This book is provided in digital form with the permission of the rightsholder as part of a
Google project to make the world's books discoverable online.

The rightsholder has graciously given you the freedom to download all pages of this
book. No additional commercial or other uses have been granted.

Please note that all copyrights remain reserved.
About Google Books

Google’s mission is to organize the world’s information and to make it universally
accessible and useful. Google Books helps readers discover the world’s books while
helping authors and publishers reach new audiences. You can search through the full
text of this book on the web at hffp://books.qgoogle.com/

https://books.google.com/books?id=tH3EDwAAQBAJ

TinyML

Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power
Microcontrollers

Pete Warden and Daniel Situnayake

TinyML

by Pete Warden and Daniel Situnayake

Copyright © 2020 Pete Warden and Daniel Situnayake. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Mike Loukides

Development Editor: Nicole Taché

Production Editor: Beth Kelly

Copyeditor: Octal Publishing, Inc.

Proofreader: Rachel Head

Indexer: WordCo, Inc.

Interior Designer: David Futato

Hlustrator: Rebecca Demarest

December 2019: First Edition
Revision History for the First Edition
e 2019-12-13: First Release

e 2020-08-07: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492052043 for release details.

The O’Reilly logo is a registered trademark of O'Reilly Media, Inc. TinyML, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc. TinyML is a

trademark of the tinyML Foundation and is used with permission.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

978-1-492-05204-3
[LsI]

Preface

Something about electronics has captured my imagination for as long as I can
remember. We've learned to dig rocks from the earth, refine them in mysterious ways,
and produce a dizzying array of tiny components that we combine—according to
arcane laws—to imbue them with some essence of life.

To my eight-year-old mind, a battery, switch, and filament bulb were enchanting
enough, let alone the processor inside my family’s home computer. And as the years
have passed, I've developed some understanding of the principles of electronics and
software that make these inventions work. But what has always struck me is the way a
system of simple elements can come together to create a subtle and complex thing, and
deep learning really takes this to new heights.

One of this book’s examples is a deep learning network that, in some sense,
understands how to see. It’s made up of thousands of virtual “neurons,” each of which
follows some simple rules and outputs a single number. Alone, each neuron isn’t
capable of much, but combined, and—through training—given a spark of human
knowledge, they can make sense of our complex world.

There’s some magic in this idea: simple algorithms running on tiny computers made
from sand, metal, and plastic can embody a fragment of human understanding. This is
the essence of TinyML, a term that Pete coined and will introduce in Chapter 1. In the
pages of this book, you’ll find the tools you’ll need to build these things yourself.

Thank you for being our reader. This is a complicated subject, but we've tried hard to
keep things simple and explain all the concepts that you'll need. We hope you enjoy
what we’ve written, and we’re excited to see what you create!

Daniel Situnayake
Conventions Used in This Book

The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

Tip
This element signifies a tip or suggestion.
Note

This element signifies a general note.
Warning

This element indicates a warning or caution.
Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://tinymlbook.com/supplemental.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of the example
code from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “TinyML by Pete Warden
and Daniel Situnayake (O’Reilly). Copyright Pete Warden and Daniel Situnayake, 978-1-
492-05204-3.”

If you feel your use of code examples falls outside fair use or the permission given

above, feel free to contact us at permissions@oreilly.com.
O’Reilly Online Learning
Note

For more than 40 years, O'Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning paths,
interactive coding environments, and a vast collection of text and video from O'Reilly
and 200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:
O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at https://oreilly/tiny.

Email tinyml-book@googlegroups.com to comment or ask technical questions about this
book.

For news and more information about our books and courses, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
Acknowledgments

We'd like to give special thanks to Nicole Tache for her wonderful editing, Jennifer
Wang for her inspirational magic wand example, and Neil Tan for the ground-breaking
embedded ML work he did with the uTensor library. We couldn’t have written this
book without the professional support of Rajat Monga and Sarah Sirajuddin. We’d also

like to thank our partners Joanne Ladolcetta and Lauren Ward for their patience.

This book is the result of work from hundreds of people from across the hardware,
software, and research world, especially on the TensorFlow team. While we can only
mention a few, and apologies to everyone we’ve missed, we’d like to acknowledge:
Mehmet Ali Anil, Alasdair Allan, Raziel Alvarez, Paige Bailey, Massimo Banzi, Raj Batra,
Mary Bennion, Jeff Bier, Lukas Biewald, Ian Bratt, Laurence Campbell, Andrew
Cavanaugh, Lawrence Chan, Vikas Chandra, Marcus Chang, Tony Chiang, Aakanksha
Chowdhery, Rod Crawford, Robert David, Tim Davis, Hongyang Deng, Wolff Dobson,
Jared Duke, Jens Elofsson, Johan Euphrosine, Martino Facchin, Limor Fried, Nupur
Garg, Nicholas Gillian, Evgeni Gousev, Alessandro Grande, Song Han, Justin Hong, Sara
Hooker, Andrew Howard, Magnus Hyttsten, Advait Jain, Nat Jeffries, Michael Jones,
Mat Kelcey, Kurt Keutzer, Fredrik Knutsson, Nick Kreeger, Nic Lane, Shuangfeng Li,
Mike Liang, Yu-Cheng Ling, Renjie Liu, Mike Loukides, Owen Lyke, Cristian Maglie, Bill
Mark, Matthew Mattina, Sandeep Mistry, Amit Mittra, Laurence Moroney, Boris
Murmann, Ian Nappier, Meghna Natraj, Ben Nuttall, Dominic Pajak, Dave Patterson,
Dario Pennisi, Jahnell Pereira, Raaj Prasad, Frederic Rechtenstein, Vikas Reddi, Rocky
Rhodes, David Rim, Kazunori Sato, Nathan Seidle, Andrew Selle, Arpit Shah, Marcus
Shawcroft, Zach Shelby, Suharsh Sivakumar, Ravishankar Sivalingam, Rex St. John,
Dominic Symes, Olivier Temam, Phillip Torrone, Stephan Uphoff, Eben Upton, Lu
Wang, Tiezhen Wang, Paul Whatmough, Tom White, Edd Wilder-James, and Wei Xiao.

Chapter 1. Introduction

The goal of this book is to show how any developer with basic experience using a
command-line terminal and code editor can get started building their own projects
running machine learning (ML) on embedded devices.

When I first joined Google in 2014, I discovered a lot of internal projects that I had no
idea existed, but the most exciting was the work that the OK Google team were doing.
They were running neural networks that were just 14 kilobytes (KB) in size! They
needed to be so small because they were running on the digital signal processors
(DSPs) present in most Android phones, continuously listening for the “OK Google”
wake words, and these DSPs had only tens of kilobytes of RAM and flash memory. The
team had to use the DSPs for this job because the main CPU was powered off to
conserve battery, and these specialized chips use only a few milliwatts (mW) of power.

Coming from the image side of deep learning, I'd never seen networks so small, and the
idea that you could use such low-power chips to run neural models stuck with me. As
worked on getting TensorFlow and later TensorFlow Lite running on Android and i0S
devices, I remained fascinated by the possibilities of working with even simple chips. I
learned that there were other pioneering projects in the audio world (like Pixel’s Music
IQ) for predictive maintenance (like PsiKick) and even in the vision world (Qualcomm’s
Glance camera module).

It became clear to me that there was a whole new class of products emerging, with the
key characteristics that they used ML to make sense of noisy sensor data, could run
using a battery or energy harvesting for years, and cost only a dollar or two. One term I
heard repeatedly was “peel-and-stick sensors,” for devices that required no battery
changes and could be applied anywhere in an environment and forgotten. Making
these products real required ways to turn raw sensor data into actionable information
locally, on the device itself, since the energy costs of transmitting streams anywhere
have proved to be inherently too high to be practical.

This is where the idea of TinyML comes in. Long conversations with colleagues across
industry and academia have led to the rough consensus that if you can run a neural
network model at an energy cost of below 1 mW, it makes a lot of entirely new
applications possible. This might seem like a somewhat arbitrary number, but if you
translate it into concrete terms, it means a device running on a coin battery has a
lifetime of a year. That results in a product that’s small enough to fit into any
environment and able to run for a useful amount of time without any human

intervention.
Note

I'm going to be jumping straight into using some technical terms to talk about what

this book will be covering, but don’t worry if some of them are unfamiliar to you; we
define their meaning the first time we use them.

At this point, you might be wondering about platforms like the Raspberry Pi, or
NVIDIA’s Jetson boards. These are fantastic devices, and I use them myself frequently,
but even the smallest Pi is similar to a mobile phone’s main CPU and so draws
hundreds of milliwatts. Keeping one running even for a few days requires a battery
similar to a smartphone’s, making it difficult to build truly untethered experiences.
NVIDIA’s Jetson is based on a powerful GPU, and we’ve seen it use up to 12 watts of
power when running at full speed, so it’s even more difficult to use without a large
external power supply. This is usually not a problem in automotive or robotics
applications, since the mechanical parts demand a large power source themselves, but
it does make it tough to use these platforms for the kinds of products I'm most
interested in, which need to operate without a wired power supply. Happily, when
using them the lack of resource constraints means that frameworks like TensorFlow,
TensorFlow Lite, and NVIDIA’s TensorRT are available, since they’re usually based on
Linux-capable Arm Cortex-A CPUs, which have hundreds of megabytes of memory.
This book will not be focused on describing how to run on those platforms for the
reason just mentioned, but if you're interested, there are a lot of resources and
documentation available; for example, see TensorFlow Lite’s mobile documentation.

Another characteristic I care about is cost. The cheapest Raspberry Pi Zero is $5 for
makers, but it is extremely difficult to buy that class of chip in large numbers at that
price. Purchases of the Zero are usually restricted by quantity, and while the prices for
industrial purchases aren’t transparent, it’s clear that $5 is definitely unusual. By
contrast, the cheapest 32-bit microcontrollers cost much less than a dollar each. This
low price has made it possible for manufacturers to replace traditional analog or
electromechanical control circuits with software-defined alternatives for everything
from toys to washing machines. I'm hoping we can use the ubiquity of microcontrollers
in these devices to introduce artificial intelligence as a software update, without
requiring a lot of changes to existing designs. It should also make it possible to get
large numbers of smart sensors deployed across environments like buildings or

wildlife reserves without the costs outweighing the benefits or funds available.
Embedded Devices

The definition of TinyML as having an energy cost below 1 mW does mean that we
need to look to the world of embedded devices for our hardware platforms. Until a few
years ago, I wasn’t familiar with them myself—they were shrouded in mystery for me.
Traditionally they had been 8-bit devices and used obscure and proprietary toolchains,
so it seemed very intimidating to get started with any of them. A big step forward came
when Arduino introduced a user-friendly integrated development environment (IDE)

along with standardized hardware. Since then, 32-bit CPUs have become the standard,
largely thanks to Arm’s Cortex-M series of chips. When I started to prototype some ML
experiments a couple of years ago, I was pleasantly surprised by how relatively
straightforward the development process had become.

Embedded devices still come with some tough resource constraints, though. They often
have only a few hundred kilobytes of RAM, or sometimes much less than that, and have
similar amounts of flash memory for persistent program and data storage. A clock
speed of just tens of megahertz is not unusual. They will definitely not have full Linux
(since that requires a memory controller and at least one megabyte of RAM), and if
there is an operating system, it may well not provide all or any of the POSIX or
standard C library functions you expect. Many embedded systems avoid using dynamic

memory allocation functions like new or malloc() because they’re designed to be
reliable and long-running, and it’s extremely difficult to ensure that if you have a heap
that can be fragmented. You might also find it tricky to use a debugger or other
familiar tools from desktop development, since the interfaces you’ll be using to access
the chip are very specialized.

There were some nice surprises as I learned embedded development, though. Having a
system with no other processes to interrupt your program can make building a mental
model of what’s happening very simple, and the straightforward nature of a processor
without branch prediction or instruction pipelining makes manual assembly
optimization a lot easier than on more complex CPUs. I also find a simple joy in seeing
LEDs light up on a miniature computer that I can balance on a fingertip, knowing that

it’s running millions of instructions a second to understand the world around it.
Changing Landscape

It’s only recently that we’ve been able to run ML on microcontrollers at all, and the
field is very young, which means hardware, software, and research are all changing
extremely quickly. This book is a based on a snapshot of the world as it existed in 2019,
which in this area means some parts were out of date before we’d even finished writing
the last chapter. We've tried to make sure we're relying on hardware platforms that
will be available over the long term, but it’s likely that devices will continue to
improve and evolve. The TensorFlow Lite software framework that we use has a stable
API, and we’ll continue to support the examples we give in the text over time, but we
also provide web links to the very latest versions of all our sample code and
documentation. You can expect to see reference applications covering more use cases
than we have in this book being added to the TensorFlow repository, for example. We
also aim to focus on skills like debugging, model creation, and developing an
understanding of how deep learning works, which will remain useful even as the
infrastructure you’re using changes.

We want this book to give you the foundation you need to develop embedded ML
products to solve problems you care about. Hopefully we’ll be able to start you along
the road of building some of the exciting new applications I'm certain will be emerging

over the next few years in this domain.
Pete Warden

Chapter 2. Getting Started

In this chapter, we cover what you need to know to begin building and modifying
machine learning applications on low-power devices. All the software is free, and the
hardware development kits are available for less than $30, so the biggest challenge is
likely to be the unfamiliarity of the development environment. To help with that,
throughout the chapter we recommend a well-lit path of tools that we’ve found work

well together.
Who Is This Book Aimed At?

To build a TinyML project, you will need to know a bit about both machine learning
and embedded software development. Neither of these are common skills, and very
few people are experts on both, so this book will start with the assumption that you
have no background in either of these. The only requirements are that you have some
familiarity running commands in the terminal (or Command Prompt on Windows), and
are able to load a program source file into an editor, make alterations, and save it. Even
if that sounds daunting, we walk you through everything we discuss step by step, like a
good recipe, including screenshots (and screencasts online) in many cases, so we’re
hoping to make this as accessible as possible to a wide audience.

We’ll show you some practical applications of machine learning on embedded devices,
using projects like simple speech recognition, detecting gestures with a motion sensor,
and detecting people with a camera sensor. We want to get you comfortable with
building these programs yourself, and then extending them to solve problems you care
about. For example, you might want to modify the speech recognition to detect barks
instead of human speech, or spot dogs instead of people, and we give you ideas on how
to tackle those modifications yourself. Our goal is to provide you with the tools you

need to start building exciting applications you care about.
What Hardware Do You Need?

You'll need a laptop or desktop computer with a USB port. This will be your main
programming environment, where you edit and compile the programs that you run on
the embedded device. You’'ll connect this computer to the embedded device using the
USB port and a specialized adapter that will depend on what development hardware
you're using. The main computer can be running Windows, Linux, or macOS. For most
of the examples we train our machine learning models in the cloud, using Google
Colab, so don’t worry about having a specially equipped computer.

You will also need an embedded development board to test your programs on. To do
something interesting you’ll need a microphone, accelerometers, or a camera attached,
and you want something small enough to build into a realistic prototype project, along
with a battery. This was tough to find when we started this book, so we worked

together with the chip manufacturer Ambiq and maker retailer SparkFun to produce

the $15 SparkFun Edge board. All of the book’s examples will work with this device.
Tip

The second revision of the SparkFun Edge board, the SparkFun Edge 2, is due to be
released after this book has been published. All of the projects in this book are
guaranteed to work with the new board. However, the code and the instructions for
deployment will vary slightly from what is printed here. Don’t worry—each project
chapter links to a README.md that contains up-to-date instructions for deploying each
example to the SparkFun Edge 2.

We also offer instructions on how to run many of the projects using the Arduino and
Mbed development environments. We recommend the Arduino Nano 33 BLE Sense
board, and the STM32F746G Discovery kit development board for Mbed, though all of
the projects should be adaptable to other devices if you can capture the sensor data in

the formats needed. Table 2-1 shows which devices we’ve included in each project
chapter.

Table 2-1. Devices written about for each project

SparkFun Arduino Nano 33 BLE STM32F746G

Project name Chapter Edge Sense Discovery kit
Hello world Chapter 5 Included Included Included
Wake-word Chapter 7 Included Included Included
detection

Person detection Chapter 9 Included Included Not included
Magic wand Chapter 11 Included Included Not included

What If the Board | Want to Use Isn’t Listed Here?

The source code for the projects in this book is hosted on GitHub, and we
continually update it to support additional devices. Each chapter links to a project
README.md that lists all of the supported devices and has instructions on how to
deploy to them, so you can check there to find out if the device you’d like to use is
already supported.

If you have some embedded development experience, it’s easy to port the
examples to new devices even if they’re not listed.

None of these projects require any additional electronic components, aside from
person detection, which requires a camera module. If you're using the Arduino, you’ll
need the Arducam Mini 2MP Plus. And you’ll need SparkFun’s Himax HM01B0 breakout

if you’re using the SparkFun Edge.
What Software Do You Need?

All of the projects in this book are based around the TensorFlow Lite for
Microcontrollers framework. This is a variant of the TensorFlow Lite framework
designed to run on embedded devices with only a few tens of kilobytes of memory
available. All of the projects are included as examples in the library, and it’s open
source, so you can find it on GitHub.

Note

Since the code examples in this book are part of an active open source project, they are
continually changing and evolving as we add optimizations, fix bugs, and support
additional devices. It’s likely you’ll spot some differences between the code printed in
the book and the most recent code in the TensorFlow repository. That said, although
the code might drift a little over time, the basic principles you’ll learn here will remain
the same.

You'll need some kind of editor to examine and modify your code. If you’re not sure
which one you should use, Microsoft’s free VS Code application is a great place to start.
It works on macOS, Linux, and Windows, and has a lot of handy features like syntax
highlighting and autocomplete. If you already have a favorite editor you can use that,
instead; we won'’t be doing extensive modifications for any of our projects.

You'll also need somewhere to enter commands. On macOS and Linux this is known as
the terminal, and you can find it in your Applications folder under that name. On
Windows it’s known as the Command Prompt, which you can find in your Start menu.

There will also be extra software that you’ll need to communicate with your embedded
development board, but this will depend on what device you have. If you're using
either the SparkFun Edge board or an Mbed device, you’ll need to have Python
installed for some build scripts, and then you can use GNU Screen on Linux or macOS
or Tera Term on Windows to access the debug logging console, showing text output
from the embedded device. If you have an Arduino board, everything you need is

installed as part of the IDE, so you just need to download the main software package.
What Do We Hope You’ll Learn?

The goal of this book is to help more applications in this new space emerge. There is no
one “killer app” for TinyML right now, and there might never be, but we know from
experience that there are a lot of problems out there in the world that can be solved
using the toolbox it offers. We want to familiarize you with the possible solutions. We

want to take domain experts from agriculture, space exploration, medicine, consumer
goods, and any other areas with addressable issues and give them an understanding of
how to solve problems themselves, or at the very least communicate what problems
are solvable with these techniques.

With that in mind, we’re hoping that when you finish this book you’ll have a good
overview of what’s currently possible using machine learning on embedded systems at
the moment, as well as some idea of what’s going to be feasible over the next few years.
We want you to be able to build and modify some practical examples using time-series
data like audio or input from accelerometers, and for low-power vision. We’d like you
to have enough understanding of the entire system to be able to at least participate
meaningfully in design discussions with specialists about new products and hopefully
be able to prototype early versions yourself.

Since we want to see complete products emerge, we approach everything we're
discussing from a whole-system perspective. Often hardware vendors will focus on the
energy consumption of the particular component they’re selling, but not consider how
other necessary parts increase the power required. For example, if you have a
microcontroller that consumes only 1 mW, but the only camera sensor it works with
takes 10 mW to operate, any vision-based product you use it on won’t be able to take
advantage of the processor’s low energy consumption. This means that we won'’t be
doing many deep dives into the underlying workings of the different areas; instead, we
focus on what you need to know to use and modify the components involved.

For example, we won’t linger on the details of what is happening under the hood when
you train a model in TensorFlow, such as how gradients and back-propagation work.
Rather, we show you how to run training from scratch to create a model, what
common errors you might encounter and how to handle them, and how to customize
the process to build models to tackle your own problems with new datasets.

