the reciprocal values to the edge resistances
Wnm = 1/Rnm . The current in the edge from vertex n to vertex m is equal to

inm = x(n) − x(m)

Rnm
= Wnm(x(n) − x(m)).

In addition to the edge currents, an external current generator is attached to each
vertex. It can be considered as a source of the signal change in the vertices. The
external current at a vertex n is denoted by in .

The sum of all currents going from a vertex n, n = 0, 1, . . . , N − 1, must be 0,

−in +
∑

m

inm = 0.

The current of the external generator in vertex n must be equal to the sum of all edge
currents going from this vertex,
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Fig. 40 Electric potential x(n) as a signal on an electric circuit graph

in =∑
m
Wnm(x(n) − x(m)) = dnx(n) −∑

m
Wnmx(m),

n = 0, 1, . . . , N − 1,

where

dn =
∑

m

Wnm =
N−1∑

m=0

Wnm

is the degree of vertex n. The summation over m can be extended to all vertices
m = 0, 1, . . . , N − 1 since Wnm = 0 if there is not an edge between vertices n and
m.

The previous equations can be written in a matrix form as

i = Dx − Wx

or
Lx = i

where L = D − W is the Laplacian of graph.
If the Laplacian matrix is decomposed as L = U���UT we get���UT x =UT i or

���X = I

where X = UT x and I = UT i are GDFT of graph signals x and i.
Components of the spectral transform vector X are such that

λk X (k) = I (k)

for each k.
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Signal on an electrical circuit graph can be related to the presented theory in
several ways. For example, potentials on all vertices could be measured with some
measurement noise. In that case, filtering on a graph should be applied. Another
possible case is when the external conditions are imposed, for example sources are
applied to some vertices. We are then interested in potential values at all vertices.
This problem corresponds to the graph signal reconstruction.

7.8.2 Heat Transfer

The samemodel as in the resistive electrical circuit case can be used for a heat transfer
network. In this case the signal values are the measured temperatures x(n) = T (n).
The heat flux is defined as

qnm = (T (n) − T (m))Cnm = Wnm(x(n) − x(m)),

whereCnm are the heat transfer constants, representing edgeweights in the underlying
graph. Then the input heat flux in the vertex n is

qn =
∑

m

Wnm(x(n) − x(m)) = dnx(n) −
N−1∑

m=0

Wnmx(m),

with
q = Lx

Active vertices are thosewhere there is an external heat flux,while the passive vertices
are those where all heat flux coming to a vertex is forwarded to other vertices through
the edges. An example of a heat transfer graph is given in Fig. 41.
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Fig. 41 Temperature x(n) = T (n) as a signal on a heat transfer graph
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Fig. 42 Spring-mass system

7.8.3 Spring-Mass Systems

A spring mass system is used as a model of a graph and graph signal simulations.
Consider a system of N = 4masses corresponding to the line graph, Fig. 42. Assume
that all displacements and forces are in the direction of the system line. The displace-
ments x(n) and the forces Fn , according to Hook’s law in a steady state, are related
as

k1(x(1) − x(2)) = F1

k1(x(2) − x(1)) + k2(x(2) − x(3)) = F2

k2(x(3) − x(2)) + k3(x(3) − x(4)) = F3

k3(x(4) − x(3)) = F4

In matrix form
⎡

⎢⎢⎣

k1 −k1 0 0
−k1 k1 + k2 −k2
0 −k2 k2 + k3 −k3
0 0 −k3 k3

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

F1

F2

F3

F4

⎤

⎥⎥⎦

Lx = F

These equations define a weighted graph and its corresponding Laplacian.
The Laplacian is singular matrix. In order to solve this system for unknown dis-

placements (graph signal)we should introduce a reference vertexwith afixed position
(zero displacement). Then the system Lx = F can be solved.

7.8.4 Social Networks and Linked Pages

Social networks are also examples of well defined graphs. The vertices are network
members and the edges define their relationships in a network. If two members are
related, corresponding edge weight is 1. In this case weight matrix is equal to the
adjacency matrix. An example of a simple social network with N = 8 members is
shown in Fig. 43.

Pages with hyper-links can also be considered as a well defined directed graph. An
example of links between N = 8 pages is given in Fig. 44. An interesting parameter
for this kind of graphs is the PageRank.



90 L. Stanković et al.

Fig. 43 Social network graph example

Fig. 44 Linked pages graph example

7.8.5 PageRank

For a directed graph, PageRank of vertex n is defined as a graph signal satisfying the
relation

x(n) =
∑

m

1

dm
Wmnx(m),
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where Wmn are weights of the directed edges connecting the vertex m to vertex n
and dm is the outgoing degree of the vertexm. This means that the PageRank of each
vertex is related to the PageRank of connected vertices.

The PageRank is commonly calculated using an iterative procedure defined by

xk+1(n) =
∑

m

1

dm
Wmnxk(m),

starting from arbitrary page ranks, for example x0(n) = 1.
The PageRank was defined by Google to rank the web pages. In the original

definition a scaling factor was added,

xk+1(n) = 0.15 + 0.85
∑

m

1

dm
Wmnxk(m),

As an example, consider the graph from Fig. 44 (it is the same graph as in Fig. 2b).
We will calculate the PageRank for all vertices in this graph. The weight/adjacency
matrix of this graph W = A is given by (1), right. The outgoing vertex degrees
are calculated as the sum of the matrix columns, dm =∑7

n=0 Anm . Their values are
d = [2 3 1 3 1 2 1 2].Now thePageRankvalues for vertices can be obtained through
the iterative procedure starting with initial page ranks x0 = [1 1 1 1 1 1 1 1].
The results for PageRank in a few iterations are

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT
0

xT
1

xT
2
...

xT
5
...

xT
11

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.83 1.83 0.50 1.33 0.50 1.50 0.50 1.00
0.58 1.42 0.67 2.00 0.75 1.67 0.25 1.67

...

0.73 1.60 0.82 1.71 0.61 1.11 0.31 1.10
...

0.79 1.57 0.86 1.71 0.57 1.14 0.29 1.07

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix form of the iterations is

xk+1 = WNxk,

where WN is obtained from W by dividing all elements of the mth column, m =
0, 1, . . . , N − 1, by dm . The mean-values of matrix WN columns are normalized.

In the considered example, the normalized adjacency/weighing matrix is
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WN =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
3 0 0 0 0 0 0

0 0 0 1
3 0 0 0 1

2
1
2

1
3 0 0 0 0 0 0

0 0 1 0 0 1
2 0 0

0 0 0 0 0 0 1 1
2

0 0 0 1
3 1 0 0 0

0 0 0 0 0 1
2 0 0

1
2

1
3 0 1

3 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The final, stationary state, page rank can be obtained from

x = WNx.

Thefinal PageRankx is the eigenvector ofmatrixWN corresponding to the eigenvalue
equal to 1.

For the considered example, the eigenvalue decomposition of the matrix WN

results in the eigenvector, corresponding to eigenvalue 1,

xT = [0.79 1.57 0.86 1.71 0.57 1.14 0.29 1.07].

The eigenvector is normalized with its mean value. It corresponds to the iterative
solution obtained after 11 iterations.

7.8.6 Random Walk

Assume that the signal x(n) represents probabilities that a random walker is present
in vertex n. The random walker will transit from vertex n to one of its neighbouring
vertices m with probabilities

pnm = Wnm∑
m Wnm

,

where Wnm are affinities of the walker to transit from vertex n to vertex m.
The signal x(n) calculation can be considered within the graph framework where

Wnm are edge weights.
The probabilities in the stage (p + 1) are calculated starting from probabilities in

the previous stage as
xp+1 = D−1Wxp

or Dxp+1 = Wxp. Matrix W is a matrix of weighting coefficients and D is the degree
matrix.

In stationary state, when xp+1 = xp = x we have Dx = Wx or

Lx = 0.
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Various problem formulations and solutions are now possible within the presented
graph theory framework. For example, if we want to find probabilities that the walker
reaches vertex 5 before he reaches vertex 7 from any vertex n we have to solve the
system Lx = 0 with x(5) = 1 and x(7) = 0.

7.9 Gaussian Random Signal

Consider a random graph signal x(n) and assume that each sample is Gaussian
distributed with mean μn and standard deviation σn . Assuming that the signal values
are correlated, the pdf function of the signal x is

P(x) = 1√
(2π)N

det(���−1
x ) exp

(
−1

2
(x − μ)T���−1

x (x − μ)

)
.

The inverse value of the autocovariance matrix is the precision matrix ��� = ���−1
x .

The name precision comes from the one-dimensional case in which the precision is
inversely proportional to the variance Θ = 1/σ2.

The maximum likelihood estimate of x is obtained by minimizing

Ex = 1

2
(x − μ)T���−1

x (x − μ).

Its solution is
���−1

x (x − μ) = 0.

For zero mean random signal, μ = 0 and���−1
x x = 0. This corresponds to the energy

of change minimization (maximal smoothness) in the graph.
The Laplacian corresponding to the information matrix is defined by

���−1
x = L + P

where P is a diagonal matrix such that sum of the Laplacian columns is zero. Note
that some of non-diagonal elements of ���−1

x can be positive. In that case, additional
conditions should be added to find the best solution avoiding positive coefficients on
the Laplacian diagonal.

The edge weights can be extracted from the Laplacian matrix. Since the Laplacian
is defined using signal values, this is a point when the presented analysis meets the
discussion from the previous section.
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8 Appendix

8.1 Graph Signal Calculation Using Laplacian

The graph signal x can be calculated using this system of linear equations with the
vector of external sources. Since the Laplacian is a singular matrix, one graph signal
value (potential) should be considered as a free/referent variable.

In the case when there is no external generator, the graph signal x satisfies the
following equation

Lx = 0.

This equation corresponds to the minimum of the energy of change in x defined by
the quadratic form

Ex = xT Lx = 1

2

N−1∑

n=0

N−1∑

m=0

Wnm(x(n) − x(m))2 = 1

2

N−1∑

n=0

N−1∑

m=0

Pnm .

where Pnm can be considered as a power dissipated in the edge between vertices n
and m. It follows from ∂Ex/∂xT = 2Lx = 0 and (38). The solution of this equation
x(n) is a constant defined by the signal value at the reference vertex.

For nontrivial solutions, there should be an external source in at least two vertices.
Assume that one of them is chosen as the referent vertex. Signal or external source
values at these vertices are sufficient to find signal values at all other vertices.

As an example, consider the graph and signal sensed on the graph presented in
Fig. 40. The signal values are

x = [0.57, 0.67, 1.03, 0.86, 0.90, 1.68, 1.29, 0]T

and the Laplacian of the signal is

Lx = [0, 0, 1, 0, 0, 2, 0,−3]T .

This means that the vertices denoted by 0, 1, 3, 4, 6 are not active in this case. Their
values can be obtained as linear combinations of the signal at neighboring active
vertices:

−0.47x(7) − 0.14x(2) − 0.54x(1) + 1.15x(0) = 0

−0.31x(7) − 0.30x(4) − 0.35x(3) − 0.63x(2) + 2.13x(1) − 0.54x(0) = 0

−0.43x(5) − 0.54x(4) + 1.82x(3) − 0.31x(2) − 0.54x(1) = 0

−0.62x(6) − 0.54x(5) + 2.00x(4) − 0.54x(3) − 0.30x(1) = 0

0.99x(6) − 0.37x(5) − 0.62x(4) = 0
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Fig. 45 Electric potential x(n) as a signal on an electric circuit graph at three vertices with nonzero
external sources

Solving this system with known signal values x(2) = 1.03, x(5) = 1.68, and
x(7) = 0 at the active vertices, Fig. 45, we get the remaining signal values

xp = [x(0), x(1), x(3), x(4), x(6)]T = [0.57, 0.67, 0.86, 0.90, 1.29]T .

Assume that only some of the vertices are active, with external sources. Denote
the set of these M active vertices by E . Then the vertices without external sources
areH, such that V = E ∪ H and E ∩ H = ∅. For a full reconstruction of this signal
we have to know only M signal values x(n) at vertices n ∈ E or any other linearly
independent M graph signal samples. The remaining N − M graph signal samples
are obtained from the equations following from the fact that the Laplacian at n ∈ H
is zero-valued.

From the circuit theory, it is well known that this kind of graph can be downscaled
without any influence to the signal at vertices where Laplacian is nonzero. The
vertices with zero Laplacian can be omitted by using so called Y-� (star-mesh)
transformation. The resulting graph has a reduced number of vertices, while the
number of edges may be increased.

This kind of interpolation can be applied to classic, time-domain signals as well.
The Laplacian of a time-domain signal at instant (vertex) n is calculated as 2x(n) −
x(n − 1) − x(n + 1). Its zero value will indicate that this vertex (instant) is not
active (there is no external source). Therefore, this value can be omitted since it can
be obtained from the condition that Laplacian is zero from other signal values at
instants n − 1 and n + 1. An illustration of such a signal and reconstruction based
on the signal values at the Laplacian nonzero positions is presented in Fig. 46.

In this way, vertices where the signal behavior is changed are detected using the
Laplacian. Note that the two-dimensional Laplacian is a classical tool in the image
edge detection.
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Fig. 46 Reconstructed signal at zero Laplacian positions using signal at nonzero Laplacian posi-
tions. Signals are presented as functions of the vertex index n

This kind of subsampling can be considered as a signal processing and graph
signal processing equivalence of the Laplace differential equation:

L{V (x, y)} = ∇2V (x, y) = ∂2V (x, y)

∂x2
+ ∂2V (x, y)

∂y2
= 0

with given boundary conditions (Dirichlet problem):

V (x, y) = f (x, y) on boundary D(x, y) = 0.

In graph signal processing, vertices with a nonzero Laplacian define the boundary
set and the signal values on these vertices are the boundary conditions.

In general, when the Laplacian of a graph signal is nonzero at all vertices we can
apply hard thresholding, keeping large Laplacian values and neglecting the small
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Fig. 47 Reconstructed signal at small Laplacian positions using signal at nonzero Laplacian posi-
tions and linear approximation

ones in a linear approximation of the graph signal. In this way we can keep just the
signal values on the vertices

n ∈ E if |Lx| ≥ τ at vertex n.

The correction (high pass part) of the signal is equal to the Laplacian of signal
on n /∈ E . It can be used to adjust the values of linear approximation to the full
signal reconstruction. If a graph signal is noisy then the Laplacian can be used for
the detection of the active (boundary condition) vertices. The signal values can be
obtained by a mean squared linear approximation of the noisy data with the detected
positions of the discontinuity of linear behavior Fig. 47.
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Some vertices may be active for some signal realizations and not active for other
signal realizations. Some vertices may not be active for the whole set of realizations,
meaning that the graph can be downscaled not only for one considered signal x(n) but
for a class of signals by omitting some of the vertices using star-mesh conversions.

8.2 Random Signal Simulation on a Graph

The presentation of a graph and graph signal within the circuit theory can be used to
simulate random signals on graphs. Several approaches are possible. Here we will
present few of them.

(1)Assume that the graph is initiated by external sources that are randomvariables.
In that case the pth observation of a random signal on the graph is simulated as a
solution of the system of equations

Lxp = εp

using ip = εp. One of the external sources (randomly chosen for each observation
p) should compensate all other sources, to ensure

∑N−1
n=0 εp(n) = 0.

(2) Assume that the graph is initiated at only one of its vertices (and the reference
vertex) with random white external zero-mean white source. The position of these
vertices is randomly selected for each p. Then the random signal observation on a
graph is obtained as a solution of

Lxp = ip

where i p(n) = εpδ(n − ni ) − εpδ(n − n j ) and ni and n j are two randomly selected
vertices in each observation.

(3) A simple random graph signal can be simulated using its values at two
randomly positioned vertices and Lxp = 0. Assuming that xp(n) = εpδ(n − ni ) +
εpδ(n − n j ) and ni and n j are two randomly selected vertices in each observation,
we may solve the system for all other signal samples using

Lxp = 0.

With two assumed values xp(n) at n = ni and n = n j we can solve this system for all
other signal values. In the case of external sources the values should be compensated.
In this case there is no need for compensation, meaning that εp and εp could be
independent random variables.

(4) Assume that the signal on a graph is formed using a linear combination of a
white noise x(0)

p = εp and its graph shifted versions. The first iteration is

x(1)
p = α1Lx(0)

p + x(0)
p .
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After M iterations we get

x(M)
p = αMLx(M−1)

p + x(0)
p = (hMLM + hM−1LM−1 + · · · + h1L1 + 1)εp,

where hm = αmαm−1 . . . α1. The final signal

xp = x(M)
p = H(L)εp,

is a GWSS signal.
(5) In graph signal simulation we may also use the adjacency matrix and graph

shifts. Assume that an undirected graph with adjacency matrix A is initiated at Na

randomly chosen vertices n1, n2, . . . , nNa , η = Na/N , with spikes δ(n − ni ), i =
1, 2, . . . , Na . If we shift these spikes K times we get

x = AK
Na∑

i=1

δ(n − ni ).

Parameters K and Na define the resulting signal smoothness. An example of one
realizationof such a signal is presented inFig. 22 forη = 1/8, K = 1 (upper subplots)
and η = 2/8, K = 1 (lower subplots) using spikes aiδ(n − ni ), where ai are the spike
amplitudes.

(6) In classical Fourier analysis, the signals are commonly simulated as sums of
the harmonic basis functions. This kind of simulation may be used in graph signal
processing as well. A signal on a graph can be written as

x =
K∑

i=1

aki uki

where uk are the Laplacian or adjacency matrix eigenvectors, and ak are random
constants. This kind of graph signal simulation, with or without an additive noise, is
often used in this chapter.

8.3 From the Newton Minimization to the Graphical LASSO

8.3.1 Newton Method

Fist we will shortly review the Newton iterative algorithm for finding the minimum
of a convex function. Consider a function f (x) and assume that it is differentiable.
Denote the minimum position of f (x) by x∗. The first derivative of f (x) at x∗ =
x + Δx can be expanded into a Taylor series around a point x , using the linear
approximation, as
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f ′(x∗) = f ′(x) + f ′′(x)Δx . (70)

Since f ′(x∗) = 0 by definition, with Δx = x∗ − x , relation (70) can be rewritten as

x∗ − x = − f ′(x)
f ′′(x)

.

This form is used to define an iterative procedure (Newton’s iterative method) for
finding x∗ starting from an x = x0 as

xk+1 = xk − α f ′(xk).

Parameter α is commonly used instead of 1/ f ′′(x) to control the iteration step. Its
value should be 0 < α ≤ max(|1/ f ′′(x)|), for the considered interval of x . This is the
form of the well-known steepest descend method for convex function minimization.

The value x∗ = x − α f ′(x), with α = 1/ f ′′(x) would be obtained as result of
the minimization of a cost function defined by the quadratic form

x∗ = argmin
z

G(z) = argmin
z

(
f (x) + f ′(x)(z − x) + 1

2α
(z − x)2

)
.

From d( f (x) + f ′(x)(z − x) + 1
2α (z − x)2)/dz = 0 we would get x∗ = z.

Next assume that we want to minimize the cost function

J (x) = 1

2α
(x − y)2 + λ|x |,

where λ is a parameter. From d J (x)/dx = (x − y)/α + λsign(x) = 0 we get

x + λαsign(x) = y.

The soft-thresholding is used as a solution of this equation. It is denoted as soft(y,αλ)

and defined by

x = soft(y,αλ) =
⎧
⎨

⎩

y + αλ for y < −αλ
0 for |y| ≤ αλ

y − αλ for y > αλ.

8.3.2 LASSO

For the lasso minimization we will consider the cost function

J (X) = ‖y − AX‖22 + λ‖X‖1 = ‖y‖22 − 2XT AT y + XT AT AX + λ‖X‖1,
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where y is a M × 1 column vector, X is a N × 1 column vector, and A is an M × N
matrix.

Minimization of this cost function with respect to X will produce its value such
that AX is as close to y as possible, promoting the sparsity of X at the same time.
Balance between these two requirements is defined by the parameter λ.

Consider first the differentiable part of the cost function J (X) denoted by JD(X) =
‖y − AX‖22 = (y − AX)T (y − AX). Its derivatives are

∂ JD(X)

∂XT
= −2AT y + 2XT AT A

and
∂2 JD(X)

(∂XT )2
= 2AT A.

The linear model for the first derivative of JD(X) around its minimum is

∂ JD(X∗)
∂XT

= ∂ JD(X)

∂XT
+ (ΔX)

∂2 JD(X)

(∂XT )2
.

By replacing the inverse of the second order derivative by a constant diagonal matrix
αI we get

ΔX = X∗ − X = −α
∂ JD(X)

∂XT

or

X∗ = X − α
∂ JD(X)

∂XT
(71)

with 0 < α < 1/max ‖2AT A‖ = 1/(2λmax), where λmax is the maximal eigenvalue
of matrix AT A.

In order to find Z = X∗ that minimizes the complete cost function J (X), we can
minimize the squared difference Z − (X − αI ∂ JD(X)

∂XT ) and the norm-one of Z, by
forming the cost function G(Z) as

X∗ = argmin
Z

G(Z) = argmin
Z

(
1

2α
‖Z −

(
X − αI

∂ JD(X)

∂XT

)
‖2 + λ‖Z‖1

)
.

This minimization will produce Z as close as possible to the desired solution (71),
minimizing its norm-one at the same time. The balance parameter is λ.

The solution of

X∗ = argmin
Z

G(Z) = 1

2α
‖Z − Y‖2 + λ‖Z‖1

is obtained from
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1

α
(X∗ − Y) + λsign(X∗) = 0.

Using the soft function we can write

X∗ = soft(Y,αλ).

Next we will replace the value of Y by

Y =
(

X − αI ∂ JD(X)

∂XT

)
= X − αI(−2AT y + 2XT AT A)

= 2αAT y + (I − 2αAT A)X.

The iterative formula for the solution of the definedminimization problem is obtained
by replacing X∗ = Xk+1 and X = Xk as

Xk+1 = soft(2αAT (y − AXk) + Xk,αλ).

This formula can easily be written for each element of Xk . This is the LASSO
(Least Absolute Shrinkage and Selection Operator) iterative algorithm. As the initial
estimate X0 = AT y is commonly used.

8.3.3 Graphical LASSO

In graph model learning, the cost function in the form

J (Q) = − log det Q + Trace(QRx ) + ‖Q‖1
may be obtained. Here Q is the generalized Laplacian N × N matrix, while Rx is the
available N × N correlation matrix. The meaning of these terms is explained within
the main part of this chapter.

The derivative of the cost function with respect to the elements ofQ can be written
as

− Q−1 + Rx + sign(Q) = 0 (72)

at ∂ J (Q)/∂Q = 0.
Note that log det Q =∑N−1

i=0 logλi = Trace(log���) = Trace(logQ), where λi

are the eigenvalues of Q.
Introducing the notation W = Q−1 or

WQ = I
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we can write
[

W11 w12

wT
12 w22

] [
Q11 q12

qT
12 q22

]
=
[

I 0
0T 1

]
. (73)

Multiplying the first row block of W with the last column block of Q we get

W11q12 + w12q22 = 0

This means that
w12 = −W11q12/q22 = W11β

where
β = −q12/q22

is normalized with q22 > 0.
Now, from the derivative equation (72) we may write

−
[

W11 w12

wT
12 w22

]
+
[

R11 r12
rT12 r22

]
+ sign

([
Q11 q12

qT
12 q22

])
= 0.

For the upper right block we can write

−w12 + r12 + sign(q12) = 0

or after replacing w12 = W11β and q12 = −β/q22 we get

−W11β + r12 − sign(β) = 0.

The solution of this equation for β is already defined within LASSO consideration.
It is

βi = soft

⎛

⎝r12(i) −
∑

k �=i

W11(k, i)βk,λ

⎞

⎠ /W11(i). (74)

Nowwemay summarize the graphical LASSO (GLASSO) iterative algorithm as:

• In the initial step,
W = Rx + λI

is used. For each coordinate j = 1, 2, . . . , N , the matrix equation of form (73) is
written. For each j the reduced matrix W11 is formed by omitting the j th row and
the j th column. Then the matrix Rx is rearranged appropriately.

• Equation (74) is solved.
• The matrix W is updated for each j with
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w12 = W11β.

• In the final iteration, for each j , the value of matrix Q is updated as

q12 = −β/q22

with 1/q22 = w22 − wT
12 − β.

9 Conclusion

An introduction to graph signal processing is presented. This chapter consists of
three main parts. In the first part, a review of graphs is given. Next, the signal on
graph definitions, basic properties, and systems for processing signals on graphs are
reviewed. Finally, the graph topologies are discussed. The appendix provides some
supplementary material for better understanding of the principles presented in the
main part of the chapters. The topic of this book is the spectral localization through
vertex-frequency analysis [39, 83–100], which will be presented in the next chapters.
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filtering, in 2014 IEEEGlobal Conference on Signal and Information Processing (GlobalSIP)
(IEEE, 2014), pp. 872–876

33. A. Gavili, X.-P. Zhang, On the shift operator, graph frequency, and optimal filtering in graph
signal processing. IEEE Trans. Signal Process. 65(23), 6303–6318 (2017)

34. A. Venkitaraman, S. Chatterjee, P. Händel, Hilbert transform, analytic signal, and modulation
analysis for graph signal processing (2016), arXiv:1611.05269

35. A. Agaskar, Y.M. Lu, A spectral graph uncertainty principle. IEEE Trans. Inf. Theory 59(7),
4338–4356 (2013)

36. X. Yan, B.M. Sadler, R.J. Drost, P.L. Yu, K. Lerman, Graph filters and the z-Laplacian. IEEE
J. Sel. Top. Signal Process. 11, 774–784 (2017)

37. X. Wang, J. Chen, Y. Gu, Local measurement and reconstruction for noisy bandlimited graph
signals. Signal Process. 129, 119–129 (2016)

http://arxiv.org/abs/1611.05269


106 L. Stanković et al.
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Abstract Network science has been a rapidly evolving field to study systems made
of interactions between entities. Studying the structure of such networks reveals
indeed the underlying mechanisms of these systems, and has been proven successful
in many domains, such as sociology, biology, or geography. Recently, connections
between network science and signal processing have emerged, making the use of a
wide variety of tools possible to study networks. In this chapter, a focus is made on
a methodology introduced to transform a graph into a collection of signals, using
a multidimensional scaling technique: by projecting a distance matrix representing
relations between vertices of the graph as points in a Euclidean space, it is possible
to interpret coordinates of vertices in this space as signals, and take advantage of
this dual representation to develop new tools for the study of networks. Deeper
considerations of this methodology are proposed, by strengthening the connections
between the obtained signals and the common graph structures. A robust inverse
transformation method is next described, taking into account possible changes in
the signals. Establishing a robust duality between graphs and signals opens up new
perspectives, as classical signal processing tools, such as spectral analysis or filtering,
are made available for the study of the structure of networks.
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1 Introduction

Network science [37] provides powerful tools to analyze systems in which rela-
tionships between entities naturally arise, whether passengers in transportation sys-
tems, users of a social network, or molecules in a chemical reaction. These tools
have been proven very useful to extract relevant information from large amount of
data represented as graphs, and mostly rely on ideas developed in other fields: The
topic of the detection of communities [15, 16] is a relevant example of success-
ful multi-disciplinary works, leading to many theoretical and applied results, based
simultaneously on graph theory, statistical physics, and signal processing.

More recently, the connections between signal processing and network theory
have tremendously increased, aiming at revisiting concepts from signal processing
with a graph-based perspective, in the so-called graph signal processing field: works
on the Fourier Transform operator [48], filtering of signals defined on the vertices
of the graph [44, 47], spectral wavelets [21], graph filter banks [36, 38, 43, 51],
vertex-frequency analysis [49], or sampling for graph signals [3, 7, 17, 33, 52], have
then been proposed these recent years. If some of these works include the study of the
network structure, for example using graph wavelets [50] detection of communities,
graph signal processing is not primarily focused on the description of the structure
of the graph as network science is.

Transforming signals to networks has also been a popular topic of research, which
mainly focused on the study of nonlinear time series using network tools. As thor-
oughly described in [13], various approaches have been proposed, such as correlation
networks [59, 61], recurrence networks [11, 12, 34] visibility graph [31, 39], or tran-
sition networks [6], to transform time series into networks and take advantage of the
various network measures to extract significant properties about the dynamics of the
corresponding time series. These works led to significant results in applications such
as for heart rate [6] or earthquake [1] analyzes.

Conversely, mapping a graph into time series has been less intensively studied.
In [6] is proposed a random walk based algorithm, to map graphs into time series by
associating a specific value in the timedomainwith vertices,with the particularity that
the graphs are themselves derived from time series. In [18], this approach is extended
to the casewhere the graph is the object of interest, by using semi-supervised learning
to map vertices to signal magnitudes such that the resulting time series are smooth.
In [32], networks are constructed from sequences of notes of musical pieces, and
then randomly followed to generate music. The resulting audio time series exhibit
similar patterns as the original ones, that has been captured by the structure of the
intermediary signals. In [58], a method is proposed to explore the structure of scale-
free networks using finite-memory random walks, where the values of time series
at time t are the degree of the vertex visited by the walker at step t . The resulting
time series, obtained from different real-world networks, exhibit correlations, linked
with the scale-free property of these networks. Other works have focused on using
eigenvectors of the Laplacian matrix in a context of dimensionality reduction and
data representation, such as Laplacian eigenmaps [4].
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Using an alternative approach, a deterministic method based on multidimensional
scaling [5] has been proposed in [25, 46] to represent the vertices of the graph as a set
of points in a Euclidean space, where the relations described by the edges are repre-
sented by distances between points. The method consists in projecting the vertices in
a Euclidean space whose dimension is equal to the number of vertices. The consid-
ered distance matrix between vertices is built from the adjacency matrix, conveying
the simple presence or not of an edge between all pairs of vertices. Their observation
is that in this configuration, the small-worldness of a graph, i.e., the property that
the average length of the shortest paths between vertices is small when compared
to the number of vertices, is visible through the periodicity of the corresponding
time series. The role of eigenvectors in the characterization of the graph topology is
well-known, and many algorithms rely on them to study various problems, such as
spectral clustering [55]. An attractive feature of the approach considered in [46], as
opposed to those previously described, is that it is a lossless transformation, preserv-
ing all the information about the relationships between vertices in the signals. These
two representations are then completely equivalent, making the use of a wide range
of processing techniques that are not applicable in the graph domain possible in the
Euclidean space.

With these considerations in mind, a deep exploration of this methodology is
reported in this chapter, to highlight the links between these signals and the topol-
ogy of graphs. Already partially outlined in [22, 23], these contributions focus on
unweighted graphs. This chapter intends to strengthen the work proposed in [46]
on several points: first of all, some theoretical aspects of the method are discussed,
and connections between the signals obtained after transformation and the topol-
ogy of graphs are heightened. A detailed study of the inverse transformation is also
proposed, taking into account possible changes in the signals. Establishing a robust
duality between graphs and signals opens up new perspectives, as classical signal
processing tools, such as spectral analysis or filtering, are made henceforth available
for the study of the structure of networks. These perspectives are briefly discussed
through two applications of the characterization of the structure of graphs through
frequency patterns, and a short study of the effect of signal filtering on the graph
structure.

The content is organized as follows: In Sect. 2, the transformation from graph to
signals based on classical multidimensional scaling is described and studied, and a
discussion is made on several common graph structures that may appear in networks.
A robust inverse transformation for this approach is then discussed in Sect. 3 to
transform back a collection of signals into a graph, establishing a comprehensive
duality between graphs and multivariate signals. Finally, two applications of this
duality are discussed in Sect. 4, to automatically extract significant graph structure
using spectral analysis and process the graph using filtering on the corresponding
signals.

Notations

Throughout the article, the following notations are adopted. G denotes a simple,
undirected, and unweighted graph, with n vertices. Unless otherwise mentioned,



114 R. Hamon et al.

n = 200 for all illustrations. We denote by A the corresponding adjacency matrix,
whose element ai j is equal to 1 if there exists an edge between vertices i and j ,
0 otherwise. Finally, In denotes the identity matrix of size n, and 1n1Tn the n × n
matrix of ones.

2 From Graphs to Signals Using Multidimensional Scaling:
Study and Illustrations

2.1 Projection of Vertices into Signals

2.1.1 Methodology

The core of the proposed approach is to project the vertices of the graph, living in the
graph domain, in a more gentle Euclidean space, while preserving all the information
about the relationships between vertices. In [46], the transformation from a graph
with n vertices into a collection of signals of n points indexed by the vertices of the
graph is based on multidimensional scaling (MDS) [5].

MDS is a set of mathematical techniques used to represent dissimilarities between
pairs of objects as distances between points in a Euclidean space. Even if the resulting
points have the same dimension as the original distance matrix, it is possible to
dramatically reduce the dimension of the space without losing too much information
between the dissimilarities between objects. The case where the dissimilarities are
assumed to be Euclidean distances, i.e. the distances between points in the Euclidean
space is equal to to the original dissimilaritymatrix, is calledClassicalMDS (CMDS)
and will be considered in the following. The algorithm to compute the coordinates
X of n points in a n-dimensional Euclidean space, from a n × n Euclidean distance
matrix Δ, is given in Algorithm1, and amounts to applying Principal Component
Analysis on a matrix derived from Δ.

Algorithm 1 Classical Multidimensional Scaling (MDS)
1: procedure CMDS(Δ = (δi j )i, j=1,...,n : Euclidean distance matrix between n objects)

2: Compute the centering matrix: J = In − 1
n 1n1

T
n

3: Perform the double centering of Δ.2, where Δ.2 denotes the matrix Δ whose elements are
squared: B = − 1

2 JΔ.2 J
4: Diagonalize the matrix: B = Q�QT

5: Return: X = Q+�
1
2+, where eigenvectors and eigenvalues are sorted in decreasing order of

eigenvalues.

Applying CMDS to transform graphs into signals requires defining a dissimilarity
measure between vertices. While common measures on graphs often consider the
proximity between vertices in the graph, a simpler distance has been introduced
in [46], than can be easily obtained from the adjacency matrix:



Transformation from Graphs to Signals and Back 115

Δ = A + w(1n1Tn − In − A) (1)

where w is an arbitrary weight strictly greater than 1. This definition does not indeed
convey (at least explicitly) the proximity between vertices beyond direct linkage: if
two vertices are connected, their distance is equal to 1, otherwise it is equal tow. The
remoteness between two vertices, which is commonly measured using the length
of the shortest path between the two vertices, is then not taken into account in this
definition: two pairs of unlinked vertices will have a distance equal to w, whether
they are close or not in the graph. This measure allows nonetheless to characterize
the structure of the network, as shown in the next sections.

In the rest of the chapter, we will denote the columns of the matrix X as signals
or components: the j th signal, denoted X ( j), gives the coordinates of all vertices at
dimension j of the embedding.

2.1.2 Existence of a Solution

For a given distance matrix Δ, an exact solution for the CMDS problem, i.e., a con-
figuration of points X in a Euclidean space such that distances between these points
are equal to distances defined in Δ, exists if and only if Δ is a Euclidean distance
matrix [8]. In the alternate case, only the closest configuration X is obtained. The
choice of the distance measure given in Eq. (1) makes this property easily reachable,
unlike a distance measure based on the length of the shortest path between the ver-
tices. The Euclidean property of Δ is nonetheless dependent on the value of w: if
it is obvious that w should be strictly greater than 1, a too high value of w leads to
non-Euclidean distances matrices, which can be easily verified in low dimension.

The calculation of an upper bound of w relies on the positive-semi-definiteness
of the co-variance matrix of X :B = XXT . As mentioned in the work of Gower [8],
Δ is Euclidean if and only if B is positive definite:

〈z, Bz〉 ≥ 0 for all vectors z ∈ R
n (2)

or equivalently, if and only if Δ.2 is conditionally negative definite:

〈z,Δ.2z〉 ≤ 0 ∀z ∈ R
n such that

n∑

i=1

zi = 0 (3)

From the definition of Δ in Eq. (1), we have:

〈z,Δ.2z〉 = 〈z, Az〉 + w2(〈z, 1n1Tn z〉 − 〈z, In z〉 − 〈z, Az〉) (4)

= 〈z, Az〉 − w2(〈z, z〉 + 〈z, Az〉)

Two cases can be then distinguished:
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1. If 〈z, Az〉 > −〈z, z〉, then

w2 ≥ 〈z, Az〉
〈z, Az〉 + 〈z, z〉 (5)

that is always verified as w > 1.
2. If 〈z, Az〉 < −〈z, z〉, then

w2 ≤ 〈z, Az〉
〈z, Az〉 + 〈z, z〉 (6)

Equation (6) shows that the upper bound ofw depends on the adjacency matrix A,
i.e., on the structure of the graph. A worst-case scenario is considered by choosing
A and z such that 〈z, Az〉 is minimal:

• A is defined as the adjacency matrix of a graph with n vertices, with n even,
such that ai j = 1 if and only if i and j do not belong in the same subset among
{1, . . . , n

2 } and { n2 + 1, . . . , n}. A is then a 4-block matrix, with the bottom-left
block and the top-right block equal to 1.

• As for z, it is equal to −1 for the first half of the vector and 1 for the last half of
the vector: z = [−1,−1, . . . , 1, 1].

〈z, Az〉 is then equal to − n2

2 , while 〈z, z〉 = n. With this structure, an upper bound
of w is obtained:

w ≤
√

n

n − 2
. (7)

This result is consistent with the partial results obtained empirically in [25, 46] on
several instances of the Watts–Strogatz model and two real-world networks, stating
that w should be close to 1, and depends on the number of vertices in the graph,

2.1.3 Unicity of the Solution

The solution achieved by CMDS is not unique, as any rotation, reflection, or trans-
lation of points in the Euclidean space will preserve the distances, and then will
be a valid solution. The order in which vertices of the graph are labeled plays also
an important part in the resulting signals, as it sets the indexation along the time
axis. This order is then strongly related to the smoothness of the signals, and thus
their interpretability. As a rule, the numbering of vertices in the graph representa-
tion should closely follow the topology of the graph, in a “natural” order: Ordering
randomly the vertices does not change the value assigned to each vertex, but lead
to abrupt variations when representing signal. One relevant approach to get such a
labeling of vertices is to solve a graph labeling problem called cyclic bandwidth sum
problem [28], looking for a mapping from vertices to integers, in such a way that the
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sum of the distances in the vertex ordering between all pairs of connected vertices is
minimized. In [24], a heuristic has been proposed to obtain a labeling based on the
resolution of this problem, that has been shown to be compliant with the topology of
the graph. In the following, the labeling of all considered graphs are obtained using
this heuristic.

2.1.4 Class of Admissible Solutions

As the resulting signals define an exact representation of a given graph, they are
restricted to a very limited class of multidimensional signals. Here are some elements
to help to characterize this class C .

If X ∈ C , then:

• X ∈ R
n×n−1

• ∀1 ≤ i < j ≤ n, ‖X i − X j‖2 = 1 or ‖X i − X j‖2 = w
• ∀1 ≤ i < j ≤ n, ‖X i‖2 ≥ ‖X j‖2.

This restricts the solution to a very small set, and limits the capacity of the method
to handle collection of signals that would not be obtained from a graph, in particular
for an inverse transformation. In Sect. 3, a robust inverse transformation is discussed
to transformback collections of signals that have been perturbed into a graph, relaxing
the strict conditions of the class C .

2.2 Application on Common Graph Structures

Real-world networks exhibit various kind of structures, that have been studied and
discussed in numerous works [37]. In the following, the signals obtained after trans-
formation of instances of such common models are displayed and discussed, high-
lighting relations between both representations.

2.2.1 Erdös–Rényi Model

A random graph is a graph whose edges between vertices are randomly drawn,
according to a given distribution. Themost famous and simple randommodel, whose
properties have been extensively studied, is the Erdös–Rényi model [14], where
each of the n(n−1)

2 possible edges are drawn independently according to a Bernoulli
distribution with p the probability of existence. Instances of this model are known to
exhibit a structure that is different of real-world networks, the graph being a grouping
of vertices, whose cohesion is controlled by the probability p.

Studying the eigenvalues of adjacencymatrix of random graphs has been the topic
ofmanyworks [9, 10, 54], aswell as, in a lesser extent, the study of eigenvectors [40].
The asymptotic results of interest are the following:
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Fig. 1 Transformation of an instance of the Erdös–Rényi model with p = 0.1 into a collection of
signals (ER). For each sub-figure, the left plot shows a two-dimensional representation of the graph,
where labels are color-coded. The right plot displays four components of the collection, where the
color of points corresponds to the color of the corresponding vertex in the graph

• the largest eigenvalue tends to np;
• other eigenvalues follow a semicircle law on the interval [−2, 2];
• eigenvectors are random i.i.d. Gaussian vectors in Rn .

These results are not sufficient to characterize the resulting signals X , as they
are based on the eigenvectors and eigenvalues of the matrix B (see Algorithm1),
itself based on the distance matrix Δ. Nonetheless, it is sound to conjecture that they
own similar properties, confirmed by empirical simulations. The resulting signals
can be then viewed as white noise components, whose amplitudes are given by the
eigenvalues of B.

In Fig. 1 is shown a 2-D representation of an instance of the Erdös–Rényi model
with p = 0.1, and four components of the collection of signals after transformation.
Random structure visible in the graph can be found as well as the lack of structure
of components, that can be associated to white noise signals.

2.2.2 k-Regular Lattices

A k-ring lattice is a graph, in which each vertex, labeled by an integer i ∈ {1, . . . , n},
is connected to the vertices {i − k

2 , i − k
2 + 1, . . . , i − 1, i + 1, . . . , i + k

2 − 1, i +
k
2 }, for k ∈ {2, 4, . . . , n

2 }. As discussed in [46], it is straightforward to find the expres-
sion of expected eigenvalues and eigenvectors using circulantmatrix theory [19]. The
connection between the parameters w, k and the resulting signals are made explicit
in the following.

Results from the circulant matrix theory are first recalled. Any circulant matrix
C has its vector of eigenvalues λ given by:

∀q ∈ {0, . . . , n − 1}, λq =
n−1∑

j=0

c jζ
k j (8)
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where c is the circulant vector of C and ζ = e
2 jπ
n is the nth root of the unity. As for

eigenvectors, they are given by:

∀q ∈ {0, . . . , n − 1}, vq = √
n[1, ζ q , ζ 2q , . . . , ζ (n−1)q ] (9)

corresponding to the columns of the Fourier matrix, denoted F(q). These eigenvalues
and eigenvectors appear as complex conjugate pairs, namely λ̄q = λn−q and v̄q =
vn−q for q 
= 0. As we consider symmetric matrices, the eigenvalues are real and
double (λq = λn−q for q > 0), while the corresponding eigenvectors are the real and
imaginary parts of vq , normalized by

√
2 to obtain an orthonormal matrix:

vq = √
2�(F(q)) = √

2 cos

(
2πq

n

)
(10)

vn−q = √
2�(F(q)) = √

2 sin

(
2πq

n

)
(11)

corresponding to harmonic oscillations. If n is even, λ n
2
is single and the correspond-

ing eigenvector is not normalized by
√
2.

When applied to the matrix B, and recalling that entries of the matrix Δ can take
only three possible values 0, 1, or w, the circulant vector b is defined by

bi = −1

2

[
δ2i − α

n

]
(12)

with α = k + (n − 1 − k)w2. The vector b can then take three possible values:

bi =

⎧
⎪⎨

⎪⎩

α
2n if i = 0
−α

2 (1 − α
n ) if i ∈ {1, . . . , k

2 } ∪ {n − k
2 , . . . , n − 1}

−α
2 (w2 − α

n ) if i ∈ { k2 + 1, . . . , n − k
2 − 1}

. (13)

This leads to the following expression of the eigenvalues of B:

λq = α

2n

n−1∑

m=0

ζmq − 1

2

⎛

⎝
k
2∑

m=1

ζmq +
n−1∑

m=n− k
2

ζmq + w2

n− k
2 −1∑

m= k
2 +1

ζmq

⎞

⎠ (14)

When the eigenvalues are ordered by the value of q, the eigenvectors are consid-
ered in increasing order of frequencies. The components are however sorted accord-
ing to the energy of eigenvalues λk after applying CMDS, which correspond to the
sorting according to the value of q only when k = 2. In this case, the resulting signals
are then harmonic oscillations whose frequencies increase as lower-energy compo-
nents are considered. When k increases, the components are no longer sorted by
frequencies.

Figure2 highlights this phenomenon, by displaying the obtained signals for a
2-ring lattice (Fig. 2a) and a 6-ring lattice (Fig. 2b). All obtained signals are consistent
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(a) 2-ring lattice (RL-2)

(b) 6-ring lattice (RL-6)

Fig. 2 Transformation of two k-ring lattices into a collection of signals. See Fig. 1 for details

with theoretical results, i.e., the signals are harmonic oscillations, grouped in pairs of
signals with the same frequency and a difference of phase equal to π

2 . For the high-
energy components (here, components 1, 2, and 3), the value of k does not have any
influence. However, the frequency of signals differs, as expected, for lower-energy
components (here component 75), as the sorting of components is guided by the
eigenvalues.

2.2.3 Watts–Strogatz Model

TheWatts–Strogatz model [57] has been developed to build graphs with small-world
property, where the average length of the shortest paths between vertices is small
compared to the number of vertices, while the clustering coefficient, i.e., the grouping
of vertices based on linkage, is high. This property has notably been highlighted in
many real-world systems, in particular those including social interactions. The con-
struction of Watts–Strogatz instances starts from a k-ring lattice, and is performed
by rewiring each edge with a given probability. Edges may then appear or disappear,
all the more so as p is high. In [45], a second-order approximation of the expected



Transformation from Graphs to Signals and Back 121

(a) k = 2 (WS-2)

(b) k = 6 (WS-6)

Fig. 3 Transformation of two instances of the Watts–Strogatz model, with p = 0.05, into a collec-
tion of signals. See Fig. 1 for details

eigenvalues and eigenvectors according to the probability p is derived using pertur-
bation theory [30]. It is shown that the correlation between the approximation and
the actual signals is high when p is low, and decreases when p increases, which is
consistent with the intuition one can have.

The resulting signals take also into account the noise that is added in their shape,
when compared with signals obtained for k-ring lattice. Two instances of the Watts–
Strogatz model with a probability of rewiring equal to p = 0.1 are considered in
Fig. 3. As expected, signals also display a harmonic trend, with a noisy mode whose
influence on the shape depends on the value of k: for k = 6, the regular structure has
more edges than for k = 2, and is thenmore resilient to the change: preserving the ring
structure. However, when k = 2, one single rewiring may cause the disappearance
of the ring, affecting much more the structure and then the shape of the signals.

2.2.4 Stochastic Block Model

A stochastic block model [29] is used to generate a graph with communities. Each of
the n vertices is assigned to one of the K communities, and edges between each pair of
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(a) 3 communities (SBM-3)

(b) 5 communities (SBM-5)

Fig. 4 Transformation of an instance of the stochastic blockmodel, with pintra = 0.8, and pinter =
0.1, into a collection of signals. See Fig. 1 for details

vertices is randomly and independently drawn according to probabilities depending
on the group of vertices: if the two vertices belong to the same community, the
probability, noted pw, is close to 1 while otherwise, the probability between vertices
of different groups, noted pb, is lower. The settings of pw and pb lead to customized
density of edges within and between communities. In [35], intuitions about the shape
of the signals are given, in an application of segmentation of images. They suggest
that the eigenvectors of block matrices are piece-wise constant with respect to the
communities.

Figure4a, b show two instances of the stochastic block model with pintra = 0.8,
and pinter = 0.1, respectively with three and five communities. An interesting obser-
vation is that the high-energy components contain the structure of communities, as
conjectured above, with noisy plateaus corresponding to the dense parts of the graph.
The number of relevant high-energy components is equal to the number of communi-
ties in the graph minus one, as one component is sufficient to discriminate two com-
munities. As for the low-energy components, they are noisy signals, corresponding
to the structure inside communities, as it can be observed in Fig. 1.
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Fig. 5 Transformation of an instance of the Barbell model, with nc = 50 and n p = 100 into a
collection of signals (BAR). See Fig. 1 for details

2.2.5 Barbell Model

The Barbell model [2] is defined as two cliques, each containing nc vertices, linked
by a path with np vertices. It is then a good example of combined structures, as half
vertices are divided into two communities, while the other half have a regular path
structure.

The shape of the resulting signals displayed in Fig. 5 can be analyzed through the
results obtained of the previous examples. First component has indeed plateaus, as
for the stochastic block model, describing the cliques as well as the regular part, seen
in a first approximation as a clique. Next components describe the regular structure
for these vertices with an harmonic oscillation, present on the third component.
Finally noisy signal for low-energy components, as seen for the Erdös–Rényi model,
represent the dense structure inside cliques.

These illustrations show the connections between graph structure and the resulting
signals after transformation, that will be used in Sect. 4 to study the topology of the
graph using spectral analysis, and to apply standard techniques, such as filtering, on
graphs. Before that, a robust inverse transformation is proposed, to provide a reliable
tool to represent altered signals into graph.

3 From Signals to Graph: A Robust Inverse
Transformation

3.1 Inverse Transformation: Description of the Problem

The transformation from a graph to a collection of signals defined in Sect. 2 fulfills the
objective of a dual representation of graphs as a collection of signals in a Euclidean
space. By construction, the transformation described in Algorithm1 is indeed fully
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invertible: computing the distance between any two points gives the distance matrix
Δ, from which the retrieval of the adjacency matrix is straightforward (for a suitable
value of w). This inverse transformation can only be applied on collection of signals
belonging to the class of admissible solutions described in Sect. 2.1.4, that limits
it to signals directly obtained from a graph. It is nonetheless worth considering
an extension of the inverse transformation to other collection of signals: one may
want for instance to process the collection of signals, and study the effect on the
corresponding graph, which is the topic of Sect. 4. This case is yet non-trivial, as
the distribution of distances is no longer bimodal, but has rather a continuous set of
values, spreading around the values of 1 and w all the more that the extent of the
disruption is important.

From a perturbed collection of signals, there exist two approaches can be consid-
ered to find the best graph represented by these signals:

1. Considering the collection of signals, looking for the closest configuration of
points that belongs to the class of admissible solutions;

2. Starting from the distribution of Euclidean distances between all pairs of points,
finding the distances that correspond to an edge between the corresponding ver-
tices in the graph.

In the rest of this section, the focus is made on the second approach. Two contribu-
tions are explored to increase the separability of distances into a bimodal distribution
of distances, and to compute a suitable threshold that will extract distances represent-
ing edges. These contributions are validated through illustrations, that highlight the
good behavior of the inverse transformation with respect to different perturbations
of the collection of signals.

3.2 Thresholding of Distances

Transforming back a collection of signals into a graph comes to find a threshold
above which a distance between two points in the Euclidean space is sufficiently
high to indicate that the two corresponding vertices in the graph are not linked. In
the case where the collection of signals is the result of a transformation of a graph,
the threshold is straightforward: any value between 1 and w will return the original
distancematrix A of the graph, as illustrated by the distribution of distances displayed
in Fig. 6a for an instance of the stochastic block model, or in Fig. 6c for an instance
of the Watts–Strogatz model.

When the collection of signals is degraded, finding such a threshold is not an easy
task, as the distribution of distances may not highlight any natural separation in two
distinct distributions. In Fig. 6b, d are displayed the distributions of distances from
a collection of signals X on which has been added a Gaussian noise of mean 0 and
standard deviation 2.10−3, respectively for the stochastic blockmodel and theWatts–
Strogatz instances. The distributions of distances representing edges and the one of
distances representing non-edges now overlap, preventing any relevant thresholding
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(a) SBM-3 - Non-degraded case. (b) SBM-3 - Degraded case by adding a
= 0 and = 2.10−3).

(c) WS-6 - Non-degraded case. (d) WS-6 - Degraded case by adding a
= 0 and = 2.10−3).

Gaussian noise (

Gaussian noise (

Fig. 6 Distribution of distances between points in the Euclidean space. Light blue bars represent
distances corresponding to edges while dark purple bars represent distances corresponding to non-
edges

that would separate the distances in two groups. Furthermore, this mixture does not
exhibit any bimodal distribution that would describe another graph structure.

The issue is thus how to retrieve anyway a graph structure from a similar distri-
bution of distances. With this objective in mind, two contributions are explored in
this section, decomposing the problem into the two following questions:

1. How to separate several modes from the distributions of distances, and increase
their separability?

2. From a multi-modal distribution of distances, what is the most suitable threshold
that would extract the most significant graph structure?

Each contribution is an address to one of these two questions: the first one takes
advantage of the energy of components to compute structure-aware distances, while
the second contribution introduces a thresholding technique based on the assumption
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(a) SBM-3 (b) WS-6

Fig. 7 Cumulative distance according to the number of retained components.When all components
are retained, the distances are either equal to 1 (for distances that represent edges, in light blue) or w
(for distances that represent non edges, in purple). Each point gives the mean value of the distance,
while the error bar gives the standard deviation above and below the mean

of relatively sparse graphs to discriminate the distances and retrieve the adjacency
matrix that describes at best the collection of signals.

3.2.1 Energy-Based Computation of Distances

The distance between two points in a Euclidean space of dimension d is defined as
the sum of the squared difference between coordinates of points:

d(X)i j =
√√√√

n−1∑

k=0

(xik − x jk)2 (15)

Each dimension contributes to the total sum, and this contribution varies according to
the pair of points considered. In particular, the relationship described by the distance,
i.e., the presence or not of an edge between the two corresponding vertices in the
graph, has a strong influence on the distribution of contributions over the compo-
nents. In Fig. 7 is plotted the average cumulative distance according to the number
of retained components, for the two kinds of relationships that distances describe.
One can observe that the contribution of first components for distances denoting an
absence of edge is significantly greater than for distances denoting an edge, to a
greater proportion than a uniform contribution of all components would give. This is
particularly true for highly-structured networks, as for the Watts–Strogatz instance
in Fig. 7b.

This observation is consistent with the one made in Sect. 2.2, that highlighted
that high-energy components have a strong influence in the description of the global
topology of the graph: If the distance between two vertices i and j in a high-energy
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component is high, it means that the two vertices are likely to be distant in the graph.
Conversely, if the distance in a high-energy component is low, then the two vertices
are likely to be connected in the graph. Neglecting the importance of energies of
components comes to forget the hierarchy of components in their description of the
global structure of the graph.

The proposed approach takes profit of this specificity to inject the energy in
the computation of distances, by defining a distance weighted by the energy of the
considered component:

dα(X)i j =
√√√√ 1

∑K
k=1 e

α
k

K∑

k=1

eα
k (xik − x jk)2 (16)

where ek is the energy of component k, computed as ek = ∑n
i=1 x

2
ik , and α ≥ 0 is a

parameter that controls the importance of the weighting: the higher α is, the higher
the contribution of high-energy components in the computation of the distance is.

Figure8 shows the distribution of distances representing edges and those rep-
resenting non-edges for a collection of signals after transformation of an instance
of the stochastic block model (SBM-3) and of the Watts–Strogatz model (WS-6),
degraded by adding a Gaussian noise of mean 0 and standard deviation 2.10−3 using
respectively α = 2, and α = 4. Comparing these histograms with the ones in Fig. 6
(corresponding to the unweighted case α = 0), it can be observed that taking into
account the energy of components in the computation of distances leads to a better
separation of the distribution into two modes, that are gradually split as α increases.
These results do not depend on the number of edges in the graph, as the same effect
appears for the two instances.

There is no obvious choice for α, which may cause strong changes in the structure
of the resulting graph. The higher α is, the greater the distortion of the distribution
of distances is. An appropriate way to select α is then to empirically assess the
reconstructed structure, setting α proportionally to the intensity of the perturbation
of signals.

3.2.2 Sparse Hypotheses for Thresholding Distances

The selection of the threshold is a crucial step to discriminate between the distances
that represent edges from those representing non-edges. In [46], the reconstructed
graph is constrained to have the same number of edges as the original one: the
selection of the threshold is then computed by considering the smallest distances as
edges until the number of edges in the original graph is reached. This approach has
the major disadvantage that it does not allow for major changes of the structure of
the graph. If we assume that it exists a technique that would return a collection of
signals that is the exact representation of a graph with a different structure, keeping
the same number of edges would not return the expected graph, despite the fact that
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(a) SBM-3 - = 2 (b) SBM-3 - = 4

(c) WS-6 - = 2 (d) WS-6 - = 4

Fig. 8 Distribution of energy-based distances between points in the Euclidean space for different
values of α, for a collection of signals X degraded by adding a Gaussian noise of mean 0 and
standard deviation 2.10−3

the discrimination is obvious. In more realistic situations, a strong perturbation of the
collection of signals will significantly change the structure of the underlying graph,
and then the number of edges.

Thresholding methods have been an active area of research in image computing
for image segmentation: in the global approach, a threshold (or a set of threshold in
the case ofmultimodal segmentation) is computed from a gray-scale image, such that
the main features of the image are preserved when the number of levels is reduced,
typically 2 for black and white images. This led to the well-known algorithm of
binarization proposed by Otsu [41]: Considering two classes, the algorithm finds the
threshold among all possible thresholds that minimizes the variance within classes.
In our context, the distribution is composed of all distances between pairs of points,
which differs from gray levels, since the number of possible distances might be
equal to the number of pairs of vertices, while in images, the number of levels
is fixed (for instance 256 levels for an 8-bit color images, whatever the size of the
image). A thresholding approach based on these techniques is nevertheless proposed,
by considering a Gaussian mixture model, that can be viewed as a generalization of



Transformation from Graphs to Signals and Back 129

(a) With outliers. (b) Without outliers.

Fig. 9 Distribution of distances between points in the Euclidean space for a collection of signals
X obtained after transformation of the instance SBM-3, degraded by adding a Gaussian noise of
mean 0 and standard deviation 10−2 to the first ten components

the Otsu’s model [26], and returns a suitable threshold using an EM algorithm, more
adapted to the distribution of distances than the original Otsu’s algorithm.

The distribution of distances is assumed to be composed of twoGaussian distribu-
tions, each of them representing the presence or the absence of edge. A first threshold
is obtained by estimating and averaging the means of each sub-distribution. This
threshold has the major drawback to be very sensitive to outliers, and in particular
if the distribution of non-edges distances is composed of several modes, as it is the
case for instance if there are only a few points that are moved. In Fig. 9a is plotted
the histogram of distances for a collection of signals obtained after transformation of
the instance SBM-3, degraded by adding a Gaussian noise of mean 0 and standard
deviation 10−2 to the first ten components. The distribution is clearly shifting to the
right, and the obtained threshold is too high and leads to a graph with many edges,
blurring the relevant graph structure.

Algorithm 2 Robust thresholding with Gaussian mixtures
1: procedure Robust_Thresholding(d: distribution of distances)
2: Init O the set of outliers as empty.
3: Set the threshold τ to Max(d).
4: while The number of edges is higher than n(n−1)

4 do
5: Find the means of two Gaussian mixtures in d using the EM algorithm on the distances

without the outliers.
6: Define τ as the average of the means of the two obtained distributions.

return τ

Arobust procedure is given inAlgorithm2 to copewith outliers values. The feature
is to get rid of outliers, based on a constraint of sparsity of the reconstructed graph,
i.e., a small number of edges compared to the number of vertices. This constraint is
ensured by recalculating a suitable threshold if the graph is not sparse enough, the
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distances above the threshold being considered as outliers and then excluded of the
distribution. Here, a loose constraint is implemented, by setting the maximal number
of edges to n(n−1)

4 , that amounts to saying that the graph should have more pairs of
vertices without an edge that pairs with an edge. The outcome of the procedure is
displayed on Fig. 9b, that shows the histogram without the outliers, and the obtained
threshold.

3.3 Experiments

A thorough evaluation of the performance of the robust inverse transformation intro-
duced in the previous section does not have much sense in this context, as on the one
hand, if the collection of signals is obtained using the direct transformation, then the
inverse transformation is immediate and exact, and on the other hand, if the collection
of signals has been altered, whatever the process, it is unlikely to be an exact repre-
sentation of a graph, and the expected result is unknown. To nonetheless assess the
relevance of the proposed inverse transformation, qualitative experiments in specific
context are set up to understand how the features help to recover a graph structure
behind altered signals. The following experiments are performed on a limited set of
instances, that are representative on common structures that appear in networks. It is
not intended to provide a rigorous proof of the validity of the inverse transformation,
but rather to demonstrate its soundness in the context of this work.

3.3.1 Localized Perturbations

A simple graph, the Zachary’s Karate Club graph [60], which is displayed in Fig. 10a,
is first considered, onwhich localized perturbations are performed, to easily visualize
the consequences on the structure of the graph. Three modifications of the collection
of signals obtained after transformation are considered:

1. isolating the point 3 from other points by multiplying its coordinates by 1.1;
2. bringing the point 1 closer to other by dividing its coordinates by 1.05;
3. bringing the point 33 closer to the point 19 by adding 0.04 times the coordinates

of point 19 to the coordinates of point 33.

The resulting graphs are displayed in Fig. 10, showing how modifications made
on the collection of signals affect the structure of the underlying graph. In Fig. 10b,
moving the point 3 far from other points impact the edges that vertex 3 has with other
vertices, that are removed. This has for consequences to split the graph into twomain
components, with two isolated vertices. At the contrary, when moving a point closer
to the other points in the Euclidean space, new edges are added with respect to the
original graph, as illustrated in Fig. 10c with the vertex 1. It is also possible to create
only one unique edge by moving the point towards the direction of another point,
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(a) Original graph. (b) Isolating vertex 3 from other vertices.

(c) Getting vertex 1 closer to other vertices. (d) Getting vertex 33 and 19 closer.

Fig. 10 Graphs obtained after processing the collection of signals obtained after transformation of
the Zachary’s Karate Club graph [60]. Three kinds of processing are considered on a specific point,
that is translated in the resulting graphs by the addition or the deletion of edges

as illustrated in Fig. 10d, where the vertex 33 is moved towards the position of the
vertex 19, adding a link between the two vertices in the reconstructed graph.

This experiment shows how the two representations are equivalent, and that pro-
cessing the signals comes to processing the graph itself. These basic examples also
highlight the soundness of the proposed inverse transformation, that is able to con-
sistently deal with non bimodal distributions of distances.

3.3.2 Global Perturbations

Perturbations that affect all vertices of the graph are more difficult to control and
to visualize, as the position of all points in the Euclidean space are moved, leading
to radical change in the structure of the reconstructed graph. In this experiment, a
controlled process is setup, to progressively moving half of the points such that a
community emerges from an initial regular structure.
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(a) Similarity to a k-ring lattice. (b) Density of edges between the
even vertices.

Fig. 11 Results obtained with respect to the number of altered components, averaged over the
value of k. Confidence intervals are obtained using bootstrap

Starting from a k-ring lattice, the coordinates of points with an even label, i.e.
half the points, are set to positive values, for every three components. Using previ-
ous notations, the new collection of signals X̃ is defined by ∀i ∈ {1, . . . , n},∀c ∈
{1, . . . , n − 1}:

x̃ic =
{ |xic| if i%2 = 0 and c%3 = 0
xic otherwise

(17)

where % is the modulo operator. This operation brings half of the vertices closer
to each other, as their signs match every three components, and thus tend to form a
community. The other points do not move and keep a regular lattice structure.

The obtained graph structure is described through two measures ζrl and ζclique,
that respectively measure the similarity of the structure with a k-ring lattice and the
density of edges between even vertices. This is evaluated for k ranging from even
values from 2 to 50 included, and for different values of α.

Figure11 shows the obtained results: as expected when there is only a few com-
ponents that are altered, the structure of the graph is close to a k-ring lattice, and the
density of edges in the community of even vertices is low. Progressively, these trends
are reversed, and the community structure emerges, degrading the regular structure.
The level of these trends is worth comparing according to the value of α: for the
structure in community, which becomes more and more dominant in the graph, the
choice of α does not have a strong influence, as seen in Fig. 11a. It becomes important
for the reconstruction of the regular lattice: as shown in Fig. 11b, the higher α is, the
better the regular lattice is preserved. More important, even a low non-negative value
of α retrieves the lattice from the distances, at the contrary of the regular unweighted
distances that completely obfuscate it.

To conclude this section, a robust inverse transformation has been proposed, based
on two contributions that significantly improve the retrieval of a graph structure from
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a degraded collection of signals. The next step is to take advantage of this robust
representation to analyze the graph in the signal domain, which is done in the next
section.

4 Signals-Based Processing of Graphs

Previous sections have introduced a comprehensive duality between graphs and sig-
nals, using a direct transformation that preserves the relationships between the ver-
tices, and a robust inverse transformation method that allows to transform back this
collection of signals into a graph, even if it has been altered through a processing
technique. These tools provide another representation of a graph beyond the graph
domain, by having access to Euclidean data that can be exploited to explore new
graph processing techniques. In this section, two illustrations of these new possi-
bilities are discussed, first by exploiting the shape of signals to characterize the
graph, and second to apply basic filtering of signals to retrieve the main structure of
networks.

4.1 Connection Between Frequency Patterns of Signals and
Graph Structures

The aim of this part is to show how spectral analysis can be used to identify specific
graph structures. As seen in Sect. 2.2, signals present specific shapes which can be
linked with the graph structure. Characterizing these shapes using spectral analysis
enables us to associate frequency patterns with graph topology.

Spectral analysis is performed using standard signal processing tools: for a given
collection X of n − 1 signals indexed by n vertices, the spectra S give the complex
Fourier coefficients whose elements are obtained by applying the Fourier transform
on each component of X :

sk f = F X (k)( f ) (18)

estimated, for positive frequencies, on F = n
2 + 1 bins, F being the Fourier trans-

form, and k ∈ {1, . . . , n − 1}. From S, the magnitudes M of each frequency f for
each component read as: m(k, f ) = |sk f |. The matrix M is studied as a frequency-
component map, exhibiting patterns in direct relation with the topology of the under-
lying graph.

Figure12 shows the frequency-component patterns obtained for the graphs defined
in Sect. 2.2. Each pattern highlights a specific graph structure. In Fig. 12a, b, patterns
of regular k-lattices display single-frequency components, whose order depends on
the value of k: when k is higher than 2, the sorting of components is no longer
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(a) RL-2 (b) RL-6

(c) WS-2 (d) WS-6

(e) SBM-3 (f) SBM-5

(g) ER (h) BAR

Fig. 12 Frequency patterns obtained on instances of graph defined in Sect. 2. Darker color means
higher intensity



Transformation from Graphs to Signals and Back 135

consistentwith the increasingorder of frequencies, as described inSect. 2.2.2.Adding
noise to the lattices, as done in the Watts–Strogatz instances in Fig. 12c, d, preserves
the main frequency content, while addingmany noise along the pattern. As described
in Sect. 2.2.4, signals associated to graphs with communities are formed by plateaus
corresponding to the communities on the first components, leading to the frequency
pattern displayed in Fig. 12e, f with high magnitudes for low frequencies. All other
parts of the map do not have any kind of structure, representing the structure inside
and between communities, or more generally the structure of an instance of the
Erdös–Rényi model, whose pattern is displayed in Fig. 12g. Interestingly enough,
when the topology of the graph is a combination of several graph structures, as for
the Barbell model, the associated patterns are visible, as in Fig. 12h.

Characterizing the structure of networks through frequency patterns has been
proven of high interest in [23], where the structure of a time-evolving networks
is decomposed using non-negative matrix techniques of the spectra, revealing the
underlying structure over time.

4.2 Graph Filtering

The representation of a network as signals allows for taking advantage of all exist-
ing concepts in signal processing to perform filtering of a graph, by filtering the
corresponding signals. In this basic setup, signals are passed through a low-pass
filter with a given cut-off frequency fc, and reconstructed using the robust inverse
transformation defined in Sect. 3.

Figure13 shows the obtained adjacency matrices for different values of fc, for
an instance of the stochastic block model (SBM-3). When only low frequencies are

(a) Original adjacency matrix. (b) Filtered adjacency matrices.

Fig. 13 Adjacencymatrix obtained after low-pass filtering for different values of fc, for an instance
of the stochastic block model (SBM-3)
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retained, the structure in cliques becomes visible, firstly approximately, then more
distinctly. When the cut-off frequency increases, the noise inside and between com-
munities is also reconstructed, until recovering the original graph. This example
highlights the idea that denoising signals representing the graph acts as a surro-
gate processing to remove the noise the graph itself. This opens the way to more
complicated operations such as decomposition, interpolation or sampling.

5 Conclusion

Signal processing techniques have become more and more standard tools to study
real-world networks. In this chapter, a comprehensive framework has been devel-
oped to take advantage of these classical tools to analyze and process graphs, using
an equivalent signal representation. Starting from the method of transformation from
graph to signals proposed in [46], several extensions have been studied and imple-
mented to study the obtained signals, and more particularly by introducing a robust
inverse transformation, that is able to transform back the effects of classical sig-
nal processing tools of signals on the structure of the graph. The applications of this
framework on the characterization of the structure of the graph, and the graph filtering
using the signals, suggest that stronger connections can be derived to better exploit
this dual representation. Application of this framework on time-evolving graphs [23]
have for instance made possible the extraction of the relevant sub-structures over
time, using matrix factorization techniques on the corresponding signals. The main
interest of this work lies in its ability to benefit from the well-grounded field of signal
processing to perform difficult operations on graphs, and in this way it paves the road
to new approach for the analysis of real-world networks, using more sophisticated
signal processing tools.
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The Spectral Graph Wavelet Transform:
Fundamental Theory and Fast
Computation

David K. Hammond, Pierre Vandergheynst and Rémi Gribonval

Abstract The spectral graphwavelet transform (SGWT) defines wavelet transforms
appropriate for data defined on the vertices of a weighted graph. Weighted graphs
provide an extremely flexible way to model the data domain for a large number of
important applications (such as data defined on vertices of social networks, trans-
portation networks, brain connectivity networks, point clouds, or irregularly sam-
pled grids). The SGWT is based on the spectral decomposition of the N × N graph
Laplacian matrix L , where N is the number of vertices of the weighted graph.
Its construction is specified by designing a real-valued function g which acts as a
bandpass filter on the spectrum of L , and is analogous to the Fourier transform of
the “mother wavelet” for the continuous wavelet transform. The wavelet operators at
scale s are then specified by T s

g = g(sL ), and provide amapping from the input data
f ∈ R

N to the wavelet coefficients at scale s. The individual wavelets ψs,n centered
at vertex n, for scale s, are recovered by localizing these operators by applying them
to a delta impulse, i.e. ψs,n = T s

g δn . The wavelet scales may be discretized to give
a graph wavelet transform producing a finite number of coefficients. In this work
we also describe a fast algorithm, based on Chebyshev polynomial approximation,
which allows computation of the SGWT without needing to compute the full set of
eigenvalues and eigenvectors of L .

D. K. Hammond (B)
Oregon Institute of Technology - Portland Metro, Wilsonville, OR, USA
e-mail: david.hammond@oit.edu

P. Vandergheynst
Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
e-mail: pierre.vandergheynst@epfl.ch

R. Gribonval
Univ Rennes, Inria, CNRS, IRISA, Rennes, France
e-mail: remi.gribonval@inria.fr

© Springer Nature Switzerland AG 2019
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1 Introduction

Nearly all interesting scientific and engineering problems involve analyzing data. In
many cases, data can be described as a real valued function defined on some domain.
For example, data sets such as audio recordings, digital photographs, and digital
videos may be represented as real valued functions defined on a one, two, or three
dimensional Euclidean domains, respectively. Similarly, discrete time-series data
may be modeled as a real valued function whose domain is a subset of the integers.
As these examples illustrate, many common types of data are defined on domains
which are regularly sampled subsets of some Euclidean space. A huge body of signal
processing and analysis algorithms have been developed for signals that are defined
on such regularly sampled Euclidean domains.

However, a large number of interesting data sets are defined on irregular domains
that do not correspond to regularly sampled Euclidean domains. Examples of this
included data defined on networks, or on point clouds, or at irregularly sampled points
of Euclidean domains. Many topologically complex data domains can be profitably
modeled asweighted graphs: i.e. sets of vertices that are connected by edges that each
have a non-negative weight, or connection “strength” defined. For some applications,
the underlying graph structure for the data domain may be clear. This would be the
case for example for analyzing data (such as income, preference for something,
or any other scalar value) defined for individuals on a social network, where the
underlying graph structure models the relationship strength between individuals.
For data defined on point clouds or for irregularly sampled data, generating the
underlying graph structure may be calculated in a number of ways based on the
proximity of the data points, such as for example using the k-nearest neighbors.

Many signal processing and analysis methods employ some type of transform of
the original data, where processing or analysis is performed on the coefficients of
the transformed data rather than on the signal in its original domain. A large class
of such transforms are linear, where the coefficients of the transform are given by
taking inner products of the original signal with some set of transform vectors. For
signals defined on regular Euclidean domains, commonly used examples include
the Fourier transform, the discrete cosine transform, windowed Fourier transforms,
and a large number of different wavelet transforms. Signal transforms are useful as
certain analysis or processing problems may be easier to express, or more powerful,
when done in the coefficient domain than in the original signal domain. As a trivial
example, the problem of estimating the power spectrum of a discrete time signal
averaged over a specified frequency range takes some time to write down in the time
domain, but is very easy to express (as an average of the magnitudes of a subset of
Fourier coefficients) given the Fourier transform of the signal.

Wavelet transforms in particular have proven to be very effective for awide variety
of signal processing and analysis problems. Wavelet transforms have the property
that the transform vectors (in this case called wavelets) are well localized in both
space and frequency domains, and are self similar - i.e. related to each other by
translation and dilation. Wavelets may be designed so that they provide a sparse
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representation of signals that consist of relatively smooth regions separated by local-
ized singularities, such as edges for 2d images, or localized jump discontinuities for
1d signals. Much of the power of many wavelet-based signal processing algorithms
arises from exploiting this signal sparsity. Since their initial introduction in the 1980’s
[1–5], wavelet transforms have been very successfully employed for a wide range of
signal and image processing applications, including denoising, [6–11], compression
[12–16], and inverse problems such as deconvolution [17–22]. We have included
only a sampling of the enormous body of literature in the references given above.

The demonstrated effectiveness ofwavelet transforms, combinedwith the growing
desire to process data defined on non-Euclidean domains, motivates the adaptation
of the wavelet transform to data defined on weighted graphs. The work described in
this chapter details one such approach for constructingmultiscaleWavelet transforms
for data defined on the vertices of weighted graphs. Our approach assumes that all
relevant information about theweighted graph is encoded in the symmetric adjacency
matrix A, i.e. no other information about the meaning of the vertices or relationships
between them apart fromwhat is stored in theAdjacencymatrix is used. Accordingly,
for any specific application problem the design of the underlying edge weights for
the graph forms a crucial part of determining the overall wavelet transformation. The
design choices for constructing the graph weights exactly correspond to modeling
the underlying data domain, and thus optimal choices may be highly application
dependent. In this chapter we illustrate relatively simple examples of computing
a appropriate weighted graph for data defined on point clouds, and on irregularly
sampled grids.

In general, one may expect modeling the data domain by a weighted graph to be
useful whenever the relationships onemay describe between vertices with aweighted
graph interact with the underlying process which generated the data. For example,
if one were analyzing rates of some disease among different cities, it may be rea-
sonable to assume that infection could be propagated by individuals travelling from
one city to another. In this case, using a weighted graph representing a transportation
network between the different cities may be helpful. Similarly, if one were analyzing
data indicating individuals opinions (favorable or unfavorable) of some particular
political candidate, it is reasonable to assume that individuals opinions are affected
by discussions with their friends. Accordingly, knowledge of a weighted graph repre-
senting acquaintance or friendship relationships between individuals may be useful
for analyzing such data.

Classical wavelet analysis is based on the idea of taking a single “mother wavelet”
function, and generating an entire set of wavelet atoms by translating and dilating the
mother wavelet. Wavelet coefficients for a given signal are then produced by taking
the inner products of the signal with these wavelet atoms at different scales and
spatial locations. The success of this classical construction is based on the ability
to perform arbitrary dilation and translation operations. On an arbitrary weighted
graph, however, it is not possible to define dilation and translation as may be done
on Euclidean spaces such as the real line.

The construction described in this chapter resolves this by using the spectral
decomposition (i.e. eigenvectors and eigenvalues) of the graph Laplacian matrixL .
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Spectral graph theory [23] enables the definition of a Fourier transform for data
defined on the vertices of weighted graphs, where the graph Fourier coefficients are
given by the inner product of the signal with the eigenvectors of the graph Laplacian.
The Spectral Graph Wavelet Transform (SGWT) described here is obtained by con-
sidering the mapping from data to coefficients for the classical continuous wavelet
transform in the Fourier domain, and constructing the analogous operations using
the graph Fourier transform. The SGWT design requires specifying a real-valued
kernel function g. This kernel function is used to define the wavelet operators at
scale s (i.e. the mappings from the signal to the wavelet coefficients at scale s) as
T s
g = g(sL ). The wavelet coefficients at scale s for an input signal f (t) are then

given by T s
g f . The individual graph wavelets themselves are obtained by localizing

these wavelet operators by applying them to a delta impulse at a single vertex. We
employ the notation ψs,m to denote the wavelet at scale s centered at vertex m, the
previous notion implies that ψs,m = T s

g δm where δm is a signal with zero values at
every vertex except m, and unit value at vertex m. The SGWT coefficients are also
the inner products of the original data with these wavelets ψs,m .

This chapter describes the basic theory of the SGWT, and gives implementation
details and example images illustrating the wavelets and properties of the overall
transform. We show that the SGWT (without discretizing the scale parameter) is
analogous to the classical continuous wavelet transform and, subject to an admissi-
bility condition on the kernel function g, may be formally inverted using a similar
integral formula. A discrete transformmay be obtained by sampling the scale param-
eter at a discrete set of values, giving a finite number of coefficients organized in
distinct wavelet subbands. In this case the SGWT is an overcomplete transform, and
we describe how to calculate the corresponding frame bounds.

As the SGWT is defined using a the graph Fourier transform, straightforward
computation of the transform requires computing the full set of eigenvectors and
eigenvalues of the graph Laplacian L . This limitation would render computing the
SGWT infeasible for graphs larger than several thousand vertices, which would
severely limit its applicability. In this chapter we describe a method for computing
the SGWT based on Chebyshev polynomial approximation of the rescaled kernels
g(sλ), which does not require explicitly computing the full set of eigenvectors of the
graph Laplacian matrix. In particular, this polynomial approximation approach uses
L only through matrix-vector multiplication, and is thus especially computationally
efficient for sparse graphs, where only a small number of elements ofL are nonzero.
The discrete SGWTmay be inverted using the pseudoinverse. We show that this may
be done by conjugate-gradients, in a way that is compatible with the Chebyshev
polynomial approximation scheme for applying the forward transform.

1.1 Related Work

Other attempts at defining wavelet transforms on graphs have been developed
that do not employ spectral graph theory. One approach used by Crovella and
Kolaczyk [24] for analyzing computer network traffic was based on the n-hop dis-
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tance, where wavelets were defined such that the value of the wavelet at vertexm that
was centered at vertex n depended on the n-hop distance from vertex m to n. These
functions were chosen so that the wavelets were zero mean. These wavelets were
constructed for binary graphs (i.e. making no use of edge weights), additionally no
study of the invertibility of the resulting transform was made. These wavelets were
used by Smalter et al. [25] as features helping to distinguish chemical structures, as
part of a machine learning approach for virtual drug screening.

In [26], Jansen et al. developed a lifting-based approach for multiscale repre-
sentation of data defined on graphs. This lifting procedure is based on using the
weighted average of each vertices neighbors for the lifting prediction step, where
the weightings are based on a set of distances assigned to each edge (playing the
part of reciprocals of edge weights), in their paper these edge distances were derived
from original Euclidean distances for graphs that arise from irregular sampling of
Euclidean space. In contrast with the methods described in this chapter, this lifting
scheme is defined directly in the vertex domain, and does not employ spectral graph
theory.

Several works have considered wavelet transforms for data defined on trees (i.e.
graphs with no loops). These include [27], which developed an adaptation of the
Haar wavelet transform appropriate for data defined on rooted binary trees. The
treelet transform [28] extended this, including automatic construction of trees for
multivariate data.

The “Diffusion Wavelets” of Maggioni and Coifman [29] constructs a wavelet
transform based on compressed representations of dyadic powers of a diffusion oper-
ator T , whichmay be flexibly specified. The diffusion wavelets construction involves
repeated application of the diffusion operator T , somewhat analogously to how
our construction is parametrized by the choice of the graph Laplacian operator L .
A key difference between the Diffusion Wavelets and the Spectral Graph Wavelets
described here is that the Diffusion Wavelets are designed to be orthonormal. The
Diffusion Wavelets approach is based on first identifying the approximation spaces
produced by differences of dyadic powers of the operator T ; wavelets are produced
by locally orthogonalizing these approximation spaces. Our approach is conceptu-
ally simpler, and yields an overcomplete representation rather than an orthogonal
transform.

The “Diffusion polynomial frames” developed by Maggioni and Mhaskar [30]
builds multiscale transforms in a more general quasi-metric measure space setting
using polynomials of a differential operator, in a manner that is closely related to our
Chebyshev polynomial approximation for computing the SGWT. Geller and Mayeli
[31] construct wavelets on differentiable manifolds employing scaling defined by an
operator of the form t Le−t L , where L is the manifold Laplace–Beltrami operator.
Wavelets are obtained by localizing this operator by applying it to a delta impulse,
similar to our theory. However, their work is not directly comparable to ours as it is
constructed for functions defined on smooth manifolds.

Thework described in this chapter was originally published in [32]. For complete-
ness, we note that since its original publication the SGWT and the related polyno-
mial approximation scheme has been used by a number of authors. We provide here
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references to a sampling of these applications, include learning dictionaries for sig-
nal representation on graphs [33], analysis of cortical thickness measurements [34],
shape analysis and surface alignment [35], multiscale community detection [36], 3D
mesh compression [37].

2 Classical Continuous Wavelet Transform

As the design of the SGWT is based on examining the the classical Continuous
wavelet transform (CWT) in the Fourier domain, we first give an overview of the
CWT appropriate for representing L2(R), i.e. the space of square-integrable signals
on the real line.

TheCWT is generated by choosing a single “mother”waveletψ(t), and then form-
ing a continuous family of wavelets by translating and dilating the mother wavelet.
Specifically, for translation by a and dilation by factor s > 0, we have the wavelet

ψs,a(t) = 1

s
ψ

(
t − a

s

)
(1)

The factor 1
s in front was chosen so that the wavelets all have the same L1 norm,

i.e.
∫ ∞
−∞ |ψs,a(t)|dt = ∫ ∞

−∞ |ψ(t)|dt . The wavelet coefficients are given by the inner
products of these wavelets with the signal f (t), as

W f (s, a) =
∫ ∞

−∞
1

s
ψ∗

(
t − a

s

)
f (t)dt (2)

This expression defines the mapping from the original signal f (t) to the set of
wavelet coefficients W f (s, a). An interesting feature of the CWT is that a single
variable function f (t) is represented by the coefficients W f (s, a) which depend on
two parameters s and a. We say the transform may be inverted if it is possible to
recover the function f (t) from knowledge of the coefficients W f (s, a). It has been
shown [1] that this is possible if the mother wavelet ψ(t) satisfies the admissibility
condition ∫ ∞

0

|ψ̂(ω)|2
ω

dω = Cψ < ∞ (3)

One consequence of the admissibility condition is that for continuously differentiable
ψ(t), it must hold that ψ̂(0) = ∫

ψ(t)dt = 0, so ψ(t) must have zero mean. If ψ(t)
is admissible, the CWT may be formally inverted as

f (t) = 1

Cψ

∫ ∞

0

∫ ∞

−∞
W f (s, a)ψs,a(t)

dads

s
. (4)
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Directly forming the analogue of Eq.1 on weighted graphs is problematic, as it is
unclear how to implement arbitrary dilation or translation on an arbitrary weighted
graph. We will show next that for the CWT, scaling can be defined in the Fourier
domain,which does provide an expressionwe can extend toweighted graphs.Wefirst
consider the CWT for discretized set of scale values, where the translation parameter
is left continuous. For each value s, we let T s represent the mapping from signal f (t)
to wavelet coefficientsW f (s, a), so that (T s f )(a) = W f (s, a)where a is considered
as the independent variable.

