DAFTAR GAMBAR

Gambar 2. 1 Ilustrasi struktur multilayer TMDC WS ₂ dan MoS ₂ . Diadaptasi dari
ref [6]7
Gambar 2. 2 I-V yang menunjukkan perilaku fotovoltaik pada heterostruktur
WS ₂ /MoS ₂ lateral. Inset menunjukkan perilaku p-n juctions dengan cahaya
(hitam) dan tanpa pencahayaan (merah) [23]
Gambar 2. 3 Skematik tipe-tipe heterojunction 10
Gambar 2. 4 Skematik posisi kesejajaran pita energi heterostruktur WS_2/MoS_2 . 11
Gambar 2. 5 Skema eksfoliasi fasa cair. Diadaptasi dari referensi [57] 12
Gambar 2. 6 Skema emisi sinar-X pada atom 14
Gambar 2. 7 (a dan a') Citra SEM $WS_2/MoS2$ yang dipoduksi pada perbandingan
rasio volume suspensi (WS ₂) dan air (dinotasikan S/W) berbeda [60]. (b dan b')
Citra SEM nanosheets MoS ₂ [61]. (c dan c') Citra SEM nanosheets WS ₂ [61] 15
Gambar 2. 8 Ilustrasi proses hamburan pada spektroskopi Raman 17
Gambar 2. 9 Spektrum Raman dari WS2 yang diperoleh menggunakan eksitasi
laser 532 nm. Diadaptasi dan dimodifikasi dari ref [65] 18
Gambar 2. 10 (a) Spektrum Raman dari beberapa lapisan (nL) dan <i>bulk</i> MoS ₂ . (b)
Ilustrasi vibrasi atom dari mode Raman MoS ₂ (arah Z diluar bidang). Diadaptasi
dan dimodifikasi dari referensi [66]19
Gambar 2. 11 Spektrum Raman heterostruktur WS ₂ /MoS ₂ vertikal yang di-fitting
dengan fungsi distribusi Lorentzian. Diadaptasi dari referensi [68] 20
Gambar 2. 12 Karakterisasi kurva IV pada substrat PET. (a) Heterostruktur
MoS ₂ /WS ₂ vertikal. (b) lapisan tunggal MoS ₂ dan WS ₂ . Diadaptasi dari referensi
[70]21
Gambar 2. 13 Ilustrasi sistem pengukuran CV
Gambar 2. 14 (a) Karakterisasi kurva I-V menggunakan CV. (b) Kurva hubungan
kapasitansi spesifik dan scan rate. Diadaptasi dari referensi [36]23

Gambar 3. 1 Tahapan Penelitian.		
Gambar 3. 2 Proses fabrikasi heterostruktur. (a) Pembuatan sampel. (b) Eksfoliasi		
fasa cair. (c) Sentrifugasi. (d) Drop casting. (e) Pengeringan sampel. (f)	Sampel	
yang telah dikeringkan		
Gambar 3. 3 Skema pengukuran sifat optik dengan spektrofotometer		
Gambar 3. 4 Skema pengukuran sifat listrik dengan Keithley 2400		
Gambar 3. 5 Skema pengukuran menggunakan cyclic voltammetry		

Gambar 4. 1 Larutan campuran 1 mg/mL WS₂ dengan 2 mg/mL NaOH didalam pelarut NMP. (a) Sebelum dimodifikasi. (b) Setelah disonikasi selama 15 jam. (c) Setelah disonikasi selama 60 jam. (d) Setelah disentrifugasi pertama. (e) Sisa