Chapter 3. Getting Up to Speed on Machine Learning

There are few areas in technology with the mystique that surrounds machine learning
and artificial intelligence (AI). Even if you’re an experienced engineer in another
domain, machine learning can seem like a dense subject with a mountain of assumed
knowledge requirements. Many developers feel discouraged when they begin to read
about ML and encounter explanations that invoke academic papers, obscure Python
libraries, and advanced mathematics. It can feel daunting to even know where to start.

In reality, machine learning can be simple to understand and is accessible to anyone
with a text editor. After you learn a few key ideas, you can easily use it in your own
projects. Beneath all the mystique is a handy set of tools for solving various types of
problems. It might sometimes feel like magic, but it’s all just code, and you don’t need a
PhD to work with it.

This book is about using machine learning with tiny devices. In the rest of this chapter,
you’ll learn all the ML you need to get started. We’ll cover the basic concepts, explore
some tools, and train a simple machine learning model. Our focus is tiny hardware, so
we won’t spend long on the theory behind deep learning, or the mathematics that
makes it all work. Later chapters will dig deeper into the tooling, and how to optimize
models for embedded devices. But by the end of this chapter, you’ll be familiar with
the key terminology, have an understanding of the general workflow, and know where
to go to learn more.

In this chapter, we cover the following:

¢ What machine learning actually is

* The types of problems it can solve

 Key terms and ideas

o The workflow for solving problems with deep learning, one of the most
popular approaches to machine learning

Tip
There are many books and courses that explain the science behind deep learning, so
we won’t be doing that here. That said, it’s a fascinating topic and we encourage you to

explore! We list some of our favorite resources in “Learning Machine Learning”. But

remember, you don’t need all the theory to start building useful things.
What Machine Learning Actually Is

Imagine you own a machine that manufactures widgets. Sometimes it breaks down,
and it’s expensive to repair. Perhaps if you collected data about the machine during

operation, you might be able to predict when it is about to break down and halt
operation before damage occurs. For instance, you could record its rate of production,
its temperature, and how much it is vibrating. It might be that some combination of
these factors indicates an impending problem. But how do you figure it out?

This is an example of the sort of problem machine learning is designed to solve.
Fundamentally, machine learning is a technique for using computers to predict things
based on past observations. We collect data about our factory machine’s performance
and then create a computer program that analyzes that data and uses it to predict
future states.

Creating a machine learning program is different from the usual process of writing
code. In a traditional piece of software, a programmer designs an algorithm that takes
an input, applies various rules, and returns an output. The algorithm’s internal
operations are planned out by the programmer and implemented explicitly through
lines of code. To predict breakdowns in a factory machine, the programmer would
need to understand which measurements in the data indicate a problem and write
code that deliberately checks for them.

This approach works fine for many problems. For example, we know that water boils at
100°C at sea level, so it’s easy to write a program that can predict whether water is
boiling based on its current temperature and altitude. But in many cases, it can be
difficult to know the exact combination of factors that predicts a given state. To
continue with our factory machine example, there might be various different
combinations of production rate, temperature, and vibration level that might indicate
a problem but are not immediately obvious from looking at the data.

To create a machine learning program, a programmer feeds data into a special kind of
algorithm and lets the algorithm discover the rules. This means that as programmers,
we can create programs that make predictions based on complex data without having
to understand all of the complexity ourselves. The machine learning algorithm builds a
model of the system based on the data we provide, through a process we call training.
The model is a type of computer program. We run data through this model to make
predictions, in a process called inference.

There are many different approaches to machine learning. One of the most popular is
deep learning, which is based on a simplified idea of how the human brain might work.
In deep learning, a network of simulated neurons (represented by arrays of numbers) is
trained to model the relationships between various inputs and outputs. Different
architectures, or arrangements of simulated neurons, are useful for different tasks. For
instance, some architectures excel at extracting meaning from image data, while other
architectures work best for predicting the next value in a sequence.

The examples in this book focus on deep learning, since it’s a flexible and powerful tool
for solving the types of problems that are well suited to microcontrollers. It might be
surprising to discover that deep learning can work even on devices with limited
memory and processing power. In fact, over the course of this book, you’ll learn how to
create deep learning models that do some really amazing things but that still fit within
the constraints of tiny devices.

The next section explains the basic workflow for creating and using a deep learning

model.
The Deep Learning Workflow

In the previous section, we outlined a scenario for using deep learning to predict when
a factory machine is likely to break down. In this section, we introduce the work
necessary to make this happen.

This process will involve the following tasks:

1. Decide on a goal

2. Collect a dataset

3. Design a model architecture
4, Train the model

5. Convert the model

6. Run inference

7. Evaluate and troubleshoot

Let’s walk through them, one by one.
Decide on a Goal

When you're designing any kind of algorithm, it’s important to start by establishing
exactly what you want it to do. It’s no different with machine learning. You need to
decide what you want to predict so you can decide what data to collect and which
model architecture to use.

In our example, we want to predict whether our factory machine is about to break
down. We can express this as a classification problem. Classification is a machine
learning task that takes a set of input data and returns the probability that this data
fits each of a set of known classes. In our example, we might have two classes:
“normal,” meaning that our machine is operating without issue, and “abnormal,”
meaning that our machine is showing signs that it might soon break down.

This means that our goal is to create a model that classifies our input data as either

“normal” or “abnormal.”
Collect a Dataset

Our factory is likely to have a lot of available data, ranging from the operating
temperature of our machine through to the type of food that was served in the
cafeteria on a given day. Given the goal we’ve just established, we can begin to identify
what data we need.

Selecting data

Deep learning models can learn to ignore noisy or irrelevant data. That said, it’s best to
train your model only using information that is relevant to solving the problem. Since
it’s unlikely that today’s cafeteria food has an impact on the functioning of our
machine, we can probably exclude it from our dataset. Otherwise, the model will need
to learn to negate that irrelevant input, and it might be vulnerable to learning
spurious associations—perhaps our machine has, coincidentally, always broken down
on days that pizza is served.

You should always try to combine your domain expertise with experimentation when
deciding whether to include data. You can also use statistical techniques to try to
identify which data is significant. If you're still unsure about including a certain data
source, you can always train two models and see which one works best!

Suppose that we’ve identified our most promising data as rate of production,
temperature, and vibration. Our next step is to collect some data so that we can train a
model.

Tip

It’s really important that the data you choose will also be available when you want to
make predictions. For example, since we have decided to train our model with
temperature readings, we will need to provide temperature readings from the exact
same physical locations when we run inference. This is because the model learns to
understand how its inputs can predict its outputs. If we originally trained the model on
temperature data from the insides of our machine, running the model on the current

room temperature is unlikely to work.
Collecting data

It’s difficult to know exactly how much data is required to train an effective model. It
depends on many factors, such as the complexity of the relationships between
variables, the amount of noise, and the ease with which classes can be distinguished.
However, there’s a rule of thumb that is always true: the more data, the better!

You should aim to collect data that represents the full range of conditions and events
that can occur in the system. If our machine can fail in several different ways, we

should be sure to capture data around each type of failure. If a variable changes
naturally over time, it’s important to collect data that represents the full range. For
example, if the machine’s temperature rises on warm days, you should be sure to
include data from both winter and summer. This diversity will help your model
represent every possible scenario, not just a select few.

The data we collect about our factory will likely be logged as a set of time series,
meaning a sequence of readings collected on a periodic basis. For example, we might
have a record of the temperature every minute, the rate of production each hour, and
the level of vibration on a second-by-second basis. After we collect the data, we’ll need

to transform these time series into a form appropriate for our model.
Labeling data

In addition to collecting data, we need to determine which data represents “normal”
and “abnormal” operation. We’ll provide this information during the training process
so that our model can learn how to classify inputs. The process of associating data with

classes is called labeling, and the “normal” and “abnormal” classes are our labels.
Note

This type of training, in which you instruct the algorithm what the data means during
training, is called supervised learning. The resulting classification model will be able to
process incoming data and predict to which class it is likely to belong.

To label the time-series data we've collected, we need a record of which periods of time
the machine was working and which periods of time it was broken. We might assume
that the period immediately prior to the machine being broken generally represents
abnormal operation. However, since we can’t necessarily spot abnormal operation
from a superficial look at the data, getting this correct might require some
experimentation!

After we’ve decided how to label the data, we can generate a time series that contains

the labels and add this to our dataset.
Our final dataset

Table 3-1 lists the data sources that we’ve assembled at this point in the workflow.

Table 3-1. Data sources

Data source Interval Sample reading
Rate of production Once every 2 minutes 100 units
Temperature Once every minute 30°C

Vibration (% of typical) Once every 10 seconds 23%

Label (“normal” or “abnormal”) Once every 10 seconds normal

The table shows the interval of each data source. For example, the temperature is
logged once per minute. We've also generated a time series that contains the labels for
the data. The interval for our labels is 1 per 10 seconds, which is the same as the
smallest interval for the other time series. This means that we can easily determine the
label for every datapoint in our data.

Now that we’ve collected our data, it’s time to use it to design and train a model.
Design a Model Architecture

There are many types of deep learning model architectures, designed to solve a wide
range of problems. When training a model, you can choose to design your own
architecture or base it on an existing architecture developed by researchers. For many
common problems, you can find pretrained models available online for free.

Over the course of this book we’ll introduce you to several different model
architectures, but there are a huge number of possibilities beyond what is covered
here. Designing a model is both an art and a science, and model architecture is a major
area of research. New architectures are invented literally every day.

When deciding on an architecture, you need to think about the type of problem you
are trying to solve, the type of data you have access to, and the ways you can transform
that data before feeding it into a model (we discuss transforming data shortly). The
fact is, because the most effective architecture varies depending on the type of data
that you are working with, your data and the architecture of your model are deeply
intertwined. Although we introduce them here under separate headings, they’ll always
be considered together.

You also need to think about the constraints of the device you will be running the
model on, since microcontrollers generally have limited memory and slow processors,
and larger models require more memory and take more time to run—the size of a
model depends on the number of neurons it contains, and the way those neurons are

connected. In addition, some devices are equipped with hardware acceleration that can
speed up the execution of certain types of model architectures, so you might want to
tailor your model to the strengths of the device you have in mind.

In our case, we might start by training a simple model with a few layers of neurons and
then refining the architecture in an iterative process until we get a useful result. You’ll
see how to do that later in this book.

Deep learning models accept input and generate output in the form of tensors. For the
purposes of this book,! a tensor is essentially a list that can contain either numbers or
other tensors; you can think of it as similar to an array. Our hypothetical simple model
will take a tensor as its input. The following subsection describes how we transform
our data into this form.

Dimensions

The structure of a tensor is known as its shape, and they come in multiple
dimensions. We talk about tensors throughout this book, so here is some useful
terminology:

Vector

A vector is a list of numbers, similar to an array. It’s the name we give a tensor

with a single dimension (a 1D tensor). The following is a vector of shape (5,)
because it contains five numbers in a single dimension:

[42 35 8 643 7]

Matrix

A matrix is a 2D tensor, similar to a 2D array. The following matrix is of shape
(3, 3) because it contains three vectors of three numbers:

e
~N AR
[e oV, I \N)
0w
e] hd

Higher-dimensional tensors

Any shape with more than two dimensions is just referred to as a tensor. Here’s
a 3D tensor that has shape (2, 3, 3) because it contains two matrices of

shape (3, 3):

[[[10 20 30]
[40 50 60]
[70 80 90]]

[[11 21 31]
[41 51 61]
[71 81 91]]]

Scalar

A single number, known as a scalar, is technically a zero-dimensional tensor.
For example, the number 42 is a scalar.

Generating features from data

We've established that our model will accept some type of tensor as its input. But as we
discussed earlier, our data comes in the form of time series. How do we transform that
time-series data into a tensor that we can pass into the model?

Our task now is to decide how to generate features from our data. In machine learning,
the term feature refers to a particular type of information on which a model is trained.
Different types of models are trained on different types of features. For example, a
model might accept a single scalar value as its sole input feature.

But inputs can be much more complex than this: a model designed to process images
might accept a multidimensional tensor of image data as its input, and a model
designed to predict based on multiple features might accept a vector containing
multiple scalar values, one for each feature.

Recall that we decided that our model should use rate of production, temperature, and
vibration to make its predictions. In their raw form, as time series with different
intervals, these will not be suitable to pass into the model. The following section
explains why.

Windowing

In the following diagram, each piece of data in our time series is represented by a star.
The current label is included in the data, since the label is required for training. Our
goal is to train a model we can use to predict whether the machine is operating
normally or abnormally at any given moment based on the current conditions:

Production: * * (every 2 minutes)

Temperature: * * * (every minute)
Vibration: kR ok ok ok ok ok k ok ok ok ok ko ok K (every 10 seconds)
Label: Fok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok (every 10 seconds)

However, since our time series each have different intervals (like once per minute, or
once per 10 seconds), if we pass in only the data available at a given moment, it might
not include all of the types of data we have available. For example, in the moment
highlighted in the following image, only vibration is available. This would mean that
our model would only have information about vibration when attempting to make its
prediction:

Production: * *
Temperature: * * *
Vibration: * k k k% % % *k k k k% %k k k * % *|*%
Label: * k k k% % % *k k k k% %k k k * % *|*%

One solution to this problem might be to choose a window in time, and combine all of
the data in this window into a single set of values. For example, we might decide on a
one-minute window and look at all the values contained within it:

Production: * *
Temperature: * * *

Vibration: * k Kk Kk Kk k Kk Kk Kk *k %% % k * *x *
Label: * k Kk Kk Kk k Kk Kk Kk * k% % * * * *

If we average all the values in the window for each time series and take the most
recent value for any that lack a datapoint in the current window, we end up with a set
of single values. We can decide how to label this snapshot based on whether there are
any “abnormal” labels present in the window. If there’s any “abnormal” present at all,
the window should be labeled “abnormal.” If not, it should be labeled “normal”:

Production: * * Average: 102
Temperature: * * * Average: 34°C
Vibration: ok ok ok ok ok ok % &k % k% % & % % x| Average: 18%
Label: ¥ ok ok ok ok ok ok ko k ko x|x % % % % %| |abel: "normal"

The three non-label values are our features! We can pass them into our model as a
vector, with one element for each time series:

[102 34 .18]

During training, we can calculate a new window for every 10 seconds of data and pass
it into our model, using the label to inform the training algorithm of our desired
output. During inference, whenever we want to use the model to predict abnormal
behavior, we can just look at our data, calculate the most recent window, run it
through the model, and receive a prediction.

This is a simplistic approach, and it might not always turn out to work in practice, but
it’s a good enough starting point. You’ll quickly find that machine learning is all about
trial and error!

Before we move on to training, let’s go over one last thing about input values.
Normalization

Generally, the data you feed into a neural network will be in the form of tensors filled
with floating-point values, or floats. A float is a data type used to represent numbers that
have decimal points. For the training algorithm to work effectively, these floating-
point values need to be similar in size to one another. In fact, it’s ideal if all values are
expressed as numbers in the range of 0 to 1.

Let’s take another look at our input tensor from the previous section:
[162 34 .18]

These numbers are each at very different scales: the temperature is more than 100,
whereas the vibration is expressed as a fraction of 1. To pass these values into our
network, we need to normalize them so that they are all in a similar range.

One way of doing this is to calculate the mean of each feature across the dataset and
subtract it from the values. This has the effect of squashing the numbers down so that
they are closer to zero. Here’s an example:

Temperature series:
[108 104 102 103 102]

Mean:
103.8

Normalized values, calculated by subtracting 103.8 from each temperature:
[4.2 0.2 -1.8 -0.8 -1.8]

One situation in which you’ll frequently encounter normalization, implemented in a
different way, is when images are fed into a neural network. Computers often store

images as matrices of 8-bit integers, whose values range from 0 to 255. To normalize
these values so that they are all between 0 and 1, each 8-bit value is multiplied by

1/255. Here’s an example with a 3 x 3-pixel grayscale image, in which each pixel’s
value represents its brightness:

Ooriginal 8-bit values:
[[255 175 30]

[0 45 24]

[130 192 87]]

Normalized values:

[[1. 0.68627451 0.11764706]
[o. 0.17647059 0.09411765]
[0.50980392 0.75294118 0.34117647]]

Thinking with ML

So far, we've learned how to start thinking about solving problems with machine
learning. In the context of our factory scenario, we’ve walked through deciding on a
suitable goal, collecting and labeling the appropriate data, designing the features we
are going to pass into our model, and choosing a model architecture. No matter what
problem we are trying to solve, we’ll use the same approach. It’s important to note that
this is an iterative process, and we often go back and forth through the stages of the

ML workflow until we’ve arrived at a model that works—or decided that the task is too
difficult.

For example, imagine that we’re building a model to predict the weather. We’ll need to
decide on our goal (for instance, to predict whether it’s going to rain tomorrow),
collect and label a dataset (such as weather reports from the past few years), design
the features that we’ll feed to our model (perhaps the average conditions over the past
two days), and choose a model architecture suitable for this type of data and the device
that we want to run it on. We’ll come up with some initial ideas, test them out, and
tweak our approach until we get good results.

The next step in our workflow is training, which we explore in the following section.
Train the Model

Training is the process by which a model learns to produce the correct output for a
given set of inputs. It involves feeding training data through a model and making small
adjustments to it until it makes the most accurate predictions possible.

As we discussed earlier, a model is a network of simulated neurons represented by
arrays of numbers arranged in layers. These numbers are known as weights and biases,
or collectively as the network’s parameters.

When data is fed into the network, it is transformed by successive mathematical
operations that involve the weights and biases in each layer. The output of the model is
the result of running the input through these operations. Figure 3-1 shows a simple
network with two layers.

The model’s weights start out with random values, and biases typically start with a
value of 0. During training, batches of data are fed into the model, and the model’s
output is compared with the desired output (which in our case is the correct label,
“normal” or “abnormal”). An algorithm called backpropagation adjusts the weights and
biases incrementally so that over time, the output of the model gets closer to matching
the desired value. Training, which is measured in epochs (meaning iterations),
continues until we decide to stop.

Output

Layer 2

Layer 1

Input

Figure 3-1. A simple deep learning network with two layers

We generally stop training when a model’s performance stops improving. At the point
that it begins to make accurate predictions, it is said to have converged. To determine
whether a model has converged, we can analyze graphs of its performance during
training. Two common performance metrics are loss and accuracy. The loss metric gives
us a numerical estimate of how far the model is from producing the expected answers,
and the accuracy metric tells us the percentage of the time that it chooses the correct
prediction. A perfect model would have a loss of 0.0 and an accuracy of 100%, but real
models are rarely perfect.

Figure 3-2 shows the loss and accuracy during training for a deep learning network.
You can see how as training progresses, accuracy increases and loss is reduced, until
we reach a point at which the model no longer improves.

To attempt to improve the model’s performance, we can change our model
architecture, and we can adjust various values used to set up the model and moderate
the training process. These values are collectively known as hyperparameters, and they
include variables such as the number of training epochs to run and the number of
neurons in each layer. Each time we make a change, we can retrain the model, look at
the metrics, and decide whether to optimize further. Hopefully, time and iterations
will result in a model with acceptable accuracy!

1.0
0.8 A
wv
w0
S
< 06 —— Accurac
a A y
\
® \ -=-- Loss
8 \
S04\
< N
.
\
\\
0.2 A e, g
T T L T L]

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
Epochs

Figure 3-2. A graph showing model convergence during training

Note

It’s important to remember there’s no guarantee that you’ll be able to achieve good
enough accuracy for the problem you are trying to solve. There isn’t always enough
information contained within a dataset to make accurate predictions, and some
problems just can’t be solved, even with state-of-the-art deep learning. That said, your
model may be useful even if it is not 100% accurate. In the case of our factory example,
being able to predict abnormal operation even part of the time could be a big help.
Underfitting and overfitting

The two most common reasons a model fails to converge are underfitting and overfitting.

A neural network learns to fit its behavior to the patterns it recognizes in data. If a
model is correctly fit, it will produce the correct output for a given set of inputs. When
a model is underfit, it has not yet been able to learn a strong enough representation of
these patterns to be able to make good predictions. This can happen for a variety of
reasons, most commonly that the architecture is too small to capture the complexity of
the system it is supposed to model or that it has not been trained on enough data.

When a model is overfit, it has learned its training data too well. The model is able to
exactly predict the minutiae of its training data, but it is not able to generalize its
learning to data it has not previously seen. Often this happens because the model has
managed to entirely memorize the training data, or it has learned to rely on a shortcut
present in the training data but not in the real world.