For convenience in the following, define the scaled, time-reversed wavelet ψ s via

ψ s(t) = 1

s
ψ∗

(−t

s

)
. (5)

One may see then that the operator T s acts on any signal by convolution with ψ s .
Specifically, we have

(T s f )(a) =
∫ ∞

−∞
1

s
ψ∗

(
t − a

s

)
f (t)dt

=
∫ ∞

−∞
ψ s(a − t) f (t)dt

= (ψ s � f )(a) (6)

By taking the Fourier transform and applying the convolution theorem we see that

T̂ s f (ω) = ψ̂ s(ω) f̂ (ω) (7)

Using the properties of the Fourier transform and Eq. (5) shows that

ψ̂ s(ω) = ψ̂∗(sω) (8)

Inserting Eq.8 into Eq.7 and inverting the Fourier transform gives

(T s f )(t) = 1

2π

∫ ∞

−∞
eiωt ψ̂∗(sω) f̂ (ω)dω (9)

Critically, s appears above only in the argument of ψ̂∗, which is defined in the
Fourier domain rather than the original signal domain. We see that the operator T s

mapping f (t) to the set of wavelet coefficients at scale s acts on f (t) by multiplying
its Fourier transform by a bandpass filter function ψ̂∗(sω) which is scaled (in the
Fourier domain) by s. Equation (9)will form the basis for us to later define the SGWT,
where we will replace the Fourier transform by the graph Fourier transform.

Wemay express the individualwavelets by applying the operator T s to a translated
delta impulse function δa(t) = δ(t − a). From Eq. (6) it follows that
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(T sδa)(t) = 1

s
ψ∗

(
t − a

s

)
, (10)

which for even and real-valued ψ(t) simplifies to (T sδa)(t) = ψa,s(t).

3 Spectral Graph Theory

In this section we introduce the tools from Spectral Graph theory needed to define the
graph Fourier transform. This will provide the ability to define scaling of an operator,
in the spectral domain, which is at the core of the SGWT construction. We first fix
our notation for weighted graphs.

3.1 Notation for Weighted Graphs

A weighted graph G consists of a finite vertex set V , a set of edges E (which is a
subset of the set of all unordered pairs of vertices), and a non-negative valued weight
functionw : E → Rwhich gives aweight associatedwith each edge.We let N = |V |
denote the number of vertices. A finite weighted graph may also be unambiguously
described by an N × N weighted adjacency matrix A, where Ai, j equals zero if the
the edge (i, j) /∈ E , and Ai, j = w((i, j)) if the edge (i, j) ∈ E . We consider only
symmetric (i.e. undirected) graphs.

The degree of each vertex is the sum of all the edge weights of edges incident
to that vertex. In terms of the adjacency matrix, may write d(m) = ∑

n Am,n for the
degree of vertex m. The diagonal degree matrix D is defined by

Di, j =
{
d(i) if i = j

0 if i �= j
(11)

Once a specific numbering of the vertices has been fixed, any function f : V → R

defined on the vertices can be naturally associated with a vector in f ∈ R
N , where

fi is simply the value of the function on vertex i . We will also denote f (i) for the
value on vertex i .

In this work we use the non-normalized graph Laplacian operatorL , defined by
L = D − A. For any f ∈ R

N , it is straightforward to show that

(L f )(m) =
∑
m∼n

Am,n · ( f (m) − f (n)) (12)

where bym ∼ nwemean that the sum is taken over all vertices nwhich are connected
to vertex m. This expression shows that the graph Laplacian operator applied to any



The Spectral Graph Wavelet Transform: Fundamental … 149

function gives a weighted difference of the function values, summed over all edges
incident to a given vertex.

Another form of the graph Laplacian that is commonly used elsewhere in the
literature is the normalized form, given by

L norm = D−1/2L D−1/2 = I − D−1/2AD−1/2 (13)

The eigenvalues of this L norm all lie in the interval [0, 2]. We note that the nor-
malized and non-normalized Laplacian matrices are not similar matrices, and their
eigenvectors are different. The entire SGWTmachinery could be defined using either
form of the graph Laplacian, which would produce two different transforms.We will
use the non-normalized form exclusively in the remainder of this work.

For the non-normalized LaplacianL constructed for a graph that corresponds to
a regularly sampled grid, we note thatL is proportional (with a difference in sign) to
a standard finite difference approximation of the continuous Laplacian operator. For
example, consider a regular two-dimensional grid with unit weights on the edges,
where vm,n represents the vertex at index position (m, n) on the grid. Using these two-
dimensional indices, one sees that for a function f = fm,n defined on the vertices,
applying L yields (for (m, n) away from the boundary of the grid)

(L f )m,n = 4 fm,n − fm+1,n − fm−1,n − fm,n+1 − fm,n−1. (14)

Aside from a missing factor of h2, where h is the mesh spacing, this is the standard
5-point stencil for computing −∇2 f .

3.2 Graph Fourier Transform

The standard Fourier transform on the real line is

f̂ (ω) =
∫

e−i tω f (t)dt, (15)

with inverse transform

f (t) = 1

2π

∫
f̂ (ω)eiωt dω. (16)

The complex exponentials eiωt are eigenfunctions of the one-dimensional Laplacian
d
dx2 . We may view the forward transform as computing the Fourier coefficient f̂ (ω)

as the inner product of the signal f (t) with a Laplacian eigenfunction. Similarly, the
inverse transform may be viewed as expanding the signal f (t) as a weighted sum of
Laplacian eigenfunctions.

The graph Fourier transform is obtained by analogy from the previous statements,
by replacing the continuous Laplacian d

dx2 by the graph Laplacian L . The matrix
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L is symmetric, and so has a set of orthonormal eigenvectors which span R
N .

We write these as χ	 for 0 ≤ 	 ≤ N − 1. The corresponding eigenvalues λ	 satisfy
L χ	 = λ	χ	. The symmetry of L implies that these eigenvalues are real, so we
may organize them in ascending order. In addition, for the graph Laplacian L , it
holds that the eigenvalues are all non-negative, the smallest eigenvalue is 0, and the
multiplicity of the 0 eigenvalue is equal to the number of connected components of
the weighted graph G [23]. Assuming that G is connected, the eigenvalues λ	 satisfy

0 = λ0 < λ1 ≤ λ2 · · · ≤ λN−1 (17)

We now define the graph Fourier transform. For any signal f ∈ R
N , the graph

Fourier transform f̂ is given by

f̂ (	) = 〈χ	, f 〉 =
N∑

n=1

χ∗
	 (n) f (n). (18)

The inverse graph Fourier transform expresses the original signal f as an expansion
using the graph Fourier coefficients f̂ as

f (n) =
N−1∑
	=0

f̂ (	)χ	(n) (19)

The validity of the inverse Fourier transform is a straightforward consequence of
the orthonormality of the eigenvectors χ	. It can similarly be shown that the graph
Fourier coefficients satisfy the Parseval relation, i.e. for any two signals f, g ∈ R

N

one has
〈 f, g〉 = 〈

f̂ , ĝ
〉
. (20)

4 Spectral Graph Wavelets

Equipped with the graph Fourier transform, we are now prepared to describe the
Spectral GraphWavelet Transform. As alluded to earlier, specification of the SGWT
requires fixing a non-negative real-valued kernel function g, which behaves as a
band-pass filter and is analogous to the Fourier transform of the mother wavelet
ψ̂∗ from Eq. (9). We will require that g(0) = 0 and that limλ→∞ g(λ) = 0. Specific
choices for the kernel g will be discussed later.

4.1 Wavelets

The wavelet operators producing the SGWT coefficients at each scale are obtained as
rescaled kernel functions of the graph Laplacian operator. One may define a function
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of a self-adjoint operator byusing the continuous functional calculus [38] basedon the
spectral representation of the operator. For the finite dimensional graph Laplacian,
this is afforded by the eigenvectors and eigenvalues of the Laplacian matrix L .
Specifically, we set the wavelet operator by Tg = g(L ). Tg is a mapping from R

N

to R
N , and Tg f gives the wavelet coefficients for the signal f at unit scale (s = 1).

This operator is defined by its action on the eigenvectors χ	, specifically as

Tgχ	 = g(λ	)χ	 (21)

This implies that for any graph signal f , the operator Tg acts on f by modulating
each of its graph Fourier coefficients, according to

T̂g f (	) = g(λ	) f̂ (	) (22)

Applying the inverse Fourier transform then shows

(Tg f )(m) =
N−1∑
	=0

g(λ	) f̂ (	)χ	(m) (23)

This relation should be compared with Eq. (9) describing the mapping from signal
to wavelet coefficients for the Continuous Wavelet Transform.

We next define T s
g , the wavelet operator at scale s, as T

s
g = g(sL ). The crucial

point enabling this definition of scaling is that while the original spatial domain (set
of vertices) is discrete, the domain of the kernel function g(λ) is continuous, which
enables proper definition of T s

g , for any s > 0.
The individual wavelets are obtained by localizing these operators by applying

them to δn , where δn ∈ R
N is the signal with a 1 on vertex n and zeros elsewhere.

This reads as
ψs,n = T s

g δn, (24)

so that ψs,n is the Spectral Graph Wavelet at scale s, centered on vertex n. We now
observe that

δ̂n(	) =
N∑

m=1

χ∗
	 (m)δn(m) = χ∗

	 (n). (25)

Using this with Eq. (23) then implies that

ψs,n(m) =
N−1∑
	=0

g(sλ	)χ
∗
	 (n)χ	(m) (26)

The wavelet coefficients W f (s, n) may then be considered as the inner products
of f with the wavelet ψs,n , i.e. via
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W f (s, n) = 〈
ψs,n, f

〉
. (27)

Equivalently, we have W f (s, n) as the value of (T s
g f )n . Using Eq. (23) this may be

expanded as

W f (s, n) = (
T s
g f

)
(n) =

N−1∑
	=0

g(sλ	) f̂ (	)χ	(n) (28)

4.2 Scaling Functions

As the wavelet kernel g satisfies g(0) = 0, the wavelets ψs,n are all orthogonal to
the eigenvector χ0, and are close to orthogonal to χ	 for eigenvectors where λ	 is
close to zero. In order to stably represent the lower frequency content of signals, it
is helpful to introduce a set of spectral graph scaling functions. These are defined in
analogy with scaling functions for the classical wavelet transform, which are needed
to represent low frequency content of signals when the scale parameter is not allowed
to become arbitrarily large. We define the spectral graph scaling functions similarly
to the wavelets, using a non-negative valued scaling function kernel h(λ)which may
be viewed as a low-pass filter. The scaling function kernel h satisfies h(0) > 0 and
limλ→∞ h(λ) = 0, from which the scaling function operator Th = h(L ) is defined.
The scaling functions centered at vertex n are given by φn = Thδn , and the scaling
function coefficients are given by S f (n) = 〈φn, f 〉.

In Fig. 1 we show the graphs of representative scaled wavelet kernels and the
scaling function kernel, for a chosen set of discrete scale values s j . Details of the
choices for h and g are deferred until later. We will show later in Sect. 5.2 that stable
recovery of f from its wavelet and scaling function coefficients is possible if the
function G(λ) = h(λ)2 + ∑

j g(s jλ)2 is nonzero for all λ in the spectrum of L .
Clearly, as each of the scaled wavelet kernels g(s jλ) approach zero as λ → 0, this
condition can only hold if the scaling function h(λ) satisfies h(0) > 0.

Fig. 1 Scaling function h(λ)

(dotted blue curve), wavelet
generating kernels g(t jλ)

(green, magenta, yellow,
orange curves), and sum of
squares G (black curve), for
J = 4 scales, λmax = 20.
Scale values are t1 = 2.0,
t2 = 0.5848, t3 = 0.171,
t4 = 0.05. Details for the
functional form of h and g
are in Sect. 7
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The scaling functions defined here are used to represent low frequency content of
the signal f . We note that the kernels h and g used here do not satisfy the two-scale
relation as in classical orthogonal wavelet design [3]. We thus have much freedom
in choosing the form of h, provided that the resulting G does not become close to
zero over the spectrum of L .

5 Properties of the SGWT

Wenext describe several properties of the spectral graphwavelet transform, including
the inverse of the continuous transform, the localization properties in the small-scale
limit, and the frame bounds for the scale-discretized transform.

5.1 Inverse for Continuous SGWT

For any type of signal transform to be useful for signal processing (rather than only
signal analysis), one must be able to invert the transform, i.e. to reconstruct a signal
corresponding to a given set of transform coefficients. The continuous SGWT (i.e.
where the scale parameter is not discretized) admits an inverse formula that has a
very similar form to the inverse expression for the continuous wavelet transform in
Eq. (4).

Each wavelet coefficient W f (s, n) may be viewed as measuring the “amount” of
the waveletψs,n present in the original signal f . The continuous SGWT inverse uses
these measurements to reconstruct the original signal, with a weighting ds/s. As
mentioned previously, however, as all of the wavelets are orthogonal to the eigen-
vector χ0, the subspace spanned by χ0 must be handled separately.

Lemma 1 Let f ∈ R
N be a signal, and let f # be the projection of f onto the

orthogonal complement of the span of χ0, i.e. f # = f − 〈χ0, f 〉 χ0. Let g be a kernel
function satisfying g(0) = 0, and the admissibility condition

∫ ∞

0

g2(x)

x
dx = Cg < ∞. (29)

Then the continuous reconstruction formula holds:

1

Cg

N∑
n=1

∫ ∞

0
W f (s, n)ψs,n(m)

ds

s
= f #(m) (30)

The complete reconstruction of f is then given by f = f # + f̂ (0)χ0.
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Proof We first expand the left side of the above, using Eqs. (26) and (28) to write
ψt,n and W f (t, n) in terms of the Laplacian eigenvectors χ	. This gives

1

Cg

∫ ∞

0

1

s

∑
n

(∑
	

g(sλ	)χ	(n) f̂ (	)
∑
	′

g(sλ	′)χ∗
	′(n)χ	′(m)

)
ds (31)

= 1

Cg

∫ ∞

0

1

s

(∑
	,	′

g(sλ	′)g(sλ	) f̂ (	)χ	′(m)
∑
n

χ∗
	′(n)χ	(n)

)
ds (32)

We have that
∑

n χ∗
	′(n)χ	(n) = δ	,	′ , applying this and summing over 	′ gives

= 1

Cg

∑
	

(∫ ∞

0

g2(sλ	)

s
ds

)
f̂ (	)χ	(m) (33)

Using the substitution u = sλ	, provided that λ	 �= 0, reduces the integral appearing
above to

∫ g2(u)

u du, which is finite and equals Cg by the admissibility condition for
g. If λ	 = 0, which holds only for 	 = 0, then the integral is 0 as g(0) = 0. This
implies that Eq. (33) is precisely the inverse Fourier transform evaluated at vertex
m, with the 	 = 0 omitted from the sum. As the omitted 	 = 0 term is precisely
f̂ (0)χ0 = 〈χ0, f 〉 χ0, the lemma is proved.

This expression for the inverse of the continuous transform is of theoretical inter-
est, however any practical implementation of the SGWT must use a finite number
of wavelet scales. We shall discuss reconstruction from the scale discretized SGWT
later in this chapter.

5.2 Frame Bounds for SGWT

As alluded to previously, practical computation of the SGWTmust involve discretiz-
ing the scale parameter s to a finite set of values. Fixing our notation, we let J be
the number of scales chosen and let {s1, s2, . . . , sJ } denote the specific scale values.
The SGWT at each scale produces a set (often termed a “subband”) of N coeffi-
cients Wsj ,n for 1 ≤ n ≤ N . Together with the N scaling function coefficients, the
full transform with J scales may be considered as a mapping from R

N to R
N (J+1),

producing N (J + 1) coefficients.
Some insight into how stable the coefficients for the entire set of N J wavelets

and N scaling functions are for representing signals may be gained by considering
the frame formed by the entire set of wavelets and scaling functions. Briefly, for a
Hilbert space H , a set of vectors Γn ∈ H is said to be a frame with frame bounds
A and B if for all f ∈ H it is true that
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A || f ||2 ≤
∑
n

|cn|2 ≤ B || f ||2 . (34)

where the coefficients cn are given by cn = 〈Γn, f 〉. These constants A and B describe
the numerical stability of recovering the original signal f from the coefficients cn .
In particular, if A = B, then the set {Γn} is called a tight frame, and the signal may
be recovered simply by

f = 1

A

∑
n

cnΓn (35)

In general A and B will not be equal, however the guiding principal that the frame
is easier to invert if B/A is close to 1 still holds. In fact, as discussed in Sect. 6.3,
these frame bounds provide a precise estimate for the speed of convergence of the
conjugate-gradients algorithm for inverting the discrete SGWT. For further details
of the fundamentals of the theory of frames, see [39] or [40].

For the scale-discretized SGWT, the frame bounds are given by the following.

Theorem 1 Fix a choice of a set of scales {s1, . . . , sJ }. Set G(λ) = h2(λ) +∑
j g(s jλ)2, where h and g are the scaling function and wavelet kernels. Then the

set Γ = {φn}Nn=1 ∪ {ψs j ,n}Jj=1
N
n=1 is frame with frame bounds A, B given by

A = min
λ∈[0,λN−1]

G(λ)

B = max
λ∈[0,λN−1]

G(λ). (36)

Proof Expression (28), shows that, for a fixed signal f , we may write

∑
n

|W f (s, n)|2 =
∑
n

∑
	

g(sλ	)χ	(n) f̂ (	)
∑
	′

(
g(sλ	′)χ	′(n) f̂ (	′)

)∗

=
∑

	

|g(sλ	)|2| f̂ (	)|2, (37)

wherewe have used the orthonormality of theχn . For the scaling function coefficients
we have, similarly, ∑

n

|S f (n)|2 =
∑

	

|h(λ	)|2| f̂ (	)|2 (38)

Fix an ordering of the elements of Γ , so that Γ = ∪N (J+1)
k=1 γk . Note that 〈γk, f 〉

may be either a scaling function coefficient or wavelet coefficient, depending on k.
Equations (37) and (38) show that
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N (J+1)∑
k=1

| 〈γk, f 〉 |2 =
∑

	

⎛
⎝|h(λ	)|2 +

J∑
j=1

|g(s jλ	)|2
⎞
⎠ | f̂ (	)|2 =

∑
	

G(λ	)| f̂ (	)|2

(39)

Then by the definition of A and B, we have

A
N−1∑
	=0

| f̂ (	)|2 ≤
N (J+1)∑
k=1

| 〈γk, f 〉 |2 ≤ B
N−1∑
	=0

| f̂ (	)|2 (40)

TheParseval relation || f ||2 = ∑
	 | f̂ (	)|2 then implies that A and B are framebounds

for the frame Γ .

5.3 Limit of Small Scales

Much of the effectiveness of classical wavelets for signal processing follows as the
waveletsmay be designed to be localized in both the spatial domain and the frequency
domain. The spectral graphwaveletsmay be designed to be localized in the frequency
domain, provided that g is chosen as a band-pass filter. However, we have not yet
demonstrated localization of the spectral graph wavelets in the spatial (i.e. vertex)
domain.

The spatial localization properties of classical wavelets derived from a single
wavelet via dilation and translation are straightforward to infer from the mother
wavelet ψ(t) itself. If ψ(t) is well localized on the interval [−d, d], then the derived
waveletψs,a(t)will be well localized on [a − ds, a + ds]. In the limit of small scales
as s → 0, this implies that ψs,a(t) → 0 for all t �= a, as long as the original mother
ψ(t) wavelet decays to zero as t → ∞.

As scaling for the spectral graph wavelets is defined in the graph Fourier domain,
localization in the limit as s → 0 is not as straightforward to infer. We will demon-
strate that normalized spectral graph wavelets ψs,n||ψs,n|| will approach zero for vertices
far enough away from the central vertex n, as s → 0. Our result is based on the fact
that powers ofL are localized, and that T s

g may be approximated as proportional to
a power of L in the limit of small scales.

As noted previously, the operator T s
g depends only on the values of g(sλ) for λ

in the spectrum ofL , in particular the values of g(sλ) for λ > λN−1 have no effect
on T s

g . As the graph of g(sλ) is obtained from the graph of g(λ) by zooming in
by a factor 1/s, the operator T s

g is determined by the values of g(λ) over the small
interval [0, λN−1s]. Our approach will be to approximate g(λ) in a neighborhood
of 0 by its Taylor polynomial, which will let us transfer the study of localization of
T s
g to studying localization of the first nonzero power of L appearing in the Taylor

series.
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The Taylor polynomial for g at the origin will provide an approximation of g(sλ)

that we will use for small s. In order to study the resulting approximate wavelets,
we first establish a bound on how perturbations of the kernel function g affect the
resulting wavelets. If two kernel functions g and g̃ are close to each other, then their
resulting wavelets should also be close to each other.

Lemma 2 Let g and g̃ be two kernel functions, andψs,n = T s
g δn and ψ̃s,n = T s

g̃ δn be
their corresponding wavelets at scale s. Suppose that there is a bound M(s) so that
|g(sλ) − g̃(sλ)| ≤ M(s) for all λ ∈ [0, λN−1]. It then follows that for each value of
s and for each vertex m, |ψs,n(m) − ψ̃s,n(m)| ≤ M(s), and that

∣∣∣
∣∣∣ψs,n − ψ̃s,n

∣∣∣
∣∣∣
2

≤√
NM(s).

Proof As by definition ψs,n(m) = 〈δm, g(sL )δn〉, we may write

|ψs,n(m) − ψ̃s,n(m)| = | 〈δm, (g(sL ) − g̃(sL )) δn〉 | (41)

Using the Parseval relation for the graph Fourier transform (20) shows this may be
written as

|ψs,n(m) − ψ̃s,n(m)| =
∣∣∣∣∣
∑

	

χ	(m)(g(sλ	) − g̃(sλ	))χ
∗
	 (n)

∣∣∣∣∣
≤ M(s)

∑
	

|χ	(m)χ	(n)∗| (42)

Using the Cauchy–Schwartz inequality shows the above sum over 	 is bounded by
1, as

∑
	

|χ	(m)χ∗
	 (n)| ≤

(∑
	

|χ	(m)|2
)1/2 (∑

	

|χ∗
	 (n)|2

)1/2

, (43)

and
∑

	 |χ	(m)|2 = 1 for allm, as the χ	 are a complete orthonormal basis. Applying
this to (42) proves |ψs,n(m) − ψ̃s,n(m)| ≤ M(s). We may then write

∣∣∣∣∣∣ψs,n − ψ̃s,n

∣∣∣∣∣∣2
2

=
∑
m

(
ψs,n(m) − ψ̃s,n(m)

)2 ≤
∑
m

M(s)2 = NM(s)2 (44)

which proves the statement
∣∣∣∣∣∣ψs,n − ψ̃s,n

∣∣∣∣∣∣
2

≤ √
NM(s).

Our localization results will be stated using a notion of distance between ver-
tices. We employ the shortest-path distance, which defines the distance between two
vertices as the number of edges in the shortest path connecting them, i.e.

dG(m, n) = argmin
s

{k1, k2, . . . , ks} (45)

s.t. m = k1, n = ks, and Akr ,kr+1 > 0 for 1 ≤ r < s. (46)
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This distance measure treats the graph G as a binary graph, i.e. the particular values
of the nonzero edge weights are not used.

For integer powers ofL , we have the following localization result. Note that this
holds for both the normalized and non-normalized forms of the Laplacian.

Lemma 3 Let G be a weighted graph, and L the graph Laplacian of G. Fix an
integer s > 0, and pick vertices m and n. Then (L s)m,n = 0whenever dG(m, n) > s.

Proof By the construction of L , we have that Lr,s = 0 for any vertices r �= s that
are not connected (i.e. where Ar,s = 0). Writing out repeated matrix multiplication,
we see

(L s)m,n =
N∑

k1=1

N∑
k2=1

. . .

N∑
ks−1=1

Lm,k1Lk1,k2 . . .Lks−1,n (47)

Suppose for sake of contradiction that (Ls)m,n �= 0. This implies that at least one of
the terms in the above sum is nonzero,which demonstrates the existence of a sequence
of vertices k1, k2, . . . , ks−1 with Lm,k1 �= 0, Lk1,k2 �= 0, . . . ,Lks−1 �= 0. However,
this is precisely a path of length s from vertex m to vertex n, with possible repeats
of vertices. Removing these possible repeated vertices gives a path of length k ≤ s
from vertex m to n, which implies dG(m, n) ≤ s, which is a contradiction.

This result implies that any kernel function that can be approximated by an integer
power ofL will produce localized wavelets. Every valid kernel g satisfies g(0) = 0,
if g is smooth in a neighborhood of 0 then we may approximate g(sλ) using the first
nonzero term of the Taylor series for g, which will allow us to use Lemma3. We first
clarify this truncated Taylor approximation for kernels g(x) that have a zero with
integer multiplicity at x = 0.

Lemma 4 Suppose g satisfies g(0) = 0, g(r)(0) = 0 for all r < K, and g(K )(0) =
C �= 0. Let there be some s ′ > 0 so that g is K + 1 times continuously differentiable
on [0, s ′λN−1] and that |g(K+1)(λ)| ≤ B for all λ ∈ [0, s ′λN−1]. Define the monomial
approximation kernel g̃ by g̃(x) = (C/K !)xK , and set

M(s) = sup
λ∈[0,λN−1]

|g(sλ) − g̃(sλ)|. (48)

Then for all s < s ′, the error M(s) is bounded by

M(s) ≤ sK+1 λK+1
N−1

(K + 1)! B (49)

Proof Using the assumed information about the derivatives of g at x = 0, Taylor’s
formula with remainder shows that for any x < s ′λN−1,
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g(x) = C
xK

K ! + g(K+1)(x∗)
xK+1

(K + 1)!
= g̃(x) + g(K+1)(x∗)

xK+1

(K + 1)! (50)

for some x∗ ∈ [0, x]. By assumption we have g(K+1)(x∗) < B. Now fix s < s ′, and
set x = sλ. We then have for all 0 ≤ λ ≤ λN−1 that

|g(sλ) − g̃(sλ)| ≤ B
sK+1λK+1

(K + 1)! ≤ B
sK+1λK+1

N−1

(K + 1)! , (51)

which implies M(s) ≤ sK+1 λK+1
N−1

(K+1)! B.

We are now equipped to state our localization result for the spectral graphwavelets
in the limit of small scales. We note that simply due to the definition of the SGWT,
if g(0) = 0 and g is continuous it follows that lims→0 ψs,n(m) = 0 for all m, n. This
explains why the statement of our result includes normalization by

∣∣∣∣ψs,n

∣∣∣∣.
Theorem 2 Let g be a kernel function satisfying g(r)(0) = 0 for 0 ≤ r < K, and
g(K )(0) �= 0, and let s ′ and B be such that |g(K+1)(λ)| ≤ B for all 0 ≤ λ ≤ s ′λN−1.
Letm andn be vertices separated by distance greater than K , i.e. with dG(m, n) > K.
Then there are constants D and s ′′ so that

ψs,n(m)∣∣∣∣ψs,n

∣∣∣∣ ≤ Ds (52)

holds for all sufficiently small scales s < min(s ′, s ′′).

Proof Define g̃(λ) = g(K )(0)
K ! λK and set ψ̃s,n = T s

g̃ δn . We expand ψ̃s,n = g(K )(0)
K ! sK

L K δn , so that

ψ̃s,n(m) = g(K )(0)

K ! sK
〈
δm,L K δn

〉

= g(K )(0)

K ! sK
(
L K

)
m,n

= 0 (53)

as (L K )m,n = 0 by Lemma3. Combining Lemmas2 and 4 shows

|ψs,n(m) − ψ̃s,n(m)| = |ψs,n(m)| ≤ sK+1E (54)

with E = λK+1
N−1

(K+1)! B.
We next need to bound

∣∣∣∣ψs,n

∣∣∣∣ away from 0. The triangle inequality applied to

ψ̃s,n = ψs,n + (ψ̃s,n − ψs,n) directly gives
∣∣∣∣∣∣ψ̃s,n

∣∣∣∣∣∣ ≤ ∣∣∣∣ψs,n

∣∣∣∣ +
∣∣∣∣∣∣ψ̃s,n − ψs,n

∣∣∣∣∣∣, so
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∣∣∣
∣∣∣ψ̃s,n

∣∣∣
∣∣∣ −

∣∣∣
∣∣∣ψs,n − ψ̃s,n

∣∣∣
∣∣∣ ≤ ∣∣∣∣ψs,n

∣∣∣∣ (55)

Lemma4 shows that
∣∣∣∣∣∣ψs,n − ψ̃s,n

∣∣∣∣∣∣ ≤ √
NsK+1 λK+1

N−1

(K+1)! B, while we may simply cal-

culate
∣∣∣
∣∣∣ψ̃s,n

∣∣∣
∣∣∣ = sK g(K )(0)

K !
∣∣∣∣L K δn

∣∣∣∣. These show that

sK
(
g(K )(0)

K !
∣∣∣∣L K δn

∣∣∣∣ − s
√
N

λK+1
N−1

(K + 1)! B
)

≤
∣∣∣∣∣∣ψ̃s,n

∣∣∣∣∣∣ −
∣∣∣∣∣∣ψs,n − ψ̃s,n

∣∣∣∣∣∣ (56)

Equations (56) and (54) together yield

ψs,n(m)∣∣∣∣ψs,n

∣∣∣∣ ≤ sE

q − sp
(57)

where we define q = g(K )(0)
K !

∣∣∣∣L K δn
∣∣∣∣ and p = √

N
λK+1
N−1

(K+1)! B. Straightforward com-

putation demonstrates that sE
q−sp ≤ 2E

q s whenever s ≤ q
2p . This implies the stated

theorem once we define D = 2EK !
g(K )(0)||L K δn|| and s ′′ = g(K )(0)||L K δn||(K+1)

2
√
NλK+1

N−1B
.

The localization result stated in Theorem2 uses the shortest-path distance, and
thus as stated is really only meaningful for graphs where the shortest-path distance
(which treats all non-zero edges the same, even if the edge weights are close to zero)
is a useful measure of distance. This will be the case if a significant number of edge
weights are exactly zero.We note thatmany large graphs arising in practice are sparse
(i.e. the number of nonzero edges is small relative to the total number of possible
edges), for such sparse weighted graphs the shortest-path distance does provide a
meaningful notion of distance.

6 Polynomial Approximation

The SGWT is defined using the eigenvectors χ	 and eigenvalues λ	 of the N × N
matrix L . Directly computing the transform according to Eq.28 requires diago-
nalizing L , i.e. computing the full set of eigenvectors and eigenvalues. This is
computationally intensive, requiring O(N 3) operations for the commonly used QR
algorithm [41]. This computational complexity renders the direct computation of the
entire set of eigenvectors impractical for graphs with more than a several thousand
vertices. However, signal processing problems routinely involve data with hundreds
of thousands or millions of dimensions. The SGWT cannot be a practical tool for
such larger problems if its computation relies on fully diagonalizing L .

In this section we describe a fast algorithm for the SGWT that avoids the need
to diagonalize the graph Laplacian. This is a achieved by directly approximating the
scaled wavelet kernels g(s jλ) by polynomials. A polynomial function of L may
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be applied to a signal f in a manner which uses only matrix-vector multiplication.
In general, multiplying a vector by L requires a number of operations equal to
the number of nonzero edges in the graph. For sparse graphs, where the number of
nonzero edges is small, this yields an efficient procedure.

6.1 Chebyshev Polynomial Approximation

As mentioned previously, the wavelet operator T s
g depends on the values of g(sλ)

only forλwithin the spectrumofL . This implies that the polynomial approximations
we seek need only be valid on an interval containing the spectrum of L .

Lemma 5 Let λmax be an upper bound on the spectrum ofL , so that λmax ≥ λN−1.
Let p(λ) be a polynomial such that, for fixed scale s,maxλ∈[0,λmax ] |g(sλ) − p(λ)| =
B, and define the approximate wavelet coefficients by W̃ f (s, n) = (p(L ) f )n. Then
the error in the approximate wavelet coefficients satisfies

|W f (s, n) − W̃ f (s, n)| ≤ B || f || (58)

Proof Equation (28) shows

|W f (s, n) − W̃ f (s, n)| =
∣∣∣∣∣
∑

	

g(sλ	) f̂ (	)χ	(n) −
∑

	

p(λ	) f̂ (	)χ	(n)

∣∣∣∣∣
≤

∑
	

|g(sλ	) − p(λ	)|| f̂ (	)χ	(n)|

≤ B
∑

	

| f̂ (	)χ	(n)| (59)

The Cauchy–Schwartz inequality applied on the last sum above shows

∑
	

| f̂ (	)χ	(n)| ≤
(∑

	

( f̂ (	))2
)1/2(∑

	

(χ	(n))2

)1/2

= || f || , (60)

using the Parseval equality and the orthonormality of the χ	’s. Together (59) and (60)
imply Eq. (58).

An upper bound λmax such as used in the above lemma can be found by calculating
the largest eigenvalue of L . It is important to note that good algorithms exist for
finding the largest eigenvalue of a symmetric matrix that access the matrix only via
matrix-vector multiplication. Examples include Arnoldi iteration and the Jacobi–
Davidson method [41, 42]. These algorithms are able to compute accurate estimates
of λN−1 with much lower computational cost than needed to find the entire spectrum
of L . Additionally, as only a rough estimate of λN−1 is needed to form an upper
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bound (the rough estimatemay simply be increased to ensure a valid upper bound), the
Arnoldi iteration need not be run until close convergence is achieved for computing
λN−1.

In this work we will use polynomial approximations computed from the trun-
cated Chebyshev polynomial expansion of the scaled wavelet kernels g(sλ), over the
interval [0, λmax ]. Lemma5 suggests that polynomial approximations p(λ) should
be chosen to minimize the supremum norm B = maxλ∈[0,λmax ] |p(λ) − g(sλ)|. Trun-
cated Chebyshev polynomial expansions give polynomials that in many cases are a
close approximation of the so-called minimax polynomials that exactly minimize the
supremum norm [43]. The minimax polynomial p(x) of degree M for approximat-
ing g(sx) has the property that the error |p(x) − g(sx)| reaches the same maximum
value at M + 2 points across the domain. This is illustrative of the fact that the min-
imax polynomials distribute the approximation error evenly over the entire interval.
In contrast, for the wavelet kernels used in this work we have observed that the
truncated Chebyshev polynomials have a maximum error only slightly greater than
that of the minimax polynomials, and typically have significantly lower approxima-
tion error in regions where g(sλ) is smooth. We have also observed that for graphs
that are small enough where the SGWT may be computed exactly using Eq. (28),
the polynomial approximation using truncated Chebyshev expansions produces a
slightly lower approximation error than that based on the minimax polynomials. We
illustrate a scaled wavelet kernel and both the truncated Chebyshev and minimax
polynomial approximations (computed using the Remez exchange algorithm [44])
in Fig. 2.

Another reason we adopt the truncated Chebyshev approximation is that we can
use the recurrence properties of the Chebyshev polynomials to conveniently evaluate
Chebyshev polynomials ofL applied to an input signal f via repeatedmatrix-vector
multiplication. Chebyshev polynomial approximation is a classical topic, a good

Fig. 2 aWavelet kernel g(λ) (black), truncated Chebyshev expansion (blue) and minimax polyno-
mial approximation (red, dashed) for degreem = 20, shown for [0, λmax ] = [0, 2]. Approximation
errors shown in b, the truncated Chebyshev expansion has maximum error 0.1023, the minimax
polynomial has maximum error 0.0434
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Fig. 3 Graphs of the Chebyshev polynomials Tk(y) for 0 ≤ k ≤ 7, plotted on the interval [−1, 1]

overview is [45]. For completeness we briefly describe a few key properties of the
Chebyshev polynomials here.

The (unscaled) Chebyshev polynomials are a set of polynomials convenient for
representing functions on the interval [−1, 1]. On this interval they satisfy Tk(y) =
cos(k arccos(y)), showing that they oscillate between [−1, 1], and that the kth order
polynomial Tk(y) has zeros at the points y = cos( π

k (n + 1
2 )) for n = 0, 1, 2, . . . k −

1. The Chebyshev polynomials satisfy the two-term recurrence relation

Tk(y) = 2yTk−1(y) − Tk−2(y), (61)

which together with the starting expressions T0(y) = 1 and T1(y) = y can be used
to generate the entire sequence. The graphs of the first 8 Chebyshev polynomials are
shown in Fig. 3.

Many of the approximation properties of the Chebyshev polynomials follow from
them being an orthogonal set, with respect to the inner product defined with the
measure dy√

1−y2
. Specifically, one has

∫ 1

−1

Tl(y)Tm(y)√
1 − y2

dy =
{

δl,mπ/2 if m, l > 0

π if m = l = 0
(62)

Any function h which is square-integrable on [−1, 1] with respect to the measure
dy/

√
1 − y2 has a convergent Chebyshev series, given by
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h(y) = 1

2
c0 +

∞∑
k=1

ckTk(y) (63)

where the Chebyshev coefficients ck are given by

ck = 2

π

∫ 1

−1

Tk(y)h(y)√
1 − y2

dy = 2

π

∫ π

0
cos(kθ)h(cos(θ))dθ. (64)

Wenowdetail the polynomial approximation schemeused for the fast computation
of the SGWT. We first rescale the argument of the Chebyshev polynomials by the
change of variables x = λmax (y + 1)/2, which transforms the interval [−1, 1] onto
[0, λmax ]. We write T k(x) for these shifted Chebyshev polynomials, which satisfy

T k(x) = Tk

(
2x − λmax

λmax

)
(65)

We let M denote the degree of the polynomial approximations for each of the
scaled wavelet kernels, and assume we have fixed some set of scales s j . Larger
values of M will yield more accurate approximations, at the expense of higher com-
putational cost. For each scale s j , the truncated Chebyshev polynomial p j (x) which
approximates g(s j x) has the expression

p j (x) = 1

2
c j,0 +

M∑
k=1

c j,kT k(x), (66)

where the Chebyshev coefficients are given by

c j,k = 2

π

∫ π

0
cos(kθ)g

(
s j

λmax
2 (cos(θ) + 1)

)
dθ. (67)

Exactly the same scheme is used to construct the M degree polynomial p0(x) for
approximating the scaling function kernel h.

These Chebyshev coefficients may be computed independent of any particular
knowledge of the graph signal f , beyond of knowing an appropriate spectral bound
λmax . Once they are obtained, the wavelet and scaling function coefficients for the
fast SGWT are:

W̃ f (s j , n) =
(
1

2
c j,0 f +

M∑
k=1

c j,kT k(L ) f

)

n

S̃ f (n) =
(
1

2
c0,0 f +

M∑
k=1

c0,kT k(L ) f

)

n

(68)
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The fast SGWT relies on computation of the terms T k(L ) f using the recurrence
relation satisfied by the shiftedChebyshev polynomials. Equation (61) and the inverse
change of variables y = 2

λmax
− 1 shows T k(x) = 4

λmax
(x − 1)T k−1(x) − T k−2(x),

which immediately implies

T k(L ) f = 4

λmax
(L − I )

(
T k−1(L ) f

) − T k−2(L ) f (69)

Critically, this recurrence relation can be calculated using only matrix-vector multi-
plication, storing only the vector result T k(L ) f for each k ≤ M and never explicitly
computing the matrix T k(L ). The above recurrence shows that the vector T k(L ) f
can be computed from the vectors T k−1(L ) f and T k−2(L ) f , with computational
cost dominated by matrix-vector multiplication by L − I .

We estimate the computational complexity of computing the approximate SGWT
this way, for a graph with a total number of nonzero edges |E |. IfL is stored using a
sparse matrix representation, then the cost of the matrix-vector produceL v for any
v ∈ R

N is O(|E |) (as opposed to O(N 2) for full matrix-vector multiplication). For
sparse graphs, where |E | is small compared to N 2, this differencemay be very signif-
icant. Computing all of the terms T k(L ) f for k ≤ M requires O(M |E |) operations.
We compute the wavelet and scaling function coefficients according to Eq. (68), this
may be done by adding the term c j,kT k(L ) f for j = 0, . . . , J to a vector contain-
ing the j th set of coefficients, as the terms T k(L ) f are computed. Computing the
scalar-vector product c j,kT k(L ) f and adding it to the running total vector requires
O(N ) operations, this cost is incurred M(J + 1) times for computing each of the
J + 1 wavelet or scaling function bands, up to polynomial order M . All together,
this implies a total computational cost of O(M |E | + MN (J + 1)) to compute the
SGWT via polynomial approximation.

As the recurrence relation (69) involves only three terms, computing all of the
T k(L ) f may be done with memory of size 3N if the lower degree terms are over-
written once they are no longer needed for the recurrence. A straightforward imple-
mentation of the fast SGWT would also need enough memory to hold each of the
J + 1 wavelet or scaling function bands, implying a total memory size requirement
of N (J + 1) + 3N = N (J + 4).

6.2 Polynomial Approximation for the SGWT Adjoint
Operator

The SGWT wavelet and scaling function operators define linear mappings from
R

N to the corresponding wavelet or scaling function coefficients. Once a set of J
scales s j is fixed, one may form the overall SGWT operator W : R

N → R
N (J+1)

by concatenating all of the scaling function and wavelet coefficients into a single
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N (J + 1) length vector, as W f = (
(Th f )T , (T s1

g f )T , . . . , (T sJ
g f )T

)T
. Letting W̃ :

R
N → R

N (J+1) be the SGWT operator computed by polynomial approximation, we
have

W̃ f = (
(p0(L ) f )T , (p1(L ) f )T , . . . , (pJ (L ) f )T

)T
. (70)

where the approximating polynomials p j are defined in Eq. (66).
Both the adjoint operator W̃ T W̃ : R

N (J+1) → R
N and the operator WTW :

R
N → R

N can be computed using Chebyshev polynomial approximation. These
operators are used in the method we will detail in Sect. 6.3 for computing the inverse
transformation. In addition, many wavelet based signal processing algorithms (in
particular iterative algorithms for solving minimization problems arising from regu-
larization using sparsity-promoting penalty functions of wavelet coefficients, see for
example [46]) are described using the adjoint operator, so knowing that the adjoint
may be efficiently computed is important for adapting such algorithms to graph signal
processing using the SGWT.

The adjoint WT is the linear operator such that
〈
WTu, v

〉 = 〈u,Wv〉 for every
u ∈ R

N (J+1) and v ∈ R
N . Below, we write u ∈ R

N (J+1) as the partitioned vector
u = (uT

0 , uT
1 , . . . , uT

J ). We may then write

〈u,Wv〉N (J+1) = 〈u, Thv〉 +
J∑

j=1

〈
u j , T

sj
g v

〉
N

= 〈
T T
h u0, v

〉 +
〈

J∑
j=1

(T
sj
g )T u j , v

〉

N

=
〈
Thu0 +

J∑
j=1

T
sj
g u j , f

〉

N
(71)

as the operators Th and T
sj
g are all symmetric. Equation71 shows that for any u ∈

R
N (J+1) viewed as the concatenation of J + 1 coefficient subbands, application of

the adjoint WTu is given by WTu = Thu0 + ∑J
j=1 T

sj
g u j . Similarly, the adjoint of

the approximate SGWT operator W̃ from Eq. (66) is given as

W̃ T u =
J∑

j=0

p j (L )u j . (72)

This can be computed efficiently, using only matrix-vector multiplication, using
exactly the same approach as described in Sect. 6.1.

From Eqs. (70) and (72) we see that

W̃ T W̃ f =
J∑

j=0

p j (L )p j (L ) f =
⎛
⎝ J∑

j=0

(p j (L ))2

⎞
⎠ f (73)
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This expression may be computed efficiently by determining the Chebyshev
coefficients dk for 0 ≤ k ≤ 2M for the 2M degree sum-of-squares polynomial
P(x) = ∑

j=0(p j (x))2. Once these are calculated, we compute

W̃ T W̃ f =
2M∑
k=0

dkT k(L ) f. (74)

We detail the determination of the coefficients dk below.
The expression Tk(x) = cos(k arccos(x)), togetherwith the trigonometric identity

cos(α) cos(β) = 1
2 (cos(α + β) + cos(α − β)) implies the the product relation

Tk(x)Tl(x) = 1

2

(
Tk+l(x) + T|k−l|(x)

)
. (75)

We will use this to express the d ′
ks in terms of the c′

j,ks. For convenience below
we denote c′

j,k = c j,k for k ≥ 1 and c′
j,0 = 1

2c j,0, so that we may write p j (x) =∑M
k=0 c

′
j,kT k(x), without the factor of 1

2 as in (66).

Similarly we define the coefficients d ′
j,k so that (p j (x))2 = ∑2M

k=0 d
′
j,kT k(x).

Expanding (p j (x))2 and using (66) yields, after a lengthy but straightforward calcu-
lation, that

d ′
j,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

(
c′j,0

2 + ∑M
i=0 c

′
j,i

2
)

if k = 0

1
2

(∑k
i=0 c

′
j,i c

′
j,k−i + ∑M−k

i=0 c′j,i c′j,k+i + ∑M
i=k c

′
j,i c

′
j,i−k

)
if 0 < k ≤ M

1
2

(∑M
i=k−M c′j,i c′j,k−i

)
if M < k ≤ 2M

(76)

Defining dn,0 = 2d ′
j,0 and d j,k = d ′

j,k for k ≥ 1, we have dk = ∑J
j=0 d j,k . These

are used with Eq.74 to compute W̃ T W̃ f .

6.3 SGWT Inverse Transform

Many wavelet based signal processing algorithms function by computing wavelet
coefficients of the original signal, manipulating the signal in the coefficient domain,
and then inverting the wavelet transform. To be useful for signal processing, it is
important to be able to invert the SGWT, i.e. to reconstruct a signal from a set of
spectral graph wavelet coefficients. The scale discretized SGWT operator W com-
putes N (J + 1) wavelet and scaling function coefficients for each N dimensional
signal f . As the number of coefficients is greater than the dimension of the original
signal, the SGWT is an overcomplete transform, and thus cannot have a unique linear
inverse. Provided that the entire set ofwavelet and scaling functions (equivalently, the
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columns ofWT ) spanR
N , there will be infinitely many different left inverse matrices

M satisfying MW = I . We note that this condition holds if the frame bound A from
Theorem1 is positive.

We use the pseudoinverse, formally given by M = (WTW )−1WT , as the inverse
of the SGWT. For a given set of SGWT coefficients c ∈ R

N (J+1), the inverse SGWT
will be the signal f ∈ R

N obtained by solving the linear system (WTW ) f = WTc.
For most applications this system is too large to be solved directly (for instance
by the LU factorization and back substitution). Instead, we employ the well-known
conjugate gradients algorithm [47]. This is an iterative algorithm, the computational
cost at each step is dominated by computing the product ofWTW with a single vector.
We use the Chebyshev polynomial approximation scheme for computing W̃ T W̃ in
each step of the conjugate gradients algorithm.

We note that the frame bounds from Theorem1 may be used to estimate the
convergence speed of the conjugate gradients iteration. The remaining error in the
conjugate gradients algorithm after i iterations (as measured by the norm of the
residual) is bounded by the norm of the first residual times

2

(√
κ − 1√
κ + 1

)i

, (77)

where κ is the ratio of the largest and smallest eigenvalues of WTW . The frame
bounds A and B are bounds on the spectrum ofWTW (see [39]), and thus κ < A/B.
This explicitly shows that the convergence properties for the conjugate gradients
reconstruction depend on the frame bounds, with faster convergence for smaller
A/B.

7 SGWT Kernel Design Details

The described theory of the SGWT places few constraints on the wavelet kernel g,
scaling function kernel h, or the selection of scales. We give details of the design
choices described in the original paper [32], which are also those used in the example
illustrative images included later in this chapter. The wavelet kernel g is chosen to
give exact localization in the limit of small scales. By Theorem2, this will occur if
g(x) behaves like a power of x near the origin. We ensure this by choosing g to be an
exact monic polynomial for x in a neighborhood of the origin. For large x , g should
decay to zero. This is enforced by setting g to decay as a negative power of x , for x
larger than some fixed value. The final design connects these two regions by a cubic
spline ensuring continuity of g and its derivative. Specifically, we set

g(x;α, β, x1, x2) =

⎧⎪⎨
⎪⎩
x−α
1 xα for x < x1
s(x) for x1 ≤ x ≤ x2
xβ

2 x
−β for x > x2

(78)
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where α and β are integers, and x1 and x2 specify the transition region between
the monic polynomial and decaying regions. The examples included in this chapter
used α and β both set to 2, x1 = 1 and x2 = 2. In this case the cubic polynomial
s(x) = −5 + 11x − 6x2 + x3.

The discrete scale values s j are chosen by first specifying the maximum scale
s1 and the minimum scale sJ , then setting the intermediate scales decreasing and
logarithmically equally spaced as s j = s1(

sJ
s1

)
j−1
J−1 for 1 ≤ j ≤ J .

The minimum and maximum scales are adapted to the spectrum ofL as follows.
Given an upper bound λmax on the spectrum ofL , and a value K that is considered
a design parameter of the transform, we set λmin = λmax/K . The scales s1 and sJ
are chosen so that the smallest scale kernel g(sJ x) is a monic polynomial over the
interval [0, λmax ], and so that the largest scale kernel g(s1x) decays as x−β over the
interval [λmin,∞). This is ensured by setting s1 = x2/λmin and sJ = x1/λmax .

The scaling function kernel h(x) is set as h(x) = γ exp(−( x
0.6λmin

)4). Here γ is
determined by the condition that that h(0) has the same value as the maximum value
of g. An illustration of these choices for the scaling function and scaled wavelet
kernels, for λmax = 20, K = 20, J = 4, α = 2, β = 2, x1 = 1 and x2 = 2 is given
in Fig. 1.

We note that many other design choices for the wavelet and scaling function
kernels are possible. In particular, Leonardi and Van De Ville have developed a
design leading to a SGWT that is a tight frame, i.e. where the bounds A and B from
(34) are equal [48].

8 Illustrative Examples

In order to illustrate the SGWT, we provide several examples of weighted graphs
arising from different application areas, and present images of some wavelets and
scaling functions for these graphs. As a first example, we consider a point cloud
sampled randomly from the “swiss roll”, a 2 dimensional manifold embedded that
is widely used as a benchmark example for dimensionality reduction and manifold
learning algorithms [49]. Our example is based on sampling 500 points from the
embedding in R

3 given parametrically by x(u, v) = (v cos(v)/4π, u, v sin(v)/4π)

for −1 ≤ u ≤ 1, π ≤ v ≤ 4π .
The adjacency for the weighted graph A is computed from the points xi by assign-

ing a greater edgeweight to edges connecting points that are close inR
3. Specifically,

we set Ai, j = exp(− ∣∣∣∣x j − x j

∣∣∣∣2 /2σ 2), with σ = 0.1. We show the point cloud, a
scaling function and four wavelets all centered on the same vertex, in Fig. 4.

The swiss roll point cloud is a toy example of data constrained to a lower dimen-
sional manifold that are embedded in a higher dimensional space, a situation which
commonly arises in many examples relevant to machine learning. We note in partic-
ular that the support of the wavelets and the scaling function automatically adapts to
the structure of the underlying 2d manifold, and does not jump across to the upper
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Fig. 4 Spectral graph wavelets on Swiss Roll data cloud, for transform with J = 8 wavelet scales
(showing only wavelets for the 4 coarsest scales). aVertex at which wavelets are centered, b scaling
function, c–f wavelets, scales 1–4. Figure adapted from [32]

portion of the roll, even though the geometric separation in the 3D embedding space
is smaller in some cases than the diameter of the support of the wavelet or scaling
function.

Wenext consider an example transportation network, arising fromagraph describ-
ing the road network inMinnesota.Here edges correspond tomajor roads, each vertex
is the intersection of two roads. The vertices thus do not always exactly correspond
to population centers (incorporated towns or cities), although many do. For this par-
ticular dataset the edges are unweighted, and do not for instance reflect the capacity
of the road. Figure5 shows a set of wavelets and scaling function centered at a single
vertex, for the SGWT computed with parameter K = 100 and J = 4 scales. We note
that for display purposes each vertex has associated 2d coordinates, however these
were used only for rendering the figure and were not used for the actual computation
of the SGWT.

With an eye towards applications, we note that the SGWT be useful for analysis
of data measured at vertices of a transportation network where the phenomena gen-
erating the measured data was influenced in someway by the transportation network.
Possible examples could include analysis of data describing disease rates during an
epidemic (if it were expected that transportation network could influence patterns of
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Fig. 5 Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. a Vertex
at which wavelets are centered, b scaling function, c–f wavelets, scales 1–4. Reproduced with
permission from [32]

disease transmission), or analysis of inventory data for goods that are moved along
the transportation network.

A third example shows the SGWT appropriate for data measured on irregularly
shaped domains.We take as an example irregular domain the geometry of the surface
of Lake Geneva. The SGWT for this case could be used for analysis or processing of
some physical measurement (such as water temperature, or concentration of some
solute) that was taken at regularly spaced points on the surface of the body of water.
Using classical wavelet analysis for such datawould require some special handling of
the geometrically complex boundary between land and water. In contrast, the SGWT
implicitly handles the boundary, and needs no special adaptation beyond encoding
the domain with the adjacency matrix.

In this example the geometry of the lake surface is described as a binary function
on a regular rectangular grid. The graph is constructed by retaining only vertices
corresponding to grid points within the lake interior, and with edges connecting the
(at most 4) neighboring vertices. We use a binary graph (all edge weights set to 1). At
interior points of the domain, the graph Laplacian thus corresponds to the standard
5-point stencil for approximating−∇2 (see Eq. (14)), while at points on the boundary
the Laplacian ismodified by the deletion of grid points outside of the lake domain.We
constructed our lake geometry mask using shoreline data from the GSHHS database
[50]. The lake mask was calculated on a 256 × 153 pixel grid (corresponding to
a physical scale of 232 meters per pixel). We show a single wavelet for the largest
scale value in Fig. 6, for the design with parameter K = 100 and J = 5 scales.
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Fig. 6 Spectral graphwavelets on lakeGeneva domain, (spatialmap (a), contour plot (c)); compared
with truncated wavelets from graph corresponding to complete mesh (spatial map (b), contour plot
(d)). Note that the graphwavelets adapt to the geometry of the domain. Reproducedwith permission
from [32]

To illustrate the implicit adaption of thewavelet to the geometry of the domain, we
compare it with a SGWT wavelet computed with the same wavelet kernel and scale
parameter for a large regular grid, that is simply truncated. These true and truncated
wavelets will coincide for central vertices that are far from the boundary, however
they may be very different for wavelets centered on vertices near the boundary. This
can be seen clearly in Fig. 6, which illustrates how the SGWT adapts to an irregular
boundary.

9 Conclusion

We have described a wavelet transform for data defined on the vertices of arbitrary
weighted graphs. Our approach uses spectral graph theory, based on the eigenvectors
and eigenvalues of the graph Laplacian matrix, to define a notion of scaling that is
analogous to classical wavelet operators. Our graph wavelet operators are defined by
taking kernel functions of the graph Laplacian, where the kernel functions are formed
by rescaling a single bandpass function. We have shown that defining the graph
wavelets by applying these wavelet operators to a delta impulse centered on a single
vertex gives wavelets that are localized in the limit of small scales. A fast algorithm
based on Chebyshev polynomial approximation was described, demonstrating that
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the SGWT can be applied to large graphs without the need for explicit computation
of the eigenvectors and eigenvalues of the graph Laplacian matrix. We studied the
frame bounds of the SGWT, and described a computation of the inverse transform.
Finally, we showed a series of example images of the SGWT computed for several
different graphs, highlighting potential applications of the transform.

Software Implementation

A MATLAB toolbox with complete functionality for computing the SGWT may be
found online at http://wiki.epfl.ch/sgwt. Much of this functionality has also been
incorporated into the larger Graph Signal Processing toolbox [51] (GSPBox), a
MATLAB implementation is available at http://epfl-lts2.github.io/gspbox-html, and
a Python implementation may be found at http://pygsp.readthedocs.io/en/stable.
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Spectral Design of Signal-Adapted Tight
Frames on Graphs

Hamid Behjat and Dimitri Van De Ville

Abstract Analysis of signals defined on complex topologies modeled by graphs
is a topic of increasing interest. Signal decomposition plays a crucial role in the
representation and processing of such information, in particular, to process graph
signals based on notions of scale (e.g., coarse to fine). The graph spectrum is more
irregular than for conventional domains; i.e., it is influenced by graph topology, and,
therefore, assumptions about spectral representations of graph signals are not easy to
make. Here, we propose a tight frame design that is adapted to the graph Laplacian
spectral content of a given class of graph signals. The design exploits the ensemble
energy spectral density, a notion of spectral content of the given signal set that we
determine either directly using the graph Fourier transform or indirectly through
approximation using a decomposition scheme. The approximation scheme has the
benefit that (i) it does not require diagonalization of the Laplacian matrix, and (ii)
it leads to a smooth estimate of the spectral content. A prototype system of spectral
kernels each capturing an equal amount of energy is defined. The prototype design
is then warped using the signal set’s ensemble energy spectral density such that the
resulting subbands each capture an equal amount of ensemble energy. This approach
accounts at the same time for graph topology and signal features, and it provides a
meaningful interpretation of subbands in terms of coarse-to-fine representations.
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1 Introduction

Many fields of science rely on network analysis to study complex systems. Networks
are modeled mathematically as weighted graphs that have a set of nodes (vertices)
with interactions between them represented by connections (links) and associated
strengths.A rich repertoire ofmethods have been developed to pursue original queries
and integrate the complexity of network structure into the analysis, subsequently
providing new interpretations of datasets in divers scientific disciplines ranging from
social sciences to physics and biology. One of the successes in network analysis is
the ability to identify sets of nodes based on their connectivity. Traditional graph
partitioning goes back to optimizing graph cuts [14], while more recent community
detection identifies sets of nodes that are more densely connected inside the set than
outside [17]. Community detection has been widely applied and many variants of
the corresponding optimization criterion have been proposed [31].

Another significant trend in the field is the emergence of methods to process sig-
nals on graphs [7, 32, 38, 41]. Measurements on the nodes of a given network can be
considered as graph signals for which classical signal processing operations can be
generalized; e.g., how to properly denoise, filter, or transform graph signals by taking
into account the underlying connectivity. Many generalization schemes have been
proposed to extend classical multi-resolution transforms, filter bank designs and
dictionary constructions to the graph setting. These studies fall essentially within
two families: spatial (vertex) and spectral (frequency) designs. Schemes that fall
within the former family includemethods in designing wavelets for hierarchical trees
[16, 34, 35] and methods based on lifting schemes [22, 29, 36]. The latter family
is based on spectral graph theory [8], which is a powerful approach based on the
eigendecomposition of matrices associated with graphs such as the adjacency matrix
or graph Laplacian. Its strength originates from the global nature of the eigenvectors
that summarize key graph properties and can be used to solve convex relaxed versions
of graph cut minimization [50], or to define signal-processing operations by a graph
equivalent of the Fourier transform [38, 41]. In its application to graph signal pro-
cessing, operations are performed in the spectral domain using graph spectral filters.
One of the first proposals is the spectral graph wavelet transform (SGWT) frame
[20] that is constructed based on a system of scaled cubic spline spectral kernels
together with a lowpass spectral polynomial kernel. Moreover, various construc-
tions of systems of spectral graph kernels leading to tight frames were proposed in
[13, 18, 26]. Tight frames are particularly interesting because of their property
of energy conservation between the original and transformed domain [5]. Other
approaches to spectral domain design include diffusion wavelets [10], vertex-
frequency frames [42, 44] and approaches to graph filter-bank design using bipartite
graph decompositions [30, 37, 45, 46], connected sub-graph decomposition [48],
graph coloring [40] and Slepian functions that provide a tradeoff between temporal
and spectral energy concentration [49].

One of the difficulties of the graph spectrum is that its construction depends on
the graph itself. Consequently, the graph spectral representation of a graph signal is
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determined by both the domain and the signal. However, the aforementioned spectral
designs typically define spectral windows in a way that is independent of the graph
and graph signal. One example of adaptation to the spectral properties of the graph
domain was recently proposed in [43] for the construction of spectrum-adapted tight
graph wavelet and vertex-frequency frames. The spectrum-adapted kernels account
for the non-uniform distribution of Laplacian eigenvalues, and are designed such
that that a similar number of eigenvalues falls within the support of each spectral
kernel. Moreover, in [47, 51], numerical dictionary learning approaches have been
proposed in which dictionaries are learnt based on a set of training signals. In these
design, the learned kernels are indirectly adapted to the graph Laplacian spectrum as
well as to the training data since the graph structure is incorporated into the learning
process. In an application specific approach, in [1–3], the Meyer-like frame design
[26] has been tailored to the spectral content of functional MRI signals to obtain a
set of narrow-support kernels covering the lower end of the spectrum.

In this chapter, we propose an approach for constructing tight graph frames that
account not only for the intrinsic topological structure of the underlying graph as
proposed in [43], but also for the characteristics of a given set of signals. This
is accomplished by considering a graph-based energy spectral density notion that
includes signal and topology properties and encodes the energy-wise significance of
the graph eigenvalues. A system of spectral kernels tailored to the energy spectral
density is constructed by starting from the design of a prototype Meyer-type tight
framewith uniform spectral coverage, followed by awarping stepwhich incorporates
the energy spectral density information to the prototype design, resulting in a tight
frame with equi-energy subbands.

2 Preliminaries

2.1 Graphs and Spectral Graph Theory

A graph can be denoted as G = (V, E) with Ng vertices in set V , a set of edges as
tuples (i, j) in E where i, j ∈ V . The size of the graph is the number of vertices. In
this chapter we only consider undirected graphs without self-loops. Algebraically,
G can be represented with the node-to-node adjacency matrix A, with elements ai, j
denoting the weight of the edge (i, j) if (i, j) ∈ E ; ai, j = 0 if (i, j) /∈ E . The degree
matrix D of G is diagonal with elements di,i =∑ j ai, j . The Laplacian matrices of
G in combinatorial form L and normalized form L are defined as

L = D − A, (1)

L = D−1/2LD−1/2, (2)
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respectively. Both L and L are symmetric and positive semi-definite, and thus, their
diagonalizations lead to a set of Ng real, non-negative eigenvalues that define the
graph Laplacian spectrum

Λ(G) = {0 = λ1 ≤ λ2 · · · ≤ λNg = λmax}. (3)

The corresponding set of eigenvectors {χ l}Ng

l=1 forms a complete set of orthonormal
vectors that span the graph spectral domain [8].When necessary, we use the notations
ΛL(G) andΛL(G) to distinguish between the two definitions of the graph Laplacian.
As the eigenvalues may be repetitive, for each λl , we denote its algebraic multiplicity
bymλl and the index of its first occurrence by iλl . That is, if λl is singular, i.e.mλl = 1,
then iλl = l, and if λl is repetitive, then iλl ≤ l. The multiplicity of eigenvalues equal
to zero reflects the number of connected components in the graph. In this paper, only
connected graphs are considered, and thus, mλ1 = 1.

2.2 Graph Signals: Vertex Versus Spectral Representations

Let �2(G) denote the Hilbert space of all square-summable real-valued vectors
f ∈ R

Ng , with the inner product defined as

〈f1, f2〉 =
Ng∑

n=1

f1[n] f2[n], ∀f1, f2 ∈ �2(G) (4)

and the norm as

||f||22 = 〈f, f〉 =
Ng∑

n=1

| f [n]|2, ∀f ∈ �2(G). (5)

A real signal defined on the vertices of a graph, f : V → R, can be seen as a vector in
�2(G), where the n-th element represents the value of the signal on the n-th vertex.

For any f ∈ �2(G), its spectral representation f̂ ∈ �2(G), known as the graph
Fourier transform of f , can be used to express f in terms of the graph Laplacian
eigenvectors

f [n] =
Ng∑

l=1

〈f,χ l〉︸ ︷︷ ︸
= f̂ [l]

χl[n]. (6)

With this definition of the Fourier transform, it can be shown that the Parseval
relation holds [42]

∀f1, f2 ∈ �2(G), 〈f1, f2〉 = 〈̂f1, f̂2〉. (7)
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2.3 Filtering of Graph Signals

In the graph setting, the generalized convolution product is defined as

(f1 ∗ f2)[n] =
Ng∑

l=1

f̂1[l] f̂2[l]χl[n], ∀f1, f2 ∈ �2(G)). (8)

In analogy with conventional signal processing, filtering of graph signals can be
viewed as an operation in the spectral domain. For a given graph signal f ∈ �2(G)

and graph filter g ∈ �2(G), defined through its Fourier transform ĝ, the filtered signal,
denoted by (Fgf), can be obtained as

(Fgf)[n] = (g ∗ f)[n] (9)

(8)=
Ng∑

l=1

ĝ[l] f̂ [l]χl[n]. (10)

For the graph filter g, the filter response of an impulse at vertex m

f = δm ↔ δ̂m[l] = 〈δm,χ l〉 = χl[m], (11)

can be obtained as

(Fgδm)[n] =
Ng∑

l=1

ĝ[l]χl[m]χl[n]. (12)

The impulse response of a graph filter is, in general, shift-variant; i.e, the impulse
response at one vertex is not simply a shifted version of the impulse response at
any other node. This is due to the absence of a well-defined shift operator in the
graph setting as that defined in the Euclidean setting. Therefore, a graph filter is
conventionally defined by its spectral kernel ĝ rather than by its impulse response.

Although the graph spectrum is discrete, to design spectral kernels, it is often
more elegant to define an underlying smooth continuous kernel. Let L2(G) denote
the Hilbert space of all square-integrable spectral functions K (λ) : [0, λmax] → R

+,
with the inner product defined as

〈K1, K2〉L2
=
∫ +∞

−∞
K1(λ)K2(λ)dλ, ∀K1, K2 ∈ L2(G), (13)

and the L2-norm defined as

‖K‖2L2
= 〈K , K 〉L2

, ∀K ∈ L2(G). (14)



182 H. Behjat and D. Van De Ville

A discrete version of K (λ) ∈ L2(G) can then be determined as

k[l] = K (λl), l = 1, . . . , Ng. (15)

Note that although k is defined in the spectral domain, it is not linked to any explicit
vertex representation, and thus, theFourier symbol ̂ is not used for their denotation.
This notation convention will be used throughout the chapter.

2.4 Dictionary of Graph Atoms

For a given spectral kernel k associated with K (λ), the vertex-domain impulse
responses are obtained as

ψK ,m = (Fkδm) ↔ ψ̂K ,m[l] = k[l]χl[m]. (16)

The collection of impulse responses {ψK ,m}Ng

m=1 are considered as graph atoms asso-
ciated with spectral kernel K (λ). Given a set of J spectral kernels {k j ∈ �2(G)}Jj=1,
a dictionary of graph atoms DG with J Ng elements can be obtained

DG =
{
{ψK j ,m}Jj=1

}Ng

m=1
. (17)

The atoms of DG form a frame in �2(G) if there exist bounds B2 ≥ B1 > 0 such that
[5]

∀f ∈ �2(G), B1||f||22 ≤
∑

j,m

|〈f,ψK j ,m〉|2 ≤ B2||f||22, (18)

where the frame bounds are given by

B1 = min
λ∈[0,λmax]

G(λ), B2 = max
λ∈[0,λmax]

G(λ), (19)

and G(λ) ∈ L2(G) is defined as

G(λ) =
J∑

j=1

|K j (λ)|2. (20)

In particular, DG forms a tight frame if

∀λ ∈ [0, λmax], G(λ) = C, (21)

and a Parseval frame if C = 1.
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2.5 Decomposition of Graph Signals

Direct Decomposition

To decompose a graph signal f onto a set of the atoms in DG , the coefficients can be
obtained as

cK j ,m = 〈f,ψK j ,m〉 (22)

(7)=
Ng∑

l=1

ψ̂K j ,m[l] f̂ [l], (23)

(16)=
Ng∑

l=1

k j [l] f̂ [l]χl[m]. (24)

Relation (24) shows that the direct decomposition requires a full eigendecomposition
of the L since it requires (i) the Laplacian eigenvectors {χ l}Ng

l=1 and (ii) the graph
Fourier transform of the signal f̂ .

If DG forms a Parseval frame, the coefficients can be used to recover the original
signal as

f [n] =
∑

j

∑

m

cK j ,mψK j ,m

=
∑

j

∑

m

∑

l

k j [l] f̂ [l]χl[m]
∑

l ′
k j [l ′ ]χ l ′ [m]χl ′ [n]

=
∑

l

∑

l ′

∑

j

k j [l]k j [l ′ ] f̂ [l]χl ′ [n]
∑

m

χl[m]χl ′ [m]
︸ ︷︷ ︸

δ
l−l

′

=
∑

l

∑

j

k2j [l]
︸ ︷︷ ︸

=1

f̂ [l]χl[n]. (25)

Decomposition Through Polynomial Approximation

The decomposition of f on DG leads to a coefficient vector associated to each k j

given as

cK j = [cK j ,1, cK j ,2, . . . , cK j ,Ng ]T (26)

(24)=
Ng∑

l=1

k j [l] f̂ [l]χ l , (27)
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that can be interpreted as filtered versions of f with different spectral kernels {k j }Jj=1.
Due to the redundancy of such a transform, it is beneficial to implement the transform
using a fast algorithm, rather than using the explicit computation of the coefficients
through (24). Moreover, for large graphs, it can be cumbersome to compute the full
eigendecomposition of L , and in extensively large graphs this can in fact be impos-
sible. One solution to overcome this computational burden is to use a polynomial
approximation scheme.

One such algorithm is the truncatedChebyshevpolynomial approximationmethod
[20], which is based on considering the expansion of the continuous spectral window
functions {K j (λ)}Jj=1 with the Chebyshev polynomialsCp(x) = cos(p arccos(x)) as

K j (λ) = 1

2
dK j ,0 +

∞∑

p=1

dK j ,p C̄ p (λ) , (28)

where C̄ p(x) = Cp(
x−b
b ), b = λmax/2 and dK j ,p denote the Chebyshev coefficients

obtained as

dK j ,p = 2

π

∫ π

0
cos(pθ)K j (b(cos(θ) + 1))dθ. (29)

By truncating (28) to M terms, K j (λ) can be approximated as an M-th order poly-
nomial Pj (λ) ∈ L2(G). Consequently, cK j can be approximated as

cK j

(27)=
Ng∑

l=1

k j [l]
︸︷︷︸
K j (λl )

f̂ [l]χ l (30)

≈
Ng∑

l=1

Pj (λl) f̂ [l]χ l (31)

= Pj (L)

Ng∑

l=1

f̂ [l]χ l (32)

(6)= Pj (L)f (33)

where in (32) we exploit the property Lχl = λlχl ⇒ Pj (L)χl = Pj (λl)χl .

3 Ensemble Energy Spectral Density

The ensemble energy spectral density can be either computed using the graph Fourier
transform or approximated through decomposition of the signals using polynomial
approximation. In the former approach the ensemble energy is determined at the
resolution of eigenvalues whereas in the latter approach it is determined at the
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resolution of a given number of subbands. The direct computation approach has
two shortcomings. Firstly, it requires explicit computation of the graph spectrum and
the associated eigenvectors; i.e., a full eigendecomposition of the graph Laplacian
matrix, which is computationally cumbersome for large graphs and infeasible for
extensively large graphs. Secondly, it typically results in a non-smooth description
of the ensemble energy. These shortcomings are resolved by using the polynomial
approximation scheme.

3.1 Direct Computation: Using the Graph Fourier Transform

Definition (Ensemble Energy Spectral Density)

For a given graph G, with spectrum Λ(G), and graph signal set F = {f s}Ns
s=1, the

ensemble energy spectral density of F is obtained as

eF [l] = 1

Ns

Ns∑

s=1

∣
∣
∣̂̃fs[l]

∣
∣
∣
2
, l = 1, . . . , Ng, (34)

where f̃ s denotes the de-meaned and normalized version of f s obtained as

f̃ s = f s −∑1+mλ1
r=1 〈f s,χ r 〉χ r

||f s −∑1+mλ1
r=1 〈f s,χ r 〉χ r ||2

, s = 1, . . . , Ns . (35)

The ensemble energy spectral density has the following properties: (i) {eF [r ] =
0}1+mλ1

r=1 , and (ii)
∑

l eF [l] = 1.

3.2 Approximation: Using Decomposition Through
Polynomial Approximation

The ensemble energy spectral density can be approximated through a multi subband
decomposition scheme. In the sequel, we first design a B-spline based system of
spectral kernels. The benefit in using a B-spline basis is in the smoothness charac-
teristic of such kernels. Smooth overlapping kernels are advantageous it that (i) they
enable obtaining a smooth estimation of the ensemble energy spectral density and
(ii) they can be approximated as low order polynomials. We then decompose the
graph signals using the designed system of kernels with a large number of subbands
by exploiting the polynomial approximation scheme in decomposition. With such a
decomposition, we approximate the ensemble spectral content of the signal set at the
resolution of subbands.
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3.2.1 B-spline Based Parseval Frames on Graphs

The central B-spline of degree n, denoted β(n)(x), is a compactly-supported function
in the interval [−Δ(n), Δ(n)], i.e., β(n)(x) = 0 for all |x | ≥ Δ(n) where Δ(n) = (n +
1)/2, and is obtained through the (n + 1)-fold convolution as

β(n)(x) = β(0)(x) ∗ β(0)(x) ∗ · · · β(0)(x)
︸ ︷︷ ︸

(n+1)times

, (36)

where

β(0)(x) =

⎧
⎪⎨

⎪⎩

1, − 1
2 < x < 1

2
1
2 , |x | = 1

2

0, otherwise.

(37)

Proposition 1 (B-spline based Parseval Frame on Graphs) For a given graph G and
B-spline generating function β(n)(x), n ≥ 2, a set of B-spline based spectral kernels
{Bj (λ) ∈ L2(G)}Jj=1 can be defined as

B j (λ) =

⎧
⎪⎨

⎪⎩

B̃ j (λ) +∑0
i=−Δ B̃i (λ), j = 1

B̃ j (λ), j = 2, . . . , J − 1

B̃ j (λ) +∑J+Δ+1
i=J+1 B̃i (λ), j = J

(38)

where Δ = �n/2� − 1 and B̃·(λ) ∈ L2(G) is defined as

B̃l(λ) =
√

β(n)

(
λmax

J − 1
(λ − l + 1)

)

, l = −Δ, . . . , J + Δ + 1. (39)

The system of kernels {Bj (λ)}Jj=1 satisfy

J∑

j=1

|Bj (λ)|2 = 1, ∀λ ∈ [0, λmax], (40)

and, thus, their associated dictionary of atoms forms a Parseval frame.

Proof See Appendix1.

Figure1 shows two realizations of spline-type systems of spectral kernels. The spline-
type system of spectral kernels have wide, overlapping passbands. Moreover, the
kernels are smooth and can thus be approximated as low order polynomials.

Using a system of Na B-spline based spectral kernels, {Bi (λ)}Na
i=1, the ensem-

ble spectral energy of F can be approximated at Na overlapping bands across the
spectrum as
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Fig. 1 Spline-type system of spectral kernels with 20 spectral bands constructed based onB-splines
of order 3 (top) and 7 (bottom)

aF [i] = 1

Ns

Ns∑

s=1

Ng∑

n=1

∣
∣〈̃f s,ψ Bi ,n〉

∣
∣2 , i = 1, . . . , Na, (41)

where f̃ s is as given in (35). Let b j ∈ �2(G) denote the discrete version of Bj (λ),
i.e.,

b j [l] = Bj (λl), l = 1, . . . , Ng. (42)

We have
∑

i aF [i] = 1 since

∑

i

aF [i] (24)= 1

Ns

Na∑

i=1

Ns∑

s=1

Ng∑

n=1

∣
∣
∣
∣
∣
∣

Ng∑

l=1

bi [l]̂̃fs[l]χl[n]
∣
∣
∣
∣
∣
∣

2

(43)

= 1

Ns

Ns∑

s=1

Ng∑

n=1

∣
∣
∣
∣

Ng∑

l=1

Na∑

i=1

bi
2[l]

︸ ︷︷ ︸
(40)= 1

̂̃f s[l]χl[n]
∣
∣
∣
∣

2

(44)

= 1

Ns

Ns∑

s=1

Ng∑

n=1

∣
∣
∣
∣
∣
∣

Ng∑

l=1

̂̃fs[l]χl[n]
∣
∣
∣
∣
∣
∣

2

(45)

(6)= 1

Ns

Ns∑

s=1

Ng∑

n=1

| f̃s[n]|2 (46)

= 1

Ns

Ns∑

s=1

||̃f s ||22 (47)

(35)= 1. (48)

If desired, an explicit approximation of the ensemble energy spectral density of F ,
denoted e(a)

F [l], can also be determined. First, a continuous ensemble spectral energy
representation, denoted E (a)

F (λ), is obtained through interpolating the set of points
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⎧
⎨

⎩
(0, 0) ∪

{(
λmax

C

i∑

k=1

||Bk(λ)||22 , aF [k]
)}Na

i=1

⎫
⎬

⎭
, (49)

where C =∑Na
k=1 ||Bk(λ)||22. Then, e(a)

F [l] is obtained through sampling E (a)
F (λ) at

Λ(G) as
e(a)
F [l] = E (a)

F (λl), l = 1, . . . , Ng. (50)

4 Signal-Adapted System of Spectral Kernels

The construction of a signal-adapted system of spectral kernels is motivated by
two observations: (i) the eigenvalues of the graph Laplacian that define the graph’s
spectrum are irregularly spaced, and depend in a complexway on the graph topology;
(ii) the distribution of graph signals’ energy is generally non-uniform across the
spectrum. Based on these observations, the idea is to construct an ‘adapted’ frame,
such that the energy-wise significance of the eigenvalues is taken into account, rather
than only adapting based on the distribution of the eigenvalues as proposed in [43].
In this way, also the topological information of the graph is implicitly incorporated
in the design, since the energy content is given in the graph spectral domain that is
in turn defined by the eigenvalues.

For the design of a signal-adapted system of spectral kernels with J sub-
bands, denoted {Sj (λ)}Jj=1, we start off from a prototype system of spectral kernels
{Uj (λ)}Jj=1 that satisfies the following two properties:

• (Uniformity constraint)

∃ C ∈ R
+,

∫ λmax

0
Uj (λ)dλ = C, j = 1, . . . , J. (51)

• (Tight Parseval frame constraint)

J∑

j=1

|Uj (λ)|2 = 1, ∀λ ∈ [0, λmax]. (52)

We then exploit the ensemble energy spectral density eF or the approximated ensem-
ble spectral energy aF to introduce the desired signal adaptivity. The adaptivity is
introduced by first transforming the ensemble spectral energymeasures to an energy-
equalizing transformation TF (λ) : [0, λmax] → [0, λmax], which is then in turn incor-
porated into the prototype design.
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4.1 Prototype Uniform System of Spectral Kernels

There is no unique system of kernels that satisfies (51) and (52). We present a design
in which the kernels have a finite support of the bandpass type.

Proposition 2 (uniform Meyer-type (UMT) system of spectral kernels) Using the
auxiliary function of the Meyer wavelet, given by [28]

ν(x) = x4(35 − 84x + 70x2 − 20x3), (53)

a set of J ≥ 2 spectral kernels defined as

U1(λ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ∀λ ∈ [0, a]
cos
(

π
2 ν
(

1
γ−1

(
λ
a − 1

))) ∀λ ∈]a, γ a]
0 elsewhere

(54a)

Uj (λ) =

⎧
⎪⎪⎨

⎪⎪⎩

sin
(

π
2 ν
(

1
γ−1

(
λ−( j−2)Δ

a − 1
)))

∀λ ∈]λI, λII]
cos
(

π
2 ν
(

1
γ−1

(
λ−( j−1)Δ

a − 1
)))

∀λ ∈]λII, λII + Δ]
0 elsewhere

(54b)

UJ (λ) =

⎧
⎪⎪⎨

⎪⎪⎩

sin
(

π
2 ν
(

1
γ−1

(
λ−(J−2)Δ

a − 1
)))

∀λ ∈]λI, λII]
1 ∀λ ∈]λII, λII + a]
0 elsewhere

(54c)

can be constructed, where

Δ = γ a − a, (55a)

λI = a + ( j − 2)Δ, (55b)

λII = γ a + ( j − 2)Δ, (55c)

a = λmax

Jγ − J − γ + 3
. (55d)

Figure2 illustrates the notations used. By setting γ = 2.73, the set of kernels defined
in (54) satisfies the uniformity constraint given in (51). The atoms of a dictionary
constructed using this set of spectral kernels form a Parseval frame on �2(G).

Proof See Appendix2.

Figure3a and b show realizations of the resulting UMT system of spectral kernels
for a fixed λmax and two different J . The UMT system of spectral kernels have a
narrow passband characteristic with the support of each kernel being a rather strict
subset of the spectrum, with minimal overlap of adjacent kernels.
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Fig. 2 Construction of UMT system of spectral kernels

Fig. 3 UMT system of spectral kernels with J = 5 (top), J = 7 (middle) and J = 10 (bottom)
spectral scales

4.2 Energy-Equalizing Transformation

If the ensemble spectral density function is available, TF (λ) is obtained through
monotonic cubic interpolation [15] of the pair of points

⎧
⎨

⎩

⎛

⎝λl ,
λmax

mλl

iλl +mλl∑

r=iλl

r∑

k=1

eF [k]
⎞

⎠

⎫
⎬

⎭

Ng

l=1

. (56)

If the ensemble energy spectral density is approximated using a system of Na B-
spline based spectral kernels (cf. Sect. 3.2), TF (λ) can instead be obtained through
monotonic cubic interpolation of the set of points

⎧
⎨

⎩
(0, 0) ∪

{(
λmax

C

i∑

k=1

||Bk(λ)||22 , λmax

i∑

k=1

aF [k]
)}Na

i=1

⎫
⎬

⎭
, (57)

where C =∑J
j=1 ||Bj (λ)||22.
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4.3 Warping the Prototype Design

By incorporating TF (λ) in {Uj (λ)}Jj=1, a warped version of the prototype design is
obtained as

Sj (λ) = Uj (TF (λ)), j = 1, . . . , J. (58)

We refer to {Sj (λ)}Jj=1 as a signal-adapted system of spectral kernels. The atoms of
a dictionary constructed using {Sj (λ)}Jj=1 form a Parseval frame on �2(G) since

J∑

j=1

|Sj (λ)|2 (58)=
J∑

j=1

|Uj (TF (λ)
︸ ︷︷ ︸

:=λ
′

)|2, ∀λ ∈ [0, λmax]

=
J∑

j=1

|Uj (λ
′
)|2, ∀λ

′ ∈ [0, λmax]

= 1

where the last equality follows from Proposition2.
If a discrete representation is needed for direct decomposition as in (24), {s j }Jj=1

can be obtained through sampling Sj (λ) at Λ(G).
With this design, each of the J spectral kernel {s j }Jj=1 capture an equal amount

of ensemble energy. That is, if the ensemble energy spectral density is used we have

Ng∑

l=1

s j [l]eF [l] = 1

J
, j = 1, . . . , J, (59)

and if the approximation scheme is used we have

Ng∑

l=1

s j [l]e(a)
F [l] = 1

J
, j = 1, . . . , J. (60)

Moreover, the resulting system of spectral kernels form a partition of unity, i.e.,

J∑

j=1

|s j [l]|2 = 1, l = 1, . . . , Ng, (61)

and thus, their associated dictionary of atoms, i.e.,
{
{ψ Sj ,m}Jj=1

}Ng

m=1
, forms aParseval

frame.
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5 Example Spectral Designs of Signal-Adapted Tight
Frame

We present constructions of signal-adapted systems of spectral kernels for signal sets
realized on the Minnesota road graph, the Alameda graph [47] and the cerebellum
gray matter graph [1, 2]. Before proceeding to the constructions, let us consider a
model for simulating random graph signals of varying smoothness. The model will
be used to realize signals on the Minnesota and Alameda graphs, although there
exists also real data for the latter graph. For a given graph with adjacency matrix
A, we consider a general model for realizing graph signals of density η ∈]0, 1] and
smoothness n ∈ Z

+ as
xη,n = Anpη, (62)

where pη ∈ �2(G) denotes a random realization of a spike signal as {pη[i] ∈
{0, 1}}i=1,...,Ng such that

∑
i pη[i] = ηNg . Application of the n-th power of A to

pη leads to a signal that (i) respects the intrinsic structure of the graph and (ii) has a
desired smoothness determined by n, a higher n leading to a smoother graph signal.