endapan. (f) Setelah disonikasi selama 120 jam. (g) Setelah disentrifugasi kedua. Gambar 4. 2 Larutan campuran 1 mg/mL MoS₂ dengan 2 mg/mL NaOH didalam pelarut NMP. (a) Sebelum dimodifikasi. (b) Setelah disonikasi selama 60 jam. (c) Setelah disentrifugasi dan sisa endapan. (d) Supernatant. Gambar diambil dan diadaptasi dari penelitian terdahulu yang dilakukan oleh Hastuti Delima [72].... 31 Gambar 4. 3 Hasil uji sifat optik larutanWS₂. (a) Spektrum transmisi cahaya melalui larutan WS2 eksfoliasi (hitam), larutan WS2 non-eksfoliasi (merah), dan NMP (biru). (b) Spektrum transmisi cahaya melalui larutan WS₂ eksfoliasi (hitam), larutan WS₂ non-eksfoliasi (merah), dan NMP (biru) yang dikalikan bilangan tertentu. (c) Hasil pengurangan spektrum larutan WS₂ eksfoliasi dan non-eksfoliasi dengan spektrum NMP. (d) Hasil pengurangan spektrum larutan WS2 eksfoliasi dan non-eksfoliasi yang dikalikan bilangan tertentu dengan spektrum NMP. Grafik inset adalah perbesaran dari grafik (d) yang ditandai oleh Gambar 4. 4 Hasil uji sifat optik larutan MoS₂. (a) Spektrum transmisi cahaya melalui larutan MoS₂ eksfoliasi (hitam), larutan MoS₂ non-eksfoliasi (merah), dan NMP (biru). (b) Spektrum transmisi cahaya melalui larutan MoS₂ eksfoliasi (hitam), larutan MoS₂ non-eksfoliasi (merah), dan NMP (biru) yang dikalikan bilangan tertentu. (c) Hasil pengurangan spektrum larutan MoS₂ eksfoliasi dan non-eksfoliasi dengan spektrum NMP. (d) Hasil pengurangan spektrum larutan MoS₂ eksfoliasi dan non-eksfoliasi yang dikalikan bilangan tertentu dengan spektrum NMP. Diambil dan diadaptasi dari penelitian terdahulu yang dilakukan Gambar 4. 5 Citra mikroskop heterostruktur WS₂/MoS₂ diatas substrat PET Gambar 4. 6 (a) Perbandingan spektrum transmisi cahaya melalui lapisan heterostruktur WS₂/MoS₂, lapisan tunggal WS₂, lapisan tunggal MoS₂, dan PET. (b) Perbandingan spektrum absorpsi lapisan heterostruktur WS₂/MoS₂, lapisan Gambar 4. 7 (a) dan (b) Citra SEM dari sampel WS₂/MoS₂ dengan perbesaran Gambar 4.8 (a) Spektrum Raman dari WS₂ dengan pergeseran Raman 100–500 cm⁻¹. (b)–(d) Spektrum Raman dari (b) lapisan tunggal WS₂, (c) lapisan tunggal MoS₂, dan (d) heterostruktur WS₂/MoS₂. (e)–(f) Citra confocal mikroskop dari (e) lapisan tunggal WS₂, (f) lapisan tunggal MoS₂, dan (g) heterostruktur WS₂/MoS₂. Gambar 4. 9 Kurva karakterisasi I-V (a-b) dan citra mikroskop elektroda dengan perbesaran 4 kali (a'-b') dari lapisan heterostruktur WS₂/MoS₂. (a dan a') Sampel

Gambar 4. 10 Kurva karakterisasi I-V (a-c) dan citra mikroskop elektroda dengan
perbesaran 4 kali (a'-c') dari lapisan heterostruktur WS ₂ /MoS ₂ . (a dan a') Sampel
C. (b dan b') sampel D. (c dan c') sampel E 43
Gambar 4. 11 Kurva karakterisasi I-V (a-c) dan citra mikroskop elektroda dengan
perbesaran 4 kali (a'-c') dari lapisan heterostruktur WS ₂ /MoS ₂ . (a dan a') Sampel
F. (b dan b') sampel G. (c dan c') sampel H 45
Gambar 4. 12 Kurva karakterisasi I-V (a-d) dan citra mikroskop elektroda dengan
perbesaran 4 kali (a'-d') dari lapisan tunggal MoS ₂ . (a dan a') Sampel A. (b dan
b') sampel B. (c dan c') sampel C. (d dan d') sampel D 47
Gambar 4. 13 Kurva karakterisasi I-V (a-d) dan citra mikroskop elektroda dengan
perbesaran 4 kali (a'-d') dari lapisan tunggal WS ₂ . (a dan a') Sampel A. (b dan
b') sampel B. (c dan c') sampel C. (d dan d') sampel D 49
Gambar 4. 14 (a) Kurva karakterisasi I-V sampel A dengan skala linier. (b) grafik
sampel A dengan arus bersekala logaritmik. (c) grafik sampel A pada daerah bias
negatif dengan skala logaritmik ganda. (d) dan (e) Ilustrasi proses H2O dapat
memfasilitasi muatan positif terperangkap (trapping) dan detrapping pada
kekosongan atom S 52
Gambar 4. 15 (a) Kurva I-V sampel WS_2 yang diaplikasikan sweep time berbeda 1
detik, 3 detik, dan 5 detik yang diplot bersama. (b) Kurva nilai lebar histerisis dari
sweep time berbeda. Inset merupakan kurva (a) diplot semilog 53
Gambar 4. 16 . Kurva CV sampel eksfoliasi single drop. (a) MoS ₂ . (b) WS ₂ . (c)
WS ₂ /MoS ₂ . Kurva kapasitansi spesifik per-siklus sampel eksfoliasi. (d) MoS ₂ . (e)
WS ₂ . (f) WS ₂ /MoS ₂
Gambar 4. 17 Kurva CV sampel non-eksfoliasi. (a) MoS ₂ . (b) WS ₂ . (c)
$WS_{2}/MoS_{2}.\ Kurva\ kapasitansi\ spesifik\ per-siklus\ sampel\ non-eksfoliasi.\ (d)\ MoS_{2}.$
(e) WS ₂ . (f) WS ₂ /MoS ₂
Gambar 4. 18 Kurva CV sampel multiple drop casting. (a) MoS ₂ . (b) WS ₂ . (c)
WS_2/MoS_2 . Kurva kapasitansi spesifik per-siklus sampel multiple drop casting. (d)
MoS ₂ . (e) WS ₂ . (f) WS ₂ /MoS ₂
Gambar 4. 19 Kurva perbandingan kapasitansi spesifik (satuan mF/g) semua
sampel pada siklus ke-1, 5, dan 10
Gambar 4. 20 Kurva perbandingan kapasitansi spesifik (satuan mF/cm ²) semua
sampel pada siklus ke-1, 5, dan 10