For example, imagine you are training a model to classify photos as containing either
dogs or cats. If all the dog photos in your training data are taken outdoors, and all the
cat photos are taken indoors, your model may learn to cheat and use the presence of
the sky in each photograph to predict which animal it is. This means that it might
misclassify future dog selfies if they happen to be taken indoors.

There are many ways to fight overfitting. One possibility is to reduce the size of the
model so it does not have enough capacity to learn an exact representation of its
training set. A set of techniques known as regularization can be applied during training
to reduce the degree of overfitting. To make the most of limited data, a technique
called data augmentation can be used to generate new, artificial datapoints by slicing
and dicing the existing data. But the best way to beat overfitting, when possible, is to
get your hands on a larger and more varied dataset. More data always helps!

Regularization and Data Augmentation

Regularization techniques are used to make deep learning models less likely to
overfit their training data. They generally involve constraining the model in some
way in order to prevent it from perfectly memorizing the data that it’s fed during
training.

There are several methods used for regularization. Some, such as L1 and L2
regularization, involve tweaking the algorithms used during training to penalize
complex models that are prone to overfitting. Another, named dropout, involves
randomly cutting the connections between neurons during training. We’ll look at
regularization in practice later in the book.

We'll also explore data augmentation, which is a way to artificially expand the size
of a training dataset. This is done by creating multiple additional versions of every
training input, each transformed in a way that preserves its meaning but varies its
exact composition. In one of our examples, we train a model to recognize speech
from audio samples. We augment our original training data by adding artificial
background noise and shifting the samples around in time.

Training, validation, and testing

To assess the performance of a model, we can look at how it performs on its training
data. However, this only tells us part of the story. During training, a model learns to fit
its training data as closely as possible. As we saw earlier, in some cases the model will
begin to overfit the training data, meaning that it will work well on the training data
but not in real life.

To understand when this is happening, we need to validate the model using new data
that wasn’t used in training. It’s common to split a dataset into three parts—training,
validation, and test. A typical split is 60% training data, 20% validation, and 20% test.
This splitting must be done so that each part contains the same distribution of
information, and in a way that preserves the structure of the data. For example, since
our data is a time series, we could potentially split it into three contiguous chunks of
time. If our data were not a time series, we could just sample the datapoints randomly.

During training, the training dataset is used to train the model. Periodically, data from
the validation dataset is fed through the model, and the loss is calculated. Because the
model has not seen this data before, its loss score is a more reliable measure of how the
model is performing. By comparing the training and validation loss (and accuracy, or
whichever other metrics are available) over time, you can see whether the model is
overfitting.

Figure 3-3 shows a model that is overfitting. You can see how as the training loss has
decreased, the validation loss has gone up. This means that the model is becoming
better at predicting the training data but is losing its ability to generalize to new data.

— Validation loss
=== Training loss

0.8 -

0.6 1
a
~ 0.4
\
0.2 \\
\
\
N
\\
0.0 - O e i e o e i e At st B e .
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Epochs
Figure 3-3. A graph showing model overfitting during training

As we tweak our models and training processes to improve performance and avoid
overfitting, we will hopefully start to see our validation metrics improve.

However, this process has an unfortunate side effect. By optimizing to improve the
validation metrics, we might just be nudging the model toward overfitting both the
training and the validation data! Each adjustment we make will fit the model to the
validation data slightly better, and in the end, we might have the same overfitting
problem as before.

To verify that this hasn’t happened, our final step when training a model is to run it on
our test data and confirm that it performs as well as during validation. If it doesn’t, we
have optimized our model to overfit both our training and validation data. In this case,
we might need to go back to the drawing board and come up with a new model
architecture, since if we continue to tweak to improve performance on our test data,
we’ll just overfit to that, too.

After we have a model that performs acceptably well with training, validation, and test

data, the training part of this process is over. Next, we get our model ready to run on-

device!
Convert the Model

Throughout this book, we use TensorFlow to build and train models. A TensorFlow
model is essentially a set of instructions that tell an interpreter how to transform data
in order to produce an output. When we want to use our model, we just load it into
memory and execute it using the TensorFlow interpreter.

However, TensorFlow’s interpreter is designed to run models on powerful desktop
computers and servers. Since we’ll be running our models on tiny microcontrollers, we
need a different interpreter that’s designed for our use case. Fortunately, TensorFlow
provides an interpreter and accompanying tools to run models on small, low-powered
devices. This set of tools is called TensorFlow Lite.

Before TensorFlow Lite can run a model, it first must be converted into the TensorFlow
Lite format and then saved to disk as a file. We do this using a tool named the
TensorFlow Lite Converter. The converter can also apply special optimizations aimed at
reducing the size of the model and helping it run faster, often without sacrificing
performance.

In Chapter 13, we dive into the details of TensorFlow Lite and how it helps us run
models on tiny devices. For now, all you need to know is that you’ll need to convert

your models, and that the conversion process is quick and easy.
Run Inference

After the model has been converted, it’s ready to deploy! We’ll now use the TensorFlow
Lite for Microcontrollers C++ library to load the model and make predictions.

Since this is the part where our model meets our application code, we need to write
some code that takes raw input data from our sensors and transforms it into the same
form that our model was trained on. We then pass this transformed data into our
model and run inference.

This will result in output data containing predictions. In the case of our classifier
model, the output will be a score for each of our classes, “normal” and “abnormal.” For
models that classify data, typically the scores for all of the classes will sum to 1, and
the class with the highest score will be the prediction. The higher the difference
between the scores, the higher the confidence in the prediction. Table 3-2 lists some
example outputs.

Table 3-2. Example outputs

Normal score Abnormal score Explanation

0.1 0.9 High confidence in an abnormal state

0.9 0.1 High confidence in a normal state

0.7 0.3 Slight confidence in a normal state

0.49 0.51 Inconclusive result, since neither state is significantly ahead

In our factory machine example, each individual inference takes into account only a
snapshot of the data—it tells us the probability of an abnormal state within the last 10
seconds, based on various sensor readings. Since real-world data is often messy and
machine learning models aren’t perfect, it’s possible that a temporary glitch might
result in an incorrect classification. For example, we might see a spike in a
temperature value due to a temporary sensor malfunction. This transient, unreliable
input might result in an output classification that momentarily doesn’t reflect reality.

To prevent these momentary glitches from causing problems, we could potentially
take the average of all of our model’s outputs across a period of time. For example, we
could run our model on the current data window every 10 seconds, and take the
averages of the last 6 outputs to give a smoothed score for each class. This would mean
that transient issues are ignored, and we only act upon consistent behavior. We use
this technique to help with wake-word detection in Chapter 7.

After we have a score for each class, it’s up to our application code to decide what to
do. Perhaps if an abnormal state is detected consistently for one minute, our code will

send a signal to shut down our machine and alert the maintenance team.
Evaluate and Troubleshoot

After we’ve deployed our model and have it running on-device, we’ll start to see
whether its real-world performance approaches what we hoped. Even though we’ve
already proved that our model makes accurate predictions on its test data,
performance on the actual problem might be different.

There are many reasons why this might happen. For example, the data used in training
might not be exactly representative of the data available in real operation. Perhaps due
to local climate, our machine’s temperature is generally cooler than the one from
which our dataset was collected. This might affect the predictions made by our model,
such that they are no longer as accurate as expected.

Another possibility is that our model might have overfit our dataset without us
realizing. In “Train the Model”, we learned how this can happen by accident when the
dataset happens to contain additional signals that a model can learn to recognize in
place of those we expect.

If our model isn’t working in production, we’ll need to do some troubleshooting. First,
we rule out any hardware problems (like faulty sensors or unexpected noise) that
might be affecting the data that gets to our model. Second, we capture some data from
the device where the model is deployed and compare it with our original dataset to
make sure that it is in the same ballpark. If not, perhaps there’s a difference in
environmental conditions or sensor characteristics that we weren’t expecting. If the
data checks out, it might be that overfitting is the problem.

After we’ve ruled out hardware issues, the best fix for overfitting is often to train with
more data. We can capture additional data from our deployed hardware, combine it
with our original dataset, and retrain our model. In the process, we can apply
regularization and data augmentation techniques to help make the most of the data we
have.

Reaching good real-world performance can sometimes take some iteration on your
model, your hardware, and the accompanying software. If you run into a problem,
treat it like any other technology issue. Take a scientific approach to troubleshooting,

eliminating possible factors, and analyze your data to figure out what is going wrong.
Wrapping Up

Now that you're familiar with the basic workflow used by machine learning
practitioners, we’re ready to take the next steps in our TinyML adventure.

In Chapter 4, we’ll build our first model and deploy it to some tiny hardware!

! This definition of the word tensor is different from the mathematical and physics
definitions of the word, but it has become the norm in data science.

Chapter 4. The “Hello World” of TinyML: Building and Training a Model

In Chapter 3, we learned the basic concepts of machine learning and the general
workflow that machine learning projects follow. In this chapter and the next, we’ll
start putting our knowledge into practice. We’re going to build and train a model from
scratch and then integrate it into a simple microcontroller program.

In the process, you'll get your hands dirty with some powerful developer tools that are
used every day by cutting-edge machine learning practitioners. You'll also learn how
to integrate a machine learning model into a C++ program and deploy it to a
microcontroller to control current flowing in a circuit. This might be your first taste of
mixing hardware and ML, and it should be fun!

You can test the code that we write in these chapters on your Mac, Linux, or Windows
machine, but for the full experience, you’ll need one of the embedded devices
mentioned in “What Hardware Do You Need?”:

e Arduino Nano 33 BLE Sense
e SparkFun Edge

¢ ST Microelectronics STM32F746G Discovery kit

To create our machine learning model, we’ll use Python, TensorFlow, and Google’s
Colaboratory, which is a cloud-based interactive notebook for experimenting with
Python code. These are some of the most important tools for real-world machine

learning engineers, and they’re all free to use.
Note

Wondering about the title of this chapter? It’s a tradition in programming that new
technologies are introduced with example code that demonstrates how to do
something very simple. Often, the simple task is to make a program output the words,
“Hello, world.” There’s no clear equivalent in ML, but we’re using the term “hello
world” to refer to a simple, easy-to-read example of an end-to-end TinyML application.

Over the course of this chapter, we will do the following:

1. Obtain a simple dataset.

2. Train a deep learning model.

3. Evaluate the model’s performance.
4, Convert the model to run on-device.

5. Write code to perform on-device inference.

6. Build the code into a binary.

7. Deploy the binary to a microcontroller.

All the code that we will use is available in TensorFlow’s GitHub repository.

We recommend that you walk through each part of this chapter and then try running
the code. There are instructions on how to do this along the way. But before we start,

let’s discuss exactly what we’re going to build.
What We’re Building

In Chapter 3, we discussed how deep learning networks learn to model patterns in
their training data so they can make predictions. We’re now going to train a network
to model some very simple data. You’ve probably heard of the sine function. It’s used
in trigonometry to help describe the properties of right-angled triangles. The data
we'll be training with is a sine wave, which is the graph obtained by plotting the result
of the sine function over time (see Figure 4-1).

Our goal is to train a model that can take a value, x, and predict its sine, y. In a real-

world application, if you needed the sine of x, you could just calculate it directly.
However, by training a model to approximate the result, we can demonstrate the
basics of machine learning.

The second part of our project will be to run this model on a hardware device. Visually,
the sine wave is a pleasant curve that runs smoothly from -1 to 1 and back. This makes
it perfect for controlling a visually pleasing light show! We’ll be using the output of our
model to control the timing of either some flashing LEDs or a graphical animation,
depending on the capabilities of the device.

1.00 -
0.75 1 =
0.50 -

0.25 1

0.00

-0.25 A

Result of sine(time)

-0.50 14

-0.75 1 -

-1.00 A

0 2 4 6 8 10 12 14

Time
Figure 4-1. A sine wave

Online, you can see an animated GIF of this code flashing the LEDs of a SparkFun Edge.
Figure 4-2 is a still from this animation, showing a couple of the device’s LEDs lit. This

may not be a particularly useful application of machine learning, but in the spirit of a

“hello world” example, it’s simple, fun, and will help demonstrate the basic principles
you need to know.

After we get our basic code working, we’ll be deploying it to three different devices:
the SparkFun Edge, an Arduino Nano 33 BLE Sense, and an ST Microelectronics

STM32F746G Discovery kit.
Note

Since TensorFlow is an actively developed open source project that is continually
evolving, you might notice some slight differences between the code printed here and
the code hosted online. Don’t worry—even if a few lines of code change, the basic
principles remain the same.

orFk:-w

Et .?mai "

31 HH 0O

Figure 4-2. The code running on a SparkFun Edge

Our Machine Learning Toolchain

To build the machine learning parts of this project, we're using the same tools used by
real-world machine learning practitioners. This section introduces them to you.
Python and Jupyter Notebooks

Python is the favorite programming language of machine learning scientists and
engineers. It’s easy to learn, works well for many different applications, and has a ton
of libraries for useful tasks involving data and mathematics. The vast majority of deep
learning research is done using Python, and researchers often release the Python
source code for the models they create.

Python is especially great when combined with something called Jupyter Notebooks. This
is a special document format that allows you to mix writing, graphics, and code that
can be run at the click of a button. Jupyter notebooks are widely used as a way to
describe, explain, and explore machine learning code and problems.

We'll be creating our model inside of a Jupyter notebook, which permits us to do
awesome things to visualize our data during development. This includes displaying
graphs that show our model’s accuracy and convergence.

If you have some programming experience, Python is easy to read and learn. You

should be able to follow this tutorial without any trouble.
Google Colaboratory

To run our notebook we’ll use a tool called Colaboratory, or Colab for short. Colab is

made by Google, and it provides an online environment for running Jupyter notebooks.
It’s provided for free as a tool to encourage research and development in machine
learning.

Traditionally, you needed to create a notebook on your own computer. This required
installing a lot of dependencies, such as Python libraries, which can be a headache. It
was also difficult to share the resulting notebook with other people, since they might
have different versions of the dependencies, meaning the notebook might not run as
expected. In addition, machine learning can be computationally intensive, so training
models might be slow on your development computer.

Colab allows you to run notebooks on Google’s powerful hardware, at zero cost. You
can edit and view your notebooks from any web browser, and you can share them with
other people, who are guaranteed to get the same results when they run them. You can
even configure Colab to run your code on specially accelerated hardware that can

perform training more quickly than a normal computer.
TensorFlow and Keras

TensorFlow is a set of tools for building, training, evaluating, and deploying machine
learning models. Originally developed at Google, TensorFlow is now an open source
project built and maintained by thousands of contributors across the world. It is the
most popular and widely used framework for machine learning. Most developers
interact with TensorFlow via its Python library.

TensorFlow does many different things. In this chapter we’ll use Keras, TensorFlow’s
high-level API that makes it easy to build and train deep learning networks. We’ll also
use TensorFlow Lite, a set of tools for deploying TensorFlow models to mobile and
embedded devices, to run our model on-device.

Chapter 13 will cover TensorFlow in much more detail. For now, just know that it is an
extremely powerful and industry-standard tool that will continue to serve your needs

as you go from beginner to deep learning expert.
Building Our Model

We’re now going to walk through the process of building, training, and converting our
model. We include all of the code in this chapter, but you can also follow along in Colab
and run the code as you go.

First, load the notebook. After the page loads, at the top, click the “Run in Google
Colab” button, as shown in Figure 4-3. This copies the notebook from GitHub into
Colab, allowing you to run it and make edits.

Run in Google Colab | View source on GitHub

Figure 4-3. The “Run in Google Colab” button

Problems Loading the Notebook

As of this writing, there’s a known issue with GitHub that results in intermittent
error messages when displaying Jupyter notebooks. If you see the message “Sorry,
something went wrong. Reload?” when trying to access the notebook, you can
open it directly in Colab by using the following process. Copy the part of the
notebook’s GitHub URL that appears after https://github.com:

tensorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/
hello_world/create_sine_model.ipynb

And prepend it with https://colab.research.google.com/github. This will result in a
full URL:

https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/
tensorflow/1lite/micro/examples/hello_world/train/
train_hello_world_model.ipynb

Navigate to that URL in your browser to open the notebook directly in Colab.

By default, in addition to the code, the notebook contains a sample of the output you
should expect to see when the code is run. Since we’ll be running through the code in
this chapter, let’s clear this output so the notebook is in a pristine state. To do this, in
Colab’s menu, click Edit and then select “Clear all outputs,” as shown in Figure 4-4.

) create_sine_model.ipynb B

File Edit View Insert Runtime Tools Hel

+ Code +

Table of cont:

Select all cells 38/Ctrl+Shift+A
Licensed und: Cut selection
(the "License” .

Copy selection

Create and cc Paste

Delete selected cells $/CtrI+M D
Import de

Find and replace... 3/Ctrl+H
Generate

Find next 8/Ctrl+G
Add some Find previous %R/Ctrl+Shift+G

Splitour ¢ Notebook settings

Designal ghowyhide code

Train the | Clear all outputs

Figure 4-4. The “Clear all outputs” option

Nice work. Our notebook is now ready to go!

Tip

If you're already familiar with machine learning, TensorFlow, and Keras, you might
want to skip ahead to the part where we convert our model to use with TensorFlow
Lite. In the book, jump to “Converting the Model for TensorFlow Lite”. In Colab, scroll

down to the heading “Convert to TensorFlow Lite.”
Importing Dependencies

Our first task is to import the dependencies we need. In Jupyter notebooks, code and
text are arranged in cells. There are code cells, which contain executable Python code,
and text cells, which contain formatted text.

Our first code cell is located under “Import dependencies.” It sets up all of the libraries
that we need to train and convert our model. Here’s the code:

TensorFlow is an open source machine learning library
'pip install tensorflow==2.0

import tensorflow as tf
NumPy is a math library
import numpy as np

Matplotlib is a graphing library

import matplotlib.pyplot as plt
math 15 Python s math library
import r

In Python, the import statement loads a library so that it can be used from our code.
You can see from the code and comments that this cell does the following:

* Installs the TensorFlow 2.0 library using pip, a package manager for Python
 Imports TensorFlow, NumPy, Matplotlib, and Python’s math library

When we import a library, we can give it an alias so that it’s easy to refer to later. For
example, in the preceding code, we use import numpy as np to import NumPy and
give it the alias np. When we use it in our code, we can refer to it as np.

The code in code cells can be run by clicking the button that appears at the upper left
when the cell is selected. In the “Import dependencies” section, click anywhere in the

first code cell so that it becomes selected. Figure 4-5 shows what a selected cell looks
like.

Import dependencies

Our first task is to import the dependencies we need. Run the following cell to do so:

° # TensorFlow is an open source machine learning library
Note: The following line is temporary to use v2
!pip install tensorflow==2.0.0-betal
import tensorflow as tf
Numpy is a math library
import numpy as np
Matplotlib is a graphing library
import matplotlib.pyplot as plt
math is Python's math library

import math

Figure 4-5. The “Import dependencies” cell in its selected state

To run the code, click the button that appears in the upper left. As the code is being
run, the button will animate with a circle as depicted in Figure 4-6.

The dependencies will begin to be installed, and you’ll see some output appearing. You
should eventually see the following line, meaning that the library was installed

successfully:

Successfully installed tensorboard-2.0.0 tensorflow-2.0.0 tensorflow-estimator-

2.0.0

q # TensorFlow is an open source machine learning library

Note: The following line is temporary to use v2
!pip install tensorflow==2.0.0-betal

import tensorflow as tf

Numpy is a math library

import numpy as np

Matplotlib is a graphing library

import matplotlib.pyplot as plt

math is Python's math library

import math

Collecting tensorflow==2.0.0-betal

I |

Figure 4-6. The “Import dependencies” cell in its running state

After a cell has been run in Colab, you’ll see that a 1 is now displayed in the upper-left
corner when it is no longer selected, as illustrated in Figure 4-7. This number is a
counter that is incremented each time the cell is run.

(1]

TensorFlow is an open source machine learning library
Note: The following line is temporary to use v2

!pip install tensorflow==2.0.0-betal

import tensorflow as tf

Numpy is a math library

import numpy as np

Matplotlib is a graphing library

import matplotlib.pyplot as plt

math is Python's math library

import math

Figure 4-7. The cell run counter in the upper-left corner

You can use this to understand which cells have been run, and how many times.
Generating Data

Deep learning networks learn to model patterns in underlying data. As we mentioned
earlier, we're going to train a network to model data generated by a sine function. This
will result in a model that can take a value, x, and predict its sine, y.