5.1 The Minnesota Road Graph

The edges of the Minnesota Road Graph represent major roads and its vertices their
intersection points, which often correspond to towns or cities, see Fig. 4a. Figure4b
shows the graph’s normalized Laplacian spectrum presented as the distribution of
the eigenvalues.

Two sets of graph signals were constructed as

F1 =
{{

x[i]
η,2

}

η=0.2,0.5

}

i=1,...,10

,

F2 =
{{

x[i]
η,4

}

η=0.2,0.5

}

i=1,...,10

,

where index i denotes random realizations of pη in (62), resulting in 20 signals in
each set. Figure5a and b show a realizations of a signal from F1 and F2, respectively.

Figure6a shows the energy-equalizing transformation functions associated to F1
and F2. The transformations constructed based on aF· , cf. (57) closely matches that
constructed based on eF· , cf. (56). The former transformation has the benefit that it
is smooth, and indeed, that it was computed without the explicit need to diagonalize
L . By incorporating the transformations in the UMT system of spectral kernels,
signal-adapted systems of spectral kernels are obtained, see Fig. 6b and c.

A comparison of Figs. 6b, c and 5c, d highlights the energy-wise optimality of the
proposed signal-adapted frame construction; i.e., more filters are allocated to spectral
ranges that have higher ensemble energy. The support of the filters in the two sets vary
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Fig. 4 a Minnesota road graph. b Histograms of the eigenvalues ΛL(G) of the Minnesota road
graph. Each bar indicates the number of eigenvalues that lie in the corresponding spectral range
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Fig. 5 Sample signal realizations on the Minnesota road graph, a x0.2,2 and b x0.5,4. The plots
are normalized as xη,n/||xη,n ||∞. c–d Distribution of the ensemble energy spectral density eF1 and
eF2 , respectively. Each bar indicates the sum of ensemble energies of the eigenvalues lying in the
corresponding spectral range
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Fig. 6 a Constructed energy-equalizing transformation functions, TF1 (λ) and TF2 (λ) using the
exact and approximation schemes. Na denotes the number of spectral kernels used for the approxi-
mation, cf. (41).b–c Signal-adapted systemof spectral kernels constructed bywarping theUMTsys-
tem of spectral kernels (J = 7) using TF1 (λ) (approx, Na = 100) and TF2 (λ) (approx., Na = 100),
respectively. d Spectrum-adapted system of spectral kernels constructed by warping the UMT sys-
tem of spectral kernels (J = 6) using TL(λ). In b–d, the dashed lines corresponds to the function
G(λ) in (19)
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relative to the difference in the distribution of the ensemble energy of the two signal
sets, with more filters allocated to the lower end of the spectrum for the F2 frame than
for the F1 frame, and vice versa at the upper end of the spectrum. For comparison,
a spectrum-adapted system of kernels is shown in Fig. 6d. The spectrum-adapted
system of kernels is obtained bywarping theUMTprototype system of kernels with a
spectrum-equalizing transformation function TL(λ) which equalizes the distribution
of the eigenvalues [43]. As the distribution of the eigenvalues of the Minnesota Road
graph minimally deviate from a uniform distribution, so does the spectrum-adapted
system of kernels relative to the UMT prototype, compare Figs. 3 and 6d. On the
contrary, the signal-adapted design optimizes the construction of the kernels such
that the energy-wise significance of the eigenvalues is taken into account, rather than
only considering the distribution of the eigenvalues as in the spectrum-adapted frame.
Such adaptation results in a system of spectral kernels that largely deviate from the
UMT prototype.

5.1.1 Robustness to Noise

It is interesting to study the robustness of the design to possible additive noise. Let
F1,σe denote the noise added version of signal set F1 computed as

F1,σe = {yi = xi + ei | xi ∈ F1}i=1,...,20 , (63)

where {ei }20i=1 denote random realizations of additive white Gaussian noise of stan-
dard deviation σe. We construct signal sets F1,σe of varying SNR = σ 2

x /σ 2
e , where

σx denotes the standard deviation of each signal xi ∈ F1. Let TF1,σe (λ) denote the
energy-equalizing transformation function associated to F1,σe . Figure7a showsmean-
square error metrics ||TF1,σe (λ) − TF1(λ)||2 and ||TF1,σe (λ) − TL(λ)||2 across signal
sets F1,σe of varying SNR, where TL(λ) and TF1(λ) are the transformation functions
shown in Fig. 6a, TF1(λ) being the approximated version using Na = 100. The esti-
mated energy-equalizing transformation functions TF1,σe (λ) become more similar to
TF1(λ) as the SNR increases. At low SNRs, TF1,σe (λ) become more similar to TL(λ).
The signal-adapted system of spectral kernels using noise-added signal sets of five
different SNRs are shown in Fig. 7b. At the two extremes, i.e., +20 and −20dB,
the system of kernels become almost identical to the system of kernels shown in
Fig. 6b and d, respectively. At 0dB, the signal-adapted system of kernels at each
subband can be seen as the average of the corresponding kernels in the associated
subbands in Fig. 6b and d. Equivalently, this can be seen as constructing a system of
kernels through warping the the UMT prototype system of kernels with a warping
function defined as the average of the spectrum-equalizing and energy-equalizing
transformation functions, i.e., (TF1(λ) + TL(λ))/2, see Fig. 7b at 0dB.
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Fig. 7 a Deviation of energy-equalizing transformation functions of noise added signal sets
TF1,σe (λ) relative to TL(λ) and TF1 (λ) (cf. Fig. 6a) as a function of the signal sets’ SNRs. b Signal-
adapted system of spectral kernels constructed by warping the UMT system of spectral kernels
(J = 7) using TF1,σe (λ) of noise-added signal sets at five different SNRs. At 0dB, the resulting
system of kernels are overlaid on the system of kernels obtained by warping the UMT system of
spectral kernels using the transformation function (TF1 (λ) + TL(λ))/2, shown in dashed lines

5.2 The Alameda Graph

The Alameda Graph is constructed based on Caltrans Performance Measurement
System database,1 see Fig. 8a. The vertices of the graph represent detector stations
where bottlenecks were identified over the period January 2011 and December 2015.
A bottleneck is a location where there is a persistent drop in speed, such as merges,
large on-ramps and incidents. Two stations are considered as connected through an
edge if either (1) they are adjacent along a freeway, or (2) there is a connection near
the two stations at crossings between freeways. The latter type of edges were defined
based on Google Maps’ satellite images of Alameda county.

We use (62) to simulate a synthetic graph signal set as

Fs =
{
x[i]
0.8,3

}

i=1,...,20
,

where index i denotes random realizations of pη in (62), resulting in a set of 20
signals. As real data, we treat the average duration of bottlenecks for each specific

1The data are publicly available at http://pems.dot.ca.gov.

http://pems.dot.ca.gov
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Fig. 8 a The Alameda graph. b Histogram of the eigenvalues ΛL (G) of the Alameda graph. c–d
Distribution of the ensemble energy spectral density eF of the simulated dataset Fs and the real
traffic dataset Fr , respectively

month and shift (AM shift: 5–10am, noon shift: 10am–3pm, and PM shift: 3–8pm)
as a graph signal, resulting in 180 signals in total. We denote this dataset as Fr .

The spectral characteristics of both Fs and Fr deviate considerably from that of the
Minnesota Road graph. The distribution of the ensemble energy spectral density of
Fs emulates an exponential distribution. Comparing the histogram of the eigenvalues
ΛL(G) in Fig. 8b and the distribution of the ensemble energy spectral density of Fr
in Fig. 8c shows that the ensemble energy is almost uniformly spread across the
spectrum.

Figure9a shows the energy-equalizing transformation functions associated to Fs

and Fr . Also, a spectrum-equalizing transformation TL(λ) function is displayed.
TL(λ) is constructed such that the distribution of eigenvalues is equalized [43]. Due
to the similarity of the distributions of ensemble energy of Fig. 8b (see) and the
distribution of eigenvalues (see Fig. 8a), TFr (λ) closely resembles TL(λ). Figure9b
shows the signal-adapted system of spectral kernels associated to Fs . The majority of
the spectral kernels are realized in the lower end of the spectrumwhere themajority of
the ensemble energy is present. The zoomed-in inset in Fig. 9b show the benefit of the
signal-adapted scheme in allocating a large number of spectral kernels to a narrow
band of the spectrum, and yet result in smooth kernels. Figure9c and d show the
signal-adapted system of spectral kernels associated to Fr and the spectrum-adapted
system of spectral kernels, respectively. The similarity between TFr (λ) and TL(λ),
leads to the resulting signal-adapted and spectrum-adapted systems of kernels having
a similar distribution of kernels across the spectrum, with more kernels allocated to
the lower half of the spectrum and vice versa. This example demonstrates where the
signal-adapted frame design coincides with the spectrum-adapted frame design [43]
coincide in terms of their respective approach to adaptivity: if the ensemble spectral
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Fig. 9 a Energy-equalizing and spectrum-equalizing transformation functions. b–c Signal-adapted
system of spectral kernels constructed by warping the UMT system of spectral kernels (J = 6)
using TFs (λ) (approx, Na = 50) and TFr (λ) (approx., Na = 50), respectively. d Spectrum-adapted
system of spectral kernels constructed by warping the UMT system of spectral kernels (J = 6)
using TFL (λ). In b–d, the dashed lines corresponds to the function G(λ) in (19)
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energy is equally spread across the eigenvalues, the energy-equalizing and spectrum-
equalizing transformation functions become almost identical. Thus, although the
signal-adapted design approach is developed based on spectral energy characteristics
of a signal set, it is inherently also adapted to the graph’s spectrum.

5.3 The Cerebellum Gray Matter Graph

Functionalmagnetic resonance imaging (fMRI) is a conventional neuroimaging tech-
nique used in the study of brain functionality. Its principle is in detecting a contrast
that arises as a result of increased blood flow to activated regions of the brain, the so
called blood-oxygen-level-dependent (BOLD) signal. Acquired fMRI data are gen-
erally corrupted with an extensive amount of noise mainly due to the fast acquisition
rate; high temporal resolution is necessary to enable correlate brain activity with the
experimental paradigm. The BOLD signal is not detectable across the entire brain
tissue. Rather, the signal is only expected within the brain’s gray matter [27]. The
gray matter is convoluted layer interleaved with the brain’s white matter tissue as
well as the cerebrospinal fluid. As such, the BOLD signal exhibits spatial patterns
that are not well suited to be characterized within a Euclidean setting. In the classi-
cal Euclidean setting, filters and wavelets used in image processing are isotropic in
structure and quasi shift-invariant. The latter property infers that their structure does
not vary when applied to different regions within an image/volume. Such filters are
thus not well suited for detecting the BOLD signal, with its aformentioned spatial
characteristics. At the spatial resolution of fMRI, isotropically shaped basis functions
will cross boundaries of gray matter, even at the finest scale. Thus, it is advantageous
to construct filters that adapt to this intricately convoluted domain rather than to
assume that the spatial characteristics of the underlying signal is independent of its
location. To date, various approaches have been proposed to address this concern (see
for example, [9, 19, 25, 33]). In particular, the construction of anatomically-adapted
graph wavelets was recently proposed [2]. Yet, the deficiency of a fixed graph frame
design and the lack of a systematic approach in determining the spectral coverage of
spectral bands for analyzing fMRI data have been pointed out in [1–3]. These find-
ings motivated the need for a frame design that adapts to the spectral characteristics
of fMRI graph signals.

We consider a graph that encodes the 3-D topology of the cerebellar gray matter
[2], which is constructed based on an atlas template of the cerebellum [12]. The
graph vertices represent gray matter voxels within the cerebellum. The graph edges
are defined by determining the adjacency of the gray matter voxels within their
3 × 3 × 3 voxel neighbourhood, see Fig. 10. The fMRI data were acquired from
26 healthy subjects performing an event-related visual stimulation task [24].2 For
each subject, a structural MRI scan of the brain anatomy and a series of functional
volumes were acquired. The structural and functional volumes were registered
together and mapped to the same spatial resolution, leading to a one-to-one

2The data are publicly available at https://openfmri.org/dataset/ds000102.

https://openfmri.org/dataset/ds000102
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Fig. 10 Illustration of the cerebellum graph
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Fig. 11 a Histogram of the eigenvalues ΛL(G) of the cerebellum graph. b–d Distribution of the
ensemble energy spectral density of F1, F2 and F . c Energy-equalizing and spectrum-equalizing
transformation functions. The black curves correspond to the energy-equalizing transformation for
each subject’s signal set. The upper and lower extreme transformations represented with dashed
curves are associated to signal sets F1 and F2, respectively

correspondence between functional and structural voxels. Functional voxels asso-
ciated to cerebellar gray matter were then extracted and treated as cerebellar graph
signals. A signal set was constructed for each subject, {Fk}26k=1, by randomly selecting
20 signals from each subject’s functional signal set. A signal set including the signals
from all subjects was also constructed as F = F1 ∪ F2 ∪ · · · ∪ F26.

Figure11a shows the distribution of the eigenvaluesΛL(G) of the cerebellumgray
matter graph. The distribution of the ensemble energy spectral density of signals
sets F1, F2 and F are shown in Fig. 11b, c and d, respectively. The distribution
of eigenvalues is significantly different from that of the ensemble energy spectral
densities; most eigenvalues are located at the upper end of the spectrum, whereas the
ensemble energy is significantly concentrated at the lower end of the spectrum. The
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Fig. 12 a–c Signal-adapted system of spectral kernels adapted to the ensemble spectral content of
F1, F2 and F , respectively. d Spectrum-adapted system of spectral kernels

ensemble energy spectral densities also vary across the signal sets. Signal set F1 has
more low energy spectral content than F2 (compare the height of the first bins of the
histograms in Fig. 11b and c), whereas F2 show greater spectral content at higher
harmonics. F1 and F2 represent the two extremes in spectral content distribution
among the 26 subjects. The distribution of the ensemble energy content of F falls
in between that of F1 and F2, see Fig. 11d. This is better observed by comparing
the energy-equalizing transformation functions, see Fig. 11e. The transformations
associated to {Fk}26k=3 span the space in between TF1(λ) and TF2(λ), and TF (λ) falls
almost in themid range.Moreover, the significant difference between the distribution
of the eigenvalues and that of the ensemble signal energies is reflected as a major
discrepancy between TL(λ) and the energy equalizing transformations. Figure12
shows the resulting signal-adapted and spectrum-adapted systems of spectral kernels.

The kernels of the spectrum-adapted frame are localized at the higher end of the
spectrumwhere a significant proportion of the eigenvalues fall. In contrast, kernels of
the signal-adapted frames are localized at the lower end of the spectrum. This shows
that the signal-adapting scheme leads to an optimal configuration of filters relative
to the given ensemble energy content. Laplacian eigenmodes corresponding to large
eigenvalues tend to become localized and less stable (i.e., influenced by small changes
to the structure of the graph). The ensemble energywill capture the consistency of the
energy for each mode across signals of the class, and thus these eigenmodes will in
practice aggregate in larger subbands. The narrowband configuration of the proposed
signal-adapted frame at the lower end of the spectrum closely resembles the design
previously adopted for analyzing cerebellar data in [1, 2], which was obtained by
empirically tuning the spectral design of the Meyer-like graph wavelet frame [26].
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6 Conclusion and Outlook

A scheme for the spectral design of signal-adapted frames on graphs was presented.
The scheme exploits the ensemble energy spectral density of a given signal class to
introduce adaptivity of the spectral kernels to signal content. The design only uses
stationary signal information, with a flexibility to represent non-stationary features
based on the width and smoothness of the bandpass characteristics. The design has
been formulated on the graph Laplacian spectrum but can be readily extended to the
spectrum of the graph adjacency matrix to enable signal-adapted decomposition of
signals defined on directed graphs. Various potential applications can be envisioned
for the proposed developments. For instance, in functional brain imaging, another
major research themewhere graph signal processing can be advantageous is the study
of intrinsic brain activity that fully takes into account the dynamic aspects [21]. In
such case, the moment-to-moment functional data can be analyzed on a graph “back-
bone” [21, 23]. Time-dependent functional data can then be used to constitute the
ensemble energy spectral density. As alternative avenues, signal decompositions
provided by the proposed signal-adapted system of kernels can also be found bene-
ficial in applications such as graph signal compression [39] and deep neural network
learning schemes over graphs [6, 11].

Acknowledgements This chapter draws in part on material previously published in [4].

Appendix1 - Proof of Proposition1

The sum of squared magnitudes of B-spline based spectral kernels {Bj (λ)}Jj=1 forms
a partition of unity since

J∑

j=1

|Bj (λ)|2 (38)=
J+Δ+1∑

i=Δ

|B̃i (λ)|2

(39)=
J+Δ+1∑

i=Δ

β(n)

(
λmax

J − 1
(λ − i + 1)

)

i−1→k=
J+Δ∑

k=Δ−1

β(n)

(
λmax

J − 1
(λ − k)

)

= 1.

where in the last equality we use the property that integer shifted splines form a
partition of unity.
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Appendix2 - Proof of Proposition2

In order to ensure that the spectral kernels cover the full spectrum, a must be chosen
such that

λmax
(54c)= λII + a

( j=J )= γ a + (J − 2)Δ + a,

which using (55a) leads to a = λmax
Jγ−J−γ+3 .

To prove that the UMT system of spectral kernels form a tight frame, (21) needs
to be fulfilled. Since, for all j, the supports ofUj−1(λ) andUj+1(λ) are disjoint,G(λ)

can be determined as

G(λ) =
J∑

j=1

|Uj (λ)|2

(54)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|U1(λ)|2 (54a)= 1 ∀λ ∈ [0, a]
|U1(λ)|2 + |U2(λ)|2 ∀λ ∈]a, γ a]
|U2(λ)|2 + |U3(λ)|2 ∀λ ∈]γ a, γ a + Δ]
...

...

|UJ (λ)|2 (54c)= 1 ∀λ ∈]λmax − a, λmax]

(54b)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 ∀λ ∈ [0, a]
cos2(xI) + sin2(xI) ∀λ ∈]a, γ a]
cos2(xII) + sin2(xII) ∀λ ∈]γ a, γ a + Δ]
...

...

1 ∀λ ∈]λmax − a, λmax]
= 1 ∀λ ∈ [0, λmax] (64)

where xI = π
2 ν( 1

γ−1 (
λ
a − 1)) and xII = π

2 ν( 1
γ−1 (

λ−Δ
a − 1)).

For any given γ , the constructed set of spectral kernels form a tight frame. How-
ever, in order for the frame to satisfy the uniformity constraint given in (51), the
appropriate γ needs to be determined. From (54b), we have ∀ j ∈ {2, . . . , J − 2}

Uj (λ) = Uj+1(λ + Δ) ∀λ ∈]λI, λII + Δ]. (65)

By considering an inverse linear mapping of the spectral support where U1(λ) �= 0,
i.e. [0, γ a], to the spectral support whereUJ (λ) �= 0, i.e. [λmax − γ a, λmax], we have

U1(λ) = UJ (−λ + 2a + JΔ) ∀λ ∈ [0, γ a]. (66)

Thus, from (65) and (66) we have
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∫ λmax

0
Uj (λ)dλ = C2, j = 2, . . . , J − 1 (67a)

∫ λmax

0
U1(λ)dλ =

∫ λmax

0
UJ (λ)dλ = C1, (67b)

respectively, where C1,C2 ∈ R
+. Thus, in order to satisfy (51), γ should be chosen

such that

C1 = C2
∫ λmax

0
U1(λ)dλ =

∫ λmax

0
U2(λ)dλ

a +
∫ γ a

a
U1(λ)dλ =

∫ γ a

a
sin(

π

2
ν(

1

γ − 1
(
λ

a
− 1)))dλ

+
∫ γ a+Δ

γ a
U2(λ)dλ

a
(65)=
∫ γ a

a
sin(

π

2
ν(

1

γ − 1
(
λ

a
− 1)))dλ. (68)

The optimal γ that satisfies (68) was obtained numerically by defining

Q(γ ) =
∫ γ a

a
sin(

π

2
ν(

1

γ − 1
(
λ

a
− 1)))dλ − a, (69)

and discretizing Q(γ ) within the range (a, γ a], with a sampling factor of 1 × 10−4.
Testing for γ ≥ 1, with a step size of 1 × 10−2, the optimal value, which is indepen-
dent of λmax and J , was found to be γ = 2.73.
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Wavelets on Graphs via Deep Learning

Raif M. Rustamov and Leonidas J. Guibas

Abstract An increasing number of applications require processing of signals
defined on weighted graphs. While wavelets provide a flexible tool for signal pro-
cessing in the classical setting of regular domains, the existing graph wavelet con-
structions are less flexible—they are guided solely by the structure of the underlying
graph and do not take directly into consideration the particular class of signals to be
processed. This chapter introduces a machine learning framework for constructing
graph wavelets that can sparsely represent a given class of signals. Our construction
uses the lifting scheme, and is based on the observation that the recurrent nature
of the lifting scheme gives rise to a structure resembling a deep auto-encoder net-
work. Particular properties that the resulting wavelets must satisfy determine the
training objective and the structure of the involved neural networks. The training
is unsupervised, and is conducted similarly to the greedy pre-training of a stack of
auto-encoders. After training is completed, we obtain a linear wavelet transform that
can be applied to any graph signal in time and memory linear in the size of the
graph. Improved sparsity of our wavelet transform for the test signals is confirmed
via experiments both on synthetic and real data.

1 Introduction

Processing of signals on graphs has emerged as a fundamental problem in an increas-
ing number of applications [1]. Indeed, in addition to providing a direct representation
of a variety of networks arising in practice, graphs serve as an overarching abstraction
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for many other types of data. High-dimensional data clouds such as a collection of
handwritten digit images, volumetric and connectivity data in medical imaging, laser
scanner acquired point clouds and triangle meshes in computer graphics—all can be
abstracted using weighted graphs. Given this generality, it is desirable to extend the
flexibility of classical tools such as wavelets to the processing of signals defined on
weighted graphs.

A number of approaches for constructing wavelets on graphs have been proposed,
including, but not limited to the Crovella-KolaczykWavelet Transform (CKWT) [2],
Haar-like wavelets [3, 4], diffusion wavelets [5], spectral wavelets [6], tree-based
wavelets [7], average-interpolating wavelets [8], and separable filterbank wavelets
[9]. However, all of these constructions are guided solely by the structure of the
underlying graph, and do not take directly into consideration the particular class of
signals to be processed. While this information can be incorporated indirectly when
building the underlying graph (e.g. [7, 9]), such an approach does not fully exploit the
degrees of freedom inherent in wavelet design. In contrast, a variety of signal class
specific and adaptive wavelet constructions exist on images and multidimensional
regular domains, see [10] and references therein. Bridging this gap is challenging
because obtaining graph wavelets, let alone adaptive ones, is complicated by the
irregularity of the underlying space. In addition, theoretical guidance for such adap-
tive constructions is lacking as it remains largely unknown how the properties of the
graph wavelet transforms, such as sparsity, relate to the structural properties of graph
signals and their underlying graphs [1].

The goal of our work is to provide a machine learning framework for constructing
wavelets on weighted graphs that can sparsely represent a given class of signals. Our
construction uses the lifting scheme as applied to the Haar wavelets, and is based on
the observation that the update and predict steps of the lifting scheme are similar to
the encode and decode steps of an auto-encoder. From this point of view, the recurrent
nature of the lifting scheme gives rise to a structure resembling a deep auto-encoder
network.

Particular properties that the resulting wavelets must satisfy, such as sparse rep-
resentation of signals, local support, and vanishing moments, determine the training
objective and the structure of the involved neural networks. The goal of achieving
sparsity translates into minimizing a sparsity surrogate of the auto-encoder recon-
struction error. Vanishing moments and locality can be satisfied by tying the weights
of the auto-encoder in a special way and by restricting receptive fields of neurons
in a manner that incorporates the structure of the underlying graph. The training is
unsupervised, and is conducted similarly to the greedy (pre-)training [11–14] of a
stack of auto-encoders.

The advantages of our construction are three-fold. First, when no training func-
tions are specified by the application, we can impose a smoothness prior and obtain
a novel general-purpose wavelet construction on graphs. Second, our wavelets are
adaptive to a class of signals and after training we obtain a linear transform; this is
in contrast to adapting to the input signal (e.g. by modifying the underlying graph
[7, 9]) which effectively renders those transforms non-linear. Third, our construction
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provides efficient and exact analysis and synthesis operators and results in a critically
sampled basis that respects themultiscale structure imposed on the underlying graph.

The work presented in this chapter first appeared as the paper [15]. To the best
of our knowledge, this was among the earliest work to utilize neural networks
over non-standard domains, second only to the recurrent neural networks formu-
lation in [16]. Since then, there has been growing interest in deep learning over
non-standard domains both in machine learning and computer vision/graphics. An
extensive overview of this field called Geometric Deep Learning can be found in
[17].

This chapter is organized as follows: in Sect. 2 we briefly overview the lifting
scheme. Next, in Sect. 3 we provide a general overview of our approach, and fill in
the details in Sect. 4. Finally, we present a number of experiments on synthetic and
real data in Sect. 5.

2 Lifting Scheme

The goal of wavelet design is to obtain amultiresolution [18] of L2(G)—the set of all
functions/signals on graph G. Namely, a nested sequence of approximation spaces
from coarse to fine of the formV1 ⊂ V2 ⊂ ... ⊂ V�max = L2(G) is constructed. Pro-
jecting a signal in the spaces V� provides better and better approximations with
increasing level �. Associated wavelet/detail spacesW� satisfyingV�+1 = V� ⊕ W�

are also obtained, where ⊕ is used to denote the direct sum of vector spaces.
Scaling functions {φ�,k} provide a basis for approximation spaceV�, and similarly

wavelet functions {ψ�,k} forW�. As a result, for any signal f ∈ L2(G) on graph and
any level �0 < �max , we have the wavelet decomposition

f =
∑

k

a�0,kφ�0,k +
�max−1∑

�=�0

∑

k

d�,kψ�,k . (1)

The coefficients a�,k and d�,k appearing in this decomposition are called approxima-
tion (also, scaling) and detail (also, wavelet) coefficients respectively. For simplicity,
we use a� and d� to denote the vectors of all approximation and detail coefficients at
level �.

Our construction of wavelets is based on the lifting scheme [19]. Starting with
a given wavelet transform, which in our case is the Haar transform (HT ), one can
obtain lifted wavelets by applying the process illustrated in Fig. 1 (left) starting with
� = �max − 1, a�max = f and iterating down until � = 1. At every level the lifted
coefficients a� and d� are computed by augmenting the Haar coefficients ā� and d̄�

(of the lifted approximation coefficients a�+1) as follows

a� ← ā� +Ud̄�

d� ← d̄� − Pa�
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Fig. 1 Lifting scheme: one step of forward (left) and backward (right) transform. Here, a� and d�

denote the vectors of all approximation and detail coefficients of the lifted transform at level �. U
and P are linear update and predict operators. HT and I HT are the Haar transform and its inverse

where update (U ) and predict (P) are linear operators (matrices).Note that in adaptive
wavelet designs such as ours, the update and predict operators will vary from level
to level, but for simplicity of notation we do not indicate this explicitly.

This process is always invertible—the backward transform is depicted, with I HT
being the inverse Haar transform, in Fig. 1 (right) and allows obtaining perfect recon-
struction of the original signal. While the wavelets and scaling functions are not
explicitly computed during either forward or backward transform, it is possible to
recover them using the expansion of Eq. (1). For example, to obtain a specific scaling
function φ�,k , one simply sets all of approximation and detail coefficients to zero,
except for a�,k = 1 and runs the backward transform.

3 Approach

For a given class of signals, our objective is to design wavelets that yield approx-
imately sparse expansions in Eq.(1)—i.e. the detail coefficients are mostly small
with a tiny fraction of large coefficients. Therefore, we learn the update and predict
operators that minimize some sparsity surrogate of the detail (wavelet) coefficients
of given training functions { f n}nmax

n=1 .
For a fixed multiresolution level �, and a training function f n , let ān� and d̄n

� be
the Haar approximation and detail coefficient vectors of f n received at level � (i.e.
applied to an�+1as in Fig. 1 (left)). Consider the minimization problem

{U, P} = argmin
U,P

∑

n

s(dn
� ) = argmin

U,P

∑

n

s(d̄n
� − P(ān� +Ud̄n

� )), (2)

where s is some sparsity inducing penalty function, such as the L1-norm. This can be
seen as optimizing a linear auto-encoder with encoding step given by ān� +Ud̄n

� , and
decoding step given by multiplication with the matrix P , see Fig 2. Since we would
like to obtain a linear wavelet transform, the linearity of the encode and decode steps
is of crucial importance. In addition to linearity and the special form of bias terms,
our auto-encoders differ from commonly used ones in that we enforce sparsity on
the reconstruction error, not on the hidden representation. Indeed, in our setting, the
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Fig. 2 Optimizing the sparsity of the wavelet transform leads to an auto-encoder training problem
over the graph. As with general auto-encoders, the neural network weight matrices U and P are
trained to make the reconstructed vector d̃� close to the input vector d̄�. Interestingly, optimizing
a sparse penalty of the reconstruction error, such as the L1-norm, ‖d̄� − d̃�‖1, leads to a sparse
wavelet transform

reconstruction errors correspond to the detail coefficients in Eq. (1) and our goal is
to make this expansion sparse.

The optimization problem of Eq. 2 suffers from a trivial solution: by choosing
update matrix to have large norm (e.g. a large coefficient times identity matrix),
and predict operator equal to the inverse of update, one can practically cancel the
contribution of the bias terms (namely, ān� ), obtaining almost perfect reconstruction.
Trivial solutions are a well-known problem in the context of auto-encoders, and an
effective solution is to tie the weights of the encode and decode steps by setting
U = PT. This also has the benefit of decreasing the number of parameters to learn.
We too follow a similar strategy and tie the weights of update and predict steps, but
the specific form of tying is dictated by the wavelet properties and will be discussed
in Sect. 4.2.

The training is conducted in a manner similar to the greedy pre-training of a stack
of auto-encoders [11–14]. Namely, we first train the the update and predict operators
at the finest level: here the input to the lifting step are the original training functions—
this corresponds to � = �max − 1 and ∀n, an�+1 = f n in Fig. 1 (left). After training
of this finest level is completed, we obtain new approximation coefficients an� which
are passed to the next level as the training functions, and this process is repeated until
one reaches the coarsest level.

The use of tied auto-encoders is motivated by their success in deep learning
revealing their capability to learn useful features from the data under a variety of
circumstances. The choice of the lifting scheme as the backbone of our construc-
tion is motivated by several observations. First, every invertible 1D discrete wavelet
transform can be factored into lifting steps [20], which makes lifting a universal
tool for constructing multiresolutions. Second, lifting scheme is always invertible,
and provides exact reconstruction of signals. Third, it affords fast (linear time) and
memory efficient (in-place) implementation after the update and predict operators
are specified. We choose to apply lifting to Haar wavelets specifically because Haar
wavelets are easy to define on any underlying space provided that it can be hierarchi-
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cally partitioned [3, 4]. Our use of update-first scheme mirrors its common use for
adaptive wavelet constructions in image processing literature, which is motivated by
its stability; see [21] for a thorough discussion.

4 Construction Details

We consider a simple connected weighted graph G with vertex set V of size N .
A signal on the graph is represented by a vector f ∈ R

N . Let W be the N × N
edge weight matrix (since there are no self-loops,Wii = 0), and let S be the diagonal
N × N matrix of vertexweights; if no vertexweights are given, we set Sii = ∑

j Wi j .
For a graph signal f , we define its integral over the graph as a weighted sum,

∫

G
f =

∑

i

Sii f (i).

We define the volume of a subset R of vertices of the graph by

Vol(R) =
∫

R
1 =

∑

i∈R

Sii .

We assume that a hierarchical partitioning (not necessarily dyadic) of the under-
lying graph into connected regions is provided. We denote the regions at level
� = 1, . . . , �max by R�,k ; see Fig. 3 where the three coarsest partition levels of a
dataset are shown. For each region at levels � = 1, . . . , �max − 1, we designate arbi-
trarily all except one of its children (i.e. regions at level � + 1) as active regions.
As will become clear, our wavelet construction yields one approximation coefficient
a�,k for each region R�,k , and one detail coefficient d�,k for each active region R�+1,k

at level � + 1. Note that if the partition is not dyadic, at a given level � the number
of scaling coefficients (equal to number of regions at level �) will not be the same as
the number of detail coefficients (equal to number of active regions at level � + 1).

Fig. 3 Hierarchical
partitioning into regions of
the graph representing the
road network of Minnesota.
Depicted are the three
coarsest levels of the
partitioning
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We collect all of the coefficients at the same level into vectors denoted by a� and d�;
to keep our notation lightweight, we refrain from using boldface for vectors.

4.1 Haar Wavelets

Usually, the (unnormalized) Haar approximation and detail coefficients of a signal
f are computed as follows. The coefficient ā�,k corresponding to region R�,k equals
to the average of the function f on that region:

ā�,k = Vol(R�,k)
−1

∫

R�,k

f.

The detail coefficient d̄�,k corresponding to an active region R�+1,k is the difference
between averages at the region R�+1,k and its parent region R�,par(k), namely d̄�,k =
ā�+1,k − ā�,par(k). For perfect reconstruction there is no need to keep detail coefficients
for inactive regions, because these can be recovered from the scaling coefficient of
the parent region and the detail coefficients of the sibling regions.

In our setting, Haar wavelets are a part of the lifting scheme, and so the coefficient
vectors ā� and d̄� at level � need to be computed from the augmented coefficient vector
a�+1 at level � + 1 (c.f. Fig. 1 (left)). This is equivalent to computing a function’s
average at a given region from its averages at the children regions. As a result, we
obtain the following formula:

ā�,k = Vol(R�,k)
−1

∑

j,par( j)=k

a�+1, j V ol(R�+1, j ), (3)

where the summation is over all the children regions of R�,k . As before, the detail
coefficient corresponding to an active region R�+1,k is given by d̄�,k = a�+1,k −
ā�,par(k). The resulting Haar wavelets are not normalized; when comparing or sort-
ing wavelet/scaling coefficients coming from different levels we need to multiply
coefficients coming from level � by 2−�/2.

4.2 Auto-Encoder Setup

The choice of the update and predict operators and their tying scheme is guided by
a number of properties that wavelets need to satisfy. We discuss these requirements
under separate headings.

VanishingmomentsThewavelets shouldhavevanishingdual andprimalmoments—
two independent conditions due to biorthogonality of our wavelets. In terms of the
approximation and detail coefficients these can be expressed as follows: a) all of the
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detail coefficients of a constant function should be zero and b) the integral of the
approximation at any level of multiresolution should be the same as the integral of
the original function.

Since these conditions are already satisfied by the Haar wavelets, we need to
ensure that the update and predict operators preserve them. To be more precise, if
a�+1 is a constant vector, then we have for Haar coefficients that ā� = c1 and d̄� = 0;
here c is some constant and 1 is a column-vector of all ones. To satisfy a) after lifting,
we need to ensure that d� = d̄� − P(ā� +Ud̄�) = −Pā� = −cP1 = 0. Therefore,
the rows of predict operator should sum to zero: P1 = 0.

To satisfy (b), we need to preserve the first order moment at every level � by
requiring

∑

k

a�+1,kV ol(R�+1,k) =
∑

k

ā�,kV ol(R�,k) =
∑

k

a�,kV ol(R�,k).

The first equality is already satisfied (due to the use of Haar wavelets), so we need
to constrain our update operator. Introducing the diagonal matrix Ac of the region
volumes at level �, we can write

0 =
∑

k

a�,kV ol(R�,k) −
∑

k

ā�,kV ol(R�,k) =
∑

k

Ud̄�Vol(R�,k) = 1TAcUd̄�.

Since this should be satisfied for all d̄�, we must have 1TAcU = 0T.
Taking these two requirements into consideration, we impose the following con-

straints on predict and update weights:

P1 = 0 and U = A−1
c PTA f

where A f is the diagonal matrix of the active region volumes at level � + 1. It is easy
to check that

1TAcU = 1TAc A
−1
c PTA f = 1TPTA f = (P1)TA f = 0TA f = 0T,

as required. We have introduced the volume matrix A f of regions at the finer level
to make the update/predict matrices dimensionless (i.e. insensitive to whether the
volume is measured in any particular units); also note the resemblance to Eq. (3).

Locality Tomake our wavelets and scaling functions localized on the graph, we need
to constrain update and predict operators in a way that would disallow distant regions
from updating or predicting the approximation/detail coefficients of each other.

Since the update is tied to the predict operator, we can limit ourselves to the latter
operator. For a detail coefficient d�,k corresponding to the active region R�+1,k , we
only allow predictions that come from the parent region R�,par(k) and the immediate
neighbors of this parent region. Two regions of graph are considered neighboring if
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their union is a connected graph. This can be seen as enforcing a sparsity structure
on the matrix P or as limiting the interconnections between the layers of neurons.

As a result of this choice, it is not difficult to see that the resulting scaling functions
φ�,k and wavelets ψ�,k will be supported in the vicinity of the region R�,k . If desired,
larger supports can be obtained by allowing the use of second and higher order
neighbors of the parent for prediction.

4.3 Optimization

In our setting, due to the relatively small size of the training set and sparse inter-
connectivity between the layers, an off-the-shelf L-BFGS1 unconstrained smooth
optimization package works very well. In order to make our problem unconstrained,
we avoid imposing the equation P1 = 0 as a hard constraint. Instead, in each row of
P (which corresponds to some active region), the weight corresponding to the parent
is eliminated by expressing it as the negative sum of the remaining entries in the row.
To obtain a smooth objective, we use L1-norm with soft absolute value

s(x) = ‖x‖1 =
∑

i

|xi | ≈
∑

i

√
ε + x2i ,

where we set ε = 10−4. The initialization is done by setting all of the weights equal
to zero. This is meaningful, because it corresponds to no lifting at all, and would
reproduce the original Haar wavelets.

There has been immense progress in the area of neural network optimization
since the original publication of this work. Various versions of stochastic gradient
descent have been proposed, ADAM [22] being one of the most popular. We have
re-implemented the algorithm in TensorFlow [23] using the ADAM optimizer and
found that the results were nearly identical to the ones obtained via L-BFGS. Thus,
all of the results presented in this chapter are based on our original optimization
procedure.

The automatic differentiation feature of themodern deep learning packagesmakes
it straightforward to train the overall architecture—the process commonly called
fine tuning—after the layer-wise training is completed. This optimization would
require an aggregate loss over all the partitioning levels. Note that some weighing
would be necessary when aggregating L1-norms coming from different levels. At
the minumum, a weight of 2−�/2 for level � contribution would be required, see Sect.
3; we leave this for a future work.

1Mark Schmidt, http://www.di.ens.fr/~mschmidt/Software/minFunc.html.

http://www.di.ens.fr/~{}mschmidt/Software/minFunc.html
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4.4 Training Functions

When training functions are available we directly use them. However, our construc-
tion can be applied even if training functions are not specified. In this case we choose
smoothness as our prior, and train the wavelets with a set of smooth functions on
the graph—namely, we use scaled eigenvectors of graph Laplacian corresponding to
the smallest eigenvalues. More precisely, let D be the diagonal matrix with entries
Dii = ∑

j Wi j . The graph Laplacian L is defined as L = S−1(D − W ). We solve
the symmetric generalized eigenvalue problem (D − W )ξ = λSξ to compute the
smallest eigen-pairs {λn, ξn}nmax

n=0 .We discard the 0-th eigen-pair which corresponds
to the constant eigenvector, and use functions {ξn/λn}nmax

n=1 as our training set. The
inverse scaling by the eigenvalue is included because eigenvectors corresponding
to larger eigenvalues are less smooth (cf. [24]), and so should be assigned smaller
weights to achieve a smooth prior.

The number of training functions required to robustly train the neural networks
depends on the number of parameters; in our case this is related to the number of
the neighbors that a region can have at a given level. In the cases discussed in our
experiments, graphs have low-dimensional structure, and the number of neighboring
partitions is low—which allows the training to succeed with a small number of
training functions. For high-dimensional point clouds a larger number (growing with
the intrinsic dimension of the manifold) of training functions will be required.

4.5 Partitioning

Since our construction is based on improving upon the Haar wavelets, their qual-
ity will have an effect on the final wavelets. As proved in [4], the quality of
Haar wavelets depends on the quality (balance) of the graph partitioning. From
practical standpoint, it is hard to achieve high quality partitions on all types of
graphs using a single algorithm. However, for the datasets presented in this paper
we find that the following approach based on spectral clustering algorithm of
[25] works well. Namely, we first embed the graph vertices into R

nmax as fol-
lows: i → (ξ1(i)/λ1, ξ2(i)/λ2, . . . , ξnmax (i)/λnmax ),∀i ∈ V , where {λn, ξn}nmax

n=0 are
the eigen-pairs of the Laplacian as in Sect. 4.4, and ξ·(i) is the value of the eigenvec-
tor at the i-th vertex of the graph. To obtain a hierarchical tree of partitions, we start
with the graph itself as the root. At every step, a given region (a subset of the vertex
set) of graph G is split into two children partitions by running the 2-means clustering
algorithm (k-means with k = 2) on the above embedding restricted to the vertices
of the given partition [3]. This process is continued in recursion at every obtained
region. This results in a dyadic partitioning except at the finest level �max .
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4.6 Graph Construction for Point Clouds

Our problem setup started with a weighted graph and arrived to the Laplacian matrix
L in Sect. 4.4. It is also possible o reverse this process whereby one starts with the
Laplacian matrix L and infers from it the weighted graph. This is a natural way
of dealing with point clouds sampled from low-dimensional manifolds, a setting
common in manifold learning. There is a number of ways for computing Laplacians
on point clouds, see [26]; almost all of themfit into the above form L = S−1(D − W ),
and so, they can be used to infer a weighted graph that can be plugged into our
construction.

5 Experiments

Our goal is to experimentally investigate the constructed wavelets for multiscale
behavior, meaningful adaptation to training signals, and sparse representation that
generalizes to testing signals.

For the first two objectives we visualize the scaling functions at different levels �

because they provide insight about the signal approximation spaces V�. The gener-
alization performance can be deduced from comparison to Haar wavelets, because
during training we modify Haar wavelets so as to achieve a sparser representation of
training signals.

We start with the case of a periodic interval, which is discretized as a cycle graph;
32 scaled eigenvectors (sines and cosines) are used for training. Figure4 shows the
resulting scaling and wavelet functions at level � = 4. Up to discretization errors, the
wavelets and scaling functions at the same level are shifts of each other—showing
that our construction is able to learn shift invariance from training functions.

Figure5a depicts a graph representing the road network of Minnesota, with edges
showing the major roads and vertices being their intersections. In our construction
we employ unit weights on edges and use 32 scaled eigenvectors of graph Laplacian

Fig. 4 Scaling and wavelet functions on the periodic interval at level � = 4
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Fig. 5 Our construction trained with smooth prior on the network (a), yields the scaling functions
(b–f). A sample continuous function (g) out of 100 total test functions. Better average reconstruction
results (h) for our wavelets (Wav-smooth) indicate a good generalization performance

as training functions. The resulting scaling functions for regions containing the red
vertex in Fig. 5a are shown at different levels in Fig. 5b–f. The function values at
graph vertices are color coded from smallest (dark blue) to largest (dark red). Note
that the scaling functions are continuous and show multiscale spatial behavior.

To test whether the learnedwavelets provide a sparse representation of smooth sig-
nals, we synthetically generated 100 continuous functions using the xy-coordinates
(the coordinates have not been seen by the algorithm so far) of the vertices; Fig. 5g
shows one of such functions. Figure5h shows the average error of reconstruction
from expansion Eq. (1) with �0 = 1 by keeping a specified fraction of largest detail
coefficients. The improvement over the Haar wavelets shows that our model gener-
alizes well to unseen signals.

Next, we apply our approach to real-world graph signals. We use a dataset of
average daily temperature measurements2 from meteorological stations located on
the mainland US. The longitudes and latitudes of stations are treated as coordinates
of a point cloud, from which a weighted Laplacian is constructed using [26] with
5-nearest neighbors; the resulting graph is shown in Fig. 6(a).

The daily temperature data for the year of 2012 gives us 366 signals on the graph;
Fig. 6b depicts one such signal. We use the signals from the first half of the year to
train the wavelets, and test for sparse reconstruction quality on the second half of the
year (and vice versa). Figure6c–g depicts some of the scaling functions at a number
of levels; note that the depicted scaling function at level � = 2 captures the rough
temperature distribution pattern of the US. The average reconstruction error from a
specified fraction of largest detail coefficients is shown in Fig. 6g.

2National Climatic Data Center, http://www.ftp://ftp.ncdc.noaa.gov/pub/data/gsod/2012/.

http://www.ftp://ftp.ncdc.noaa.gov/pub/data/gsod/2012/
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Fig. 6 Our construction on the station network (a) trained with daily temperature data (e.g. (b)),
yields the scaling functions (c–f). Reconstruction results (g) using our wavelets trained on data
(Wav-data) and with smooth prior (Wav-smooth). Results of semi-supervised learning (h)

As an application, we employ our wavelets for semi-supervised learning of the
temperature distribution for a day from the temperatures at a subset of labeled graph
vertices. The sought temperature distribution is expanded as in Eq. (1) with �0 = 1,
and the coefficients are found by solving a least squares problem using temperature
values at labeled vertices. Since we expect the detail coefficients to be sparse, we
impose a Lasso penalty on them (i.e. the regularizer λ

∑
�,k |d�,k | is added to the least

squares objective); to make the problem smaller, all detail coefficients for levels
� ≥ 7 are set to zero. We compare to the Laplacian regularized least squares [24] and
harmonic interpolation approach [27]. A hold-out set of 25 random vertices is used
to assign all the regularization parameters. The experiment is repeated for each of
the days (not used to learn the wavelets) with the number of labeled vertices ranging
from 10 to 200. Figure6h shows the errors averaged over all days; our approach
achieves lower error rates than the competitors.

Our final example serves two purposes—showing the benefits of our construction
in a standard image processing application and better demonstrating the nature of
learned scaling functions. Images can be seen as signals on a graph—pixels are the
vertices and each pixel is connected to its 8 nearest neighbors. We consider all of
the Extended Yale Face Database B [28] images (cropped and down-sampled to
32 × 32) as a collection of signals on a single underlying graph. We randomly split
the collection into half for training our wavelets, and test their reconstruction quality
on the remaining half. Figure7a depicts a number of obtained scaling functions at
different levels (the rows correspond to levels � = 4, 5, 6, 7, 8) in various locations
(columns). The scaling functions have a face-like appearance at coarser levels, and
capture more detailed facial features at finer levels. Note that the scaling functions
show controllable multiscale spatial behavior.

The quality of reconstruction from a sparse set of detail coefficients is plotted
in Fig. 7b, c. Here again we consider the expansion of Eq. (1) with �0 = 1, and
reconstruct using a specified proportion of largest detail coefficients. We also make
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Fig. 7 The scaling functions (a) resulting from training on a face images dataset. These wavelets
(Wav-data) provide better sparse reconstruction quality than the CDF9/7 wavelet filterbanks (b, c)

a comparison to reconstruction using the standard separable CDF 9/7 wavelet filter-
banks from bottom-most level; for both of quality metrics, our wavelets trained on
data perform better than CDF 9/7. The smoothly trained wavelets do not improve
over the Haar wavelets, because the smoothness assumption does not hold for face
images.

6 Conclusion

We have introduced an approach to constructing wavelets that take into consideration
structural properties of both graph signals and their underlying graphs. An interesting
direction for future research would be to randomize the graph partitioning process or
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to use bagging over training functions in order to obtain a family of wavelet construc-
tions on the same graph—leading to over-complete dictionaries like in [29]. One can
also introduce multiple lifting steps at each level or even add non-linearities as com-
mon with neural networks. Our wavelets are obtained by training a structure similar
to a deep neural network; interestingly, the recent work of Mallat and collaborators
(e.g. [30]) goes in the other direction and provides a wavelet interpretation of deep
neural networks. Therefore, we believe that there are ample opportunities for future
work in the interface between wavelets and deep neural networks.
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Oversampled Transforms for Graph
Signals

Yuichi Tanaka and Akie Sakiyama

Abstract In this chapter, oversampled transforms for graph signals are introduced.
Oversampling is done in two ways: One is oversampled graph Laplacian and the
other is oversampled graph transforms. Both are described here. The advantage of the
oversampled transforms is that we can take a good trade-off between performance
(in context to sparsifying the graph signals) and storage/memory space for trans-
formed coefficients. Furthermore, any graph can be converted into an oversampled
bipartite graph by using the oversampled graph Laplacian. It leads to that well-known
graph wavelet transforms/filter banks for bipartite graphs can be applied to the sig-
nals on any graphs with a slight sacrifice of redundancy. Actual performances are
compared through several numerical experiments.

1 Introduction

Transforms and dictionaries for graph signals can be classified by several criteria. In
this chapter, we look at them from redundancy.

Redundancy represents the ratio between the number of samples in the origi-
nal domain and that in the transformed domain. Transforms/dictionaries based on
redundancy are classified as follows, where No and Nt are defined as the number of
samples in the original and transformed domains, respectively:

• Undecimated: Nt � No. There is no sampling. Redundancy is identical to the
number of filters, i.e., the number of rows for the forward transformmatrix divided
by No.

• Oversampled: Nt > No. Sampling ratio is less than the number of filters.
• Critically-sampled: Nt = No. Both of the analysis and synthesis transforms are
represented as square matrices.
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• Undersampled: Nt < No. Sampling ratio is greater than the number of filters.
Perfect reconstruction is not possible in general.

In this chapter, we focus on the oversampled transforms [16, 22].
There are numerous methods for undecimated graph transforms (see [8, 17,

20] and references therein) since they are relatively easy to guarantee the perfect
reconstruction.However, graph signals are often high-dimensional, and therefore, the
undecimated transforms requires huge storage space and/or computation complexity.
In contrast, critically-sampled and undersampled transforms need less storage and
complexity, with a trade-off for the restriction of the freedom for filter design. So,
we take a (relatively good) tradeoff: Oversampled transforms.

Oversampling of graph signals is an interesting topic and it is quite different from
that of classical signal processing. This is because we have a discrete signal as well
as its underlying graph; We need to consider the oversampled graphs.

In this chapter, an effective graph oversampling method and oversampled graph
filter banks are studied. In particular, we describe a method that converts an arbi-
trary K -colorable graph into one bipartite graph containing all edges of the original
graph. This enables us to apply graph wavelets and filter banks for signals on any
graphs without graph simplification. Furthermore, the oversampled spectral graph
filter banks are introduced that structurally guarantee the perfect reconstruction. The
performances of the oversampled transforms are compared through experiments on
image processing and denoising of graph signals.

The rest of this chapter is organized as follows. In Sect. 2, an overview of oversam-
pled transforms on graphs are shown. The oversampled graph Laplacian is presented
in Sect. 3, along with the theoretical connection with graph theory. In Sect. 4, some
examples of graph oversampling are shown. Sect. 5 presents the designmethod of the
oversampled graph filter banks. Experimental results are shown in Sect. 6. Finally,
this chapter concludes in Sect. 7.

Notation

In this chapter, signal processing on undirected graphs is only considered. A graph
G = (V, E) has a vertex set V = {v0, v1, . . . , vN−1} and edge set E , where the num-
ber of vertices N is interchangeably usedwith the cardinality of V , i.e., N = |V |. The
special notation for a bipartite graph is G = (L , H, E), where L and H are disjoint
vertex sets. That means there are no edges within L and H , and E only connects
vertices in L and those in H .

A ∈ R
N×N is an adjacency matrix where [A]i j represents the edge weight

between vi and v j . The diagonal degree matrix is represented as [D]i i = ∑
j [A]i j .

The combinatorial graph Laplacian is defined as L = D − A. Since L is a real
symmetric matrix, its eigendecomposition is represented as L = U�U�, where
U = [

u0, u1, . . . , uN−1
]
is the eigenvector matrix and � = diag(λ0, λ1, . . . , λN−1)

is the diagonal eigenvalue matrix, i.e., Lui = λiui .
The symmetric normalized graph Laplacian is also defined asL := D−1/2LD−1/2.

L has its eigenvalues within the range λ ∈ [0, 2], and λmax = 2 only for bipartite
graphs.



Oversampled Transforms for Graph Signals 225

The graph signal is f : V → R and it can be represented as the vector f ∈ R
N ,

where the nth sample f (n) is assumed to be located on the nth vertex of G. The
graph Fourier transform (GFT) is defined as the inner product of ui and f :

f̃ (i) = 〈ui , f 〉 =
N−1∑

k=0

ui (k) f (k). (1)

2 Oversampling of Graphs and Graph Signals

We consider the following two cases to realize oversampled transforms for graph
signals.

Case 1 Oversampling is performed before transformation.
Case 2 Integrated oversampling is performed within transformation.

In Case 1, the input signal is oversampled along with the expansion of the original
graph. It leads to that we have to consider the expansion strategy of the graph, that is
specific for graph signal processing. In Case 2, we need to design oversampled filter
banks or dictionaries for graph signals. Indeed Case 1 and Case 2 can be cascaded.
This is illustrated in Fig. 1 and its corresponding synthesis transform is shown in
Fig. 2.

2.1 Case 1

For Case 1, let us define the adjacency matrix of the original graph G0 = (V0, E0)

as A0 and its corresponding graph Laplacian L0, where |V0| = N0. Formally, the
oversampled graph Laplacian LOS is represented as follows.

GFT

IGFTFiltering Downsampling

# samples

Oversampling of
graph signal

Fig. 1 Framework of oversampled graph transform (analysis side)



226 Y. Tanaka and A. Sakiyama

GFT IGFTFilteringUpsampling

# samples

Undersampling of
graph signal

Fig. 2 Framework of oversampled graph transform (synthesis side)

LOS = DOS − AOS, (2)

where

DOS =
[
D0

D1

]

AOS =
[
A0 A01

A�
01 A1

]

,

(3)

in which A1 ∈ R
N1×N1 represents edges within the appended vertices and A01 ∈

R
N0×N1 represents those between the original and appended vertices.A1 andA01 can

be arbitrarily chosen according to requirements and/or applications.
The input signal is also oversampled in Case 1; Let f 0 ∈ R

N0 be the original
signal. The oversampled signal is represented as

f OS = [
f �
0 f �

1

]�
, (4)

where f 1 ∈ R
N1 is an arbitrary oversampled signal corresponding to A1. It would

be an all-zero signal, a part of f 0, or interpolated from f 0.
AOS can actually be designed somewhat arbitrarily, however, the guideline for

oversampling is needed for actual graph signal processing systems. In Sect. 3, a
design method of AOS is introduced that is able to convert any K -colorable graph to
an oversampled bipartite graph. It is beneficial for a typical class of graph wavelet
transforms that is perfect reconstruction only for the signal on bipartite graphs.

2.2 Case 2

For Case 2, the graph Laplacian used is either L0 or LOS. For simplicity, we denote
either of them as L. The oversampled transform is represented as
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E =

⎡

⎢
⎢
⎢
⎣

E0

E1
...

EM−1

⎤

⎥
⎥
⎥
⎦

∈ R
(
∑

k Nk )×N (5)

where
Ek = SkUh̃k(�)U� (6)

in which Sk ∈ {0, 1}Nk×N is the sampling matrix, i.e., the submatrix of the iden-
tity matrix. Its rows correspond to the indices of the remaining vertices after sam-
pling. h̃k(�) = diag(̃hk(λ0), h̃k(λ1), . . . , h̃k(λN−1)) is the spectral response for the
kth spectral graph filter. Furthermore,

∑
k Nk > N for oversampled transforms. By

removing Sk , the undecimated transform can be obtained whose redundancy is M ,
i.e., the number of the transformed coefficients is MN . In the oversampled system,
the redundancy is usually lower than M by performing the sampling.

Since E is a tall matrix, the transformed coefficients can be perfectly recovered if
rank(E) ≥ N . However, directly calculating E−1 takes huge computation cost since
L is sometimes a large matrix. Therefore, we often need the symmetric structure,
that is, the synthesis transform R is represented as

R =

⎡

⎢
⎢
⎢
⎣

R0

R1
...

RM−1

⎤

⎥
⎥
⎥
⎦

∈ R
N×(

∑
k Nk ) (7)

Rk = Ug̃k(�)U�S�
k , (8)

where g̃k(�) = diag(g̃k(λ0), g̃k(λ1), . . . , g̃k(λN−1)) is the kth synthesis filter. E and
R have to satisfy the following perfect reconstruction condition:

RE = IN , (9)

where IN is the identity matrix of size N .
In Sect. 5, the design procedure of h̃k(�) and g̃k(�) that satisfies (9) is shown as

an extension of the critically-sampled wavelet transforms for graph signals [11, 12].

2.3 Overall Redundancy

Here, we consider the overall redundancy of the oversampled graph transform. The
input signal f 0 ∈ R

N0 is oversampled to f OS ∈ R
N0+N1 , then it is transformed by

the oversampled transform whose redundancy is
∑

k Nk . As a result, the overall
redundancy ρ is represented as
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ρ =
∑

k Nk

N0
. (10)

2.4 Special Case: Critically Sampled Transforms

Here we consider a special situation in Case 2: both E andR are square matrices that
satisfy (9). This is a critically sampled transform for graph signals, i.e., ρ = 1.

The most popular critically sampled graph transforms, which has filter responses
defined in the graph spectral domain, are designed for bipartite graphs [11, 12].
They are perfect reconstruction if the underlying graph is bipartite and the variation
operator is a symmetric normalized graph Laplacian or normalized random walk
graph Laplacian. Non-bipartite graphs should be simplified to bipartite ones before
transformation by this kind of transforms to guarantee the perfect reconstruction
condition.

Figure3 illustrates the entire transformation for one bipartite graph. Let B =
(L , H, E) be a bipartite graph only having edges between vertex sets L and H . The
number of samples in each channel is determined on the basis of the graph-coloring
result. Down- and upsampling for B is defined in matrix notation as follows:

Sd,0 = IL ∈ {0, 1}|L|×N , Su,0 = S�
d,0

Sd,1 = IH ∈ {0, 1}|H |×N , Su,1 = S�
d,1,

(11)

where IL and IH are submatrices of IN whose rows correspond to the indices of L
and H , respectively. That is, the sampled signal can be represented as f d,0 = Sd,0 f
and so on. The two-channel graph filter bank shown in Fig. 3 is designed to satisfy
the following perfect reconstruction condition.

Tv = G0Su,0Sd,0H0 + G1Su,1Sd,1H1 = c2IN , (12)

where
Hk := Uh̃k(�)U�

Gk := Ug̃k(�)U� (13)

Analysis bank Synthesis bank

Fig. 3 Critically sampled graph filter bank for signals on bipartite graphs
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and c ∈ R. (12) is further represented as the condition for spectral graph filters as
follows.

g̃0(λ)̃h0(λ) + g̃1(λ)̃h1(λ) = c2 (14)

g̃0(λ)̃h0(2 − λ) − g̃1(λ)̃h1(2 − λ) = 0. (15)

Several critically sampled graph transforms that satisfy the above perfect recon-
struction condition have been proposed, together with some filter designs [11, 12,
16, 17, 22].

• GraphQMF [12]: GraphQMF is an orthogonal solution designed from one spectral
kernel h̃0(λ). The remaining filters are defined as follows.

h̃1(λ) = h̃0(2 − λ)

g̃0(λ) = h̃0(λ)

g̃1(λ) = h̃1(λ) = h̃0(2 − λ).

(16)

h̃0(λ) has to satisfy the following condition to ensure perfect reconstruction:

h̃20(λ) + h̃20(2 − λ) = c2. (17)

• GraphBior [11]:GraphBior, which is a biorthogonal solution, is designed to satisfy

h̃1(λ) = g̃0(2 − λ), g̃1(λ) = h̃0(2 − λ). (18)

This leads to
h̃0(λ)g̃0(λ) + h̃0(2 − λ)g̃0(2 − λ) = 2. (19)

A low-pass half-band product filter p̃(λ) = h̃0(λ)g̃0(λ) is designedfirst; then h̃0(λ)

and g̃0(λ) are obtained via spectral factorization similar to the Cohen-Daubechies-
Feauveau (CDF) biorthogonal wavelet transform in classical signal processing [5].

• Frequency Conversion [17]: A method has been proposed for converting time
domain filters H(ω) into graph spectral filters H(λ) through a frequency mapping
from ω ∈ [0, π ] to λ ∈ [0, λmax] [17]. In this approach, the perfect reconstruction
condition (14) and (15) is always satisfied as long as the set of time domain filters
are perfect reconstruction (in the time domain).

3 Oversampled Graph Laplacian

As described in Sect. 2.1, the appended vertices of the oversampled graph Laplacian
can be arbitrarily connected to the other vertices. However, an inappropriate choice
of graph oversampling causes a performance loss. In this section, we describe an effi-
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cient way to construct oversampled graphs that avoids such losses. We also consider
an additional constraint; the oversampled graph is bipartite. This is why many exist-
ing critically-sampled and oversampled graph transforms are designed for signals
on bipartite graphs [11, 12, 16, 17, 22, 25, 26] while there are several exceptions
[27, 28].

There have been mainly two methods for applying graph transforms for bipartite
graphs into general, i.e., non-bipartite, graphs.

1. Oversampling graphs (this chapter)

Pros. All edges can be considered.
Cons. Redundancy becomes (slightly) large.

2. Graph simplification

Pros. Redundancy can be kept.
Cons. A part of (and sometimes many) edges should be ignored.

Hereafter, the first approach is introduced. For the second approach, please refer to
[13, 21] and references therein.

Since the oversampled graph has to be bipartite, we first construct a foundation
bipartite graph by removing a part of edges in the original graph. Precisely, G f =
(L f , Hf , E f ) is made from the original graph, where L f and Hf are disjoint vertex
sets, L f ∪ Hf = V , and E f contains the edges linking EL f and EHf . Then, we
append vertices and edges in the other bipartite subgraphs to it. In this way, one
oversampled bipartite graph containing all the edges of the bipartite subgraphs is
obtained. While there exist many methods for graph decompositions, any methods
can be applied to the following construction.

As an introduction, we start from a simple three-colorable graphs, then it is shown
that the similar construction method is also possible for any-colorable graphs.

3.1 Three-Colorable Graphs

First, we describe a way to convert a three-colorable graph into one oversampled
bipartite graph containing all edges of the original graph. First of all, three colors
are assigned to vertices such that adjacent vertices have different colors. Distinguish
these vertices as F1, F2 and F3, respectively.

The three-colorable graph, shown in Fig. 4a, can be decomposed into two bipartite
subgraphs: B1 that contains edges linking F12 := F1 ∪ F2 and F3 (Fig. 4b), and B2

that contains edges between F1 and F2 (Fig. 4c). Hence, the edges in B2 only have
connections on one side of the subsets (F1 and F2) of B1.

Tomake the oversampledgraph, B1 is viewed as the foundationbipartite graphG f ,
i.e., G f = B1 = {F12, F3, EF12↔F3}, where EFk↔F�

represents the edges between Fk

and F�, and vertices are appended just above each vertex in F12 of B1. The additional
vertex sets are represented as F ′

1 and F ′
2, respectively. By adding the edges between
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(a) (b) (c)

(d)

(e)

Fig. 4 Bipartite oversampled graph construction for three-colorable graphs. a Three-colorable
graph whose vertex sets are F1, F2 and F3. b Bipartite subgraph B1. c Bipartite subgraph B2.
d Oversampled bipartite graph. The gray lines are edges contained in B1, and the dashed and solid
black lines are vertical edges and additional edges according to the edge information of original
graph, respectively. e Sets LOS and HOS of the oversampled bipartite graph

F1 and F ′
2, and also between F ′

1 and F2, we can convert the original graph into one
bipartite graph that contains all edges in the original graph (Fig. 4d). Additionally,
corresponding vertices in Fk and F ′

k could be connected each other by vertical edges.
The oversampled graph is a bipartite graph that has the vertex set VOS = V0 ∪

F ′
1 ∪ F ′

2 and edge set EOS = EF1↔F3 ∪ EF2↔F3 ∪ EF1↔F ′
2
∪ EF ′

1↔F2 . Since there are
no edges within F12 and also within F ′

1 ∪ F ′
2 ∪ F3, GOS = (VOS, EOS) is a bipartite

graph as shown in Fig. 4e. Even if there are edges EF1↔F ′
1
and EF2↔F ′

2
, clearly it is

still a bipartite graph.
If some of the vertices in F12 only have connections to F3, they are isolated in

B2. Hence, there is no need to append these vertices to VOS. Therefore, the number
of appended vertices, i.e., N1, is N1 = |F ′

1| + |F ′
2| = |F1| + |F2| − |I |, where |I | is

the number of isolated vertices in F12.

3.2 K-Colorable Graphs

For K -colorable graphs where K ≥ 4, the method described above can be extended
to make one bipartite graph including all of the edges of the original graph. We
assume that the vertices of the original graph G = (V, E) are assigned colors and
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divided into K sets F1, F2, . . . , FK . Figure5 shows two examples of the oversam-
pled bipartite graphs for a five-colorable graph. The oversampled bipartite graph is
generated according to the following steps:

1. The foundation bipartite graph G f = (L f , Hf , E f ) is made from the original
graph. L f = {F1, F2, . . . , Fl} and Hf = {Fl+1, Fl+2, . . . , FK },where l is an arbi-
trary integer value satisfying 1 ≤ l ≤ K . E f is defined as the edge set containing
all edges between L f and Hf (Fig. 5b, e).

2. The complementary graph G = (V, E \ E f ) is computed. G has two disjoint
graphs: an l-colorable graph G1 = (L f , EL f ) and a (K − l)-colorable graph
G2 = (Hf , EHf ), where EV represents the edges connecting vertices in V . It
is shown in Fig. 5c, f.

3. Appended vertices F ′
1 are placed directly above each vertex in F1 of G f .

4. The edge set EF1↔{F2,...,Fl } is extracted from the original graph and it is used
to connect F ′

1 and {F2, . . . , Fl}. Since L f is disjointed vertices in G f , GOS =
(L f , Hf ∪ F ′

1, E f ∪ EF ′
1↔{F2,...,Fl }) is still a bipartite graph.

5. Steps 3 to 4 are repeated for F2, . . . , Fl to yield oversampled sets F ′
2, . . . , F

′
l and

appended new edges to GOS.
6. Similar operations to Steps 3 to 5 can also be applied to G2. As a result, the sets

F ′
l+1, . . . , F

′
K and the edges in G2 are appended to GOS.

Consequently, the sets F ′
1, . . . , F

′
K and the edges corresponding to E \ E f are added

to the foundation bipartite graph. Based on the above operations, an oversampled
bipartite graph GOS containing all edges of the original graph is generated as shown
in Fig. 5d, g. Note that LOS and HOS of the oversampled graph become

LOS = F1 ∪ . . . ∪ Fl ∪ F ′
l+1 ∪ . . . ∪ F ′

K ,

HOS = F ′
1 ∪ . . . ∪ F ′

l ∪ Fl+1 ∪ . . . ∪ FK .
(20)

Similar to the three-colorable case, vertical edges can be appended and isolated
vertices in G will be removed. As a result, the number of the vertices in these sets
can be represented as

|LOS| =
l∑

i=1

|Fi | +
K∑

i=l+1

|F ′
i | = N − |IH f |, (21)

|HOS| =
K∑

i=l+1

|Fi | +
l∑

i=1

|F ′
i | = N − |IL f |, (22)

where |IL f | and |IH f | are the number of isolated vertices in G1 and G2, respectively.
The number of appended vertices is, therefore, represented as 2N − |IL f | − |IH f |.

According to the choice of l, there exists  K
2 � variations of the oversampled graph

for K -colorable graphs. For the special case of l = 1, L f is equal to F1 and G1 has
no edges as shown in Fig. 5e, f. Therefore, we do not need to append vertices just
above L f , and the oversampled bipartite graph becomes
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 5 Examples of oversampled bipartite graphs for a five-colorable graph. The white and gray
circles represent sets LOS and HOS, respectively. a Original graph. b Foundation bipartite graph
with l = 3. c G with l = 3. d Oversampled bipartite graph with l = 3. The dashed lines indicate
the vertical edges. e Foundation bipartite graph with l = 1. f G with l = 1. g Oversampled bipartite
graph with l = 1

LOS = F1 ∪ F ′
2 ∪ . . . ∪ F ′

K , (23)

HOS = F2 ∪ . . . ∪ FK . (24)

Similarly, when l = K − 1, the oversampled bipartite graph becomes

LOS = F1 ∪ . . . ∪ FK−1, (25)

HOS = F ′
1 ∪ . . . ∪ F ′

K−1 ∪ FK . (26)
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(a) (b)

Fig. 6 a Bipartite double cover of a three-colorable graph. b Its set of LOS and HOS

3.3 Relationship with Bipartite Double Cover

In graph theory, the bipartite double cover of a graph G is defined as the tensor
product GBDC = G ⊗ K2, where K2 is the complete graph of two vertices [2, 7, 18].
GBDC exactly has 2N vertices and 2|E | edges.

An example of the bipartite double cover of a three-colorable graph (Fig. 4a) is
shown in Fig. 6. It is clear that GBDC = ({F1, . . . , FK }, {F ′

1, . . . , F
′
K }, EBDC), where

EBDC := E{F1,...,FK }↔{F ′
1,...,F

′
K }. The bipartite double cover is equivalent to the over-

sampled graph introduced in the previous subsection, in the case of l = K without
vertical edges.

The adjacency matrix of GBDC can be represented as

ABDC =
[
0 A
A 0

]

(27)

and its symmetric normalized graph Laplacian is

LBDC =
[

I −D−1/2AD−1/2

−D−1/2AD−1/2 I

]

. (28)

If ui is an eigenvector of L with the eigenvalue λi , one can immediately see that
1√
2
[u�

i u�
i ]� and 1√

2
[u�

i − u�
i ]� are eigenvectors ofLBDC with eigenvaluesλi,BDC =

λi and 2 − λi , respectively.
If we define the oversampled graph signal as f OS = [ f �

0 f �
0 ]�, i.e., duplicating

the original signal values at the corresponding appended vertices, its graph Fourier
coefficient associated with λi is

u�
j,BDC f OS

∣
∣
λ j,BDC=λi

= 1√
2

[
u�
i u�

i

]
[
f 0
f 0

]

= √
2u�

i f 0 = √
2 f̃0(i), (29)

and that associated with 2 − λi is

u�
j,BDC f OS

∣
∣
λ j,BDC=2−λi

= 1√
2

[
u�
i −u�

i

]
[
f 0
f 0

]

= 0. (30)
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As a result, we can obtain only N nonzero graph Fourier coefficients which are equal
to those with the original graph Fourier coefficient. In other words, the graph Fourier
spectrum using the bipartite double cover is the same as the one using the original
graph.

On the other hand, let us define the adjacency matrix of the foundation bipartite
graph G f of the proposed method as A f and that of the remaining graph G as Ar .
For simplicity, we will consider the expansion method without vertical edges. The
adjacency matrix and degree matrix of our approach become

AOS =
[
A f Ar

Ar 0

]

(31)

and

DOS =
[
D 0
0 Dr

]

, (32)

where A = A f + Ar and D = D f + Dr . Its symmetric normalized graph
Laplacian is

LOS =
[
I − D−1/2A fD−1/2 −D−1/2ArD

−1/2
r

−D−1/2
r ArD−1/2 I

]

. (33)

If we assume the oversampled graph Laplacian has eigenvectors [u�
i u�

i ]� that
corresponds to the eigenvalue λi of L, then it must satisfy

LOS

[
ui

ui

]

=
[
I − D−1/2A fD−1/2 −D−1/2ArD

−1/2
r

−D−1/2
r ArD−1/2 I

] [
ui

ui

]

= λi

[
ui

ui

]

.

(34)

The constraint can be simplified as

(I − D−1/2A fD−1/2 − D−1/2ArD−1/2
r )ui = λiui . (35)

On the other hand, the original graph Laplacian satisfies

λiui = Lui

= (I − D−1/2AD−1/2)ui

= (I − D−1/2(A f + Ar )D−1/2)ui .

(36)

Comparing (35) and (36), D−1/2ArD−1/2 = D−1/2ArD
−1/2
r has to be satisfied. As a

result, LOS has the eigenvector
1√
2
[u�

i u�
i ]� associated with λi,OS = λi iff Dr = D,

which is the case of the bipartite double cover. In other cases, the eigenvalues and
eigenvectors of the oversampled graph are different from those of the original graph.
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Hence, we can obtain a different graph Fourier spectrum from that of the original
graph by using our approach with l < K . Additionally, Ar has columns and rows
whose elements are all zero when l = K − 1 or the remaining graph has isolated
vertices. In this case, the size of LOS is less than 2N .

In summary, the oversampled way shown in this chapter is a bipartite double cover
when l = K without vertical edges, and its graph Fourier spectrum is the same as
that of the original graph except for a trivial scaling. In contrast, the method with
l < K has different eigenvectors from those of the original graph, and its redundancy
is less than that of the bipartite double cover.

4 Examples of Graph Oversampling

Here, let us take a look at some examples of graph oversampling.

4.1 Graph Oversampling for Images

Images can be viewed as graph signals by connecting each pixel with its neighbor-
ing ones (for example four or eight-neighbors) [4, 12]. Assume the eight-neighbor
graph shown in Fig. 7a. Since this graph is four-colorable, it can be decomposed into
rectangular (Fig. 7b) and diagonal (Fig. 7c) bipartite subgraphs.

If a graph filter bank for bipartite graphs [11, 12] is applied to the signal on one
bipartite graph, the diagonal or rectangular connections will be ignored in a single
stage. Amultidimensional transform can be applied tomultiple bipartite subgraphs to
resolve the problem for the graph filter banks [11, 12]. However, we cannot perform
the transform that considers the rectangular anddiagonal connections simultaneously.

In contrast, the above problem can be (partially) solved by exploiting the graph
oversampling. For example,we can appenddiagonal edges to the rectangular bipartite
graph (if this is the foundation graph) while keeping the oversampled graph bipartite.

The overall transform is shown in Fig. 8. We can iterate this process on the LL
subband to realize a multilevel image decomposition.

The rectangular oversampled image graph is illustrated in Fig. 7d. In the figure, the
gray vertices are appended just above the white vertices of the rectangular bipartite
graph, and they have diagonal edges connecting them to the white vertices. If we
need the number of lowpass coefficients to be equal to the critically sampled case,
we can do so by appending vertices only on the HOS side. The number of the white
vertices, i.e., |LOS|, is exactly equal to that of the foundation bipartite graph.

In the second stage, the oversampling way is opposite; we can make the over-
sampled diagonal bipartite graph (Fig. 7e) for the decomposition. Thus, with the
oversampled bipartite graph, images are transformed with the rectangular graphs
plus diagonal connections as well as diagonal graphs plus rectangular connections.
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(a) (b) (c)

(d) (e)

Fig. 7 a Image graph. bRectangular bipartite subgraph. cDiagonal bipartite subgraph. dOversam-
pled rectangular bipartite graph. e Oversampled diagonal bipartite graph. The appended vertices
are black circles filled with blue, and the appended edges are black lines

Rectangular graph
oversampling

Diagonal graph
oversampling

Fig. 8 One-level decomposition of images. Sχr and Sχd where χ ∈ {L , H} denote the downsam-
pling operations of the rectangular and diagonal graphs, respectively

4.2 Graph Oversampling for Ring Graphs

Ring graphs with an even number of vertices are bipartite, but those with an odd
number of vertices are three-colorable as shown in Fig. 9a. We consider the effect of
the graph oversampling in this case. Let us assume that the original graph has 2n + 1
vertices, and F1, F2, and F3 are the white, light gray, and dark gray vertices illustrated
in Fig. 9a, respectively. We also assume that F1 and F3 each have n vertices and F2

has only one vertex.
The bipartite subgraphs B1 and B2 of this ring graph are shown in Fig. 9c, d. For

applying the multidimensional decomposition, a graph filter bank must be applied to
each bipartite graph separately. After the signal decomposition using the critically
sampled graph filter bank, the LL and HL channels each have n vertices, whereas
the LH channel has only one vertex (the HH channel is empty). Therefore, the
number of coefficients in each channel is heavily biased.
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(a) (b)

(c) (d) (e)

Fig. 9 a Ring graph (n = 4). b Oversampled bipartite graph. c Sets L1 and H1 of the bipartite
subgraph B1. d Sets L2 and H2 of the bipartite subgraph B2. e Sets LOS and HOS of the oversampled
bipartite graph

It is also clear that the transform for B1 treats all edges except the one between
v0 and v1, whereas the transform for B2 handles only the edge between v0 and v1.
Additionally, the relationship between v2 and v2n becomes very weak as a result of
the bipartite decomposition, in spite of their 3-hop neighborhood connection in the
original ring graph. In this bipartite decomposition, v2 and v2n are in the (2n − 2)-hop
neighborhood of B1 and are not connected to B2.

The graph oversampling alleviates that effect. The oversampled graph of the ring
graph with 2n + 1 vertices is shown in Fig. 9b, e, respectively. As shown in Fig. 9e,
LOS has vertices in F1 and F2, and HOS has those in F ′

1, F
′
2 and F3. Therefore, the

number of vertices in two disjoint sets are n + 1 and n + 2. The redundancy is only
(2n + 3)/(2n + 1), that is almost critically-sampled for a large n. In the oversampled
bipartite graph, all adjacent vertices are connected and all edges of the original graph
can be considered in a single stage transform. Furthermore, if we append vertical
edges, vertices v2 and v2n are in a 4-hop neighborhood and have a strong connection
like that of the original graph.

4.3 Signal Spread

To demonstrate the advantage of the oversampled bipartite graph, the signal spreads
of a critically sampled bipartite graph and an oversampled one are also compared.
The original graph in this casewas the Petersen graph, and it was decomposed into the
two bipartite subgraphs. The input signal is shown in Fig. 10a. The lowpass filtered



Oversampled Transforms for Graph Signals 239

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) (b)

(c) (d)

Fig. 10 Signal spread. a Input signal. b Lowpass filtered signal using the (non-bipartite) original
graph. c Lowpass filtered signal using bipartite subgraph. d Lowpass filtered signal using oversam-
pled bipartite graph

signals are shown in Fig. 10b, c, d. As expected, the spread of the signal after using
the oversampled bipartite graph is very similar to that of the original (non-bipartite)
graph.

5 Design Method of Oversampled Spectral Graph Filter
Banks

In this section, the details of the perfect reconstruction condition are described for
the oversampled graph transforms introduced in Sect. 2.2.

5.1 Transfer Function and Perfect Reconstruction Condition

Consider the M-channel graph filter bank shown in Fig. 11. After filtering with Ek in
(6), the first M/2 channels pass |L| signals, whereas the last ones keep |H | signals,
according to the coloring result of the bipartite graph. In the synthesis side, the
transformed coefficients are upsampled then filtering with Rk in (8) is performed.
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Fig. 11 M-channel oversampled graph filter bank

The reconstructed signal in the kth subband is represented as

f̂ k = Ug̃k(�)U�S�
k SkUh̃k(�)U� f . (37)

Therefore, the overall transfer function T is

T =
M−1∑

k=0

GkS�
k SkHk

= 1

2

M−1∑

k=0

GkHk + 1

2

M/2−1∑

�=0

(GM/2+�I′NHM/2+� − G�I′NH�),

(38)

where

[I′N ]mm =
{
1 if f (m) belongs to H

−1 if f (m) belongs to L .
(39)

In (38), 1
2

∑M−1
k=0 GkHk corresponds to the main graph frequency, and the remaining

term corresponds to aliasing. Consequently, the perfect reconstruction condition is
represented as

1

2

M−1∑

k=0

GkHk = I

1

2

M/2−1∑

�=0

(GM/2+�I′NHM/2+� − G�I′NH�) = 0.

(40)

By utilizing the aliasing effect [11, 12] I′uiu�
i = u ju�

j I
′, where λ j = 2 − λi , the

above condition can be rewritten as the filter condition as follows:

M−1∑

k=0

g̃k(λ)̃hk(λ) = 2 (41)

M/2−1∑

k=0

g̃k(λ)̃hk(2 − λ) − g̃k+M/2(λ)̃hk+M/2(2 − λ) = 0 (42)
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for any λ. The latter equation is valid if we choose g̃k(λ) = h̃k+M/2(2 − λ) and
g̃k+M/2(λ) = h̃k(2 − λ). Accordingly, (41) becomes

M/2−1∑

k=0

g̃k(λ)̃hk(λ) + g̃k(2 − λ)̃hk(2 − λ) = 2. (43)

As a result, the product filter p̃k(λ) := g̃k(λ)̃hk(λ) must satisfy the following condi-
tion:

M/2−1∑

k=0

p̃k(λ) + p̃k(2 − λ) = 2. (44)

5.2 Filter Design

For simplicity, we consider the case of M = 4. It can be easily generalized for
larger M .

Let us define q̃(λ) := p̃0(λ) + p̃1(λ). For M = 4, (44) is rewritten as

q̃(λ) + q̃(2 − λ) = 2. (45)

This equation is the same as that of a two-channel biorthogonal graph filter bank
[11]. Therefore, the design problem boils down to separating the critically sampled
product filter q̃(λ) into lowpass and bandpass (Fig. 12) filters p̃0(λ) and p̃1(λ) such
that the sum of filters is q̃(λ).

Let us assume that a lowpass product filter p̃0(λ) is an arbitrarily chosen low-pass
filter with K zero at λ = 0. By changing the variable of λ = 1 + l [11], p̃0(1 + l)
can be expressed as

p̃0(1 + l) = (1 + l)K
(

J0∑

m=0

αml
m

)

, (46)

where αm is an arbitrary parameter and K + J0 is the filter order.
Following [11], q̃(1 + l) has the degree 2K − 1 and its even degree must be zero

from the halfband condition. Hence, q̃(1 + l) is represented as

Fig. 12 Four-channel
product filter example

21

2
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q̃(1 + l) = (1 + l)K
(

1 +
K−1∑

m=1

rml
m

)

= 1 +
K−1∑

n=0

c2n+1l
2n+1, (47)

which is, of course, the same as that in [11] and has a unique solution satisfying (45).
Finally, the remaining product filter p̃1(λ) can be defined as follows:

p̃1(1 + l) = q̃(1 + l) − p̃0(1 + l) = (1 + l)K
(

J1∑

m=0

βml
m

)

. (48)

Example: K = 2 zeros at l = −1
We assume J0 = 1. As in (46) and (48), p̃0(1 + l) and p̃1(1 + l) are

p̃0(1 + l) = (1 + l)2 (α0 + α1l) (49)

p̃1(1 + l) = (1 + l)2 (β0 + β1l) , (50)

where α0 and α1 are arbitrarily chosen parameters. Then, the sum of the product filter
q̃(1 + l) is defined as

q̃(1 + l) = 1

2
(1 + l)2(2 − l), (51)

which is an odd-order polynomial and it is the same product filter as that in [11]. To
guarantee the perfect reconstruction, β0 and β1 must be

β0 = 1 − α0

β1 = −
(

α1 + 1

2

)

.
(52)

That is, we can add free parameters (α0 and α1) to design a halfband filter, and this
will lead to better filter characteristics.

A similar derivation is possible for general M-channel graph filter banks. In that
case, the parameters for (M − 2)/2 product filters can be freely chosen, and the last
product filter can be designed so that the entire product filter q̃(λ) is a maximally flat
halfband filter.

5.3 Design Examples

As mentioned above, we can use arbitrary parameters to design filters. In what fol-
lows, we will use a sequential design method to obtain good filter banks:

1. Design h̃k(1 − l) and g̃k(1 − l) (k = 0, . . . , M/2 − 2) with k0 and k1 zeros
(where K = k0 + k1 in (46)–(47)) at l = 1 (λ = 2). They are represented as fol-
lows:
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h̃k(1 − l) = (1 − l)k0
J (h)
k∑

m=0

sh,k,ml
m

g̃k(1 − l) = (1 − l)k1
J (g)
k∑

m=0

sg,k,ml
m

(53)

where sh,k,m and sg,k,m are filter coefficients. i.e., the product filter p̃k(1 − l) =
g̃k(1 − l )̃hk(1 − l) can be represented as

p̃k(1 − l) = (1 − l)K

⎛

⎝
J (h)
k +J (g)

k∑

m=0

αk,ml
m

⎞

⎠ . (54)

The numbers of arbitrary parameters in h̃k(1 − l) and g̃k(1 − l) are J (h)
k and J (g)

k ,
respectively.
The filters are optimized by using the cost function of the stopband attenuation
shown below:

C(hk) = w0

∫

l∈ωp

(
√
2 − h̃k(1 − l))2dl + w1

∫

l∈ωs

h̃2k(1 − l)dl, (55)

where w0 and w1 are weights and ωp and ωs are defined as the passband and
stopband (−1 ≤ ωp, ωs ≤ 1), respectively.

2. Calculate the two-channel halfband filter pair q̃(1 − l) = q̃(λ) and q̃(1 + l) =
q̃(2 − λ) with K zeros at l = 1 so that the pair satisfies (45).

3. Calculate the bandpass product filter1

p̃ M
2 −1(1 − l) = q̃(1 − l) −

M/2−2∑

k=0

p̃k(1 − l)

= (1 − l)K p̃′
M
2 −1(1 − l).

(56)

4. Factorize p̃ M
2 −1(1 − l) into two bandpass filters h̃ M

2 −1(1 − l) and g̃ M
2 −1(1 − l).

Test all combinations of roots as long as both bandpass filters have real-
valued coefficients, and select the best combination, i.e., the filters minimizing
C (̃h M

2 −1) + C(g̃ M
2 −1).

Figure13 shows an example of oversampled graph filter banks. The arbitrary
lowpass filters h̃0(λ) and g̃0(λ) are designed to have degree 10 and 11, respectively.

1There always exists q̃(1 − l) which satisfies the perfect reconstruction condition (45) [11]. There-
fore, p̃ M

2 −1(1 − l) also has a unique solution with real coefficients as long as all of the arbitrary
design filters have real coefficients. Additionally, since the perfect reconstruction condition is only
imposed on p̃ M

2 −1(1 − l), J (h)
k and J (g)

k in (53) can be set arbitrarily regardless of K .
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Fig. 13 Four-channel oversampledgraphfilter banks. From left to right: (k0, k1) = (2, 2) and (4, 4).
Top row: analysis filter bank (black lines indicate graphBior(6, 6) [11]). Bottom row: halfband filters

We used −1 ≤ ωp ≤ −0.84 and −0.75 ≤ ωs ≤ 1. For comparison, the frequency
responses of the critically sampled graphBior(6, 6) [11] are also plotted. They have
13-taps for the lowpass filter and 12-taps for the highpass filter. It is clear that the
oversampled lowpass filter has a sharper transition band and amore uniform response
in the passband than the critically sampled graph filter banks have. In the following
experiments, we use the oversampled filter bank with (k0, k1) = (4, 4) zeros.

6 Experimental Results

In this section, several experiments are shown to numerically compare the perfor-
mance of oversampled graph transforms.
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6.1 Image Processing

First of all, nonlinear approximation of images is performed to compare the graph-
based methods and traditional image processing. As the traditional methods, the
standard separable CDF 9/7 wavelet filter bank [5] and the Laplacian pyramid for
regular signals [3] have been selected. The Laplacian pyramid for regular signals
used 9/7 filters and a reconstruction scheme using the pseudo inverse [6].

For graph-based methods, the critically sampled graphBior filter bank [11], the
Laplacian pyramid for graph signals [19], and the graph oversampling followed by
the graphBior filter bank have also been compared. The graph-based methods used
the same filters (graphBior(5, 5) [11]).

The graphBior used an edge-aware image graph [10]. The edge-aware image
graphs were made as follows. The links around the edges of the images are clas-
sified into regular or less-reliable links. They were determined by checking that
the difference in pixel intensity between the edge pixels is more than or less than a
certain threshold. The weights of less-reliable links are set to zero or reduced to a
value lower than those of the regular links (Fig. 7a, b, c). For example, the edge-aware
image graphs of Fig. 14a are shown in Fig. 14b, c. The graph Laplacian pyramid used
the same graph and downsampling operation as graphBior for the lowpass channel.

(a)

(d) (e)

(b) (c)

Fig. 14 a Original image. b Edge-aware rectangular bipartite graph. The solid and dashed lines are
regular and less-reliable links, respectively. c Edge-aware diagonal bipartite graph. d Oversampled
edge-aware rectangular bipartite graph. The black lines are additional edges. The dashed black
lines indicate vertical edges. The red vertices contain the lowpass component, and the blue vertices
contain the highpass component after downsampling. eOversampled edge-aware diagonal bipartite
graph
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The graph oversampling used the oversampled edge-aware image graph [14]. In
this case, on the basis of the edge-aware image bipartite graph, the vertices and
the links are added along the edges: (1) diagonal direction regular links are added
to the edge-aware rectangular graph and (2) rectangular direction regular links are
added to the edge-aware diagonal graph. For instance, the oversampled graphs for
the rectangular and diagonal bipartite graphs of Fig. 14a are shown in Fig. 14d, e.
The critically sampled graph filter banks are applied to the signals on these graphs
using the method described in Sect. 4.1.

Table1 lists the PSNRs of the reconstructed images, i.e., reconstructions from all
lowpass coefficients and some fraction of the highpass coefficients after the three-
level decomposition. Since the fraction of highpass coefficients is relative to the size
of the original image, the number of the lowpass and highpass coefficients used for
the reconstruction is the same for all methods. However, the ratio of the remaining
highpass coefficients to the total number of highpass coefficients varies since the
Laplacian pyramid and the proposed method are redundant transforms. In spite of
this, the oversampled transform performed better than the other methods, including
graphBior, in most cases. It can be seen that the vertical edges provide significant
gains.

Figures15 and 16 show images reconstructed from all lowpass coefficients and
3% of the highpass coefficients. The standard CDF 9/7 and Laplacian pyramid for
regular signals did not take into account the edge information, and as a result, the
reconstructed images were blurred around the edges. Since the graph-based trans-
forms consider the rectangular and/or diagonal edges, they preserve the edges well.
We can see that blurring and ringing artifacts around the edges in the reconstructed

(a) Original (b) 9/7 filter (c) Laplacian pyramid

(d) GraphBior (e)
pyramid

(f) GraphBior + Graph
oversampling w/o
vertical edges

(g) GraphBior + Graph
oversampling w
vertical edges

Graph Laplacian

Fig. 15 Synthetic images from all lowpass coefficients and 3% of the highpass coefficients after a
three-level decomposition. Squared errors between the original and reconstructed images are shown
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(a) Original (b) 9/7 filter (c) Laplacian pyramid

(d) GraphBior (e) Graph Laplacian
pyramid

(f) GraphBior + Graph
oversampling w/o
vertical edges

(g) GraphBior + Graph
oversampling w
vertical edges

Fig. 16 Reconstructed Coins images from all lowpass coefficients and 3% of the highpass coeffi-
cients after a three-level decomposition. Zoomed-in parts are specified by black squares

image of the oversampled transform are greatly suppressed compared with other
graph-based transforms.

6.2 Denoising of Graph Signals

The detailed experiments of graph signal denoising are shown. Two synthetic input
signals on the Minnesota Traffic and Yale Coat of Arms graphs are, respectively,
shown in Figs. 17a and 18a. Both signals are localized in the vertex domain, i.e.,
they have two signal values f [i] ∈ {1,−1} and the regions for f [i] = 1 and −1
are concentrated according to the coordinates of the vertices. The input signals are
corrupted by additive white Gaussian noise with the standard deviation σ .

For the proposed method, we applied the critically sampled graphBior filter bank
(abbreviated as graphBiorwithOSGLM) [11] or the four-channel oversampled graph
filter bank (abbreviated as OSGFB with OSGLM) [22] on oversampled graphs.

We compared the above two methods with the regular one-dimensional wavelet
sym8 with one-level and five-level decompositions, graphBior(6, 6) (graphBior with
CSGLM) [11], the Laplacian pyramid for graph signals (GLP) [19], the spectral
graph wavelet transform (SGWT) with three scales [8], graphBior with the bipartite
double cover (graphBior with BDC), and the four-channel oversampled graph filter
bank with the bipartite graph decomposition (OSGFB with CSGLM) [22, 23].
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(a) Original signal (b) Noisy observation (c) sym8 (1 level) (d) sym8 (5 level)

(e) graphBior with CS-
GLM

(f) graphBior with
BDC

(g) graph Laplacian
pyramid

(h) SGWT

(i) OSGFB with CS-
GLM

(j) graphBior with OS-
GLM

(k) OSGFB with CS-
GLM

Fig. 17 Denoising results of Minnesota Traffic graph. Zoomed-in parts are specified by black
squares

Since sym8 treated the signal as a vector, it did not take into account the structure
of the signals. For a fair comparison, the graph Laplacian pyramid used the same
bipartite graphs and downsampling operation as those of graphBior for the lowpass
channel.

All of the graph-based methods performed one-level transforms. That is, graph-
Bior, the oversampled graph filter bank and the graph Laplacian pyramid performed
two-dimensional transforms by using two subgraphs, whereas the proposed methods
performed one-dimensional transforms by using the oversampled bipartite graph.
The lowest frequency subband was kept, and the other high-frequency subbands
were hard-thresholded with the threshold T = 3σ .

Table 2 compares the SNRs after denoising. The graph-based transforms outper-
formed the regular wavelet transforms. OSGFB with OSGLM shows better perfor-
mance than other graph-based transforms in most cases. It was especially superior
to OSGFB with CSGLM and SGWT on the Minnesota Traffic graph, in spite of
it having less redundancy. In comparison with the methods using graphBior filters,
graphBior with BDC and graphBior with OSGLM have significantly better SNR.
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(a) Original signal (b) Noisy signal (c) sym8 1 level (d) sym8 5 level

(e) graphBior with CS-
GLM

(f) graphBior with
BDC

(g) graph Laplacian
pyramid

(h) SGWT

(i) OSGFB with CS-
GLM

(j) graphBior with OS-
GLM

(k) OSGFB with CS-
GLM

Fig. 18 Denoised results of the Yale Coat of Arms graph. Zoomed-in parts are specified by black
squares

Moreover, graphBior with OSGLM had similar levels of performance as graphBior
with BDC, especially for the strong noise case, despite that its redundancy is less
than graphBior with BDC.

Figures 17 and 18 show the denoised signals of the Minnesota Traffic graph and
the Yale Coat of Arms graph for σ = 1/2, respectively. Since the regular signal
processing did not take into account the structure of the signals, the signals denoised
by sym8 were still noisy. We can see that OSGFB with OSGLM performed better
than the other transforms.
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7 Conclusion

This chapter introduced the oversampled graph transforms. By using the oversam-
pled graph Laplacian, any graphs can be converted into an oversampled bipartite
graphs. It has a close relationship with bipartite double cover. The perfect recon-
struction condition and the design method of the oversampled graph filter banks
were also shown that can be used arbitrary graph filters as a component. In numeri-
cal experiments, it has been shown that the oversampled graph transforms can have
a good trade-off between the performance and redundancy. Since there are several
new approaches in graph transforms and sampling [1, 9, 15, 24, 27], new methods
to design oversampled graph transforms will be investigated in the future.
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Local-Set-Based Graph Signal Sampling
and Reconstruction

Yuantao Gu and Xiaohan Wang

Abstract For a graph signal in the low-frequency subspace, the missing data can be
reconstructed through the sampled data by exploiting the smoothness of the graph
signal. In this chapter, the concepts of local set and centerless local set are introduced
and several iterative methods are presented to reconstruct bandlimited graph signal
from decimated data or measured signal. These algorithms are built on frame theory
and the concepts of (centerless) local sets, based onwhich several frames and contrac-
tion operators are provided. We then prove that the reconstruction methods converge
to the original signal under certain conditions and demonstrate the newmethods lead
to a significantly faster convergence compared with the baseline method. Further-
more, the correspondence between graph signal sampling and time-domain irregular
sampling is analyzed comprehensively, which may be helpful to future works on
graph signals. Numerical experimental results demonstrate the effectiveness of the
reconstruction methods in various sampling geometries, imprecise priori knowledge
of cutoff frequency, and noisy scenarios.

1 Introduction

1.1 Background, Motivation, and Organization

In recent years, the increasing demands for signal and information processing in
irregular domains have resulted in an emergingfield of signal processing on graphs [1,
2]. Bringing a newperspective for analyzing data associatedwith graphs, graph signal
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processing has found potential applications in sensor networks, image processing,
semi-supervised learning, and recommendation systems.

Smooth signals or approximately smooth signals over graph are common in prac-
tical applications [2–5], especially for those cases in which the graph topologies are
constructed to enforce the smoothness property of signals [6]. It is a natural problem
to reconstruct smooth signals from partial observations on a graph in practical appli-
cations [2, 3]. The commonly used observation model is to decimate some entries
on only a part of the vertices, i.e. samples of the graph signal.

In addition to the traditional scheme of decimation, the graph signal may be
sampled by using local measurement. For example, in a scenario of environment
monitoring by wireless sensor networks, especially, a sensor network with the hier-
archical architecture that is partitioned into multiple clusters. In each cluster, there is
a node acting as the head and gathering data from all sensors inside the cluster. The
collected data within a cluster are aggregated by the cluster head, which plays the
role as a local measurement and can be naturally obtained. Retrieving the raw data
of all the nodes using the measured data from all the clusters can be modeled as a
problem of smooth graph signal reconstruction from local measurements.

In this chapter, we will introduce some efficient methods to solve the problem of
reconstructing a bandlimited graph signal from known samples. The smooth signal
is supposed to be within a low-frequency subspace. Several iterative methods are
demonstrated to recover the missing entries from known decimations or measure-
ments.

In order to improve the convergence rate of bandlimited graph signal reconstruc-
tion, iterative weighting reconstruction (IWR) and iterative propagating reconstruc-
tion (IPR) are introduced based on a new concept of local set [7]. As the foundation
of reconstruction methods, several local-set-based frames and contraction operators
are introduced. Both IWR and IPR are theoretically proved to uniquely reconstruct
the original signal under certain conditions. Compared with existing methods, the
condition of the new reconstruction methods is easy to determine by local parame-
ters. The correspondence between graph signal sampling and time-domain irregular
sampling is analyzed comprehensively, which will be helpful to future works on
graph signals. Experiments show that IWR and IPR converge significantly faster
than available methods. Besides, experiments on several topics including sampling
geometry and robustness are conducted.

Based on generalizing the graph signal sampling scheme from decimation to
measurement, we then introduce a new algorithm named iterative local measure-
ment reconstruction (ILMR) to reconstruct the original signal from limited mea-
surements [8]. It is proved that if certain conditions are satisfied the bandlimited
signal can always be exactly reconstructed from its local measurements. Moreover,
we demonstrate that the traditional decimation scheme, which samples by vertex,
along with its corresponding reconstruction algorithm is a special case of this work.
Based on the performance analysis of ILMR, we find that the local measurement
scheme is more robust than decimation in noisy scenarios. As a consequence, the
optimal local weights in different noisy environments are discussed. The proposed
sampling scheme has several advantages. First, it will benefit in the situation where
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local measurements are easier to obtain than the samples of specific vertices. Second,
the proposed local measurement scheme is more robust against noise.

The rest of this chapter is organized as follows. In the later part of this section, some
basic concepts on graph signal processing and frame theory are introduced. In Sect. 2,
the ideas of local set and centerless local set are presented and the traditional sampling
scheme is generalized to local measurement. In Sect. 3, some important definitions
are introduced and local-set-based frames are proved. In Sect. 4, two local-set-based
reconstruction methods IWR and IPR are proposed and their convergence behavior
is analyzed, respectively. In Sect. 5, the reconstruction algorithm ILMR is proposed
and its convergence is proved. Section6 shows the relationship between graph signal
sampling and time-domain irregular sampling and Sect. 7 presents some numerical
experiments. The chapter is concluded in Sect. 8.

1.2 Basic Concepts

1.2.1 Graph Laplacian and Graph Fourier Analysis

An undirected graph is denoted as G(V,E), where V denotes a set of N vertices
and E denotes the edge set. If one real number is associated with each vertex, these
numbers of all the vertices are collectively referred as a graph signal. A graph signal
can also be regarded as a mapping f : V → R.

The graph Laplacian is extensively exploited in spectral graph theory [9] and
signal processing on graphs [1]. For an undirected graph G(V,E), its Laplacian is

L = D − A,

where A is the adjacency matrix of the graph and D is a diagonal degree matrix with
the diagonal elements as the degrees of corresponding vertices.

The Laplacian is a real symmetric matrix, and all the eigenvalues are nonnegative.
Supposing {λk} are the eigenvalues, and {uk} are the corresponding eigenvectors, the
graph Fourier transform is defined as the expansion of a graph signal f in terms of
{uk}, as

f̂ (k) = 〈f,uk〉 =
N∑

i=1

f (i)uk(i),

where f (i) denotes the entry of f associated with vertex i . Similar with classical
Fourier analysis, eigenvalues {λk} are regarded as frequencies of the graph, and
f̂ (k) is regarded as the frequency component corresponding to λk . The frequency
components associated with smaller eigenvalues can be called low-frequency part,
and those associated with larger eigenvalues form the high-frequency part.
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1.2.2 Bandlimited Graph Signal Sampling and Reconstruction

For a graph signal f ∈ R
N on a graphG(V,E), f is calledω-bandlimited if the spectral

support of f is within [0, ω]. That is, the frequency components corresponding to
eigenvalues larger than ω are all zero. The subspace of ω-bandlimited signals on
graph G is a Hilbert space called Paley-Wiener space, denoted as PWω(G) [10].

We consider the sampling and reconstruction of bandlimited signals on undirected
and unweighted graphs. Suppose that for a bandlimited graph signal f ∈ PWω(G),
only { f (u)}u∈S on the sampling set S ⊆ V are known, the problem of graph signal
reconstruction from decimation is to obtain the original signal f from the sampled
data. The general case of reconstruction from measurement will be explained later.

There are many useful theoretical results on the problem of bandlimited graph
signal sampling and reconstruction.

Definition 1 (uniqueness set, [10]) A set of vertices S ⊆ V(G) is a uniqueness set for
space PWω(G) if it holds for all f, g ∈ PWω(G) that f (u) = g(u),∀u ∈ S implies
f = g.

According to this definition, any f ∈ PWω(G) could be uniquely determined by
its entries on a uniqueness set S. As a consequence, f may be exactly recovered if
the sampling set is a uniqueness set. Readers are suggested to refer to [3, 10, 11] for
more details on uniqueness set.

Amethod called iterative least square reconstruction (ILSR) is proposed to recon-
struct bandlimited graph signals in [12] as the following theorem.

Theorem 1 ([12]) If the sampling set S is a uniqueness set for PWω(G), then the
original signal f can be reconstructed using the sampled data { f (u)}u∈S by ILSR
method,

f (k+1) = Pω(f (k) + JTJ(fdu − f (k))), (1)

where Pω is the projection operator onto PWω(G), and J denotes the downsampling
operator and fdu is the downsampled signal.

ILSR is derived from the method of projection onto convex sets (POCS). Its
convergence is proved using the fixed point theorem of contraction mapping.

1.2.3 Frame Theory and Signal Reconstruction

The problem of signal sampling and reconstruction is closely related to frame theory.

Definition 2 (frame and frame bound) A family of elements {fi }i∈I is a frame for a
Hilbert space H, if there exist constants 0 < A ≤ B such that

A‖f‖2 ≤
∑

i∈I
|〈f, fi 〉|2 ≤ B‖f‖2, ∀f ∈ H,

where A and B are called frame bounds.



Local-Set-Based Graph Signal Sampling and Reconstruction 259

Definition 3 (frame operator) For a frame {fi }i∈I, frame operator S : H → H is
defined as

Sf =
∑

i∈I
〈f, fi 〉fi .

One may readily read that AI 
 S 
 BI for H, where I denotes the identity
operator and AI 
 S means that S − AI is positive semidefinite. Consequently, S is
always invertible and its inverse could be expanded into series in some special cases.
For instance, one has

f = S−1Sf = μ

∞∑

j=0

(I − μS) jSf,

where μ is a scalar satisfying ‖I − μS‖ < 1. This inspires that f could be iteratively
reconstructed from any initial point f (0) by

f (k+1) = μSf + (I − μS)f (k)

= f (k) + μS(f − f (k)), (2)

with the error bound satisfying

‖f (k) − f‖ ≤ ‖I − μS‖k‖f (0) − f‖.

Obviously, recursion (2) cannot be entitled reconstruction because the original signal
to be recovered is involved in the iteration. However, it provides a prototype for
practical methods, which will be discussed in Sect. 4.

The parameter μ, which could be deemed as a step-size, determines the conver-
gence rate. If one chooses μ = 1/B, then ‖I − μS‖ ≤ 1 − A/B < 1, and the error
bound of iteration (2) will shrink with the exponential of (1 − A/B). A better choice
isμ = 2/(A + B), then ‖I − μS‖ ≤ (B − A)/(B + A), which leads to a faster con-
vergence rate [13]. For more information on frames, the reader are recommended to
refer to [14].

The following theorem demonstrates that a set of graph signals related to a unique-
ness set becomes a frame for PWω(G), which is a quite important foundation of this
chapter.

Theorem 2 ([10]) If the sampling set S is a uniqueness set for PWω(G), then
{Pω(δu)}u∈S is a frame for PWω(G), where Pω(·) is the projection operator onto
PWω(G), and δu is a δ-function whose entries satisfying

δu(v) =
{
1, v = u;
0, v �= u.
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2 Local Sets and Generalized Sampling Scheme

2.1 Local Sets and Centerless Local Sets

The concepts of local sets and centerless local sets for graph signal processing are
first proposed in [7, 8], respectively.

Definition 4 (local sets, [7]) For a sampling set S on graph G(V,E), assume that V
is divided into disjoint local sets {N(u)}u∈S associated with the sampled vertices. For
each u ∈ S, denote the subgraph of G restricted toN(u) by GN(u), which is composed
of vertices inN(u) and edges between them inE. For each u ∈ S, its local set satisfies
N(u)  u, and the subgraph GN(u) is connected. Besides, {N(u)}u∈S should satisfy

N(u) ∩ N(v) = ∅, ∀u, v ∈ S and u �= v,

and ⋃

u∈S
N(u) = V.

Definition 5 (centerless local sets, [8]) For a graph G(V,E), assume that disjoint
local sets {Ni }i∈I is a partition of V, where I denotes the index set of divisions.
Each subgraph GNi , which denotes the subgraph of G restricted to Ni , is connected.
Besides, {N(u)}u∈S should satisfy

Ni ∩ N j = ∅, ∀i, j ∈ I and i �= j,

and ⋃

i∈I
Ni = V.

According to their definitions, both the local sets and the centerless local sets are
disjoint partitions of a connected graph. The difference is that the local sets {N(u)}u∈S
are defined with respected to a sampling set S, while the centerless local sets {Ni }i∈I
is no more than a partition. Please refer to Fig. 1 for visualization.

Fig. 1 Illustrations of an
example graph, one of the
divisions of local sets (left),
and that of centerless local
sets (right)

1

2 3

u

v w

v

u

w
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Remark 1 One should notice that the local sets and the centerless local sets play dif-
ferent roles in graph signal sampling and reconstruction. In the traditional decimation
scheme, the local sets are designed for specific reconstruction algorithms and have
no effect in the sampling process. The theoretical foundation and the local-set-based
reconstruction algorithms will be introduced in Sect. 4, respectively. On the contrary,
the centerless local sets are elaborated for a new type of generalized sampling, or
local measurement, and determine the performance of reconstruction, which will be
presented in Sect. 5.

In order to describe the property of (centerless) local sets, we introduce several
measures, which are useful in the following analysis.

Definition 6 (maximal size, [7]) Themaximal size of local sets {N(u)}u∈S is defined
as

Nmax = max
u∈S

|N(u)|,

where | · | denotes cardinality.
Definition 7 (maximal multiple number, [7]) Denote

T(u) = SPT(GN(u))

as the shortest-path tree of GN(u) rooted at u. For v connected to u in T(u), Tu(v) is
the subtree which v belongs to when u and its associated edges are removed from
T(u). The maximal multiple number of N(u) is defined as

K (u) = max
(u,v)∈E(T(u))

|Tu(v)|,

where E(T(u)) is the edge set of graph T(u).

Remark 2 By the definition of K (u), it is ready to check that

K (u) ≤ |N(u)| − dN(u)(u) ≤ |N(u)| − 1, (3)

where dN(u)(u) is the degree of u in the subgraph GN(u). For simplicity, one may
introduce an approximation for easy calculation of K (u) by

K̃ (u) = |N(u)| − dN(u)(u). (4)

Definition 8 (radius, [7]) The radius ofN(u) is the maximal distance from u to any
other vertex in GN(u), which is denoted as

R(u) = max
v∈N(u)

dist(v, u).
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Definition 9 (diameter, [8]) For a centerless local set Ni , its diameter is defined as
the largest distance of two vertices in GNi , i.e.,

Di = max
u,v∈Ni

dist(u, v).

2.2 Generalized Sampling: From Decimation to
Measurement

We consider a new sampling scheme of measuring by using the concept of centerless
local sets. In this scheme, all the vertices in a graph are partitioned into centerless
local sets. In each set, there is no specific sampling vertex, but all vertices in this
set contribute to produce a measurement. Accordingly, a local weight is defined to
balance the contribution of all vertices in this set and to obstruct the energy from
other parts of the graph.

Definition 10 (local weight, [8]) A local weight ϕi ∈ R
N associated with a center-

less local set Ni satisfies

ϕi (v)

{
≥ 0, v ∈ Ni

= 0, v /∈ Ni

and ∑

v∈Ni

ϕi (v) = 1.

We arrive at the definition of local measurement by linearly combining the signals
in each centerless local set using preassigned local weights.

Definition 11 (local measurement, [8]) For given centerless local sets and the asso-
ciated local weights {(Ni ,ϕi )}i∈I, a set of local measurements for a graph signal f
is { fϕi

}i∈I, where
fϕi

� 〈f,ϕi 〉 =
∑

v∈Ni

f (v)ϕi (v).

The sampling schemes of decimation and of local measurement are visualized in
Fig. 2. Compared with decimation, local measurement can be regarded as a gener-
alized sampling scheme. The local measurement scheme is to obtain linear combi-
nations of the signals in each local set, while the decimation scheme is to obtain the
signals on selected vertices in the sampling set S. Both sampling schemes take the
inner products of the original signal and specified local weights. Decimation can be
regarded as a special case of local measurement, in which only the sampled vertices
have weight 1 and other vertices in centerless local sets have weights 0.
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Fig. 2 An illustration of the traditional sampling (decimation) scheme versus the generalized sam-
pling (local measurement) scheme. For each centerless local set, a local measurement is produced
by a linear combination of signals associated with vertices within this set

Remark 3 Wehighlight that the sets,weights, andmeasurements are local rather than
global, which comes from some natural observations. It is partially because locality
and local operations are basic features of graphs and complex networks. Moreover,
signal processing on graphs may be dependent on distributed implementation, where
local operations are more feasible than global ones.

3 Local-Set-Based Frame and Contraction

Based on frame theory and the introduced local sets, we define two operators named
local propagation and local-measurement-based propagation. Both of them are
proved to have contraction property. Then several local-set-based frames are intro-
duced, as the theoretical foundation of the local-set-based reconstruction methods in
Sect. 4.

3.1 Local Propagation and Contraction

Definition 12 (local propagation, [7]) For a given sampling set S and associated
local sets {N(u)}u∈S on a graph G(V,E), the local propagation G is defined by
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Gf = Pω

(
∑

u∈S
f (u)δN(u)

)
(5)

=
∑

u∈S
f (u)Pω

(
δN(u)

)
, (6)

where δN(u) denotes the δ-function of set N(u) with entries

δN(u)(v) =
{
1, v ∈ N(u);
0, v /∈ N(u).

As its name shows, operation G first propagates the energy locally and evenly to
the local set that each sampled vertex belongs to, and then projects the new signal to
be ω-bandlimited, please refer to (5). These two steps could be merged into one, by a
bandlimited local propagation of Pω

(
δN(u)

)
, please refer to (6). Local propagation,

which provides a fast solution to adequately fill all unknown entries by sampled data,
makes the local-set-based reconstruction feasible.

As an important theoretical foundation, the following lemma gives the condition
that (I − G) is a contraction mapping.

Lemma 1 ([7]) For a given set S and associated local sets {N(u)}u∈S on a graph
G(V,E), ∀ω < 1/Q2

max, the operator (I − G) is a contraction mapping for PWω(G),
where

Qmax = max
u∈S

√
K (u)R(u), (7)

where K (u) and R(u) denote the maximal multiple number and the radius of N(u),
respectively.

3.2 Local Measurement-Propagation and Contraction

Definition 13 ([8]) For a given centerless local sets and the associated weights
{(Ni ,ϕi )}i∈I on a graph G(V,E), an operator Ĝ is defined by

Ĝf = Pω

(
∑

i∈I
〈f,ϕi 〉δNi

)
(8)

=
∑

i∈I
〈f,ϕi 〉Pω(δNi ), (9)

where δNi is defined as

δNi (v) =
{
1, v ∈ Ni ;
0, v /∈ Ni .

(10)
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For a graph signal, the proposed operator is to calculate the local measurement
in each centerless local set, then to assign the local measurement to all the vertices
in that set, and finally to filter out the component beyond the bandwidth, i.e., (8).
Equivalently, it denotes a linear combination of all low-frequency parts of {δNi }i∈I,
with the combination coefficients as the local measurements of corresponding local
sets, i.e., (9).

The following lemma shows that the proposed operator is bounded in PWω(G)

under certain conditions.

Lemma 2 ([8]) For given centerless local sets and the associated weights
{(Ni ,ϕi )}i∈I, ∀f ∈ PWω(G), the following inequality holds,

‖f − Ĝf‖ ≤ Cmax
√

ω‖f‖,

where
Cmax = max

i∈I
√|Ni |Di ,

| · | denotes cardinality, and Di is defined in Definition9.

Lemma2 shows that the operator (I − Ĝ) is a contraction mapping in PWω(G) if
ω is less than 1/C2

max.
The process of local propagation and local-measurement-based propagation are

illustrated in Fig. 3.

3.3 Weighted Frame and Local Set Frame

Based on frame theory and the definition of local set, we could prove that theweighted
lowpass δ-function set is a frame for PWω(G) and estimate its bounds.

Lemma 3 ([7]) For a given sampling set S and associated local sets {N(u)}u∈S on
a graph G(V,E), ∀ω < 1/Q2

max, {Pω(δu)}u∈S is a frame for PWω(G) with bounds
(1 − γ )2/Nmax and 1, where Qmax is defined in (7) and

γ = Qmax
√

ω. (11)

Beyond Lemma3, we further explore the weighted lowpass δ-functions is also a
frame for PWω(G) by appropriate weights.

Lemma 4 ([7]) For a given sampling set S and associated local sets {N(u)}u∈S
on a graph G(V,E), ∀ω < 1/Q2

max, {√|N(u)|Pω(δu)}u∈S is a frame for PWω(G)

with bounds (1 − γ )2 and (1 + γ )2, where Qmax and γ are defined in (7) and (11),
respectively.
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Fig. 3 The illustrations of local propagation and local-measurement-based propagation

Bandlimited graph signals can be iteratively reconstructed using a frame for
PWω(G), but the frame bounds play critical roles on the convergence rate. By given
appropriate weights to the elements in a frame, a new frame is obtainedwith a sharper
bounds estimation, which may lead to a faster convergence. The related algorithms
will be proposed in Sect. 4.

To end up this section, we present a general theoretical result which may inspire
further study on frame-theory-based graph signal processing.

Proposition 1 ([7]) For a given sampling set S and associated local sets {N(u)}u∈S
on a graph G(V,E), ∀ω < 1/Q2

max, {Pω(δN(u))}u∈S is a frame for PWω(G) with
bounds (1 − γ )2 and Nmax, where Qmax and γ are defined in (7) and (11), respec-
tively.
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Table 1 The frames in space PWω(G),∀ω < 1/Q2
max, and their bounds

Frame Lower bound Upper bound

{Pω(δu)}u∈S (1 − γ )2/Nmax 1

{√|N(u)|Pω(δu)}u∈S (1 − γ )2 (1 + γ )2

{Pω(δN(u))}u∈S (1 − γ )2 Nmax

Proposition1 implies a strong relationship between frame and sampling recon-
struction. In fact local propagation is not a standard frame operator, because two
signal sets {Pω(δu)}u∈S and {Pω(δN(u))}u∈S are involved. However, under the same
condition with the contraction of operator (I − G), both sets can be proved to be
frame, and either of them can be used to reconstruct the original signal by the corre-
sponding frame operator. All frames discussed in this section are listed in Table1.

4 Local-Set-Based Graph Signal Reconstruction

Using frame theory, ILSR is first represented in the frame-based framework. Based
on the introduced local sets, two methods Iterative Weighting Reconstruction (IWR)
and Iterative Propagating Reconstruction (IPR) are presented in this section. They
have been proved of convergence with theoretical analysis.

4.1 Iterative Least Square Reconstruction

In [7], the ILSR algorithm [12] in the form of (1) was presented into frame-based
framework for the first time. According to Definition3 and Lemma3, frame operator
associated with frame {Pω(δu)}u∈S is

Sf =
∑

u∈S
〈f,Pω(δu)〉Pω(δu). (12)

For f ∈ PWω(G), one has Pω(f) = f and yields

〈f,Pω(δu)〉 = 〈Pω(f), δu〉 = 〈f, δu〉 = f (u).

Consequently, frame operator (12) is reduced to

Sf =
∑

u∈S
f (u)Pω(δu). (13)
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Algorithm 1 Iterative Least Square Reconstruction.
1: Input: Graph G, cutoff frequency ω, sampling set S, sampled data { f (u)}u∈S;
2: Output: Reconstructed signal f (k);
3: Initialization:

4: f (0) = Pω

(
∑

u∈S
f (u)δu

)
;

5: repeat

6: f (k+1) = f (k) + Pω

(
∑

u∈S
( f (u) − f (k)(u))δu

)
;

7: until The stop condition is satisfied.

Delay

Lowpass 
Filtering

u
f u

k

u
f u f u

( )k

( 1)k

Decimation

k

u
f u

u
u

kf u f u

Fig. 4 Illustration of the iterations of ILSR

Utilizing (13) in (2), one may read that the original signal, whose unsampled values
are never needed in the iterative reconstruction, could be exactly recovered from its
entries on a uniqueness set. The reformulated ILSR method is displayed in Algo-
rithm1. The iteration process is visualized in Fig. 4.

4.2 Iterative Weighting Reconstruction

Using the weighted frame, an algorithm named iterative weighting reconstruction
(IWR) is presented in Proposition2 and its convergence is proved.
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Proposition 2 ([7]) For a given sampling set S and associated local sets {N(u)}u∈S
on a graph G(V,E), ∀f ∈ PWω(G), where ω < 1/Q2

max, f can be reconstructed by
the sampled data { f (u)}u∈S through the IWR method in Algorithm2, with the error
bound satisfying

‖f (k) − f‖ ≤
(

2γ

1 + γ 2

)k

‖f (0) − f‖,

where Qmax and γ are defined in (7) and (11), respectively.

Algorithm 2 Iterative Weighting Reconstruction.
1: Input: Graph G, cutoff frequency ω, sampling set S, neighbor sets {N(u)}u∈S, sampled data

{ f (u)}u∈S;
2: Output: Reconstructed signal f (k);
3: Initialization:

4: f (0) = 1

1 + γ 2 Pω

(
∑

u∈S
|N(u)| f (u)δu

)
;

5: repeat

6: f (k+1) = f (k) + 1

1 + γ 2 Pω

(
∑

u∈S
|N(u)|( f (u) − f (k)(u))δu

)
;

7: until The stop condition is satisfied.

The iteration process of IWR is visualized in Fig. 5. The idea of IWR is to attach
different weights to sampled vertices. The weights for vertex u is larger if its local
setN(u) has more vertices, in other words, the vertex u is more isolated or the region
around u has a lower sampling density. On the contrary, if the sampled vertices in a
region are very dense, less importance is allocated to them.

Corollary 1 ([7]) In Lemma4 and Proposition2, Qmax can be replaced by Q̃max,
which is defined as

Q̃max = max
u∈S

√
K̃ (u)R(u).

According to (3), for any u ∈ S we have K̃ (u) ≥ K (u), and then Q̃max ≥ Qmax.
In fact, K (u) is not easy to obtain for each given subgraph GN(u). However, K̃ (u)

is convenient to get and Q̃max is a practical choice, even though the bound is not as
accurate.



270 Y. Gu and X. Wang

Delay

Weighting

Lowpass 
Filtering

u
f u

k

u
f u f u

21 u
u

kf u f
u

u

21
k

u
u

f u f u
u

( )k

( 1)k

Decimation

k

u
f u

Fig. 5 Illustration of the iterations of IWR

4.3 Iterative Propagating Reconstruction

Iterative propagating reconstruction (IPR) is proposed as the result of the contraction
of the local propagation operator.

Proposition 3 ([7]) For a given sampling set S and associated local sets {N(u)}u∈S
on a graph G(V,E), ∀f ∈ PWω(G), where ω < 1/Q2

max, f can always be recon-
structed by its samples { f (u)}u∈S through the IPR method in Algorithm3, with the
error bound satisfying

‖f (k) − f‖ ≤ γ k‖f (0) − f‖,

where Qmax and γ are defined in (7) and (11), respectively.

Other than basic frame operators in IWR, IPR is based on the contraction of the
local propagation operator, in which two frames are involved. Strictly speaking, IPR
is not a frame-based method. IPR is closely related to local sets, which is one of the
main contributions of this work. The iteration process of IPR is visualized in Fig. 6.
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Algorithm 3 Iterative Propagating Reconstruction.
1: Input: Graph G, cutoff frequency ω, sampling set S, neighbor sets {N(u)}u∈S, sampled data

{ f (u)}u∈S;
2: Output: Reconstructed signal f (k);
3: Initialization:

4: f (0) = Pω

(
∑

u∈S
f (u)δN(u)

)
;

5: repeat

6: f (k+1) = f (k) + Pω

(
∑

u∈S
( f (u) − f (k)(u))δN(u)

)
;

7: until The stop condition is satisfied.
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Fig. 6 Illustration of the iterations of IPR

Remark 4 Similar to Proposition2, Qmax can also be replaced by Q̃max in Lemma2
and Proposition3, which is more practical to obtain.

Since 2γ
1+γ 2 > γ when 0 < γ < 1, the theoretical guarantee of IPR decays faster

than that of IWR. When γ approaches to 1, the two theoretical guarantees are close
to each other.



272 Y. Gu and X. Wang

4.4 Discussions

In this subsection, we will first talk about the determination of cutoff frequency.
Considering that both IWR and IPR are based on a division of the graph, i.e., local
sets, wewill then show two special sampling set and local sets, and discuss the choice
of local sets for general cases.

4.4.1 Intuitive Explanation of the Above Algorithms

As illustrated in Figs. 4, 5, and 6, the differences among ILSR, IWR, and IPR lie
in the way of their dealing with the residuals at the sampled vertices. In each iter-
ation the sampled residual

∑
u∈S( f (u) − f (k)(u))δu is directly projected onto the

ω-bandlimited space PWω(G) in ILSR. In IWR, the sampled residuals are multi-
plied by weights |N(u)| and then projected onto the low-frequency space. For IPR,
the sampled residuals are copied and assigned to the vertices in the corresponding
local sets and then the projection procedure is conducted.

Because of the weighting or propagating procedure, for each step the increment of
IWR or IPR is larger than that of ILSR. It may intuitively explain why the proposed
two algorithms both converge faster than ILSR. Besides, it is easy to see from Figs. 5
and 6 that the graph signal composed of the propagated residuals seems closer to
a low-frequency signal than the weighted residual, which means that the increment
of IPR remains more than that of IWR after the projection to the low-frequency
subspace. It may explain why IPR converges even faster than IWR.

4.4.2 Cutoff Frequency

According to Propositions2 and 3, the estimated convergence bounds of IWR and
IPR are related to the cutoff frequency and the topology of local sets. Adequately
estimating the cutoff frequency of the raw signal may accelerate the convergence of
reconstruction. For given S and {N(u)}u∈S, the maximal multiple number and radius
are to be calculated. Consequently, Qmax is determined. Therefore, a smaller known
ω leads to a smaller γ , then sharper error bounds of convergence are obtained for
both IWR and IPR, which may lead to a faster convergence. The choice of local sets
also affects the convergence performance, which will be discussed in the following
section.

In the local-set-based methods IWR and IPR, the theoretical maximal cutoff fre-
quency, below which the raw signal could be recovered, is much easier to obtain.
For given sampling set S and associated local sets {N(u)}u∈S, the maximal multiple
number and radius can be obtained locally, then Qmax and the cutoff frequency are
easy to be determined.
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4.4.3 Special Sampling Set and Local Sets

If the sampling set S = V, then |N(u)| = 1, K (u) = 0, and Qmax = 0. According to
Propositions2 and 3, any f satisfying ω < ∞ can be reconstructed by IWR and IPR,
which is a natural result.

Another extreme case is the sampling set S contains only one vertex and the cor-
responding local set is all the vertices in the graph. In this case, only constant signals
can be reconstructed from the sampled data, which means that only one discrete fre-
quencyω = 0 can satisfy the conditionω < 1/Q2

max. It is easy to understand because
only the signals with the same value for all the vertices can be reconstructed from
only a single sample. The analysis above is always true no matter which vertex is
chosen as the sampled one. Therefore, the following corollary gives an estimation
of the smallest positive eigenvalue of a graph.

Corollary 2 ([7]) For a graph Laplacian, its smallest positive eigenvalue λmin sat-
isfies

λmin ≥ max
u∈V(G)

1

K (u)R(u)
,

where K (u) and R(u) are defined in Definitions7 and 8, respectively, in which the
local set contains all the vertices of graph G, i.e., GN(u) = G.

4.4.4 On the Evaluation of Local Sets

According to the sufficient condition in Propositions2 and 3, a sampling set and the
associated local sets with a smaller Qmax usually lead to a wider range of bandlimited
signal which can be guaranteed to reconstruct. Besides, for a givenω, a smaller Qmax

leads to a better error bound of convergence, i.e., a smaller γ (for IPR) or 2γ /(1 + γ 2)

(for IWR). Therefore,when the graph topology is given, it is necessary to find a proper
sampling set S and the corresponding vertex division {N(u)}u∈S, which makes the
quantity Qmax as small as possible.

However, since the sufficient condition we give is rather conservative and not
very sharp, minimizing Qmax is only a rough way to obtain a better division of local
sets. In other words, there may be some better evaluation of local sets than Qmax.
Finding the optimal division of local sets is still an open problem and needs more
comprehensive study. Therefore we have not focused on how to construct local sets
to minimize Qmax in this paper. It may be done better when a sharper sufficient
condition is provided, which will be studied in the future work. In this paper, only
a special choice of sampling set and the associated local sets with Qmax = 1 are
presented in the following text.
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4.4.5 A Special Case of One-hop Sampling

In this section, we present a special case of dense sampling where all entries to be
recovered are directly connected to the sampled vertices. One may read that such
dense sampling facilitates the local sets partition.

Corollary 3 ([7]) For a given sampling set S, if the local sets {N(u)}u∈S satisfies

max
v∈N(u)

dist(u, v) ≤ 1, ∀u ∈ S, (14)

the sufficient condition of recovery in Propositions2 and 3 can be refined as ω < 1
and γ = √

ω.

A greedy method is proposed and described in Algorithm4, which can produce
the one-hop sampling set and the associated local sets at the same time and satisfy
the condition of (14). The reason for selecting the vertex with the largest degree and
its neighbors is that more vertices can be removed in each step, which may lead to
a sampling set with fewer vertices. One may accept that this is a rather economical
choice of sampling set when there is no restriction on the number or location of the
sampling vertices, because both K (u) and R(u) are small simultaneously.

Algorithm 4 A Greedy Method for a One-hop Sampling Set.
1: Input: Graph G(V,E);
2: Output: One-hop sampling set S, local sets {N(u)}u∈S;
3: Initialization: S = ∅;
4: repeat
5: Find the largest-degree vertex, u = argmax

v∈V
dG(v);

6: Add u into the sampling set, S = S ∪ {u};
7: The one-hop local set N(u) = {u} ∪ {v ∈ V|(u, v) ∈ E};
8: Remove the edges, E = E\{(p, q)|p ∈ N(u), q ∈ V};
9: Remove the vertices, V = V\N(u) and G = G(V,E);
10: until V = ∅.

5 Local-Measurements-Based Graph Signal
Reconstruction

We will show that under certain conditions the original signal f can be uniquely and
exactly reconstructed from the local measurements { fϕi

}i∈I.
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5.1 Iterative Local Measurement Reconstruction

Based on Lemma2, it is shown in Proposition4 that the original signal can be recon-
structed from its local measurements.

Proposition 4 ([8]) Given centerless local sets and the associated weights
{(Ni ,ϕi )}i∈I, ∀f ∈ PWω(G), where ω is less than 1/C2

max, f can be reconstructed
from its local measurements { fϕi

}i∈I through an iterative local measurement recon-
struction (ILMR) algorithm in Algorithm5, with the error at the kth iteration satis-
fying

‖f (k) − f‖ ≤ γ k‖f (0) − f‖,

where
γ = Cmax

√
ω. (15)

Proposition4 shows that a signal f is uniquely determined and can be recon-
structed by its local measurements { fϕi

}i∈I if {ϕi }i∈I are known. The quantity
( fϕi

− 〈f (k),ϕi 〉) is the estimate error between the original measurement and the
reconstructed measurement at the kth iteration. According to the definition of Ĝ
encoded in Definition13, the iteration (18) can be rewritten as

f (k+1) = f (k) + Ĝ(f − f (k)). (16)

Therefore, in each iteration of ILMR, the new increment of the interpolated signal
is obtained by first assigning the estimate errors to all vertices in the associated
centerless local sets, and then projecting it onto the ω-bandlimited subspace.

Algorithm 5 Iterative Local Measurement Reconstruction.
1: Input: Graph G, cutoff frequency ω, centerless local sets {Ni }i∈I, local weights {ϕi }i∈I, local

measurements { fϕi
}i∈I;

2: Output: Reconstructed signal f (k);
3: Initialization:

4: f (0) = Pω

(
∑

i∈I
fϕi

δNi

)
; (17)

5: repeat

6: f (k+1) = f (k) + Pω

(
∑

i∈I
( fϕi

− 〈f (k),ϕi 〉)δNi

)
; (18)

7: until The stop condition is satisfied.

The procedures of ILMR in each iteration are illustrated in Fig. 7. Except for the
difference of decimation and local measurement, the basic idea of ILMR is similar
to that of IPR. In the assignment or propagating step, ILMR assigns the estimate
errors of local measurements to vertices within the local sets, while IPR propagates
the estimate errors of the decimated signal on the sampled vertices to other vertices
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in the local sets. In fact, ILMR degenerates to IPR if the local weight concentrates
on only one vertex (the sampled vertex) in each local set, in which case the local
measurement degenerates to decimation.

The sufficient conditions and error bounds for ILMR and IPR are also different.
Suppose the (centerless) local sets divisions in ILMR and IPR are exactly the same,
i.e. the sampling set S in IPR can be written as {ui }i∈I, where I is the index set in
ILMR, thenNi equalsN(ui ) for all i ∈ I. According to Definitions7 and 8, we have
R(ui ) ≤ Di and K (ui ) ≤ |N(ui )| = |Ni |. Therefore, Cmax is not less than Qmax. It
implies that a more strict condition is needed for ILMR. It is reasonable because the
sufficient condition for ILMR to guarantee the reconstruction is for all of the choices
of local weights, which include decimation as a special case. However, since both
sufficient conditions in Propositions3 and 4 are not tight and there is still room for
refinement, such a comparison only provides a rough analysis.

Remark 5 The projection operator Pω(·) can be approximated by a polynomial
expansion of the Laplacian, which is localized. As a consequence, ILMR can be
approximately implemented in a localized way. In detail, the projection operator is
written as

Pω(f) = Udiag
{
ĥ(λ1), . . . , ĥ(λN )

}
UTf,

where ĥ(·) denotes the lowpass filter

ĥ(λ) =
{
1, λ ≤ ω;
0, elsewhere.

Utilizing a polynomial approximation of ĥ(·) (e.g. Chebyshev polynomial expansion
[10, 21]), one has

ĥ(λ) ≈
k∑

j=0

α jλ
j , 0 ≤ λ ≤ λN ,

where {α j } denote the coefficients and k is the order of the approximation, which is
usually far smaller than N . Therefore the projection is approximated by a polynomial
expansion of the Laplacian

Pω(f) ≈ Udiag

⎧
⎨

⎩

k∑

j=0

α jλ
j
1, . . . ,

k∑

j=0

α jλ
j
N

⎫
⎬

⎭UTf =
k∑

j=0

α jL j f .

Because the Laplacian operator can be conducted by each vertex and its neighbors,
the projection operator is approximately localized.

Remark 6 For potential applications, if the local measurements come from the result
of some repeatable physical operations, the local weights are even not necessarily
known when conducting ILMR. In detail, if {ϕi }i∈I is unknown but fixed, i.e., the
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Fig. 7 Illustration of the iterations of ILMR

local measurement operation in Fig. 7 is a black box, 〈f (k),ϕi 〉 can also be obtained
by conducting the physical operations in each iteration. Therefore, the original signal
can still be reconstructed by ILMR without exactly knowing {ϕi }i∈I. This is a rather
interesting result, andmay facilitate graph signal reconstruction in specific scenarios.

Remark 7 If the bandlimited space is described as a subspace with a known dimen-
sionality, rather than the cutoff frequency ω, the perfect reconstruction is achievable
as a closed form by solving linear equations. However, the value of the iterative algo-
rithm relies on its locality,which is important in graph related problems. Furthermore,
iterative algorithms can be applied in potential online and distributed scenarios.

5.2 Performance Analysis

In this subsection, we study the error performance of ILMR when the original signal
is corrupted by additive noise. We first derive the reconstruction error for incorrect
measurement. Then the expected reconstruction error is calculated under the assump-
tion of independent Gaussian noises and the optimal local weight is obtained in the



278 Y. Gu and X. Wang

sense of minimizing the expected reconstruction error bound. Finally, in a special
case of i.i.d. Gaussian perturbation, a greedy method for the centerless local sets
partition and the selection of optimal local weights are provided.

5.2.1 Reconstruction Error in the Noisy Scenario

Suppose that the observed signal associated with each vertex is corrupted by additive
noise. The corrupted signal is denoted as f̃ = f + n, where n denotes the noise. In
the kth iteration of ILMR, the corrupted local measurements {〈f̃,ϕi 〉}i∈I are utilized
to produce the temporary reconstruction of f̃ (k).

The following proposition gives a reconstruction error bound of f̃ (k).

Proposition 5 ([8]) For given centerless local sets and the associated weights
{(Ni ,ϕi )}i∈I, f ∈ PWω(G) is corrupted by additive noise n. If ω is less than 1/C2

max,
in the kth iteration the output of ILMR using the corrupted local measurements
{〈f̃,ϕi 〉}i∈I satisfies

‖f̃ (k) − f‖ ≤ ñ

1 − γ
+ γ k+1 (‖f‖ + ‖n‖) , (19)

where γ is defined as (15), ñ is defined as

ñ =
∑

i∈I

√|Ni | · |ni |, (20)

and ni is the equivalent noise of centerless local set Ni , defined as

ni = 〈n,ϕi 〉 =
∑

v∈Ni

n(v)ϕi (v). (21)

From (19) it can be seen that in the noisy scenario the reconstruction error is
controlled by the sum of two parts. The first one is a weighted sum of the equivalent
noises of all the local sets, while the second one is decaying with the increase of
iteration number. The first part is crucial as the iteration goes on. Thus minimizing
the first part, which is determined by both partition of centerless local sets and local
weights, improves the performance of ILMR in the noisy scenario.

5.2.2 Gaussian Noise and Optimal Local Weights

For a given partition {Ni }i∈I, some prior knowledge of unknown noise n brings the
possibility to design optimal local weights. In fact, the optimal local weights can
also be studied in other criterions, e.g. the fastest convergence. Here we consider the
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optimal local weights in the sense of minimizing the expected reconstruction error
bound. We assume the noises associated with different vertices are independent.

Suppose the noise follows zero-mean Gaussian distribution, i.e., n ∼ N(0,�),
where � is a diagonal matrix and the noise of vertex v satisfies n(v) ∼ N(0, σ 2(v)).
Then ñ defined in (20) is a random variable.

For centerless local setNi , according to (21), the equivalent noise ni also follows
a Gaussian distribution ni ∼ N(0, σ 2

i ), where

σ 2
i =

∑

v∈Ni

σ 2(v)ϕ2
i (v). (22)

Then |ni | follows the half-normal distribution with its expectation satisfying

E {|ni |} = σi

√
2

π
.

According to (20), the expectation of ñ is

E{ñ} =
√

2

π

∑

i∈I

√|Ni |σi . (23)

Then the following corollary is ready to obtain.

Corollary 4 ([8]) For given centerless local sets and the associated weights
{(Ni ,ϕi )}i∈I, the original signal f ∈ PWω(G), assuming the noise associated with
vertex v follows independent Gaussian distribution N(0, σ 2(v)), if ω is less than
1/C2

max, the expected reconstruction error of ILMR in the kth iteration satisfies

E
{
‖f̃ (k) − f‖

}
≤ 1

1 − γ

√
2

π

∑

i∈I

√|Ni |σi + O
(
γ k+1

)
, (24)

where γ is defined as (15), and σi is defined as (22).

By minimizing the right hand side of (24), the optimal choice of local weights
can be derived.

Corollary 5 ([8]) For a given division of centerless local sets {Ni }i∈I, if the noises
associated with the vertices are independent and follow zero-mean Gaussian distri-
butions n(v) ∼ N(0, σ 2(v)), then the optimal local weights {ϕi }i∈I are

ϕi (v) =

⎧
⎪⎨

⎪⎩

(σ 2(v))−1

∑
v∈Ni

(σ 2(v))−1
, v ∈ Ni ;

0, v /∈ Ni .

(25)
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The above analysis shows that in the sense ofminimizing the expected reconstruc-
tion error, the optimal local weight associated with vertex v within Ni is inversely
proportional to the noise variance of v. This is evident because more information are
reserved in the sampling process if a larger local weight is assigned to a vertex with
smaller noise variance. However, it should be noted that compared with the optimal
local measurement, assigning all the weights in Ni to the vertex with the smallest
noise variance, i.e. the optimal decimation, is not the best choice. In fact, the optimal
choice of local measurements is consistent with the well-known inverse variance
weighting in statistics [15].

Therefore, localmeasurement reduces the disturbance of noise and reconstruct the
original signal more precisely. In other words, for given partition of centerless local
sets, graph signal reconstruction from local measurements with the optimal weights
performs better than reconstruction from decimation, even when the vertices with
the smallest noise variance are chosen in the latter sampling scheme.

5.2.3 A Special Case of Independent and Identical Distributed
Gaussian Noise

Specifically, if noise variances are the same for all the vertices, i.e., σ(v) equals σ

for any v ∈ V, ñ can be approximately written in a more explicit form. For Ni , the
optimal local weight is equal for all the vertices in Ni . Thus ϕi (v) equals 1/|Ni | for
v ∈ Ni , and in this case,

√|Ni |ni follows a Gaussian distribution,

√|Ni |ni ∼ N(0, σ 2).

Then
√|Ni | · |ni | follows the half-normal distribution with the same parameter σ .

The above analysis shows that each term of the sum in (20) follows independent and
identical half-normal distribution, with its expectation and variance satisfying

E
{√|Ni | · |ni |

}
= σ

√
2

π
,

Var
{√|Ni | · |ni |

}
= σ 2

(
1 − 2

π

)
.

Assuming that the number of local sets |I| is large, by the central limit theorem, ñ
follows a Gaussian distribution approximately,

ñ ∼ N

(
|I|σ

√
2

π
, |I|σ 2

(
1 − 2

π

))
.

Then we have the following corollary.
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Corollary 6 ([8]) For given centerless local sets {Ni }i∈I and the associated
weights ϕi (v) = 1/|Ni | for v ∈ Ni , the original signal f ∈ PWω(G), assuming the
noise associated with each vertex follows i.i.d Gaussian distribution N(0, σ 2), if ω

is less than 1/C2
max, the expected reconstruction error of ILMR in the kth iteration

satisfies

E
{
‖f̃ (k) − f‖

}
≤ |I|σ

1 − γ

√
2

π
+ O

(
γ k+1) , (26)

where γ is defined as (15).

According to (26), the error bound is affected by the number of centerless local
sets |I|. A division with fewer sets may reduce the expected reconstruction error.
However, it should be noted that the number of centerless local sets cannot be too
small to satisfy the condition

γ = Cmax
√

ω = max
i∈I

√|Ni |Diω < 1,

which is determined by the cutoff frequency of the original graph signal. Besides,
the factor 1/(1 − γ ) in (26) implies that a smaller Cmax, which leads to a smaller γ ,
also reduces the error bound. A rough calculation can be given to balance the two
factors. If there are not too many vertices in eachNi , we have thatCmax approximates
to Nmax, where Nmax is the largest cardinality of centerless local sets. Since Nmax|I|
approximates to N , we have

1

1 − γ
|I| ≈ 1

1 − √
ωNmax

· N

Nmax
.

To minimize the above quantity, a near optimal Nmax is

Nmax = 1

2
√

ω
, (27)

i.e., γ approximates to 1/2. It provides a strategy to partition centerless local sets.
For given cutoff frequency ω, an approximated Nmax can be chosen according to
(27), then the graph is divided into local sets to make sure that |Ni | is not more than
Nmax and the number of local sets is as small as possible.

For a given Nmax, a greedy algorithm is proposed tomake the division of centerless
local sets, as shown in Algorithm6. The greedy algorithm is to iteratively remove
connected vertices with the smallest degrees from the original graph into the new set,
until the cardinality of the new set reaches Nmax or there is no connected vertex. The
reason for choosing the smallest-degree vertex is that such a vertex is more likely to
be on the border of a graph.



282 Y. Gu and X. Wang

Algorithm 6 A greedy method to partition centerless local sets with maximal cardi-
nality.
1: Input: Graph G(V,E), Maximal cardinality Nmax;
2: Output: Centerless local sets {Ni }i∈I;
3: Initialization: i = 0;
4: repeat
5: Find one vertex with the smallest degree in G, u ∈ argmin

v∈V
dG(v);

6: Update i = i + 1, Ni = {u};
7: Obtain the neighbor set of Ni , Si = {v ∈ G|v ∼ w,w ∈ Ni , v /∈ Ni };
8: repeat
9: Find one vertex with the smallest degree in Si , u ∈ arg min

v∈Si

dG(v);

10: Update Ni = Ni ∪ {u};
11: Update Si = {v ∈ G|v ∼ w,w ∈ Ni , v /∈ Ni };
12: until |Ni | = Nmax or Si = ∅
13: Remove the edges, E = E\{(p, q)|p ∈ Ni , q ∈ V};
14: Remove the vertices, V = V\Ni and G = G(V,E);
15: until V = ∅

6 Relationship with Time Domain Results

Bandlimited signal sampling and reconstruction on graph is closely related to irregu-
lar sampling [16, 17] or nonuniform sampling [18] in the time domain, which sheds
light on the analysis of graph signal. There have existed several iterative recon-
struction methods and theoretical analysis of time-domain irregular sampling [16,
19–21], some of which are related to the frame theory [16, 20, 22]. Some further
works extend the results to high dimensional spaces [16] and manifolds [23, 24].

By exploiting the similarities between time-domain irregular sampling and graph
signal sampling, some results of this work have consistent formulation with the
corresponding results in the time domain. The reconstruction methods also have
correspondences in the time domain.

Results on time-domain irregular sampling show that {Tti sinc
}ti∈S is a frame
for B2


 if the sampling set S satisfies some particular conditions, where Tti f (t) =
f (t − ti ) denotes the translation of f (t), sinc
 denotes the sinc function whose
bandwidth is
 andB2


 denotes the space of
-bandlimited square integrable signal.
Correspondingly, for the graph signal f ∈ PWω(G), {Pω(δu)}u∈S is a frame under

some conditions. The result is consistent with that in the time domain. The cor-
respondence between irregular sampling in the time domain and that on graph is
illustrated in Fig. 8. In the graph signal sampling problem, {Pω(δu)}u∈S corresponds
to the frame {Tti sinc
}ti∈S in the time domain. The essence of the two problem is
very similar and theoretical results on sampling and reconstruction of graph signals
can be enlightened by irregular sampling in the time domain.

The ideas of graph signal reconstruction methods ILSR, IWR and IPR have cor-
respondences in time-domain, which are Marvasti method [20], adaptive weights
method [16] and Voronoi method [21], respectively. However, a graph is discrete
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Fig. 8 The correspondence between irregular sampling in the time domain and that on graph. Both
Tti sinc
 and Pω(δu) are the projections of δ-functions onto bandlimited spaces. Under certain con-
ditions, for all the sampled points or vertices, these kinds of signals {Tti sinc
}ti∈S and {Pω(δu)}u∈S
become frames. Consequently, the original signals can be reconstructed by the sampled data

and the local topology of each sampling vertex is irregular, which leads to some new
problems related to local sets in the sampling and reconstruction of graph signals.

There is also corresponding time-domain result [21] for local measurement based
graph signal reconstruction. Bandlimited time-domain signals can be reconstructed
from irregular sampled local averages, which is

fi =
∫

f (x)ui (x)dx = 〈ui , f 〉,
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Table 2 The correspondence between irregular sampling in the time domain and that on graph

Terms Time domain Vertex domain

Signal f (t) f

Cutoff frequency 
 ω

Low-frequency space B2

 PWω(G)

Shifted impulse δ(t − ti ) δu

Shifted sinc function Tti sinc
 Pω(δu)

Neighborhood [(ti−1 + ti )/2, (ti + ti+1)/2) N(u)

Neighbor indicator 1[(ti−1+ti )/2,(ti+ti+1)/2) δN(u)

Weight
√

(ti+1 − ti−1)/2
√|N(u)|

Reconstruction method Marvasti method ILSR

Reconstruction method Adaptive weights method IWR

Reconstruction method Voronoi method IPR

Reconstruction method Gröchenig method ILMR

where the i th averaging function ui satisfies

suppui ⊂ [xi − δ/2, xi + δ/2], 0 ≤ ui (x) ≤ 1,
∫

ui (x)dx = 1

and xi is the i th sampling point.
The averaging function ui is the time-domain correspondence of the local weight

φi in ILMR. The local average fi is the time-domain correspondence of local mea-
surement fφi . ILMR can be regarded as the graph-based version of the reconstruction
algorithm in [21].

The correspondence between time-domain irregular sampling and graph signal
sampling is shown in Table2.

7 Numerical Experiments

The Minnesota road graph [25] is chosen as the graph, which has 2640 vertices and
6604 edges, to test the proposed reconstruction algorithms. The bandlimited signal is
generated by first generating a random signal and then removing its high-frequency
components.1

1The MATLAB codes for the proposed methods and all experiments are available at http://gu.ee.
tsinghua.edu.cn/publications.

http://gu.ee.tsinghua.edu.cn/publications
http://gu.ee.tsinghua.edu.cn/publications
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Fig. 9 Convergence curves of ILSR, IWR, and IPR

7.1 Local-Set-Based Reconstruction Algorithms

In the first experiment, the convergence rates of the three algorithms are compared.
A one-hop sampling set satisfying (14) is chosen as the sampling set. The one-hop
sampling set and the corresponding local sets are obtained by the greedy method
in Algorithm4. This sampling set has 872 vertices, which is about one third of all.
The cutoff frequency is 0.25. The convergence curves of ILSR, IWR, and IPR are
illustrated in Fig. 9. It is obvious that the convergence rate of the proposed algorithms
is significantly improved compared with the reference. Furthermore, IPR is better
than IWR on the convergence rate. Both observations are in accordance with the
analysis in Sect. 4.

The second experiment is to verify that the choice of sampling set may affect the
performance of convergence. Two different sampling sets are used to reconstruct the
same bandlimited original signal. Both of the sampling sets have the same amount of
vertices. The first sampling set is the one-hop set satisfying (14), with 872 sampled
vertices and Qmax = 1. For the second sampling set, 872 vertices are selected uni-
formly at random among all the vertices. Each unsampled vertex belongs to the local
set associated with its nearest sampled vertex. Then K (u) and R(u) can be obtained
for each local set, and we have Qmax = √

40 with the corresponding K (u) = 8 and
R(u) = 5. The convergence curves of the two sampling sets using the three recon-
struction methods are illustrated in Fig. 10. For all the algorithms, the convergence
is faster by using the sampled data of the one-hop sampling set than by using the
randomly chosen vertex set. It means that the sampling geometry has influence on
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Fig. 10 Convergence curves of ILSR, IWR, and IPR, on one-hop sampling set and randomly chosen
sampling set

the reconstruction. A sampling set and the local sets with smaller Qmax may converge
faster.

Suppose there is noise involved in the observationof sampledgraph signal. The last
experiment focuses on the robustness to the observation noise of the three algorithms.
In this experiment the noise is generated as independent identical distributedGaussian
sequence. As shown in Fig. 11, the steady-state error decreases as the SNR increases.
The three methods have almost the same performance against observation noise.

7.2 Local-Measurement-Based Reconstruction Algorithm

The centerless local sets are generated by the greedy method in Algorithm6 using
given Nmax. Five kinds of local weights are tested including

1. uniform weight, where ϕi (v) equals 1/|Ni |,∀v ∈ Ni ;
2. random weight, where

ϕi (v) = ϕ′
i (v)∑

u∈Ni
ϕ′
i (u)

, ∀v ∈ Ni , ϕ
′
i (u) ∼ U(0, 1),

and U(0, 1) denotes the uniform distribution;
3. Dirac delta weight, where ϕi equals δu for a randomly chosen u ∈ Ni ;



Local-Set-Based Graph Signal Sampling and Reconstruction 287

0 5 10 15 20 25 30 35 40 45 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration Number

R
el

at
iv

e 
E

rr
or

SNR=20dB

SNR=40dB

SNR=30dB

ILSR
IWR
IPR

Fig. 11 Convergence curves of three reconstruction methods with various observation SNR

4. the optimal weight, where

ϕi (v) = (σ 2(v))−1

∑
v∈Ni

(σ 2(v))−1
, ∀v ∈ Ni ;

5. the optimal Dirac delta weight, where ϕi equals δu for

u = arg min
u∈Ni

σ 2(u).

Notice that case 3 and case 5 degenerate ILMR to IPR.
In the first experiment, the convergence of the proposed ILMR is verified for

various centerless local sets partition and local weights. The graph is divided into
709 and 358 centerless local sets for Nmax equals 4 and 8, respectively. Three kinds of
local weights are tested including case 1, 2, and 3. The averaged convergence curves
are plotted in Fig. 12 for 100 randomly generated original graph signals. According
to Fig. 12, the convergence is accelerated when the graph is divided into more local
sets and has a smaller Nmax. It is intuitive because more local sets will bring more
measurements and increase the sampling rate, which provides more information in
the reconstruction.According to (15), for the sameω, a smaller Nmax leads to a smaller
γ , and guarantees a faster convergence. The experimental result also shows that in
the noise-free scenario, reconstruction with uniform weight converges slightly faster
than that with random weight. However, both above cases converge much faster
than reconstruction with Dirac delta weight. This means that local-measurement-
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Fig. 13 The convergence curves of reconstruction with uniform weights, the optimal weights, and
optimal Dirac delta weights when independent zero-mean Gaussian noise is added to each vertex

based ILMR behaves better than decimation-based IPR by combining the signals on
different vertices properly.

In the second experiment, independent zero-meanGaussian noise is added to each
vertex with different variance. The original signal is normalized with unit norm. All
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noise associated with each vertex is i.i.d. Gaussian

of the vertices are randomly divided into three groups with the standard deviations
of the noise chosen as σ equals 1 × 10−4, 2 × 10−4, and 5 × 10−4, respectively. The
graph is partitioned into 358 centerless local sets with Nmax equals 8. Three kinds
of local weights are tested including case 1, 4, and 5. The averaged convergence
curves are illustrated in Fig. 13 for 100 randomly generated original graph signals.
The steady-state relative error with the optimal weight is smaller than those with
uniform weight and the optimal Dirac delta weight. The experimental result verifies
the analysis in Sect. 5. It implies that a better selection of local weights can reduce
the reconstruction error if the noise variances on vertices are different.

In the last experiment, the performance of the proposed algorithm against i.i.d.
Gaussian noise are tested for three kinds of local weights including case 1, 2, and 3.
In this case the optimal local weights is equivalent to uniform weights. The graph
is partitioned into 358 centerless local sets with Nmax equals 8. The relative recon-
struction errors of three tests are illustrated in Fig. 14. Each point is the average of
100 trials. The experimental result shows that for i.i.d. Gaussian noise, reconstruc-
tion with uniform weight or random weight performs beyond that with Dirac delta
weight, which is actually the traditional sampling scheme of decimation. It shows
that compared with decimation, the proposed generalized sampling scheme is more
robust against noise, as analyzed in Sect. 5.
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8 Conclusion

In this chapter, the problem of graph signal sampling and reconstruction in bandlim-
ited space is studied. We first introduce the concepts of local set and centerless local
set and then generalize sampling from decimation to measurement. Based on frame
theory, two operators named local propagation and local-measurement-based prop-
agation are presented and proved to be contraction mapping. Consequently, several
series of signals are proved to be frames and their frame bounds are estimated. Above
theory provides solid foundation for developing efficient reconstruction algorithms.
Following the traditional decimation scheme, two local-set-based iterative methods
called IWR and IPR are proposed to reconstruct the missing data from the observed
samples. Strict proofs of convergence and error bounds of IWR and IPR are pre-
sented. Aiming at the new measurement scheme, a reconstruction algorithm ILMR
is proposed to perfectly reconstruct original bandlimited signals iteratively. The con-
vergence of ILMR is proved and its performance in noisy scenarios is analyzed.
The optimal local weights are given to minimize the effect of noise, and a greedy
algorithm for local sets partition is proposed. After comprehensive discussion on the
proposed algorithms, we explore the correspondence between time-domain irreg-
ular sampling and graph signal sampling, which sheds light on the analysis in the
graph vertex domain. Experiments, which verify the theoretical analysis, show that
both IWR and IPR converge significantly faster than the reference algorithm ILSR.
In addition, the local measurement sampling scheme together with reconstruction
algorithm is more robust against additive noise.

9 Additional Reading Material

There has been some theoretical analysis on the sampling and reconstruction of
bandlimited graph signals [10, 26–28]. Some existing works focus on the theoreti-
cal conditions for the exact reconstruction of bandlimited signals. The relationships
between the sampling sets of unique reconstruction and the cutoff frequency of
bandlimited signal space are established for normalized Laplacian [10] and unnor-
malized Laplacian [27, 28], respectively. A necessary and sufficient condition of
exact reconstruction is established in [11]. In order to reconstruct bandlimited graph
signals from sampled data, several methods have been proposed. In [3] a least square
approach is proposed to solve this problem. Furthermore, an iterative reconstruction
method is proposed and a tradeoff between smoothness and data-fitting is introduced
for real world applications [12].

The idea of local measurements can be traced back to time-domain nonuniform
sampling [18], or irregular sampling [16, 17], which has a close relationship with
graph signal sampling and reconstruction. For the signals in time-domain [16, 21],
shift-invariant space [29], or onmanifolds [23, 24], based on the theoretical results of
signal reconstruction from samples, there have been extended works on reconstruct-
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ing signals from local averages. Time-domain local averages are taken from small
intervals around the samples with proper averaging functions. Theoretical results
show that bandlimited original signals can be accurately recovered if the cutoff fre-
quency is smaller than a quantity which is inversely proportional to the length of
intervals [21]. However, there are few such works on graph-signal-related problems.
As far as we know, the only work related to local aggregation for graph signals
is applying the graph-shift operator sequentially [30], which is different from our
problem.

The problem of signal reconstruction is closely related to the frame theory, which
is also involved in other areas of graph signal processing, e.g., wavelet and vertex-
frequency analysis on graphs [31]. Based on windowed graph Fourier transform and
vertex-frequency analysis, windowed graph Fourier frames are studied in [32]. A
spectrum-adapted tight vertex-frequency frame is proposed in [33] via translation on
the graph. These works focus on vertex-frequency frames whose elements make up
over-representation dictionaries, while in the reconstruction problem the frames are
always composed by elements centering at the vertices in the sampling sets.
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Time-Varying Graph Signals
Reconstruction
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Abstract Signal processing on graphs is an emerging research field dealing with
signals living on an irregular domain that is captured by a graph, and has been
applied to sensor networks, machine learning, climate analysis, et cetera. Existing
works on sampling and reconstruction of graph signals mainly studied static ban-
dlimited signals. However, many real-world graph signals are time-varying, and they
evolve smoothly, so instead of the signals themselves being bandlimited or smooth
on graph, it is more reasonable that their temporal differences are smooth on graph.
In this chapter, two new batch reconstruction methods of time-varying graph signals
are proposed by exploiting the smoothness of the temporal difference signals, and
the uniqueness as well as the reconstruction error bound of the solutions to the cor-
responding optimization problems are theoretically analyzed. Furthermore, driven
by practical applications faced with real-time requirements, huge size of data, lack
of computing center, or communication difficulties between two non-neighboring
vertices, an online distributed method is proposed by applying local properties of
the temporal difference operator and the graph Laplacian matrix. We also high-
light the spatio-temporal signals prevalently existing in sociology, climatology, and
environmental studies form a special type of time-varying graph signals, and can
be reconstructed by the proposed methods. Experiments on a variety of real-world
datasets demonstrate the excellent performance of the proposed methods.
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1 Introduction

1.1 Background, Motivation, and Organization

Graph signal processing is a new research direction that has received extensive atten-
tion in recent years [1–3]. It mainly analyzes signals living on an irregular domain
that is captured by a graph, and has found wide applications in sensor networks [4],
machine learning [5], image processing [6], biomedical fields [7], climate analysis
[8], et cetera. Existing research topics of graph signal processing include graph fil-
tering [9, 10], graph signal compression [11, 12], graph signal coarsening [13, 14],
stationary graph signal processing [15–17], graph signal sampling and reconstruction
[18–20], et cetera.

Time-varying graph signal reconstruction is an important topic with practical
applications where missing data problem is prevalent. For example, sea surface
temperature can provide important information in the study of the earth’s climate
dynamics. However, the spacial distribution of the sea surface temperature data col-
lected from ships has varied in history due to economic and political changes, such
as the opening of new canals and world wars, which significantly raises demands
for reconstructing the global sea surface temperature [21]. For another example, in
low-cost commodity sensor network, such as air temperature sensor network, lost
data are common [22] due to sensor malfunctions or communication failures, which
also calls for the reconstruction of time-varying signals.

In this chapter, we study the reconstruction problemof time-varying graph signals.
Suppose that a time-varying graph signal is sampled at M consecutive time instances
with equal interval, and at each time instance only some of the vertices are observed,
i.e., partial values of the graph signal are sampled. The problem is to recover the
missing values residing on the unobserved vertices according to the sampled data.

In general, for real-world datasets the static graph signals tend to be smooth with
respect to the underlying graph. The reconstruction of smooth graph signals can be
formulated as a convexoptimizationproblem [23–25], the objective functionofwhich
promotes smoothness of the graph signal and penalizes reconstruction error on the
known samples. A kerneled distance penalty term is introduced into the optimization
problem in [26], which unifies and subsumes the Tikhonov-regularized graph signal
reconstruction schemes in the previous works.

As for time-varyinggraph signals, a direct assumption is that the signal at each time
instant is bandlimited or smooth on graph. Based on this assumption, a distributed
reconstruction algorithm of time-varying graph signal is proposed in [27], which
performs well in tracking slowly evolving time-varying graph signals. In [28], the
authors reconstruct one or multiple smooth graph signals by solving a variation
minimization problem. However, these methods do not take full advantage of the
temporal correlation of the graph signals.

In order to properly model the structural nature of time-varying graph sig-
nals, we introduce the differential smooth property which captures the smoothness
of temporal difference signals with respect to the underlying graph. Based on
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differential smoothness, we design both batch and online time-varying graph signal
reconstruction algorithms. Reconstruction prerequisite on sampling set and recon-
struction error bounds of the proposed methods are theoretically analysed. We also
highlight the application of the proposed methods in reconstructing spatio-temporal
signals. Experiments on different real-world datasets verify the correctness of differ-
ential smooth property and the overwhelming performance of the proposed recon-
struction methods.

The rest of this chapter is organized as follows. In the later part of this section,
some basic conceptions regarding graph signal reconstruction and smooth graph sig-
nals are briefly reviewed. In Sect. 2, differential smoothness is introduced. In Sect. 3,
two batch reconstruction methods based on differential smoothness are proposed,
and their applying prerequisite and reconstruction error bounds are theoretically
provided. In Sect. 4, an online reconstruction method is proposed to timely recon-
struct the continually arriving time-varying graph signal. Performance analysis on
the online reconstruction method is also included in the same section. In Sect. 5,
the proposed batch and online reconstruction methods are tested on different real-
world datasets and compared with state-of-art reconstruction methods. The chapter
is concluded in Sect. 6.

1.2 Basic Concepts

1.2.1 Static Graph Signals Reconstruction

A static graph signal x ∈ R
N is defined as a map on the graph that assigns signal

value xi to the i th vertex. When the aim is to recover the graph signal with only a
part of the vertices sampled, smoothness of graph signals is widely applied as the
priori information.

The smoothness of graph signals is a qualitative characteristic that expresses how
much signal samples vary with respect to the underlying graph [1, 28]. A typical
metric measuring the variation of graph signal is of quadratic form as shown below,

S(x) := ‖L 1
2 x‖22 = xTLx = 1

2

∑

i∈V

∑

j∈N i

Wi j
(
x j − xi

)2
, (1)

which is a summation of neighborhood variation over all the vertices. The smaller
the value of S(x) is, the smoother the graph signal x is.

1.2.2 Graph Spectra

Consider an undirected weighted graph G (V ,E ,W), where V is the set of vertices
with |V | = N , E is the edge set, and the symmetric matrixW is the weighted adja-
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cency matrix. The (i, j)th entry of W, Wi j ∈ R
+, denotes the edge weight between

the i th and j th vertices and is a quantitative expression of their underlying relation,
such as similarity, dependency, or communication pattern [28]. The graph Laplacian
is defined as L = diag(d1, · · · , dN ) − W, where di = ∑N

j=1 Wi j is the degree of the
i th vertex.

Since L is symmetric and semi-positive definite, its singular value decomposition
can be denoted as U�UT. With spectra of L indicating the frequency, the graph
Fourier transform of graph signal x is defined as

x̂ = UTx.

As a generalization of discrete bandlimited graph to the field of graph signal process-
ing, the concept of bandlimitedgraph signals first appears in [29]. Specifically, a graph
signal x is named as ω-bandlimited graph signal if x ∈ PWω(G ), where ω denotes
the highest graph frequency component of x, and PWω(G ) is the ω-bandlimited
subspace of graph G , defined as span(u1, · · · ,umω

), with u1, · · · ,umω
denoting the

first few eigenvectors of graph Laplacian L, corresponding to the eigenvalues less or
equal to ω.

Typically, bandlimited graph signals are always smooth, i.e., yielding smaller
S(x). The smoothness of ω-bandlimited graph signal x can be simply tested by

S(x) = xLTx ≤ ω‖x‖2.

1.2.3 Time-varying Graph Signals Reconstruction

A time-varying graph signal refers to a sequence of static graph signals {x0, · · · , xT }
where xt denotes the graph signal at the t th time instant. Sampling of time-varying
graph signals denotes that at each time instant only part of the vertices are sampled.
According to when the recovery process is conducted, the recovery of time-varying
graph signals can be divided into three types: tracking, batch recovery, and online
recovery. Tracking of time-varying graph signals [27] refers to the problem that
reconstructing xt after the observation to xt−1 is completed, that is, only the obser-
vations before the t th time instant is available for reconstructing xt . It is an online
process and keeps forecasting the signal at the next time instant. Batch recovery of
time-varying graph signals [30] refers to the case that reconstruction is conducted
after the sampling at all time instants is finished and all the sampled data can be
utilized for reconstruction. Online recovery [30] deals with the case that recovering
xt immediately after the observation to xt is available.
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1.2.4 Spatio-temporal Signals Form a Type of Time-varying Graph
Signals

Spatio-temporal signals are time-varying graph signals residing on a graph of the
observation sites with the edges labelling the geographical adjacency of the obser-
vation sites [31]. A typical method to generate such geographical graph is k-nearest
neighbor method, that is, an edge is placed between a pair of vertices if and only if
one of the two vertices is among the k nearest neighbors of the other.

Concretely speaking, we first compute the distances between any pair of observa-
tion sites and achieve the distance matrix G with the (i, j)th element gi, j indicating
the distance between sites i and j . To avoid the connection between far away obser-
vation sites, a mask matrix M is generated based on G. For each site i , we find the
k smallest elements on the i th row of G, denoted as {gi, j } j∈Ki and set {mi, j } j∈Ki as
1with all other elements in the i th rowofM as 0.Then themaskmatrix is symmetrised
by takingM asMT|M, with | denotes the element-wise “or” operation. There exists
an edge between sites i and j if and only if mi, j equals 1. Till now the underlying
graph topology is achieved. To further suppress the influence of mal-connections and
reflect the geographical adjacency quantitatively, the weight of each edge is set to
be inversely proportional to the square of the distance between the connected two
vertices, i.e., the (i, j)th element of the graph adjacency matrixW, wi, j = mi, j/g2i, j .

However, since graph topology is not necessarily based on the spatial positions
of the vertices, time-varying graph signals are not all spatio-temporal signals.

2 Differential Smoothness

If all the signals xt , t ∈ {1, · · · , M}, are smooth on graph, thenX could be recovered
column by column using reconstruction methods of smooth graph signals. However,
in many practical applications, xt is not smooth enough on graph, which may lead
to poor reconstruction quality by the aforementioned methods. Since a time-varying
graph signal exhibits correlations both on graph and along the time direction, the
reconstruction quality will be significantly improved by adequately exploiting the
correlations of the signal from these two aspects.

We find that for most time-varying graph signals obtained from real-world
datasets, the difference signal xt − xt−1 exhibits smoothness on graph, even if signals
xt , t ∈ {1, · · · , M} are not smooth on graph. Take the three real-world datasets that
we will use in the experiments as examples. The smoothness of these signals is com-
pared in Table 1, where SST, SLP, and PM2.5 denote, respectively, the sea surface
temperature dataset [32], the global sea-level pressure dataset [33], and the daily
mean PM2.5 concentration of California [34]. More information on these datasets
could be found in Sect. 5. Let L denote the Laplacian matrix of this graph. Then we
introduce the temporal differential operator D as follows,
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Table 1 Smoothness
comparison

Datasets SST SLP PM2.5

‖XD‖2F 3.8 × 104 1.4 × 105 3.8 × 105

S(X) 1.6 × 103 230 210

S(XD) 71 91 170

D =

⎡

⎢⎢⎢⎢⎢⎢⎣

−1
1 −1

1
. . .

. . . −1
1

⎤

⎥⎥⎥⎥⎥⎥⎦

M×(M−1).

(2)

We have the temporal difference of X equal to XD = [x1 − x0, x2 − x1, · · · , xM −
xM−1]. Then another way of saying that X is differentially smooth is that the math-
ematical expression (3) holds true for some positive parameter δ.

S(XD) :=
M∑

t=1

S(xt − xt−1)
(a)= tr

(
DTXTLXD

) ≤ δ, (3)

where tr(·) denotes taking the trace of a matrix, and (a) follows from the definition of
the smoothness metric S(·) in (1) and (2). To be noted, S(XD)measures the variation
of the time difference of X with respect to the graph topology.

It could be readily read that the temporal difference signals exhibit better smooth-
ness property compared with the original signals. To be noted, since the maximum
singular value of D is larger than one, the observed decrease in the quantity S(XD)

is due to the inherent data structure and not due to that the operator D reduces the
magnitude of X.

3 Batch Reconstruction Based on Differential Smoothness

The sampling of a time-varying graph signal X can be represented as

Y = J ◦ X + V, (4)

where V is the additive Gaussian white noise, ◦ is the Hadamard (element-wise)
product, and J ∈ {0, 1}N×M is the sampling operator defined as

Ju,t =
{
1 u ∈ St ;
0 u /∈ St ,

(5)

where St denotes the set of vertices sampled at time instant t .
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In this section, we focus on the case where there is a computing center to collect
the sampled data Y of all the vertices, and the graph Laplacian matrix L is also
known. Two batch reconstruction methods for time-varying graph signals based on
the proposed differential smoothness are proposed and analyzed in the following
subsections.