Before we go any further, we need some data. In a real-world situation, we might be
collecting data from sensors and production logs. For this example, however, we're
using some simple code to generate a dataset.

The next cell is where this will happen. Our plan is to generate 1,000 values that
represent random points along a sine wave. Let’s take a look at Figure 4-8 to remind
ourselves what a sine wave looks like.

Each full cycle of a wave is called its period. From the graph, we can see that a full cycle

is completed approximately every six units on the x-axis. In fact, the period of a sine
wave is 2 x t, or 2m.

So that we have a full sine wave worth of data to train on, our code will generate
random x values from 0 to 2m. It will then calculate the sine for each of these values.

1.00 - | | |

0.75 1 =
0.50 -

0.25 1

0.00

-0.25 A

Result of sine(time)

-0.50 14

-0.75 1 -

~1.00 1 1 |

Time
Figure 4-8. A sine wave

Here’s the full code for this cell, which uses NumPy (np, which we imported earlier) to
generate random numbers and calculate their sine:

We'll generate this many sample datapoints
SAMPLES = 1000

Set a "seed" value, so we get the same random numbers each time we run this
notebook. Any number can be used here.

SEED = 1337

np.random.seed(SEED)

tf.random.set_seed(SEED)

Generate a uniformly distributed set of random numbers in the range from
0 to 2n, which covers a complete sine wave oscillation
x_values = np.random.uniform(low=0, high=2*math.pi, size=SAMPLES)

Shuffle the values to guarantee they're not in order
np.random.shuffle(x_values)

Calculate the corresponding sine values
y_values = np.sin(x_values)

Plot our data. The 'b.' argument tells the library to print blue dots.
plt.plot(x_values, y_values, 'b.")
plt.show()

In addition to what we discussed earlier, there are a few things worth pointing out in

this code. First, you’ll see that we use np.random.uniform() to generate our x values.
This method returns an array of random numbers in the specified range. NumPy
contains a lot of useful methods that operate on entire arrays of values, which is very
convenient when dealing with data.

Second, after generating the data, we shulffle it. This is important because the training
process used in deep learning depends on data being fed to it in a truly random order.
If the data were in order, the resulting model would be less accurate.

Next, notice that we use NumPy’s sin() method to calculate our sine values. NumPy
can do this for all of our x values at once, returning an array. NumPy is great!

Finally, you’ll see some mysterious code invoking plt, which is our alias for Matplotlib:

Plot our data. The 'b.' argument tells the library to print blue dots.
plt.plot(x_values, y_values, 'b.")
plt.show()

What does this code do? It plots a graph of our data. One of the best things about
Jupyter notebooks is their ability to display graphics that are output by the code you

run. Matplotlib is an excellent tool for creating graphs from data. Since visualizing
data is a crucial part of the machine learning workflow, this will be incredibly helpful
as we train our model.

To generate the data and render it as a graph, run the code in the cell. After the code
cell finishes running, you should see a beautiful graph appear underneath, like the one
shown in Figure 4-9.

1.00 -
0.75 -
0.50 -
0.25 1
0.00 A
—0.25 -
—0.50 -1
—0.75 -

—1.00 -1

0 1 2 3 4 5 6
Figure 4-9. A graph of our generated data

This is our data! It is a selection of random points along a nice, smooth sine curve. We
could use this to train our model. However, this would be too easy. One of the exciting
things about deep learning networks is their ability to sift patterns from noise. This
allows them to make predictions even when trained on messy, real-world data. To
show this off, let’s add some random noise to our datapoints and draw another graph:

Add a small random number to each y value
y_values += 0.1 * np.random.randn(*y_values.shape)

Plot our data

plt.plot(x_values, y_values, 'b.")
plt.show()

Run this cell and take a look at the results, as shown in Figure 4-10.

Much better! Our points are now randomized, so they represent a distribution around
a sine wave instead of a smooth, perfect curve. This is much more reflective of a real-
world situation, in which data is generally quite messy.

0 1 2 3 4 5 6
Figure 4-10. A graph of our data with noise added

Splitting the Data

From the previous chapter, you might remember that a dataset is often split into three
parts: training, validation, and test. To evaluate the accuracy of the model we train, we
need to compare its predictions to real data and check how well they match up.

This evaluation happens during training (where it is referred to as validation) and
after training (referred to as testing). It’s important in each case that we use fresh data
that was not already used to train the model.

To ensure that we have data to use for evaluation, we’ll set some aside before we begin
training. Let’s reserve 20% of our data for validation, and another 20% for testing. We’ll
use the remaining 60% to train the model. This is a typical split used when training
models.

The following code splits our data and then plots each set as a different color:

We'll use 60% of our data for training and 20% for testing. The remaining 20%

will be used for validation. Calculate the indices of each section.
TRAIN_SPLIT = 1int(0.6 * SAMPLES)
TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT)

Use np.split to chop our data into three parts.

The second argument to np.split is an array of indices where the data will be
split. We provide two indices, so the data will be divided into three chunks.
x_train, x_validate, x_test = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT])
y_train, y_validate, y_test = np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT])

Double check that our splits add up correctly
assert (x_train.size + x_validate.size + x_test.size) == SAMPLES

Plot the data in each partition in different colors:
plt.plot(x_train, y_train, 'b.', label="Train")
plt.plot(x_validate, y_validate, 'y.', label="validate")
plt.plot(x_test, y_test, 'r.', label="Test")
plt.legend()

plt.show()

To split our data, we use another handy NumPy method: split(). This method takes
an array of data and an array of indices and then chops the data into parts at the
indices provided.

Run this cell to see the results of our split. Each type of data will be represented by a
different color (or shade, if you're reading the print version of this book), as
demonstrated in Figure 4-11.

e Train
Validate
e Test

0 1 2 3 4 5 6
Figure 4-11. A graph of our data split into training, validation, and test sets

Defining a Basic Model

Now that we have our data, it’s time to create the model that we’ll train to fit it.

We're going to build a model that will take an input value (in this case, x) and use it to
predict a numeric output value (the sine of x). This type of problem is called a
regression. We can use regression models for all sorts of tasks that require a numeric
output. For example, a regression model could attempt to predict a person’s running
speed in miles per hour based on data from an accelerometer.

To create our model, we’re going to design a simple neural network. It uses layers of
neurons to attempt to learn any patterns underlying the training data so that it can
make predictions.

The code to do this is actually quite straightforward. It uses Keras, TensorFlow’s high-
level API for creating deep learning networks:

We'll use Keras to create a simple model architecture
from tf.keras import layers
model_1 = tf.keras.Sequential()

First layer takes a scalar input and feeds it through 16 "neurons." The
neurons decide whether to activate based on the 'relu' activation function.

model_1.add(layers.Dense(16, activation='relu', input_shape=(1,)))

Final layer is a single neuron, since we want to output a single value
model_1.add(layers.Dense(1))

Compile the model using a standard optimizer and loss function for regression
model_1.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

Print a summary of the model's architecture
model_1.summary()

First, we create a Sequential model using Keras, which just means a model in which
each layer of neurons is stacked on top of the next, as we saw in Figure 3-1. We then
define two layers. Here’s where the first layer is defined:

model_1.add(layers.Dense(16, activation='relu', input_shape=(1,)))

The first layer has a single input—our x value—and 16 neurons. It’s a Dense layer (also
known as a fully connected layer), meaning the input will be fed into every single one of
its neurons during inference, when we’re making predictions. Each neuron will then
become activated to a certain degree. The amount of activation for each neuron is based
on both its weight and bias values, learned during training, and its activation function.
The neuron’s activation is output as a number.

Activation is calculated by a simple formula, shown in Python. We won’t ever need to
code this ourselves, since it is handled by Keras and TensorFlow, but it will be helpful
to know as we go further into deep learning:

activation = activation_function((input * weight) + bias)

To calculate the neuron’s activation, its input is multiplied by the weight, and the bias
is added to the result. The calculated value is passed into the activation function. The
resulting number is the neuron’s activation.

The activation function is a mathematical function used to shape the output of the
neuron. In our network, we're using an activation function called rectified linear unit, or

ReLU for short. This is specified in Keras by the argument activation=relu.

RelLU is a simple function, shown here in Python:

def relu(input):
return max(0.0, input)

ReLU returns whichever is the larger value: its input, or zero. If its input value is
negative, ReLU returns zero. If its input value is above zero, ReLU returns it
unchanged.

Figure 4-12 shows the output of ReLU for a range of input values.

10

0] z .

-10 -5 0 5 10
Figure 4-12. A graph of ReLU for inputs from -10 to 10

Without an activation function, the neuron’s output would always be a linear function
of its input. This would mean that the network could model only linear relationships in
which the ratio between x and y remains the same across the entire range of values.
This would prevent a network from modeling our sine wave, because a sine wave is
nonlinear.

Since ReLU is nonlinear, it allows multiple layers of neurons to join forces and model
complex nonlinear relationships, in which the y value doesn’t increase by the same

amount for every increment of x.
Note

There are other activation functions, but ReLU is the most commonly used. You can see
some of the other options in the Wikipedia article on activation functions. Each
activation function has different trade-offs, and machine learning engineers
experiment to find which options work best for a given architecture.

The activation numbers from our first layer will be fed as inputs to our second layer,
which is defined in the following line:

model_1.add(layers.Dense(1))

Because this layer is a single neuron, it will receive 16 inputs, one for each of the
neurons in the previous layer. Its purpose is to combine all of the activations from the
previous layer into a single output value. Since this is our output layer, we don’t
specify an activation function—we just want the raw result.

Because this neuron has multiple inputs, it has a corresponding weight value for each.
The neuron’s output is calculated by the following formula, shown in Python:

Here, ‘inputs’ and ‘weights’ are both NumPy arrays with 16 elements each
output = sum((inputs * weights)) + bias

The output value is obtained by multiplying each input with its corresponding weight,
summing the results, and then adding the neuron’s bias.

The network’s weights and biases are learned during training. The compile() step in
the code shown earlier in the chapter configures some important arguments used in
the training process, and prepares the model to be trained:

model_1.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

The optimizer argument specifies the algorithm that will adjust the network to model
its input during training. There are several choices, and finding the best one often
comes down to experimentation. You can read about the options in the Keras
documentation.

The loss argument specifies the method used during training to calculate how far the
network’s predictions are from reality. This method is called a loss function. Here, we're
using mse, or mean squared error. This loss function is used in the case of regression
problems, for which we’re trying to predict a number. There are various loss functions
available in Keras. You can see some of the options listed in the Keras docs.

The metrics argument allows us to specify some additional functions that are used to
judge the performance of our model. We specify mae, or mean absolute error, which is a
helpful function for measuring the performance of a regression model. This metric will
be measured during training, and we’ll have access to the results after training is done.

After we compile our model, we can use the following line to print some summary
information about its architecture:

Print a summary of the model's architecture
model_1.summary()

Run the cell in Colab to define the model. You'll see the following output printed:

Model: "sequential"

Layer (type) Output Shape Param #
dense (Dense) (None, 16) 32
dense_1 (Dense) (None, 1) 17

Total params: 49
Trainable params: 49
Non-trainable params: 0

This table shows the layers of the network, their output shapes, and their numbers of
parameters. The size of a network—how much memory it takes up—depends mostly on
its number of parameters, meaning its total number of weights and biases. This can be
a useful metric when discussing model size and complexity.

For simple models like ours, the number of weights can be determined by calculating
the number of connections between neurons in the model, given that each connection
has a weight.

The network we’ve just designed consists of two layers. Our first layer has 16
connections—one between its input and each of its neurons. Our second layer has a
single neuron, which also has 16 connections—one to each neuron in the first layer.
This makes the total number of connections 32.

Since every neuron has a bias, the network has 17 biases, meaning it has a total of 32 +
17 = 49 parameters.

We've now walked through the code that defines our model. Next, we’ll begin the
training process.
Training Our Model

After we define our model, it’s time to train it and then evaluate its performance to see
how well it works. When we see the metrics, we can decide if it’s good enough, or if we
should make changes to our design and train it again.

To train a model in Keras we just call its fit() method, passing all of our data and
some other important arguments. The code in the next cell shows how:

history_1 = model_1.fit(x_train, y_train, epochs=1000, batch_size=16,
validation_data=(x_validate, y_validate))

Run the code in the cell to begin training. You’ll see some logs start to appear:

Train on 600 samples, validate on 200 samples

Epoch 1/1000

600/600 [] - 1s 1ms/sample - loss: 0.7887 - mae:
0.7848 - val_loss: 0.5824 - val_mae: 0.6867

Epoch 2/1000

600/600 [] - 0s 155us/sample - loss: 0.4883 - mae:
0.6194 - val_loss: 0.4742 - val_mae: 0.6056

Our model is now training. This will take a little while, so while we wait let’s walk
through the details of our call to fit():

history_1 = model_1.fit(x_train, y_train, epochs=1000, batch_size=16,
validation_data=(x_validate, y_validate))

First, you'll notice that we assign the return value of our fit() call to a variable named

history_1. This variable contains a ton of information about our training run, and
we’ll use it later to investigate how things went.

Next, let’s take a look at the fit() function’s arguments:
x_train, y_train

The first two arguments to fit() are the x and y values of our training data.
Remember that parts of our data are kept aside for validation and testing, so only
the training set is used to train the network.

epochs

The next argument specifies how many times our entire training set will be run
through the network during training. The more epochs, the more training will
occur. You might think that the more training happens, the better the network will
be. However, some networks will start to overfit their training data after a certain
number of epochs, so we might want to limit the amount of training we do.

In addition, even if there’s no overfitting, a network will stop improving after a
certain amount of training. Since training costs time and computational resources,
it’s best not to train if the network isn’t getting better!

We're starting out with 1,000 epochs of training. When training is complete, we can
dig into our metrics to discover whether this is the correct number.

batch_size

The batch_size argument specifies how many pieces of training data to feed into
the network before measuring its accuracy and updating its weights and biases. If

we wanted, we could specify a batch_size of 1, meaning we’d run inference on a
single datapoint, measure the loss of the network’s prediction, update the weights
and biases to make the prediction more accurate next time, and then continue this
cycle for the rest of the data.

Because we have 600 datapoints, each epoch would result in 600 updates to the
network. This is a lot of computation, so our training would take ages! An
alternative might be to select and run inference on multiple datapoints, measure
the loss in aggregate, and then updating the network accordingly.

If we set batch_size to 600, each batch would include all of our training data. We’d
now have to make only one update to the network every epoch—much quicker. The
problem is, this results in less accurate models. Research has shown that models
trained with large batch sizes have less ability to generalize to new data—they are
more likely to overfit.

The compromise is to use a batch size that is somewhere in the middle. In our
training code, we use a batch size of 16. This means that we’ll choose 16 datapoints
at random, run inference on them, calculate the loss in aggregate, and update the
network once per batch. If we have 600 points of training data, the network will be
updated around 38 times per epoch, which is far better than 600.

When choosing a batch size, we’re making a compromise between training
efficiency and model accuracy. The ideal batch size will vary from model to model.
It’s a good idea to start with a batch size of 16 or 32 and experiment to see what
works best.

validation_data

This is where we specify our validation dataset. Data from this dataset will be run
through the network throughout the training process, and the network’s

predictions will be compared with the expected values. We'll see the results of
validation in the logs and as part of the history_1 object.

Training Metrics
Hopefully, by now, training has finished. If not, wait a few moments for it to complete.

We’re now going to check various metrics to see how well our network has learned. To
begin, let’s look at the logs written during training. This will show how the network
has improved during training from its random initial state.

Here are the logs for our first and last epochs:
Epoch 1/1000

600/600 [] - 1s 1ms/sample - loss: 0.7887 - mae:
0.7848 - val_loss: 0.5824 - val_mae: 0.6867

Epoch 1000/1000
600/600 [] - 0s 124us/sample - loss: 0.1524 - mae:
0.3039 - val_loss: 0.1737 - val_mae: 0.3249

The loss, mae, val_loss, and val_mae tell us various things:

loss

This is the output of our loss function. We’re using mean squared error, which is
expressed as a positive number. Generally, the smaller the loss value, the better, so
this is a good thing to watch as we evaluate our network.

Comparing the first and last epochs, the network has clearly improved during
training, going from a loss of ~0.7 to a smaller value of ~0.15. Let’s look at the other
numbers to see whether this improvement is enough!

mae

This is the mean absolute error of our training data. It shows the average difference

between the network’s predictions and the expected y values from the training
data.

We can expect our initial error to be pretty dismal, given that it’s based on an
untrained network. This is certainly the case: the network’s predictions are off by
an average of ~0.78, which is a large number when the range of acceptable values is
only from -1 to 1!

However, even after training, our mean absolute error is ~0.30. This means that our
predictions are off by an average of ~0.30, which is still quite awful.

val_loss

This is the output of our loss function on our validation data. In our final epoch, the
training loss (~0.15) is slightly lower than the validation loss (~0.17). This is a hint
that our network might be overfitting, because it is performing worse on data it has
not seen before.

val_mae

This is the mean absolute error for our validation data. With a value of ~0.32, it’s
worse than the mean absolute error on our training set, which is another sign that
the network might be overfitting.

Graphing the History

So far, it’s clear that our model is not doing a great job of making accurate predictions.
Our task now is to figure out why. To do so, let’s make use of the data collected in our

history_1 object.

The next cell extracts the training and validation loss data from the history object and
plots it on a chart:

loss = history_1.history['loss']
val_loss = history_1.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'g.', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')

plt.ylabel('Loss"')

plt.legend()

plt.show()

The history_1 object contains an attribute called, history_1.history, which is a
dictionary recording metric values during training and validation. We use this to
collect the data we’re going to plot. For our x-axis we use the epoch number, which we
determine by looking at the number of loss datapoints. Run the cell and you’ll see the
graph in Figure 4-13.

Training and validation loss

0871 « * Training loss
Validation loss
0.7 1
0.6
("] 0.5 7 b
(7]
(o]
-
0.4
034 |
0.2 - i
0 200 400 600 800 1000

Epochs
Figure 4-13. A graph of training and validation loss

As you can see, the amount of loss rapidly decreases over the first 50 epochs, before
flattening out. This means that the model is improving and producing more accurate
predictions.

Our goal is to stop training when either the model is no longer improving or the
training loss is less than the validation loss, which would mean that the model has
learned to predict the training data so well that it can no longer generalize to new
data.

The loss drops precipitously in the first few epochs, which makes the rest of the graph
quite difficult to read. Let’s skip the first 100 epochs by running the next cell:

Exclude the first few epochs so the graph is easier to read
SKIP = 100

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss')
plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss')
plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss"')

plt.legend()

plt.show()

Figure 4-14 presents the graph produced by this cell.

Training and validation loss

0.175
» Training loss * .
¢ Validation loss
0.170 A » .
0.165 A
a
S
0.160 A
0.155 A
0.150 = T T T T T
200 400 600 800 1000
Epochs

Figure 4-14. A graph of training and validation loss, skipping the first 100 epochs

Now that we’ve zoomed in, you can see that loss continues to reduce until around 600
epochs, at which point it is mostly stable. This means that there’s probably no need to
train our network for so long.

However, you can also see that the lowest loss value is still around 0.15. This seems
relatively high. In addition, the validation loss values are consistently even higher.

To gain more insight into our model’s performance we can plot some more data. This
time, let’s plot the mean absolute error. Run the next cell to do so:

Draw a graph of mean absolute error, which is another way of
measuring the amount of error in the prediction.

mae = history_1.history['mae']

val_mae = history_1.history['val_mae']

plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE')
plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE')
plt.title('Training and validation mean absolute error')

plt.xlabel('Epochs')
plt.ylabel('MAE")
plt.legend()
plt.show()

Figure 4-15 shows the resulting graph.

Training and validation mean absolute error

0.3401 ¢ e Training MAE

0.335 g e Validation MAE

0.330 -

0.325 A

E

<

= 0.320 A1
0.315 -
0.310 -

0.305 -

200 400 600 800 1000
Epochs

Figure 4-15. A graph of mean absolute error during training and validation

This graph of mean absolute error gives us some further clues. We can see that on
average, the training data shows lower error than the validation data, which means
that the network might have overfit, or learned the training data so rigidly that it can’t
make effective predictions about new data.