3.1 Vanilla Batch Reconstruction Algorithm

Suppose that the time-varying graph signal to be reconstructed, X, is differential
smooth, the reconstruction problem can be formulated as

min
X

1

2
‖J◦X−Y‖2F + λ

2
tr

(
DTXTLXD

)= fu(X), (6)

where λ is the regularization parameter, balancing the coincidence with measure-
ments and the fidelity of the differential smoothness. Problem (6) can be rewritten
in an equivalent form,

min
z

1

2
‖Q [z − vec(Y)] ‖22 + λ

2
zT

[(
DDT

) ⊗ L
]
z = f̃u(z), (7)

where Q = diag(vec(J)) ∈ R
MN×MN , and z = vec(X).

For better understanding problem (6), we study the uniqueness of solution to
problem (6) in Theorem 1.

Theorem 1 [30] When the following two conditions are simultaneously satisfied by
the sampling operator J, the optimal solution to problem (6) is unique.

1. For any n ∈ {1, · · · , N }, there exists m ∈ {1, · · · , M}, such that Jn,m = 1.
2. There is a fiducial timem0 ∈ {1, · · · , M}, such that for anym ∈ {1, · · · , M},m �=

m0, there exists a vertex nm ∈ {1, · · · , N } satisfying that Jnm ,m0 = Jnm ,m = 1.

Remark 1 Theorem 1 gives properties that the sampling operator should satisfy to
ensure the uniqueness of the solution to problem (6), so it suggests how to design a
sampling operator. The first condition in the theorem means that every vertex should
be sampled at least once. It makes sense, in that if there is a vertex never sampled,
then adding a constant to the signal on that vertex will not change the value of the
cost function.

According to the second condition, there should be a time m0, such that for any
other time m �= m0, there is a vertex sampled both at m0 and m. The time m0 serves
as a fiducial time, so that the temporal difference becomes valid.

It should be noted that the two conditions in Theorem 1 are sufficient but not
necessary.

According to the form of function f̃u , problem (6) is to minimize a quadratic
function, hence there is a closed form solution to it. When the conditions in Theorem
1 is satisfied, the unique optimal solution X∗ could be obtained via
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vec(X∗) = [
Q + λ

(
DDT

) ⊗ L
]−1

Qvec(Y). (8)

However, (8) involves calculating the inverse of amatrix of sizeMN × MN , which is
of high computational complexity, especiallywhenwe deal with a long-term tracking
problem over a large-scale vertex set. Hence, we propose to solve problem (6) by
conjugate gradient method.

In each iteration, the algorithm mainly consists of two steps: the determination of
stepsize and the update of the next search direction. Denoting the search direction
of the kth step as ΔXk , the optimal stepsize τ of the kth step is decided by the line
minimization rule

min
τ

fu(Xk + τΔXk).

By taking derivative, we have

0 = ∂ fu(Xk+ τΔXk)

∂τ
= 〈ΔXk,∇ fu(Xk+ τΔXk)〉, (9)

where the gradient of function fu(X) is

∇ fu(X) = J ◦ X − Y + λLXDDT. (10)

The optimal stepsize is the solution of equation (9)

τ = − 〈ΔXk,∇ fu
(
Xk

)〉
〈ΔXk,∇ fu

(
ΔXk

) + Y〉 .

According to the optimal stepsize τ , the iterative procedure is denoted as

Xk+1 = Xk + τΔXk .

The search direction of the (k + 1)th step ΔXk+1 is the linear combination of the
gradient at the (k + 1)th step and the search direction at the kth step

ΔXk+1 = −∇ fu
(
Xk+1

) + γΔXk,

where γ = ||∇ fu
(
Xk+1

) ||2F
||∇ fu

(
Xk

) ||2F
.

The proposed method for solving problem (6) is listed in Table 2. According to
[35], thismethod canfind the global optimal solution of problem (6) after atmostMN
iterations. When MN is large, after fewer iterations a sufficiently accurate solution
can be obtained.
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Table 2 Batch reconstruction method with noise

Input Y: sampled data, J: sampling operator, L: Laplacian matrix,

λ: regularization parameter, K : maximum number of iterations, δ : tolerance
Output Xk : reconstructed signal

Initialization: X0 = 0; ΔX0 = −∇ fu
(
X0

) ;
Iteration:
(1) Stepsize decision:

τ = − 〈ΔXk ,∇ fu
(
Xk

)〉
〈ΔXk ,∇ fu

(
ΔXk

) + Y〉 ;
(2) Search direction updating:

Xk+1 = Xk + τΔXk;
γ = ||∇ fu

(
Xk+1

) ||2F/||∇ fu
(
Xk

) ||2F ;
ΔXk+1 = −∇ fu

(
Xk+1

) + γΔXk;
k = k + 1;

(3) Repeat steps 1 and 2 until k = K or ‖ΔXk‖F ≤ δ.

3.2 Batch Reconstruction Inducing Low-rank Property

Recall Sect. 1.2.4, spatio-temporal signals form a special type of time-varying graph
signals. With the spatial structure of the set of observation sites fixed, the spatio-
temporal signals are usually correlated in a global sense [28, 36]. Such global cor-
relation can be demonstrated as the temporal sequence x0, x1, · · · , xM−1 generated
from limited patterns, or in other words, the spatio-temporal signal X being approx-
imately low-rank [37, 38].

Then jointly applying the differential smoothness and low-rank property, the
spatio-temporal signal recovery problem can be formulated as an optimization prob-
lem

min
X

rank(X) + λtr
(
DTXTLXD

)

s.t. ‖J ◦ X − Y‖2F ≤ ε, (11)

where λ is the regularization parameter. Because matrix rank minimization is NP-
hard, to solve it efficiently, we provide a convex relaxation to (11)

min
X

1

2
‖J ◦ X − Y‖2F + α

2
tr

(
DTXTLXD

) + μ‖X‖∗, (12)

where α and μ are regularization parameters. In (12), rank(X) is replaced by nuclear
norm ‖X‖∗, defined as the sum of the singular values of X, which still promotes low
rank [39, 40]. The convexity of (12) follows from the fact that ‖X‖∗ is the convex
envelope of rank(X) over set {X ∈ R

N×M : ‖X‖2 ≤ 1} [40].
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Noticing that the first two terms of (12) are differentiable, and the third term
is proximable, we choose to solve (12) by applying ADMM [41, 42], which takes
advantage of both the decomposability and the superior convergence properties of
the method of multipliers. Firstly, we introduce an equivalent splitting version of
(12) as follows

min
X,Z

1

2
‖J ◦ X − Y‖2F + α

2
tr

(
DTXTLXD

) + μ‖Z‖∗

s.t. X = Z. (13)

Such splitting step followed by an augmented Lagrangianmethod to handle the linear
equality constraint is what constitutes ADMM. The augmented Lagrangian of (13)
is

Lρ (X,Z,P) = 1

2
‖J ◦ X − Y‖2F + α

2
tr

(
DTXTLXD

)

+ μ‖Z‖∗ + 〈P,X − Z〉 + ρ

2
‖X − Z‖2F , (14)

where P is the Lagrange multiplier, ρ is the penalty parameter, and 〈·, ·〉 denotes the
inner product of matrices. As proved in [41, 43], ADMM finds a saddle point to (14)
with the following iterative scheme

Xk+1 = argmin
X

Lρ

(
X,Zk,Pk

)
, (15)

Zk+1 = argmin
Z

Lρ

(
Xk+1,Z,Pk

)
, (16)

Pk+1 = Pk + ρ
(
Xk+1 − Zk+1) . (17)

Subproblem (15) is equivalent to

Xk+1 = argmin
X

1

2
‖J ◦ X − Y‖2F + α

2
tr

(
DTXTLXD

) + ρ

2
‖X − Zk + Pk

ρ
‖2F .

(18)

Denoting the above objective function as f (X), then its gradient is calculated as

∇ f (X) = J ◦ X − Y + αLXDDT + ρ(X − Zk) + Pk . (19)

By solving the linear equation ∇ f (X) = 0, we achieve the closed-form solution to
(18) as in (20).

vec(Xk+1) =
(
J̃ + αL̃D̃ + ρ Ĩ

)−1
vec

(
ρZk + Y − Pk

)
, (20)
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where vec(·) denotes the vectorization operator stacking the columns of a matrix
into a long vector, and the matrices with tilde are all square matrices of MN ×
MN dimensional. Specifically speaking, Ĩ denotes the MN dimensional identity
matrix, J̃ = diag(vec(J)), L̃ = IM ⊗ L, and D̃ = (

DDT
) ⊗ IN , with In denoting the

n dimensional identity matrix and ⊗ denoting the Kronecker product. To be noted,
J̃, L̃ and D̃ are all positive semi-definite matrices.

However, the calculation of (20) involves the inversion of an MN × MN dimen-
sional matrix, which is computationally expensive. To reduce the computation com-
plexity, conjugate gradient method can be applied to solve (18) iteratively. The
detailed algorithm for solving problem (18) can be achieved by simply modifying
Table 2 with Y substituted by Y + ρZk − Pk .

Subproblem (16) is equivalent to

Zk+1 = argmin
Z

1

2
‖Z − Xk+1 − Pk

ρ
‖2F + μ

ρ
‖Z‖∗, (21)

which has a closed-form solution

Zk+1 = SVT μ

ρ

(
Xk+1 + Pk

ρ

)
, (22)

where SVT is the singular value thresholding operator defined as

SVTτ (X) = U�τ (�)VT, (23)

whereU,V,� are from the singular value decomposition ofX, i.e.,X = U�VT, and

�τ (x) := sign (x)max (|x | − τ, 0) (24)

is the soft thresholding operator defined for τ ∈ R
+.

The detailed algorithm for solving problem (12) is listed in Table 3. The stopping
criterion could be either a maximum number of iterations, or the change of Xk less
than a threshold. According to [43] and noticing that the objective function of (13) is
closed, proper, and convex, whenXk is updated with (20), we have that the sequence
{Xk,Zk,Pk}k≥0 generated by LRDS converges to a Karush–Kuhn–Tucker (KKT)
point of (14), denoted as {X∗,Z∗,P∗}.

Let X denote the ground truth spatio-temporal signal to be recovered. A recon-
struction error bound of the proposed LRDS is provided in Proposition 1.

Proposition 1 ([31]) If the following holds true for anyM ∈ R
N×M with a constant

γ ∈ [0, 1),
‖M − 1

4
J ◦ M − α

4
LMDDT‖F ≤ γ ‖M‖F , (25)

then the recovery error of the proposed method can be upper bounded as shown in
(26),
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Table 3 The procedure of LRDS

Input: Y, J, L, α, μ, ρ, stopping criterion.

Output: Xk : recovered signal

Initialization: X0 = Y, Z0 = Y, P0 = 0, k = 0

Repeat:
Update Xk+1 by Table 2 with Y substituted by Y + ρZk − Pk or

vec(Xk+1) =
(
J̃ + αL̃D̃ + ρ Ĩ

)−1
vec

(
ρZk + Y − Pk

)
;

Update Zk+1 by Zk+1 = SVT μ
ρ

(
Xk+1 + Pk

ρ

)
;

Update Pk+1 by Pk+1 = Pk + ρ
(
Xk+1 − Zk+1

)
;

k = k + 1;
Until: Stopping criterion satisfied.

‖X∗ − X‖ ≤ ‖V‖F + μ
√
2rank(X) + α‖LXDDT‖F

4(1 − γ )
, (26)

where V is the observation noise in (4).

For better understanding of the condition in Proposition 1, a sufficient condition
for (25) is provided in Proposition 2.

Proposition 2 ([31]) Assume that the generated graph is connected and the regu-
larization parameter α in (12) satisfies α ∈ (0, 3

4‖L‖2 ]. Let S := {(n,m) : Jn,m = 1}
denote the sampling set. Once there exists a split of S = S1 ∪ S2, S1 ∩ S2 = φ, such
that the following two criteria hold true:

1. for each time instant m ∈ {1, · · · , M}, there exists at least one sampling index of
the form (·,m) belonging to S1;

2. for each vertex n ∈ {1, · · · , N }, there exists at least one sampling index of the
form (n, ·) belonging to S2,

then we claim that there exists a constant γ ∈ [0, 1) such that (25) is satisfied by any
matrixM ∈ R

N×M.

Remark 2 Proposition 2 provides a sufficient but not necessary condition for (25). As
shown in Proposition 2, such sufficient condition is tightly related to the sampling
strategy J. The only constraint on the graph topology is that it is connected. The
proposed condition on J can be easily satisfied. Specifically speaking, to sample a
spatio-temporal signals with N observation sites over M time instants, there exists a
sampling strategy taking only M + N samples that satisfies the condition on J stated
in Proposition 2.
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4 Online Reconstruction Based on Differential Smoothness

4.1 Online Centralized Reconstruction

The batch reconstruction of time-varying graph signals requires to obtain the sampled
values within a long time before reconstructing them all together, which leads to high
reconstruction delay and high computational complexity. Considering that among the
prevalent practical applications, real-time analysis is of vital importance, so we focus
on online reconstruction method in this section. Furthermore, we deal with the fully
distributed scenario, where no computing center exists, and all communications are
limited in the one-hop neighborhood. In such scenario, we propose a distributed
reconstruction method to solve the online reconstruction problem.

The aim of online reconstruction of time-varying graph signals is to recover the
current unsampled values according to the sampled data of current and previous time.
In order to alleviate the storage burden, we only preserve the current sampled data
and the previous reconstructed signal.

The online reconstruction of time-varying graph signals can be formulated as an
unconstrained optimization problem

min
xt

1

2
‖jt ◦ xt − yt‖22 + λ

2

(
xt−x̂t−1

)T
L

(
xt−x̂t−1

)
. (27)

Denote the above objective function as fo(xt ), where xt is the current signal to
be reconstructed, x̂t−1 is the reconstructed signal of the previous time, jt is the
current sampling operator, yt is the current sampled data, and λ is the regularization
parameter.

The gradient of function fo(xt ) is

∇ fo(xt ) = jt ◦ xt − yt + λL(xt − x̂t−1). (28)

Letting the above gradient equal zero, we get the closed form solution of problem
(27)

x̂t = (λL + Jt )−1
(
λLx̂t−1 + yt

)
, (29)

where Jt = diag (jt ). With the reconstructed signal at the (t − 1)th time instant close
to the ground truth xt−1, we show in Proposition 3 that the estimation error of the t th
time instant is well bounded.

Proposition 3 ([30]) Assume that the difference signal gt := xt − xt−1 is ε-smooth
with respect to graph G , i.e. S(gt ) ≤ ε, and there is at least one vertex sampled at
the tth time instant. With the estimation error of the (t − 1)th time instant satisfying
‖x̂t−1 − xt−1‖2 ≤ δt−1, and the additive noise at the tth time instant ‖vt‖2 ≤ σt , we
have
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‖x̂t − xt‖2 ≤ 2
√
2θt

λmin
:= δt , (30)

θt =
√

σ 2
t + λ(

√
ε + smaxδt−1)2, (31)

where λmin denotes the smallest singular value of matrix Jt + √
λL1/2, and smax

denotes the largest singular value of L1/2.

4.2 Online Distributed Reconstruction

If the graph has too many vertices, the matrix inversion in (29) will be hard to
calculate. In such case, problem (27) can be solved by a gradient descent method

xk+1
t = xkt − μ∇ fo(xkt ), (32)

where xkt is the iterative value of vector xt at the kth step, and μ is the stepsize.
Because problem (27) is convex, xkt will converge to the global optimal solution x̂t
after sufficient iterations.

In this part, we propose a distributed reconstruction method based on a distributed
calculation of the gradient in (32).

Denoting dk
t = xkt − x̂t−1 and plugging (28) into (32), we have

xk+1
t = xkt − μ

(
jt ◦ xkt − yt

) − μλLdk
t . (33)

Due to the local property of the graph Laplacian L, the update in (33) can be imple-
mented locally. The iterative formula of sampled vertex s at time instant t is

xk+1
t (s) = (1 − μ)xkt (s) + μyt (s) − μλ

∑

j∈N (s)

Wsj
[
dk
t (s) − dk

t ( j)
]
, (34)

where Wsj is the element of the weighted matrix W, and N (s) is the set of the
neighbors of vertex s. The update of xk+1

t (s) is composed of two parts. One is the
new information from the sampled value of vertex s, and the other is the value change
of its neighboring vertices. The iterative formula of unsampled vertex u at time instant
t is

xk+1
t (u) = xkt (u) − μλ

∑

j∈N (u)

Wuj
[
dk
t (u) − dk

t ( j)
]
. (35)

The update of xk+1
t (u) is from the value change on its neighboring vertices. The

overall online distributed reconstruction method is presented in Table 4.
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Table 4 Online distributed method at time instant t

Input yt : sampled data at time instant t , x̂t−1: the recovered signal at time instant t − 1

jt : sampling operator at time instant t ,W: Adjacency matrix, λ : regularization
parameter

μ : stepsize, K : maximum number of iterations

Output x̂t : reconstructed signal

Initialization: x0t = x̂t−1;
Iteration:
(1) Distributed gradient descent:

For each vertex s ∈ {1, · · · , N } do:
dkt (s) = xkt (s) − x̂t−1(s);
if Js,t = 1

xk+1
t (s) = (1 − μ)xkt (s) + μyt (s)

−μλ
∑

j∈N (s)Wsj
(
dkt (s) − dkt ( j)

) ;
else

xk+1
t (s) = xkt (s) − μλ

∑
j∈N (s)Wsj

(
dkt (s) − dkt ( j)

) ;
k = k + 1;

(2) Repeat step 1 until k = K .

5 Numerical Experiments

5.1 Datasets and Basic Experimental Settings

In the experimentswe test the proposed algorithms on three real-world datasetswhich
are the sea surface temperature [32], the global sea-level pressure [33], and the daily
mean PM2.5 concentration of California [34], respectively. The detailed information
about these datasets are listed as below.

1. The sea surface temperature data [32] is collected monthly from 1870 to 2014
with a spatial resolution of 1◦ latitude ×1◦ longitude global grid. We randomly
select 100 locations on the Pacific for simulation, with the observing duration
of 500 months. The selected data ranges from 0.02 to 30.72 ◦C, and the mean
temperature is 19.14 ◦C.

2. The global sea-level pressure data [33] is collected from 1948 to 2010. The spatial
resolution is 2.5◦ latitude×2.5◦ longitude global grid, and the temporal resolution
is five days. We randomly select 500 locations worldwide over a time period
of 600. The selected data ranges from 96.22 to 110.06 kPa, and the average is
101.22 kPa.

3. The California daily mean PM2.5 concentration data [34] are collected from 93
observation sites over 200 days starting from January 1, 2015, and the size of
the data is 93 × 200. Not all of these sites collected valid data everyday, and the
percentages of valid data collected each day roughly range from 90 to 45. The
valid data range from 0.1 to 102.7µg/m3.
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In each experiment, simple random sampling scheme is adopted to select the
sampled data. For example, when the sampling rate is 40%, it means that 40% of
the vertices are randomly sampled at each time instant, and the goal is to reconstruct
the whole signal according to the sampled data. In our proposed methods, the max-
imum number of iterations K is 104, the tolerance δ is 10−6, and the stepsize μ of
the online distributed method is taken as 10−2. The parameters of all the methods
are scanned to generate best performance. 1

5.2 Batch Reconstruction Algorithms

In the following experiments, the proposed twobatch reconstructionmethods, includ-
ing the vanilla Batch Reconstruction of Time-Varying Graph Signals (BR-TVGS)
introduced in Sect. 3.1 and Low-Rank Differential Smoothness based batch recon-
struction (LRDS) introduced in Sect. 3.2 are compared with Natural Neighbor Inter-
polation (NNI) [44], Fixed Point Continuation with Approximate SVD (FPCA) [39],
Graph signalMatrix Completion via total variation Regularization (GMCR) [28] and
Spatio-Temporal constrained Low Rank Matrix Approximation (ST-LRMA) [45].
Among them, NNI utilizes the spatial and temporal smooth property of the time-
varying graph signal to be reconstructed; FPCA is a low-rank matrix reconstruction
method; GMCR assumes the spatial smoothness and low-rank property; ST-LRMA
is based on low-rank property, spatial smoothness and local smoothness of the signal
to be reconstructed. Both GMCR and ST-LRMA apply the spatial smooth prop-
erty by solving optimization problems that induces smoothness with respect to the
underlying graph topology.

In order to provide intuitive understanding to the algorithms’ performance, we
use mean absolute error (MAE) to evaluate the recovery result, denoted as MAE =
‖x∗ − x‖1/Nx , where x is the ground true signal, x∗ is the recovered signal, and Nx

is the length of the signals.

5.2.1 The Sea Surface Temperature Dataset

We test the performance of all the methods under different sampling rates, and the
results are displayed in Fig. 1. One can read from the results that the recovery error
of all the methods decreases with the increasing of sampling rate, and the proposed
LRDS is always superior to the others. Except for LRDS, BR-TVGS performs the
best. This implies that the low-rank inducing term introduced in LRDS do improve
the performance of BR-TVGS. Besides, although merely applying the differential
smoothness, BR-TVGS shows competitive reconstruction performance.

1The MATLAB codes for the proposed methods and all experiments are available at http://gu.ee.
tsinghua.edu.cn/codes/Timevarying_GS_Reconstruction.zip.

http://gu.ee.tsinghua.edu.cn/codes/Timevarying_GS_Reconstruction.zip
http://gu.ee.tsinghua.edu.cn/codes/Timevarying_GS_Reconstruction.zip
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Fig. 1 The sea surface
temperature dataset: the
average MAEs under
different sampling rates
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Fig. 2 The global sea-level
pressure dataset: the average
MAEs under different
sampling rates
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5.2.2 The Global Sea-Level Pressure Dataset

The average MAEs for all the methods under different sampling rates are dis-
played in Fig. 2. We can draw a similar conclusion as the previous experiment
that the proposed method LRDS is superior to the others. Except for LRDS,
ST-LRMA and the proposed BR-TVGS show similar performance and outperform
all the other methods.
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Fig. 3 Mean reconstruction
error under different
sampling rates on daily mean
PM2.5 concentration data,
where the mean is taken over
both time, all the vertices
and 50 independent trials
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5.2.3 The Daily Mean PM2.5 Concentration Dataset

The averageMAEs for all themethods under different sampling rates are displayed in
Fig. 3. One can read that both the proposed batch reconstruction methods overwhelm
all the other methods, with LRDS delivering the best reconstruction performance.
This implies that differential-smoothness fits this dataset well.

5.3 Online Reconstruction Alogrithm

In this section, the online distributed method proposed in Sect. 4.2 is compared with
natural neighbor interpolation [44], low-rank matrix completion [39], the smooth
graph signal reconstruction method [23] which is called graph regularization, the
Tikhonov-regularization method [46] also referred to as graph-time Tikhonov and
the proposed vanilla batch reconstruction method.

To evaluate the reconstruction performance of online reconstruction method, the
reconstruction result is evaluated by the root-mean-square error (RMSE)

RMSE = ‖x̂ − x∗‖2√
Nx

, (36)

where x is the ground truth, x̂∗ is the recovered signal, and Nx is the length of the
signals. When the signal is in matrix form, it is vectorized to fit (36).

Due to the presence of �2 norm, compared with MAE, RMSE is more sensitive to
outliers. This is because that RMSE2 is proportional to the square sum of absolute
differences, which can be seen as putting more weight on the larger differences.
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Fig. 4 The sea surface temperature dataset: The reconstruction error under different sampling rate.
The RMSE of each method is an average of 50 tests

Whereas MAE puts equal weights to the differences. To test the robustness of the
proposed online reconstructionmethod to outliers, we utilizeRMSEas themeasuring
criterion.

5.3.1 The Sea Surface Temperature Dataset

The performance of all the methods under different sampling rate is displayed in
Fig. 4. One can read from the results that the performance of the proposed batch
method is better than all the comparison methods, and the performance of the pro-
posed online distributed method is slightly worse than the proposed batch method.

5.3.2 The Global Sea-Level Pressure Dataset

The performance of all the methods under different sampling rate is shown in Fig. 5.
As can be seen, the performance of the proposed methods is better than all the com-
parison methods. There are two main reasons for the improvement of the proposed
methods. Firstly, we construct a graph to describe the relation among the tempera-
tures on the sea surface, which exploits the spatial correlation adequately. Secondly,
we utilize the smoothness of the temporal difference signal as a prior rather than the
smoothness of the signal itself, and the former is more reasonable for this real-world
time-varying graph signal.
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Fig. 5 The global sea-level
pressure dataset: The
reconstruction error under
different sampling rate. The
RMSE of each method is an
average of 50 tests
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6 Conclusion

In this chapter, the reconstruction of time-varying graph signals is studied. The exist-
ing literature of graph signal reconstruction usually assumes that the signal is ban-
dlimited or at least approximately smooth on graph. However, we find that for most
real-world time-varying graph signals, their temporal differences usually exhibit
better smoothness on graph than the original signals do. Accordingly, two batch
reconstruction methods for time-varying graph signals are proposed by exploiting
the smoothness of the temporal difference signals on graph and the low-rank property
of the original signals. Further, we propose an online distributed method based on the
local properties of the temporal difference operator and the graph Laplacian matrix,
which allows the signal reconstruction on each vertex to only rely on its neighbors and
its own value at the previous time instance.We also highlight that spatio-temporal sig-
nals are special cases of time-varying graph signals and can be reconstructed from
partial observations by the proposed methods. Performance analyses on sampling
prerequisite and reconstruction error bounds are included. Experiments on different
real-world datasets verify the efficiency of the proposed methods.

7 Additional Reading Material

There has been plenty of theoretical analysis on sampling and reconstruction of
bandlimited graph signals [23, 47–50]. The concept of Paley–Wiener space is pro-
posed in [47], and it is proved that a graph signal in Paley–Wiener space can be
uniquely determined by its uniqueness set. That is to say, a bandlimited graph signal
can be exactly reconstructed when sampling in accordance with its uniqueness set.
In order to reconstruct bandlimited graph signals from decimation, several iterative
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reconstruction algorithms of bandlimited graph signals are proposed [23, 48], and
the generalizations to local aggregations are also studied [49, 50].

Nowadays time-varying graph signal processing has attracted increasing atten-
tion [51–54]. In order to process massive datasets with irregular structure, filtering
and Fourier transform on product graphs are studied in [51], which is also suitable
for time-varying signals. In [52], product graphs are also used to describe time-
varying data, and visualization of time-varying graph signals is studied based on
graph wavelet theory and stacked graph metaphor. In [53, 54], a more in-depth study
of frequency analysis of temporal graph signals is conducted, and joint graph and
temporal filters are designed. Recently, a new concept of joint stationarity is studied
in [46, 55], which generalizes the classical definition of time stationarity to time-
varying graph signals, assuming that signals are stationary with respect to both the
time direction and the graph topology. Based on joint stationarity, the reconstruction
of time-varying graph signals can be formulated as a Tikhonov-regularization prob-
lem that constrains the solution to be smoothwith respect to both time and graph [46].

By constructing a graph to connect the observation sites, spatio-temporal signals
can be viewed as time-varying graph signals. Nowadays many studies approximate
spatio-temporal signals with low-rank matrices [37, 45, 56–58], and achieve sat-
isfying results. A low-rank matrix estimation-based spatio-temporal image recon-
struction method is investigated for dynamic photoacoustic computed tomography
in [56], which assumes that the matrix collecting the sequence of vectorized images
as its columns is approximately low-rank. The same assumption is also made in [37],
which studies the recovery of arterial spin labeling MRI data from the noisy and
corrupted observations. In [45, 57], data collection in wireless sensor networks is
studied. The former [57] assumes that the sensor network data is approximately low-
rank and has short-term stability in the temporal dimension. The latter [45] further
supposes that the sensor network data is correlated in the spatial dimension, that is,
the closely located sensors usually have similar measurements. Recovery of traffic
matrices is studied in [58], which makes the same assumptions as [45], including
low rank, temporal smoothness, and spatial smoothness. By minimizing the graph
total variation of the signals at all time instants, a graph signal matrix completion
algorithm is proposed in [28].
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Uncertainty Principle on Graphs

Bastien Pasdeloup, Vincent Gripon, Réda Alami and Michael G. Rabbat

Abstract Graph Signal Processing (GSP) is a mathematical framework that aims at
extending classical Fourier harmonic analysis to irregular domains described using
graphs. Within this framework, authors have proposed to define operators (e.g. trans-
lations, convolutions) and processes (e.g. filtering, sampling). A very important and
fundamental result in classical harmonic analysis is the uncertainty principle, which
states that a signal cannot be localized both in time and in frequency domains. In
this chapter, we explore the uncertainty principle in the context of GSP. More pre-
cisely, we present notions of graph and spectral spreads, and show that the existence
of signals that are both localized in the graph domain and in the spectrum domain
depends on the graph.

1 Introduction

In classical signal processing, signals under study are generally defined on very regu-
lar domains, such as a path graph for temporal signals like audio, a two-dimensional
lattice for spatial signals like images, and a three-dimensional lattice for spatio-
temporal signals like video. Frequency analysis of such objects is performed thanks
to the Fourier transform operator, which projects the signal under study into a basis of
sines, providing a convenient dual representation for it. In the case of more complex
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signals, such as images or videos, the idea remains the same, except that the sines
are now two or three-dimensional.

When the underlying domain on which signals are studied becomes irregular—
e.g., a sensor network, a social network, an affinity graph, etc.—, defining an adapted
Fourier transform is not as natural. However, providing a frequency representation
for signals evolving over such domains is of real interest, and has applications such as
anomaly detection [11], brain activity comprehension [12], or topology analysis [4].

In order to study signals over such complex topologies, graph signal processing
(GSP) has emerged as a field proposing to extend classical signal processing tools to
irregular domains modeled as graphs. The field developed from the observation that
the basis of eigenvectors associated with the Laplacian matrix of a ring graph are
exactly sines, with increasing frequency as the associated eigenvalues increase [19].
The Fourier transform operator is therefore directly given by this particular matrix,
which is strongly tied with the graph modeling the support of information. Inter-
estingly, this correspondence between the eigenvectors of the Laplacian matrix and
the Fourier modes also holds for arbitrary graphs. As a matter of fact, the eigen-
vectors associated with the lowest eigenvalues vary smoothly on the graph, while
more important variations appear as the associated eigenvalues increase. Using this
so-called Graph Fourier Transform (GFT), numerous tools have been successfully
developed, allowing operations such as filtering [19], wavelet decomposition of sig-
nals on graphs [9], translation, modulation, etc. (see [14, 19] for overviews of such
tools).

Existence of a Fourier transform for signals on graphs also raises the question of
uncertainty. In classical signal processing, it is established that a signal cannot be
simultaneously localized both in time and in the frequency domain. In this chapter,
we present a corresponding uncertainty principle for signals on graphs.We show that
the extent to which a signal can be localized in both the graph vertex domain and
in the graph spectral domain is tied to the graph topology, and that different graphs
have different locality properties.

2 Definitions

In the rest of this chapter, we adopt the following notation. Sets are denoted in
calligraphic letters (e.g., V , E ). Constants and scalar variables are written in italic
font, respectively using capital and lower-case letters (e.g., constant N , and scalar
variables i , j). Matrices and vectors are denoted in bold, respectively with capital
and lower-case letters, with entries having subscripted indices (e.g., matrix A and
vector v with entries Ai j , vi ).
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Fig. 1 Example of a graph containing 7 vertices 1, 2, . . . , 7. Vertices are depicted as circles and
edges as lines connecting them

2.1 Graphs and Matrices

Let us consider a graph G = 〈V ,E 〉, where V is the finite set of vertices and E is
the set of edges. Graphs are mathematical models that are useful to describe relations
between objects (vertices). In the context of graph signal processing, it often makes
sense to consider edges to be pairs of distinct, unordered vertices, meaning that an
edge conveys just enough information to denote whether two vertices are connected
or not. As such, there are at most

(N
2

)
edges in a graph containing N vertices. An

example of a graph is depicted in Fig. 1.
In order to ease readability, let us consider vertices to be indexed from 1 to N :

V = {1, 2, . . . , N }.
Any graph can be conveniently described by its adjacency matrix. The adjacency

matrix A of a graph G = 〈V ,E 〉 with N vertices is an N -by-N matrix with entries
defined as follows:

∀i, j ∈ V : Ai j =
{
1 if {i, j} ∈ E
0 otherwise.

(1)

In the remainder of this chapter,we always consider vertices to be integers between
1 and N , such that we make no distinction between a vertex and its index.

An example graph is shown in Fig. 1, and its adjacency matrix is:

A =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0 1 0 1 0 0 0
1 0 1 1 0 1 0
0 1 0 1 0 0 0
1 1 1 0 0 1 0
0 0 0 0 0 1 0
0 1 0 1 1 0 1
0 0 0 0 0 1 0

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

. (2)

Note that the adjacency matrix of a graph is symmetric. This is because we chose
edges as pairs (unordered sets) of vertices. Extended definitions of graphs have
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been proposed in the literature, including digraphs where edges are couples (ordered
pairs) of vertices. Digraphs are particularly useful when representing oriented rela-
tions between vertices. As a consequence, adjacency matrices of digraphs are not
necessarily symmetric. For the rest of the chapter we focus on symmetric graphs.

Other extensions include weighted graphs. With such graphs, the notion of edges
is refined to take into account intensities. In this context, we introduce the weight
matrix W which is such that:

∀i, j ∈ V : (Wi j > 0) ⇒ (Ai j = 1). (3)

In other words, the weight matrix of a graph has the same support as the adjacency
matrix of the graph. More precisely, it determines the weight of each edge in the
graph. If the graph is unweighted, we conveniently adopt the convention that the
weight matrix is exactly identical to the adjacency matrix of the graph.

2.2 Basic Definitions on Graphs

In this section, we introduce some definitions from graph theory that will be used in
the following sections. More complete literature on graphs can be found for instance
in [8].

Let us first introduce paths and walks on a graph.

Definition 1 A walk on a graph is a (possibly infinite) sequence of vertices, such
that any two consecutive vertices form an edge in the graph. Getting back to the
example of Fig. 1, the sequence (1, 2, 6, 2, 3, 4) is a walk.

Definition 2 A path on a graph is a walk in which each consecutive (unordered)
pair of vertices appears at most once. As such, paths are necessarily finite because
there is only a finite number of possible pairs of vertices. The starting and ending
vertices of a path are called its extremities. An example of a path for the graph in
Fig. 1 is (1, 2, 4, 6).

Paths and walks are often confused in the literature due to their very similar
definitions. Walks are shorter to define, but paths allow to define cycles.

Definition 3 A cycle on a graph is a path with identical extremities. Not all graphs
admit cycles. An example of a cycle for the graph in Fig. 1 is (1, 2, 4, 1).

Definition 4 The length of a path is the number of vertices in the sequence minus 1.
For example, the length of the path (1, 2, 4, 6) is 3. This is also the number of edges
traversed in the path.

Definition 5 The weight of a path is the sum of the weights of edges formed by
consecutive vertices in the path.
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Weights and length are two separate notions for weighted graphs. Thanks to our
previouslymentioned convention, in the case of unweighted graphs they are identical.

Definition 6 A connected graph is a graph for which every pair of vertices are
extremities of at least one path.

Definition 7 The geodesic distance dG on a graph G is a function that associates
a pair of vertices with the minimum weight of a path having these vertices as its
extremities.

Based on these definitions, one can define classical families of graphs:

Definition 8 A tree is a connected graph that contains no cycle.

Definition 9 A bipartite graph is a graph that contains no cycle with odd length.

Definition 10 A ring graph is an unweighted graph with N vertices in which all
edges appear in a single cycle of length N .

Definition 11 A complete graph is an unweighted graph containing all possible
edges.

Definition 12 A star graph is an unweighted graphwith N vertices and N − 1 edges
for which all edges have one extremity in common.

2.3 Meaning of Edge Weights

It is very important to understand that the convention we use here to put 0s in the
matrices when there is no link is not without consequence. Indeed, we suppose a
weight 0 is equivalent to the absence of an edge between the corresponding vertices.
As such, weights should not represent quantities for which this is a contradiction.

For example, consider a graph in which vertices model cities and connection
weights represent road distances between these cities. The absence of a connection
between two cities could correspond to the absence of a direct road connecting them,
in which case the distance should not be 0, but to the contrary +∞. Such weights
do not make sense with respect to our convention.

Now imagine a graph in which vertices are terminals on the Internet and weights
represent the number of packets that directly travel between pairs of terminals. In such
a graph, a connection weight 0 corresponds to the absence of a direct connection, or
to a completely useless one. Suchweights make sense with respect to our convention.

There are fine underlying theoretical reasons to explain why we choose this con-
vention of 0s and 1s in the adjacency matrix, and it is mainly related to the fact
that we suppose working with the regular linear algebra. Distance graphs, that we
discussed before, are better processed using the tropical algebra in which +∞ is a
neutral element for the addition [7].

The weighted graphs we introduce in this document typically model the similarity
of their corresponding vertices, and not their distances.
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2.4 The Graph Laplacian and its Properties

Consider a connected graph G with N vertices together with its weight matrix W.
We call strength1 of a vertex i the quantity:

s(i) =
∑

j∈V
Wi j . (4)

Definition 13 A graph is said to be regular if all of its vertices have the same
strength.

The strengths of all vertices can be merged into a single diagonal matrix S called
the strength matrix, such that:

∀i, j ∈ V : Si j =
{
s(i) if i = j

0 otherwise.
(5)

The strength matrix of a graph is especially useful to perform various kinds of
normalizations on this graph. For instance, a common way to transform a graph into
a Markov chain consists in considering the matrix S−1W, of which sums of rows
always equal 1.

The strength matrix of a graph can also be used to define the Laplacian of a graph:

Definition 14 TheLaplacian of a graphG withweightmatrixW and strengthmatrix
S is:

L = S − W . (6)

As an example, the Laplacian of the example graph in Fig. 1 is:

L =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

2 −1 0 −1 0 0 0
−1 4 −1 −1 0 −1 0
0 −1 2 −1 0 0 0

−1 −1 −1 4 0 −1 0
0 0 0 0 −1 −1 0
0 −1 0 −1 −1 4 −1
0 0 0 0 0 −1 1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(7)

Being a symmetric, real-valued matrix, the Laplacian of a graph with N vertices
can be written as:

L = F�F� , (8)

1This quantity is often referred to as degree in the literature of GSP. In graph theory the degree refers
to the number of neighbors of a given vertex whereas its strength takes into account the weights of
corresponding edges. These two quantities are identical when considering unweighted graphs.
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where F is such that FF−1 = F−1F = IN , IN being the identity matrix of dimension
N , and� is a diagonalmatrix ofwhich diagonal elements areλ1 ≤ λ2 ≤ · · · ≤ λN . In
other words, F is a matrix of eigenvectors and � is a diagonal matrix of eigenvalues,
arranged in ascending order.

The Laplacian of a graph offers multiple interesting properties, as pointed out in
the next propositions.

Proposition 1 Let L be the Laplacian matrix of a graph G . The vector 1 with all
entries equal to 1 is an eigenvector of L associated with the eigenvalue 0.

Proof The proof is straightforward:

∀i ∈ V : (L1)i = (S1)i − (W1)i = s(i) −
∑

j∈V
Wi j = 0 . (9)

Proposition 2 The eigenvalues of the Laplacian of a graph are all nonnegative.

Proof Suppose, for the sake of a contradiction, that some negative eigenvalue exists.
Let us denote it λ and let f be an associated nonzero eigenvector. Let us look at one
of the entries i of f such that |fi | is maximum. We obtain:

s(i)fi −
∑

j∈V
Wi j f j = λfi , (10)

which can be rewritten as:

fi −
∑

j∈V

Wi j

s(i)
f j = λ

s(i)
fi . (11)

Without loss of generality, we can suppose that fi is positive. As such, the right term
of this equality is negative. We conclude that:

N∑

j∈V

Wi j

s(i)
f j > fi , (12)

which is a contradiction since the left part of this inequality is a weighted average of
values of f j that are by definition all less than or equal to fi .

From the two previous propositions we conclude that λ1 = 0, in all cases.

Proposition 3 The second eigenvalue of the Laplacian of a graph G is 0 if and only
if the graph is not connected.

Proof It is immediate to see that the second eigenvalue is 0 if the graph is not
connected. Indeed, fix some vertex i ∈ V and consider the set Vi ⊂ V of vertices
connected to i and the complement set Vi . Then the two linearly independent vectors
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obtained by putting 1s on coordinates in Vi and 0s in those of Vi , and conversely, are
both eigenvectors associated with the eigenvalue 0.

Conversely, consider a non-constant eigenvector associated with eigenvalue 0.
Denote it by f , and let i be an index such that |fi | is maximum. Since we have:

fi =
N∑

j∈V

Wi j

s(i)
f j (13)

is a weighted sum of the value of the neighbors of vertex i , we conclude that all its
neighbors have the same value as i . By repeating this process, we conclude that any
vertex connected to i has the same value in f as i . If the graph were connected, the
obtained vector would be constant.

Proposition 4 The quadratic form of the Laplacian L of a graph is such that:

x�Lx =
∑

{i, j}∈E
Wi j

(
xi − x j

)2
. (14)

Proof We use simple mathematics here:

x�Lx = x�(S − W)x

=
∑

i∈V
s(i)x2

i −
∑

i, j∈V
i< j

2Wi jxix j

=
∑

i, j∈V
i< j

Wi j
(
x2
i + x2

j

)−
∑

i, j∈V
i< j

2Wi jxix j

=
∑

i, j∈V
i< j

Wi j
(
xi − x j

)2
. (15)

Some authors prefer to use the normalized Laplacian ŁŁŁ instead of the Laplacian
L, where:

ŁŁŁ = S− 1
2 LS− 1

2 . (16)

Quadratic forms involving the normalized Laplacian satisfy a similar relationship:

x�ŁŁŁx =
∑

{i, j}∈E
Wi j

(
xi√
s(i)

− x j√
s( j)

)2

. (17)

The normalized Laplacian also satisfies Proposition3, along with three others:

Proposition 5 Consider the normalized Laplacian ŁŁŁ of a connected graph G , then
the spectrum of ŁŁŁ is between 0 and 2.
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Proof Introduce the Rayleigh coefficient:

r(ŁŁŁ, x) = x�ŁŁŁx
x�x

. (18)

It is thus sufficient to show that this coefficient is between 0 and 2 [13]. We obtain:

x�ŁŁŁx
x�x

= x�S− 1
2 LS− 1

2 x
x�x

= x�Lx
(

S
1
2 x
)�

S
1
2 x

=
∑

i, j∈V
i< j

Wi j
(
xi − x j

)2

∑
i∈V s(i)x2

i

. (19)

This quantity is clearly nonnegative. This concludes the proof since, for any real
numbers a and b, (a − b)2 ≤ 2(a2 + b2).

Proposition 6 The largest eigenvalue of the normalized LaplacianŁŁŁ of a connected
unweighted graph G is 2 if and only if the graph is bipartite.

Proof The proof is omitted here. See [3] for details.

Proposition 7 The first eigenvalue of the normalized Laplacian is always 0, and it
has associated eigenvector f where:

∀i ∈ V : fi =
√

s(i)
∑

j∈V s( j)
. (20)

Proof Observe that

f = S
1
2 1

√∑
j∈V s( j)

. (21)

We have:
⎡

⎣
√∑

j∈V
s( j)

⎤

⎦ŁŁŁf = S
1
2 1 − S− 1

2 W1

= 0 . (22)
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Fig. 2 Example of a line graph (left) and a grid graph (right) that are natural topologies to represent
a sound or an image

3 Graph Signals and Fourier Transform

3.1 Graphs and Signals

As mentioned in the introduction, a graph is a convenient tool to model the topology
of a signal. Consider a snippet of audio for instance, which is a continuous, smooth
function of time. Typically, such signal is represented in computer memories using
a regular sampling of time. It is thus a collection of values corresponding to the
amplitude of the sound measured at distinct, regularly-spaced time steps. With no
additional priors about the considered sound, it is reasonable to model smoothness
by saying that two consecutive measurements are likely to be similar—at least, more
than two measurements separated by more time. A natural representation of the
topology of a sound is therefore obtained using a line graph, as depicted in Fig. 2
(left). Considering an image instead, and following the same reasoning, a typical
graph to model its topology would be a grid, as depicted in Fig. 2 (right).

As such, we have a first correspondence between signals and graphs. If a signal
is a vector x ∈ R

N , then its topology should be modeled by a graph containing N
vertices, one per coordinate of the vector.

Of course there is no real interest in introducing graphs to represent the topology
of images or sounds. These are just particular examples of topologies. In practice
we are interested in other families of graphs, some of which we introduce in the
following definitions.

Definition 15 An Erdős–Rényi graph with parameters N and P is an unweighted
graph with N vertices that is obtained by drawing independently at random each
edge with a Bernoulli random variable with parameter P .

As such, an Erdős–Rényi graph with P = 1 is a complete graph.

Definition 16 A randomgeometric graphwith parameters N and R is an unweighted
graph with N vertices that is obtained by drawing uniformly at random 2D coordi-
nates between 0 and 1 for the N vertices. Then vertices which coordinates are less
than R apart, considering �2 norm, are connected through an edge.
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Again, choosing R ≥ √
2 leads to a complete graph.

Erdős–Rényi graphs have interesting asymptotic properties, such as possibly being
at the same time sparsely connected together with each pairs of vertices at very small
distances. Random geometric graphs are often used to describe sensor networks, as
they are built using underlying 2D coordinates. Although they may have irregular,
complex structure, random geometric graphs often have properties which are very
similar to those of a two-dimensional grid.

3.2 Sharpness

Given a signal x ∈ R
N , there are 2(

N
2) possible unweighted graphs to represent its

topology, and an infinite number of weighted graphs. Understanding the relations
between graphs and signals requires to quantify these relationships.

Since the graphs we introduce in this chapter typically model similarities between
their vertices, it is natural to expect connected vertices to contain similar values. This
can be measured with sharpness:

Definition 17 Consider a graph G with N vertices and normalized LaplacianŁŁŁ, and
a signal x ∈ R

N . The sharpness2 of x on G is the quantity:

h(x) = x�ŁŁŁx . (23)

Note that sharpness grows quadratically with the norm of a signal:

∀x ∈ R
N ,∀α ∈ R : α2h(x) = h(αx) , (24)

such that we consider in the following the normalized sharpness:

�(x) = x�ŁŁŁx

‖x‖22
= h

(
x

‖x‖2
)

, (25)

for nonzero signals, with the convention that �(0) = 0.
More generally, signals with very similar values at well-connected vertices will

present a smaller normalized sharpness than signals with significant differences
between those vertices. As such, when the normalized sharpness is close to zero,
it makes sense to say that the signal is aligned with the graph whereas when sharp-
ness is large it is not. In other words, signals aligned with the graph are signals that
are close (in terms of angle) to the span of the first eigenvectors of ŁŁŁ (those with
smallest eigenvalues).

2This quantity is often denoted smoothness in the GSP literature. However, the lower this value, the
smoother the signal on the graph.
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3.3 Diffusion Sequence

Definition 18 Consider a signal x. We call diffusion sequence of x the sequence:

(
(IN −ŁŁŁ)t x

)
t∈N∗ . (26)

In other words, the diffusion sequence takes a signal x, and iteratively mixes it
using the matrix IN −ŁŁŁ.

Proposition 8 For any connected graph, the diffusion sequence of a signal x con-
verges to the first eigenvector of its normalized Laplacian (the one associated with
eigenvalue 0) if the graph is not bipartite.

Proof Denote 0 = λ1 < λ2 ≤ · · · ≤ λN the eigenvalues of the normalized Laplacian
ŁŁŁ of a connected graph G , and f1, . . . , fN the corresponding unit norm eigenvectors.
Then for any unit norm signal x, we obtain:

(IN −ŁŁŁ)t x = (1 − λ1)
t
(
x�f1

)
f1 + · · · + (1 − λN )t

(
x�fN

)
fN . (27)

Because of Proposition6, we have ∀i ≥ 2 : |1 − λi | < 1, and thus:

lim
t

(IN −ŁŁŁ)t x = (x�f1
)

f1 . (28)

Fig. 3 Normalized sharpness of uniformly drawn random signals, as a function of the number of
diffusion steps and for three graphs: path, Erdős–Rényi and random-geometric. All graphs contain
exactly 200 vertices. Erdős–Rényi graphs were generated with P = 0.07 and random-geometric
graphs with R = 0.2. Drawn curves were obtained by averaging over 100 graphs
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In the case of a bipartite graph, it is interesting to see that in the above expression
both 1 − λ1 = 1 and 1 − λN = −1 do not vanish, leading to an almost alternative
sequence.

In some sense, aswego through thediffusion sequenceof a signal, it is increasingly
more bound to the graph, with the extreme case of reaching a sharpness of 0 (using
normalizedLaplacian) after an infinite number of stepswhen thegraph is not bipartite.
In Fig. 3,wedraw the average normalized sharpness of randomlyuniformly generated
signals on a path graph, an Erdős–Rényi graph and a random-geometric graph as a
function of the number of steps. The path graph is a bipartite graph, which explains
why its curve does not seem to converge to 0. But interestingly, we see here that
some graphs have faster convergence to 0 than others, which is due to the spectrum
of their normalized Laplacian, more concentrated around 1.

4 Graph Fourier Transform (GFT)

4.1 Analogy with Discrete Fourier Transform and Definitions

In the case of a ring graph, vertices can be indexed so that the adjacency matrix
becomes circulant [6]. For a ring graph with 7 vertices, it would look like:

A =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0 1 0 0 0 0 1
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 1 0

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

Of course, it is also the case for its Laplacian matrix, which is:

L =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

2 −1 0 0 0 0 −1
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1

−1 0 0 0 0 −1 2

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,

and the normalized Laplacian is also circulant.
As a consequence, it is possible to obtain a mathematical closed form of the

eigenvectors, which in this case are exactly discrete Fourier modes. In other words,
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consider a signal x ∈ R
N , and multiply it by the transpose matrix of eigenvectors F

of the Laplacian of the ring graph. You obtain the discrete Fourier transform of x.
Following this analogy, the graph Fourier transform (GFT) can be defined.

Definition 19 The Graph Fourier Transform (GFT) of a signal x on a graph G is
the operation:

x̂ = F�x . (29)

The Inverse Graph Fourier Transform (IGFT) of a signal x̂ on a graph G is the
operation:

x = F̂x . (30)

4.2 Examples

In order to illustrate some of the previously introduced properties, we consider here
a random-geometric graph G , depicted in Fig. 4. A uniformly random signal x has
been initialized on its vertices. Its spectrum x̂ = F�x (using the eigenvectors of the
normalized Laplacian) is also shown.

The graph Fourier transform provides two representations of a same signal on the
graph, linearly related through the matrix of eigenvectors of the Laplacian matrix.
When represented on the graph, the signal is a scalar value observed at each vertex,
which generally represents an observed phenomenon to analyze. Its spectral repre-
sentation gives insights of the properties of this signal, such as its sharpness on the
graph or its bandwidth for instance.

Also, these eigenvectors being vectors of dimension N , they can be seen as signals
on the graph, revealing some interesting properties of the associated eigenvalues.
Figure5 depicts some of these.

As illustrated, the eigenvectors associated with the lowest eigenvalues of the
Laplacian matrix vary smoothly on the graph, while those associated with larger
ones tend to model more localized, sharp variations. This illustrates the analogy
between the eigenvalues of this matrix and some notion of frequencies in classical
signal processing.

When considering a diffusion process, eigenvalues in the Laplacian spectrum that
are close to 0 are located next to eigenvalue 1 in the spectrum of the diffusion matrix.
As a consequence, they vanish in a slower way compared to Laplacian higher eigen-
values. Since the eigenvectors associated to these eigenvalues are highly localized
patterns on the graph, a diffusion phenomenon on a graph can be understood as a
process that smoothens signal values across the graph, similarly to heat diffusion in
the classical settings. Figure6 depicts a few diffusion steps of the signal in Fig. 4.
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Fig. 4 Example of a random geometric graph on which a uniformly random signal has been
initialized (top). The spectrum of this signal in the basis of the normalized Laplacian is also given
(bottom). We use the notation x̂λ to describe the signal amplitude at eigenvalue λ

5 Graph Uncertainty Principle

5.1 Classical Uncertainty Principle

In classical signal processing, the uncertainty principle states that a signal cannot
be perfectly localized both in time and frequency [10]. More precisely, define the
variance of a measurable function f as:

v( f ) = inf
a∈R

∫
(x − a)2d f . (31)

Introduce the Fourier transform f̂ of f as:
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Fig. 5 Representation of some of the eigenvectors of the normalized Laplacian (bottom) associated
with the graph in Fig. 4. Eigenvectors associated with lower eigenvalues correspond to low frequen-
cies, and vary smoothly when used as signals on the graph (top). On the contrary, those associated
with large eigenvalues feature some strong local variations when represented in the graph domain
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� Fig. 6 Examples of diffusions of the signal in Fig. 4, for various values of t , represented both
on the graph (top) and in the spectral basis of the normalized Laplacian (bottom). As t increases,
spectral components of the signal associated with eigenvalues close to 1 vanish faster than others.
Eventually, as t grows to infinity, only the signal spectrum associated with eigenvalue 0 remains.
As a consequence, the signal converges to the first eigenvalue of the normalized Laplacian, or its
opposite depending on the sign of the initial signal component associated with eigenvalue 0. This
can be observed in the present example by comparing the graph signal in d with the one in Fig. 5a

f̂ : λ �→
∫

f (x)e−2π i xλdx . (32)

Then the uncertainty principle states that:

∀ f ∈ L2(R) :
∫

f = 1 ⇒ v( f )v( f̂ ) ≥ 1

2
. (33)

In other words, the variances of a function f and of its Fourier transform cannot both
simultaneously be small (since their product is at least 1

2 ). Note that the variance of a
function tends to zero precisely when the function tends to a (possibly shifted) Dirac
delta; i.e., when it is well localized.

An important consequence of the uncertainty principle is related to sampling:
a function which is very localized in time necessarily is spread in the frequency
domain; i.e., it has a wide bandwidth and thus must be sampled at a higher rate. Put
differently, if one samples a very brief portion of a time function f , then one can
only hope to reconstruct signals whose spectra are widely spread. Conversely, if one
samples a very narrow frequency band, one can only expect to reconstruct signals
that are spread in time.

This is a very strong fundamental result. Consequently, an important literature
has been developed in the past few years about finding counterparts of this result in
the context of graph signal processing. In particular, it is of interest to know when
one may hope to sample a graph signal at a few vertices (for instance) and hope to
faithfully recover the signal value at other unobserved vertices.

5.2 Graph Spread and Spectral Spread

Throughout this section, we consider the normalized Laplacian and not the Laplacian
to define the Graph Fourier Transform of signals. The notions we use are based on
those introduced in [1, 2]. We only consider connected graphs.

It is important to note that the uncertainty principle on graphs discussed in
this chapter—chosen due to its tied relationship with Heisenberg’s uncertainty
principle—is only one of multiple proposed definitions in the literature. Different
uncertainty principles have been proposed in [17, 20, 21]. Additional results on the
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presented uncertainty principle can be found for instance in [5, 15, 16, 18]. Here,
we choose to focus on the fundamentals.

The spread of a signal in time is a measure of how different its values are after
large delays. As a consequence, measuring the spread of a signal on a graph should
take into account the variations of the values together with their relative distance on
the graph. Following this lead, we introduce the graph spread.

Definition 20 The graph spread δG (x) of a unit norm signal x on a connected graph
G is defined by:

δG (x) = inf
i∈V

∑

j∈V
dG ({i, j})x2

j . (34)

Note that the graph spread is trivially nonnegative. Also, it can be 0 as stated in
the following proposition.

Proposition 9 The graph spread of a one-hot signal is 0.

Proof Consider i the vertex where the coordinate of the vector is nonzero.

Proposition 10 The graph spread of a unit norm signal is upper bounded by the
diameter of the graph:

max
i, j∈V

dG ({i, j}) . (35)

Proof
inf
i∈V

∑

j∈V
dG ({i, j})x2

j ≤ max
i, j∈V

dG ({i, j}) inf
i∈V

∑

j∈V
x2
j . (36)

The spectral spread of a signal is a measure of how localized the spectrum is.
Similarly to its definition in the classical case, it should take into account both the
spread between frequencies and the corresponding values of the Fourier transform
of the signal.

Definition 21 The spectral spread of a unit norm signal x on graph G is defined as:

δ̂G (x) = inf
i∈V

∑

j∈V
‖λ j − λi‖2̂x2

j . (37)

A particular case in the expression of the spectral spread is for i = 1 where the
expression boils down to that of the sharpness. Thus in general the spectral spread
is lesser than the sharpness of the signal, and as a corollary it is upper bounded by 2.
It is also trivially lower-bounded by 0.

Definition 22 The uncertainty domain of a connected graph G is the set:

UG = {(δG (x), δ̂G (x)
)
, ‖x‖2 = 1

}
. (38)
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Proposition 11 The uncertainty domain of a connected graph G is compact.

Proof By previous remarks it is bounded. It is also the image of a compact (the
sphere of unit norm vectors) by continuous functions so it is closed.

Proposition 12 Noticeable points of the uncertainty domain are the one-hot vectors,
which have zero graph spread and nonzero spectral spread, and eigenvectors of the
normalized Laplacian, which have zero spectral spread and nonzero graph spread.

Proof Consider a one-hot vector. Obviously its graph spread is zero. Its spectral
spread cannot be zero as the graph is connected, and thus each row of the normalized
Laplacian matrix contains at least two nonzero coordinates.

Conversely, each eigenvector contains at least two nonzero coordinates, and thus
has a nonzero graph spread.

Of particular interest is the lower frontier of this compact set that characterizes the
extent to which signals can simultaneously achieve low graph and spectral spreads.

Definition 23 The uncertainty curve of a connected graph G is the function

u : g �→ inf
{
δ̂G (x), ‖x‖2 = 1 ∧ δG (x) = g

}
, (39)

defined on the interval [0, δG (λ1)].

5.3 Example Graphs

5.3.1 Complete Graphs

Proposition 13 The graph spread of a unit norm signal on a complete graph G can
be written:

δG (x) = 1 − max
i∈V

x2
i . (40)

Proof

δG (x) = inf
i∈V

∑

j∈V
dG ({i, j})x2

j

= inf
i∈V

∑

j∈V
i �= j

x2
j (41)

Proposition 14 The normalizedLaplacian of a complete graph has two eigenvalues:
0 and N

N−1 .
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Proof Denote N the number of vertices of the complete graph. First note that 1 is
an eigenvector associated with eigenvalue 0. Now consider any vector x orthogonal
to 1, that is to say its coordinates sum to 0. we obtain:

ŁŁŁx =

⎡

⎢⎢
⎣

1 − 1
N−1 . . . − 1

N−1− 1
N−1 1 . . . − 1

N−1
. . . . . . . . . . . .

− 1
N−1 − 1

N−1 . . . 1

⎤

⎥⎥
⎦ x

=

⎡

⎢⎢
⎣

− 1
N−1 − 1

N−1 . . . − 1
N−1− 1

N−1 − 1
N−1 . . . − 1

N−1
. . . . . . . . . . . .

− 1
N−1 − 1

N−1 . . . − 1
N−1

⎤

⎥⎥
⎦ x + N

N − 1
x

= N

N − 1
x. (42)

Proposition 15 Consider a unit norm signal x and denote α1 = x�1√
N
. On the com-

plete graph we have:

δ̂G (x) = N

N − 1
min{α2

1, 1 − α2
1} . (43)

Proof Using Proposition14 we obtain that:

δ̂G (x) = inf
i∈V

∑

j∈V
‖λ j − λi‖2̂x2

j

= N

N − 1
min

⎧
⎨

⎩
α2
1,

N∑

j=2

x̂2
j

⎫
⎬

⎭
, (44)

We conclude using the orthonormality of F.

Proposition 16 For sufficiently large number of vertices N, the uncertainty domain
of complete graphs can be made arbitrarily close to (0, 0).

Proof Consider a one-hot vector. Its graph spread is 0 and its spectral spread is 1
N−1 .

Proposition16 suggests there is no equivalent of the classical uncertainty principle
for signals on complete graphs. This is not a surprising result as the complete graph
is a degenerate topology in which all elements are identically close to all others.

5.3.2 Star Graphs

Proposition 17 Normalized Laplacians of star graphs admit only three eigenvalues:
0, 1 and 2.



338 B. Pasdeloup et al.

Proof Proposition7 gives us that the first eigenvector of a star graph is a vector

containing values
√

1
2N−2 everywhere but at one coordinate where it is

√
1
2 . Without

loss of generality, let us suppose the coordinate where it is
√

1
2 is 1.

It is trivial to verify that vectors containing a 1 at coordinate i ≥ 2 and a −1 at
coordinate i + 1 are linearly independent and eigenvectors associated with eigen-
value 1.

Finally, being bipartite, Proposition6 gives us that 2 is an eigenvalue. We easily

check that the corresponding eigenvector is the one that contains −
√

1
2 at coordinate

1 and
√

1
2N−2 everywhere else.

Proposition 18 For sufficiently large number of vertices N, the uncertainty domain
of star graphs can be made arbitrarily close to (0, 0).

Proof Following the notations introduced in the proof of Proposition17, we consider
a one-hot vector where the 1 is not at coordinate 1 but at some other coordinate j .

Its graph spread is thus 0. Also, its Fourier transform is a vector containing
√

1
2N−2

at coordinates 1 and N .
Finally, choosing j = i we obtain that the spectral spread is not greater than

2
√

1
2N−2 .

Similar to complete graphs, Proposition18 is not surprising as star graphs also
correspond to degenerate topologies.

5.3.3 Ring Graphs

Proposition 19 Eigenvectors of the normalized Laplacian of ring graphs associated
with a nonzero eigenvalue can be chosen as uniformly sampled cosines and sines
describing at least one period.

Proof Denote:

xk =

⎛

⎜⎜⎜
⎜⎜
⎝

cos(0)
cos
(
k2π
N

)

cos
(
k4π
N

)

. . .

cos
(

(N−1)k2π
N

)

⎞

⎟⎟⎟
⎟⎟
⎠

. (45)

Then:

(
ŁŁŁxk
)
i = 2 cos

(
i2πk

N

)
− cos

(
(i + 1)2πk

N

)
− cos

(
(i − 1)2πk

N

)

= 2

(
1 − cos(2πk)

N

)
xk
i . (46)
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A very similar proof can be derived using sines instead of cosines.

Proposition 20 There exist N0 ∈ Z and M > 0 such that for any number of vertices
N ≥ N0, the uncertainty domain of a ring graph is at least at a distance M from the
set {(0, 0)}.
Proof Fix α > 0 and consider a unit-norm signal x with graph spread at most α:

α ≥ inf
i∈V

∑

j∈V
dG ({i, j})x2

v

≥ inf
i∈V

∑

j∈V
i �= j

x2
j

= inf
i∈V

{1 − x2
i } (47)

Denote i∗ a value of i that reaches the minimum of the last quantity:

x2
i∗ ≥ 1 − α . (48)

Now using Proposition19 we obtain that the largest magnitude value in an eigen-
vector of a ring graph is of the order of 1√

N
. Thus, each value in x̂ is at most of

the order of
√
1−α+√

α√
N

. Because ‖̂x‖2 = 1, we obtain that of the order of N of the
coordinates of x̂ are close to this maximum.

We conclude by observing the span of eigenvalues yielded in Proposition19 and
the definition of δ̂G (x).

So, contrary to the previous examples of the complete graph and the star graph,
in the case of a ring graph does exhibit a non-trivial uncertainty principle.

6 Conclusion

We introduced graphs and signals on graphs. We showed there are strong relations
that tie signals to the graphs they are defined on. We considered several examples of
graphs, either deterministic or randomized.

As when it comes to an uncertainty principle, we showed examples where such a
principle holds and examples where it does not.

Better understanding the connections between graphs and this principle could lead
to important developments in the field. In particular being able to characterize for
which graphs the principle does not hold could allow very the rise of very efficient
sampling strategies, able to capture very precise events both in the vertex and in the
spectrum domains.
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A Filtering Framework for Time-Varying
Graph Signals

Addison W. Bohannon, Brian M. Sadler and Radu V. Balan

Abstract Time-varying graph signal processing generalizes scalar graph signals to
multivariate time-series data with an underlying graph structure. Important applica-
tions include network neuroscience, social network analysis, and sensor processing.
In this chapter, we present a framework for modeling the underlying graphs of these
multivariate signals alongwith a filter designmethodology based on invariance to the
graph-shift operator. Importantly, these approaches apply to directed and undirected
graphs. We present three classes of filters for time-varying graph signals, providing
example application of each in design of ideal bandpass filters.

1 Introduction

The field of graph signal processing has seen rapid growth since its introduction
just five years ago in the works of Sandryhaila and Moura [1, 2] and Shuman et al.
[3]. Much of the graph signal processing work can be understood as migrating the
theoretical underpinnings of classical signal processing of time-series data to that of
scalar signals defined on the nodes of a graph. Not all of this work is within the scope
of this chapter. For a comprehensive review of the developments, applications, and
open problems in graph signal processing more generally, see Ortega et al. [4].
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In the present chapter, we consider the modeling and filtering of time-varying
graph signals on possibly directed graphs. Time-varying graph signals can be under-
stood as multivariate stochastic processes for which the multivariate components
have a topology induced by a graph structure. Unlike conventional graph signal pro-
cessing with scalar signals on graphs, time-varying graph signals also incorporate
a temporal dimension. Here, we consider how to model the underlying directed (or
undirected) graph along with the design of filters for such signals. Our filtering con-
struction is motivated by covariance to the underlying graph shift operator. Target
applications for such modeling and filtering are network neuroscience, social net-
work analysis, and sensor array processing. Each of these applications has a physical
topology induced by an underlying graph, while the signals are revealed in time-
series. For example, the members of a social network comprise the nodes of a graph
with edges connecting friends or followers, and the recorded signal could be network
activity (e.g. sending messages or updating status) indexed by time.

One notable application of graph signal processing has been its use in deep learn-
ing architectures. Deep learning encompasses a diverse field of statistical models
and learning algorithms which have achieved state-of-the-art results in image, video,
speech, and language applications [5]. The seminal work by Mallat [6, 7] and Bruna
and Mallat [8] argued that the power of deep learning to achieve invariances neces-
sary for generalization could be understood as the result of composing conventional
wavelet filter banks with non-linear functions. This led to the first work to generalize
deep learning to graph signals by Bruna et al. [9]. In this work, the convolution oper-
ators in deep learning architectures are replaced with spectrally-defined graph filters
consistent with the graph Fourier transform of Shuman et al. [3]. This work inspired
a thread of follow-on research [10–12] which is reviewed in detail in Bronstein et al.
[13].

At its foundation, the field of graph signal processing has had a fundamental
divide. The theory proposed by Sandryhaila andMoura [1, 2] advocates an algebraic
construction of graph signal processing from the weighted adjacency matrix. Impor-
tantly, this theory accommodates directed graphs. However, the theory proposed by
Shuman et al. [3] advocates a construction of graph signal processing from the defi-
nition of the graph Fourier transform by means of the graph Laplacian. Importantly,
the graph Laplacian for an undirected graph is symmetric and positive semi-definite.
This yields an orthonormal basis in the definition of the graph Fourier transform along
with imparting a physical intuition for the eigenvectors. Underlying this debate is
the lack of a canonical definition for a graph-shift and the consequences of choosing
one over another [14]. Later work has advocated that the graph-shift be an isome-
try [15, 16], a stochastic matrix [17], or have a uniquely-defined orthonormal basis
[18]. To add to the confusion, Deri and Moura point-out the inherent ambiguity in
choosing eigenvectors from the invariant subspaces of matrices with semi-simple
and degenerate eigenvalues [19].

Regarding extensions of graph signal processing to time-varying signals on
graphs, there are two primary thrusts. One follows from a desire to track random
processes on graphs. Auto-regressive moving average models for tracking time-
varying signals on graphs are proposed in [20, 21], and reconstruction techniques
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for sub-sampled time-varying graph signals are proposed in [22–25]. The other col-
lection of works relates more closely to the proposed approach of this chapter. These
works consider multi-dimensional signals on graphs as factor graphs. Sandryhaila
and Moura first proposed this approach in [26] for a general factor graph framework
and discussed the application of time-varying signals on a graph. A similar concept
was proposed for a generalized analysis of multi-dimensional graph signals recently
in [27]. In the interim, Loukas and Foucard and Grassi et al. have proposed a joint
Fourier transform and associated analysis of time-varying signals on graphs in [28,
29] respectively.

Other works which address time-varying signals on graphs is that of Villafane-
Delgado et al. which considers the tensor decomposition of aLaplacian tensor defined
over all time [30]. In Yan et al. [17], a parameterized filter is defined which allows the
filtering of continuous time processes on graphs. Smith et al. [31] proposemethods by
which to define correlation, coherence, and phase-lag index for time-varying signals.

The current chapter shares a common motivation with that of Bruna et al. [9] with
regard to designing filters for a machine learning application. It is also similar in
its stated goals to the optimal filtering framework of Segarra et al. [32], but for the
focus on time-varying graph signals. The definition of shift-invariance used in the
current work first appeared in Sandryhaila andMoura [1] without the context of time.
The result of Theorem2 is very similar to notions of graph stationarity proposed in
Girault [33] and Marques et al. [34], but stationarity is understood to be a property
of the graph signal and not a property of the filter as in the current chapter. Romero
et al. [24] propose an extended graph formulation very similar to that introduced in
Sect. 2 of the current chapter. The extended graph formulation of Romero et al. is
used to define regularization terms for recovering time-varying signals on graphs.
However, these works are not primarily concerned with analysis and filtering as is
the focus of this chapter. The works of Loukas and Foucard [28] and Grassi et al. [29]
are seen to be the most closely related in scope and purpose to the current chapter.
These works directly address the analysis and filtering of time-varying signals on
graphs. However, these works consider only undirected graphs and use the factor
graph approach which does not allow edges across multiple time scales as in the
current chapter.

In Sandryhaila andMoura [26], the authors propose a procedure for filtering time-
varying graph signals by modeling the underlying graph as one of the various graph
products between the circulant shift operator and the weighted adjacency matrix
of the graph nodes. This formulation allows the authors to apply both the tools of
discrete signal processing and of graph signal processing disjointly on the problem.
Similar models have been proposed in Loukas and Foucard [28], Grassi et al. [29],
and Kurokawa et al. [27].

Implicit in the factor graph model is a strong Markov assumption about how
the nodes of a graph interact in time. The factor graph models only the interaction
among nodes at a fixed time-scale. This is not overly limiting, but it misses a more
full modeling of the possible interactions among nodes in time. For instance, two
nodes could interact via an unmodeled process, such as a node that is not included
in the graph. This interaction may manifest over two, three, or more time-steps.
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Table 1 Summary of filter design results for A ∈ B
(
�2 (Z × V )

)

Filter type Complexity Design parameters

Linear and time-invariant O
(
n2
) {

â j,k ∈ L∞ ([0, 1])} j,k∈V
Linear and shift-invariant O (n)

{
âk ∈ L∞ ([0, 1])}k∈V

Function of graph-shift operator O (1) φ : U → C, holomorphic

Simultaneously, other nodes may interact at a single time-step. Additionally, the
interaction between nodes may be cumulative or history-dependent. Neither of these
cases fit into the factor graph model of time-series graph signals.

This chapter aims to address this gap by modeling stationary interactions between
nodes in time.We propose a theoretical framework for linear filtering of time-varying
graph signals on directed or undirected time-invariant graphs. This framework yields
a family of filter design methods of decreasing design complexity (see Table 1). The
proposed filter design methods will be motivated by a common example application
of bandpass filtering.

Section2 covers some preliminaries which establish the extended graph frame-
work and the function spaces in which time-varying graph signals exist. Section3
adapts linear and time-invariant systems theory to a graph geometry. Using this
framework, filter design procedures are derived which yield quadratic complexity.
Section4.2 derives shift-invariant filters and design procedures. Shift-invariance is
a graph signal processing concept proposed in Sandryhaila and Moura [1], and it is
used here to impart the statistical properties of the graph onto filters. The design com-
plexity of shift-invariant filters is shown to be linear. Section5 defines shift-invariant
filters which have constant learning complexity. Functional calculus is used to define
filters which are functions of a given graph-shift operator. In Sect. 6, the previous
classes of filters are discussed for the case in which the graph is undirected.

2 Preliminaries

Let G = (V ,E ) be a graph with nodes V = {0, . . . , n − 1} such that n = |V | < ∞
and E ⊆ V × V . A weight function assigns a relationship between any two nodes
with an edge connecting themw : E → R. The function,w, defines the entries of the
adjacency, or weight matrix,W ([W] j,k = w( j, k)). Ifw is symmetric (i.e.w( j, k) =
w(k, j)), then the graph is undirected, otherwise it is directed. The degree of each
node follows from the definition ofW, di =∑ j∈V w(i, j), and the diagonal degree
matrix is D = diag(d0, . . . , dn−1). The Laplacian of G is L = D − W. If the weight
matrix is undirected, then the Laplacian is positive semi-definite. Other matrices
of interest are the normalized Laplacian, Ln = D−1/2LD−1/2, and the random walk
Laplacian, Lr = D−1L.
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Fig. 1 An example extended
graph G̃ . Each time t ∈ Z is
associated with the node set
V = {v0, v1} so that each
node is indexed by time and
space, (v, t). The extended
graph admits edges between
any two nodes regardless of
proximity in time and space

We consider time-varying graph signals which can be represented as functions of
time supported on the nodes of a fixed graph. This can be incorporated into the above
graph notation by considering an extended graph G̃ = (Ṽ , Ẽ ) where Ṽ = Z × V
and Ẽ ⊆ Ṽ × Ṽ . An example extended graph is depicted in Fig. 1.

Thus, time-varying graph signals are functions on G̃ , equivalently vector-valued
sequences indexed by time {x[t] ∈ C

n}t∈Z or scalar functions on Ṽ , x : Z × V → C.
We use both notations, the vector-valued sequence and scalar-valued function, as
is convenient in context. Some knowledge of function spaces is assumed, namely
the definitions and norms of �p (Z) and L p ([0, 1]) for 1 ≤ p ≤ ∞. The Lebesgue
measure is used throughout on L p-spaces. Some of the analysis will take place in
finite dimensions on a function space �2 (V ) which is isomorphic to C

n with the
usual Euclidean norm, but the primary analysis will occur in two Hilbert spaces,
�2 (Z × V ) and L2 ([0, 1] × V ), the time and frequency domain of time-varying
graph signals.

Definition 1 The �2 (Z × V )-norm is defined as

‖x‖�2(Z×V ) =
(
∑

t∈Z

∑

v∈V
|x(t, v)|2

)1/2

=
(
∑

t∈Z
‖x[t]‖2�2(V )

)1/2

,

for a function x : Z × V → C, and it defines the function space

�2 (Z × V ) = {x : Z × V → C | ‖x‖�2(Z×V ) < ∞} .

Moreover, ‖·‖�2(Z×V ) is induced by an inner product

〈x, y〉�2(Z×V ) =
∑

t∈Z

∑

v∈V
x(t, v)ȳ(t, v) =

∑

t∈Z
〈x[t], y[t]〉�2(V )

where x, y ∈ �2 (Z × V ).1

Definition 2 The L2 ([0, 1] × V )-norm is defined as

1 ȳ denotes the complex conjugate of y.
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‖x‖L2([0,1]×V ) =
(∫

[0,1]

∑

v∈V
|x(ω, v)|2 dω

)1/2

=
(∫

[0,1]
‖x(ω)‖2�2(V ) dω

)1/2

for x : [0, 1] × V → C a measurable function and dω is the Lebesgue measure. It
defines the function space

L2 ([0, 1] × V ) = {x : [0, 1] × V → C | ‖x‖L2([0,1]×V ) < ∞} .

Moreover, ‖·‖L2([0,1]×V ) is induced by an inner product

〈x, y〉L2([0,1]×V ) =
∫

[0,1]

∑

v∈V
x(ω, v)ȳ(ω, v)dω =

∫

[0,1]
〈x[t], y[t]〉�2(V ) dω

where x, y ∈ L2 ([0, 1] × V ).

Fourier analysis plays a central role in signal processing of time-series signals,
and it will play an important role in the design and analysis of filters on �2 (Z × V ).
Fundamental results from Fourier analysis on �2 (Z) and L2 ([0, 1]) for 1 ≤ p ≤ ∞,
includingPlancherel’s theoremand the convolution theoremcarry over to �2 (Z × V )

and L2 ([0, 1] × V )with the following definitions of the Fourier and inverse Fourier
transform (see e.g. [35] for reference).

Definition 3 The Fourier transform F of x ∈ �2 (Z × V ) is defined as

(F x) (ω, v) = x̂(ω, v) =
∑

t∈Z
e2π iωt x(t, v),

where ω ∈ [0, 1].
Definition 4 The inverse Fourier transform F ∗ of x ∈ L2 ([0, 1] × V ) is defined
as

(
F ∗x

)
(t, v) =

∫

[0,1]
e−2π iωt x(ω, v)dω,

where t ∈ Z and dω is the Lebesgue measure.

In the discrete signal processing setting, filtering builds on linear system theory
and finite-dimensional linear algebra. These concepts need to be generalized for
signals in �2 (Z × V ).

Definition 5 The operator norm of A : �2 (Z × V ) → �2 (Z × V ) is defined as

‖A‖B(�2(Z×V )) = sup
x∈�2(Z×V )

‖Ax‖�2(Z×V )

‖x‖�2(Z×V )

= sup
‖x‖�2(Z×V )=1

‖Ax‖�2(Z×V ) .

A is said to be bounded if ‖A‖B(�2(Z×V )) < ∞. The set of bounded linear transfor-

mations is denoted B
(
�2 (Z × V )

)
.
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Bounded operators are more amenable to analysis than unbounded operators in
general, and for practical filtering applications, it is presumed that filtered graph
signals should be bounded. Moreover, the set of bounded linear transformation
B
(
�2 (Z × V )

)
with identity E and composition is a Banach algebra [36].

Definition 6 For A ∈ B
(
�2 (Z × V )

)
and x, y ∈ �2 (Z × V ), the adjoint, A∗ ∈

B
(
�2 (Z × V )

)
satisfies

〈Ax, y〉�2(Z×V ) = 〈x,A∗y
〉
�2(Z×V )

.

An operator A ∈ B
(
�2 (Z × V )

)
is said to to be self-adjoint if A = A∗.

There is a natural generalization of finite-dimensional linear operators to infinite-
dimensional multiplication operators. Let x ∈ �2 (Z × V ), then for each A ∈
B
(
�2 (Z × V )

)
, there exists a unique kernel K : Z × Z → B

(
�2 (V )

)
such that

(Ax) [t] = lim
N→∞

(
N∑

s=−N

K(t, s)x[s]
)

. (1)

Note thatK is a finite-dimensional linear operator, and recall that �2 (V ) is isomorphic
to C

n . It follows that K acts like a matrix on C
n . This intuition then informs the

matrix-vector representation of the action of A, a bi-infinite block matrix acting on
a bi-infinite vector.

Ax =

⎡

⎢⎢⎢⎢⎢⎢
⎣

. . .
...

...
...

· · · K(−1,−1) K(−1, 0) K(−1, 1) · · ·
· · · K(0,−1) K(0, 0) K(0, 1) · · ·
· · · K(1,−1) K(1, 0) K(1, 1) · · ·

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

...

x[−1]
x[0]
x[1]

...

⎤

⎥⎥⎥⎥⎥⎥
⎦

(2)

In linear systems theory, matrix decompositions and the spectra of matrices play
an important role. The canonical decomposition in finite dimensions is the Jordan
spectral representation which follows (for a proof of the theorem, see e.g. [37]).

Theorem 1 (Jordan spectral representation) Let A ∈ B
(
�2 (V )

)
. Then, there

exists m ≤ n = |V | distinct eigenvalues {λk ∈ C}1≤k≤m, projections{
Pk ∈ B

(
�2 (V )

)}
1≤k≤m, and nilpotents

{
Nk ∈ B

(
�2 (V )

)}
1≤k≤m such that

A =
m−1∑

k=0

λkPk + Nk (3)

with the following properties:

1. P jPk = PkP j = δ jkPk
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2. PkNkPk = Nk

3. (Nk)
n = 0

4.
∑m−1

k=0 Pk = E (the identity operator on �2 (V )).

Properties 1–4 of Theorem 1 imply additionally that

PkNk = NkPk = Nk (4)

and
P jNk = NkP j = δ jkNk . (5)

The Jordan spectral representation is perhaps less familiar than the equivalent Jordan
normal form, but the projections and nilpotents will be important for the analysis of
Sects. 4 and 5.

In the following, filter designwill rely heavily on spectral theorywhich extends the
notion of matrix decomposition to infinite-dimensional linear operators on Banach
spaces. This theory deals with the spectrum of an operator in place of the eigenvalues
of a matrix. Some pertinent definitions follow.

Definition 7 The resolvent set of A ∈ B
(
�2 (Z × V )

)
is

ρ (A) = {z ∈ C | (A − zE)−1 ∈ B
(
�2 (Z × V )

)}
.

where E denotes the identity operator on �2 (Z × V ).

Definition 8 The spectrum of A ∈ B
(
�2 (Z × V )

)
is σ (A) = C \ ρ (A).

Definition 9 The resolvent of A ∈ B
(
�2 (Z × V )

)
is the operator-valued function

R : ρ (A) → B
(
�2 (Z × V )

)
,

RA (z) = (A − zE)
−1

.

The relationship between the spectrum of an operator and an eigenvalue of a matrix
can be seen from the above definitions. The spectrum is the subset of C such that
A − zE is not bijective, equivalent to an eigenvalue infinite dimensions.The spectrum
of a bounded operator is closed, bounded, and never empty [36], and the resolvent
set is everything except the spectrum. As opposed to the eigenvalues of a matrix,
which are a finite set of elements inC, the spectrum of a bounded operator in general
has in addition to a point spectrum, a continuous and a residual spectrum [36]. As
the eigenvalues of a matrix are a special case of the spectrum of a bounded operator,
the spectrum of A ∈ �2 (V ) will also be denoted σ(A).



A Filtering Framework for Time-Varying Graph Signals 349

3 Linear and Time-Invariant Filters on �2 (Z× V )

Linear, time-invariant systems theory underlies much of signal processing. With
respect to filtering operations, linear time-invariant filters are amenable to anal-
ysis and yield well-understood behavior. As discussed in Sect. 2, operators in
B
(
�2 (Z × V )

)
naturally generalize matrices. It remains only to extend the notion

of time-invariance.

3.1 Definition of Time-Invariance in �2 (Z× V )

Generalizations of time-invariance exist for signal processing on spatial data (e.g.
translation invariance in image processing), but this chapter concerns graph signals
with both spatial and time dimensions. Therefore, time-invariance in �2 (Z × V )

should simply extend the definition of time-invariance from �2 (Z) to �2 (Z × V ).
Time-invariant filters by convention means that the entries of the matrix are not
functions of time. Then, there is a certain invariance to when the filter is applied.
If this definition is deconstructed, it depends first on a notion of time-evolution and
second on an invariant action of the operator.

Let time-evolution of a discrete signal x ∈ �2 (Z) be associated with the time-shift
operator, T ∈ B

(
�2 (Z)

)
,

(Tx) [t] = x[t − 1]. (6)

For finite-dimensional signals, T is a circulant matrix with ones on the sub-diagonal,
and it is diagonalized by the discrete Fourier transform [1]. The same operation can be
defined for time-varying graph signals for T ∈ B

(
�2 (Z × V )

)
and x ∈ �2 (Z × V ),

which acts like the shift operator except for being infinitely block circulant with the
multiplicative identity E ∈ �2 (V ) on the sub-diagonal,

T =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

. . .

E
E
E

. . .