In addition, the mean absolute error values are quite high, around ~0.31, which means
that some of the model’s predictions are wrong by at least 0.31. Since our expected
values only range in size from -1 to +1, an error of 0.31 means we are very far from
accurately modeling the sine wave.

To get more insight into what is happening, we can plot our network’s predictions for
the training data against the expected values.

This happens in the following cell:

Use the model to make predictions from our validation data
predictions = model_1.predict(x_train)

Plot the predictions along with the test data
plt.clf()

plt.title('Training data predicted vs actual values')
plt.plot(x_test, y_test, 'b.', label='Actual')
plt.plot(x_train, predictions, 'r.', label='Predicted')
plt.legend()

plt.show()

By calling model_1.predict(x_train), we run inference on all of the x values from
the training data. The method returns an array of predictions. Let’s plot this on the

graph alongside the actual y values from our training set. Run the cell to see the graph
in Figure 4-16.

Training data predicted vs actual values

. &° e Actual
1.0 - e K * Predicted
g $3¢°

0 1 2 3 4 5 6

Figure 4-16. A graph of predicted versus actual values for our training data

Oh, dear! The graph makes it clear that our network has learned to approximate the
sine function in a very limited way. The predictions are highly linear, and only very
roughly fit the data.

The rigidity of this fit suggests that the model does not have enough capacity to learn
the full complexity of the sine wave function, so it’s able to approximate it only in an

overly simplistic way. By making our model bigger, we should be able to improve its
performance.
Improving Our Model

Armed with the knowledge that our original model was too small to learn the
complexity of our data, we can try to make it better. This is a normal part of the
machine learning workflow: design a model, evaluate its performance, and make
changes in the hope of seeing improvement.

An easy way to make the network bigger is to add another layer of neurons. Each layer
of neurons represents a transformation of the input that will hopefully get it closer to
the expected output. The more layers of neurons a network has, the more complex
these transformations can be.

Run the following cell to redefine our model in the same way as earlier, but with an
additional layer of 16 neurons in the middle:

model_2 = tf.keras.Sequential()

First layer takes a scalar input and feeds it through 16 "neurons." The

neurons decide whether to activate based on the 'relu' activation function.
model_2.add(layers.Dense(16, activation='relu', input_shape=(1,)))

The new second layer may help the network learn more complex representations
model_2.add(layers.Dense(16, activation='relu'))

Final layer is a single neuron, since we want to output a single value
model_2.add(layers.Dense(1))

Compile the model using a standard optimizer and loss function for regression
model_2.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

Show a summary of the model
model_2.summary()

As you can see, the code is basically the same as for our first model, but with an
additional Dense layer. Let’s run the cell to see the summary() results:

Model: "sequential_1"

Layer (type) Output Shape Param #
dense_2 (Dense) (None, 16) 32
dense_3 (Dense) (None, 16) 272

dense_4 (Dense) (None, 1) 17

Total params: 321
Trainable params: 321
Non-trainable params: 0

With two layers of 16 neurons, our new model is a lot larger. It has (1 * 16) + (16 * 16) +
(16 * 1) = 288 weights, plus 16 + 16 + 1 = 33 biases, for a total of 288 + 33 = 321
parameters. Our original model had only 49 total parameters, so this is a 555% increase
in model size. Hopefully, this extra capacity will help represent the complexity of our
data.

The following cell will train our new model. Since our first model stopped improving
so quickly, let’s train for fewer epochs this time—only 600. Run this cell to begin
training:

history_2 = model_2.fit(x_train, y_train, epochs=600, batch_size=16,
validation_data=(x_validate, y_validate))

When training is complete, we can take a look at the final log to get a quick feel for
whether things have improved:

Epoch 600/600
600/600 [] - 0s 150us/sample - loss: 0.0115 - mae:
0.0859 - val_loss: 0.0104 - val_mae: 0.0806

Wow! You can see that we’ve already achieved a huge improvement—validation loss
has dropped from 0.17 to 0.01, and validation mean absolute error has dropped from
0.32 to 0.08. This looks very promising.

To see how things are going, let’s run the next cell. It’s set up to generate the same
graphs we used last time. First, we draw a graph of the loss:

Draw a graph of the loss, which is the distance between

the predicted and actual values during training and validation.
loss = history_2.history['loss']

val_loss = history_2.history['val_loss']

epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'g.', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs")

plt.ylabel('Loss')

plt.legend()

plt.show()

Figure 4-17 shows the result.

Next, we draw the same loss graph but with the first 100 epochs skipped so that we can
better see the detail:

Exclude the first few epochs so the graph is easier to read
SKIP = 100

plt.clf()

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss')
plt.plot(epochs[SKIP:], val _loss[SKIP:], 'b.', label='Validation loss')
plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

Training and validation loss

079 = * Training loss
Validation loss

0.6 1

0.5 1

Loss

0.3

0.2 -

0.1 1

0.0 1

0 100 200 300 400 500 600
Epochs
Figure 4-17. A graph of training and validation loss

Figure 4-18 presents the output.

Finally, we plot the mean absolute error for the same set of epochs:

plt.clf()

Draw a graph of mean absolute error, which is another way of
measuring the amount of error in the prediction.

mae = history_2.history['mae']

val_mae = history_2.history['val_mae']

plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE')
plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE")
plt.title('Training and validation mean absolute error')
plt.xlabel('Epochs')

plt.ylabel('MAE")

plt.legend()

plt.show()

Training and validation loss

0.022 - * Training loss
e Validation loss

0.020 -

0.018 -

Loss

0.016 1

0.014 -

0.012 A

0.010 -

100 200 300 400 500 600
Epochs
Figure 4-18. A graph of training and validation loss, skipping the first 100 epochs

Figure 4-19 depicts the graph.

Training and validation mean absolute error

. * Training MAE
0.12 A
* Validation MAE
o S
0117 & ° * i)
L] - °
' @ L ° e o
w & @ o . ® oo .
§ 0‘10 N ?‘ & . : o* .. * &
s ' e *o ° z - : ® .
- &’ .:o.$o B e s %
s
0.09 A 2
) S
® ..‘ - =
0.08 - il
100 200 300 400 500 600
Epochs

Figure 4-19. A graph of mean absolute error during training and validation

Great results! From these graphs, we can see two exciting things:

¢ The metrics are broadly better for validation than training, which means the
network is not overfitting.

o The overall loss and mean absolute error are much better than in our previous
network.

You might be wondering why the metrics for validation are better than those for
training, and not merely identical. The reason is that validation metrics are calculated
at the end of each epoch, meanwhile training metrics are calculated while the epoch of
training is still in progress. This means validation happens on a model that has been
trained for slightly longer.

Based on our validation data, our model seems to be performing great. However, to be

sure of this, we need to run one final test.
Testing

Earlier, we set aside 20% of our data to use for testing. As we discussed, it’s very
important to have separate validation and test data. Since we fine-tune our network

based on its validation performance, there’s a risk that we might accidentally tune the
model to overfit its validation set and that it might not be able to generalize to new
data. By retaining some fresh data and using it for a final test of our model, we can
make sure that this has not happened.

After we've used our test data, we need to resist the urge to tune our model further. If
we did make changes with the goal of improving test performance, we might cause it
to overfit our test set. If we did this, we wouldn’t be able to know, because we’d have
no fresh data left to test with.

This means that if our model performs badly on our test data, it’s time to go back to
the drawing board. We’'ll need to stop optimizing the current model and come up with
a brand new architecture.

With that in mind, the following cell will evaluate our model against our test data:

Calculate and print the loss on our test dataset
loss = model_2.evaluate(x_test, y_test)

Make predictions based on our test dataset
predictions = model_2.predict(x_test)

Graph the predictions against the actual values
plt.clf()

plt.title('Comparison of predictions and actual values')
plt.plot(x_test, y_test, 'b.', label='Actual')
plt.plot(x_test, predictions, 'r.', label='Predicted')
plt.legend()

plt.show()

First, we call the model’s evaluate() method with the test data. This will calculate and
print the loss and mean absolute error metrics, informing us as to how far the model’s
predictions deviate from the actual values. Next, we make a set of predictions and plot
them on a graph alongside the actual values.

Now we can run the cell to learn how our model is performing! First, let’s see the
results of evaluate():

200/200 [] - 0s 71us/sample - loss: 0.0103 - mae:
0.0718

This shows that 200 datapoints were evaluated, which is our entire test set. The model
took 71 microseconds to make each prediction. The loss metric was 0.0103, which is
excellent, and very close to our validation loss of 0.0104. Our mean absolute error,
0.0718, is also very small and fairly close to its equivalent in validation, 0.0806.

This means that our model is working great, and it isn’t overfitting! If the model had
overfit our validation data, we could expect that the metrics on our test set would be
significantly worse than those resulting from validation.

The graph of our predictions against our actual values, shown in Figure 4-20, makes it
clear how well our model is performing.

Comparison of predictions and actual values

. ".. e Actual
1.0 }:’. e e Predicted
@
o.‘.o (4 - .. ;:
051 ¥ Y.
¥ 4 '
0.04 ° . o
%. X
o ® o®
o$
—0.5 - ! 2

& . 1
f. . p{ ~
~1.0 3%;’2?’

] J) T L) Ll

0 1 2 3 4 5 6

Figure 4-20. A graph of predicted versus actual values for our test data

-

You can see that, for the most part, the dots representing predicted values form a
smooth curve along the center of the distribution of actual values. Our network has
learned to approximate a sine curve, even though the dataset was noisy!

If you look closely, however, you’ll see that there are some imperfections. The peak
and trough of our predicted sine wave are not perfectly smooth, like a real sine wave
would be. Variations in our training data, which is randomly distributed, have been
learned by our model. This is a mild case of overfitting: instead of learning the smooth
sine function, our model has learned to replicate the exact shape of our data.

For our purposes, this overfitting isn’t a major problem. Our goal is for this model to
gently fade an LED on and off, and it doesn’t need to be perfectly smooth to achieve
this. If we thought the level of overfitting was problematic, we could attempt to

address it through regularization techniques or by obtaining more training data.

Now that we’re happy with our model, let’s get it ready to deploy on-device!
Converting the Model for TensorFlow Lite

At the beginning of this chapter we briefly touched on TensorFlow Lite, which is a set
of tools for running TensorFlow models on “edge devices”—meaning everything from
mobile phones down to microcontroller boards.

Chapter 13 goes into detail on TensorFlow Lite for Microcontrollers. For now, we can
think of it as having two main components:

TensorFlow Lite Converter

This converts TensorFlow models into a special, space-efficient format for use on
memory-constrained devices, and it can apply optimizations that further reduce
the model size and make it run faster on small devices.

TensorFlow Lite Interpreter

This runs an appropriately converted TensorFlow Lite model using the most
efficient operations for a given device.

Before we use our model with TensorFlow Lite, we need to convert it. We use the
TensorFlow Lite Converter’s Python API to do this. It takes our Keras model and writes
it to disk in the form of a FlatBuffer, which is a special file format designed to be space-
efficient. Because we’re deploying to devices with limited memory, this will come in
handy! We’ll look at FlatBuffers in more detail in Chapter 12.

In addition to creating a FlatBuffer, the TensorFlow Lite Converter can also apply
optimizations to the model. These optimizations generally reduce the size of the
model, the time it takes to run, or both. This can come at the cost of a reduction in
accuracy, but the reduction is often small enough that it’s worthwhile. You can read
more about optimizations in Chapter 13.

One of the most useful optimizations is quantization. By default, the weights and biases
in a model are stored as 32-bit floating-point numbers so that high-precision
calculations can occur during training. Quantization allows you to reduce the precision
of these numbers so that they fit into 8-bit integers—a four times reduction in size.
Even better, because it’s easier for a CPU to perform math with integers than with
floats, a quantized model will run faster.

The coolest thing about quantization is that it often results in minimal loss in
accuracy. This means that when deploying to low-memory devices, it is nearly always

worthwhile.

In the following cell, we use the converter to create and save two new versions of our
model. The first is converted to the TensorFlow Lite FlatBuffer format, but without any
optimizations. The second is quantized.

Run the cell to convert the model into these two variants:

Convert the model to the TensorFlow Lite format without quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
tflite_model = converter.convert()

Save the model to disk
open("sine_model.tflite", "wb").write(tflite_model)

Convert the model to the TensorFlow Lite format with quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
Indicate that we want to perform the default optimizations,
which include quantization
converter.optimizations = [tf.lite.Optimize.DEFAULT]
Define a generator function that provides our test data's x values
as a representative dataset, and tell the converter to use it
def representative_dataset_generator():
for value in x_test:

Each scalar value must be inside of a 2D array that is wrapped in a list

yield [np.array(value, dtype=np.float32, ndmin=2)]
converter.representative_dataset = representative_dataset_generator
Convert the model
tflite_model = converter.convert()

Save the model to disk
open("sine_model_quantized.tflite", "wb").write(tflite_model)

To create a quantized model that runs as efficiently as possible, we need to provide a
representative dataset—a set of numbers that represent the full range of input values of
the dataset on which the model was trained.

In the preceding cell, we can use our test dataset’s x values as a representative dataset.

We define a function, representative_dataset_generator(), that uses the yield
operator to return them one by one.

To prove these models are still accurate after conversion and quantization, we use
both of them to make predictions and compare these against our test results. Given
that these are TensorFlow Lite models, we need to use the TensorFlow Lite interpreter
to do so.

Because it’s designed primarily for efficiency, the TensorFlow Lite interpreter is
slightly more complicated to use than the Keras API. To make predictions with our

Keras model, we could just call the predict() method, passing an array of inputs. With
TensorFlow Lite, we need to do the following:

1. Instantiate an Interpreter object.

2. Call some methods that allocate memory for the model.
3. Write the input to the input tensor.

4. Invoke the model.

5. Read the output from the output tensor.

This sounds like a lot, but don’t worry about it too much for now; we’ll walk through it
in detail in Chapter 5. For now, run the following cell to make predictions with both
models and plot them on a graph, alongside the results from our original, unconverted
model:

Instantiate an interpreter for each model
sine_model = tf.lite.Interpreter('sine_model.tflite")
sine_model_gquantized = tf.lite.Interpreter('sine_model_gquantized.tflite')

Allocate memory for each model
sine_model.allocate_tensors()
sine_model_quantized.allocate_tensors()

Get indexes of the input and output tensors

sine_model_input_index = sine_model.get_input_details()[0]["index"]

sine_model_output_index = sine_model.get_output_details()[0]["index"]

sine_model_quantized_input_index = sine_model_quantized.get_input_details()[0]

["index"]

sine_model_quantized_output_index = \
sine_model_guantized.get_output_details()[0]["index"]

Create arrays to store the results
sine_model_predictions = []
sine_model_quantized_predictions = []

Run each model's interpreter for each value and store the results in arrays
for x_value in x_test:
Create a 2D tensor wrapping the current x value
x_value_tensor = tf.convert_to_tensor([[x_value]], dtype=np.float32)
Write the value to the input tensor
sine_model.set_tensor(sine_model_input_index, x_value_tensor)
Run inference
sine_model.invoke()
Read the prediction from the output tensor
sine_model_predictions.append(
sine_model.get_tensor(sine_model_output_index)[0])
Do the same for the quantized model
sine_model_quantized.set_tensor\

(sine_model_quantized_input_1index, x_value_tensor)

sine_model_quantized.invoke()

sine_model_quantized_predictions.append(
sine_model_quantized.get_tensor(sine_model_quantized_output_index)[0])

See how they line up with the data
plt.clf()
plt.title('Comparison of various models against actual values')
plt.plot(x_test, y_test, 'bo', label='Actual')
plt.plot(x_test, predictions, 'ro', label='Original predictions')
plt.plot(x_test, sine_model predictions, 'bx', label='Lite predictions')
plt.plot(x_test, sine_model_quantized_predictions, 'gx', \

label="Lite quantized predictions')
plt.legend()
plt.show()

Running this cell yields the graph in Figure 4-21.

Comparison of various models against actual values

® Actual

® Original predictions

X Lite predictions

X Lite quantized predictions

—-0.5 -

—1.0 1
%

0 1 2 3 4 5 6

Figure 4-21. A graph comparing models’ predictions against the actual values

We can see from the graph that the predictions for the original model, the converted
model, and the quantized model are all close enough to be indistinguishable. Things
are looking good!

Since quantization makes models smaller, let’s compare both converted models to see

the difference in size. Run the following cell to calculate their sizes and compare them:

import os

basic_model_size = os.path.getsize("sine_model.tflite")

print("Basic model is %d bytes" % basic_model_size)
quantized_model_size = os.path.getsize("sine_model quantized.tflite")
print("Quantized model is %d bytes" % quantized_model_size)
difference = basic_model_size - quantized_model_size
print("Difference is %d bytes" % difference)

You should see the following output:

Basic model is 2736 bytes
Quantized model is 2512 bytes
Difference is 224 bytes

Our quantized model is 224 bytes smaller than the original version, which is great—but
it’s only a minor reduction in size. At around 2.4 KB, this model is already so small that
the weights and biases make up only a fraction of the overall size. In addition to
weights, the model contains all the logic that makes up the architecture of our deep
learning network, known as its computation graph. For truly tiny models, this can add
up to more size than the model’s weights, meaning quantization has little effect.

More complex models have many more weights, meaning the space saving from
quantization will be much higher. It can be expected to approach four times for most
sophisticated models.

Regardless of its exact size, our quantized model will take less time to execute than the
original version, which is important on a tiny microcontroller.
Converting to a C File

The final step in preparing our model for use with TensorFlow Lite for
Microcontrollers is to convert it into a C source file that can be included in our
application.

So far during this chapter, we’ve been using TensorFlow Lite’s Python API. This means

that we’ve been able to use the Interpreter constructor to load our model files from
disk.

However, most microcontrollers don’t have a filesystem, and even if they did, the extra
code required to load a model from disk would be wasteful given our limited space.
Instead, as an elegant solution, we provide the model in a C source file that can be
included in our binary and loaded directly into memory.

In the file, the model is defined as an array of bytes. Fortunately, there’s a convenient
Unix tool named xxd that is able to convert a given file into the required format.

The following cell runs xxd on our quantized model, writes the output to a file called
sine_model_quantized.cc, and prints it to the screen:

Install xxd if it is not available

lapt-get -qq install xxd

Save the file as a C source file

Ixxd -1 sine_model_quantized.tflite > sine_model_quantized.cc
Print the source file

Icat sine_model_quantized.cc

The output is very long, so we won’t reproduce it all here, but here’s a snippet that
includes just the beginning and end:

unsigned char sine_model_quantized_tflite[] = {
Ox1lc, Ox00, Ox00, Ox00, Ox54, Ox46, 0x4c, O0x33, O0x00, Ox00, O0x12, Ox00,
Ox1lc, Ox00, Ox04, Ox00, Ox08, Ox00, O0x0c, Ox00, 0x10, Ox00, O0x14, 0x00,
ar
0x00, O0x00, Ox08, Ox00, 0x0a, 0x00, Ox00, Ox00, O0x00, 0x00, O6x00, Ox09,
0x04, 0x00, Ox00, 0x00

}s

unsigned int sine_model_quantized_tflite_len = 2512;

To use this model in a project, you could either copy and paste the source or download
the file from the notebook.
Wrapping Up

And with that, we’re done building our model. We’ve trained, evaluated, and converted
a TensorFlow deep learning network that can take a number between 0 and 2r and
output a good-enough approximation of its sine.

This was our first taste of using Keras to train a tiny model. In future projects, we’ll be
training models that are still tiny, but far more sophisticated.

For now, let’s move on to Chapter 5, where we’ll write code to run our model on
microcontrollers.

Chapter 5. The “Hello World” of TinyML: Building an Application

A model is just one part of a machine learning application. Alone, it’s just a blob of
information; it can’t do much at all. To use our model, we need to wrap it in code that
sets up the necessary environment for it to run, provides it with inputs, and uses its
outputs to generate behavior. Figure 5-1 shows how the model, on the right hand side,
fits into a basic TinyML application.

In this chapter, we will build an embedded application that uses our sine model to

create a tiny light show. We’ll set up a continuous loop that feeds an x value into the
model, runs inference, and uses the result to switch an LED on and off, or to control an
animation if our device has an LCD display.

This application has already been written. It’s a C++ 11 program whose code is designed
to show the smallest possible implementation of a full TinyML application, avoiding
any complex logic. This simplicity makes it a helpful tool for learning how to use
TensorFlow Lite for Microcontrollers, since you can see exactly what code is necessary
and very little else. It also makes it a useful template. After reading this chapter, you’ll
understand the general structure of a TensorFlow Lite for Microcontrollers program,
and you can reuse the same structure in your own projects.

This chapter walks through the application code and explains how it works. The next
chapter will provide detailed instructions for building and deploying it to several
devices. If you're not familiar with C++, don’t panic. The code is relatively simple, and
we explain everything in detail. By the time we’re done, you should feel comfortable
with all the code that’s required to run a model, and you might even learn a little C++
along the way.

Application code

Input data Preprocessing

Transforms input to be
00001110

» compatible with model

TF Lite interpreter Model
Runs the model Trained to make
> predictions on data

Postprocessing
Interprets the model's
output and makes
decisions

Device output Output handling

Uses device

(‘.’) <+ capabilities to respond
] to prediction

Figure 5-1. A basic TinyML application architecture
Tip
Remember, since TensorFlow is an actively developed open source project, there might

be some minor differences between the code printed here and the code online. Don’t

worry—even if a few lines of code change, the basic principles remain the same.
Walking Through the Tests

Before getting our hands dirty with application code, it’s often a good idea to write
some tests. Tests are short snippets of code that demonstrate a particular piece of
logic. Since they are made of working code, we can run them to prove that the code
does what it’s supposed to. After we have written them, tests are often run
automatically as a way to continually verify that a project is still doing what we expect
despite any changes we might make to its code. They’re also very useful as working
examples of how to do things.

The hello_world example has a test, defined in hello_world_test.cc, that loads our
model and uses it to run inference, checking that its predictions are what we expect. It
contains the exact code needed to do this, and nothing else, so it will be a great place
to start learning TensorFlow Lite for Microcontrollers. In this section, we walk through
the test and explain what each and every part of it does. After we’re done reading the
code, we can run the test to prove that it’s correct.

Let’s now walk through it, section by section. If you're at a computer, it might be

helpful to open up hello_world_test.cc and follow along.
Including Dependencies

The first part, below the license header (which specifies that anybody can use or share
this code under the Apache 2.0 open source license), looks like this:

#include "tensorflow/lite/micro/examples/hello_world/sine_model_data.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"

#include "tensorflow/lite/micro/micro_error_reporter.h"

#include "tensorflow/lite/micro/micro_1interpreter.h"

#include "tensorflow/lite/micro/testing/micro_test.h"

#include "tensorflow/lite/schema/schema_generated.h"

#include "tensorflow/lite/version.h"

The #include directive is a way for C++ code to specify other code that it depends on.
When a code file is referenced with an #include, any logic or variables it defines will

be available for us to use. In this section, we use #include to import the following
items:

tensorflow/lite/micro/examples/hello_world/sine_model_data.h

The sine model we trained, converted, and transformed into C++ using xxd

tensorflow/lite/micro/kernels/all_ops_resolver.h

A class that allows the interpreter to load the operations used by our model

tensorflow/lite/micro/micro_error_reporter.h

A class that can log errors and output to help with debugging

tensorflow/lite/micro/micro_interpreter.h

The TensorFlow Lite for Microcontrollers interpreter, which will run our model

tensorflow/lite/micro/testing/micro_test.h

A lightweight framework for writing tests, which allows us to run this file as a test

tensorflow/lite/schema/schema_generated.h

The schema that defines the structure of TensorFlow Lite FlatBuffer data, used to
make sense of the model data in sine_model_data.h

tensorflow/lite/version.h

The current version number of the schema, so we can check that the model was
defined with a compatible version

Wwe’ll talk more about some of these dependencies as we dig into the code.
Note

By convention, C++ code designed to be used with #include directives is written as two
files: a .cc file, known as the source file, and a .h file, known as the header file. Header
files define the interface that allows the code to connect to other parts of the program.
They contain things like variable and class declarations, but very little logic. Source
files implement the actual logic that performs computation and makes things happen.
When we #include a dependency, we specify its header file. For example, the test
we’re walking through includes micro_interpreter.h. If we look at that file, we can see
that it defines a class but doesn’t contain much logic. Instead, its logic is contained

within micro_interpreter.cc.
Setting Up the Test

The next part of the code is used by the TensorFlow Lite for Microcontrollers testing
framework. It looks like this:

TF_LITE_MICRO_TESTS_BEGIN

TF_LITE_MICRO_TEST(LoadModelAndPerformInference) {

In C++, you can define specially named chunks of code that can be reused by including
their names elsewhere. These chunks of code are called macros. The two statements

here, TF_LITE_MICRO_TESTS_BEGIN and TF_LITE_MICRO_TEST, are the names of
macros. They are defined in the file micro_test.h.

These macros wrap the rest of our code in the necessary apparatus for it to be executed
by the TensorFlow Lite for Microcontrollers testing framework. We don’t need to
worry about how exactly this works; we just know that we can use these macros as
shortcuts to set up a test.

The second macro, named TF_LITE_MICRO_TEST, accepts an argument. In this case, the
argument being passed in is LoadModelAndPerformInference. This argument is the
test name, and when the tests are run, it will be output along with the test results so

that we can see whether the test passed or failed.
Getting Ready to Log Data

The remaining code in the file is the actual logic of our test. Let’s take a look at the first

portion:

// Set up logging
tflite: :MicroErrorReporter micro_error_reporter;
tflite: :ErrorReporter* error_reporter = µ_error_reporter;

In the first line, we define a MicroErrorReporter instance. The MicroErrorReporter
class is defined in micro_error_reporter.h. It provides a mechanism for logging debug
information during inference. We'll be calling it to print debug information, and the
TensorFlow Lite for Microcontrollers interpreter will use it to print any errors it

encounters.
Note

You've probably noticed the tflite: : prefix before each of the type names, such as

tflite::MicroErrorReporter. This is a namespace, which is just a way to help
organize C++ code. TensorFlow Lite defines all of its useful stuff under the namespace

tflite, which means that if another library happens to implement classes with the
same name, they won'’t conflict with those that TensorFlow Lite provides.

The first declaration seems straightforward, but what about the funky-looking second
line, with the * and & characters? Why are we declaring an ErrorReporter when we
already have a MicroErrorReporter?

tflite: :ErrorReporter* error_reporter = µ_error_reporter;

To explain what is happening here, we need to know a little background information.

MicroErrorReporter is a subclass of the ErrorReporter class, which provides a
template for how this sort of debug logging mechanism should work in TensorFlow

Lite. MicroErrorReporter overrides one of ErrorReporter’s methods, replacing it
with logic that is specifically written for use on microcontrollers.

In the preceding code line, we create a variable called error_reporter, which has the
type ErrorReporter. It’s also a pointer, indicated by the * used in its declaration.

A pointer is a special type of variable that, instead of holding a value, holds a reference
to a location in memory where a value can be found. In C++, a pointer of a certain class

(such as ErrorReporter) can point to a value that is one of its child classes (such as
MicroErrorReporter).

As we mentioned earlier, MicroErrorReporter overrides one of the methods of

ErrorReporter. Without going into too much detail, the process of overriding this
method has the side effect of obscuring some of its other methods.

To still have access to the non overridden methods of ErrorReporter, we need to treat
our MicroErrorReporter instance as if it were actually an ErrorReporter. We achieve
this by creating an ErrorReporter pointer and pointing it at the
micro_error_reporter variable. The ampersand (&) in front of

micro_error_reporter in the assignment means that we are assigning its pointer, not
its value.

Phew! This sounds complicated. Don’t panic if you found it difficult to follow; C++ can
be a little unwieldy. For our purposes, all we need to know is that that we should use

error_reporter to print debug information, and that it’s a pointer.
Mapping Our Model

The reason we immediately set up a mechanism for printing debug information is so
that we can log any problems that occur in the rest of the code. We rely on this in the
next piece of code:

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
const tflite::Model* model = ::tflite::GetModel(g_sine_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(

"Model provided is schema version %d not equal "

"to supported version %d.\n",

model->version(), TFLITE_SCHEMA_VERSION);

return 1;

In the first line, we take our model data array (defined in the file sine_model_data.h) and
pass it into a method named GetModel(). This method returns a Model pointer, which

is assigned to a variable named model. As you might have anticipated, this variable
represents our model.

The type Model is a struct, which in C++ is very similar to class. It’s defined in
schema_generated.h, and it holds our model’s data and allows us to query information
about it.

Data Alignment

If you inspect our model’s source file in sine_model_data.cc, you'll see that the
definition of g_sine_model_data references a macro, DATA_ALIGN_ATTRIBUTE:

const unsigned char g_sine_model_data[] DATA_ALIGN_ATTRIBUTE = {

Processors can read data most efficiently when it is aligned in memory, meaning
data structures are stored so that they don’t overlap the boundaries of what the
processor can read in a single operation. By specifying this macro we make sure
that, when possible, our model data is correctly aligned for optimal read
performance. If you're curious, you can read about alignment in the Wikipedia
article.

As soon as model is ready, we call a method that retrieves the model’s version number:
if (model->version() != TFLITE_SCHEMA_VERSION) {

We then compare the model’s version number to TFLITE_SCHEMA_VERSION, which
indicates the version of the TensorFlow Lite library we are currently using. If the
numbers match, our model was converted with a compatible version of the TensorFlow
Lite Converter. It’s good practice to check the model version, because a mismatch

might result in strange behavior that is tricky to debug.
Note

In the preceding line of code, version() is a method that belongs to model. Notice the
arrow (->) that points from model to version(). This is C++’s arrow operator, and it’s
used whenever we want to access the members of an object to which we have a
pointer. If we had the object itself (and not just a pointer), we would use a dot (.) to
access its members.

If the version numbers don’t match, we’ll carry on anyway, but we’ll log a warning
using our error_reporter:

error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.\n",
model->version(), TFLITE_SCHEMA_VERSION);

We call the Report() method of error_reporter to log this warning. Since
error_reporter is also a pointer, we use the -> operator to access Report().

The Report() method is designed to behave similarly to a commonly used C++ method,
printf(), which is used to log text. As its first parameter, we pass in a string that we

want to log. This string contains two %d format specifiers, which act as placeholders
where variables will be inserted when the message is logged. The next two parameters
we pass in are the model version and the TensorFlow Lite schema version. These will

be inserted into the string, in order, to replace the %d characters.
Note

The Report() method supports different format specifiers that work as placeholders
for different types of variables. %d should be used as a placeholder for integers, %f

should be used as a placeholder for floating-point numbers, and %s should be used as a

placeholder for strings.
Creating an AllOpsResolver

So far so good! Our code can log errors, and we’ve loaded our model into a handy struct
and checked that it is a compatible version. We’ve been moving a little slowly, given
that we’re reviewing some C++ concepts along the way, but things are starting to make

sense. Next up, we create an instance of AL1OpsResolver:

// This pulls in all the operation implementations we need
tflite::ops::micro::All0OpsResolver resolver;

This class, defined in all_ops_resolver.h, is what allows the TensorFlow Lite for
Microcontrollers interpreter to access operations.

In Chapter 3, you learned that a machine learning model is composed of various
mathematical operations that are run successively to transform input into output. The

All0psResolver class knows all of the operations that are available to TensorFlow Lite

for Microcontrollers and is able to provide them to the interpreter.
Defining a Tensor Arena

We almost have all the ingredients ready to create an interpreter. The final thing we
need to do is allocate an area of working memory that our model will need while it
runs:

// Create an area of memory to use for input, output, and intermediate arrays.
// Finding the minimum value for your model may require some trial and error.
const int tensor_arena_size = 2 x 1024;

uint8_t tensor_arena[tensor_arena_size];

As the comment says, this area of memory will be used to store the model’s input,
output, and intermediate tensors. We call it our tensor arena. In our case, we've

allocated an array that is 2,048 bytes in size. We specify this with the expression 2 x
1024.

So, how large should our tensor arena be? That’s a good question. Unfortunately,
there’s not a simple answer. Different model architectures have different sizes and
numbers of input, output, and intermediate tensors, so it’s difficult to know how much
memory we’ll need. The number doesn’t need to be exact—we can reserve more
memory than we need—but since microcontrollers have limited RAM, we should keep
it as small as possible so there’s space for the rest of our program.

We can do this through trial and error. That’s why we express the array size as n x
1024: so that it’s easy to scale the number up and down (by changing n) while keeping
it a multiple of eight. To find the correct array size, start fairly high so that you can be
sure it works. The highest number used in this book’s examples is 70 x 1024. Then,
reduce the number until your model no longer runs. The last number that worked is

the correct one!
Creating an Interpreter

Now that we’ve declared tensor_arena, we’re ready to set up the interpreter. Here’s
how that looks:

// Build an interpreter to run the model with
tflite: :Microlnterpreter interpreter(model, resolver, tensor_arena,
tensor_arena_size, error_reporter);

// Allocate memory from the tensor_arena for the model's tensors
interpreter.AllocateTensors();

First, we declare a MicroInterpreter named interpreter. This class is the heart of
TensorFlow Lite for Microcontrollers: a magical piece of code that will execute our
model on the data we provide. We pass in most of the objects we’ve created so far to its

constructor, and then make a call to AllocateTensors().

In the previous section, we set aside an area of memory by defining an array called
tensor_arena. The AllocateTensors() method walks through all of the tensors
defined by the model and assigns memory from the tensor_arena to each of them. It’s

critical that we call AllocateTensors() before attempting to run inference, because
otherwise inference will fail.
Inspecting the Input Tensor

After we've created an interpreter, we need to provide some input for our model. To do
this, we write our input data to the model’s input tensor:

// Obtain a pointer to the model's input tensor
TfLiteTensor* input = interpreter.input(0);

To grab a pointer to an input tensor, we call the interpreter’s input() method. Since a

model can have multiple input tensors, we need to pass an index to the input()
method that specifies which tensor we want. In this case, our model has only one input

tensor, so its index is 0.

In TensorFlow Lite, tensors are represented by the TfLiteTensor struct, which is
defined in c_api_internal h. This struct provides an API for interacting with and learning
about tensors. In the next chunk of code, we use this functionality to verify that our
tensor looks and feels correct. Because we’ll be using tensors a lot, let’s walk through

this code to become familiar with how the TfLiteTensor struct works:

// Make sure the input has the properties we expect
TF_LITE_MICRO_EXPECT_NE(nullptr, input);

// The property "dims" tells us the tensor's shape. It has one element for
// each dimension. Our input is a 2D tensor containing 1 element, so "dims"
// should have size 2.

TF_LITE_MICRO_EXPECT_EQ(2, input->dims->size);

// The value of each element gives the length of the corresponding tensor.
// We should expect two single element tensors (one is contained within the

// other).

TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[1]);

// The input is a 32 bit floating point value
TF_LITE_MICRO_EXPECT_EQ(kTfLiteFloat32, input->type);

The first thing you'll notice is a couple of macros: TFLITE_MICRO_EXPECT_NE and

TFLITE_MICRO_EXPECT_EQ. These macros are part of the TensorFlow Lite for
Microcontrollers testing framework, and they allow us to make assertions about the
values of variables, proving that they have certain expected values.

For example, the macro TF_LITE_MICRO_EXPECT_NE is designed to assert that the two
variables it is called with are not equal (hence the _NE part of its name, which stands
for Not Equal). If the variables are not equal, the code will continue to execute. If they
are equal, an error will be logged, and the test will be marked as having failed.

More Assertions

The macros for assertions are defined in micro_test.h, and you can read the file to
see how they work. Here are the available assertions:

TF_LITE_MICRO_EXPECT(x)

Asserts that x evaluates to true.

TF_LITE_MICRO_EXPECT_EQ(x, y)

Asserts that x is equal to y.

TF_LITE MICRO_EXPECT NE(X, y)

Asserts that x is not equal to y.

TF_LITE_MICRO_EXPECT_NEAR(x, y, epsilon)

For numeric values, asserts that the difference between x and y is less than or

equal to epsilon. For example, TF_LITE_MICRO_EXPECT_NEAR(5, 7, 3) would
pass, because the difference between 5 and 7 is 2.

TF_LITE_MICRO_EXPECT_GT(x, y)

For numeric values, asserts that x is greater than y.

TF_LITE_MICRO_EXPECT LT(x, y)

For numeric values, asserts that x is less than y.

TF_LITE_MICRO_EXPECT_GE(X, V)

For numeric values, asserts that x greater than or equal to y.

TF_LITE _MICRO_EXPECT_LE(X, y)

For numeric values, asserts that x is less than or equal to y.

The first thing we check is that our input tensor actually exists. To do this, we assert

that it is not equal to a nullptr, which is a special C++ value representing a pointer that
is not actually pointing at any data:

TF_LITE_MICRO_EXPECT_NE(nullptr, input);

The next thing we check is the shape of our input tensor. As discussed in Chapter 3, all
tensors have a shape, which is a way of describing their dimensionality. The input to
our model is a scalar value (meaning a single number). However, due to the way Keras
layers accept input, this value must be provided inside of a 2D tensor containing one
number. For an input of 0, it should look like this:

(fell

Note how the input scalar, 0, is wrapped inside of two vectors, making this a 2D tensor.

The TfLiteTensor struct contains a dims member that describes the dimensions of the
tensor. The member is a struct of type TfLiteIntArray, also defined in c_api_internal.h.
Its size member represents the number of dimensions that the tensor has. Since the
input tensor should be 2D, we can assert that the value of size is 2:

TF_LITE_MICRO_EXPECT_EQ(2, input->dims->size);

We can further inspect the dims struct to ensure the tensor’s structure is what we

expect. Its data variable is an array with one element for each dimension. Each
element is an integer representing the size of that dimension. Because we are
expecting a 2D tensor containing one element in each dimension, we can assert that
both dimensions contain a single element:

TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[1]);

We can now be confident that our input tensor has the correct shape. Finally, since
tensors can consist of a variety of different types of data (think integers, floating-point
numbers, and Boolean values), we should make sure that our input tensor has the
correct type.

The tensor struct’s type variable informs us of the data type of the tensor. We’ll be
providing a 32-bit floating-point number, represented by the constant

kTfLiteFloat32, and we can easily assert that the type is correct:
TF_LITE_MICRO_EXPECT_EQ(kTfLiteFloat32, input->type);

Perfect—our input tensor is now guaranteed to be the correct size and shape for our

input data, which will be a single floating-point value. We're ready to run inference!
Running Inference on an Input

To run inference, we need to add a value to our input tensor and then instruct the
interpreter to invoke the model. Afterward, we will check whether the model
successfully ran. Here’s how that looks:

// Provide an input value
input->data.f[0] = 0.;

// Run the model on this input and check that it succeeds

TfLiteStatus invoke_status = interpreter.Invoke();

if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed\n");

}

TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, invoke_status);

TensorFlow Lite’s TfLiteTensor struct has a data variable that we can use to set the
contents of our input tensor. You can see this being used here:

input->data.f[0] = 0.;

The data variable is a TfLitePtrUnion—it’s a union, which is a special C++ data type
that allows you to store different data types at the same location in memory. Since a
given tensor can contain one of many different types of data (for example, floating-
point numbers, integers, or Booleans), a union is the perfect type to help us store it.

The TfLitePtrUnion union is declared in c_api_internal.h. Here’s what it looks like:

// A union of pointers that points to memory for a given tensor.
typedef union {
int32_t* 132;
int64_t* 164;
float* f;
TfLiteFloat16* f16;
char* raw;
const char* raw_const;
uint8_t* uint§;
bool* b;
int16_t* i16;

TfLiteComplex64* c64;
int8_t* int8;
} TfLitePtrUnion;

You can see that there are a bunch of members, each representing a certain type. Each
member is a pointer, which can point at a place in memory where the data should be

stored. When we call interpreter.AllocateTensors(), like we did earlier, the
appropriate pointer is set to point at the block of memory that was allocated for the
tensor to store its data. Because each tensor has a specific data type, only the pointer
for the corresponding type will be set.

This means that to store data, we can use whichever is the appropriate pointer in our
TfLitePtrUnion. For example, if our tensor is of type kTfLiteFloat32, we'll use
data.f.

Since the pointer points at a block of memory, we can use square brackets ([]) after
the pointer name to instruct our program where to store the data. In our example, we
do the following:

input->data.f[0] = 0.;

The value we’re assigning is written as 0., which is shorthand for 0.0. By specifying
the decimal point, we make it clear to the C++ compiler that this value should be a
floating-point number, not an integer.