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (7)

Note that for for T ∈ B
(
�2 (Z)

)
, E = 1. Thus, the time-shift operation advances not

just a scalar signal but the scalar graph signal one step in time.
Consider the action of a linear filter A ∈ B

(
�2 (Z)

)
on x ∈ �2 (Z). When we say

time-invariant filtering, we mean
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(ATx) [t] = (TAx) [t], (8)

which is also understood as covariance (or equivariance) to time-shift. If x ∈
�2 (Z × V ) and T ∈ B

(
�2 (Z × V )

)
, then the same condition should define time-

invariance for graph signals. Thus, for a filterA ∈ B
(
�2 (Z × V )

)
, it must commute

with the cyclic group generated by the time shift operator T, T = 〈T〉.
Definition 10 A ∈ B

(
�2 (Z × V )

)
is called time-invariant ifA is in the commutant

of T ,
{
A ∈ B

(
�2 (Z × V )

) | AT = T A
}
.

3.2 Laurent Operators on �2 (Z× V )

In finite dimensions, Toeplitz matrices commute with the circulant shift matrix
because both are diagonalized by the discrete Fourier transform. These matri-
ces define scalar convolutions. The matrix representation of Eq. (2) makes possi-
ble the generalization of Toeplitz operators, and also convolution, to operators on
�2 (Z × V ).

Definition 11 LetA∈B (�2 (Z × V )
)
with kernelK : Z × Z → B

(
�2 (V )

)
. Then,

A is said to be Laurent if K(s, t) = K(s + d, t + d) for all d ∈ Z.

Denote Ks = K(s, 0). Laurent operators generalize convolution operators as can be
seen from the action of a Laurent operator,

(Ax) [t] = lim
N→∞

(
N∑

t=−N

Kt−sx[s]
)

, (9)

which has a block Toeplitz matrix representation,

Ax =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

. . .
. . .

. . .

· · · K1 K0 K−1 · · ·
· · · K1 K0 K−1 · · ·

· · · K1 K0 K−1 · · ·
. . .

. . .
. . .

⎤

⎥⎥⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎢
⎣

...

x[−1]
x[0]
x[1]

...

⎤

⎥⎥⎥⎥⎥
⎥
⎦

. (10)

Time-invariant filters are inherently Laurent, and vice-versa, as the following
theorem shows.

Theorem 2 A ∈ B
(
�2 (Z × V )

)
is time-invariant if and only if A is Laurent.

Proof ⇐
First, let A be Laurent. It is sufficient to show that ATd = TdA for some d ∈ Z.
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(
ATdx

) [t] = lim
N→∞

N∑

s=−N

Kt−s
(
Tdx

) [s]

= lim
N→∞

N∑

s=−N

Kt−sx[s − d]

= lim
N→∞

N∑

s ′=−N

Kt−(s ′+d)x[s ′]

= Td

(

lim
N→∞

N∑

s ′=−N

Kt−s ′x[s ′]
)

= (TdAx
) [t]

⇒
Now, let A be time-invariant. By Definition10, A commutes with T . Without

loss of generality, choose Td ∈ T for some d ∈ Z. It is necessary to show that
K(t, s) = K(t + d, s + d). Let x ∈ �2 (Z × V ).

(
ATdx

) [t + d] = (TdAx
) [t + d]

lim
N→∞

N∑

s=−N

K(t + d, s)
(
Tdx

) [s] = Td

(

lim
N→∞

N∑

s=−N

K(t + d, s)x[s]
)

lim
N→∞

N∑

s=−N

K(t + d, s)x[s − d] = lim
N→∞

N∑

s=−N

K(t, s)x[s]

lim
N→∞

N∑

s ′=−N

K(t + d, s ′ + d)x[s ′] = lim
N→∞

N∑

s=−N

K(t, s)x[s]

By the uniqueness of K, A is Laurent. �

3.3 Design of Linear and Time-Invariant Filters on
�2 (Z× V )

Next, we exploit Theorem 2 to develop a filter design procedure. Consider the fol-
lowing.

Theorem 3 Let A ∈ B
(
�2 (Z × V )

)
be Laurent with

∑
t∈Z ‖Kt‖B(�2(V )) < ∞.

Then, σ (A) = ∪ω∈[0,1]σ
(
Â(ω)

)
and
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(FAx) (ω) = Â(ω)x̂(ω) (11)

for x ∈ �2 (Z × V ) where
Â(ω) =

∑

t∈Z
e2π iωtKt . (12)

Moreover,
‖A‖B(�2(Z×V )) = max

ω∈[0,1] smax

(
Â(ω)

)
(13)

where smax (·) is the maximum singular value.2

Proof Let x ∈ �2 (Z × V ).

(FAx) (ω) =
∑

t∈Z
e2π iωt

(

lim
N→∞

(
N∑

s=−N

Kt−sx[s]
))

= lim
N→∞

∑

t∈Z

N∑

s=−N

e2π iω(t−s)Kt−se
2π iωsx[s]

=
(

lim
N→∞

N∑

t ′=−N

e2π iωt
′
Kt ′

)(
∑

s∈Z
e2π iωsx[s]

)

=
(

lim
N→∞

N∑

t ′=−N

e2π iωt
′Kt ′

)

(Fx) (ω)

The limit exists by absolute summability of the kernels. Moreover, Â is norm-
continuous for ω ∈ [0, 1]. This leads to the convention that Â is diagonalized by
the Fourier transform, A = F ∗ ÂF . The spectrum identity is established next. It
follows that

A − zE = F ∗
(
Â(ω) − zE

)
F .

If z ∈ ρ (A), then there exists a B ∈ B
(
�2 (Z × V )

)
such that (A − zE)B = E.

(A − zE)B = E

F ∗
(
Â(ω) − zE

)
FB = E

(
Â(ω) − zE

)
B̂(ω) = E

Let S = ∪ω∈[0,1]σ
(
Â(ω)

)
. For z /∈ S, Â(ω) − zE is invertible on �2 (V ), and for

z ∈ S, Â(ω) − zE is not invertible, S ⊆ σ (A) ⊆ S. Thus, σ (A) = S. Lastly, the

2σ (·) here denotes the spectrum of an infinite-dimensional linear operator and the spectrum (eigen-
values) of a finite-dimensional matrix.
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norm identity is proved.

‖A‖B(�2(Z×V )) =
∥
∥∥Â
∥
∥∥
B(L2([0,1]×V ))

= sup
‖x̂‖L2([0,1]×V )

=1

∥∥
∥Âx̂

∥∥
∥

�2(Z×V )

≤ sup
‖x̂‖L2([0,1]×V )

=1

ess sup
ω∈[0,1]

∥
∥∥Â(ω)x̂(ω)

∥
∥∥
B(�2(V ))

≤ ess sup
ω∈[0,1]

sup
‖x̂‖L2([0,1]×V )

=1

∥
∥∥Â(ω)x̂(ω)

∥
∥∥
B(�2(V ))

= ess sup
ω∈[0,1]

smax

(
Â(ω)

)

So far, this has only established an inequality, but the equality can be shown to be
attained for a particular x ∈ �2 (Z × V ). The goal is to find a unit norm function

which lumps its mass on the measurable set at which smax

(
Â
)
attains its essential

supremum while also being in the invariant subspace associated with the maximum

singular value on that set. Let Ω ⊂ [0, 1] be the set on which smax

(
Â
)
achieves

its essential supremum. Then, Â∗(Ω)Â(Ω) has an eigenvector u(ω) for ω ∈ Ω . u
will certainly not be a continuous function of ω ∈ [0, 1], but it is possible to find a
sequence of continuous functions {xk}k∈N which converge to u on Ω and are zero
otherwise, for which the equality is achieved. Lastly, since [0, 1] is a closed set and

Â is norm-continuous for ω ∈ [0, 1], smax

(
Â(ω)

)
is attained on [0, 1].

ess sup
ω∈[0,1]

smax

(
Â(ω)

)
= max

ω∈[0,1] smax

(
Â(ω)

)

�

As a result of Theorem 3, linear and time-invariant operators on �2 (Z × V ) are
Laurent, these operators A have a spectral form given by Eq. 12, where Â : [0, 1] →
�2 (V ) is a finite-dimensional operator-valued function of ω ∈ [0, 1]. The action of
A on a signal x ∈ �2 (Z × V ) is

(Ax) [t] =
(
F ∗

[
Â(ω)x̂(ω)

])
[t] (14)

where x̂ ∈ L2 ([0, 1] × V ). This action also admits a matrix-vector representation

(Ax) [t] =
⎛

⎜
⎝F ∗

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

â0,0(ω) · · · â0,n−1(ω)
...

. . .
...

ân−1,0(ω) · · · ân−1,n−1(ω)

⎤

⎥
⎦

⎡

⎢
⎣

x̂0(ω)
...

x̂n−1(ω)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠ [t]. (15)
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Here, Â acts as a transfer function on a vector space �2 (V ).
The significance of Theorem 2 and Eq. (14) is that the design of linear and time-

invariant filters can be carried out in the frequency domain where the action of
the operator is a matrix-vector product. Equation (15) shows that there are O

(
n2
)

parameters in the filter, of which each is a function
{
â j,k : [0, 1] → C

}
j,k∈V . In fact,

a stronger statement can bemade about the functions â j,k , that theymust be bounded.

Theorem 4 Let Â : [0, 1] → B
(
�2 (V )

)
be a a finite-dimensional operator-valued

measurable function with entries â j,k : [0, 1] → C for j, k ∈ V . Then, A = F ∗ÂF
defines a Laurent operator, andA ∈ B

(
�2 (Z × V )

)
if and only if â j,k ∈ L∞ ([0, 1])

for j, k ∈ V . Furthermore,

max
j,k∈V

∥∥â j,k

∥∥
L∞([0,1]) ≤ ‖A‖B(�2(Z×V )) ≤

⎛

⎝
∑

j∈V

∑

j∈V

∥∥â j,k

∥∥
L∞([0,1])

⎞

⎠

1/2

. (16)

Proof By Theorem 2, A = F ∗ÂF is Laurent. Eq. (16) will be proved next. From
there, the remainder of the theorem follows easily. It is known that for A ∈ �2 (V ),
max j,k∈V

∣∣a j,k

∣∣ ≤ smax (A) ≤ ‖A‖F (see e.g. [38]). Now, consider A = F ∗ÂF .3

max
j,k∈V

∥∥â
∥∥2

�∞([0,1]) = ess sup
ω∈[0,1]

max
j,k∈V

∣∣â j,k(ω)
∣∣2

≤ ess sup
ω∈[0,1]

smax

(
Â(ω)

)

= ‖A‖2B(�2(Z×V ))

= ess sup
ω∈[0,1]

smax

(
Â(ω)

)

≤ ess sup
ω∈[0,1]

∑

j∈V

∑

k∈V

∣
∣â j,k(ω)

∣
∣2 ≤

∑

j∈V

∑

k∈V

∥
∥â j,k

∥
∥2

�∞([0,1])

This establishesEq. (16).Now, if â j,k ∈ L∞ ([0, 1]) for j, k ∈ V , then‖A‖B(�2(Z×V ))
is bounded. �

3.4 Example

We aim to implement a bandpass filter on a signal x ∈ �2 (Z × V ) using the frame-
work of Sect. 3.3. A bandpass filter passes a signal at a specific range of frequencies

3Unlike inTheorem3, Â : [0, 1] → �2 (V ) is not necessarily normcontinuous.F ∗ : L∞ ([0, 1]) →
�1 (Z) is not bijective, and K may not be absolutely summable. Thus, ‖A‖B (�2(Z×V )) =
ess supω∈[0,1] smax

(
Â(ω)

)
.
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and attenuates the signal at frequencies outside of the specified range. Implementing
a bandpass filter in this construction looks very similar to a bandpass filter on a scalar
time-series signal �2 (Z). On �2 (Z × V ), the transfer function should be approxi-
mately equal to the multiplicative identity E for the desired range of frequencies and
close to the multiplicative zero element 0 for those frequencies outside. Let a mea-
surable subset Ω ⊂ [0, 1] be the desired frequency range. Then, an ideal bandpass
filter A = F ∗AF would be

Â(ω) =
{
E ω ∈ Ω

0 o.w.
. (17)

This would correspond to choosing â j,k(ω) = δ j,kχΩ(ω) for all j, k ∈ V , where

χΩ(ω) =
{
1 ω ∈ Ω

0 o.w.
. (18)

Since χΩ ∈ L∞ ([0, 1]), this defines a bounded operator A ∈ B
(
�2 (Z × V )

)
by

Theorem 4. The action of A on x would be

(Ax) [t] =
∫

Ω

e−2π iωt x̂(ω)dω. (19)

In the limit as dω(Ω) → 0 so that Ω = {ω0}, this would implement an ideal band-
pass,4

(Ax) [t] = e−2π iω0t x̂(ω0). (20)

4 Linear and Shift-Invariant Filters on �2 (Z× V )

To this point, the graph geometry has not informed the design procedure. As argued
in Sandryhaila and Moura [1], the weighted adjacency matrix describes the spatial
evolution of a signal. It captures the flow rate between nodes or the conditional
probabilities between random variables. These are relationships between distinctly
spatial and non-temporal elements of the signal. A similar intuition follows from
the random walk Laplacian as is claimed in [17], which propagates probability mass
between the nodes through aMarkovprocess. Requiring that linear and time-invariant
filters additionally be invariant to this spatial evolution offers one way to incorporate
the information from the underlying graph. This shift-invariance connotes a spatial
meaning as opposed to the temporal one of time-invariance.

4This converges only in the distribution sense as it amounts to â j,k(ω) → δ(ω − ω0), a non-
measurable function.
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4.1 Definition of Shift-Invariance in �2 (Z× V )

This section will investigate the design of filters that are invariant to a spatial graph
evolution that is also time-invariant. As time-invariance is defined in Sect. 3, shift-
invariance can be defined as commuting with a given graph-shift operator. This
section will consider an arbitrary graph-shift operator, S ∈ B

(
�2 (V )

)
that could be

an adjacency matrix or Laplacian and potentially be self-adjoint, unitary, sparse, or
any other desired property. Then, shift-invariance would mean commuting with the
cyclic group generated by S, S = 〈S〉. Since by Theorem 2, any linear and time-
invariant filter must be Laurent, considering time-invariant graph-shift operators (i.e.
Laurent) ensures that any shift-invariant filter is also time-invariant (i.e. Laurent).
This section proceeds with the following definition for shift-invariance.

Definition 12 A ∈ B
(
�2 (Z × V )

)
is called shift-invariant toS ∈ B

(
�2 (Z × V )

)

Laurent if A is in the commutant of S = 〈S〉,
{
A ∈ B

(
�2 (Z × V )

) | AS = SA
}
.

Laurent graph-shift operators convey a special physical significance. If the graph-
shift operator S represents the weighted adjacency matrix or random walk matrix,
then the kernel Ks−t captures the weights or transition probabilities for nodes at a
temporal distance s − t . That is

[
Ks−t

]
j,k is the weight or transition probability from

node v j at time s to node vk at time t , and because the kernel depends only on the
temporal distance between nodes,S captures a special stationary process as in Fig. 1.

4.2 Theoretical Results on Shift-Invariant Filters in
�2 (Z× V )

The first results on the design of shift-invariant filters follow from standard results
on simultaneous diagonalization of matrices [38].

Theorem 5 Let A,S ∈ B
(
�2 (Z × V )

)
be Laurent operators with Jordan spectral

representations given pointwise for a.e. ω ∈ [0, 1] by

Ŝ(ω) =
m(ω)∑

k=0

λk(ω)Pk(ω) + Nk(ω) (21)

and

Â(ω) =
p(ω)∑

j=0

ν j (ω)Q j (ω) + M j (ω) (22)
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respectively. Then, A is shift-invariant with respect to S if and only if

Pk(ω)Q j (ω) = Q j (ω)Pk(ω) (23)

Pk(ω)M j (ω) = M j (ω)Pk(ω) (24)

Nk(ω)Q j (ω) = Q j (ω)Nk(ω) (25)

Nk(ω)M j (ω) = M j (ω)Nk(ω) (26)

for all k ∈ {0, . . . ,m(ω)}, j ∈ {0, . . . , p(ω)}, and ω ∈ [0, 1].
Proof It will help to begin with an intermediate result: if A,S ∈ B

(
�2 (Z × V )

)

are Laurent, then A commutes withS if and only if

Â(ω)Ŝ(ω) = Ŝ(ω)Â(ω) (27)

almost everywhere for ω ∈ [0, 1].
⇐
First, assume that Eq. (27) is true. Then,

Â(ω)Ŝ(ω)x̂(ω) = Ŝ(ω)Â(ω)x̂(ω)
(
F ∗Â(ω)Ŝ(ω)x̂(ω)

)
[t] =

(
F ∗Ŝ(ω)Â(ω)x̂(ω)

)
[t]

(ASx) [t] = (SAx) [t]

It also follows from Eq. (27) that Â(ω)Sd(ω) = Sd(ω)Â(ω) for any d ∈ Z. From
that, it can be shown that A commutes with any Sd ∈ S by the same argument as
for S.

⇒
Now, assume that A commutes with any Sd ∈ S .

(
ASdx

) [t] = (SdAx
) [t]

F
(
ASdx

) [t] = F
(
SdAx

) [t]
Â(ω)Ŝd(ω)x̂(ω) = Ŝd(ω)Â(ω)x̂(ω)

The intermediate result is proven.
Now, it suffices to prove that Â(ω) commutes with Ŝ(ω) almost everywhere on

ω ∈ [0, 1] if and only if Eqs. (23), (24), (25), and (26) hold for all k ∈ {0, . . . ,m(ω)},
j ∈ {0, . . . , p(ω)}, and a.e. ω ∈ [0, 1].

⇐
First, assume that the respective projections and nilpotents commute. To make it

more readable, the dependence on ω is dropped, but it is to be understood that this
condition must hold pointwise almost everywhere for ω ∈ [0, 1].



358 A. W. Bohannon et al.

ÂŜ =
⎛

⎝
p∑

j=0

ν jQ j + M j

⎞

⎠

(
m∑

k=0

λkPk + Nk

)

=
p∑

j=0

m∑

k=0

ν jλkQ jPk + ν jQ jNk + λkM jPk + M jNk

=
p∑

j=0

m∑

k=0

ν jλkPkQ j + ν jNkQ j + λkPkM j + NkM j

=
(

m∑

k=0

λkPk + Nk

)⎛

⎝
p∑

j=0

ν jQ j + M j

⎞

⎠

= ŜÂ

⇒
Now, assume that Â(ω) and Ŝ(ω) commute almost everywhere on ω ∈ [0, 1].

Then, the resolvents commute: Let z1 ∈ ρ
(
Â(ω

)
and z2 ∈ ρ

(
Ŝ(ω)

)
.

(
Â(ω) − z1E

) (
Ŝ(ω) − z2E

)
= Â(ω)Ŝ(ω) − z2Â(ω) − z1Ŝ(ω) + z1z2E

(
Â(ω) − z1E

) (
Ŝ(ω) − z2E

)
= Ŝ(ω)Â(ω) − z2Â(ω) − z1Ŝ(ω) + z1z2E

(
Â(ω) − z1E

) (
Ŝ(ω) − z2E

)
=
(
Ŝ(ω) − z2E

) (
Â(ω) − z1E

)

Now, by taking the inverse of both sides, it follows that the resolvents commute.

[(
Â(ω) − z1E

) (
Ŝ(ω) − z2E

)]−1 =
[(

Ŝ(ω) − z2E
) (

Â(ω) − z1E
)]−1

(
Ŝ(ω) − z2E

)−1 (
Â(ω) − z1E

)−1 =
(
Â(ω) − z1E

)−1 (
Ŝ(ω) − z2E

)−1

RŜ (z2, ω)RÂ (z1, ω) = RÂ (z1, ω)RŜ (z2, ω)

Let γ1 ∈ ρ
(
Â(ω)

)
be a closed curve that encloses only ν j (ω) and γ2 ∈ ρ

(
Ŝ(ω)

)
be

a closed curve that encloses only λk(ω). Let f1(z1) and f2(z2) be two holomorphic
functions on an open set which includes the curves γ1 and γ2 respectively. Then

(
− 1

2π i

)2 ∮

γ1

∮

γ2

f1(z1) f2(z2)RŜ (z2, ω)RÂ (z1, ω) dz1dz2

=
(

− 1

2π i

)2 ∮

γ1

∮

γ2

f1(z1) f2(z2)RÂ (z1, ω)RŜ (z2, ω) dz1dz2
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The order of integration can be interchanged by Fubini’s theorem.5 This allows the
integrals to factor.

(
− 1

2π i

∮

γ2

f2(z2)RŜ (z2, ω) dz2

)(
− 1

2π i

∮

γ1

f1(z1)RÂ (z1, ω) dz1

)
(28)

=
(

− 1

2π i

∮

γ1

f1(z1)RÂ (z1, ω) dz1

)(
− 1

2π i

∮

γ2

f2(z2)RŜ (z2, ω) dz2

)

Recall the functional definition of the projection [37],

Pk(ω) = − 1

2π i

∮

γk

RS (z, ω) dz, (29)

and of the nilpotent

Nk(ω) = − 1

2π i

∮

γk

(z − λk(ω))RS (z, ω) dz. (30)

where γk is a closed curve around λk(ω).
For f1 = f2 = 1, Eq. (28) produces PkQ j = Q jPk , that is Eq. (23).
For f1(z1) = z1 − ν j (ω), f2 = 1, Eq. (28) yields PkM j = M jPk , that is (24).
Similarly, the choice f1 = 1 and f2(z2) = z2 − λk(ω) turns Eq. (28) into (25),

whereas the choice f1(z1) = z1 − ν j (ω) and f2(z2) = z2 − λk(ω) turns Eq. (28)
into (26). �

Theorem 5 does not provide a constructive means by which to design shift-
invariant filters. It provides a geometric constraint. For practical purposes, Theorem
5 is trivially satisfied by fixing the projections of A to match those of S,

Â(ω) =
m(ω)∑

k=0

âk(ω)Pk(ω) + Nk(ω). (31)

This leaves O (n) design parameters, the eigenvalues of Â(ω) for each ω ∈ [0, 1].
More precisely, the design parameters correspond to the simple eigenvalues of Ŝ.6

However, the complications begin here. In the proof of Theorem 5, the Jordan
spectral representation only holds pointwise for ω ∈ [0, 1]. In general, not much
can be said about the form of the eigenvalues, projections, and nilpotents for the
Jordan spectral representation of an arbitrary graph-shift operator. As was shown in
Theorem 4, the entries of Ŝ can be any function L∞ ([0, 1]), and the eigenvalues,
projections, and nilpotents are functions of the entries of â j,k , which can be drawn

5The resolvent is an analytic function on the resolvent set [39], which means that the integrals are
bounded on γ1 and γ2.
6If Ŝ is degenerate, then there could be greater flexibility in the design of shift-invariant filters.
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from a large class of functions that includes many poorly behaved functions. How
the eigenvalues and invariant subspaces of an operator-valued function change as
a function of some argument falls into the study of perturbation theory [37]. Most
results deal in the realm of inequalities and special cases. The effect of perturbations
on eigenvalues is better understood, but even for the case in which Ŝ(ω) is a contin-
uous function of ω, there is no guarantee of unique continuous eigenfunctions. The
algebraic and geometric multiplicity of eigenvalues can change with perturbations.
Moreover, projection operators can blow-up as invariant subspaces collapse and re-
appear. For further reading, see e.g. [37]. All of this is to say that further analysis on
the design of shift-invariant operators must be very deliberate and cautious.

Stronger assumptions about the form of S can lead to more well-behaved eigen-
values, projections, and nilpotents for Ŝ, namely holomorphicity. These results are
captured in the following theorem.

Theorem 6 Let S ∈ B
(
�2 (Z × V )

)
be a Laurent operator such that for ε > 0

there exist constants c1, c2 > 0 such that

‖Kt‖B(�2(V )) ≤ c1
(1 + ε)t

(32)

for all t > 0, and
‖Kt‖B(�2(V )) ≤ c2(1 − ε)t (33)

for all t < 0. Then, the analytic continuation of Ŝ(ω),

ˆ̂S(z) =
∞∑

t=0

ztKt , (34)

is a holomorphic matrix-valued function on U = {z ∈ C | 1 − ε < |z| < 1 + ε}.
Moreover, there are n holomorphic functions {λk : U → C}k∈V with at most alge-
braic singularities such that

det

( ˆ̂S(z) − λk(z)E
)

= 0 (35)

for all k ∈ V and z ∈ U.

Proof Convergence will be shown element-wise in ˆ̂S, which yields sequences{[
Kt
]
j,k

}

k∈N
. The Laurent expansion converges to a holomorphic function on an

annulus z ∈ {z ∈ C | r < |z| < R} where.

R−1 = lim sup
t→∞

∣∣∣
[
Kt
]
j,k

∣∣∣
1/t

(36)

for t > 0, and
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r = lim sup
t→−∞

∣∣∣
[
Kt
]
j,k

∣∣∣
1/t

(37)

for t < 0 for all j, k ∈ V . For the stated decay rate of the kernels, this condition is
satisfied on 1 − ε < |z| < 1 + ε. The holomorphicity of the spectrum and nature of
the singularities follows from Eq. (35), an algebraic equation for which the solutions

vary analytically as a function of the elements of ˆ̂S (see e.g. [40]). �

Theorem 6 states that for operators with kernels that decay sufficiently fast, Ŝ :
[0, 1] → B

(
�2 (V )

)
can be analytically continued on an annulus that includes

the torus ({z ∈ C | |z| = 1}). This guarantees holomorphicity of Ŝ(ω) = ˆ̂S(e2π iω),

which is the restriction of ˆ̂S to the torus. That is to say that Ŝ is a holomorphic func-
tion of ω ∈ [0, 1]. The significance of this result owes to the considerably stronger
results on analytic perturbations of operators [37].

For analytic perturbations of finite-dimensional linear operators, the eigenvalue
functions form λ-groups. These groups of eigenvalues are the multi-valued complex
functions in the spectrum. For the purposes of this chapter, each λ-group along with
any other λ-group it intersects in the complex plane has an associated total projection.
Let Â(ω) ∈ B

(
�2 (V )

)
. A projection associated with an eigenvalue λk(ω) is defined

functionally for a closed curve Γk,ω ⊂ C as

Pk(ω) = − 1

2π i

∮

Γk,ω

RÂ(ω)
(z) dz. (38)

For total projections, the closed curve is drawn so as to include the entire λ-group
and any other intersecting λ-group. The total projection corresponds to the sum
of the constituent projections, but the total projection is bounded and holomorphic
on the annulus of holomorphy to include exceptional points. See Fig. 2 for further
explanation of total projections. These results can be found in [37] and are reviewed
here because the next theorem will require the concept of total projections. In the
next section, this theory will be adapted for the practical design of filters.

4.3 Design of Linear and Shift-Invariant Filters on
�2 (Z× V )

As in Sect. 3, the design of shift-invariant filters can be carried-out in the frequency
domainwhere the action of the operator is the usualmatrix-vector product. Â acts like
a transfer function as in Eq. (14). However, in the case of shift-invariant filters, there
are O (n) parameters because the invariant subspaces are fixed by the graph-shift
operator as in Eq. (31),
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Fig. 2 Total projection of connected components of the spectrum. The spectrum of a bounded
operator is the union of compact sets. Multi-valued functions (e.g. ±√

z) and odd period functions
form λ-groups. The eigenvalues λ0(ω) = e2π iω + 2e3π iω (solid line) and λ1(ω) = e2π iω − 2e3π iω

(dashed line) are plotted in the above figure. λ0 and λ1 together form a λ-group. Thismeans that they
cannot be partitioned by non-intersecting closed sets and require a single total projection represented
by the closed curve Γ (dotted line). The intersections λ0(ω) = λ1(ω) for ω ∈ [0, 1] correspond to
algebraic multiplicities

(Ax) [t] =
(

F ∗
[(

m(ω)∑

k=0

âk(ω)Pk(ω) + Nk(ω)

)

x̂(ω)

])

[t]. (39)

As discussed above, Eq. (39) is in general very difficult to compute. This section will
investigate two special cases of graph-shift operators for which concrete results can
be stated: Ŝ(ω) constant and analytic.

For the case of Ŝ(ω) constant, it will help to proceed under the assumption that
Ŝ(ω) = Ŝ has simple eigenvalues.

Ŝ =
∑

k∈V
λkPk (40)

Extending the following results to the more general cases of semi-simple and degen-
erate eigenvalues is straight-froward but requires greater precision in the statement
of theorems and proofs. Before proceeding with the theorem, consider the action of
such a filter S = F ∗ŜF :

(Sx) [t] = Ŝx[t]. (41)

S is an infinite-dimensional block diagonal operator with Ŝ on the main diagonal. It
has kernel function, K0 = Ŝ and Kt = 0 for t �= 0.
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Sx =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

. . .

Ŝ
Ŝ
Ŝ

. . .

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢⎢⎢
⎣

...

x[−1]
x[0]
x[1]

...

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(42)

This would correspond to a graph-shift operator which acts only in space, and it can
be modeled as a factor graph, S = IZ ⊗ Ŝ.

Theorem 7 Let Ŝ ∈ B
(
�2 (V )

)
be a constant-valued operator with a Jordan spec-

tral representation given by Eq. (40) and S = F ∗ŜF . Then, for

Â(ω) =
∑

k∈V
âk(ω)Pk, (43)

A = F ∗ ÂF is shift-invariant to S, and A ∈ B
(
�2 (Z × V )

)
if and only if âk ∈

L∞ ([0, 1]) for all k ∈ V . Moreover, σ (A) = ∪ω∈[0,1]
{
âk(ω) | k ∈ V

}
.

Proof A is shift-invariant to S by Theorem 5.7

⇐
Let âk ∈ L∞ ([0, 1]) for all k ∈ V . It is necessary to show that A is bounded.8

‖A‖B(�2(Z×V )) = ess sup
ω∈[0,1]

∥∥∥Â(ω)

∥∥∥
B(�2(V ))

= ess sup
ω∈[0,1]

∥
∥∥∥∥

∑

k∈V
âk(ω)Pk

∥
∥∥∥∥
B(�2(V ))

≤ ess sup
ω∈[0,1]

∑

k∈V

∣
∣âk(ω)

∣
∣ ‖Pk‖B(�2(V ))

≤
∑

k∈V

∥∥âk(ω)
∥∥
L∞([0,1]) ‖Pk‖B(�2(V ))

< ∞

⇒
Now, suppose that A is bounded and shift-invariant to S. It is necessary to show

that
∥∥âk(ω)

∥∥
�∞([0,1]) < ∞ for all k ∈ V , but suppose instead that it is not true for

some k ′ ∈ V . The goal is to find a ‖x̃‖�2(Z×V ) = 1 for which ‖Ax̃‖�2(Z×V ) = ∞.

7Note that Â could be degenerate as in Theorem 5 by making â(ω) = 0 for some k ∈ V and
ω ∈ [0, 1], and thiswould still be a shift-invariant operator.Also, algebraicmultiplicity (i.e. â j (ω) =
âk(ω) for j �= k ∈ V ) would not pose a problem as the geometric multiplicity would match that of
the algebraic multiplicity.
8It is tacitly assumed that the projections of a bounded operator Ŝ are bounded.
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This can be done by choosing ˆ̃x in the invariant subspace of Pk ′ and supported only
on the set on which âk ′ achieves its essential supremum,Ω∗ ∈ [0, 1] as shown below.

‖A‖B(�2(Z×V )) ≥
∥∥
∥∥∥

∑

k∈V
âkPk

ˆ̃x
∥∥
∥∥∥
L2([0,1]×V )

= ∥∥âk ′
∥∥
L∞([0,1])

∥∥∥Pk ′ ˆ̃x
∥∥∥
L2([0,1]×V )

Since ˆ̃x was selected arbitrarily in the invariant subspace associated with Pk ′ , let it
be chosen to maximize the operator norm. Then,

‖A‖B(�2(Z×V )) ≥ ∥∥âk ′
∥
∥
L∞([0,1]) ‖Pk ′ ‖B(L2([0,1]×V )) ,

which is not bounded. Then, it is possible to define a sequence of functions which
converge to such a x̃ which contradicts the assumption. The spectrum of A follows
immediately from Theorem 3. �

Consider the operator A from Theorem 7. Following Eq. (14), its action on a
signal x ∈ �2 (Z × V ) takes a special form.

(Ax) [t] =
(
F ∗

[
Â(ω)x̂(ω)

])
[t]

=
∫

[0,1]
e−2π iωt Â(ω)x̂(ω)dω

=
∫

[0,1]
e−2π iωt

(
∑

k∈V
âk(ω)Pk

)(
∑

s∈Z
e2π iωsx[s]

)

dω

=
∑

k∈V

∑

s∈Z

(∫

[0,1]
e2π iω(s−t)âk(ω)dω

)
Pkx[s]

=
∑

k∈V

(
∑

s∈V
ak[s − t]Pkx[s]

)

=
∑

k∈V
(ak ∗ Pkx) [t]

Here, ak[t] = (F ∗âk
) [t]. If âk ∈ L2 ([0, 1]) ∩ L∞ ([0, 1]), then ak ∈ �2 (Z).9 The

action of A in the time-domain first projects the time-indexed signal x[t] ∈ �2 (V )

onto subspaces defined by the projection operators, Pk and then convolves the signal
with a function ak ∈ �2 (Z). Here, âk acts as transfer function on the projected signal.

Now, shift-invariance with respect to holomorphic operators is considered.

9SinceF : �1 (Z) → L∞ ([0, 1]) is not surjective,F ∗âk may not exist for some âk ∈ L∞ ([0, 1]).
However, F : �2 (Z) → L2 ([0, 1]) is bijective.
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Theorem 8 LetS ∈ B
(
�2 (Z × V )

)
satisfy the conditions of Theorem 6, and let Ŝ :

[0, 1] → �2 (V ) have total projection operators {Pk(ω) | k = 0, . . . ,m(ω)} where
0 < m(ω) ≤ n = |V |. Then, for

Â(ω) =
m(ω)∑

k=0

âk(ω)Pk(ω), (44)

A = F ∗ÂF is shift-invariant to S and A ∈ B
(
�2 (Z × V )

)
if and only if âk ∈

L∞ ([0, 1]) for all k ∈ V . Moreover, σ (A) = ∪ω∈[0,1]
{
âk(ω) | k = 0, . . . ,m(ω)

}
.

Proof The proof follows that of Theorem 7 by the boundedness of the total projec-
tions [37]. �

How realistic is it to expect a graph-shift operator which admits an analytic con-
tinuation? In almost all practical applications, it would in fact be the case. When
modeling the weighted edges of an extended graph from a real-world process, it
would be realistic to assume that the impact of events would decay to a negligible
effect within finite time or that the conditional probabilities across time would be
negligible for large enough time. This would satisfy the conditions of Theorem 6.

4.4 Example

We aim to implement a bandpass filter on a signal x ∈ �2 (Z × V ) using the frame-
work of Sect. 4.3. In Sandryhaila and Moura [2], bandpass filtering on graph signals
is defined according to the eigenvectors of the weighted adjacency matrix W and
ordered by the so called graph total variation. A low-pass filter allows the projections
of the signal onto the subspaces associated with small total variation eigenvectors
to pass, and a high-pass filter the projections associated with high total variation
eigenvectors. As in Sect. 3.4, a bandpass filter can attenuate unwanted frequencies of
the time-series graph signal, but now, a bandpass filter can also attenuate subspaces
of the graph signal.

Consider the example of Fig. 1, and let the kernel function be defined as follows:

K0 =
[
0 1
1 0

]
K1 =

[− 2
5 0
0 − 2

5

]
K2 =

[
0 0
4
5 0

]
K3 =

[
0 2

5
0 0

]
(45)

and Kt = 0 otherwise, i.e. we assign weights to the edges of Fig. 1. By Theorem 3,
this results in a spectral representation of the graph-shift operator,

Ŝ(ω) =
[ − 2

5 e
2π iω 1 + 2

5 e
6π iω

1 + 4
5 e

4π iω − 2
5 e

2π iω

]
, (46)
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which is holomorphic on ω ∈ [0, 1] by Theorem 6. The spectral operator has eigen-
values,

λ±(ω) = −2

5
e2π iω ±

√(
1 + 4

5
e4π iω

)(
1 + 2

5
e6π iω

)
, (47)

projection operators,

P±(ω) = ±1

2

⎡

⎣
1 ±

√
5+2e6π iω
5+4e4π iω

±
√

5+4e4π iω
5+2e6π iω 1

⎤

⎦ , (48)

and nilpotents N±(ω) = 0 respectively.
Nowconsider the bandpass filter. Suppose thatwe are to pass the frequency content

on Ω ⊆ [0, 1], and that the graph signal component associated with P−(ω) is to be
attenuated. Then, an ideal bandpass filter A = F ∗ÂF is defined by

Â(ω) =
{
P+(ω) ω ∈ Ω

0 o.w.
. (49)

This would correspond to choosing â+(ω) = χΩ(ω) and â−(ω) = 0, which are
bounded functions on [0, 1]. Therefore, A ∈ B

(
�2 (Z × V )

)
by Theorem 8. The

action of A would be

(Ax) [t] =
∫

Ω

e−2π iωtP+(ω)x̂(ω)dω. (50)

In the limit as dω(Ω) → 0 so that Ω = {ω0}, this would implement an ideal band-
pass,10

(Ax) [t] = e−2π iω0tP+(ω0)x̂(ω0). (51)

5 Functions of Graph-Shift Operators on �2 (Z× V )

Shift-invariant filters enable the incorporation of prior information in the form of
graph-shift operators into the design process. However, linear scaling of the design
parameters does not take advantage of sparsity, nor does it scale to large graphs with
|V | � 0. This begs for an alternative filter design method with greater control on
the design complexity.

This sectionwill present the theory for designingfilterswhich are themselves func-
tions of graph-shift operators. In the context of graph signal processing, this concept
emerges as defining filters which are polynomials of a given graph-shift operator.

10Again, this converges only in the distribution sense as it amounts to â+(ω) → δ(ω − ω0), a
non-measurable function.
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Sandryhaila and Moura [1] observed that in finite-dimensions, all shift-invariant fil-
ters can be realized as finite degree polynomials of the graph-shift operator. The
concept of defining filters as polynomials of a given graph-shift operator arose also
in Shuman, et al. [3] and again in Defferrard, et al. [10]. Defining filters as polynomi-
als of graph-shift operators brings with it a strong physical interpretability as graph
operators act only on a neighborhood of each node. Thus, each polynomial order
connotes a different physical scale of the action of an operator. Moreover, choosing
only the coefficients of polynomials gives the designer much greater control on the
complexity of the design problem and allows much of the computationally intensive
portions of filtering to be computed offline.

5.1 Functional Calculus

In spectral theory, polynomials of finite-dimensional matrices is only a subset of a
more comprehensive theory of functional calculus. The intuition is straight-forward.
Power series allow one to arbitrarily approximate scalar functions with infinite poly-
nomials, and polynomials of matrices act on the eigenvalues. In the case of matrices,
the Cayley-Hamilton theorem states that for a matrix A ∈ C

n×n , all matrices Ak for
k ≥ n are in the span of

{
Ak | k = 0, . . . , n − 1

}
. Thus, it is unnecessary to con-

sider polynomials of degree greater than n − 1 [38]. However, infinite-dimensional
operators are not constrained by this result, and admit full power series. Polynomials
are dense in the space of continuous functions, so arbitrary degree polynomials of
operators can potentially yield a much larger class of functions. Functional calculus
provides the theory by which to define operators that are functions (to include poly-
nomials) of other operators. In general, there is the holomorphic functional calculus.
For a proof, see e.g. [39].

Theorem 9 (Holomorphic functional calculus) Let S ∈ B
(
�2 (Z × V )

)
, U ⊂ C

be an open set such that σ (S) ⊂ U, φ : U → C be holomorphic, and Γ ⊂ U be a
closed curve enclosing σ (S). Then, there exists a φ(S) ∈ B

(
�2 (Z × V )

)
such that

φ(S) := − 1

2π i

∫

Γ

φ(z)RS (z) dz. (52)

Moreover, σ (φ(S)) = φ(σ (S)), φ �→ φ(S) is a continous map from supγ∈Γ |φ(γ )|
to ‖·‖B(�2(Z×V )), and if ψ : C → C is holomorphic on U, then φ(S)ψ(S) = (φ ◦
ψ)(S).

Hidden in the statement of the theorem is that the open set can be the union of
finitely many disjoint open sets so that each connected component of the spectrum
could have its own open set U = ∪m

k=0Uk . Moreover, φ : U → C only needs to be
holomorphic on U . That is to say that it must admit a power series representation at
all points z ∈ U , but the power series representations need not correspond on disjoint
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Fig. 3 Example domain for holomorphic functional calculus. Here, the spectrum comprises two
disjoint sets {λ0(ω) ∈ C : ω ∈ [0, 1]} (solid line) and {λ1(ω) ∈ C : ω ∈ [0, 1]} (dashed line). A
holomorphic function φ : U → C must be holomorphic on an open set U ⊂ C, but that set can
be the union of open sets, i.e. U = U0 ∪U1 (long dashed line) in the figure. Moreover, φ only
needs to be holomorphic on U , which means that the restriction of φ to U0 and the restriction of φ

to U1 can be different holomorphic functions, and they do not have to be holomorphic on C \U .
The integration is done on an arbitrary curve Γ ⊂ U that can be the union of curves Γ = Γ0 ∪ Γ1
(dotted line)

open sets. The restriction of φ toU0 could be one holomorphic function and another
for the restriction of φ to U1. Moreover, it need not have an analytic extension on
C \ (U0 ∪U1). See Fig. 3 for further explanation.

5.2 Theoretical Results on Filters that are Functions of
Graph-Shift Operators

Ultimately, the goal of this chapter is to design linear and time-invariant filters for
time-varying graph signals. In Sect. 4, it was shown that shift-invariance incorporates
spatial information in the form of a graph operator into the design of filters. In this
section, the goal is to maintain that information through shift-invariance to a given
graph-shift operator.

Theorem 10 Let S ∈ B
(
�2 (Z × V )

)
be Laurent, U ⊂ C be an open set such

that σ (S) ⊂ U, and φ : U → C be a holomorphic function. If A = φ(S), then
A ∈ B

(
�2 (Z × V )

)
is shift-invariant to S where φ(S) is defined according to

Theorem 9.
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Proof We begin with shift-invariance. It will help to first prove that S commutes
with RS (z) for all z ∈ ρ (S).

S (S − zE) = (S − zE)S

RS (z)S (S − zE)RS (z) = RS (z) (S − zE)SRS (z)

RS (z)S = SRS (z)

Now, consider shift-invariance

AS = φ (S)S

=
(∮

Γ

φ(z)RS (z) dz

)
S

=
∮

Γ

φ(z) (RS (z)S) dz

=
∮

Γ

φ(z) (SRS (z)) dz

= S
(∮

Γ

φ(z)RS (z) dz

)

= Sφ (S)

= SA

Lastly, it is necessary to show that ‖A‖B(�2(Z×V )) < ∞.

‖φ (S)‖B(�2(Z×V )) =
∥∥∥∥

∮

Γ

φ(z)RS (z) dz

∥∥∥∥
B(�2(Z×V ))

≤ sup
z∈Γ

|φ(z)|
∥∥∥
∥

∮

Γ

RS (z) dz

∥∥∥
∥
B(�2(Z×V ))

≤ M sup
z∈Γ

|φ(z)|
< ∞

φ is bounded by the maximum modulus theorem [41], and the third equality comes
from Property 4 of Theorem 1. �

This shows that filters defined as functions of graph-shift operators are indeed
shift-invariant; however, Theorem 10 is not constructive. The following theorem
provides that.

Theorem 11 Let S ∈ B
(
�2 (Z × V )

)
be Laurent, U ⊂ C be an open set such that

σ (S) ⊂ U, and φ : U → C be a holomorphic function. Further, let Ŝ have a Jordan
spectral representation given pointwise by
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Ŝ(ω) =
m(ω)∑

k=0

λk(ω)Pk(ω) + Nk(ω) (53)

for ω ∈ [0, 1] and 0 < m(ω) ≤ n. Then, for x ∈ �2 (Z × V ) and A = φ(S),

(Ax) [t] =
(

F ∗
{
m(ω)∑

k=0

[
(φ ◦ λk) (ω)Pk(ω) + (φ′ ◦ λk

)
(ω)Nk(ω)

]
x̂(ω)

})

[t].
(54)

Moreover, σ (A) = ∪ω∈[0,1] {(φ ◦ λk) (ω) | k = 0, . . . ,m(ω)}.
Proof The Jordan spectral representation of the resolvent for Eq. (53) has the fol-
lowing form:

RŜ (z, ω) =
m(ω)∑

k=1

(z − λk(ω))−1 Pk(ω) + (z − λk(ω))−2 Nk(ω) (55)

for z ∈ ρ
(
Ŝ(ω)

)
andω ∈ C [37]. It is helpful to first establish the following identity.

(Fφ(S)x) (ω) =
(
F

[
− 1

2π i

∮

Γ

φ(z)RS (z) dz

]
x
)

(ω)

=
(

− 1

2π i

∮

Γ

φ(z)
(
F (S − zE)

−1 x
)
(ω)dz

)

=
(

− 1

2π i

∮

Γ

φ(z)

[(
Ŝ(ω) − zE

)−1
x̂(ω)

]
dz

)

=
[
φ
(
Ŝ
)]

(ω)x̂(ω)

The implication here is that φ(S) = F ∗φ(Ŝ)F . Then, this along with the following
can be used with Eq. (55) to derive the desired result.

φ
(
Ŝ
)

= 1

2π i

∮

Γ

φ(z)RŜ (z, ω) dz

= 1

2π i

∮

Γ

φ(z)

(
m(ω)∑

k=1

(z − λk(ω))−1 Pk(ω) + (z − λk(ω))−2 Nk(ω)

)

dz

=
m(ω)∑

k=1

1

2π i

∮

Γ

[
φ(z)

z − λk(ω)
Pk(ω) + φ(z)

(z − λk(ω))2
Nk(ω)

]
dz

=
m(ω)∑

k=0

(φ ◦ λk) (ω)Pk(ω) + (φ′ ◦ λk
)
(ω)Nk(ω)
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The spectrum identity follows from Theorem 9, and it is known as the spectral
mapping theorem [39]. �

5.3 Design of Filters that are Functions of Graph-Shift
Operators

Although constructive, actually computing φ(S) requires explicit calculation of the
spectrum. As discussed in Sect. 4.2, explicit calculation of the spectrum can be pro-
hibitively difficult in all but special cases. Therefore, this section will proceed as in
Sect. 4.3 with Ŝ(ω) constant.

Theorem 12 Let Ŝ(ω) = Ŝ ∈ B
(
�2 (V )

)
be a constant-valued operatorwith a Jor-

dan spectral representation given by

Ŝ(ω) = Ŝ =
∑

k∈V
λkPk, (56)

and S = F ∗ŜF . Further, let U ⊂ C be an open set such that σ (S) ⊂ U, φ : U →
C be a holomorphic function, A = φ(S). Then, for x ∈ �2 (Z × V ),

(Ax) [t] = φ
(
Ŝ
)
x[t] =

∑

k∈V
φ(λk)Pkx[t], (57)

and σ (A) = {φ(λk)}k∈V .

Proof This is a straightforward application of Theorem 11.

Theorem12 indicates thatφ(S) acts independent of time for a graph-shift operator
S that acts independent of time as can be seen from the matrix representation.

φ(S)x =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

. . .

φ
(
Ŝ
)

φ
(
Ŝ
)

φ
(
Ŝ
)

. . .

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢
⎣

...

x[−1]
x[0]
x[1]

...

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(58)

The design of filters through functions of graph-shift operators admits onlyO (1)
parameter, the holomorphic function φ : U → C. Such operations on graph-shift
operators also induce a physical meaning as actions on local neighborhoods. Graph-
shifts induce local neighborhoods and pathways on a graph, and higher degree
polynomials induce larger neighborhoods and pathways of correspondence between
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Fig. 4 Spectrum of example S of Fig. 1. The spectrum comprises two disjoint sets,
{λ+(ω) ∈ C : ω ∈ [0, 1]} (solid line) and {λ−(ω) ∈ C : ω ∈ [0, 1]} (dashed line). As a result, we
can define an open setU = U− ∪U+ (long dashed line) and closed contour Γ = Γ− ∪ Γ+ (dotted
line). Any holomorphic function φ : U → C need only be holomorphic on U

nodes on a graph. The class of holomorphic function allows the realization of fully
local to fully connected operations on the graph to influence the filter.

5.4 Example

Again, we would like to implement a bandpass filter. However, in the case of func-
tional calculus, the design parameter φ : U → C is a function on the spectrum, and
it cannot act explicitly on the frequency domain as in the filters of Sects. 3.4 and
4.4. Therefore, more care is required to implement a bandpass filter according to
Sect. 5.3.

Consider again the example of Fig. 1 with kernel function given in Sect. 4.4. The
first step in designing a filter according to Theorem 11 will be defining an open set
U ⊂ C such that σ (S) ⊂ U . From Sect. 4.4, σ (S) = ∪ω∈[0,1] {λ+(ω), λ−(ω)}. As
seen in Fig. 4, λ+(ω) and λ−(ω) are disjoint onC. This allows us to defineU = U+ ∪
U− to satisfy U+ ∩U− = ∅ and ∪ω∈[0,1]λ+(ω) ⊂ U+ and ∪ω∈[0,1]λ−(ω) ⊂ U−.

Let U be defined as in Fig. 4 and suppose that as in Sect. 4.4, the goal is to
attenuate the signal in the subspace of P−. This can be done by letting, φ|(U+)c = 0,
a holomorphic function on U−. Now, consider a complex circular Gaussian,

ν(z;μ, σ) = 1

2πσ
exp

(
−|z − μ|2

2σ 2

)
, (59)
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with μ ∈ C and σ > 0 ∈ R [42]. This also defines a holomorphic function, so let
φ|U+ = ν(z;μ, σ), and let A = φ(S). Then, A ∈ B

(
�2 (Z × V )

)
by Theorem 11

and has the following action

(Ax) [t] =
∫ 1

0
e−2π iωtν(λ+(ω);μ, σ)P+(ω)x̂(ω)dω. (60)

In the limit, forμ = λ+(ω0)withω0 ∈ [0, 1] andσ → 0,A has the following action11

(Ax) [t] = e−2π iω0tP+(ω0)x̂(ω0). (61)

In principle, it is observed that near ideal bandpass is possible using functional
calculus.

6 Special Theory for Self-Adjoint Filters

As graphs can be either directed or undirected, methods that work for either enjoy
an advantage in terms of universality; however, the analysis of self-adjoint matrices
admits significantly stronger results and has led much of the work on graph signal
processing to be done on undirected graphs. Thus far, the proposed approach works
whether the graph is directed or undirected (or equivalently the graph-shift operator is
self-adjoint). This section will briefly discuss the implications of self-adjoint graph-
shift operators for Sects. 4 and 5.

The key advantage to analysis of self-adjoint graph-shift operators is the existence
of anorthonormal basis fromaneigendecomposition. InSect. 4.2, thiswill yield semi-
simple real-valued eigenvalues. In Sect. 5.2, this will yield a larger class of functions,
namely all Borel measurable functions.

It is a common result in matrix analysis that a finite-dimensional self-adjoint
operator can be diagonalized by a unitary operator [38]. It then follows that the
Jordan spectral representation of a self-adjoint graph-shift operator Ŝ ∈ B

(
�2 (V )

)

can be written
Ŝ =

∑

k∈V
λkuku∗

k (62)

where λk ∈ R and ‖uk‖�2(V ) = 1 for all k ∈ V .12 Additionally, the eigenvalues and
operator norm of a self-adjoint operator A ∈ B

(
�2 (Z × V )

)
are related as follows:

‖A‖B(�2(Z×V )) = max
λ∈σ(A)

|λ| . (63)

11This is not strictly admissible, but holds only in the distribution sense, since φ is no longer a
measurable holomorphic function.
12Equation (62) is no longer strictly unique as it can include repeated eigenvalues and requires the
choice of an appropriate basis for any geometric multiplicity.



374 A. W. Bohannon et al.

The maximum of the spectrum is known as the spectral radius, and this fol-
lows from Gelfand’s theorem [36]. This means that the norm for a shift-invariant
filter A ∈ B

(
�2 (Z × V )

)
designed according to Sect. 4.3 for a graph-shift S ∈

B
(
�2 (Z × V )

)
is

‖A‖B(�2(Z×V )) = max
ω∈[0,1],k∈V

∣∣âk(ω)
∣∣ . (64)

In Shuman et al. [3], the authors propose that the orthogonal projections defined
by the Laplacian substitute as the Fourier basis in a graph Fourier transform. The
authors make use of the fact that one can find eigenvectors of the Laplacian L that
form an orthonormal basis in �2 (V ). Moreover, the basis vectors correspond to real-
valued eigenvalues that can be ordered, from which the basis vectors can in turn be
ordered. These results underlie the intuition behind the graph Fourier transform.

Additionally, for self-adjoint operators, there is the Borel functional calculus,
which includes an even larger set of functions than the holomorphic functional cal-
culus. For more detail on the Borel functional calculus, see e.g. [43]. The Borel
functional calculus admits any Borel measurable function for self-adjoint operators.
In addition to allowing a larger set of functions, the Borel functional calculus pro-
vides a control on the operator norm of the resultant operator. For a Borel measurable
function φ,

‖φ(A)‖B(�2(Z×V )) = max
λ∈φ(σ(A))

|λ| . (65)

7 Conclusion

This chapter addressed the filtering of time-varying graph signals for time-invariant
extended graphs. The theoretical framework proposed yields three families of design
methods for time-invariant and shift-invariant filters. Bandpass filtering was used as
a design example. Future work will explore the implications of finite sampling in the
time domain and pursue applications in statistical inference for social networks and
brain imaging.
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Vertex-Frequency Energy Distributions

Ljubiša Stanković, Miloš Daković and Ervin Sejdić

Abstract Vertex-varying spectral content on graphs challenge the assumption of
vertex invariance, and require vertex-frequency representations to adequately analyze
them. The localization window in graph Fourier transform plays a crucial role in
this analysis. An analysis of the window functions is presented. The corresponding
spectrograms are considered from the energy condition point of view as well. Like in
time-frequency analysis, the distribution of signal energy as a function of the vertex
and spectral indices is an alternativeway to approach vertex-frequency analysis.After
an introduction to the second part of this chapter, a local smoothness definition, a
definition of an ideal form of the vertex-frequency energy distributions, and two
energy forms of the vertex-frequency representations are given. A graph form of the
Rihaczek distribution is used as the basic distribution to define a class of reduced
interference vertex-frequency energy distributions. These distributions reduce cross-
terms effects and satisfy graph signal marginal properties. The theory is illustrated
through examples.

1 Introduction

Graph signal processing is a challenging, but rapidly developing, topic. Many real
world signals can be considered as graph signals, i.e., signals defined on a graph.
Basic and advanced graph signal processing techniques are presented in [1–6]. Some
of its applications in biomedical systems [7, 8] and big data analysis [1] are the best
examples of its real-world potential.
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In the case of large signals (graphs), we may not be interested in the analysis of
the entire signal, but rather may be interested in its local behavior. A localized signal
behavior can be examined via window functions. An exemplary analysis is signal
averaging in a local neighborhood. This kind of processing corresponds to low-pass
filtering in the classical time-domain signal analysis. Another example could be a
classical time-frequency analysis [9–11], where we consider a local signal spectrum.
In both examples, window functions are used in order to perform signal localization
in time. Window functions are often symmetric, with a single maximum value at a
considered time instant. Window functions can be easily shifted in time in order to
analyze a signal’s behavior at arbitrary time instants.

This concept of signal localization by using window functions can be extended
to signals defined on graphs [12–16]. The extension is not straightforward since a
simple operation like time shifting cannot be easily defined in a graph signal domain.
Several solution approaches for this problem are defined.

A common approach is to utilize the signal spectrum to obtain the window func-
tions for each graph vertex [6]. Another possibility is to define a window support as a
local neighborhood for each vertex [16]. The localization window is defined by a set
of vertices that contain the current vertex n and all vertices that are close to the vertex
n. As in the classical signal analysis, a window should be narrow enough in order to
provide good localization of the signal properties but wide enough to produce high
resolution.

In this chapter, we will focus on the localized vertex spectrum of a graph sig-
nal. The basic concepts and localization methods are analyzed in Sect. 2. Vertex-
frequency energy distributions are defined in Sect. 3, while their extension to the
reduced interference vertex-frequency distributions is presented in Sect. 4.

2 Localized Graph Fourier Transform

2.1 Graph Fourier Transform

Consider a weighted undirected simple graph with N vertices, where edge weights
are denoted by wnm > 0 for an edge that connects a vertex n with a vertex m, and
wnm = 0 if vertices n and m are not connected with an edge. Edge weights are
represented in a matrix form as a weight matrix W whose elements are wnm . The
diagonal matrix elements of W are zeros. The weighting matrix W is a symmetric
matrix since the considered graph is undirected.

The signal x(n), defined at each graph vertex n, is called the graph signal. Signal
samples x(n) can be arranged in a N × 1 vector x = [x(1), x(2), . . . , x(N )]T .

The graph Laplacian is defined as

L = D − W, (1)
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where D is a diagonal degree matrix with dnn = ∑N
m=1 wnm on the main diagonal.

The eigenvalue decomposition of the Laplacian matrix reads

L = U�UT , (2)

where U is a matrix of eigenvectors (eigenvector uk is the kth column of the matrix
U), and� is a diagonal matrix with eigenvaluesλk on themain diagonal. Only simple
eigenvalues of multiplicity one are assumed.

The spectrum of a graph signal x (the graph discrete Fourier transform GDFT) is
defined as

X = GDFT{x} = UT x, (3)

where the vectorX contains spectral coefficients associated to the kth eigenvalue and
the corresponding eigenvector

X (k) = uT
k x =

N∑

n=1

x(n)uk(n). (4)

The inverse transformation is obtained as x = UX, with

x(n) =
N∑

k=1

X (k)uk(n). (5)

Here we will assume that the eigenvalues are of the multiplicity one. Approaches
that extend GDFT to directed graphs and graphs with repeated eigenvalues may be
found in [17–19].

2.2 Definition of the Localized Vertex Spectrum

The localized vertex spectrum (LVS) on a graph is an extension of the localized
time (short time) Fourier transform (STFT). It can be calculated as the spectrum of
a signal x(n) multiplied by an appropriate localization window function hm(n)

S(m, k) =
N∑

n=1

x(n)hm(n) uk(n). (6)

It is assumed that the window function hm(n) should be such that it localizes the
signal content around the vertex m. The local vertex spectrum in a matrix notation
will be denoted as S. Its elements are S(m, k). The columns of S are

sm = GDFT{x(n)hm(n)} = UT xhm,
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where xhm is the vector whose elements x(n)hm(n) are equal to the signal samples
multiplied by the window function centered at the vertex m.

For hm(n) = 1, the localized vertex spectrum is equal to the standard spectrum
S(m, k) = X (k) for each m, i.e., no vertex localization is performed. If hm(m) =
1 and hm(n) = 0 for n �= m, the localized vertex spectrum is equal to the signal
S(m, k) = x(m) for each k and we do not have any spectral resolution.

Two methods for defining graph localization window functions hm(n) will be
given. First we will present an analysis using the windows hm(n) defined in the
vertex domain. In the next subsection, we will show how to create window functions
hm(n) in the spectral domain.

2.3 Windows Defined Using the Vertex Neighborhood

The window hm(n) localized at vertex m can be defined using vertex neighborhood.
The distance dmn is equal to the length of the shortest walk from vertex m to vertex
n. Note that dmn are integers. Then the window function can be defined as

hm(n) = g(dmn),

where g(d) corresponds to the basic window function in classical signal processing.
For example, the Hann window can be used as

hm(n) = 1

2
(1 + cos(πdmn/D)), for 0 ≤ dmn < D,

where D is the assumed window width.
Window functions located at each vertex can be calculated in a matrix form.

Vertices whose distance is dmn = 1 are defined with an adjacency matrix A1 = A.
The adjacencymatrixA is obtained from the weightingmatrixW, using the elements
1 if the vertices are connected and 0 if there is not an edge between the considered
vertices. Vertices whose distance is dmn = 2 are defined by the following matrix

A2 = (A � A1) ◦ (1 − A1) ◦ (1 − I)

where � is the logical (Boolean) matrix product, ◦ is the Hadamard (element-by-
element) product, and 1 is amatrixwith all ones.MatrixA � A1 gives the information
about all vertices that are connected with walks of length 2 and lower. Element-by-
element multiplication by matrix 1 − A1 removes the vertices connected with walks
of length 1, while the multiplication by 1 − I removes the diagonal elements.

For dmn = d ≥ 2 we have a recursive relation for the matrix that will give the
information about the vertices at distance d

Ad = (A � Ad−1) ◦ (1 − Ad−1) ◦ (1 − I).
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The window matrix is then formed as

PD = g(0)I + g(1)A1 + · · · + g(D − 1)AD−1.

The window weighted signal is formed using this matrix as

xm(n) = hm(n)x(n) = PD(n,m)x(n).

The localized vertex-frequency representation is

S(m, k) =
N∑

n=1

x(n)hm(n) uk(n) =
N∑

n=1

x(n)PD(n,m) uk(n). (7)

In matrix form, the above relation reads

S = UT (PD ◦ [x x . . . x]), (8)

where [x x . . . x] is a N × N matrix whose columns are signal vectors x.
For a rectangular window g(d) = 1 the LVS can be calculated recursively with

respect to the window width D as

SD = SD−1 + UT (AD−1 ◦ [x x . . . x]). (9)

Example: For numerical illustrations in this chapterwewill use a graph and a signal
on this graph presented in Fig. 1. The signal consists of parts of three eigenvectors.
For the subset V1 which includes vertices from 1 to 13, eigenvector k = 20 is used.
For the subset V2 with vertices 14–26, the signal is equal to eigenvector k = 52.
Remaining vertices form V3, and the signal on this subset is equal to eigenvector
k = 36. Amplitudes of the eigenvectors are scaled as well.

The window and modulated window (kernel) used for local vertex-frequency
analysis for the verticesm = 8 (top) andm = 31 (bottom) and spectral indices k = 1
(left) and k = 6 (right) are shown in Fig. 2. The local vertex-frequency representation
of the graph signal from Fig. 1 is shown in Fig. 3.

Comments

(1)Weighted distance: For a weighted graph, the distance from a vertex n to a vertex
m could be defined by using the edge weights instead of the number of edges. For
example we can define distance as a sum, or product of the associated edge weights.
Then dnm may assume non-integer values.
(2) Interpolation: Note that for the windowed signal x(n)hm(n), only M ≤ N sam-
ples are nonzero. It may be considered a classical zero padded signal. This means that
for the reconstruction of this signal, we only need M spectral coefficients S(n, k).
The remaining coefficients can be calculated from the system of equations obtained
by using the fact that x(n)hm(n) = 0 outside the window support. In the classical
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Fig. 1 Graph and signal on the graph. The signal is composed of three components. Component
supports are presented with different vertex colors
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Fig. 2 Kernels with the vertex domain localized windows centered at vertices 8 (top) and 31
(bottom) and spectral indices 1 (left) and 6 (right)

signal analysis, it is common to calculate the STFT with M frequency indices for a
window whose width is M . The same can be done in graph signal processing. The
local vertex spectrum, at vertex m, can be written in a matrix form as

[
s(B)
m
s(I )m

]

=
[
B(B)

B(I )

]

x(N Z)
hm

,

where x(N Z)
hm

is vector with M nonzero elements of windowed signal xhm , B
(B) is

square (M × M) submatrix of the transformation matrix UT with omitted columns
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Fig. 3 Local vertex-frequency spectrum calculated using vertex neighborhood windows

that correspond to zero elements in xhm , while the remaining N − M rows are
arranged into matrix B(I ). We have assumed that the local spectrum vector sm is
composed of two parts s(B)

m and s(I )m in a such way that the matrix B(B) is invertible.
Then

s(B)
m = B(B)x(N Z)

hm

and
s(I )m = B(I )x(N Z)

hm
= B(I )(B(B))−1s(B)

m

is the interpolation formula that enables calculation of s(I )m from s(B)
m . Note that if

the condition number of matrix B(B) is large, we can rearrange the spectral domain
coefficients ordering until we get a satisfactory invertible matrix.
(3) Directed graphs: The vertex neighborhood may be defined as set of vertices
that can be reached from the considered vertex by a walk whose length is at most
D. Then we may use previous relations for the window calculation. This approach
corresponds to one-sided windows in classical signal analysis.

If we want to define two-sided window, then we should also include all vertices
from which we can reach the considered vertex by walk whose length is at most D.
This means that for a directed graph we should assume that vertices with distance
one form the considered vertexm are the vertices from which we can reach vertex m
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with walk of length 1. In this case A1 = A + AT where addition is logical operation
(Boolean OR). The matrix A2 is

A2 = (A � A + AT � AT ) ◦ (1 − I) ◦ (1 − A1).

This procedure could be continued for walks up to the desired maximal length D.
For a circular directed graph in this way, we will get the classical STFT with

symmetric window.
(4) Ordering: In order to visualize local spectral content, we should order vertices
in the corresponding graph. This ordering is not unique, and one possible way is to
define the order according to the values of low order eigenvectors of the Laplacian.
We can, for example, try to minimize the number of zero crossing in the low order
eigenvectors by an appropriate vertex reordering. This can be achieved by reordering
vertices such that the elements of b(n) are nondecreasing, where b(n) is defined as

b(n) =
K∑

k=2

(1 + sign(uk(n)))2−k (10)

where K is the number of considered eigenvectors. Here we consider the sign of
the eigenvector coefficients and group coefficients with the same sign. Then the sign
of the next eigenvector is used to order coefficients in each group. This ordering is
based on the vertex spectral similarity. Note that for k = 1 we have λ1 = 0 and the
corresponding eigenvector is constant.

2.4 Vertex Localization Windows Defined in the Spectral
Domain

Consider two signals x(n) and y(n) on a graph. The GDFT of these signals are given
by X (k) and Y (k). The generalized convolution z(n) of signals x(n) and y(n) can
be defined in the GDFT domain as

Z(k) = X (k)Y (k)

z(n) = x(n) ∗ y(n).

A “shift” on a graph cannot be extended in a direct way from the classical signal
processing theory. The generalized convolution is used to define a “shift” of awindow
on a graph [13]. A “shift” on a graph from vertex m to vertex n would be achieved
by using the delta function located at the vertex m, defined as

δm(n) = δ(n − m). (11)
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The GDFT of this function is given by

�(k) =
N∑

n=1

δm(n)uk(n) = uk(m). (12)

The window localized at the vertex m is equal to [13]

hm(n) = h(n) ∗ δm(n) =
N∑

k=1

H(k)uk(m)uk(n), (13)

where the window basic function h(n) is defined in the spectral domain, for example,
as

H(k) = C exp(−λkτ ), (14)

whereC is the window amplitude and τ > 0 is a constant that determines thewindow
width. Two windows obtained using this method are presented in Fig. 4 (left).

The window localized at the vertex m satisfies the following properties:

• Symmetry hm(n) = hn(m) follows from definition (13).
• Sum of hm(n) is equal to H(1),

N∑

n=1

hm(n) =
N∑

k=1

H(k)uk(m)

N∑

n=1

uk(n) =
N∑

k=1

H(k)uk(m)δ(k − 1)
√
N = H(1).

• Parseval’s theorem for hm(n) is

N∑

n=1

|hm(n)|2 =
N∑

k=1

|H(k)uk(m)|2. (15)

The local vertex spectrum can be written as

S(m, k) =
N∑

n=1

x(n)hm(n) uk(n) =
N∑

n=1

N∑

p=1

x(n)H(p)u p(m)u p(n) uk(n). (16)

The modulated version of the window (kernel) centered at vertex m and spectral
index k is

Hm,k(n) = hm(n)uk(n) =
⎛

⎝
N∑

p=1

H(p)u p(m)u p(n)

⎞

⎠ uk(n).
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Fig. 4 Kernels with the spectral domain defined windows centered at vertices 8 (top) and 31
(bottom) and spectral indices 1 (left) and 6 (right)

It is shown in Fig. 4 for k = 1 (left) and k = 6 (right) for two vertex locations m = 8
(top) and m = 31 (bottom). The kernels with the vertex-domain localized windows,
at the same vertex index and spectral index locations, are shown in Fig. 2. The local
vertex-frequency representationwith a spectral domainwindow is presented in Fig. 5.

Using the kernel notation, the local vertex spectrum, for a given vertexm, is equal
to the projection of a signal x(n) onto the kernel Hm,k(n),

S(m, k) =
N∑

n=1

Hm,k(n)x(n).
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Fig. 5 Local vertex-frequency spectrum calculated using vertex-frequency localized ker-
nels/windows defined in the spectral domain

2.5 Inversion

The inversion relation for both previous window forms can be considered in a unified
way. The reconstruction of a signal x(n) from its local spectrum S(m, k) is performed
by an inverse GDFT

x(n)hm(n) =
N∑

k=1

S(m, k) uk(n) (17)

followed by a summation over all vertices m

x(n) = 1
∑N

m=1 hm(n)

N∑

m=1

N∑

k=1

S(m, k)uk(n). (18)

If the windows hm(n) satisfy the condition

N∑

m=1

hm(n) = 1,
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the reconstruction is vertex independent. In that case

x(n) =
N∑

m=1

N∑

k=1

S(m, k)uk(n) =
N∑

k=1

X (k)uk(n), (19)

where

X (k) =
N∑

m=1

S(m, k)

is the spectral marginal of the local vertex spectrum.
The condition

∑N
m=1 hm(n) = 1 can be achieved if the elements of matrix Ad ,

d = 1, 2, . . . , D − 1 are normalized, prior to PD matrix calculation in such a way
that the sum over all columns is equal to 1. Then

N∑

m=1

hm(n) =
N∑

m=1

PD(n,m) =
D−1∑

d=1

g(d) = const.

For the windows obtained using generalized graph shift, this conditions is always
satisfied since H(1) = const .

In general, the local vertex spectrum S(m, k) can be calculated over a reduced
set of vertices m ∈ M ⊂ V . In this case, summation over m in the reconstruction
formula should be performed over vertices m ∈ M only, and vertex independent
reconstruction is achieved if

∑
m∈M hm(n) = 1.

Inversion of the local vertex spectrum, within the Gabor expansion framework, is
obtained from

N∑

m=1

N∑

k=1

S(m, k)Hm,k(n) =
N∑

m=1

( N∑

k=1

S(m, k)hm(n)uk(n)

)

=
N∑

m=1

( N∑

i=1

IGDFT
k→i

{S(m, k)}IGDFT
k→i

{hm(n)uk(n)}
)

=
N∑

m=1

N∑

i=1

x(i)hm(i)hm(n)δ(n − i) =
N∑

m=1

x(n)h2m(n) = x(n)

N∑

m=1

h2m(n),

where IGDFT denotes the inverse GDFT transform and Parseval’s relation is used.
The inversion formula is then

x(n) = 1
∑N

m=1 h
2
m(n)

N∑

m=1

N∑

k=1

S(m, k)hm(n)uk(n). (20)

This kind of inversion is vertex invariant if
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N∑

m=1

h2m(n) = 1. (21)

If the local vertex spectrum S(m, k) is calculated over a reduced set of vertices
m ∈ M ⊂ V , then vertex independent reconstruction condition is∑

m∈M h2m(n) = 1.
Filtering in the vertex-frequency domain can be implemented by using the vertex-

frequency support function B(m, k). The filtered local vertex spectrum is

S f (m, k) = S(m, k)B(m, k)

and the filtered signal x f (n) is obtained by inversion of S f (m, k) using the presented
inversion methods.

The support function B(m, k) can be obtained, for example, by thresholding noisy
values of the local vertex spectrum S(m, k).

2.6 Uncertainty Principle

In classical signal analysis, the window is used to improve the signal localization
in the joint time-frequency domain. However, the uncertainty principle prevents an
ideal localization in both time and frequency. For the DFT, the uncertainty principle
states that

‖x‖0‖X‖0 ≥ N .

It means that the product of the number of signal nonzero values ‖x‖0 and the number
of its DFT nonzero values ‖X‖0 is greater or equal than the total number of signal
samples N .

If the signal is windowed with a function hm whose width is Nhm then ‖xhm‖0 ≤
Nhm . The uncertainty principle for the classical STFT, defined as STFTm = DFT
{xhm}, is

‖STFTm‖0 ≥ N

Nhm

.

Thismeans that thewindowwhosewidth is, for example, Nhm = N/4 cannot produce
the STFT with less than 4 nonzero samples for considered instant m.

For graph signals, the general form of the uncertainty principle should be used.
Consider a graph signal x and its transform X in the domain of orthonormal basis
functions uk(n). The uncertainty principle states that [20–23]

‖x‖0‖X‖0 ≥ 1

maxk,m{|uk(m)|2} .

For the orthonormal DFT, when uk(n) = 1√
N
exp( j2πnk/N ), the classical DFT

uncertainty principle form follows.
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In graph signal processing, the basis functions can assume quite different forms
than in the DFT case. In cases, when, for example, there is a vertex loosely connected
with other vertices max{|uk(m)|2} → 1 and even ‖x‖0‖X‖0 ≥ 1 is possible. This
means that the graph signal can be well localized in both the vertex and the frequency
domain.

For the graph presented in Fig. 1, max{|uk(m)|2} = 0.7513 meaning that
‖x‖0‖X‖0 ≥ 1.331 is possible.

2.7 Local Vertex Spectrogram and Energy Condition

The local vertex spectrogram is defined as

|S(m, k)|2 =
∣
∣
∣

N∑

n=1

x(n)hm(n) uk(n)

∣
∣
∣
2
. (22)

The vertex marginal property is (according to Parseval’s theorem)

N∑

k=1

|S(m, k)|2 =
N∑

k=1

S(m, k)
N∑

n=1

x(n)hm(n) uk(n) =
N∑

n=1

|x(n)hm(n)|2. (23)

This is a vertex smoothed signal power.
For the energy, we get

N∑

m=1

N∑

k=1

|S(m, k)|2 =
N∑

n=1

(
|x(n)|2

N∑

m=1

|hm(n)|2
)
. (24)

If
∑N

m=1 |hm(n)|2 = 1 for all n then the spectrogram on the graph is energy
unbiased

N∑

m=1

N∑

k=1

|S(m, k)|2 =
N∑

n=1

|x(n)|2 = Ex . (25)

From the previous relations we can easily prove that the local vertex spectrum is
a frame [24–27] since

N∑

m=1

|hm(n)|2 =
N∑

k=1

|H(k)|2|uk(n)|2. (26)

We can write

1

N
H 2(1) ≤

N∑

m=1

|hm(n)|2 ≤ max
m,k

{|uk(n)|2}
N∑

k=1

|H(k)|2 = μ2Eh, (27)
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where μ = maxm,k{|uk(n)|}. This means that

1

N
H 2(1)Ex ≤

N∑

m=1

N∑

k=1

|S(m, k)|2 ≤ Exμ
2Eh . (28)

The shift Hm,k(n) is an equiangular tight frame (ETF) if μ = |uk(n)| = 1√
N
. Then

∑N
m=1 |hm(n)|2 = ∑N

k=1 |H(k)|2|uk(n)|2 = Eh/N , and equality holds.

2.8 Optimization

The concentration of the local vertex spectrum representation can be measured using
the normalized norm-one [28]

M = 1

F

N∑

m=1

N∑

k=1

|S(m, k)| = ‖S‖1
‖S‖F

, (29)

where F = ‖S‖F =
√
√
√
√

N∑

m=1

N∑

k=1

|S(m, k)|2 is the Frobenius norm of matrix S. Any

other norm ‖S‖p
p with 0 ≤ p ≤ 1 can be used instead of ‖S‖1. Norms with p close

to 0 are noise sensitive. The norm with p = 1 is the only convex norm, allowing the
gradient based normalization [28].

The concentrationmeasureM(τ ) = ‖S‖1/‖S‖F for the signal from Fig. 1 and the
window given by (14), is shown in Fig. 6, for various τ . The optimal vertex frequency
representation is also given in Fig. 6. The optimal τ can be obtained in a few steps
in an iterative way τk = τk−1 − α(M(τk−1) − M(τk−2)).

The optimization of parameter τ can be done by using more advanced techniques
[21, 22] based on the graph uncertainty principle.

2.9 Spectral Domain Localization

In the classical STFT, it is possible to perform localization using a window in the
spectral domain. The dual form of STFT is obtained using inverse DFT. Similarly,
for graph signals we can perform localization in the spectral domain and obtain a
local-vertex spectrum as an inverse GDFT

S(m, k) =
N∑

p=1

X (p)H(p − k) uk(m), (30)
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Fig. 6 Measure of the spectrogram concentration for various window parameter τ (top) and the
corresponding optimal vertex-frequency representation with marginals (bottom)

where H(p − k) is the frequency domain window and X (p) is the GDFT of the
considered signal.

3 Vertex-Frequency Energy Distributions

Vertex-frequency representations based on the distribution of energy over the vertex
and spectral index space is presented in this section. It follows the concept of time-
frequency energy distributions in time-frequency signal analysis. An ideal vertex-
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frequency energy distribution will be discussed first. Special attention will be paid to
local smoothness andmarginal properties. Two forms of a distribution corresponding
to theRihaczek distributionwill be introduced. Finally, a class of reduced interference
vertex-frequency distributions, satisfying the marginal properties, will be presented.

3.1 Global Graph Signal Smoothness

The smoothness of a graph signal x is defined by using its quadratic form

Ex = xTLx.

The smoothness λx is equal to the quadratic form normalized by the signal energy

λx = xTLx
xT x

.

In the case of classical time domain signals, the Laplacian on a circle graph
represents the secondorder finite difference y(n) = −x(n − 1) + 2x(n) − x(n + 1).
This difference can be written in amatrix form as y = Lx. It is obvious that the signal
x(n)with small changes should have small quadratic form Ex = ∑

n((x(n) − x(n −
1))2 + (x(n) − x(n + 1))2)/2. This reasoning can be used for the graph signals as
well. For these signals Ex = ∑N

m=1

∑N
n=1 wmn((x(n) − x(m))2/2 (see Chap. I).

The eigenvector and eigenvalue relation is Luk = λkuk or

uT
k Luk = λkuT

k uk = λk = Euk , (31)

since uT
k uk = 1. The quadratic form of an eigenvector is equal to the corresponding

eigenvalue. It can be used as a measure of the signal smoothness. The eigenvectors
corresponding to small λk belong to the low-pass (slow-varying) part of a graph
signal.

Examples of signals with a small, a moderate and a large smoothness λx are
presented in Fig. 7. In order to make an analogy with the classical time-domain
signal processing we presented the time-domain signals in Fig. 7 (left). They can
be considered as the signals on a circular graph. The smooth signals, with small
smoothness factors, have similar signal values on the neighboring vertices (time
instants), while the similarity of neighboring signal values does not hold for fast-
varying signals with high smoothness indices.

For a signal of the form

x(n) =
M∑

i=1

xi (n) =
M∑

i=1

αi uki (n)
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Fig. 7 An example of a constant, a slow-varying, and a fast-varying signal in the time domain (left)
and in the graph domain (right). The global signal smoothness λx is given for each case

the global smoothness is

λx =
∑N

i=1 α2
i λki

∑N
i=1 α2

i

.

It is obvious thatλmin ≤ λx ≤ λmax, whereλmin = min{λk1,λk2 , . . . λkM } andλmax =
max{λk1,λk2 , . . . λkM }.

The graph signal smoothness plays an important role in the graph topology learn-
ing. The smoothness is also used in the vertex ordering and the graph clustering.

3.2 Local Graph Signal Smoothness

Consider a single component graph signal
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x(n) = αuk(n),

where uk(n) is the kth Laplacian eigenvector. The smoothness of this signal is equal
to the corresponding eigenvalue

xTLx
xT x

= α2uT
k Luk

α2uT
k uk

= λk .

The smoothness can be related to the frequency in classical signal analysis.
For a circular undirected graph the eigenvectors are periodic functions uk(n) =
cos(2πnk/N + φ), with frequency ω = 2πk/N , and the smoothness follows as the
eigenvalue from the equation Luk = λkuk as

λk = 4 sin2(ω/2) = uT
k Luk .

This means that the eigenvalue corresponds to the squared frequency. The relation is
via 2 sin2(ω/2) function due to the discretization (discrete-time to continuous-time
frequency mapping using the first-order finite difference). In the continuous-time
case (for a small ω in the discrete-time domain) we would have λk ≈ ω2.

In classical signal analysis, for signals whose frequency changes, the instanta-
neous frequency is defined and used instead of the frequency. Various definitions
of the instantaneous frequency are introduced [9–11]. The most straightforward one
would be to define the instantaneous frequency as the frequency of a sinusoidal signal
which best fits the signal behavior at and in the very close vicinity of the considered
instant t . In that case, the method for frequency estimation of the signal in three close
points could be used, as described in [29]. The signal x(t + τ ) is approximated with
a second order polynomial around x(t),

x(t + τ ) ≈ x(t) + x ′(t)τ + x ′′(t)τ 2/2.

By comparing this signal with a general sinusoidal signal at an instant t and small τ

A cos(ωt (t + τ ) + φ) ≈ A cos(ωt t + φ) − Aωt sin(ωt t + φ)τ

− Aω2
t cos(ωt t + φ)τ 2/2

we can conclude that for x(t) �= 0 the sinusoidal signal with frequency

ω2
t = ω2(t) = λ(t) = − x ′′(t)

x(t)

fits the signal around this instant. In this way we can define the squared instantaneous
frequencyω2(t) of a signal at an instant t , assuming that the conditions for the second
order polynomial approximation holds. For x(t) = 0, the instantaneous frequency
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Fig. 8 An example of the signal local smoothness in the time domain (vertex domain on a circular
graph)

can be calculated using the higher-order derivatives ratio x (n+2)(t)/x (n)(t) assuming
that x (n)(t) �= 0.

The discrete-time form of the instantaneous frequency relation is

λ(n) = ω2(n) = − x(n − 1) − 2x(n) + x(n + 1)

x(n)
= Lx (n)

x(n)
, (32)

where Lx (n) are the elements of vector Lx (for a circular graph). An example of a
time-domain signal that contains a slow-varying component at the beginning, a fast-
varying in the middle, and a moderate-varying component at the end is presented in
Fig. 8.

The last relation will be used to introduce the local smoothness for a general graph
as

λ(n) = Lx (n)

x(n)
, (33)

with the assumption x(n) �= 0.
Some of the local smoothness properties are listed next [30].

1. For a monocomponent signal
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x(n) = αuk(n)

the local smoothness is constant and it is equal to its global smoothness

λ(n) = αLuk (n)

αuk(n)
= λk,

since Luk (n) = λkuk(n) holds for each element of the matrix equation Luk =
λkuk . In classical signal analysis this means that the instantaneous frequency of
a sinusoidal signal (as a basis function) is equal to the component frequency.

2. A piecewise monocomponent signal could be defined as

x(n) = αi uki (n) for n ∈ Vi , i = 1, 2, . . . , M

where Vi are disjunct subsets of vertices and uki (n) are eigenvectors.
The local smoothness for this signal should be

λ(n) = αiLuki
(n)

αi uki (n)
= λki for n ∈ Vi , i = 1, 2, . . . , M (34)

This is true for all interior vertices, where the vertex n and its neighborhood (used
for the Laplacian calculation) belong to the considered subset Vi .
An example of a piecewise monocomponent signal is presented in Fig. 1. Three
subsets of vertices V1, V2, and V3 are marked with colors. The component spectral
indices are k1 = 20, k2 = 52, and k3 = 36.
For subset V1, which includes vertices from 1 to 13, the boundary vertices are
1, 2, and 13. The remaining vertices are the interior vertices, where relation (34)
holds. For subset V2 (vertices from 14 to 26), the boundary vertices are 15, 16,
25, and 26. For subset V3 (vertices from 27 to 64), the boundary vertices are 27,
28, 29, 63 and 64.
The local smoothness of the considered signal is calculated and presented in Fig. 9.
Results obtained for the interior vertices are exact. They are presented with dots.
The local smoothness at the boundary vertices is not exact, as expected, since it
includes vertices with different signal components. They are presented with the
cross marks.
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3. An ideal vertex-frequency distribution I (n, k) should behave as

I (n, k) ∼ |x(n)|2δ(λk − λ(n)),

assuming that the local smoothness is equal to an eigenvalue, or that it is rounded
to the nearest eigenvalue.
The ideal vertex frequency distribution for the graph and the signal presented in
Fig. 1 is shown in Fig. 10.
We can conclude, that a distribution, behaving as an ideal vertex-frequency dis-
tribution, can be used as an estimator of the local smoothness as

λ̂(n) = argmax
k

{I (n, k)}.