You can see that we assign this value to data. f[@]. This means that we’re assigning it
as the first item in our block of allocated memory. Given that there’s only one value,
this is all we need to do.

More Complex Inputs

In the example we’re walking through, our model accepts a scalar input, so we

have to assign only one value (input->data.f[0] = 0.).If our model’s input was
a vector consisting of several values, we would add them to subsequent memory
locations.

Here’s an example of a vector containing the numbers 1, 2, and 3:
[12 3]
And here’s how we might set these values in a TfLiteTensor:

// Vector with 6 elements

input->data.f[0] = 1.;
input->data.f[1] = 2.;
input->data.f[2] = 3.;

But what about matrices, which consist of multiple vectors? Here’s an example:

P
v N
oA w
[-
e

To set this in a TfLiteTensor, we just assign the values in order, from left to right
and top to bottom. This is called flattening, because we squash the structure from
two to one dimension:

// Vector with 3 elements
input->data.f[0] = 1.;

input->data.f[1]
input->data.f[2]
input->data.f[3]
input->data.f[4]
input->data.f[5]

A wWN

I 1nnn

(o)W,]

e e Ve we We

Because the TfLiteTensor struct has a record of its actual dimensions, it knows
which locations in memory correspond to which elements in its multidimensional
shape, even though the memory has a flat structure. We make use of 2D input
tensors in the later chapters to feed in images and other 2D data.

After we've set up the input tensor, it’s time to run inference. This is a one-liner:

TfLiteStatus invoke_status = interpreter.Invoke();

When we call Invoke() on the interpreter, the TensorFlow Lite interpreter runs the
model. The model consists of a graph of mathematical operations which the
interpreter executes to transform the input data into an output. This output is stored
in the model’s output tensors, which we’ll dig into later.

The Invoke() method returns a TfLiteStatus object, which lets us know whether
inference was successful or there was a problem. Its value can either be kTfLiteOk or
kTfLiteError. We check for an error and report it if there is one:

if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed\n");
}

Finally, we assert that the status must be kTfLiteOk in order for our test to pass:

TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, invoke_status);

That’s it—inference has been run! Next up, we grab the output and make sure it looks

good.
Reading the Output

Like the input, our model’s output is accessed through a TfLiteTensor, and getting a
pointer to it is just as simple:

TfLiteTensor* output = interpreter.output(0);

The output is, like the input, a floating-point scalar value nestled inside a 2D tensor.
For the sake of our test, we double-check that the output tensor has the expected size,
dimensions, and type:

TF_LITE_MICRO_EXPECT_EQ(2, output->dims->size);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[1]);
TF_LITE_MICRO_EXPECT EQ(kTfLiteFloat32, output->type);

Yep, it all looks good. Now, we grab the output value and inspect it to make sure that it
meets our high standards. First we assign it to a float variable:

// Obtain the output value from the tensor
float value = output->data.f[0];

Each time inference is run, the output tensor will be overwritten with new values. This
means that if you want to keep an output value around in your program while

continuing to run inference, you'll need to copy it from the output tensor, like we just
did.

Next, we use TF_LITE_MICRO_EXPECT_NEAR to prove that the value is close to the value
we’re expecting:

// Check that the output value is within 0.05 of the expected value
TF_LITE_MICRO_EXPECT_NEAR(0O., value, 0.05);

As we saw earlier, TF_LITE_MICRO_EXPECT_NEAR asserts that the difference between its
first argument and its second argument is less than the value of its third argument. In
this statement, we’re testing that the output is within 0.05 of 0, which is the

mathematical sine of the input, 0.
Note

There are two reasons why we expect a number that is near to what we want, but not
an exact value. The first is that our model only approximates the real sine value, so we
know that it will not be exactly correct. The second is because floating-point
calculations on computers have a margin of error. The error can vary from computer
to computer: for example, a laptop’s CPU might come up with slightly different results
to an Arduino. By having flexible expectations, we make it more likely that our test
will pass on any platform.

If this test passes, things are looking good. The remaining tests run inference a few
more times, just to further prove that our model is working. To run inference again, all

we need to do is assign a new value to our input tensor, call interpreter.Invoke(),
and read the output from our output tensor:

// Run inference on several more values and confirm the expected outputs
input->data.f[0] = 1.;

interpreter.Invoke();

value = output->data.f[0];

TF_LITE_MICRO_EXPECT _NEAR(0.841, value, 0.05);

input->data.f[0] = 3.;

interpreter.Invoke();

value = output->data.f[0];
TF_LITE_MICRO_EXPECT_NEAR(0.141, value, 0.05);

input->data.f[0] = 5.;

interpreter.Invoke();

value = output->data.f[0];
TF_LITE_MICRO_EXPECT_NEAR(-0.959, value, 0.05);

Note how we’re reusing the same input and output tensor pointer. Because we already
have the pointers, we don’t need to call interpreter.input(0) or
interpreter.output(0) again.

At this point in our tests we’ve proven that TensorFlow Lite for Microcontrollers can
successfully load our model, allocate the appropriate input and output tensors, run
inference, and return the expected results. The final thing to do is indicate the end of
the tests by using a macro:

}
TF_LITE_MICRO_TESTS_END

And with that, we’re done walking through the tests. Next, let’s run them!
Running the Tests

Even though this code is eventually destined to run on microcontrollers, we can still
build and run our tests on our development machine. This makes it much easier to
write and debug code. Compared with microcontrollers, a personal computer has far
more convenient tools for logging output and stepping through code, which makes it a
lot simpler to figure out any bugs. In addition, deploying code to a device takes time, so
it’s a lot quicker to just run our code locally.

A good workflow for building embedded applications (or, honestly, any kind of
software) is to write as much of the logic as you can in tests that can be run on a
normal development machine. There’ll always be some parts that require the actual
hardware to run, but the more you can test locally, the easier your life will be.

Practically, this means that we should try to write the code that preprocesses inputs,
runs inference with the model, and processes any outputs in a set of tests before trying
to get it working on-device. In Chapter 7, we walk through a speech recognition
application that is much more complex than this example. You’ll see how we’ve

written detailed unit tests for each of its components.
Grabbing the code

Until now, between Colab and GitHub, we’ve been doing everything in the cloud. To
run our tests, we need to pull down the code to our development computer and
compile it.

To do all this, we need the following software tools:

e A terminal emulator, such as Terminal in macOS

e A bash shell (the default in macOS prior to Catalina and most Linux
distributions)

e Git (installed by default in macOS and most Linux distributions)

e Make, version 3.82 or later

Git and Make

Git and Make are often preinstalled on modern operating systems. To check
whether they are installed on your system, open a terminal and do the following:

For Git

Any version of Git will work. To confirm Git is installed, enter git at the
command line. You should see usage instructions being printed.

For Make

To check the version of Make installed, enter make --version at the
command line. You need a version greater than 3.82.

If you are missing either tool, you should search the web for instructions on
installing them for your specific operating system.

After you have all the tools, open up a terminal and enter the command that follows to
download the TensorFlow source code, which includes the example code we’re working
with. It will create a directory containing the source code in whatever location you run
it:

git clone https://github.com/tensorflow/tensorflow.git
Next, change into the tensorflow directory that was just created:

cd tensorflow

Great stuff—we’re now ready to run some code!
Using Make to run the tests

As you saw from our list of tools, we use a program called Make to run the tests. Make
is a tool for automating build tasks in software. It’s been in use since 1976, which in
computing terms is almost forever. Developers use a special language, written in files
called Makefiles, to instruct Make how to build and run code. TensorFlow Lite for
Microcontrollers has a Makefile defined in micro/tools/make/Makefile; there’s more
information about it in Chapter 13.

To run our tests using Make, we can issue the following command, making sure we’re
running it from the root of the tensorflow directory we downloaded with Git. We first
specify the Makefile to use, followed by the target, which is the component that we
want to build:

make -f tensorflow/lite/micro/tools/make/Makefile test_hello_world_test

The Makefile is set up so that in order to run tests, we provide a target with the prefix
test_ followed by the name of the component that we want to build. In our case, that
component is hello_world_test, so the full target name is test_hello_world._test.

Try running this command. You should start to see a ton of output fly past! First, some
necessary libraries and tools will be downloaded. Next, our test file, along with all of its
dependencies, will be built. Our Makefile has instructed the C++ compiler to build the
code and create a binary, which it will then run.

You'll need to wait a few moments for the process to complete. When the text stops
zooming past, the last few lines should look like this:

Testing LoadModelAndPerformInference
1/1 tests passed
~~~ALL TESTS PASSED~~~

Nice! This output shows that our test passed as expected. You can see the name of the

test, LoadModelAndPerformInference, as defined at the top of its source file. Even if
it’s not on a microcontroller yet, our code is successfully running inference.

To see what happens when tests fail, let’s introduce an error. Open up the test file,
hello_world_test.cc. It will be at this path, relative to the root of the directory:

tensorflow/lite/micro/examples/hello_world/hello_world_test.cc

To make the test fail, let’s provide a different input to the model. This will cause the
model’s output to change, so the assertion that checks the value of our output will fail.



Find the following line:
input->data.f[0] = 0.;

Change the assigned value, like so:
input->data.f[0] = 1.;

Now save the file, and use the following command to run the test again (remember to
do this from the root of the tensorflow directory):

make -f tensorflow/lite/micro/tools/make/Makefile test_hello_world_test

The code will be rebuilt, and the test will run. The final output you see should look like
this:

Testing LoadModelAndPerformInference

0.0486171 near value failed at tensorflow/lite/micro/examples/hello_world/\
hello_world_test.cc:94

0/1 tests passed

~~~SOME TESTS FAILED~~~

The output contains some useful information about why the test failed, including the

file and line number where the failure took place (hello_world_test.cc:94). If this

were caused by a real bug, this output would be helpful in tracking down the issue.
Project File Structure

With the help of our test, you've learned how to use the TensorFlow Lite for
Microcontrollers library to run inference in C++. Next, we're going to walk through the
source code of an actual application.

As discussed earlier, the program we’re building consists of a continuous loop that

feeds an x value into the model, runs inference, and uses the result to produce some
sort of visible output (like a pattern of flashing LEDs), depending on the platform.

Because the application is complex and spans multiple files, let’s take a look at its
structure and how it all fits together.

The root of the application is in tensorflow/lite/micro/examples/hello_world. It contains
the following files:

BUILD

A file that lists the various things that can be built using the application’s source
code, including the main application binary and the tests we walked through
earlier. We don’t need to worry too much about it at this point.

Makefile.inc

A Makefile that contains information about the build targets within our
application, including hello_world_test, which is the test we ran earlier, and
hello_world, the main application binary. It defines which source files are part of
them.

README.md

A readme file containing instructions on building and running the application.

constants.h, constants.cc
A pair of files containing various constants (variables that don’t change during the
lifetime of a program) that are important for defining the program’s behavior.
create_sine_model.ipynb

The Jupyter notebook used in the previous chapter.

hello_world_test.cc

A test that runs inference using our model.

main.cc
The entry point of the program, which runs first when the application is deployed

to a device.

main_functions.h, main_functions.cc

A pair of files that define a setup() function, which performs all the initialization
required by our program, and a loop() function, which contains the program’s

core logic and is designed to be called repeatedly in a loop. These functions are
called by main.cc when the program starts.

output_handler.h, output_handler.cc

A pair of files that define a function we can use to display an output each time

inference is run. The default implementation, in output_handler.cc, prints the result
to the screen. We can override this implementation so that it does different things
on different devices.

output_handler._test.cc

A test that proves that the code in output_handler.h and output_handler.cc is working
correctly.

sine_model_data.h, sine_model_data.cc

A pair of files that define an array of data representing our model, as exported
using xxd in the first part of this chapter.

In addition to these files, the directory contains the following subdirectories (and
perhaps more):

e arduino/
e disco_f76ng/
e sparkfun_edge/

Because different microcontroller platforms have different capabilities and APIs, our
project structure allows us to provide device-specific versions of source files that will
be used instead of the defaults if the application is built for that device. For example,
the arduino directory contains custom versions of main.cc, constants.cc, and
output_handler.cc that tailor the application to work with Arduino. We dig into these

custom implementations later.
Walking Through the Source

Now that we know how the application’s source is structured, let’s dig into the code.
We'll begin with main_functions.cc, where most of the magic happens, and branch out

into the other files from there.
Note

A lot of this code will look very familiar from our earlier adventures in
hello_world_test.cc. If we’ve covered something already, we won’t go into depth on how
it works; we’d rather focus mainly on the things you haven’t seen before.

Starting with main_functions.cc

This file contains the core logic of our program. It begins like this, with some familiar
#include statements and some new ones:

#include "tensorflow/lite/micro/examples/hello_world/main_functions.h"
#include "tensorflow/lite/micro/examples/hello_world/constants.h"
#include "tensorflow/lite/micro/examples/hello_world/output_handler.h"
#include "tensorflow/lite/micro/examples/hello_world/sine_model_data.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"

#include "tensorflow/lite/micro/micro_error_reporter.h"

#include "tensorflow/lite/micro/micro_1interpreter.h"

#include "tensorflow/lite/schema/schema_generated.h"

#include "tensorflow/lite/version.h"

We saw a lot of these in hello_world_test.cc. New to the scene are constants.h and
output_handler.h, which we learned about in the list of files earlier.

The next part of the file sets up the global variables that will be used within
main_functions.cc:

namespace {

tflite: :ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;

tflite: :MicroInterpreter* interpreter = nullptr;
TfLiteTensor* input = nullptr;

TfLiteTensor* output = nullptr;

int inference_count = 0;

// Create an area of memory to use for input, output, and intermediate arrays.
// Finding the minimum value for your model may require some trial and error.
constexpr int kTensorArenaSize = 2 x 1024;

uint8_t tensor_arena[kTensorArenaSize];

} // namespace

You'll notice that these variables are wrapped in a namespace. This means that even
though they will be accessible from anywhere within main_functions.cc, they won’t be
accessible from any other files within the project. This helps prevent problems if two
different files happen to define variables with the same name.

All of these variables should look familiar from the tests. We set up variables to hold all
of our familiar TensorFlow objects, along with a tensor_arena. The only new thing is

an int that holds inference_count, which will keep track of how many inferences our
program has performed.

The next part of the file declares a function named setup(). This function will be
called when the program first starts, but never again after that. We use it to do all of
the one-time housekeeping work that needs to happen before we start running
inference.

The first part of setup() is almost exactly the same as in our tests. We set up logging,

load our model, set up the interpreter, and allocate memory:

void setup() {
// Set up logging.
static tflite::MicroErrorReporter micro_error_reporter;
error_reporter = µ_error_reporter;

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
model = tflite::GetModel(g_sine_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.",
model->version(), TFLITE_SCHEMA_VERSION);
return;

}

// This pulls in all the operation implementations we need.
static tflite::ops::micro::AllOpsResolver resolver;

// Build an interpreter to run the model with.
static tflite::Microlnterpreter static_interpreter(

model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;

// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
error_reporter->Report("AllocateTensors() failed");
return;

}

Familiar territory so far. After this point, though, things get a little different. First, we
grab pointers to both the input and output tensors:

// Obtain pointers to the model's input and output tensors.
input = interpreter->input(0);
output = interpreter->output(0);

You might be wondering how we can interact with the output before inference has

been run. Well, remember that TfLiteTensor is just a struct that has a member, data,
pointing to an area of memory that has been allocated to store the output. Even though

no output has been written yet, the struct and its data member still exist.

Finally, to end the setup() function, we set our inference_count variable to 0:

// Keep track of how many inferences we have performed.
inference_count = 0;

At this point, all of our machine learning infrastructure is set up and ready to go. We
have all the tools required to run inference and get the results. The next thing to
define is our application logic. What is the program actually going to do?

Our model was trained to predict the sine of any number from 0 to 2r, which
represents the full cycle of a sine wave. To demonstrate our model, we could just feed
in numbers in this range, predict their sines, and then output the values somehow. We
could do this in a sequence so that we show the model working across the entire range.
This sounds like a good plan!

To do this, we need to write some code that runs in a loop. First, we declare a function

called loop(), which is what we’ll be walking through next. The code we place in this
function will be run repeatedly, over and over again:

void loop() {

First in our loop() function, we must determine what value to pass into the model
(let’s call it our x value). We determine this using two constants: kXrange, which

specifies the maximum possible x value as 21, and kInferencesPerCycle, which
defines the number of inferences that we want to perform as we step from 0 to 2m. The

next few lines of code calculate the x value:

// Calculate an x value to feed into the model. We compare the current

// inference_count to the number of inferences per cycle to determine

// our position within the range of possible x values the model was

// trained on, and use this to calculate a value.

float position = static_cast<float>(inference_count) /
static_cast<float>(kInferencesPerCycle);

float x_val = position * kXrange;

The first two lines of code just divide inference_count (which is the number of
inferences we’ve done so far) by kInferencesPerCycle to obtain our current
“position” within the range. The next line multiplies that value by kXrange, which

represents the maximum value in the range (2n). The result, x_val, is the value we’ll

be passing into our model.
Note

static_cast<float>() is used to convert inference_count and
kInferencesPerCycle, which are both integer values, into floating-point numbers. We

do this so that we can correctly perform division. In C++, if you divide two integers, the

result is an integer; any fractional part of the result is dropped. Because we want our x
value to be a floating-point number that includes the fractional part, we need to
convert the numbers being divided into floating points.

The two constants we use, kInferencesPerCycle and kXrange, are defined in the files
constants.h and constants.cc. It’s a C++ convention to prefix the names of constants with

a k, so they’re easily identifiable as constants when using them in code. It can be useful
to define constants in a separate file so they can be included and used in any place that
they are needed.

The next part of our code should look nice and familiar; we write our x value to the

model’s input tensor, run inference, and then grab the result (let’s call it our y value)
from the output tensor:

// Place our calculated x value in the model's input tensor
input->data.f[0] = x_val;

// Run inference, and report any error
TfLiteStatus invoke_status = interpreter->Invoke();
if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed on x_val: %f\n",
static_cast<double>(x_val));
return;

}

// Read the predicted y value from the model's output tensor
float y_val = output->data.f[0];

We now have a sine value. Since it takes a small amount of time to run inference on
each number, and this code is running in a loop, we’ll be generating a sequence of sine
values over time. This will be perfect for controlling some blinking LEDs or an
animation. Our next job is to output it somehow.

The following line calls the HandleOutput() function, defined in output_handler.cc:

// Output the results. A custom HandleOutput function can be implemented
// for each supported hardware target.
HandleOutput(error_reporter, x_val, y_val);

We pass in our x and y values, along with our ErrorReporter instance, which we can

use to log things. To see what happens next, let’s explore output_handler.cc.
Handling Output with output_handler.cc

The file output_handler.cc defines our HandleOutput() function. Its implementation is
very simple:

voild HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
float y_value) {
// Log the current X and Y values
error_reporter->Report("x_value: %f, y_value: %f\n", x_value, y_value);

}

All this function does is use the ErrorReporter instance to log the x and y values. This
is just a bare-minimum implementation that we can use to test the basic functionality
of our application, for example by running it on our development computer.

Our goal, though, is to deploy this application to several different microcontroller
platforms, using each platform’s specialized hardware to display the output. For each
individual platform we’re planning to deploy to, such as Arduino, we provide a custom
replacement for output_handler.cc that uses the platform’s APIs to control output—for
example, by lighting some LEDs.

As mentioned earlier, these replacement files are located in subdirectories with the
name of each platform: arduino/, disco_f76ng/, and sparkfun_edge/. We'll dive into the
platform-specific implementations later. For now, let’s jump back into

main_functions.cc.
Wrapping Up main_functions.cc

The last thing we do in our loop() function is increment our inference_count
counter. If it has reached the maximum number of inferences per cycle defined in

kInferencesPerCycle, we reset it to 0:

// Increment the inference _counter, and reset it if we have reached
// the total number per cycle

inference_count += 1;

if (inference_count >= kInferencesPerCycle) inference_count = 0;

The next time our loop iterates, this will have the effect of either moving our x value
along by a step or wrapping it around back to 0 if it has reached the end of the range.

We've now reached the end of our loop() function. Each time it runs, a new x value is
calculated, inference is run, and the result is output by HandleOutput(). If Loop() is

continually called, it will run inference for a progression of x values in the range 0 to
21 and then repeat.