This estimator is common and widely used in classic time-frequency analysis
[9–11].

4. For anM component graph signal x(n) = ∑M
i=1 xi (n) = ∑M

i=1 αi uki (n), the local
smoothness is

λ(n) =
∑M

i=1 αiLuki
(n)

∑M
i=1 αi uki (n)

=
∑M

i=1 αiλki uki (n)
∑M

i=1 αi uki (n)
.

The ideal vertex-frequency representation should not be based on the local
smoothness λ(n) of the complete multicomponent signal, but on the smoothness
of each individual signal component xi (n) denoted by λi (n). Its form is

I (n, k) ∼
M∑

i=1

|xi (n)|2δ(λk − λi (n)).

0 10 20 30 40 50 60
vertex index

0

1

2

3

4

5

Sm
oo

th
ne

ss

Fig. 9 Local smoothness for the signal given in Fig. 1. The results for the interior vertices are
presented with points and the results for the boundary vertices are presented by crosses
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The concept of ideal vertex-frequency distribution can be extended to piecewise
multicomponent signals.

5. The local smoothness property holds for a general vertex-frequency distribution
G(n, k) if ∑N

k=1 λkG(n, k)
∑N

k=1 G(n, k)
= λ(n). (35)

Example: The ideal time-frequency distribution I (n, k) = |x(n)|2δ(λk − λ(n))

satisfies the local smoothness property if λ(n) ∈ {λ1,λ2, . . . ,λN } for all n.
6. The local smoothness bandwidth for a vertex-frequency distribution G(n, k) that

satisfies Property 5 is defined by

σ2
λ(n) =

∑N
k=1(λk − λ(n))2G(n, k)

∑N
k=1 G(n, k)

=
∑N

k=1 λ2
kG(n, k)

∑N
k=1 G(n, k)

− λ2(n). (36)
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Fig. 10 Ideal vertex-frequency distribution
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3.3 Vertex-Frequency Power Distribution

We will present two forms of vertex-frequency distributions. For the first form, we
will follow the electric circuit reasoning, while for the second form, the signal pro-
cessing definition of energy will be used.

3.4 Vertex-Frequency Power in Electric Circuit

Consider a resistive electric circuit and the corresponding graph, where the edge
weights wnm are equal to the corresponding conductances 1/Rnm . The potential at
the vertex n is denoted by x(n). The power in all edges connected to the vertex n is
equal to the sum of all (x(n) − x( j))2/Rnj or wnj (x(n) − x( j))2. Its value is

p(n) =
N∑

j=1

wnj (x(n) − x( j))2.

The power within the whole network is

P =
N∑

n=1

N∑

j=1

1

2
wnj (x(n) − x( j))2.

The factor 1
2 is the result of the fact that all edges are taken twice in the summation

over all vertices in the circuit. This relation can also be obtained by introducing
the external current generators iG(n) at each vertex. These generators are needed to
obtain the actual potentials x(n). The vector of all external currents is denoted by
iG . According to Kirchoff’s first law iG = Lx. The total power in a circuit is then
calculated as

P = xiG = x(Lx) =
N∑

n=1

x(n)

N∑

j=1

wnj (x(n) − x( j)).
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It can be written as

P =
N∑

n=1

N∑

k=1

N∑

j=1

1

2
wnj (x(n) − x( j))X (k)(uk(n) − uk( j)).

The total power is obtained as a sum of the terms

P(n, k) =
N∑

j=1

1

2
wnj (x(n) − x( j))X (k)(uk(n) − uk( j))

over the vertex and frequency indices as

P =
N∑

n=1

N∑

k=1

P(n, k).

Therefore, the value of P(n, k) can be considered as a vertex-frequency power dis-
tribution of signal x(n) over this graph, The marginal properties of this distribution
are:

N∑

n=1

P(n, k) = λk |X (k)|2 = X2
D(k) and

N∑

k=1

P(n, k) =
N∑

j=1

1

2
wnj (x(n) − x( j))2 = x2D(n), (37)

where x2D(n) = Lx (n)x(n).
We have obtained that the spectral power is of the form λk |X (k)|2. For k = 1,

this power is zero-valued, since λ1 = 0 and the corresponding eigenvector u1(n) is
constant. A constant potential does not produce any power in the network, since the
voltage between each pair of vertices is 0. This kind of power, proportional to the
frequency (squared), is present in the Teager energy operator.

We can define inverse Laplacian of a signal using the transform X2(k)/λk . Since
the Laplacian of a signal, with the transform λk X (k), is a kind of second order
derivation on a graph, its inverse can be considered as a kind of (double) integration
on a graph.

Example: Consider the graph signal from Fig. 1. Its vertex-frequency power dis-
tribution is shown in Fig. 11. The marginal values of this distribution (37) are exact.
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Fig. 11 Vertex-frequency power distribution

3.5 Signal Energy Vertex-Frequency Distributions

Energy in signal processing is commonly defined as

E =
N∑

n=1

x2(n) =
N∑

n=1

x(n)

N∑

k=1

X (k)uk(n).

It can be written as

E =
N∑

n=1

N∑

k=1

x(n)X (k)uk(n) =
N∑

n=1

N∑

k=1

E(n, k),

where the vertex-frequency energy distribution is defined by [31]

E(n, k) = x(n)X (k)uk(n) =
N∑

m=1

x(n)x(m)uk(m)uk(n). (38)

This corresponds to the Rihaczek distribution in time-frequency analysis.
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Fig. 12 Vertex-frequency energy distribution

The marginal properties of this distribution are

N∑

n=1

E(n, k) = |X (k)|2 and
N∑

k=1

E(n, k) = x2(n).

They correspond to the signal power and squared spectra of the graph signal x(n).
The vertex-frequency distribution defined by E(n, k) = x(n)X (k)uk(n) satisfies

the local smoothness property (35). For this distribution

∑N
k=1 λk E(n, k)

∑N
k=1 E(n, k)

=
∑N

k=1 λk x(n)X (k)uk(n)
∑N

k=1 x(n)X (k)uk(n)
= x(n)Lx (n)

x2(n)
= Lx (n)

x(n)
= λ(n),

since
∑N

k=1 λk X (k)uk(n) are the elements of the inverse GDFT of �X. This inverse
transform is equal to

U�X = U�(UTU)X = (U�UT )(UX) = Lx

with elements Lx (n). Therefore,
∑N

k=1 λk X (k)uk(n) = Lx (n).
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For this vertex-frequency energy distribution, the local smoothness bandwidth
(36) may easily be written in terms of the elements of L2x, Lx, and x, since∑N

k=1 λ2
k X (k)uk(n) = LLx (n).

Example: The distribution E(n, k) of the graph signal from Fig. 1, along with the
marginal properties, is shown in Fig. 12. The marginal properties are satisfied up
to the computer’s precision. The localization of energy is better than in the cases
obtained with the localized windows in Figs. 5 and 11. This distribution does not use
a localization window. Although the first component of the signal analyzed in Fig. 12
exists in vertices n ∈ V1 = {1, 2, . . . , 13} only, the distribution E(n, k) is nonzero
for higher vertex indices n at k1 = 20. This is the cross-term effect, well-known
in classical time-frequency analysis. The same effect can be seen at higher vertex
indices n at k1 = 52 as well.

4 Reduced Interference Vertex-Frequency Energy
Distributions

The general class of time-frequency energy distributions is extended to graph signals
in this section with the aim to reduce the cross-term interferences, while preserving
the marginal properties [32]. After a review of the classical Cohen class of dis-
tribution, conditions for the vertex-frequency marginal properties are derived. Few
examples of the vertex-frequency energy distributions are given.

4.1 Review of the Classical Cohen Class of Distributions

Although it is known that any distribution can be used as the basis for the Cohen class
of distribution, theWigner distribution is commonly used [9–11].Having inmind that
the Wigner distribution is not suitable for the graph framework extension, here we
will use the Rihaczek distribution as the basis. Since this kind of the Cohen class of
distributions is not presented in common literature on time-frequency analysis, a short
review of the Cohen class of distributions is presented. The Rihaczek distribution is
[9–11]

R(t,ω) = x(t)X∗(ω) exp(− jωt).

Its ambiguity domain form (a two-dimensional Fourier transform of R(t,ω) over t
and ω) is

A(θ, τ ) = 1

2π

∫

u
X (u)X∗(u − θ) exp( j (u − θ)τ )du.

The Cohen class of distributions, with the Rihaczek distribution as the basic
distribution, is defined by

C(t,ω) = 1

2π

∫

θ

∫

τ

A(θ, τ )c(θ, τ ) exp(− jωτ ) exp( jθt)dτdθ,
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where c(θ, τ ) is the kernel function. Using the defined ambiguity domain form of
the Rihaczek distribution A(θ, τ ) we get

C(t,ω) = 1

4π2

∫

u

∫

v

X (u)X∗(v)e jut e− jvt
∫

τ

c(u − v, τ )e− jτωe jτudτdudv. (39)

The frequency-frequency domain form of the Cohen class of distributions, with the
Rihaczek distribution as the basis, is

C(t,ω) =
∫

u

∫

v

X (u)X∗(v)e jut e− jvtφ(u − v,ω − u)
dudv

4π2
,

where

φ(u − v,ω − u) =
∫

τ

c(u − v, τ )e− jτωe jτudτ .

The marginal properties are met if the kernel c(θ, τ ) satisfies the conditions

c(θ, 0) = 1 and c(0, τ ) = 1.

4.2 Reduced Interference Distributions on Graphs

We will first consider the frequency-frequency domain of the general energy distri-
butions satisfying the marginal properties. The frequency domain definition of the
presented energy distribution (38) is

E(n, k) = x(n)X∗(k)u∗
k(n) =

N∑

p=1

X (p)X∗(k)u p(n)u∗
k(n).

Although the basis functions are commonly real-valued, here we used complex-
valued notation for possible generalization to the adjacency matrices and directed
graphs.

Therefore, the general graph distribution form is

G(n, k) =
N∑

p=1

N∑

q=1

X (p)X∗(q)u p(n)u∗
q(n)φ(p, k, q). (40)

For φ(p, k, q) = δ(q − k) the graph Rihaczek distribution (38) follows. The unbi-
ased energy condition

N∑

k=1

N∑

n=1

G(n, k) = Ex
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is satisfied if
N∑

k=1

φ(p, k, p) = 1.

The distributionG(n, k)may satisfy the vertex and frequencymarginal properties:

• The vertex marginal property is satisfied if

N∑

k=1

φ(p, k, q) = 1

since
N∑

k=1

G(n, k) =
N∑

p=1

N∑

q=1

X (p)X∗(q)u p(n)u∗
q(n) = |x(n)|2.

The same condition is required for the vertex moment property

N∑

n=1

N∑

k=1

nmG(n, k) =
N∑

n=1

nm |x(n)|2.

• The frequency marginal property is satisfied if

φ(p, k, p) = δ(p − k).

Then the sum over vertex index produces

N∑

n=1

G(n, k) =
N∑

p=1

|X (p)|2φ(p, k, p) = |X (k)|2,

since
N∑

n=1

u p(n)u∗
q(n) = δ(p − q),

that is, the eigenvectors are orthonormal. If the frequency marginal property holds,
then the frequency moment property holds as well,

N∑

n=1

N∑

k=1

kmG(n, k) =
N∑

k=1

km |X (k)|2.

The reduced interference vertex-frequency distribution G(n, k) satisfies the local
smoothness property (35) if
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N∑

k=1

λkG(n, k)

N∑

k=1

G(n, k)

= Lx (n)

x(n)
= λ(n). (41)

This means that

N∑

k=1

N∑

p=1

N∑

q=1

X (p)X∗(q)u p(n)u∗
q(n)λkφ(p, k, q)

N∑

k=1

N∑

p=1

N∑

q=1

X (p)X∗(q)u p(n)u∗
q(n)φ(p, k, q)

= λ(n)

if

N∑

k=1

φ(p, k, q) = 1 and
N∑

k=1

λkφ(p, k, q) = λp.

4.3 Reduced Interference Distribution Kernels

A few examples of the reduced interference kernels that satisfy marginal properties,
will be presented next.

Choi–Williams (exponential) kernel: The classic form of this kernel is

c(θ, τ ) = exp(−θ2τ 2/(2σ2)).

The frequency-frequency form of this kernel is

φ(θ,ω) = FTτ {c(θ, τ )} = exp(−ω2σ2/(2θ2))|σ/θ|√2π.

Its shifted version would be

φ(u − v,ω − u) = σ
√
2π

|v − u| exp
(

−σ2 (ω − u)2

2(v − u)2

)

.

Astraightforward extension to the graph signal processingwouldbe to use the relation
λ ∼ ω2, with appropriate exponential kernel normalization. We have implemented
this form and concluded that it produces results similar to the simplified form that
satisfies the marginal properties and decays in the frequency-frequency domain. The
form of this kernel is
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Fig. 13 Frequency-frequency domain exponential (left) and sinc (right) kernels at k = N/2 = 32

φ(p, k, q) = 1

s(q, p)
exp

(
− α

|λp − λk |
|λp − λq |

)
,

where

s(q, p) =
N∑

k=1

exp
(

− α
|λp − λk |
|λp − λq |

)

for q �= p and φ(p, k, p) = δ(k − p). It satisfies both marginal properties.
The vertex-frequency distribution with the exponential kernel (Fig. 13 (left)) is

presented in Fig. 14. This kind of distribution presents correctly the signal com-
ponents, preserving the marginal properties and reducing the cross-term effects as
compared to Fig. 12.

Sinc kernel: The simplest reduced interference kernel in the frequency-frequency
domain, that would satisfy the marginal properties, is the sinc kernel. Its form is

φ(p, k, q) =
{

1
1+2|p−q| for |k − p| ≤ |p − q|
0 otherwise,

This kernel, with appropriate normalization, is shown in Fig. 13 (right), for k = 32.
A vertex-frequency representation with this kernel would be similar to the one shown
in Fig. 14. Additional examples can be found in [32].

Separable Kernels

If the kernel is separable, such that

φ(p, k, q) = g(k − p)g(k − q),
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Fig. 14 Vertex-frequency reduced interference distribution using the kernel from Fig. 13(left) with
its marginal values equal to |x(n)|2 and |X (k)|2, respectively

then we can write G(n, k) = |∑N
p=1 X (p)g(k − p)u p(n)|2. This is a frequency

domain definition of the graph spectrogram. The relation between the vertex domain
spectrogram (6) and the frequency-frequency domain distribution is complex.

The separable kernels cannot satisfy the marginal properties, since δ(k − p) =
φ(p, k, p) = g2(k − p) means g(k − p) = δ(k − p). These kernels do not satisfy∑N

k=1 φ(p, k, q) = 1 for all p and q.

Vertex-Vertex Shift Domain Distribution

The general vertex-frequency distribution can be written for the vertex-vertex shift
domain as a dual form to (40)

G(n, k) =
N∑

m=1

N∑

l=1

x(m)x∗(l)uk(m)u∗
k(l)ϕ(m, n, l), (42)

where ϕ(m, n, l) is the kernel in this domain (the same mathematical form as the
frequency-frequency domain kernel). The frequency marginal is satisfied if

N∑

n=1

ϕ(m, n, l) = 1
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holds. The vertex marginal is met if

ϕ(m, n,m) = δ(m − n).

The relation of this distribution with the vertex domain spectrogram (6) is simple
using

ϕ(m, n, l) = hn(m)h∗
n(l)

=
N∑

p=1

N∑

q=1

H(p)H∗(q)u p(m)u p(n)u∗
q(l)u

∗
q(n).

This kernel is defined by the frequency domain window form H(p). It cannot satisfy
both marginal properties. The unbiased energy condition

N∑

n=1

ϕ(m, n,m) = 1

reduces to (21).

Classical Time-Frequency Analysis

The approach presented in this chapter can be extended to the directed graphs and
adjacency matrices as well. The classical Fourier and time-frequency analysis follow
from a directed ring graph. The adjacency matrix decomposition produces complex-
valued eigenvectors of form uk(n) = exp( j2πnk/N )/

√
N .

4.4 Local Smoothness Estimation

For the considered signal, presented in Fig. 1, we calculate local signal smoothness
by definition (33) and as the maximum positions

λ̂(n) = argmax
k

{G(n, k)}

of the various vertex-frequency representations. The results are presented in Fig. 15
and inTable1. The local smoothness is calculated only at the verticeswhere signal has
significant values (with instantaneous power |x(n)|2 higher than 0.03 of the maximal
instantaneous power maxn |x(n)|2). The exact local smoothness is presented with a
line and the estimated local smoothness at the considered vertices is represented by
dots. The number of outliers (vertices where estimated smoothness is not equal to the
exact one) is calculated. The mean squared error of the estimations is also presented
in each considered case.
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Fig. 15 Local signal smoothness for the graph signal presented in Fig. 1 estimated by using: a the
Laplacian of the graph signal (33),b the vertex-frequency energy distribution (Fig. 12), c the reduced
interference vertex frequency distribution (Fig. 14), d the graph spectrogram with a vertex domain
window (Fig. 2), and e the graph spectrogram with a spectral domain window (Fig. 5). The smooth-
ness, presented with dots, is calculated only at the vertices where |x(n)|2 > 0.03maxn |x(n)|2.
Solid line is the exact local smoothness in the considered example

Next we considered the same signal and graph example with a white Gaussian
noise added to the signal samples. The signal-to-noise ratio (SNR) is 3.6dB. The
results are given in Table2. We can see that the local smoothness estimation based
on the signal Laplacian is very sensitive to noise, while the vertex-frequency based
estimations are robust with a slightly increased number of outliers in the noisy case.



Vertex-Frequency Energy Distributions 413

Table 1 The number of outliers and mean squared error of the local smoothness for a noise-free
signal

Calculation method Number of outliers MSE

Laplacian of the signal 4 0.019

Rihaczek’s distribution 1 0.003

Reduced interference distribution 1 0.003

LVS with vertex domain window 3 0.133

LVS with spectral domain window 4 0.013

Table 2 The number of outliers and the mean squared error of the local smoothness for a noisy
signal with SNR = 3.6dB

Calculation method Number of outliers MSE

Laplacian of the signal 36 0.874

Rihaczek’s distribution 5 0.119

Reduced interference distribution 3 0.019

LVS with vertex domain window 4 0.087

LVS with spectral domain window 8 0.120

Concentration measures obtained as the �1-norm of the Rihaczek and the reduced
interference distributions [28] are 19.63 and 13.26, respectively. They confirm the
fact that the reduced interference distribution has improved the concentration in the
vertex-frequency domain by reducing the cross-terms.

5 Conclusion

Vertex-frequency representations of graph signals have been presented. In the first
part of the chapter, the linear signal forms, along with the corresponding window
forms and spectrograms, are analyzed. In the second part of the chapter, the local
smoothness factor is introduced. The energy vertex-frequency distributions are pre-
sented. These distributions do not require localization windows. Energy distributions
are extended to the general reduced interference distribution class. This class of graph
signal distributions reduces the cross-terms and satisfies the graph signal marginal
properties. The theory is illustrated through examples.
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Shape Analysis of Carpal Bones Using
Spectral Graph Wavelets

Majid Masoumi, Mahsa Rezaei and A. Ben Hamza

Abstract Graph signal processing is an emerging field that provides powerful tools
for analyzing signals defined on graphs. In this chapter, we present a graph sig-
nal processing approach to shape analysis of carpal bones of the human wrist by
exploiting local structure information among shape features for the purpose of quan-
titative shape comparison. We represent the cortical surface of a carpal bone in the
spectral geometric setting using the Laplace-Beltrami operator and spectral graph
wavelets. We propose a global spectral graph wavelet (GSGW) descriptor that is
isometric invariant, efficient to compute, and combines the advantages of both low-
pass and band-pass filters. We perform experiments on shapes of the carpal bones
of ten women and ten men from a publicly-available database of wrist bones. Using
one-way multivatiate analysis of variance (MANOVA) and permutation testing, our
extensive results that the proposed GSGW framework gives a much better perfor-
mance compared to the graph spectral signature (GPS) embedding approach for
comparing shapes of the carpal bones across populations.

Keywords Spectral graph wavelets · Carpal bones · Shape analysis

1 Introduction

In human anatomy, the wrist (or carpus) is a complex joint that connects the hand to
the forearm, and is composed of eight carpal bones arranged in two rows of four bones
each. Each carpal bone has a unique shape and plays a significant functional role in
the wrist stability and mobility. Changes in the shape of a carpal bone may be a sign
of wrist injuries or disorders, such as arthritis and carpal tunnel syndrome, and hence
understanding and analyzing variations of bone shapes is essential to the diagnosis of
wrist pathologies. Quantitative shape analysis of carpal bones not only helps identify
unique phenotypes across populations, but also allows for the detection of abnormal
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wrist pathologies as well as the investigation of biomechanical properties of the wrist
joints [1]. This analysis has become possible thanks in large part to the availability
of databases of normal and abnormal pathologies [2].

The vast majority of quantitative shape comparison techniques rely on finding
compact shape descriptors (or signatures) that capture the intrinsic geometric struc-
ture of shapes in such a way that the shape comparison problem reduces to the rela-
tively simple problem of comparing such shape descriptors [3]. The recent surge of
interest in the spectral analysis of the Laplace-Beltrami operator (LBO) has resulted
in a considerable number of spectral shape signatures that have been successfully
applied to a broad range of areas, including shape analysis [4–10], multimedia pro-
tection [11], and medical imaging [12]. The diversified nature of these applications
is a powerful testimony of the practical usage of spectral shapes signatures, which
are usually defined as feature vectors representing local and/or global characteristics
of a shape and may be broadly classified into two main categories: local and global
descriptors. Local descriptors (also called point signatures) are defined on each point
of the shape and often represent the local structure of the shape around that point,
while global descriptors are usually defined on the entire shape capturing its global
structure.

Most point signatures may easily be aggregated to form global descriptors by
integrating over the entire shape. One of the simplest global spectral shape signa-
tures is Shape-DNA [4], which is an isometry-invariant global descriptor defined as
a truncated sequence of the LBO eigenvalues arranged in increasing order of mag-
nitude. Gao et al. [13] developed a variant of Shape-DNA, referred to as compact
Shape-DNA (cShape-DNA), which is an isometry-invariant signature resulting from
applying the discrete Fourier transform to the area-normalized eigenvalues of the
LBO. Chaudhari et al. [12] proposed a global point signature (GPS) embedding for
quantifying the overall bone shape, and it is obtained by setting the LBO eigenfunc-
tions in the GPS signature [5] to unity. More precisely, the GPS embedding is defined
as a truncated sequence of inverse square roots of the area-normalized eigenvalues of
the LBO. In addition to providing an efficient representation for comparing shapes
of the carpal bones across populations, the GPS embedding has several desirable
properties for shape analysis of carpal bones, including invariance to Euclidean and
isometric transformations.

While the GPS signature [5] is invariant under isometric deformations of the
shape, it suffers, however, from the problem of eigenfunctions’ switching whenever
the associated eigenvalues are close to each other. This problem was lately well han-
dled by the heat kernel signature (HKS) [14], which is a temporal descriptor defined
as an exponentially-weighted combination of the LBO eigenfunctions. HKS is a local
shape descriptor that has a number of desirable properties, including robustness to
small perturbations of the shape, efficiency and invariance to isometric transforma-
tions. From the graphFourier perspective, it can be seen thatHKS is highly dominated
by information from low frequencies, which correspond to macroscopic properties
of a shape. To give rise to substantially more accurate matching than HKS, the wave
kernel signature (WKS) [15] was proposed as an alternative in an effort to allow
access to high-frequency information.
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More recently, vertex-frequency analysis on graphs via the Fourier transform in
the spectral graph-theoretic setting has received a great deal of interest [16, 17].
While the Fourier transform has been widely used as a reliable tool in signal pro-
cessing applications for many years, wavelet analysis has been shown to provide
some key advantages over the Fourier transform, making it an interesting alternative
for many applications. In particular, unlike the Fourier transform, wavelet analysis
is able to perform local analysis and also makes it possible to perform a multiresolu-
tion analysis. Classical wavelets are constructed by translating and scaling a mother
wavelet, which is used to generate a set of functions through the scaling and trans-
lation operations. The wavelet transform coefficients are then obtained by taking
the inner product of the input function with the translated and scaled waveforms.
Applying wavelets directly to graphs (or triangle meshes in geometry processing) is,
however, not straightforward due in large part to the fact that it is unclear how to apply
the scaling operation on a signal (or function) defined on the mesh vertices. To tackle
this problem, Coifman et al. [18] introduced the diffusion wavelets, which generalize
the classical wavelets by allowing formultiscale analysis on graphs. The construction
of diffusion wavelets interacts with the underlying graph through repeated applica-
tions of a diffusion operator, which induces a scaling process. Hammond et al. [19]
showed that the wavelet transform can be performed in the graph Fourier domain,
and proposed a spectral graph wavelet transform that is defined in terms of the eigen-
system of the graph Laplacian matrix. Recently, a spectral graph wavelet signature
(SGWS) was introduced in [20], and it has shown superior performance over HKS
and WKS in 3D shape analysis. SGWS is a multiresolution local descriptor that is
not only isometric invariant, but also compact, easy to compute and combines the
advantages of both band-pass and low-pass filters.

In this chapter, we present a global spectral graph wavelet (GSGW) framework
that represents the shape of the cortical surface of a carpal bone by a global shape
descriptor defined as an area-weighted sum of all local spectral graph wavelet sig-
natures at each surface point. The resulting global descriptor is not only isometric
invariant, but also efficient to compute and requires less memory storage. Using
one-way multivariate analysis of variance (MANOVA) and permutation testing, we
show through experiments on a publicly-available database that our proposedGSGW
approach yields better performance compared to existing methods in providing an
efficient way for comparing shapes of the carpal bones across populations.

The outline of this chapter is as follows. In Sect. 2, we briefly provide a brief
overview the Laplace-Beltrami operator and its spectral analysis in the discrete
domain. In Sect. 3, we present a global spectral graph wavelet framework, and we
discuss in detail its main algorithmic steps. Experimental results and a discussion
are presented in Sects. 4 and 5. Finally, we conclude in Sect. 6 and point out some
future work directions.
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2 Background

A3D shape is usuallymodeled as a trianglemeshMwhose vertices are sampled from
a Riemannian manifold. A triangle mesh M may be defined as a graph G = (V, E)

or G = (V, T ), where V = {v1, . . . , vm} is the set of vertices, E = {ei j } is the set of
edges, and T = {t1, . . . , tl} is the set of triangles. Each edge ei j = [vi , v j ] connects
a pair of vertices {vi , v j }. Two distinct vertices vi , v j ∈ V are adjacent (denoted by
vi ∼ v j or simply i ∼ j) if they are connected by an edge, i.e. ei j ∈ E . A triangle
mesh representing a carpal bone is shown in Fig. 1 (left).

2.1 Laplace-Beltrami Operator

Given a compact Riemannian manifold M, the space L2(M) of all smooth, square-
integrable functions onM is a Hilbert space endowed with inner product 〈 f1, f2〉 =∫
M

f1(x) f2(x) da(x), for all f1, f2 ∈ L2(M), where da(x) (or simply dx) denotes
the measure from the area element of a Riemannian metric on M. Given a twice-
differentiable, real-valued function f : M → R, the Laplace-Beltrami operator
(LBO) is defined as �M f = −div(∇M f ), where ∇M f is the intrinsic gradient vec-
tor field and div is the divergence operator [21, 22]. The LBO is a linear, positive
semi-definite operator acting on the space of real-valued functions defined on M,
and it is a generalization of the Laplace operator to non-Euclidean spaces.

Discretization: A real-valued function f : V → R defined on the mesh vertex
set may be represented as an m-dimensional vector f = ( f (i)) ∈ R

m , where the i th
component f (i) denotes the function value at the i th vertex in V . Using a mixed
finite element/finite volume method on triangle meshes [23], the value of �M f at a
vertex vi (or simply i) can be approximated using the cotangent weight scheme as
follows:

�M f (i) ≈ 1

ai

∑

j∼i

cot αi j + cot βi j

2

(
f (i) − f ( j)

)
, (1)

where αi j and βi j are the angles ∠(vivk1v j ) and ∠(vivk2v j ) of two faces tα =
{vi , v j , vk1} and tβ = {vi , v j , vk2} that are adjacent to the edge [i, j], and ai is the
area of the Voronoi cell (shaded area) at vertex i , as shown in Fig. 1 (right). It should
be noted that the cotangent weight scheme is numerically consistent and preserves
several important properties of the continuousLBO, including symmetry and positive
semi-definiteness [24].

Spectral Analysis: The m × m matrix associated to the discrete approximation of
the LBO is given by L = A−1W, where A = diag(ai ) is a positive definite diagonal
matrix (mass matrix), andW = diag(

∑
k 	=i cik) − (ci j ) is a sparse symmetric matrix

(stiffness matrix). Each diagonal element ai is the area of the Voronoi cell at vertex
i , and the weights ci j are given by



Shape Analysis of Carpal Bones Using Spectral Graph Wavelets 423

Fig. 1 Triangular mesh representation of a carpal bone (left); Cotangent scheme angles (right)

ci j =
⎧
⎨

⎩

cot αi j + cot βi j

2
if i ∼ j

0 o.w.
(2)

where αi j and βi j are the opposite angles of two triangles that are adjacent to the
edge [i, j].

The eigenvalues and eigenvectors of L can be found by solving the general-
ized eigenvalue problemWϕ� = λ�Aϕ� using, for instance, the Arnoldi method of
ARPACK,1 where λ� are the eigenvalues and ϕ� are the unknown associated eigen-
functions (i.e. eigenvectors which can be thought of as functions on the mesh ver-
tices). We may sort the eigenvalues in ascending order as 0 = λ1 < λ2 ≤ · · · ≤ λm

with associated orthonormal eigenfunctions ϕ1,ϕ2, . . . ,ϕm , where the orthogonal-
ity of the eigenfunctions is defined in terms of the A-inner product, i.e.

〈ϕk,ϕ�〉A =
m∑

i=1

aiϕk(i)ϕ�(i) = δk�, for all k, � = 1, . . . ,m. (3)

Wemay rewrite the generalized eigenvalue problem in matrix form asW� = A��,
where � = diag(λ1, . . . ,λm) is an m × m diagonal matrix with the λ� on the diag-
onal, and � is an m × m orthogonal matrix whose �th column is the unit-norm
eigenvector ϕ�.

The successful use of the LBO eigenvalues and eigenfunctions in shape analysis
is largely attributed to their isometry invariance and robustness to noise. Moreover,
the eigenfunctions associated to the smallest eigenvalues capture well the large-scale
properties of a shape. As shown in Fig. 2, the (non-trivial) eigenfunctions of the LBO

1ARPACK (ARnoldi PACKage) is a MATLAB library for computing the eigenvalues and eigen-
vectors of large matrices.
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Fig. 2 From left to right: 3D scaphoid bone and selected eigenfunctions (2nd, 4th, 8th and 18th)
of the LBO mapped into the surface of the bone

encode important information about the intrinsic global geometry of a shape. Notice
that the eigenfunctions associated with larger eigenvalues oscillate more rapidly.
Blue regions indicate negative values of the eigenfunctions and red colors regions
indicate positive values, while green and yellow regions in between.

3 Method

In this section, we provide a detailed description of our GSGW framework for the
analysis of the cortical surface of a carpal bone using spectral graphwavelets.We start
by defining the spectral graphwavelet transformon aRiemannianmanifold.We show
how to build local descriptors from spectral graph wavelets and its subcomponent
functions. Then, we propose a novel global shape descriptor defined as an area-
weighted sum of all local spectral graph wavelet signatures at each mesh vertex.
Finally,we provide themain algorithmic steps of our carpal bone analysis framework.

3.1 Local Descriptors

Graph Fourier Transform: For any graph signal f : V → M, the forward and
inverse graph Fourier transforms (also called manifold harmonic and inverse mani-
fold harmonic transforms) are defined as

f̂ (�) = 〈 f,ϕ�〉 =
m∑

i=1

ai f (i)ϕ�(i), � = 1, . . . ,m (4)

and

f (i) =
m∑

�=1

f̂ (�)ϕ�(i) =
m∑

�=1

〈 f,ϕ�〉ϕ�(i), i ∈ V, (5)

respectively, where f̂ (�) is the value of f̂ at eigenvalue λ� (i.e. f̂ (�) = f̂ (λ�)). In
particular, the graph Fourier transform of a delta function δ j centered at vertex j is
given by
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δ̂ j (�) =
n∑

i=1

aiδ j (i)ϕ�(i) =
n∑

i=1

aiδi jϕ�(i) = a jϕ�( j),

The forward and inverse graph Fourier transforms may be expressed in vector form
as follows:

f̂ = �
ᵀAf and f = �f̂, (6)

where f = ( f (i)) and f̂ = ( f̂ (�)) are m-dimensional vectors, whose elements are
given by (4) and (5), respectively. The vector f̂ represents the signal’s graph Fourier
series expansion in the area-weighted eigenvector basis and describes the frequency
components of the graph signal f .

The inverse graph Fourier transform reconstructs the graph signal by combining
graph frequency components, as shown in Fig. 3, which demonstrate the ability of
the LBO eigenfunctions in rendering the shape-based features. As can be seen, the
lower-order eigenfunctions capture the global structure of shape, while by increasing
the number of eigenfunctions more details of the curvature of the bone are captured.

The normalized mean squared error between the original bone surface and its
graph Fourier reconstruction is shown in Fig. 4, where the x-axis is the number of
eigenfunctions of the LBO. As can be seen, a relatively small number of eigenfunc-
tions (i.e. between 20 and 30) would be enough to efficiently capture the features of
the carpal bone surface to analyze shape differences in a population study. By fea-
tures, we mean the points on the carpal bones that contain salient information about
the shape (e.g. protrusions). The extracted features should be robust to transforma-
tions. Our global spectral graph wavelet descriptor is a dense descriptor that makes
use of the LBO eigenvalues and eigenfunctions, which are invariant to isometric
transformation. Hence, our framework provides a robust descriptor for describing
the carpal bones that helps facilitate the statistical analysis among bone shapes. Ren-
dering a carpal bone surface in a lower-dimension has some advantages, including
the ability of being invulnerable to tessellation noise or image segmentation.

Spectral Graph Wavelet Transform: Wavelets are useful in describing functions
at different levels of resolution. To characterize the localized context around a mesh
vertex j ∈ V , we assume that the signal on the mesh is a unit impulse function, that

Fig. 3 From left to right: 3D hamate bone in a healthy man and its graph Fourier reconstruction
using 10, 30, 75 and 150 eigenfunctions of the LBO
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Fig. 4 Normalized mean squared error between the original carpal bone and its graph Fourier
reconstruction as a function of the LBO eigenfunctions

is f (i) = δ j (i) at each mesh vertex i ∈ V . The spectral graph wavelet coefficients
are expressed as

Wδ j (t, j) = 〈δ j ,ψt, j 〉 =
m∑

�=1

a2j g(tλ�)ϕ
2
�( j), (7)

and that the coefficients of the scaling function are

Sδ j ( j) =
m∑

�=1

a2j h(λ�)ϕ
2
�( j). (8)

Following the multiresolution analysis, the spectral graph wavelet and scaling func-
tion coefficients are collected to form the spectral graph wavelet signature at vertex
j as follows:

s j = {sL( j) | L = 1, . . . , R}, (9)

where R is a resolution parameter, and sL( j) is the shape signature at resolution level
L given by

sL( j) = {Wδ j (tk, j) | k = 1, . . . , L} ∪ {Sδ j ( j)}. (10)
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The wavelet scales tk (tk > tk+1) are selected to be logarithmically equispaced
between maximum and minimum scales t1 and tL , respectively. Thus, the resolution
level L determines the resolution of scales to modulate the spectrum. At resolution
R = 1, the spectral graph wavelet signature s j is a 2-dimensional vector consisting
of two elements: one element, Wδ j (t1, j), of spectral graph wavelet function coeffi-
cients and another element, Sδ j ( j), of scaling function coefficients. And at resolution
R = 2, the spectral graph wavelet signature s j is a 5-dimensional vector consisting
of five elements (four elements of spectral graph wavelet function coefficients and
one element of scaling function coefficients). In general, the dimension of a spectral
graph wavelet signature s j at vertex j can be expressed in terms of the resolution R
as follows:

p = (R + 1)(R + 2)

2
− 1. (11)

Hence, for a p-dimensional signature s j , we define a p × m spectral graph wavelet
signature matrix as S = (s1, . . . , sm), where s j is the signature at vertex j and m
is the number of mesh vertices. In our implementation, we used the Mexican hat
wavelet

g(x) = 2√
3π1/4

(1 − x2) exp

(

− x2

2

)

, (12)

as a kernel generating function. In addition, we used the scaling function h given by

h(x) = γ exp

(

−
(

x

0.6λmin

)4
)

, (13)

where λmin = λmax/20 and γ is set such that h(0) has the same value as the max-
imum value of g. The maximum and minimum scales are set to t1 = 2/λmin and
tL = 2/λmax, where λmin and λmax are the smallest and largest LBO eigenvalues,
respectively.

The geometry captured at each resolution R of the spectral graphwavelet signature
can be viewed as the area under the curve G shown in Fig. 5. For a given resolution
R, we can understand the information from a specific range of the spectrum as its
associated areas under G. As the resolution R increases, the partition of spectrum
becomes tighter, and thus a larger portion of the spectrum is highly weighted.

3.2 Global Descriptor

A commonly used methodology for building a global shape descriptor is by aggre-
gating local signatures using the bag-of-features (BoF) paradigm [6]. The BoFmodel
represents each object in the dataset as a collection of unordered feature descriptors
extracted from local areas of the shape, just as words are local features of a docu-
ment. A baseline BoF approach quantizes each local descriptor to its nearest cluster
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Fig. 5 Spectrummodulation using different kernel functions at various resolutions. The dark line is
the squared sum function G, while the dash-dotted and the dotted lines are upper and lower bounds
(B and A) of G, respectively

center using K-means clustering and then encodes each shape as a histogram over
cluster centers by counting the number of assignments per cluster. These cluster
centers form a visual vocabulary or codebook whose elements are often referred to
as visual words or codewords. Although the BoF paradigm has been shown to pro-
vide significant levels of performance, it does not, however, take into consideration
the spatial relations between features, which may have an adverse effect not only
on its descriptive ability but also on its discriminative power. To circumvent these
challenges, we represent a shapeM by a p-dimensional vector

x = Sa =
m∑

i=1

ai si , (14)

where S = (s1, . . . , sm) is a p × m matrix of local spectral graph wavelet signatures
and a = (a1, . . . , am)

ᵀ is an m-dimensional vector of mesh vertex areas (i.e. each
element ai is the area of the Voronoi cell at mesh vertex i).
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We refer to the p-dimensional vector x as the global spectral graph wavelet
(GSGW) descriptor of the carpal bone surface. The GSGW descriptor enjoys a num-
ber of desirable properties including simplicity, compactness, invariance to isometric
deformations, and computational feasibility. Moreover, GSGW combines the advan-
tages of both band-pass and low-pass filters.

3.3 Proposed Algorithm

Our proposed carpal bone analysis algorithm consists of two main steps. In the first
step, we represent each bone in the dataset by a spectral graph wavelet signature
matrix, which is a feature matrix consisting of local descriptors. More specifically,
let D be a dataset of n carpal bones modeled by triangle meshes M1, . . . ,Mn . We
represent each surface Mi in the dataset D by a p × m spectral graph wavelet sig-
nature matrix Si , whose columns are p-dimensional local signatures and m is the
number of mesh vertices.

In the second step, we compute the p-dimensional global spectral graph wavelet
descriptor xi = Siai of each carpal bone Mi , for i = 1, . . . , n. Subsequently, the
feature vectors xi of all n shapes in the dataset are arranged into a n × p data matrix
X = (x1, . . . , xn)

ᵀ.
To assess the performance of the proposed GSGW framework, we employed

two commonly-used evaluation criteria, namely MANOVA and permutation testing.
MANOVA is a multivariate data analysis technique used to determine whether there
are any statistical differences between independent groups on more than one con-
tinuous dependent variable, while a permutation test in a non-parametric test that
resamples the observed data many times in order to determine a p-value for the test.
The p-value is the probability of obtaining an effect at least as extreme as the one
in our observed data when the null hypothesis is true, and it basically measures how
compatible our data are with the null hypothesis. A small p-value provides enough
evidence that we can reject the null hypothesis. Algorithm 1 summarizes the main
algorithm steps of our GSGW approach.

Algorithm 1 GSWS approach
Input: Dataset D = {M1, . . . ,Mn} of n carpal bones
1: for i = 1 to n do
2: Compute the p × m spectral graph wavelet matrix Si for each carpal boneMi , wherem is the

number of vertices
3: Compute the p-dimensional vector xi = Siai , where ai is an m-dimensional vector of vertex

areas
4: end for
5: Arrange all the feature vectors xi into a n × p data matrix X = (x1, . . . , xn)

ᵀ

6: Perform MANOVA and permutation test on X to quantify the statistical differences between
carpal bones

Output: p-values for MANOVA and permutation test.
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4 Experimental Results

In this section, we evaluate the performance of our proposed GSGW approach on
the analysis of carpal bone surfaces via extensive experiments. The effectiveness of
our method is validated by performing a comprehensive comparison with the global
point signature embedding approach [12].

Datasets: In order to evaluate the performance of our GSGW framework on carpal
bone surfaces, a total of 20 men and women with average age of 25 years old from a
publicly-available benchmark [2] have been chosen. In this dataset, the bones of the
wrist are obtained fromCT volume images.More precisely, the carpal bones undergo
segmentation by detecting the 2D outer cortical bone contours in each image slice.
For each bone, the contours are identified and then aggregated into a single 3D
point cloud. Finally, a triangular mesh is constructed using the acquired points. Each
triangular mesh consists of an edge set (i.e. connectivity list) and vertex locations
(i.e. vertex set). We also performed uniform sampling on triangular meshes to have
an equal number of vertices. As shown in Fig. 6, the carpal bones of the right wrist in
a healthy male are eight irregularly shaped bones that are organized into two rows:
proximal and distal. In the proximal row, the bones are scaphoid, lunate, triquetrum
and pisiform. In the distal row, the bones are trapezium, trapezoid, capitate and
hamate. The five metacarpal bones connect the wrist with the fingers, and articulate
proximally with the carpal bones and distally with the fingers (one metacarpal for
each finger). The first metacarpal bone is associated with the thumb, while the fifth
metacarpal bone is associated with the little finger. Since the trapeziometacarpal
joint of the thumb is a common site of osteoarthritis, the first metacarpal bone is also
considered in our analysis. The forearm’s radius and ulna bones, which support the
many muscles that manipulate the bones of the hand and wrist, are also depicted in
Fig. 6.

Fig. 6 Carpal bone anatomy
of a healthy male from a
palmar view. The carpus
consists of eight carpal
bones, which are arranged in
proximal and distal rows.
The proximal row contains
scaphoid (Sp), lunate (Ln),
triquetrum (Tq) and pisiform
(Pf), while the distal row
contains trapezium (Tm),
trapezoid (Td), capitate (Cp)
and hamate (Hm). The distal
row adjoins the five
metacarpals (Mc1-5) of the
wrist. The radius (Rd) and
ulna (Un) are also shown
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Performance Evaluation Measures: To compare the shapes of the carpal bones
in women versus men, we computed the GSGW descriptor for each carpal bone
(eight in total) and the first metacarpal bone for each subject for both the right and
left wrists. For fair comparison between the proposed GSGW approach and GPS
embedding method, we followed the same settings described in [2]. In order to
quantify the difference between the sexes for the carpal bone shapes, we compared
GSGW to GPS embedding for each bone of the right and left wrist separately for the
two groups (ten women versus ten men) using MANOVA and permutation testing.

For permutation testing, gender labels of the samples are randomly shuffled for
1000 times to get the correct distribution of a test statistic under a null hypothesis.We
report the p-values generated by MANOVA and permutation testing. For p < 0.05,
there would be a statistically significant difference between the two groups.

BaselineMethod: For the wrist benchmark [2] used for experimentation, we report
the comparison results of our method against the GPS embedding approach [12].

Implementation Details: The experiments were conducted on a desktop computer
with an Intel Core i5 processor running at 3.10GHz and 8GB RAM; and all the
algorithms were implemented in MATLAB. The appropriate dimension (i.e. length
or number of features) of a shape signature is problem-dependent and usually deter-
mined experimentally. For fair comparison, we used the same parameters that have
been employed in the baseline method, and in particular the dimensions of shape
descriptors. In our setup, a total of 31 eigenvalues and associated eigenfunctions of
the LBO were computed. We also set the resolution parameter to R = 30, resulting
in a 495-dimensional GSGW descriptor.

4.1 Carpal Bone Dataset

The carpal bone dataset consists of 360 mesh models from 20 classes [2]. The bones
of the wrist are obtained from the CT volume images, and then the carpal bones
are rendered and represented as triangular mesh models. Each class contains 18
objects with distinct postures.Moreover, eachmodel in the dataset has approximately
m = 1502 vertices.

Results: In our GSGW approach, each surface in the carpal bone dataset is repre-
sented by a 495 × 1502 matrix of spectral graph wavelet signatures, resulting in a
data matrix X of size 495 × 360. Figure7 shows the spectral graph wavelet descrip-
tors of two carpal bones (capitate and lunate) from two different classes of the carpal
bone dataset. As can be seen, the global descriptors are quite different and hence
may be used to efficiently discriminate between surfaces in statistical analysis tasks.

We compared the proposed GSGW method to the GPS embedding approach
by performing MANOVA and non-parametric permutation testing. The results are
summarized in Table 1 for the right wrist and Table 2 for the left wrist. In these
tables, the numbers marked with an asterisk indicate that the p-value exceeds the
significance level of 0.05.
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Fig. 7 Global spectral graph wavelet descriptors of two carpal bones: capitate (left) and lunate
(right)

Table 1 Comparison of carpal bone surfaces of the right wrist between males and females using
MANOVA and permutation test. Boldface numbers indicate the better performance, while the
numbers marked with an asterisk indicate that the p-value exceeds 0.05

Bone MANOVA Permutation test

GPS GSGW GPS GSGW

Capitate 0.0226 0.0319 0.0493 0

Hamate 0.0065 2.37e-11 0.0097 0.0020

Lunate 0.0379 0.0069 0.0210 0

Pisiform 0.0428 0.0441 0.0365 0.0040

Scaphoid 0.0135 0.0003 0.0255 0

Trapezoid 0.0004 0.0088 0.0087 0

Trapezium 0.0007 1.80e-5 0.0101 0.0200

Triquetrum 0.0015 1.96e-5 0.0124 0.200�

Metacarpal-1 0.0137 0.0009 0.0245 0.0040

As can be seen, our method achieves better analytical performance than the GPS
embedding method for both right and left wrist. For the right wrist, the GSGW
approach yields the lower p-value compared to GPS embedding for six carpal bones
out of nine using MANOVA, and for seven bones out of nine using permutation
testing. In addition, the p-value in the MANOVA test for some bones (e.g. hamate)
has decreased to 6.5 × 10−3. For the left wrist, our GSGW approach significantly
improves the results by yielding a lower p-value in the MANOVA test for all bones,
except for Metacarpal-1. Also, unlike GPS embedding, our method achieved a much
lower p-value in the permutation test for all carpal bones. Moreover, the p-value
in the MANOVA test for some bones (e.g. hamate) has plummeted to 2.5 × 10−3.
To speed-up experiments, all shape descriptors were computed offline, albeit their
computation is quite inexpensive due in large part to the fact that only a relatively
small number of the LBO eigenfunctions need to be computed.
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Table 2 Comparison of carpal bone surfaces of the left wrist between males and females using
MANOVA and permutation test. Boldface numbers indicate the better performance, while the
numbers marked with an asterisk indicate that the p-value exceeds 0.05

Bone MANOVA Permutation test

GPS GSGW GPS GSGW

Capitate 0.0148 0.0065 0.0416 0.0100

Hamate 0.0048 6.64e-8 0.0089 0.0020

Lunate 0.0532� 2.41e-5 0.0766� 0.0020

Pisiform 0.0102 2.56e-5 0.0201 0

Scaphoid 0.0012 3.19e-5 0.0120 0.0060

Trapezoid 0.0022 0.0013 0.0136 0.0020

Trapezium 0.0023 0.0002 0.0140 0

Triquetrum 0.0449 0.0005 0.0836� 0

Metacarpal-1 0.0015 0.0482 0.0129 0.0100
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Fig. 8 Global spectral graph wavelet descriptors for three capitate bones of women’s left wrists
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Fig. 9 Global spectral graph wavelet descriptors for three metacarpal bones of women’s left wrists
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To further assess the discriminative power of our approach, we computed the
GSGW descriptors of carpal bone surfaces from the same class. As shown in Figs. 8
and 9, even for very similar carpal bones with a slightly difference, the proposed
GSGW approach is able to distinguish between the shapes.

5 Discussion

Using the eigensystem of Laplace-Beltrami operator and spectral graph wavelets, we
presented a global descriptor that characterizes the shape of the cortical surface of a
carpal bone. This global descriptor enjoys a number of desirable properties including
simplicity, compactness, invariance to isometric deformations, and computational
feasibility.Moreover, the experimental results on the carpal bone dataset demonstrate
the effectiveness of the proposed GSGW framework.

To assess the performance of the GSGW approach against orientation misalign-
ment, we randomly selected three shapes from each group in the carpal bone dataset.
Then, we performed scaling, translation and rotation on these shapes using factors
of 10, 50 and 100, respectively. The global spectral graph wavelet descriptors of the
transformed and reference shapes are computed along with the normalized mean
squared error between them. We achieved an average of 6.1 × 10−8 in terms of
NMSE for all experiments, indicating that our method is independent of position,
rotation and scaling. Such nice attributes may ameliorate the assessment of the carpal
bone shape and hence make it invariant to orientation misalignment.

Our GSGW approach is able to decompose a carpal bone surface into its con-
stituent intrinsic components and represent each surface by a global spectral graph
wavelet descriptor. This helps facilitate the statistical analysis of the bones of the
wrists. Moreover, our method needs only a small number of eigenfunctions to
identify the variations in the surface, and can easily distinguish not only between
carpal bones of different groups but also bones from the same group. This prop-
erty tremendously simplifies the problem and speeds-up the computation of the
shape descriptor, particularly when dealing with shapes consisting of thousands of
vertices, albeit increasing the number of mesh vertices tends to provide slightly
better results. Our experiments show that 20–30 eigenfunctions are enough to capture
the discriminative features of 3D shapes. It should be pointed out that the extracted
features derived from the wrist bones using our proposed GSGW framework may
also be used to develop subject-specific prostheses or implants [1].

While the carpal bone dataset used is this study consists of a small size of indi-
viduals, we plan in the not too distant future to test the GSGW approach on a larger
population. The carpal bone dataset includes subjects who are healthy, young and
who lacked remarkable pathological findings. So, it would be interesting to investi-
gate surface differences in wrist bones when, for instance, a group is suffering from
specific pathologies like osteoarthritis or wrist instability.Moreover, this dataset does
not include information related to the dominant hand of the individuals. Hence, we
may consider this information to analyze the bone shape differences in an effort to



Shape Analysis of Carpal Bones Using Spectral Graph Wavelets 435

find the probable association. Since men and women in the carpal bone dataset are in
the same age range, the factors related to age can also be investigated by considering
a different age range in two groups of men and women. In addition, the other factors
that may change the carpal bone shapes of individuals include the body size, genetic,
metabolic and environmental factors, which are not taken into consideration in our
experiments because they are not available in the carpal bone dataset.

The GSGW framework can be efficiently used to assess bone shape changes
across populations as well as the identification of abnormalities in the wrist bones.
Carpal bone erosion is one of themost common anatomical consequences and erosive
changes in rheumatoid arthritis, which needs to be regularly monitored in order
to track illness progression [25]. The capitate, lunate, triquetrum and scaphoid are
usually the most affected carpal bones. Evaluating group differences in carpal bone
surfaces based on sex can be used to track the bone erosion status in rheumatoid
arthritis. Furthermore, in paleoanthropology studies, the evolutionary development
and diversification (i.e. phylogenetic relationships) among mammalian species can
be analyzed with carpal bone morphology. Therefore, quantifying the bone shape
differences due to evolution is of high clinical interest [26].

6 Conclusion

We presented a spectral graph wavelet framework for quantitative shape comparison
of carpal bones. In particular, we proposed a a conceptually simple yet powerful
and theoretically motivated global shape representation for the cortical surface of a
carpal bone. We performed a statistical analysis using MANOVA and permutation
testing on a database of carpal bones of the human wrist in an effort to compare
shapes of the carpal bones across populations. The proposedGSGWdescriptor enjoys
a number of desirable properties including simplicity, compactness, invariance to
isometric deformations, and computational feasibility. Our extensive results show
that our approachnot only captures the similarity between feature descriptors, but also
substantially outperforms existing methods. In the future work, we plan to generalize
the GSGW framework by including other factors that may change the shape of carpal
bones.
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Estimating the Complexity of the
Cerebral Cortex Folding with a Local
Shape Spectral Analysis

Hamed Rabiei, Frédéric Richard, Olivier Coulon and Julien Lefèvre

Abstract The human cerebral cortex is a highly folded structure that can bemodeled
by a surface extracted in vivo from magnetic resonance imaging data. The folding
complexity of this surface has been shown to be a relevant biological measurement,
often estimated locally and referred to by the term “gyrification index” (GI). There
is, however, no universal agreement on the notion of surface complexity and various
methods have been presented that evaluate different aspects of cortical folding. In
this chapter, we show how a local spectral analysis of the cortical surface mean
curvature can address this problem and provide twowell-defined gyrification indices.
Specifically, we extended the concept of graph windowed Fourier transform to the
framework of surfaces modeled by triangular meshes. The intrinsic nature of the
method allows us to compute the folding complexity at different spatial scales. We
show that our approach overcomes amajor flaw in othermore classical GI estimators,
namely the impossibility to differentiate deep cortical folds from shallower but more
oscillating ones. We applied our method on synthetic data as well as on a database of
124 healthy adult subjects and showed that it verifies important properties and capture
important aspects of cortical gyrification. A comparison with other GI definitions is
also provided.
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1 Cortical Folding Complexity and Gyrification Indices

The human cerebral cortex is a very convoluted sheet-like structure of variable thick-
ness (1.5–4.5mm) that shows a large number of folds, the cortical sulci, separated
by concave regions called gyri. When observed with Magnetic Resonance Imaging
(MRI) it is often approximated by its inner or outer surface, modelled with a trian-
gular mesh of spherical topology (see Fig. 1). The developmental process that leads
from a smooth surface at mid-gestation to this very convoluted surface after birth is
called gyrification [1–4]. It is known now that the shape of the cortex can be a marker
of normal or pathological development or aging [5–10]. In particular, quantifying
the complexity of the cortical folds has been proven valuable and a number of meth-
ods have been proposed to estimate what is called a gyrification index (GI) either at
the local (at every point) or the global (one value for the entire cortex) level. Such
methods can be categorized in two classes: surface area (perimeter)-based methods
[5–7, 11–14] and curvature-based methods [10, 15–17]. Methods in the first cate-
gory compute the gyrification index as a ratio between the local area of the cortical
surface and that of a reference surface. For instance, Toro et al. [5] defined a local
GI as a ratio between the area of the surface contained in a spherical neighborhood
of each cortical point and the area of the great disc of the sphere. Schaer et al. [6]
proposed a ratio between the area of a region of interest, determined by intersection
of a sphere with the convex hull of the cortical surface, and that of the corresponding
patch on the surface as a local GI. Methods in the second category rely on the notion
of curvature, in particular mean curvature, which assigns positive values to points
on gyri and negative values to points on sulci [18]. Note that Gaussian curvature or
shape index have also been used [16]. Although informative, curvature maps are too
local to deliver a helpful insight into the surface folding [15], and smoothed version
have been proposed to overcome this limitation [15].

Fig. 1 Left: cortical surface modelled by a triangulated mesh. Right: mean curvature of the same
surface
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Although both categories of methods have been used in the neuroimaging lit-
erature, a number of strong limitations have been pointed out: difficulty to adapt to the
brain size variability across the population [4]; impossibility to distinguish between
deep folds and rapidly oscillating folds with equal surface areas which leads to high
GI values for deep areas although they are not necessary showing complex folding
(e.g. the insula or the central sulcus, see [5, 6]); difficulty to discriminate between
normal and aberrant cortical development [10]; inconsistent (if not contradictory)
results across methods [19]. If some of these limitations are intrinsic to the nature
of the methods, one general problem that generates inconsistency and sometimes
unwanted behavior is the lack of formal definition of what folding complexity is, and
what properties we should expect from a quantitative measure of this complexity.

In this chapter, we propose a set of properties that we think are essential for a
gyrification index and we demonstrate how spectral analysis of surfaces can be used
to address the problem and define two different gyrification indices that comply to
these properties. These GIs are computed directly on the cortical surface with neither
of them requiring a reference surface nor a smoothing procedure. They intrinsically
enable us to compute surface complexity at different spatial scales, and, in contrast
to surface area-based GIs, they are able to disentangle the effect of depth on folding
quantification. Finally, the issue of inconsistent analysis arising from the inter-subject
brain size variability is also addressed by introducing an adaptive neighborhood. In
the following, we present first a set of essential properties, then a local spectral anal-
ysis method based on the graph windowed Fourier transform of the mean curvature.
This analysis is used to define two gyrification indices together with their properties.
Themethod is then applied to some synthetic surfaces and real data in Sect. 4. Finally,
we discuss the results and the specificities of our method, followed by a conclusion.

2 Essential Properties

As stated in the previous section, we propose here a number of properties that are
essential to a gyrification index:

1. Clear basis: a GI should be defined based on a clear definition of the notion
of “surface complexity” in order to be able to interpret the results produced
with this GI.

2. Physicality: a GI should have an interpretable physical meaning. In other
words, it should be proven that the proposed GI quantifies the definition of
the surface complexity.

3. Locality: a GI should be defined locally.
4. Multiscale: in practice, it is an advantage to be able to quantify local gyri-

fication in a wide range of spatial scales from few millimeters to several
centimeters.
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5. Size adaptation: gyrification quantification should be consistent across
subjects. In particular it should take into account the large inter-subject
brain size variability when defining the individual local scale of observation
[7, 16].

6. Geometric invariance: a good GI should be invariant to translations,
rotations and scaling, since these transformations do not change surface
complexity.

In further sections we will demonstrate that the GIs that we define verify these
properties.

3 Method

Spectral methods for surface analysis rely mainly on eigenvalues and/or eigenfunc-
tions of an operator defined on the surface. For example, for a Riemannian manifold,
the eigenfunctions of the Laplace–Beltrami operator serve as bases for Fourier trans-
forms. The idea has been extended to triangularmeshesmodelling surfaces to analyze
their structural properties; see [20] for a comprehensive survey on this topic. Here,
we use such eigenfunctions to define a mesh windowed Fourier transform and pro-
vide an explicit access to the local frequency components of the mean curvature of
the cortical surface that in turn are used to define two gyrification indices.

3.1 Mesh Fourier Transform

For a compact Riemannian manifold S as a surface in R
3, one can consider the

set of square integrable functions defined on the surface: L 2(S ) = {u : S →
R| ∫S u2 < ∞}. The Laplace–Beltrami operator Δ, associated with the surface S ,
is defined as a generalization to Riemannian manifolds of the Laplacian operator
in Euclidean spaces. The eigenpair of this operator {(λi , χi ) ∈ R

+ × L 2(S ), i ≥ 0
is generated by solving the differential eigenvalue problem of Δ: Δχi = −λiχi in
which λi and χi are called the i th eigenvalue and eigenfunction of Δ [21]. Spectral
theory based on the Laplace–Beltrami spectrum can be used to obtain a new repre-
sentation of the space L 2(S ) in the spectral domain. In practice, the differential
eigenvalue problem of Δ is usually solved on a triangulated surface by numerical
methods. Formally, let G = {V, E} be a triangular mesh modelling the surface S
where V is the set of vertices, V = {P1, P2, ..., PN } and E is the set of edges.

By using the linear finite element method (FEM) [22], the above-mentioned dif-
ferential eigenvalue problem is discretized to the following algebraic generalized
eigenvalue problem

Aχ = λBχ, (1)
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where A and B are N × N sparse matrices with the following elements:

A(i, j) =
⎧
⎨

⎩

cot αi j+cot βi j

2 if (i, j) ∈ E,

−∑
k∈N (i)A(i, k) if i = j,

0 o.w.
(2)

and

B(i, j) =

⎧
⎪⎨

⎪⎩

|t |+|t ′|
2 if (i, j) ∈ E,∑
k∈N (i) |tk |

6 if i = j,
0 o.w.

(3)

where αi j and βi j are the angles opposite to the edge Pi Pj in two triangles t and
t ′ sharing this edge, |tk | indicates the area of the triangle tk and N (i) denotes the
index set of all vertices of the 1-ring neighbourhood of Pi . The matrix B is positive
definite and defines the so called B-inner product in RN :

∀ f, g ∈ R
N , 〈 f, g〉B = f t Bg. (4)

Solutions of the discrete eigenvalue problem (1) are nonnegative real eigenval-
ues 0 = λ1 < λ2 ≤ · · · ≤ λN and a set of eigenvectors {χ j , j = 1, 2, . . . , N } in RN

which are orthonormal with respect to B-inner product i.e. 〈χi , χ j 〉B = δi j where δi j
is Kronecker delta.

The bases of the Fourier transform on a segment or a rectangle are complex
exponential functionswhich are the eigenfunctions of theLaplace–Beltrami operator.
Inspired by this fact, the eigenvectors of the discretized Laplace–Beltrami operator
serve as Fourier atoms on the triangulation [23]. Given a function f defined on the
vertices of triangulation, Fourier transform coefficients of f are given by the set
{ f̂ (l) := 〈 f, χl〉B, l = 1, 2, . . . , N }. This set is a representation of function f in the
spectral domain and gives the frequency distribution of this function. In this setting,
the Parseval’s identity is

〈 f, g〉B = 〈 f̂ , ĝ〉, (5)

where 〈., .〉 denotes the Euclidean inner product. It yields ‖ f ‖B = ‖ f̂ ‖2 where ‖.‖B

is the norm induced by the B-inner product.

3.2 A Local Mesh Fourier Transform

ThemeshFourier transformdescribed in the previous section gives a global frequency
distribution of the function f . In other words, it is not able to provide information
about the frequencies of f in a local spatial neighborhood. In the continuous domain,
the windowed Fourier transform was introduced in order to find the local frequency
distribution of a function [24]. This transform provides local information about a
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function simultaneously in the spatial and frequency domains. Shuman et al. [25]
have recently extended this transform to the graph settings. The general idea of this
method is to localize a function defined on the vertices of a graph around a vertex
by a translated window function and then, compute the graph Fourier transform of
this localized function. In this paper, we extend the method to the mesh framework
by using a mesh Fourier transform that takes into account the mesh geometry. Since
a mesh is a graph of a specific type, one may argue that the graph spectral theory
tools can be applied on a mesh without any adaptation. In general, it is true but
unlike the graph Laplacian in which only the connectivity of vertices is considered,
the geometric (FEM) Laplacian takes into account geometric properties of the sur-
face. Equations (2) and (3) show how local geometry of neighboring triangles on the
mesh contributes to the definition of Laplacian operator. More discussions and com-
parisons between graph Laplacian and geometric Laplacian can be found in [20, 22,
23, 26–28].

3.2.1 Window Function

Let f : V → R be a function defined on the vertices of a triangulation (e.g. the mean
curvature). To localize this function around a specific vertex, we need a window
function with local support and a translation operator to move the window function
to that specific vertex. Following [25], we consider the window function

ĝ(l) = C exp(−τλl), (6)

defined in the spectral domain. In this formula, τ is a parameter which determines
the size of the window, λl is the lth Laplace–Beltrami eigenvalue and C is chosen
such that ‖ĝ‖2 = 1. The window size parameter τ sets a locality tradeoff between
the frequency and spatial domains [25, 29]. By increasing τ , we get a wider window
in the spatial domain and the function f is localized in a larger neighborhood around
each vertex, while getting a more local frequency distribution of the function in that
neighborhood. The spread of the window function in spatial and frequency domains
is measured by the area of the Heisenberg box ([30] Section 4.2), ([25], Section 6.6).
It is proved that the Gaussian function is the unique window that minimizes the area
of the Heisenberg box ([30] Theorem 2.5). Since λl is proportional to the square of
the spatial frequency [31, 32], i.e. λl ∝ ω2

l , the window function (6) corresponds to
a Gaussian function in the frequency domain ĝ(l) ∝ exp(−τω2

l ).

3.2.2 Translation Operator

The fact that there is no canonical origin and direction on a triangulated mesh makes
it difficult to define a translation operator on this mesh. Inspired by the properties of
the generalized Fourier transform in continuous domain and themechanismproposed
in [25] for graph settings, we propose to define a translation operator as follows.
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Let {ψl, l = 1, 2, . . .} be the basis of the generalized Fourier transform in con-
tinuous domain and assume that those functions are orthonormal with respect to an
inner product depending on a function φ i.e.

∫
ψlφψk = δkl . From the properties of

the generalized Fourier transform, translation in spatial domain causes modulation
in Fourier domain:

h(x) = f (x − x0) ⇔ ĥ(k) = ψk(x0)φ(x0) f̂ (k). (7)

In other words, the translation of function f to point x0 can be given by the inverse
Fourier transform of the modulated Fourier coefficients f̂ :

(Tx0 f )(x) = F−1{ψk(x0)φ(x0) f̂ (k)},

where F−1 denotes the inverse Fourier transform.
In mesh settings, the Fourier basis is the set of Laplace–Beltrami eigenvectors

which are orthonormal with respect to the matrix B. If g is a function defined on the
vertices of a mesh, inspired by Eq. (8), the translation of g to vertex Pi is defined as
follows :

(Ti g)(n) = √
NF−1{B(i, :)χl ĝ(l)}

= √
N

N∑

l=1

N∑

m=1

χl(n)

(

B(i,m)χl(m)ĝ(l)

)

,

where B(i, :) denotes the i th row of B. The translation operator Ti shifts the center
of the window function to vertex Pi . By multiplying the function f by the translated
window function Ti g, it is localized around the vertex Pi :

f̃i (n) = (Ti g)(n) f (n), n = 1, 2, . . . , N . (8)

3.2.3 Mesh Windowed Fourier Transform

The mesh windowed Fourier transform coefficients of a function f ∈ R
N are

defined as the modulation of the localized function f̃i by Fourier atoms {χk, k =
1, 2, . . . , N }:

S f (i, k) := 〈 f̃i , χk〉B, (9)

where i = 1, 2, . . . , N is the index of vertex and k is the index of frequency. This
gives us a frequency spectrum {|S f (i, k)|2, k = 1, 2, . . . , N } for every vertex Pi of
the mesh which can be seen as the frequency distribution of the function f in a local
neighborhood around the vertex Pi .

An example of such frequency spectrum is shown on Fig. 2 (top) for 4 different
vertices. On Fig. 2 (bottom right), a global representation of the frequency spectrum
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Fig. 2 Top: cortical surface with the local spectrum at 4 different points. Bottom right: color coded
spectrum at all vertices. Vertices are ordered along an antero-posterior axis as shown on bottom left

at all vertices is shown (vertices on the x-axis and frequency bands on the y-axis).
Vertices are ordered along a antero-posterior axis that is computed using the Fiedler
vector, i.e. the second eigenfunction of the Laplace–Beltrami operator, shown on
Fig. 2 (bottom left). As can be seen, the distribution of frequencies varies a lot across
vertices, showing a variable degree of folding complexity on the cortical surface.
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3.2.4 Adaptive Window Function

Let q be a real positive number. It is easily seen from Eqs. (1)–(3) that if the surface
area is scaled by a factor q, the eigenvalues are scaled by 1/q. In this case, due to
the definition of the window function (6), the relative spread of the window function
(i.e. the ratio between the area of the region covered by the window and the total
surface area) is affected by the size of the surface. In other words, given a fixed
window size τ for a surface and scaled versions of this surface, the window function
covers a relatively larger area on a smaller version of the surface and vice versa. This
leads to an inconsistent large and small scale spectral analysis for small and large
surfaces, respectively. To keep the relative spread of the window function constant
across surfaces, we introduce an adaptive window function in which the total surface
area is incorporated:

ĝ(l) = C exp(−τ |S |λl), (10)

where |S | denotes the total area of surface S . Note that with this definition, a
dimensionless parameter is introduced inside the exponential. As we will see in
Sect. 3.3, this adaptive window function also plays an important role to derive scale
invariant gyrification indices.

In Fig. 3, the spread of the adaptive window function (10) with 3 different window
size parameters, τ = 2e − 4, 1e − 3 and 5e − 3 is shown on a cortical surface around
a specific vertex (yellow point). As τ increases, the spread of window in spatial
domain increases as well. While the narrow window, τ = 2e − 4, covers a part of a
gyrus and/or sulcus, the medium window, τ = 1e − 3, covers several folds and the
wide window, τ = 5e − 3, covers a big portion of the cortical surface equivalent to
a lobe. Tuning the window size parameter τ changes the spatial scale of the analysis.

Fig. 3 Spread of the adaptive window function (Eq. (10)) with 3 different window sizes around
the yellow vertex on a cortical surface, after thresholding the values of the window functions at a
constant percentage of their maximal values. The red color highlights the window spread around
the vertex. a A narrow window, with τ = 2e − 4, covers about 1.5% of the surface. b A medium
window, with τ = 1e − 3, covers about 8% of the surface. c A wide window, with τ = 5e − 3,
covers about 36% of the surface
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3.3 Gyrification Indices

Asmentioned above, it is important to propose an explicit interpretation of the notion
of surface complexity, essential to define a gyrification index. We propose here two
interpretations that rely on surface bending properties : in a neighborhood around
each point of the cortical surface mesh, surface complexity is quantified by:

1. The magnitude of the surface bending
2. The spatial variations of the surface bending.

3.3.1 Definitions

A natural proxy for surface bending is the mean curvature function (that has actually
been used already to define gyrification indices, see the introduction of this chapter).
Let us therefore define the function f at each vertex of the cortical surface mesh as
the mean curvature of the surface at this vertex. By applying the mesh windowed
Fourier transform to this function, we get a frequency spectrum at each vertex Pi of
the mesh which consists of the frequency powers |S f (i, k)|2, k = 1, 2, . . . , N . The
summation of the frequency powers is called the total power (TP) of the frequency
spectrum [30]. We propose the first GI definition as follows:

Definition 1 Spectral Gyrification Index (sGI)

sGI(i,S ) =
N∑

k=1

|S f (i, k)|2 (11)

With i the index of the vertex.
Since fast spatial variations of a function are encoded in the high frequency band

of its frequency spectrum, by giving a larger weight to higher frequency powers
we can comply to the second interpretation of surface complexity presented above,
which leads to the definition of a second gyrification index :

Definition 2 Weighted Spectral Gyrification Index (wGI)

wGI(i,S ) =
N∑

k=1

(
λk

λ2

)2

|S f (i, k)|2 (12)

In this definition, weights are the normalized eigenvalues of the Laplace–Beltrami
operator, that contain information about the shape of the surface [33, 34]. The nor-
malization by the first nonzero eigenvalue λ2 removes the effect of the surface size
on the weighting [34].
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3.3.2 Verification of Essential Properties

To verify the 6 essential properties presented in Sect. 2, we need the following math-
ematical results

Proposition 1 For gyrification index sGI at vertex i of subject S we have

sGI(i,S ) = ‖ f̃i‖2B
Proof

N∑

k=1

|S f (i, k)|2 =
N∑

k=1

|〈̂̃fi , χ̂k〉|2 (13)

=
N∑

k=1

|̂̃fi (k)|2 (14)

= ‖ f̃i‖2B, (15)

where (13) and (15) are derived by Parseval’s identity (5) and (14) is based on the
fact that χ̂k = δk (δk is Kronecker delta).

Lemma 1 Let f ∈ R
N be a function defined on the vertices of a triangulation and

L ∈ R
N×N be the discrete Laplace–Beltrami operator i.e. L = B−1A. Then, the

Fourier coefficients of the function y = L f are ŷ(l) = λl f̂ (l), l = 1, 2, . . . , N.

Proof The Fourier coefficients of y are as

ŷ(l) := 〈L f, χl〉B = f t (B−1A)t Bχl

= f tλl Bχl (16)

= λl〈 f, χl〉B (17)

= λl f̂ (l),

where Eq. (16) is given by Eq. (1) and the symmetry of matrices A and B, and the
definition of B-inner product (4) gives (17).

Proposition 2 For gyrification index wGI at vertex Pi of subject S we have

wGI(i,S ) = 1

λ2
2

‖L f̃i‖2B

Proof Lemma 1 and the Parseval’s identity give the first and the second equality,
respectively:

N∑

k=1

(
λk

λ2

)2

S f (i, k)
2 = 1

λ2
2

‖ L̂ f̃ i ‖22 = 1

λ2
2

‖L f̃i‖2B .
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Proposition 3 The gyrification indices sGI and wGI are scale invariant.

Proof Assume that the surfaceS2 is the scaled version of the surfaceS1 by a factor
q2 i.e. |S2| = q2|S1|. Then the Laplace–Beltrami eigenvalues are scaled by 1/q2

while the eigenvectors and the mean curvature are scaled by 1/q.
Thanks to the adaptive window function (10), the translation operator and the

mesh windowed Fourier coefficients S f (i, k) remain unchanged because

S f (i, k)S2 = 〈 f̃i,S2 , χk,S2〉BS 2
= q2〈 1

q
f̃i,S1 ,

1

q
χk,S1〉BS 1

= S f (i, k)S1 .

It implies that sGI and wGI remain unchanged under scaling.

The two propositions make the two gyrification indices coherent with the two
interpretations of surface complexity:

1. Magnitude of the surface bending
Proposition 1 reflects the relationship between sGI and themagnitude of themean
curvature weighted by the window function around a vertex.

2. Spatial variations of the surface bending
By nature, the Laplace–Beltrami operator estimates the local variation of a func-
tion. Proposition 2 links wGI and the local variations of the localized mean cur-
vature (L f̃i )(m) at vertex i .

As for the properties defined in Sect. 2, for both sGI and wGI, we have provided
a clear interpretation of surface complexity (property 1, clear basis), and a formal
definition of a GI that is demonstrated to quantify such interpretation (property 2,
physicality). BothGIs are defined locally (property 3, locality). The adaptive window
function presented in Sect. 3.2.4 provides both a multiscale measure (property 4) and
an independence from the overall surface size (property 5, size adaptation). Finally,
the Laplace–Beltrami spectrum is invariant under isometric transformations, which
makes sGI andwGI isometry invariant. Proposition 3 guarantees the scale invariance.
All the requirements of property 6 (geometric invariance) are therefore satisfied.

4 Experiments and Results

In this section we demonstrate the efficiency of sGI and wGI using a set of experi-
ments both on synthetic data, in order to control explicitly the folding of the surface,
and real data. Our results will be compared to those produced using Toro’s GI [5],
as it is representative of the most popular class of GIs used in the neuroimaging
community.
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Fig. 4 a: synthetic wavy rectangle; b: middle line and two specific vertices; c: different GI plots
along the middle line: Toro’s GI (top), sGI (middle), wGI (bottom)

Table 1 Different GIs for
vertices Pm and Pn of the
synthetic surface depicted in
Fig. 4

Vertex sGI wGI Toro’s GI

Pm 8.56 ×102 2.81 ×1010 2.23

Pn 1.85 ×102 3.88 ×109 2.23

4.1 Synthetic Data

We generated a surface on a rectangular domain with controlled oscillations (wavy
rectangle). It is createdby the equation z = 2 sin(60πx2)/(60πx)where−0.7 ≤ x ≤
0.7 and 0 ≤ y ≤ 1 with a geodesic length equals to 4. This surface is triangulated
with N = 40, 000 equidistant vertices and is shown in Fig. 4a. The intersection of
this surface with the plane y = 0.5 is indicated on the surface by green points and is
plotted in Fig. 4b. As we move away from the center towards the left or right side of
this surface, it becomes more folded i.e. the surface becomes more bended and the
spatial frequency of the folds increases. The windowed Fourier transform is applied
on the mean curvature of this surface and the spectrogram computed. In Fig. 4b, we
focus on two vertices Pm and Pn: the surface is more folded around Pm than Pn , while
the fold around Pn is deeper. The values at Pm and Pn of sGI, wGI and the surface
area-based GI defined by Toro et al. [5] are given in Table1. While sGI and wGI
return appropriately higher values for Pm , Toro’s GI returns equal values for both
vertices, showing that the surface area-based GI is not able to discriminate between
deep folds and complex folds with the same area.

In Fig. 4c, we plotted the values of the three GIs (sGI, wGI and Toro’s GI) along
the green middle line shown in Fig. 4a,b. Again, it is visible here that sGI and wGI
provide increasing values when moving from the center towards the right and left
extremities, while Toro’s GI shows a peak in the center (due to the increased folding
depth) and flat curves towards the left and right extremities, as depth decreases and
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folding increases. This again illustrates the ability of sGI and wGI to differentiate
the effect of folding and depth, as opposed to surface-based methods such as Toro’s
GI.

4.2 Real Data

In this section, we applied our method to a database of real cortical surfaces. We
computed spatial maps of sGI, wGI, and Toro’s GI for each individual as well as
an average group map across all subjects. We present these maps to illustrate and
quantify the properties of each method, and we also study the ability of each method
to capture known neuroscientific facts such as the relationship between folding and
total brain volume.

4.2.1 Data and Preprocessing

We applied the method to 124 healthy adult subjects from the Open Access Series of
Imaging Studies (OASIS) database (http://www.oasis-brains.org). For each subject,
three or four T1 anatomical Magnetic Resonance Images (MRIs) had been acquired
at in-plane resolution of 1mm × 1mm, slice thickness = 1.25mm, TR = 9.7ms,
TE = 4ms, flip angle = 10u, TI = 20ms, TD = 200ms. Images of each subject
were motion corrected and averaged to create a single image per subject with a high
contrast-to-noise ratio. The resulting anatomical MR images were processed using
the BrainVISA neuroimaging software platform (http://brainvisa.info), providing a
segmentation of tissues, as well the cortical surface of each hemisphere modelled
with a triangular mesh of spherical topology with around 50,000 nodes, depending
on the subjects. The Hip-Hop algorithm [35] in BrainVISA was then applied to
compute interindividual correspondence between cortical surfaces, thus allowing
the averaging of any information across subjects.

4.2.2 Gyrification Maps

sGI and wGI maps of a subject in the database are shown in Fig. 5 for 3 different
window sizes, τ = 2e − 4, 1e − 3, 5e − 3, associated to spatially local, medium
and wide windows, respectively. On this figure, it is visible that the window size
parameter τ controls the scale of observations. At τ = 2e − 4, the spatial scale is
fine and high values are located mostly on the ridge of complex gyri, while low
values are located on the walls of regular sulci. As the window size increases, a more
regional effect becomes visible, with a very smooth and low variation map at value
τ = 5e − 3, which gives a coarse scale observation of the gyrification.

Group averagemaps of bothGIs at amedium scale (window size τ = 1e − 3) have
been computed by using the Hip-Hop [35] cortical surface inter-subject matching

http://www.oasis-brains.org
http://brainvisa.info
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Fig. 5 Gyrification maps, (left) sGI and (right) wGI, of the left hemisphere of an individual subject
from our database at 3 different scales. In the first row τ = 2e − 4, in the second row τ = 1e − 3
and in the third row τ = 5e − 3

method. Results are shown on the template cortical surface hiphop138 (http://meca-
brain.org/software/hiphop138/) in Fig. 6 for the left hemisphere. The average patterns
of sGI and wGI represented in this figure are similar to those observable for the
individual subject on Fig. 5, which shows that the spatial patterns of the proposed
GIs are reproducible across subjects. On top row, sGI shows higher values in the
prefrontal and occipital lobes, inferior parietal lobe, inferior temporal sulcus and the
medial area of the superior parietal cortex. On themiddle row,wGI shows high values
in the prefrontal lobe, medial part of the occipital lobe and the posterior cingulate
gyrus. We also computed the average GIs of the right hemispheres and by visual

http://meca-brain.org/software/hiphop138/
http://meca-brain.org/software/hiphop138/
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Fig. 6 Group average GI maps on the HipHop138 template surface. Top row: sGI (τ = 1e − 3);
middle row: wGI (τ = 1e − 3); bottom row: Toro’s GI (radius r = 20)

inspection, we observed no remarkable difference in gyrification patterns of the left
and right hemispheres in the medium scale. For comparison, the average map of
Toro’s GI across all subjects is also presented on bottom row, and shows high GI
values in deep folds like the central sulcus, the insula, the superior temporal sulcus,
the calcarine fissure, the parieto- occipital sulcus, and the intraparietal sulcus, again
showing the direct effects of depth on the gyrification estimation.

As it has been discussed in Sect. 3.3, sGI and wGI, by construction, measure
complementary properties of surface folding. This is shown in Fig. 7 where a cortical
surface is shown with its mean curvature. Two regions on this surface, R1 and R2,
have been chosen. R1 is a sharp spike located on the postcentral gyrus and R2 is a
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Fig. 7 Zoom on two cortical regions R1 and R2. Colormap encodes the mean curvature (from blue,
negative values, to red, positive values). sGI and wGI (τ = 2e − 4) values are shown for R1 and R2

Fig. 8 Group average of the
rGI ratio map displayed on
the HipHop138 template
surface (τ = 1e − 3)

very shallow fold located on the superior parietal lobe. The mean curvature of the
region R1 is very high while that of the region R2 varies a lot between positive and
negative values. The maps of sGI and wGI of R1 and R2 are shown in this figure
(τ = 2e − 4). As expected theoretically fromEqs. (12) and (14), sGI gives high value
to R1 while wGI assigns high value to R2.

Although not easy to interpret, the relationship between sGI and wGI is of interest
and contains information. For instance, by computing the ratio rGI of wGI and sGI
we get an estimate of the dominant frequency band:

rGI(i,S ) := wGI(i,S )/sGI(i,S ) (18)

The group-average rGImap is shown (τ = 1e − 3) in Fig. 8.As visible, the highest
values are located in the insula, a structure with low curvature, a low sGI, and a
mediumwGI (see Fig. 8). These high values are due to the fact that the insula contains
several small shallow folds on a rather small flat area, leading to high frequency
oscillations of the surface.
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4.2.3 Relationship Between Gyrification and Volume Analysis

Recent studies show that larger brains are more folded [5, 9, 36, 37]. To investigate
this phenomenon, the global sGI and wGI (defined as the integration across all
vertices of the local GIs) of each hemisphere are modelled by the following power
law:

G = kV α (19)

where G denotes the global gyrification index (sGI or wGI) of an hemisphere, V
is the hemispheric volume and k and α are coefficients to be determined. Since
gyrification indices sGI andwGI are scale invariant (property 6), the scaling exponent
coefficient α of the power law (20) should be 0 under an isometric scaling of brain
volume. We present in Fig. 9 the relationship between volume and GI with a fitted
power law in logarithmic scale. The positive exponent coefficient reveals a positive
allometric scaling of gyrification indices with volume and shows that we can capture
and quantify the fact that larger brains are intrinsicallymore folded than smaller ones.
Values of the exponent coefficient α is higher for wGI than for sGI (0.67 > 0.37 and
0.66 > 0.36 for left and right hemispheres, respectively) while the proportion of the
variance of sGI explained by the volume is higher than that of wGI (0.44 > 0.36 and
0.47 > 0.34 for left and right hemispheres, respectively). Results also suggest that in
the global hemispheric scale, the degree of folding of the left and right hemispheres
increase with volume symmetrically. This experiment demonstrates the ability of
our GIs to capture and quantify a biological phenomenon such as the allometric
relationship between folding and volume.

5 Discussion and Conclusion

In this chapter, we proposed two clear interpretations of the notion of cortical surface
complexity, and two definitions of gyrification indices that are consistent with these
interpretations, based on a local spectral analysis of the surface mean curvature.
The GIs were also shown to comply to essential properties defined beforehand.
The methods were applied to synthetic surfaces and to a database of 124 healthy
adult brains and results illustrate their very good performances. Both GIs describe a
consistent pattern of gyral complexity at the individual and group levels, in which
the prefrontal and occipital lobes appear to be the most gentrified areas, while deep
primary folds such as the central sulcus, the superior temporal sulcus, or the insula
have a lower gyrification. We also demonstrated that the GIs that we proposed are
able to capture known biological phenomenon such as the allometric relationship
between brain volume and folding complexity. An important feature of both GIs is
the fact that they disentangle the effects of depth and geometric oscillation. Surface
area-basedmethods such as Toro’s [5] or Schaer’s [6] estimate the largest gyrification
values within very deep folds such as the central sulcus, the insula, the intraparietal
sulcus, or the superior temporal sulcus (see Fig. 6, or ([5], Fig. 5a), or ([6], Fig. 4)),
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Fig. 9 Log-log relationship
between brain volume and
global gyrification index for
wGI (top) and sGI (bottom)

because of the large depth of these folds. This in particular was evidenced with
experiments on synthetic surfaces.

Another difference between our method and surface area-based methods is that
the lattermay be not localized enough for some applications. For example, in Fig. 4 of
[6], for a small spherical neighborhood, themost folded region of the cortex is around
the Sylvian Fissure and as the size of the neighborhood increases, the same pattern
propagates across the cortex. Therefore, it may fail to catch other locally highly
folded parts of the brain, thus affecting the reliability of findings. Our method, by
tuning the neighborhood size, provides results at different spatial scales, ranging
from a very local scale (in the order of a part of a sulcus/gyrus) to a more global
scale (in the order of a lobar cortex); see Figs. 3 and 5.

Despite the differences we highlighted between our method and previous GI def-
initions, we do think that these previous gyrification indices are still valid but should
be considered in the light of their specific interpretations of the notion of surface com-
plexity. Our experiments on synthetic surfaces show how different interpretations of
this notion may lead to different results. Accordingly, a message of this chapter is to
point out that one should pay attention to this notion and interpret results based on it,
and that spectral analysis can provide a well-defined formal measure of such notion.
Another work on this topic has been done by Awate et al. [19] discussing about
the different meanings of surface complexity and categorizing GIs based on their
responses to different situations like surface scaling and increased spatial frequency
of folds.
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Finally, an important matter that has been mostly neglected so far is the effect of
brain size on the relative neighborhood spread. Due to inter-subject size variability,
analysis of cerebral cortices with a fixed neighborhood size may cause inconsistency.
To address this issue, we introduced an adaptive neighborhood size that accounts for
total surface area variability. We demonstrated in this chapter how graph signal
processing tools can be adapted to triangular mesh representations of shapes in order
to extract and quantify relevant information on these shapes. In particular we hope to
have convinced that a local shape spectral analysis can be defined in order to advance
our understanding of a biological phenomenon such as the folding of the cerebral
cortex, and that the tools defined in this chapter can be used for the understanding
and characterization of shapes in general.
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Wavelet-Based Visual Data Exploration

Alcebiades Dal Col, Paola Valdivia, Fabiano Petronetto, Fabio Dias,
Claudio T. Silva and L. Gustavo Nonato

Abstract The wavelet coefficients associated with each node of the graph encode
information about the signal under analysis considering all nodes in its neighbor-
hood. However, understanding and extracting insight out of this wealth of informa-
tion can be a challenging task. In this chapter, we will briefly review how the wavelet
coefficients can be interpreted and explore which visual analytics resources can be
leveraged. The visual representation of wavelet coefficients is still an application-
dependent open problem in visualization, but recent developments introduced alter-
natives to specific cases, such as geo-referenced urban data and dynamic graphs.

1 Introduction

Graphs are often used to model real world problems, because they are flexible struc-
tures able to represent relationships between entities in an irregular domain [1, 2].
When a problem is successfully modelled into a graph, several well-defined methods
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can be leveraged [3]. When the graph represents a domain with a function associated
to its elements, graph signal processing (GSP) [4–6] can be used to analyze that
function and extract relevant information.

Our interest here lies in a sub-domain ofGSP, the graphwavelet transform (GWT),
in its different definitions [7–9]. When compared to the graph Fourier transform [10,
11], the GWT provides localization information, better support for non-periodic
signals, and it is more robust to noise.

The GWT is particularly useful to identify the location of patterns and outliers
of a function defined over the nodes [12] or edges [13] of a graph, because the
resulting coefficients express the signal differences in different scales. By examining
the coefficients of a node, one can gain insight about the behavior of the signal at and
around it. The coefficients can be used as feature vectors, allowing node clustering
and classification, revealing broader patterns in the data.

While the information is present on the coefficients, visually representing it in a
meaningful way is still an open problem. One possible solution is to represent only
small portions of the data at a time, as Mohan et al. [13] used to analyze unusual
traffic conditions, where magnitude plots and scaleograms are created to illustrate
the coefficients for linear sub-graphs representing streets of interest.

In the general case, visualizing the coefficients involves visual graph represen-
tation [14], itself a challenging problem, but considering a multi channel signal,
where each channel represents one of the scales of the transform.When urban data is
considered, this problem is somewhat simplified, since each node has a determined
geographic location the node positioning does not need to be computed. In both
cases, temporal information might also be present, which further complicates the
representation.

Moreover, the proper interpretation of the coefficients requires deep knowledge of
the GWT, and can be cognitively complex. Therefore, a more popular option is to not
display the coefficients, but to use them to create insights, relevant to the application,
that can bemore easily interpreted. For instance, Tremblay andBorgnat [15] consider
the GWT to perform community mining, the result is a node-link plot with clusters
of nodes with similar behavior. Valdivia et al. [16] use a graph model of Manhattan’s
streets to explore taxi pickups, where each node is classified through its coefficients
into different classes of behavior, allowing the quick identification of outliers. The
temporal behavior is depicted by a streamgraph of the quantities of each class.

While the relevant insights derived from the GWT are usually application-
dependent, we explore how to visually represent them in this chapter, aiming to
provide general guidelines and examples of some of the proposed solutions. In the
first section, we explain what information is present in the coefficients and the effects
of the topology in the results. The second section illustrates how that information
was leveraged in the literature for two real world problems: geo-referenced urban
data and interpersonal contact graphs.
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2 Meaning of Wavelet Coefficients

The main goal of this section is to familiarize the reader with the information present
in the wavelet coefficients. We start by reviewing the necessary theoretical aspects,
then we explain how to extract insight from the wavelet coefficients, and how they
vary in function of the topology of the graph. At the end, we explore the effects of
the choice of graph wavelets on the coefficients.

2.1 Notation and Conventions

In this chapter, graphs are denote by upper case letters (G, H , …), defined as a set
of n nodes V , a set of edges E , and, optionally, a function f that associates real
numbers to the nodes of the graph, which we often refer to as a signal. Whenever
necessary, we indicate to which graph each set belongs, such as the set VG of nodes
of the graph G. Specific nodes and edges are denoted by τ and e, respectively.
Eigenvectors and eigenvalues are denoted by u and λ, respectively, and are assumed
to be ordered such that λ0 ≤ λ1 ≤ · · · ≤ λn .We adopt eight coefficients for theGWT,
where coefficients from 1 to 3 are interpreted as representing low frequencies, 4 and
5 medium frequencies, and 6 to 8 to high frequencies. These coefficients are visually
represented as bar plots of their magnitudes.

2.2 Brief Review of Graph Wavelet Transform

Similarly to the traditional signal processing case, the wavelets and Fourier trans-
forms are defined as the decomposition of the signal into a combination of signals
of known frequencies. However, the concept of frequency is not as easily defined in
a graph domain. Indeed, while the frequencies form a continuous spectrum for the
traditional case, with a defined physical meaning, in graphs they correspond to the
finite set of eigenvalues of the Laplacian matrix.

While the graphFourier transformusually considers all these frequencies indepen-
dently, the GWT adopts scales, where several eigenvalues are aggregated, following
a function called kernel. Therefore, the wavelet coefficients for each scale are defined
by how much “energy” is present on the coefficients, weighted by the corresponding
kernel function.

Formally, let f be a signal defined on the nodes of G. A GWT is a function
W : {1, 2, . . . , M} × V → R defined as

W (m, τ ) =
n∑

�=1

ĝm(λ�) f̂ (λ�)u�(τ ), (1)
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Fig. 1 Example of kernels
defined over the eigenvalue
space of the graph Laplacian.
Each curve is the kernel for a
different scale, the crosses on
the horizontal axis represent
eigenvalues. Adapted
from [17] with permission

where f̂ is the graph Fourier transform of f and {ĝm |m = 1, 2, . . . , M} is a dic-
tionary of kernels. By varying m while keeping τ fixed, we obtain the M wavelet
coefficients associated with node τ . While there are different choices for the ker-
nels, they are usually formed by band-pass filters, as illustrated in Fig. 1. We further
explore these kernel functions on Sect. 2.5.

2.3 Decoding the Wavelet Coefficients

Since the scales of the GWT are related to the eigenvectors of the Laplacian matrix of
the graph, we adopt signals derived from those eigenvectors, leading to predictable
outputs. Additionally, to avoid the potentially complicated neighborhood interac-
tions, we start our exploration with a simple topology.

Example 2.3.1 (Path graph) A path graph is a graph whose nodes are adjacent to
exactly twoother nodes,with the exception of the two extremeones that are connected
to only one node. Consider a path graph with 64 nodes. We define a signal f0 on
the nodes of the graph as the combination of a low (u11) and a high (u61) frequency
eigenvectors, which are illustrated in Fig. 2.

f0(τ ) =
{
u11(τ ) if τ ∈ {τi | 01 ≤ i ≤ 30}
u61(τ ) if τ ∈ {τi | 31 ≤ i ≤ 64} . (2)

The signal f0 corresponds to u11 in the first thirty nodes and u61 in the others.
Figure3 illustrates the signal and the coefficients for two nodes, τ15 and τ45, away
from node τ30, where the transition occurs. The distribution of the magnitudes of the
coefficients is skewed towards low frequencies for τ15 and high frequencies for τ45,
correctly capturing the frequencies used to build each part of the signal. While the
scales are defined using the eigenvalues, the only values where the frequencies are
defined for the graph, they do not have a one to one relationship. Each scale extends
through several eigenvalues, and each eigenvalue is associated tomore than one scale,
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Fig. 2 Signals u11 and u61 defined on the path graph. Red dots represent the nodes, and the height of
the vertical blue lines corresponds to the amplitude of the signal. Adapted from [17]with permission

Fig. 3 The signal f0 defined over the path graph and the corresponding wavelet coefficients of
nodes τ15 and τ45. Adapted from [17] with permission

leading to these frequency distributions. An increase in the number of scales would
reduce this effect, but it would also reduce the robustness to noise. Nevertheless, the
ideal number of scales is an application dependent parameter, albeit not a critical
one. �

The path graph is essentially the same as a discretization of the real line; the graph
topology is fairly regular. This simple example demonstrates how the coefficients cor-
rectly identified low and high frequencies. In the next example, we consider a graph
with a more irregular topology, with the signals still derived from the eigenvectors.

Example 2.3.2 (Minnesota graph) Consider the Minnesota road graph from [18],
depicted in Fig. 4. We divide it into three different regions R1 (blue), R2 (red), and
R3 (green), as depicted in the left panel of Fig. 4. A signal with a different dominant
frequency band is assigned to each region:

f :=
3∑

j=1

f j
|| f j ||∞ (3)
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Fig. 4 Left: The Minnesota road graph divided into three different regions (cluster) and signal
defined on the Minnesota road graph (signal). The signal is formed so each region has a dominant
frequency band, highlighted in the eigenvalues panel. Right: The wavelet coefficients of representa-
tive nodes in the regions on the left (dot colors) and one node close to the boundary between regions
(pink). Adapted from [17] with permission

where

f j (τ ) =
⎧
⎨

⎩

∑

�∈I j
u�(τ ) if τ ∈ R j

0 otherwise
, (4)

for j = 1, 2, 3, and I j is the set of indexes of the eigenvalues in the intervals [a j , b j ].
The intervals for I1, I2, and I3 are given by [0.0, 0.08], [2.0, 2.5], and [5.0, 7.0],
respectively. The lengths of the intervals were chosen according to the distribution
of the eigenvalues as illustrated in the eigenvalue panel of Fig. 4. Region R1 (blue) has
a low frequency signal, since the signal is the sum of the eigenvectors corresponding
to eigenvalues in the low frequency region of the spectrum. Similarly, the signal
in R2 (red) and R3 (green) corresponds to the sum of the eigenvectors associated
with median and high frequency eigenvalues, respectively. The signal panel of Fig. 4
illustrates the signal f .

The node coefficients panel of Fig. 4 illustrates representative coefficients for each
region, computed using the spectrum-adapted graph wavelets [19]. As expected,
the nodes that are in the middle of their regions present clearly defined frequency
distributions corresponding to the assigned signal, albeit some differences in the
magnitudes. The nodes close to the boundary between regions tend to have a mixed
behavior, as demonstrated for the pink nodewhosewavelet coefficients are illustrated
in the node coefficients panel of Fig. 4. This node contains a mixture of low and
medium frequencies, influenced by the low frequency blue region and the medium
frequency red region. �
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Fig. 5 Graphs G1 and G2, with different topology but the same signal associated to the nodes

2.4 The Interplay Between Topology and Coefficients

In the last two examples, we illustrated how the coefficients identify the frequen-
cies present on the signal and how they can be intermixed in boundary zones. The
following example illustrates how the topology of the graph impacts the wavelet
coefficients, comparing the results of the GWT for the same signal defined over two
graphs with different sets of edges.

Example 2.4.1 We define a graph G1 with nine nodes, as illustrated on the left side
of Fig. 5. The signal is defined using the second eigenvector of the graph Laplacian
of G1. The color of the nodes encodes the signal. Since a low frequency eigenvector
was selected as signal, it varies smoothly across the graph topology. The coefficients
indicate the presence of smooth signal variation on and around all nodes and they
are quite similar for all nodes of G1 varying mainly in magnitude, as illustrated at
the top of the Fig. 6.

Now consider the graph G2, illustrated on the right side of Fig. 5, which contains
the same node set as G1, but a different set of edges. A different topology means a
different Laplacianmatrix, and therefore a different set of eigenvectors. However, we
maintain the same values associated with the nodes as the previous graph, the second
eigenvector of G1. Since the signal no longer corresponds to a low frequency eigen-
vector, we obtain a different distribution of frequencies, caused by abrupt changes
across neighboring nodes. This effectwas explored in the literature,with the objective
of obtaining an edge set that would result in smooth transitions [20].

These abrupt variations in the function across the graph are reflected in the coef-
ficients, as illustrated at the bottom of the Fig. 6, revealing the presence of signal
variation at and around the nodes of graph G2, with the exception of node 9. Indeed,
this node has the same neighbors in both graphs.

Furthermore, the signal is smoother on nodes τ1 and τ4, which is quite evident
in the wavelet coefficients (bottom of the Fig. 6), since nodes τ1 and τ4 have more
pronounced low frequency coefficients. Nodes τ7 and τ8 have a pattern of wavelet
coefficients similar to nodes τ1 and τ4, but with smaller magnitudes. The nodes with
largest coefficients on high frequencies are τ2 and τ3, indicating a sharper signal
variation on and around these nodes. �
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Fig. 6 Wavelet coefficients for all nodes of graphs G1 and G2 when the signal is defined as the
second graph Laplacian eigenvector of graph G1

2.5 The Effects of the Choice of Graph Wavelets
on the Coefficients

Whilewhatwas demonstrated in this chapter so far is relevant regardless of the dictio-
nary adopted for the GWT, its choice can lead to dramatically different results. Spec-
tral approaches are mostly represented by the spectral graph wavelets (SGW) [21],
whose kernels uniformly cover the range of the graph spectrum, and the spectrum-
adapted (tight) graph wavelets (SAGW) [19], whose kernels are adjusted to the
distribution of the eigenvalues.

Hammond et al. [21] adopt the set of kernels {ĥ(λ), ĝ(srλ), . . . , ĝ(s1λ)} as dic-
tionary for the SGW, where s1, s2, . . . , sr are logarithmically sampled between
s1 = 2/λn and sr = 40/λn ,

ĝ(x) =
⎧
⎨

⎩

x2 for 0 ≤ x < 1
−5 + 11x − 6x2 + x3 for 1 ≤ x ≤ 2

4x−2 for 2 < x
, and (5)

ĥ(x) = γ e
−

(
10x
0.3λn

)4

. (6)

The parameter γ is chosen such that ĥ(0) is equal to the maximum value of ĝ.
An example of this approach is illustrated on the left side of Fig. 8. Note that only
the largest eigenvalue is used to define these kernels, indirectly assuming that the
distribution of eigenvalues is somewhat uniform.

For the SAGW, Shuman et al. [19] propose a dictionary where the kernels are
composed from functions translated accordingly to each eigenvalue of the Laplacian
matrix. In more mathematical terms, there is a function ĝU and a constant a such
that the graph spectral filters ĝm can be written as

ĝm(λ) = ĝU (λ − ma),∀λ ∈ [0,λn], (7)
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Fig. 7 Comet graph and corresponding spectral distribution. The purple interval contains n − 1
graph Laplacian eigenvalues. The largest eigenvalue is isolated; the greater the degree of star graph,
the greater the distance. Adapted from [17] with permission

form = 1, 2, . . . , M . Therefore, in this approach, the larger the number of eigenval-
ues in a certain region of the spectral domain, the narrower the graph spectral filters
are in that region, as illustrated on the right side of Fig. 8.

We explore the differences between these approaches by analyzing another simple
graph in the following example.

Example 2.5.1 (Comet graph) A comet graph is a graph formed by combining a
path graph and a star graph, the latter centered in one of the extremities of the path
graph. Figure7 illustrates a comet graph with 15 nodes whose star extremity contains
10 nodes. The graph Laplacian eigenvalues of a comet graph present a characteristic
distribution, where the difference between the two largest eigenvalues is much larger
than the difference between any other sequential eigenvalues, as illustrated in the
bottom right of Fig. 7. Although the second largest eigenvalue is distant from the
largest eigenvalue, it corresponds to the second highest frequency in the spectrum of
the comet graph.

We consider the SGW [21] and SAGW [19], both defined in the spectrum of the
comet graph depicted in Fig. 7. The kernels derived from each dictionary are quite

Fig. 8 Kernels forming the SGW (left) and SAGW (right) dictionaries for a comet graph with 64
nodes. The kernels of the SAGW dictionary adapt to regions with larger spectral density. The ×
marks on the horizontal axes represent the spectrum of the comet graph. Adapted from [17] with
permission
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Fig. 9 Second largest graph Laplacian eigenvector defined on a comet graph with 64 nodes. The
color associated with the graph nodes encodes the signal. The arrows indicate the corresponding
graph Fourier transform and wavelet coefficients of the specified node. The graph Fourier transform
reveals the presence of high global frequency. Adapted from [17] with permission

different, as illustrated by Fig. 8. As expected, the SGW evenly covers the spectral
domain, while the SAGW adapts itself to the spectral distribution.

Consider now a comet graph with 64 nodes whose star extremity containing 30
nodes. The signal is defined as the second largest graph Laplacian eigenvector, as
illustrated by the signal panel in Fig. 9. Figure9 depicts the wavelet coefficients of
the highlighted node using both the SGW and SAGW dictionaries.

While both coefficients correctly capture the composition of the signal according
to their dictionaries, the interpretation can be easier for the SAGW in this extreme
case. Since there is a significant gap between the two largest eigenvalues, the SGW
coefficients from six to eight will never achieve larger magnitudes. Both cases corre-
spond to one of the highest frequencies possible in this graph, but one would need to
know the distribution of the eigenvalues beforehand to arrive at this conclusion using
the SGW. However, the SAGW coefficients do not maintain the relative proportion
between the eigenvalues; the two significantly different largest eigenvalues are rep-
resented closely in the coefficients. Therefore, the choice between SGW and SAGW
is application-dependent, considering how the coefficients are further processed. �

3 Wavelet-Based Visual Data Exploration

The main goal of this section is to demonstrate how the information present in the
wavelet coefficients can be used to analyze real data. We use methods from the
literature, considering geo-referenced urban data [16, 17] and dynamic graphs [12].
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Fig. 10 Time-varying data
modeled by the Cartesian
product of two graphs:
spatial G and temporal H .
Adapted from [17] with
permission

3.1 Analyzing Time Series Defined on Nodes of a Graph

The discussion in Sect. 2 assumes a scalar signal defined on the nodes of a graph.
However, in many applications data varies with time, which is often represented as
a time series associated with each node of the graph. One of the possible options to
adapt it to the framework of GWT is through a Cartesian product of graphs.

Let G = (VG, EG) and H = (VH , EH ) be two graphs. To clarify the notation, we
represent the nodes of G as τi ∈ VG and the nodes of H as ιi ∈ VH . The Cartesian
product of G by H is a graph G × H with node set VG × VH = {τi ι j | τi ∈ VG, ι j ∈
VH } and edges connecting nodes τi ι j and τk ιl if and only if τi = τk and ι j is adjacent
to ιl in H , or ι j = ιl and τi is adjacent to τk in G. If H is a path graph, the Cartesian
product graph G × H corresponds to “stacked” copies of G with edges connecting
corresponding nodes in adjacent copies of G (Fig. 10). Each copy of G is interpreted
as a time slice of the temporal data, enabling the use of the graph wavelet transform
on G × H to analyze time-varying data. In this sense, we will refer to the edges that
are derived from G as spatial, because that graph encodes the relationship between
the nodes on a given instant, and the edges derived from H as temporal, because
they connect the same entity across time.

In the Cartesian product graph, the wavelet coefficients capture the spatio-
temporal behavior of the signal, making their interpretation more intricate than in
the static case, because they indicate the behavior of the signal around each node,
but cannot distinguish between spatial or temporal variation.

Example 3.1.1 Consider the graphsG and H depicted in Fig. 11, representing spatial
and temporal information, respectively. Since H is a path graph with nineteen nodes,
the graph G × H can be used to represent nineteen time slices, with a scalar value
associated to each node. We craft four different signals on G × H , denoted as fi ,
i = 1, 2, 3, 4, defined using the nodes τa ∈ G and ι10 ∈ H as highlighted in Fig. 11.

The signal f1 is defined as 1 on node τaι10 of G × H and zero elsewhere. The
signal f2 is zero at all time slices, with the exception of the time slice 10 where
the values smoothly decrease from the peak centered at τaι10; this signal can be
interpreted as a smooth spatial event that occurs at only one time interval. Similarly,



470 A. Dal Col et al.

Fig. 11 Graphs: spatial G
and temporal H . Adapted
from [17] with permission

the signal f3 is defined as zero on all nodes, with the exception of the nodes τaι j ,
j = 1, . . . , 19, where the values smoothly decrease around the peak at τaι10; this
can be interpreted as an event that is concentrated spatially, increasing and then
decreasing in magnitude over time. Finally, the signal f4 has a peak at τaι10, with
the values smoothly decreasing around it; it can be interpreted as a spatially defined
event that grows and decreases in magnitude over time.

Figure12 depicts how the values are distributed in the Cartesian graph, for all
four defined functions, along with the resulting coefficients associated with the node
τaι10. In the bar chart corresponding to signal f1, there is a concentration of large
coefficients in high frequencies, indicating that f1 has a high frequency on τaι10; a
significant signal change around this node. The coefficients obtained for signal f2 are
similar, but with increased presence of lower frequency coefficients, also indicating
a change around this node, but not quite as strong. Remembering that the wavelets
are locally defined and that the only difference between f1 and f2 corresponds to
the “temporal” neighbors of τaι10, these lower frequencies are a result of the smooth
temporal transitions around the node.

The coefficients from f3 identified a considerably lower frequency distribution,
indicating smoother changes. While this node still contains two different temporal
neighbors, its spatial neighborhood has similar values in all its seven nodes. Indeed,
when we remove some of the spatial edges, as illustrated in Fig. 13, we obtain lower
frequencies. When the transition is smooth for all of these nodes, as in f4, we obtain
a dominantly low frequency distribution. �

To further illustrate the influence of the temporal and spatial edges, we explore
real world data in the next example.
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Fig. 12 Wavelet coefficients of node τa ι10 for signals fi , i = 1, 2, 3, 4. The graphwavelet transform
was produced using the SAGW dictionary. Adapted from [17] with permission

Fig. 13 Wavelet coefficients of node τa ι10 for signal f3 after edges removal. The graph wavelet
transform was produced using the SAGW dictionary. Adapted from [17] with permission
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Example 3.1.2 (Manhattan taxi pick-ups) This example considers real data from
NewYorkCity Taxi andLimousineCommission, containing taxi pick-ups forAugust
12, 2013. The underlying graph is defined using the street network, with nodes and
edges representing corners and streets, respectively. We assign to each node the
number of taxi pick-ups that occurred near the corresponding corner in a specific
time interval. For this simple example we consider three time intervals, half hour
each, from 07:00–08:30.

To allow for a direct comparison of the effect of the temporal edges, we computed
the GWT considering just the middle time slice separately, without any temporal
edges, and considering all three time slices. For simplicity, we refer to these coeffi-
cients as spatial and spatio-temporal.

The Fig. 14 depicts downtownManhattan graph with corners colored by the num-
ber of taxi pick-ups in August 12, 2013, 07:30–08:00. Zoom-in views in Fig. 14
show the number of taxi pick-ups at and around the corner of 8th Avenue with 41st
Street, the front of the Port Authority Bus Terminal (PABT), in the consecutive
time slices 07:00–07:30, 07:30–08:00, and 08:00–08:30. The corresponding spa-
tial and spatio-temporal coefficients are illustrated in Fig. 15, considering the time
slice representing the interval 07:30–08:00. The spatial coefficients indicate a higher
distribution of frequencies than the spatio-temporal coefficients, because the signal
under study is highly concentrated spatially, with significant temporal consistency.
In other words, there are always more people entering a taxi in front of the PABT,
regardless of the hour, than on the next corner of 41st Street. The temporal edges
are used to represent this temporal continuity, leading to coefficients that correctly
identify that, while there is change in the signal around those nodes, there is also
temporal continuity. �

While the Cartesian product graph is suitable to represent time-varying informa-
tion, including methods for a faster computation of the eigenvalues and eigenvec-
tors [22], it cannot be used when the relationships between the represented entities
also change over time. This case can be represented by changing the topology of the
graph, leading to a dynamic graph.

3.2 Analyzing Dynamic Graphs

Dynamic graphs are similar to theCartesian product graph, in the sense that subgraphs
are used to represent specific temporal intervals, but it does not include the constraint
of these subgraphs having the same topology. Nodes representing the same entity in
subsequent time slices are still connected. This concept is illustrated in Fig. 16.

Albeit simple, the difference between Cartesian product graphs and dynamic
graphs means that the faster methods for the computation of the eigendecompo-
sition of the Laplacian cannot be used. Approximation methods are often employed
to allow the use of the GWT on large dynamic graphs in reasonable time [8, 12, 21].

In the node-link diagrams presented in this subsection, the nodes are posi-
tioned using the Fruchterman-Reingold force-directed algorithm [23] on a graph that
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Fig. 14 Number of taxi pick-ups in downtown Manhattan on August 12, 2013, 07:30–08:00 (top)
and at the front of the PABT in the consecutive time slices 07:00–07:30, 07:30–08:00, and 08:00–
08:30 (bottom). Adapted from [17] with permission

Fig. 15 Spatial and spatio-temporal wavelet coefficients (SAGW) of node in front of the PABT
corresponding to August 12, 2013, 07:30–08:00. Adapted from [17] with permission
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Fig. 16 Dynamic graph
model. Adapted from [12]
with permission

contains one node for each entity represented in the dynamic graph; edges are placed
between all connected entities in the dynamic graph, regardless of the temporal slice.
This can be interpreted as a “compressed” version of the dynamic graph. This ensures
positioning consistency across temporal slices, reducing the cognitive load on the
users.

Example 3.2.1 We generated a dynamic graph containing 250 entities and 13 time
slices [12]. The signal associated with a node is the number of edges incident to the
node in its time slice. There are two large spatial events in the graph, depicted in
the leftmost panel of Fig. 17, corresponding to an activity peak (many edges) at time
slice 4, which decrease in size until time slice 6. At time slice 7, several small spatial
events (central panel in Fig. 17) appear, with some of them disappearing on the next
time slices. At time slice 10, another two large spatial events (rightmost panel in
Fig. 17) are created reaching a peak at time slice 11 and decreasing at time slice 12.

Figure17 depicts the nodes of the synthetic dynamic graph colored according
to the distribution of wavelet coefficients. Isolated nodes are assigned to a specific
class (white). The other nodes are separated into four different classes based on their
frequency distribution. Dark and light blue nodes indicate smooth signal variation as
the low frequency coefficients are predominant and, consequently, a concentration
of nodes in these classes suggests large and/or slow events, which is the case for
time slices 4 and 10. Orange and red nodes indicate that the signal varies abruptly,
revealing small/quick events; in time slice 7 there are several small events where
the wavelet coefficients accurately classify the center nodes as high frequency. The
yellow class includes the nodes which frequency distribution were balanced, not
dominated by high nor low frequencies, usually including a mix of both.

This approach leads to a straightforward interpretation, considerably easier than
interpreting the coefficients directly, where blue indicates smooth variations and red
indicates abrupt variations, considering both spatial and temporal neighborhood. By
leveraging this classification, we can summarize the topological evolution of the
network, using a line plot, as illustrated in Fig. 18. In this plot, the horizontal axis
corresponds to the time slices; the vertical axis corresponds to the sum of the function
over the graph, which indicates the level of activity for this example; and the color
of the marker indicates the class with proportionally more presence. This proportion
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Fig. 17 Node classification for the synthetic dynamic graph. Adapted from [12] with permission

Fig. 18 Time series as a resource to bring up the information inferred by the walevet coefficients
when analyzing dynamic graphs. Adapted from [12] with permission

is defined based on the maximum presence of each class at any given time, not the
absolute number of nodes. For instance, considering Fig. 18, time slices 4, 7, and 10
have similar level of activities, as indicated by the vertical position, but times 4 and 10
contain large/slow events, while time 7 contains small/quick events, as corroborated
by the node-link plots in Fig. 17. �

Example 3.2.2 (High school dynamic graph) The high school dataset contains face-
to-face contact information between 180 students from a school in France, during
nine days in November of 2012 [24]. Each student belongs to one of five different
classes. The original data provides contact information between students in intervals
of 20 s, which we aggregated further by creating a time slice every 6min, for a total
of 2,027 time slices. The resulting dynamic graph has 14,788 edges, not counting the
temporal edges. The signal associated with each node is the number of face-to-face
contacts made by the corresponding child in the corresponding time slice and the
weight of each edge corresponds to the number of face-to-face contacts between the
two involved people.
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Fig. 19 Time series like representation for the high school dataset. It shows the whole dynamic
graph at the top and only the first Monday (zoomed-in view) at the bottom. Adapted from [12] with
permission

Figure19 depicts a line plot with markers as proposed in the previous example.
This visualization reveals the predominance of light blue nodes, that is, in most of the
time slices the signal faces smooth variation, meaning that children interact primarily
in balanced contact groups. In some time slices they are classified as orange, directing
our attention to a different pattern. The 9:24 time slice on the first Monday is the first
classified as orange on this dataset, which is illustrated in Fig. 20. By inspecting the
9:24 time slice, it is clear that this time slice mostly contains pairs of contacts, with

Fig. 20 Signal and node classification for the first Monday at 9:24, 10:24, and 14:30 time slices.
Adapted from [12] with permission
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low signal (number of contacts). The nodes are mostly light blue. However, three
connected nodes on the leftmost student class present a higher signal with the signal
on the center one considerably outpacing the signal on other two nodes, leading to a
orange classification, which leads to the classification of this time slice as orange as
well, since this is one of the highest concentration of orange nodes at a given time.

The 14:30 time slice on the first Monday contains a considerable amount of
activity, indicated by the height in the time series, and the time slice is classified
as light blue. The combination of increased height and low frequency classification
means it contains a large event, without signal peaks. Smaller events or peaks would
lead to higher frequencies. Indeed, as illustrated in the rightmost column of Fig. 20,
the signal varies smoothly across a large event. �

4 Conclusion

We have shown in this chapter how the graph wavelet transform can be employed to
analyze real data. The first section leads the reader through examples that allow to
acquire knowledge and some intuition about the information present in the wavelet
coefficients. The wavelet coefficients reflect the variation of the signal under analysis
across the topologyof thegraph, topologywhich canbequite complicated sometimes.
The second section makes use of this information to explore patterns difficult to be
perceivedwithout the use of graphwavelets. For instance, the spatial relation between
different time series defined on nodes of a graph; the contact pattern of a node and
its neighbors in a dynamic graph.

The wavelet-based visual data exploration has room for muchmore developments
and applications, since from our viewpoint the graph wavelet transform has a huge
potential still unexplored.
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Graph-Based Wavelet Multiresolution
Modeling of Multivariate Terrain Data

Teodor Cioacă, Bogdan Dumitrescu and Mihai-Sorin Stupariu

Abstract Terrain data pose modeling challenges due to their high inherent
redundancy and difficulty of identifying features at different levels of detail. We pro-
pose a multiresolution analysis framework based on a graph-based wavelet construc-
tion. Our approach produces a sequence of intermediate resolution approximations
of the terrain model. The details pertaining to each resolution reveal scale-specific
features. Using a guiding heuristic, the proposed wavelet construction also conserves
salient features. Furthermore, the proposed framework allows both geometric and
attribute vertex information and can be used for modeling tasks sharing the same
characteristics and constraints with terrain modeling. In particular, our graph-based
wavelet framework is an option for multiresolution filtering and feature classification
or clustering.

1 Introduction

The particular problematics of terrain modeling span a broad range of quantitative
and qualitative analysis tasks. Such tasks include, but are not limited to geometric
representation, geomorphological feature identification and analysis, vegetation cov-
erage analysis and extraction. The continuous advancements of 3D sensor scanning
technologies and the increasing popularity of civil aerial drones further facilitate
gathering high density point cloud terrain representations.

In this chapter, we describe an approach for multiresolution analysis of
multivariate terrain data, which is also suitable for other data organized in
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similar structures. In general, the framework we propose can be easily adapted for
performing multiresolution analysis on triangulated point clouds, meshes or graphs.
Any of these data structures may describe an irregular domain where a multivari-
ate signal is discretized. The samples are then concentrated in the vertices of these
structures.

Given these aspects, the approach we will further describe capitalizes on recently
developed methods for graph signal processing. More specifically, we explore a
wavelet-based graph multiresolution construction that has a reduced approximation
error and is computationally efficient. The graph wavelet interpretation facilitates
tasks involving vertex frequency analysis or multiresolution filtering and clustering.

1.1 Terrain Data Representation

Typically, the geometric information describing terrain fragments is encoded in a
digital elevation model (DEM) [36]. A triangulated irregular network (TIN) is a
further specialization of a DEM where both point and primitive (triangle) sampling
are allowed to be irregular, reducing the highly redundant information in flat regions.
De Floriani and Magillo [13] provide the following definition:

A terrain can be mathematically modeled as a function z = f (x, y) mapping a point (x, y)
in a domain D in the plane to its elevation value f (x, y). In practice, the value of function
f is known on a finite set S of points within D. A DEM provides an estimated value for
function f at any point (x, y) of the domain, based on the values at the points of S. A DEM
consists of a subdivision of the domain into cells and of a piece-wise interpolating function
defined on such cells. A TIN is a DEM in which the domain subdivision is a triangular mesh,
i.e., a set T of triangles such that:

1. the set of vertices of T is S

2. the interiors of any two triangles of T do not intersect

3. if the boundaries of two triangles intersect, then the intersection is either a common
vertex, or a common edge.

We can easily conclude that the TIN definition is practically identical to that of a
triangular mesh as generally understood in the field of Computer Graphics.

1.2 Challenges of Terrain Modeling From Raw Point Data

LiDAR data are usually dense and the information richness can pose a problem on
its own since there is no intrinsic manner of reducing geometric or other attribute
redundancy. However, model simplification is a well studied problem for which
established solutions have been proposed in the field of Computer Graphics. Among
the computationally efficient approaches, we mention incremental thinning, where
geometric primitives are simply removed by following a local quality-based simpli-
fication criterion. For TIN models, Demaret et al. [14] have proposed an efficient
coarsification algorithm via incremental point removal.
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Suarez and Plaza [34] have introduced a coarsening algorithm applicable to
right-triangulated irregular networks. Their method is especially efficient given that
both the underlying geometry and triangle primitive connectivity is easier to control
than in the case of general irregular networks as each vertex has a maximum of 8
directly connected neighbors. The actual coarsening is then achieved through edge
midpoint split operations, which are also invertible.

Another problem posed by raw point clouds is that there is no immediate and
accurate information concerning the ground or vegetation class of constituent points.
While ground return information can help define a subset of soil-level points, the over-
all point cloud usually contains more ground-level information, as well as potentially
unclassified data points. Evans and Hudak [15] have designed amultiscale curvature
classification algorithm in order to filter and classify points present in raw LiDAR
collections.

Silva et al. [2] examine four different algorithms for classifying ground from
hovering points in point cloud terrain data sets. Among the algorithms discussed
in their work, the progressive triangulated irregular network, implemented in the
LAStools package [20], was proven to possess good performance characteristics
(low RMSE and increased ground classification accuracy with respect to the ground
truth).

1.3 Existing Solutions

Given that terrainmodeling tasks pose similar problems to those encountered in point
cloud, mesh or graph data processing, we will briefly review some of the milestone
achievements from these areas.

Incremental Simplification of Point Clouds and Meshes

Historically, solutions to feature redundancy have been addressed separately from
multiresolution analysis. The most common solution to this problem is incremental
simplification. Modeling of terrain data is also possible with either point cloud or
mesh simplification methods.

For point clouds, notable contributions are given in the work of Pauly et al. [29]
where three simplification method categories are detailed: clustering, iterative sim-
plification and particle simulation.

In the case of triangular or polygonal meshes, the additional information also
facilitates the creation of reversible, continuous level-of-detail representations and
mesh morphing. Schroeder et al. [32] were among the first authors to discuss trian-
gular mesh simplification in a step-by-step manner known as decimation. Almost
all decimation-based methods require the existence of a decimation criterion and
can be summarized in two steps that are repeated until the target density is reached:
(i) evaluate decimation criterion (usually a cost function estimating the impact of
removing a set of primitives) and (ii) remove a primitive and re-triangulate the local
geometry.



482 T. Cioacă et al.

To address changes in the mesh connectivity resulting from primitive removal,
Ronfard et al. [31] proposed a reversible operation called edge collapse. One of the
most effective heuristic criteria for guiding these operations is the quadric error
metric (QEM) formulation of Garland and Heckbert [17].

Wavelet Multiresolution Methods

Successful initiatives for adapting established Signal Processing methods for point
cloud, mesh and graph analysis have been recorded.

To briefly summarizes notable adaptations of wavelet-like transforms on point
clouds we mention the following works. Chen et al. [5] have introduced an SVD-
based construction of so-called geometric wavelet point cloud analysis. Earlier, Choi
et al. [6] applied a straightforward implementation of Swelden’s lifting scheme [35]
for denoising point sampled manifolds of low intrinsic dimension.

Among the first wavelet mesh multiresolution analysis methods is that of Louns-
bery [26]. Using a subdivision operator on triangular meshes, Lounsbery intro-
duced an analog of the refinement equation for functions defined on mesh structures
instead on the real line. With the introduction of Swelden’s lifting scheme [35], other
approaches using this technique were developed. One example is the critically sam-
pled design for irregular meshes described by Bertram [3]. His method is similar
to that of Guskov et al. [18], where a geometry-based subdivision operator defines
wavelet synthesis.

After meshwavelet constructions, algorithms specifically design for more generic
graph data were also introduced. We mention the method of Coifman et al. [12],
which uses a diffusion operator to build a wavelet transform in the graph frequency
domain.Hammond et al. [19] further proposed amethod that, instead of diagonalizing
the graph Laplacian matrix, a costly process for large graphs, uses approximations
based on Chebyshev polynomials. In the graph spatial domain we mention Jansen’s
approach [21, 22], also adopted and extended byWagner et al. [37], and byMartinez
and Ortega [27].

Wavelet Multiresolution for Terrain Modeling

Among the first solutions specifically designed with terrain modeling in mind is the
wavelet triangular irregular networks framework of Wu and Amaratunga [24]. This
method is essentially a lifting scheme adaptation using an inverse subdivision pre-
diction filter and resampling in the xy plane. The importance of wavelet coefficients,
byproducts of multiresolution analysis, was emphasized by Beyer [4]. The author
demonstrated that both terrain gradient and curvature information can be derived
from these wavelet detail vectors. Kalbermatten’s et al. [25] work further explores
applications of wavelet transform in identifying multiscale geomorphological and
geological features.
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2 Terrain Modeling Using Graph-Based Wavelet
Multiresolution Analysis

We now address the question of how a wavelet multiresolution framework can be
defined for terrain models. From a signal processing perspective, DEMs are similar
to images, which are simply two-dimensional signals defined over regular domains.
When modeling data from LiDAR sources, TIN structures are better options because
they allow for adaptive sampling in areas with high geometric redundancy. Building
wavelets on these irregular domains would enable the analysis of terrain characteris-
tics at different levels of resolution, which, in turn, can be perceived as information
pertaining to a certain frequency band.

Our goal is threefold. First, we aim to expand previous methods and achieve mul-
tiresolution representation of multivariate terrain sets (having both geometric and
attribute coordinates for each point). Second, by adopting a spatial domain graph
lifting scheme construction, we maintain a balance between computational com-
plexity and the range of potential practical applications of the method. Third, we
wish to explore the semantic interpretation of detail vectors, leading to a correlation
between vertices and levels of resolution. This interpretationwould allow ourmethod
to be applicable to vertex frequency analysis tasks.

Both the construction and results presented in the following sections of this chapter
have been partially described in our previous works [7, 9].

2.1 Classic Wavelet Analysis and Synthesis

Before detailing our wavelet multiresolution design for multivariate signals, we
review the fundamental concepts in the one-dimensional case.

Problem Formulation

In general, wavelets are the building blocks of hierarchical function space approxi-
mations, i.e. L2(R) � . . . � Vn � Vn−1 � . . . � V1 � V0 � . . . � {0}, where Vj is a
function space approximation at level j . We are interested in examining the connec-
tions between two consecutive approximations, Vj+1 and Vj . LetΦ j = [

. . . φ j,k . . .
]

be the row vector of basis functions that generate Vj . Then a function f j+1 ∈ Vj+1

cannot be represented by using only the basis functions in Vj , but it can be expressed
as a combination of the basis functions of the Vj+1 space, that is

f j+1 = Φ j+1s j+1, (1)

where s j+1 is an infinite column vector of scaling coefficients. The complementary
basis or wavelet functions, ψ j,k , that generate the orthogonal subspace, correspond
to the lost details Wj . Thus, the direct sum decomposition of the higher-resolution
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approximation, Vj+1 = Vj ⊕ Wj , can be expressed in terms of basis and wavelet
functions as

f j+1 = Φ j+1s j+1 = Φ j s j + Ψ jw j , (2)

whereΨ j = [
. . . ψ j,k . . .

]
andw j is the infinite column vector ofwavelet coefficients.

Both the scaling and wavelet coefficients can be written in terms of internal prod-
ucts between f j+1 and the dual basis functions of their corresponding spaces, i.e.:

s j+1,k =
〈
φ̃ j+1,k, f j+1

〉
, (3)

s j,k =
〈
φ̃ j,k, f j+1

〉
, (4)

w j,k =
〈
ψ̃ j,k, f j+1

〉
, (5)

where φ̃ j,k and ψ̃ j,k denote the k-th scaling and wavelet basis functions at level j .

Second Generation Wavelets

Let x = (xk)k∈Z be an infinite sampled signal.
The first operation involved in the lifting procedure is called a split or parity

assignment. To this effect, the signal is divided into two sets, an even set, corre-
sponding to xe = (x2k)k∈Z and an odd set, corresponding to xo = (x2k+1)k∈Z.

The second operation of the lifting procedure is the prediction step. This implies
approximating the odd samples using the even ones by applying a prediction operator,
P, i.e.

d = xo − Pxe, (6)

obtaining the signal d of approximation errors or detail coefficients.
Usually, the even and odd sample subsets are highly correlated, and, as a direct

consequence, it becomes more efficient to store the signal using the information in
d as it has lower entropy than xo. The prediction phase is equivalent to mapping
(xe, xo) → (xe,d). Since xe is essentially obtained through a naïve downsampling
of the original signal, aliasing occurs and must be appropriately dealt with. This is
performed through a third operation, the update or smoothing phase. Algebraically,
this operation is implemented as

s = xe + Ud, (7)

where s is the smoothed downsampled signal and U is the update operator.
Assembling the three stages of the lifting scheme into a sequence, we obtain the

flow diagram shown in Fig. 1. The flow allows cascading the resulting filter bank by
feeding the even output from one lifting pass to the input of another one, effectively
creating a series of coarser approximations of the original signal.

Another immediate property of the lifting design is the straightforward invertibil-
ity, i.e.
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Fig. 1 The lifting scheme diagram: Splitting (Eq. (10)) is followed by prediction via Eq. (11) and
then by the updating of the low resolution output via Eq. (12)

xe = s − Ud (8)

xo = d + Pxe. (9)

Returning to the function space context, we review the mechanism behind the
lifting scheme. The first operation, the split, when applied to the set of scaling coef-
ficients at level j + 1 produces a vector of scaling coefficients reindexed such that

s j+1 =
[
s j+1,o

s j+1,e

]
, (10)

where the o and e subscripts stand for odd and even coefficients, respectively.
We write the prediction equation as

w j = s j+1,o − P j s j+1,e, (11)

and the update as
s j = s j+1,e + U jw j , (12)

with P j ∈ R
n j+1,o×n j+1,e being a sparse prediction matrix, U j ∈ R

n j+1,e×n j+1,o being
a sparse update matrix and n j+1,o and n j+1,e being the number of odd and even
coefficients, respectively, at level j + 1. The prediction stage simply exploits the
signal redundancy by assuming that the odd coefficients can be estimated as linear
combinations of their spatial neighbors. If only the even coefficients are used to
approximate the functions in Vj+1, then the lost details are compensated for by
redistributing them among these remaining coefficients via the update matrix.

Since Eqs. (3)–(5) hold for any f j+1, we canwrite the predict and update equations
for the duals basis functions:

Ψ̃
ᵀ
j = Φ̃

ᵀ
j+1,o − P j Φ̃

ᵀ
j+1,e, (13)

Φ̃
ᵀ
j = Φ̃

ᵀ
j+1,e + U j Ψ̃

ᵀ
j = (I − U jP j )Φ̃

ᵀ
j+1,e + U j Φ̃

ᵀ
j+1,o. (14)

To derive similar relations between the primal basis functions, we can start by rewrit-
ing Eq. (2) as
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[
Φ j+1,o Φ j+1,e

] [
s j+1,o

s j+1,e

]
= [

Ψ j Φ j
] [

w j

s j

]
, (15)

and, expanding the scaling and wavelet coefficients on the right-hand side using
Eqs. (11) and (12), we arrive to

[
Φ j+1,o Φ j+1,e

] [
s j+1,o

s j+1,e

]
= [

Ψ j Φ j
] [

s j+1,o − P j s j+1,e

(I − U jP j )s j+1,e + U j s j+1,o

]
. (16)

Equation (16) must hold for any combination of the level j + 1 lifting coefficients.
Hence, let s j+1,e = δk , i.e. the Kronecker unit vector at index k, with k ∈ 1 : ne, i.e.
δk,i = 0,∀k �= i and δk,k = 1. Also, let s j+1,o = 0. Evaluating both sides of Eq. (16),
we arrive to

Φ j+1,eδk = −Ψ jP jδk + Φ jδk − Φ jU jP jδk, (17)

or, since this equation holds for any k ∈ 1 : ne, a more direct formulation can be
written as

Φ j+1,e = −Ψ jP j + Φ j − Φ jU jP j . (18)

By setting s j+1,e = 0 and s j+1,o = δk , with k ∈ 1 : no, we find that

Φ j+1,oδk = Ψ jδk + Φ jU jδk, (19)

or
Φ j+1,o = Ψ j + Φ jU j . (20)

Right-multiplying both sides of Eq. (20) by P j and adding the result to Eq. (18) we
obtain:

Φ j = Φ j+1,e + Φ j+1,oP j , (21)

and then
Ψ j = Φ j+1,o(I − P jU j ) − Φ j+1,eU j . (22)

Let ς j = ∫ ∞
−∞ Φ

ᵀ
j (t)dt . Then integrating equation (21) yields:

ς j = ς j+1,e + Pᵀ
j ς j+1,o. (23)

Since the integral of the wavelet functions is zero, integrating equation (22) leads to:

0 = ς j+1,o − Uᵀ
j

(
Pᵀ

j ς j+1,o + ς j+1,e

)
= ς j+1,o − Uᵀ

j ς j . (24)

The column vectors of U j can be retrieved in a one-by-one fashion from Eq. (24). If
u jk is the kth column vector, then
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ς j+1,ok = uᵀ
jk
ς jk . (25)

It is suggested in [21] to choose the minimum norm solution of this equation as it
leads to increased numerical stability, as experimentally shown in [9]. It results that

u jk = ς j+1,ok

ς jk

‖ς jk‖2
. (26)

Wavelet Construction for Multivariate Graph Signals

We examine now the changes necessary to go from the above one-dimensional con-
struction to multivariate signals defined on graphs. In general, we are interested in
analyzing a function F(v) defined at every vertex v of the graph. We regard the ver-
tices as having vector coordinates in R

n . The purpose is to find appropriate scaling
and wavelet function bases that are independent of the multivariate signal itself, but
depend on the graph topology and its edge lengths. Thus, the framework construction
we propose must also accommodate both univariate and multivariate functions by
treating the latter as tuples of scalar-valued functions. Instead of discussing about
time series indices, we now view the graph nodes as means to identify samples
where the information is concentrated. The odd-even split is extended to graph ver-
tices, denoting Vol and Vel the odd and even subsets at level l, respectively. The
notion of parity is irrelevant for graphs, the odd and even denominations serving a
labeling purpose. If vil ∈ Vel denotes a vertex from the approximation set at level l,
we refer to its corresponding scaling vector of coefficients by using the sl,vil notation.
At the highest level of resolution, L , we assimilate the scaling vector to the vertex
coordinates, i.e. sL ,viL

:= vᵀ
iL
. We adopt the same convention for denoting the scaling

functions, i.e. φl,vil
, which are scalar valued. The situation is identical for the detail

components, which correspond to the odd samples, v jl ∈ Vol , at level l. The detail
vector associated with v jl will be denoted by wl,v jl

, while for the wavelet functions
the ψl,v jl

notation will be adopted. Using these conventions, we can express the
equivalent multiresolution decomposition equation for graphs as

F(v) =
∑

l≥0

∑

vo∈Vol

wl,voψl,vo(v) +
∑

ve∈Vel

s0,veφ0,ve(v). (27)

By arranging the scaling and wavelet functions into row vectors, we reproduce
Eqs. (21) and (22), establishing the relationship at consecutive resolution levels
through the means of prediction and update filters, i.e.

Φl,Vel
= Φl+1,Vel+1

+ Φl+1,Vol+1
Pl , (28)

Ψl,Vol+1
= Φl+1,Vol+1

− Φl,Vel
Ul , (29)

where Pl is the |Vol+1 | × |Vel+1 | prediction filter matrix and Ul is the |Vel+1 | × |Vol+1 |
update filter matrix. Using the above filter matrices, a hierarchical decomposition
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of the scaling coefficients associated with the vertices of a mesh or a graph can be
inferred. These vector-valued coefficients contain both the geometric and attribute
coordinates of their corresponding vertices. Let us denote by sl,Vel

the |Vel | × nmatrix
of scaling coefficients at level l associated with the even nodes, Vel , the difference
vectors computation and even node updates can be written as

wl,Vol+1
= sl+1,Vol+1

− Plsl+1,Vel+1
, (30)

sl,Vel
= sl+1,Vel+1

+ Ulwl,Vol+1
. (31)

Equations (30) and (31) describe the analysis stage of critically sampled lifting
scheme. It is straightforward to invert this process. This converse operation, the
synthesis stage, is translated into the following two equations:

sl+1,Vel+1
= sl,Vel

− Ulwl,Vol+1
, (32)

sl+1,Vol+1
= wl,Vol+1

+ Plsl+1,Vel+1
. (33)

Cascading the analysis stages yields a hierarchical wavelet decomposition of the
initial mesh. The method stores the intermediary difference vectors wl,Vol+1

and the
coarsest level scaling coefficients, s0,Ve0

, with l ∈ 0 : L . In order to recover the initial
information, the intermediary filter matrices, Pl and Ul , also need to be stored.

2.2 Graph-Based Lifting Scheme Operations

We now proceed to describing the necessary steps for adapting the lifting scheme
principles to the irregular graph domain. In doing this, we consider a mechanism for
guiding the lazy wavelet partitioning such as salient features loss is reduced during
downsampling. We also aim to develop prediction and update filters that minimize
the approximation error at lower levels of resolution.

Lazy Wavelet Partitioning

Our choice of a heuristic feature preservation mechanism is the generalized quadric
error metric, detailed by Garland and Heckbert [17]. The goal of this metric is to
facilitate computing the squared distances from any point to the support plane of
a triangle. For the remainder of this discussion, we will refer to vertices and their
attributes as elements from theRn vector space, where the first three components are
the geometric coordinates and the remaining n − 3 represent the attribute data.

Let v1, v2, v3 ∈ R
n be column vectors corresponding to the vertices of a triangle

and p ∈ R
n an arbitrary point. The core idea of this approach is to algebraically

express as a matrix, denoted by Q(Δ(v1, v2, v3)), the computation of the squared
distance from p to the support plane of these 3 vertices. It is then easy to compute
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the sum of squared distances from p to the support planes of a triangle family,
(Δi (v1, v2, v3))i=1:N , as

∑

i=1:N
d(p,Δi (v1, v2, v3))2 =

(
p
1

)ᵀ {
∑

i=1:N
Q (Δi (v1, v2, v3))

}(
p
1

)
. (34)

In the original incremental simplification algorithm [17], the set of faces in the one-
ring neighborhood of each vertex is used to compute an associated matrix

Q(v) =
∑

Δk∈N 1
t (v)

Q(Δk), (35)

where N 1
t (v) represents the set of all triangles incident at v.

The advantage of using the matrix notation is manifested when performing edge
collapses and fusing the endpoint vertices. Whenever two vertices, va and vb, are
replacedby anewvertex,w, the local geometric information thatwas characterizedby
the neighborhoods of these vertices is preserved by settingQ(w) ← Q(va) + Q(vb).
This way, although themesh is coarser, the new vertex still retains the local geometric
variability of the initial model. Thus, the history of collapses is added together and
represented as a single quadric matrix.

The matrix terms in Eq. (35) describe quadrics in the sense that all isosurfaces
obtained from varying point p in Eq. (34) are quadrics. The term quadric error metric
is thus justified since these matrices offer a means of estimating an error measure
from an arbitrary position p to a local patch around any vertex v. As described in
[7], this metric also allows for the introduction of a cost function associated to each
vertex:

cost(v) =
(
v
1

)ᵀ
⎛

⎝
∑

vi∈N 1
v (v)

Q(vi )

⎞

⎠
(
v
1

)
, (36)

whereN 1
v (v) denotes the direct neighbors of v, or the one-ring vertex set, as repre-

sented in Fig. 2.
In [7] we introduced an additional saliency measurement attribute and treat the

vertices of the model as points inRn+1. We opt for a discrete bending energy (or thin
plate energy) estimation since it encompasses curvature and area information and it
is also an isometric invariant.

In the continuous case, the bending energy is a well-defined quantity. If the prin-
cipal curvatures can be computed over a surface patch A, then the amount of elastic
potential energy stored in that region can be computed by evaluating the integral

Eb =
∫

A

(
κ2
1 + κ2

2

)
d A, (37)

where κ1 and κ2 are the principal curvature functions defined over the patch A.
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Algorithm 1 Thin plate energy computation
INPUT: the mesh M = (V, E)

OUTPUT: the bending energy of the vertex set, Ebending(V )

for vi ∈ V do
COMPUTE: the Gaussian and mean curvatures of vi , K (vi ) and H(vi )
COMPUTE: f (vi ) = 4H(vi )2 − 2K (vi )

end for
for vi ∈ V do
Ebending(vi ) = 0
for Δ ∈ N 1

f (vi ) do
COMPUTE: Ebending(vi )+ = ∫

Δ
f d A

end for
end for

The evaluation of the discrete Gaussian curvature, denoted as K (v), and of the
mean curvature, denoted as H(v), can be performed as suggested by [28]. Although
such estimates are known to be sensitive to noise, the data typically resulting from
LiDAR sets do not exhibit irregularities that could affect the robustness. Regard-
less of this drawback, a curvature-based energy represents a natural measure for
local geometric saliency over a one-ring neighborhood. In [9, 10] we further discuss
potential alternatives for use on data heavily affected by noise.

To evaluate the discrete version of integral (37), we can use the Gaussian cur-
vature, K , and the mean curvature, H , to compute the sum of squared principal
curvatures as κ2

1 + κ2
2 = 4H 2 − 2K . The discrete counterpart of this integral then

provides an estimate for the discrete bending energy concentrated at each vertex vi
and is computed over its one-ring neighborhood.We evaluate the discretized bending
energy near a vertex vi as

Eb(vi ) =
∑

Δ(vi ,v j ,vk )∈N 1
f (vi )

f (vi ) + f (v j ) + f (vk)
6

· ∥∥(v j − vi ) × (vk − vi )
∥∥ ,

(38)
where f ≡ (κ2

1 + κ2
2 ) and N 1

f (vi ) is the set of all incident triangles, denoted by
Δ(vi , v j , vk), at vi .

We summarize the calculation process of the discrete version of Eq. (37) in Algo-
rithm 1.

To include the computed bending energy in the cost function from Eq. (36), one

can substitute a vertex v with an (n + 1)-dimensional one, v̄ =
(

v
Ebending(v)

)
.

The purpose of computing the per-vertex cost values is to establish an importance-
based ordering of this set. The greedy strategy we employ to label all vertices as
either even or odd is summarized in Algorithm 2. The labeling process is iterative
and marks the vertices intuitively, according to their computed importance. During
each iteration, the vertex having the lowest cost is extracted from the set of unmarked
vertices. Its one-ring neighbors are then colored as even, while the extracted sample
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Fig. 2 The cost of removingvi with respect to its one-ringneighbors. Eachv j ∈ N 1
v (vi ) contributes

the sum of distances from vi to the support planes of each incident face at v j

Algorithm 2 Vertex labeling and remeshing algorithm
INPUT: the mesh Min = (V, Ein)

OUTPUT: an odd-even partitioning, V = Vo ∪ Ve, coarse mesh topology Mout = (Ve, Eout )

COMPUTE: for each v ∈ V , compute Ebending(v) via Algorithm 1
COMPUTE: for each v ∈ V , compute cost(v̄) as defined in (36), where v̄ = (

vᵀ, Ebending(v)
)ᵀ

SORT: V ∗ = sort(V + in) using cost(v̄) as a key
ASSIGN: Ve = ∅, Vo = ∅, Eout = Ein
while V ∗ �= ∅ do
v = arg min

v∈V ∗(cost(v̄))

if can_triangulate(N 1
v (v) \ {v}) then

for vi ∈ N 1
v (v) do

Eout = Eout \ {v, vi }
end for
Eout = Eout ∪ create_edges(N 1

v (v))
Vo = Vo ∪ {v}
Ve = Ve ∪ N 1

v (v)
V ∗ = V ∗ \ ({v} ∪ N 1

v (v)
)

else
Ve = Ve ∪ {v}
V ∗ = V ∗ \ {v}

end if
end while

is marked as odd, as depicted in Fig. 2. The intuition behind the process reflects the
goal of removing less relevant samples, from high redundancy areas.

Analyzing the vertex classification and remeshing performed by Algorithm 2, we
notice the constraint of marking the neighbors of a removed odd node as even. This
is justified by the need to consistently separate the two vertex classes, a practice
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(a) (b) (c)

Fig. 3 Illegal collapse situations where the highlighted faces are involved in a breaching of one
or several criteria of the can_triangulate function from Algorithm 2. In case a, the collapse
“welds” together two faces, back-to-back, introducing an edge common to more than two triangles.
In situation b, the highlighted face is “flipped” since the normal unit vectors before and after the
collapse point in opposite directions. “Cutting a corner” is the operation depicted in situation c,
where the corner vertex is no longer adjacent to at least two edges

also employed by [18]. Another key property of this algorithm is the partial graph
connectivity alteration incurred by the removal of the odd samples. Together with
these nodes, their adjacent edges are also removed. Whether or not the one-ring hole
bounded byN 1

v (v) \ {v} can be triangulated is also a key factor in deciding the label
of v. The can_triangulate(·) function is implemented as a set of geometrical
and topological consistency criteria that must be satisfied by a valid triangulation.
This problem has numerous solutions, one example being the splitting planemethod
of [32] known to produce more regular aspect ratio triangulations. It is possible for
a vertex having the lowest importance score to produce invalid triangulations, and,
in this case, the vertex is marked as even. In our implementation, the triangulation
of the one-ring hole is easily performed using half-edge collapses. A valid edge is
selected from the set of all edges adjacent to the removed odd vertex such that the
quadric error measured using theQ(ve) matrix of its even endpoint is the smallest of
all other collapsible pairs. We refer to a vertex pair to be collapsible if it is connected
through an edge and if by translating the odd vertex over the even one the discrete
manifold property of the mesh is not affected and no newly created triangular face is
flipped with respect to its original normal vector (refer to Fig. 3 for several examples
of illegal collapses). Additionally, to prevent boundary shrinkage, the odd boundary
vertices cannot be translated over interior even ones. Boundary vertices can be part
of a collapse if the edge connecting them is a boundary one as well. We also allow
for merging an interior vertex with a boundary one when the collapse direction is
from the interior towards the border.
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Prediction Filter Construction

The goal of the prediction operation that follows the even-odd splitting is to com-
pute estimates for the odd nodes of the graph from their even neighboring nodes.
Intuitively, if the predicted values are closer to the actual odd samples, it is possible
to recover a faithful representation of the entire graph by storing only a subset of the
initial data. The resulting estimates are usually obtained by applying a low-pass filter
to the even subset, while computing the difference between the estimates and the
actual odd samples resembles the behavior of a high-pass filter. As a graph low-pass
filter, we propose using a discrete Laplacian operator, given its smoothing and aver-
aging effects. In many applications, Laplacian filters are also used for suppressing
local irregularities (both features and noise). Thus, a similar effect could be achieved
by removing the ensuing details.

To understand how the prediction filter weights are computed, we recall the con-
cept of a graph Laplacian operator. For a weighted graph, the Laplacian matrix
is obtained as the difference between the weighted diagonal degree matrix, D =
(di,i ) = ∑

j ωi, j , and the cost matrix, Ω = (ωi, j ), where ωi, j are the weights asso-
ciated with the (vi , v j ) edges. Thus, if L = D − Ω , the random-walk Laplacian
operator is defined as

Lrw = D−1L = I − D−1Ω. (39)

The geometric interpretation for the action this operation has on amesh is a smoothing
effect, also achievable through the use of a generalized umbrella operator. An in-
depth comparative discussion of various Laplacian discretizations is offered by [38].
Concretely, the extraction of the difference vectors wl,Vol+1

from Eq. (30) is similar
to a Laplacian smoothing where the difference between the smoothed vertex and
its actual position is stored for later reference. For a single vertex, vn ∈ Vol+1 , this
equation can be rewritten as

wl,vn = sl+1,vn −
∑

vm∈N 1
v (vn)

pl,vn (vm)sl+1,vm , (40)

where pl,vn (vm) is the prediction weight coefficient at level l associated with vertex
vn and contributed by one of its even, one-ring neighbors, vm . Depending on the
Laplacian discretization, several prediction weight choices are possible. In general,
the prediction weights in Eq. (40) are computed as

pl,vn (vm) = ωn,m∑
vk∈N 1

v (vn) ωn,k
. (41)

One of themore popular Laplacian design choices is the cotangentweightsLaplacian,
computed as described byMeyer et al. [28]. Abdul Rahman et al. [1] recommend this
Laplacian as a prediction filter for the analysis of free-form surfaces with additional
attributes. Although this filter is suitable for smoothing tasks, its weights depend



494 T. Cioacă et al.

strictly on the geometric information and not also on any additional attributes. A
simple alternative for this operator, that introducesmovements in the tangential plane
of a vertex, is the Fujiwara or geometric Laplacian [16], with weights defined as

ωi, j = li, j
−1, (42)

where li, j is the length of the (vi , v j ) edge. This operator is scale dependent and
it preserves the distribution of triangle sizes. The main advantages of this design
are: its dependency on all geometry and range attributes, its smoothing effect being
closer to the cotangent weight formulation than that of the umbrella operator, and the
predicted point being shifted towards its closest neighbors, thus inherently providing
a better approximation.

An alternative to the Laplacian prediction filter is to employ a least squares fitting
of the weights in order to minimize the approximation error. This approach, adopted
in several works [27, 37], proved to be numerically unstable when directly applied to
terrain sets. To overcome this issue, Wagner et al. [37] did not include the boundary
vertices in the downsampling process. In regions where the one-ring neighborhood
does not have a convex (x, y) projection, negative weights can appear. Furthermore,
the large magnitude of the weights may lead to numerical instability during the
subsequent update stage. To counteract these effects, we propose a non-negative
least squares (NNLS) fitting of the weights in Eq. (40), such that the magnitude of
the wl,vn vector is minimized. To achieve a similar Laplacian smoothing effect, the

sum
∑

vm∈N 1
v (vn)

pl,vn (vm) should be equal to 1. This constraint can be directly added to

the NNLS solver. By design, this modification improves the root mean square error
throughout the hierarchical downsampling, as it will be later discussed in the results
section. We note that positive and convex weights allow for the removal of odd
boundary vertices. Nevertheless, computing these weights incurs a computational
penalty, so we only recommend this choice for scenarios where minimizing the
approximation error is crucial.

In terms of storage complexity, the Laplacian matrix is very sparse. As a con-
sequence, the prediction matrix at level l, Pl , is also sparse, each of its rows being
populated with the weights used to predict the same odd vertex, vn , from its even
neighbors.

Update Filter Construction

The heuristically guided lazy wavelet removal of details minimizes feature loss,
but does not propagate detail loss to inferior levels. Wavelet transforms manage
this problem by redistributing the extracted detail among the coarser scales. This
information is effectively contained in the difference vectors. Without compensating
for these losses, the algorithm would mostly resemble incremental simplification.
The update filter of the lifting scheme is responsible for distributing the lost details
among the even vertices in a way that preserves an aggregate signal property such as
signal average. We opt for this choice because it helps maintain both overall shape
and decreases the approximation error, as we will later experimentally observe.
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Because the prediction filter determines the amount of detail loss, the update filter
should express a dependency on the prediction weights. In [27], the authors suggest
the following expression for the update filter vectors:

ul,vu = 0.5
∑

vp,i∈N 1
v (vu)∩Vol+1

pl,vp,i

[
pl,vp,1 , pl,vp,2 , . . . , pl,vp,k

]
, (43)

where vu represents an even vertex, vp,i denotes an odd one-ring neighbor of this
vertex, and pl,vp,i ≡ pl,vp,i (vu) is the predictionweight vu contributed in estimating its
vp,i odd neighbor. By using this design, there is no guarantee the signal average will
be preserved, unless applied to unweighted graphs, hence when using the umbrella
operator Laplacian.

Abdul-Rahman et al. [1] proposed a similar approach where the update filter
construction aims to directly preserve the average value of the one-ring neighborhood
of an odd vertex before and after its removal. Using the same update vector for all
even neighbors, the following equation ensues:

1

N + 1

⎛

⎝wl,vn +
∑

vm∈N 1
v (vn)

(pl,vn (vm) + 1)sl+1,vm

⎞

⎠ = (44)

1

N

∑

vm∈N 1
v (vn)

(sl+1,vm + ul,vm ), (45)

with N = |N 1
v (vn)|, and the update vectors ul,vi = ul,v j = uN 1

v (vn) for any vi , v j ∈
N 1

v (vn). Thus, the uniform update vector is determined as

uN 1
v (vn) = 1

N + 1
wl,vn +

∑

vm∈N 1
v (vn)

Npl,vn (vm) − 1

N (N + 1)
sl+1,vm . (46)

In case the prediction filter weights correspond to the umbrella operator type of
Laplacian, the second term in Eq. (46) vanishes. Generally, this design requires
storing update weights for both difference vectors and even nodes from the previous
level, thus becoming a more memory consuming approach. By aiming to directly
preserve the one-ring average of the scaling coefficients, it becomes more difficult to
find update weights that depend only on the difference vectors. This is due to the fact
that determining such weights implies solving a sparse system involving all scaling
coefficients. In the multivariate scenario, this system becomes overdetermined and
an exact solution may not exist. In this situation, an approximate solution must be
searched for. Overall, this process is more complex than the entire lifting pipeline.

In [9] we also considered the solution proposed by Jansen et al. [22]. In principle,
it also exploits the average preserving requirement. This prerequisite provides a
mathematical constraint that can be expressed in terms of the integrals of the scaling
functions, as described for the one-dimensional context discussion. Let ςl,vu be the
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integral of the scaling function φl,vu (i.e. an element of Φl,Vel+1
corresponding to the

vertex vu ∈ El ). Rewriting Eq. (23), we obtain

ςl,vu = ςl+1,vu +
∑

vk∈N 1
v (vu)∩Vol+1

pl,vk (vu)ςl+1,vk . (47)

The wavelet biorthogonality condition requires for each wavelet function to have
zero integral. In consequence, when integrating equation (29) the left hand side term
vanishes, i.e.,

0 = ςl+1,Vol+1
− Ulςl,Vel

. (48)

Further rewriting Eq. (25) for each predicted vertex, vp ∈ Vol+1 , leads to

ςl+1,vp = uᵀ
l,vp

ςl,N 1
v (vp), (49)

where ul,vp is the vector containing the update weights this vertex contributes with
for each of its one-ring, even vertices. Finding ul,vp requires solving an overde-
termined equation of the form α = uᵀv, where u is the unknown vector. From all
possible solutions, both Jansen et al. [22] andWagner et al. [37] choose the minimum
update norm solution due to its stabilizing effect. This translates into settingu = αv

‖v‖2 .
Finally, Eq. (26), which gives the expression of the update vector of coefficients for
vp, becomes

ul,vp = ςl+1,vp∑
vk∈N 1

v (vp)
ς2
l,vk

ςl,N 1
v (vp). (50)

With these results, the update Eq. (31) of an even scaling coefficient for a vertex vu
is written as

sl,vu = sl+1,vu +
∑

vn∈N 1
v (vu)∩Vol+1

ul,vu (vn)wl,vn . (51)

The choice of the scaling functions does not affect the so far described transform.
Since the initial integrals ςl+1,El+1 need to be computed, one option is to assume a
choice of the scaling functions such that these integrals are all equal to 1.

Given the fact that a terrainmeshhas sparse connectivity, thefiltermatrices are also
sparse. Each oddnode is surrounded by even nodes, ensuring a 25%average reduction
factor for each decimation stage. Asymptotically, almost 80% of the initial edge
density will still be required to store the filter matrices. Nevertheless, the information
is still very sparse and lends itself for specific algebraic manipulations after the
cascaded analysis stages.
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Algorithm 3 Downsampling algorithm
INPUT: a d-dimensional point cloud consisting of vertex-attribute pairs.
OUTPUT: the lowest resolution vertex set, s0,V0 , the chain of prediction and update matrices,
(Pl )l and (Ul )l , and the string of difference vectors, (wl,Vol+1

)l , where l ranges from 0 to the total
number of refinement levels, L .
TRIANGULATE: the input set, VL .
for l := L - 1 downto 0 do
COMPUTE: the removal cost of each vertex using algorithm 1
PARTITION: the vertex set Vl+1 = Vel+1 ∪ Vol+1 using Algorithm 2.
COMPUTE: wl,Vol+1

and sl,Vel from sl+1,Vel+1
using Eqs. (30) and (31)

STORE: Pl , Ul and wl,Vol+1
end for
STORE: s0,V0

2.3 Algorithm Overview

The lifting scheme flow depicted in Fig. 1 is at the core of the iterative downsam-
pling process, illustrated in Fig. 4 and summarized in Algorithm 3. In overview, we
can identify three main stages: the cost computation, the labeling or lazy wavelet
decomposition and the analysis itself. Together, these stages resemble the structure
of a classical filter bank.

This algorithm has O(N log N ) complexity (where N is the total number of
vertices). This higher complexity is due to the nodes being sorted according to their
removal cost. While an O(N ) complexity is achievable, the salient features will not

Fig. 4 An overview of our
hybrid algorithm for
downsampling an input set
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be preserved as faithfully (see Fig. 8). The initial triangulation can be performed only
once, during the pre-processing stage. During the downsampling steps, the one-rings
of the odd vertices can be re-triangulated on the fly, keeping a consistent manifold
connectivity.

The spatial complexity of this method is linear with respect to the size of the input
data set. More precisely, the lowest resolution data and the difference vectors require
the same amount of storage as the initial point cloud. Empirically, the triangulated
meshes will not be far from semi-regular, thus the prediction weights will require
6N scalars in total. For the update weights, sparse structures corresponding to even
vertices being surrounded by 3 odd vertices on average have to be stored. Assuming
a decimation rate of 25%, the spatial requirements for storing the update weights
asymptotically approach 15N .

Quadric Error Matrix Update Procedure

The quadric error metric matrix fusion of collapsed vertex pairs is a property that
we adapt locally, in the odd vertex neighborhood. We achieve this by distributing the
matrix corresponding to an odd sample, Q(vo j+1), among its even neighbors. Thus,
each even matrix is updated by

Q(ve j ) = Q(ve j+1) +
∑

vo j+1∈N 1
v (ve j+1 )∩Vo j+1

ρ j,ve j+1
(vo j+1)Q(vo j+1), (52)

where ρ j,ve j+1
(vo j+1) is the redistribution weight describing the influence of vo j+1 on

its even neighbor, ve j+1 . We propose using the same weights that the prediction filter
relies on estimating the lost information, i.e.,

ρ j,ve j+1
(vo j+1) = p j,vo j+1

(ve j+1)
∑

vu j+1∈N 1
v (vo j+1 )

p j,vo j+1
(vu j+1)

. (53)

This choice is natural since the even vertex that contributes more to the prediction of
an odd neighbor receives a larger fraction of its quadric errormatrix.We justify this to
be a more natural choice given that most prediction weights automatically encode a
node similarity magnitude. Other quadric error matrix redistribution weights choices
and strategies are possible and were analyzed in [7, 8]. Experimentally, the choice of
weights presented through Eq. (53) was determined to achieve, on average, slightly
more accurate approximations than the alternatives presented in [8].

3 Results and Discussion

We assessed the validity and efficiency of ourmethod through a series of experiments
involving three different LiDAR sets. The first model is a scan fragment of the Great
Smoky Mountains (available through the www.opentopography.org/ portal) with a

www.opentopography.org/
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Fig. 5 Smoky Mountains fragment. Top row, left to right: shape and attribute evolution at levels 0,
12 and 24 using the UG filters. Bottom row: comparative charts for the RMSE evolution across 12
analysis sequences

density of approximately 2.23 points per square meter and a size of 280,000 points
(Fig. 5). The second set is larger and much denser at approximately 20 points per
square meter and a count of 9 million (Fig. 6). The third set is larger but less denser,
consisting of 11.5 million points, at a density of 5 points per square meter (Fig. 7).
These larger and denser LiDAR samples were acquired through custom aerial scans
conducted over two regions of theRomanianCarpathians. All terrain samples contain
both geometry (point coordinates) and attribute information (i.e., vegetation type, as
a scalar between 0 and 20, and height above ground, as a scalar between 0 and 30).
All coordinates are translated and scaled to fit within a zero-centered unit bounding
box dividing them by their range width. This way we significantly alleviate the effect
of the diverse scales on the final outcome. However, the attributes could be scaled
differently if one desires to diminish or enhance their contribution.

3.1 Root Mean Squared Error Measurements

As a measure of quality and accuracy, we have chosen the root mean square error
(RMSE). Although other error measuring mechanisms exist, the RMSE or L2 norm
is one of the simplest and most efficient indicators of shape and attribute quality
(see [30] for a more in-depth discussion of the properties and applications of this
error). In our case, the RMSE computation concerns both geometry and attribute
vertex coordinates, except for the artificially added bending energy. Thus, if sl,vi is
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Fig. 6 High-density Carpathian Mountains fragment. Top row, left to right: shape and attribute
evolution at levels 0, 12 and 24 the UG filters. Bottom row: comparative charts for the RMSE
evolution across 12 analysis sequences

Fig. 7 Low-density Carpathian Mountains fragment. Top row, left to right: shape and attribute
evolution at levels 0, 12 and 24 the UG filters. Bottom row: comparative charts for the RMSE
evolution across 12 analysis sequences
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the scaling coefficient at level l of a node vi , and sL ,vi is the corresponding coefficient
in the initial input set, the RMSE is evaluated as

RMSEl =
√∑

vi∈El

‖sL ,vi − sl,vi ‖2. (54)

For the multiresolution representation experiments, we have also considered sev-
eral prediction and update filter designs. In this respect, we labeled the result sets
according to the type of prediction and update filters as follows:

• prediction filters: uniform weights obtained by using the unweighted graph Lapla-
cian (UG), present in the design of Martinez and Ortega [27], the cotangent Lapla-
cian weights (CL), chosen by Abdul-Rahman et al. [1], the Fujiwara or geometric
Laplacian (GL), which is our proposal for a Laplacian design for multivariate
data and a constrained non-negative least squares weights design (abbreviated as
NNLS), which we propose in order to minimize the detail vector norms.

• update filters: the filter design proposed byMartinez and Ortega [27] compensates
for the detail loss incurred by the removal of the odd vertices, but it does not
preserve the graph signal average for weighted graphs, unless all weights are
uniform. On the other hand, the design used in [22, 37], achieves this goal while
minimizing the norm of the update coefficient vectors. To distinguish between the
first option and the minimum norm update weights, we have added the MN suffix
to the prediction filter abbreviation. The third and final design option, proposed in
[1], preserves the local, one-ring mean of the data samples and is abbreviated as
ORMP.

3.2 Feature Selectivity and Robustness to Noise

For a proof of concept, we subjected the Smoky Mountains terrain fragment to a
sequence of 8 analysis steps. The same set was again analyzed using the lazy-wavelet
partitioning strategy employed in [27, 37].Without our proposed feature preservation
heuristic, the lowest resolution representation will lose a bigger fraction of the sharp
features, as depicted in Fig. 8.

Computing the discrete curvatures using the method of [28] is recommended for
meshes with low to no noise. In [9, 10], we have experimentally shown that the
proposed heuristic partitioning of the data points into odd and even categories is
robust to noise.



502 T. Cioacă et al.

Fig. 8 Preservation of
salient features after 8
analysis steps. Top image:
high-density, high-detail
input (1.6M faces), middle
image (160K triangles): the
combined QEM and thin
plate energy cost, bottom
image (158K triangles): the
graph coloring strategy used
in [27, 37]

3.3 Vertex Frequency Analysis Interpretation

Vertex frequency analysis is a more recently developed subfield of Graph Signal
Processing. This subfield discusses solutions for a graph equivalent of time and
frequency domain localized transforms such as the windowed fast Fourier trans-
form, the short-time Fourier transform or the windowed fast wavelet transform.
Shuman et al. [33] described a solution based on a new definition for graph-based
translation operators. Jestrović et al. [23] improved this solution by designing an
O(N 3) implementation, as opposed to the O(N 4) complexity of the original. While
these developments are sound mathematical generalizations (although some of the
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Fig. 9 Kauai Mountain fragment consisting of 79,000 point samples. Represented are level 6, 3
and 1 corresponding to the initial set, the middle resolution and the lowest resolution in a cascade
of 5 analysis passes

translation operator properties on graphs are no longer preserved with respect to the
one-dimensional case), their computational complexity may not lend them useful for
processing very large sets that are common in most applied problems.

Using the wavelet coefficients resulted from a cascade of analysis steps, we can
offer an intuitive interpretation that can partially cover the goal of vertex frequency
analysis. Given the nature of lifting scheme wavelet constructions, it is not directly
possible to discuss spectral features of the signal. However, the detail vectors associ-
ated to the odd samples at each scale offer an intuition in this direction. Typical graph
vertex frequency analysis algorithms employ an adapted form of the windowed fast
Fourier transform or simply restrict the Laplacian eigendecomposition to a neigh-
borhood of a certain size around each vertex. Detail vectors, on the other hand, are
directly associated with a single vertex and a single scale. Thus, the information
encoded in these entities is, by definition, localized in space and frequency domain.
As opposed to classical vertex frequency interpretations, it is not directly possible to
examine more than one spectral component for a specific odd vertex. Nevertheless,
the magnitude of the wavelet coefficients is a direct indicator of the strength of the
local graph signal with respect to the characteristic frequency band of a level of
resolution.

Wepropose an experimentwherewe subject a terrain fragment of theKauaiMoun-
tain in Hawaii (extracted from the www.opentopography.org portal), to a sequence of
five cascading analysis steps (see Fig. 9). The resulting difference vector amplitudes
are then plotted in Fig. 10.

www.opentopography.org
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(a) (b)

Fig. 10 Difference vector magnitude across 5 consecutive analysis passes of the Kauai fragment
Fig. 9. The a subplot reveals the height above ground of the initial terrain points, while the b subplot
containsmarkers indicating the strength (size) and frequency band of the resulting difference vectors
at each of the odd vertices present in the a subplot. The regions in a with abrupt variations register a
high frequency footprint, while similar points clustered together register lower frequency signatures
as well

4 Conclusions

Several conclusions can be drawn by analyzing the results obtained using the dif-
ferent lifting designs. First, by using the update designs that are not guaranteed to
preserve the signal average for general graphs (e.g. [27]), we observe the RMSE
levels have the highest values, regardless of the prediction filter design. As such,
the charts Figs. 5a, 6a and 7a reveal that over a progression of 12 analysis steps, the
uniformweighing prediction design (UG) is, on average, the better choice. While the
geometric Laplacian (GL) and the non-negative least squares weights (NNLS) yield
better quality results, after 6 or 7 decomposition steps they become unstable. The use
of the cotangent Laplacian weights (CL) is not justified either, since this design takes
into account only the geometric structure of the data, regardless of the attribute vari-
ability. Overall, both uniform and cotangent Laplacian weights produce more stable
results, but the uniform design is to be preferred due to its consistently lower RMSE
levels. Next, directly preserving the average of the scale coefficients in a one-ring
neighborhood (ORMP) contributes to both stability and error-minimizing properties
of the analysis sequence for all sets (charts Figs. 5b, 6b and 7b). The best results are,
however, achieved through the use of the minimum norm, mean preserving update
weights (proposed by Jansen et al. [22]). This design ensures the highest stability
while sensibly decreasing the mean square error. More specifically, for all terrain
sets the ORMP design is surpassed by the combined use of Laplacian prediction
weights and the minimum norm update vector coefficients. Both of our proposals,
the geometric Laplacian (GLMN) and the non-negative least squares (NNLSMN)
attain an almost twofold accuracy over the cotangent (CLMN) and uniform weights
Laplacian (UGMN). While the RMSE could be reduced even further by lifting the
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constraints on the least squares prediction filter, as proposed in [27, 37], the scheme
becomes numerically unstable due to overfitting of the prediction weights values
and the prediction of the boundary vertices. While we can fix the boundary vertices
and alleviate the stability issue, our design does not require such vertex selection
constraints to be applied.

The multiresolution experiments conducted with the three samples also confirm
the 25% reduction ratio of the number of vertices after each downsampling step.
More specifically, the average reduction rate attained for the Smoky set (Fig. 5) is
27%, for the high-density Carpathian set (Fig. 6) the average ratio is 28%, and for
the low-density Carpathian set (Fig. 7) this average ratio is 27%.

As immediate applications for this graph-wavelet multiresolution framework, we
suggest filtering [11] and, as experimentally examined in Fig. 10, we also suggest
considering the potential of using the detail vector information to offer an intuitive
classification similar to that of vertex frequency analysis.
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