But what is it that makes the loop() function run over and over again? The answer lies
in the file main.cc.

Understanding main.cc

The C++ standard specifies that every C++ program contain a global function named
main(), which will be run when the program starts. In our program, this function is
defined in the file main.cc. The existence of this main() function is the reason main.cc

represents the entry point of our program. The code in main() will be run any time the
microcontroller starts up.

The file main.cc is very short and sweet. First, it contains an #include statement for
main_functions.h, which will bring in the setup() and loop() functions defined there:

#include "tensorflow/lite/micro/examples/hello_world/main_functions.h"
Next, it declares the main() function itself:

int main(int argc, char* argv[]) {
setup();
while (true) {

loop();

When main() runs, it first calls our setup() function. It will do this only once. After

that, it enters a while loop that will continually call the loop() function, over and over
again.

This loop will keep running indefinitely. Yikes! If you’re from a server or web
programming background, this might not sound like a great idea. The loop will block
our single thread of execution, and there’s no way to exit the program.

However, when writing software for microcontrollers, this type of endless loop is
actually pretty common. Because there’s no multitasking, and only one application will
ever run, it doesn’t really matter that the loop goes on and on. We just continue
making inferences and outputting data for as long as the microcontroller is connected
to power.

We've now walked through our entire microcontroller application. In the next section,
we’ll try out the application code by running it on our development machine.
Running Our Application

To give our application code a test run, we first need to build it. Enter the following
Make command to create an executable binary for our program:

make -f tensorflow/lite/micro/tools/make/Makefile hello_world

When the build completes, you can run the application binary by using the following
command, depending on your operating system:

mac0S:
tensorflow/lite/micro/tools/make/gen/osx_x86_64/bin/hello_world

Linux:
tensorflow/lite/micro/tools/make/gen/1linux_x86_64/bin/hello_world

Windows
tensorflow/lite/micro/tools/make/gen/windows_x86_64/bin/hello_world

If you can’t find the correct path, list the directories in
tensorflow/lite/micro/tools/make/gen/.

After you run the binary, you should hopefully see a bunch of output scrolling past,
looking something like this:

x_value: 1.4137159*271, y_value: 1.374213*2~-2

x_value: 1.5707957*2”1, y value: -1.4249528*2~-5
x_value: 1.7278753*2”1, y_value: -1.4295994*2/-2
x_value: 1.8849551*2~1, y value: -1.2867725*2/-1

x_value: 1.210171*27~2, y_value: -1.7542461%27-1

Very exciting! These are the logs written by the HandleOutput() function in

output_handler.cc. There’s one log per inference, and the x_value gradually increments
until it reaches 2, at which point it goes back to 0 and starts again.

As soon as you've had enough excitement, you can press Ctrl-C to terminate the
program.

Note
You'll notice that the numbers are output as values with power-of-two exponents, like

1.4137159*2~1. This is an efficient way to log floating-point numbers on
microcontrollers, which often don’t have hardware support for floating-point

operations.

To get the original value, just pull out your calculator: for example, 1.4137159*2/1
evaluates to 2.8274318. If you're curious, the code that prints these numbers is in
debug_log_numbers.cc.

Wrapping Up

We’ve now confirmed the program works on our development machine. In the next
chapter, we’ll get it running on some microcontrollers!

Chapter 6. The “Hello World” of TinyML: Deploying to Microcontrollers

Now it’s time to get our hands dirty. Over the course of this chapter, we will deploy the
code to three different devices:

e Arduino Nano 33 BLE Sense
e SparkFun Edge

¢ ST Microelectronics STM32F746G Discovery kit

We’ll walk through the build and deployment process for each one.
Note

TensorFlow Lite regularly adds support for new devices, so if the device you'd like to
use isn’t listed here, it’s worth checking the example’s README.md.

You can also check there for updated deployment instructions if you run into trouble
following these steps.

Every device has its own unique output capabilities, ranging from a bank of LEDs to a

full LCD display, so the example contains a custom implementation of HandleOutput()
for each one. We’ll also walk through each of these and talk about how its logic works.
Even if you don’t have all of the devices, reading through this code should be
interesting, so we strongly recommend taking a look.

What Exactly Is a Microcontroller?

Depending on your past experience, you might not be familiar with how
microcontrollers interact with other electronic components. Because we’re about to
start playing with hardware, it’s worth introducing some ideas before we move along.

On a microcontroller board like the Arduino, SparkFun Edge, or STM32F746G Discovery
kit, the actual microcontroller is just one of many electronic components attached to
the circuit board. Figure 6-1 shows the microcontroller on the SparkFun Edge.

CAMERA
&
- 2 1 '.‘

RST | 1 =
Sl B 2 100
- 9
el
GRN DA 0G
WK
BLK MO D

{
I
?
B
VDD i
»
&
-

o] R
1q - ; . o= (’) (") O'J éo
£ - - - - '\o
A ! L - [t .\ !> 6 q\
S OENEITRENT = N
MIC1 TEORTRT) }) A A*

Figure 6-1. The SparkFun Edge board with its microcontroller highlighted

The microcontroller is connected to the circuit board it lives on using pins. A typical
microcontroller has dozens of pins, and they serve all sorts of purposes. Some provide
power to the microcontroller; others connect it to various important components.
Some pins are set aside for the input and output of digital signals by programs running
on the microcontroller. These are called GPIO pins, which stands for general-purpose
input/output. They can act as inputs, determining whether a voltage is being applied

to them, or outputs, sourcing current that can power or communicate with other
components.

GPIO pins are digital. This means that in output mode, they are like switches that can
either be fully on, or fully off. In input mode, they can detect whether the voltage
applied to them by another component is either above or below a certain threshold.

In addition to GPIOs, some microcontrollers have analog input pins, which can

measure the exact level of voltage that is being applied to them.

By calling special functions, the program running on a microcontroller can control
whether a given pin is in input or output mode. Other functions are used to switch an
output pin on or off, or to read the current state of an input pin.

Now that you know a bit more about microcontrollers, let’s take a closer look at our

first device: the Arduino.
Arduino

There are a huge variety of Arduino boards, all with different capabilities. Not all of
them will run TensorFlow Lite for Microcontrollers. The board we recommend for this
book is the Arduino Nano 33 BLE Sense. In addition to being compatible with
TensorFlow Lite, it also includes a microphone and an accelerometer (which we use in
later chapters). We recommend buying the version of the board with headers, which
makes it easier to connect other components without soldering.

Most Arduino boards come with a built-in LED, and this is what we’ll be using to
visually output our sine values. Figure 6-2 shows an Arduino Nano 33 BLE Sense board
with the LED highlighted.

S — — —

L

—_—
-

Figure 6-2. The Arduino Nano 33 BLE Sense board with the LED highlighted

Handling Output on Arduino

Because we have only one LED to work with, we need to think creatively. One option is
to vary the brightness of the LED based on the most recently predicted sine value.
Given that the value ranges from -1 to 1, we could represent 0 with an LED that is fully
off, -1 and 1 with a fully lit LED, and any intermediate values with a partially dimmed
LED. As the program runs inferences in a loop, the LED will fade repeatedly on and off.

We can vary the number of inferences we perform across a full sine wave cycle using
the kInferencesPerCycle constant. Because one inference takes a set amount of time,

tweaking kInferencesPerCycle, defined in constants.cc, will adjust how fast the LED
fades.

There’s an Arduino-specific version of this file in hello_world/arduino/constants.cc. The
file has been given the same name as hello_world/constants.cc, so it will be used instead
of the original implementation when the application is built for Arduino.

To dim our built-in LED, we can use a technique called pulse width modulation (PWM). If
we switch an output pin on and off extremely rapidly, the pin’s output voltage
becomes a factor of the ratio between time spent in the off and on states. If the pin
spends 50% of the time in each state, its output voltage will be 50% of its maximum. If
it spends 75% in the on state and 25% in the off state, its voltage will be 75% of its
maximum.

PWM is only available on certain pins of certain Arduino devices, but it’s very easy to
use: we just call a function that sets our desired output level for the pin.

The code that implements output handling for Arduino is in
hello_world/arduino/output_handler.cc, which is used instead of the original file,
hello_world/output_handler.cc.

Let’s walk through the source:

#include "tensorflow/lite/micro/examples/hello_world/output_handler.h"
#include "Arduino.h"
#include "tensorflow/lite/micro/examples/hello_world/constants.h"

First, we include some header files. Our output_handler.h specifies the interface for this
file. Arduino.h provides the interface for the Arduino platform; we use this to control

the board. Because we need access to kInferencesPerCycle, we also include
constants.h.

Next, we define the function and instruct it what to do the first time it runs:

// Adjusts brightness of an LED to represent the current y value

voild HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
float y_value) {

// Track whether the function has run at least once

static bool is_initialized = false;

// Do this only once
if (!is_initialized) {
// Set the LED pin to output

pinMode(LED_BUILTIN, OUTPUT);
is_initialized = true;

}

In C++, a variable declared as static within a function will hold its value across
multiple runs of the function. Here, we use the is_initialized variable to track

whether the code in the following if (!is_initialized) block has ever been run
before.

The initialization block calls Arduino’s pinMode() function, which indicates to the
microcontroller whether a given pin should be in input or output mode. This is
necessary before using a pin. The function is called with two constants defined by the

Arduino platform: LED_BUILTIN and OUTPUT. LED_BUILTIN represents the pin
connected to the board’s built-in LED, and OUTPUT represents output mode.

After configuring the built-in LED’s pin to output mode, set is_initialized to true so
that this block code will not run again.

Next up, we calculate the desired brightness of the LED:

// Calculate the brightness of the LED such that y=-1 is fully off
// and y=1 is fully on. The LED's brightness can range from 0-255.
int brightness = (int)(127.5f * (y_value + 1));

The Arduino allows us to set the level of a PWM output as a number from 0 to 255,
where 0 means fully off and 255 means fully on. Our y_value is a number between -1
and 1. The preceding code maps y_value to the range 0 to 255 so that wheny = -1 the
LED is fully off, when y = 0 the LED is half lit, and when y = 1 the LED is fully lit.

The next step is to actually set the LED’s brightness:

// Set the brightness of the LED. If the specified pin does not support PWM,
// this will result in the LED being on when y > 127, off otherwise.
analogWrite(LED_BUILTIN, brightness);

The Arduino platform’s analogWrite() function takes a pin number (we provide

LED_BUILTIN) and a value between 0 and 255. We provide our brightness, calculated

in the previous line. When this function is called, the LED will be lit at that level.
Note

Unfortunately, on some models of Arduino boards, the pin that the built-in LED is

connected to is not capable of PWM. This means our calls to analoghWrite() won’t vary
its brightness. Instead, the LED will be switched on if the value passed into
analogWrite() is above 127, and switched off if it is 126 or below. This means the LED
will flash on and off instead of fading. Not quite as cool, but it still demonstrates our
sine wave prediction.

Finally, we use the ErrorReporter instance to log the brightness value:

// Log the current brightness value for display in the Arduino plotter
error_reporter->Report("%d\n", brightness);

On the Arduino platform, the ErrorReporter is set up to log data via a serial port.
Serial is a very common way for microcontrollers to communicate with host
computers, and it’s often used for debugging. It’s a communication protocol in which
data is communicated one bit at a time by switching an output pin on and off. We can
use it to send and receive anything, from raw binary data to text and numbers.

The Arduino IDE contains tools for capturing and displaying data received through a
serial port. One of the tools, the Serial Plotter, can display a graph of values it receives
via serial. By outputting a stream of brightness values from our code, we’ll be able to
see them graphed. Figure 6-3 shows this in action.

? @ Ioev/cu.usbmodem 1454301

wef P

160 @ -

00 + o == + o
34430 34330 J40a0 34780 34430 34980

115200 baud B

Figure 6-3. The Arduino IDE’s Serial Plotter

We provide instructions on how to use the Serial Plotter later in this section.
Note

You might be wondering how the ErrorReporter is able to output data via Arduino’s
serial interface. You can find the code implementation in micro/arduino/debug_log.cc. It
replaces the original implementation at micro/debug_log.cc. Just like how
output_handler.cc is overwritten, we can provide platform-specific implementations of
any source file in TensorFlow Lite for Microcontrollers by adding them to a directory
with the platform’s name.

Running the Example

Our next task is to build the project for Arduino and deploy it to a device.

Tip

There’s always a chance that the build process might have changed since this book was
written, so check README.md for the latest instructions.

Here’s everything that we’ll need:

* A supported Arduino board (we recommend the Arduino Nano 33 BLE Sense)
 The appropriate USB cable

e The Arduino IDE (you'll need to download and install this before continuing)

The projects in this book are available as example code in the TensorFlow Lite Arduino
library, which you can easily install via the Arduino IDE and select Manage Libraries
from the Tools menu. In the window that appears, search for and install the library
named Arduino_TensorFlowLite. You should be able to use the latest version, but if you

run into issues, the version that was tested with this book is 1.14-ALPHA.
Note

You can also install the library from a .zip file, which you can either download from the
TensorFlow Lite team or generate yourself using the TensorFlow Lite for
Microcontrollers Makefile. If you'd prefer to do this, see Appendix A.

After you've installed the library, the hello_world example will show up in the File
menu under Examples—Arduino_TensorFlowLite, as shown in Figure 6-4.

Click “hello_world” to load the example. It will appear as a new window, with a tab for
each of the source files. The file in the first tab, hello_world, is equivalent to the
main_functions.cc we walked through earlier.

File Edit Sketch Tools Help

New

Open...

Open Recent

Sketchbook

Examples Built-in Examples
Close #$W 01.Basics

Save #S 02.Digital

Save As... €3S 03.Analog
04.Communication
05.Control
06.Sensors
07.Display
08.Strings

09.UsSB
10.StarterKit_BasicKit
11.ArduinolSP

Page Setup o8P
Print 8P

VVVVVVVYVVYYY

Sxarmples v any bosd

Adafruit Circuit Playground

YYVVVVVYVYRYY

hello_world
magic_wand
micro_speech
person_detection

Ethernet
Firmata
LiquidCrystal
SD

Stepper
Temboo

RETIRED

Sxatnlie
ArduCAM
JPEGDecoder

Figure 6-4. The Examples menu

Differences in the Arduino Example Code

When the Arduino library is generated, some minor changes are made to the code
so that it works nicely with the Arduino IDE. This means that there are some
subtle differences between the code in our Arduino example and in the
TensorFlow GitHub repository. For example, in the hello_world file, the setup()
and loop() functions are called automatically by the Arduino environment, so the
main.cc file and its main() function aren’t needed.

The Arduino IDE also expects the source files to have the .cpp extension, instead of
.cc. In addition, since the Arduino IDE doesn’t support subfolders, each filename in
the Arduino example is prefixed with its original subfolder name. For example,

arduino_constants.cpp is equivalent to the file originally named arduino/constants.cc.

Beyond a few minor differences, however, the code remains mostly unchanged.

To run the example, plug in your Arduino device via USB. Make sure the correct device
type is selected from the Board drop-down list in the Tools menu, as shown in Figure 6-
5.

Tools Help

Auto Format 3 lld | Arduino 1.8.9
Archive Sketch

Fix Encoding & Reload

Manage Libraries...

Serial Monitor

Serial Plotter

* WiFi101 / WIFININA Firmwars Updater

Board: "Arduino Nano 33 BLE"
Port: “/devfcu.usbmodem 1454301 (Arduino Nano 33 BLE)*
Get Board info

Boards Manager...

Arduino SAMD (32-hits ARM Cortex-M0+) Boards
Arduino/Genuino Zero (Programming Port)
Arduino/Genulno Zero (Native USB Port)
Arduinof/Genuino MKR1000
Programmer: "AVRISP mkiI® Arduino MKRZERO
Burn Boctioader Arduino MKR WiFi 1010
— Arduino NANO 33 loT
Arduino MKR FOX 1200
Arduino MKR WAN 1300
e detatled Tensorflom Lite exarple code. Arduino MKR GSM 1400
Arduino MKR NB 1500
'duino knows to build the TF Lite library. Arduino MKR Vidor 4000
Adafrult Circuit Playground Express
Jin function Arduino MO Pro (Programming Port)
5, chare ergv0l); Arduino MO Pro (Native US8 Port)
Arduino MO
wt a serial connection, Arduino Tian
e giving w.

V Arduino Nano 33 BLE

Figure 6-5. The Board drop-down list

If your device’s name doesn’t appear in the list, you’'ll need to install its support
package. To do this, click Boards Manager. In the window that appears, search for your
device and install the latest version of the corresponding support package.

Next, make sure the device’s port is selected in the Port drop-down list, also in the
Tools menu, as shown in Figure 6-6.

Tools Help

Auto Format d | Arduino 1.8.9
Archive Sketch

Fix Encoding & Reload

Manage Libraries...

Serial Monitor

Serial Plotter

WIFI101) WiFININA Firmware Updater

Board: "Arduino Nano 33 BLE"

Port: “/dev/cu.usbmodem 1454301 (Arduino Nano 33 BLE)" .

Get Board Info /devjcu.Bluetooth-incoming- Port
/devfcu.DixieDewdrop-SPPDev-2
/dev/cu.DixieDewdrop-SPPDev-5
[devfcu.MALS
jdevicu.SOC

v /devfcu.usbmodem1454301 (Arduino Nano 33 BLE)

Programmer: "AVRISP mkil*
Burn Bootloader

Figure 6-6. The Port drop-down list

Finally, in the Arduino window, click the upload button (highlighted in white in
Figure 6-7) to compile and upload the code to your Arduino device.

54| Upload Using Programmer

Figure 6-7. The upload button, a right-facing arrow

After the upload has successfully completed you should see the LED on your Arduino
board begin either fading in and out or flashing on and off, depending on whether the
pin it is attached to supports PWM.

Congratulations: you’re running ML on-device!
Note

Different models of Arduino boards have different hardware, and will run inference at
varying speeds. If your LED is either flickering or stays fully on, you might need to
increase the number of inferences per cycle. You can do this via the

kInferencesPerCycle constant in arduino_constants.cpp.

“Making Your Own Changes” shows you how to edit the example’s code.

You can also view the brightness value plotted on a graph. To do this, open the
Arduino IDE’s Serial Plotter by selecting it in the Tools menu, as shown in Figure 6-8.

Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

Board: "Arduino Nano 33 BLE"
Port: "/dev/cu.usbmodem1454301 (Arduinc Nano 33 BLE)"
Get Board info

Programmer: "AVRISP mkil"
Burn Bootloader

Figure 6-8. The Serial Plotter menu option

The plotter shows the value as it changes over time, as demonstrated in Figure 6-9.

@ @ Ioev/cu.usbmodem 1454301
e e
el T =
e .
by ! d
N %
160 @ - N o
\\\ _/’/
. 4
N //
\ ;
\)
we- \\ g
R /
-\\\ /I/
" el
.0 + —— —
YY) 34330 34680 U790 34430 34980

115200 baud |}

Figure 6-9. The Serial Plotter graphing the value

To view the raw data that is received from the Arduino’s serial port, open the Serial
Monitor from the Tools menu. You’'ll see a stream of numbers flying past, like in

Figure 6-10.

L &l dewcu.usbmodem 1454301

[VR B I T A T

2 Autoscroll Show timestamp Newline L 115200baud Clear output

Figure 6-10. The Serial Monitor displaying raw data

Making Your Own Changes

Now that you've deployed the application, it might be fun to play around and make
some changes to the code. You can edit the source files in the Arduino IDE. When you
save, you'll be prompted to resave the example in a new location. When you’re done
making changes, you can click the upload button in the Arduino IDE to build and
deploy.

To get started making changes, here are a few experiments you could try:

o Make the LED blink slower or faster by adjusting the number of inferences per
cycle.

o Modify output_handler.cc to log a text-based animation to the serial port.

 Use the sine wave to control other components, like additional LEDs or sound
generators.

SparkFun Edge

The SparkFun Edge development board was designed specifically as a platform for
experimenting with machine learning on tiny devices. It has a power-efficient Ambiq
Apollo 3 microcontroller with an Arm Cortex M4 processor core.

It features a bank of four LEDs, as shown in Figure 6-11. We use these to visually output

our sine values.

Powered by

'“‘ D -:TensorFlow

)

lﬂﬂ
n‘;”
Eila'lewc)@oo

Figure 6-11. The SparkFun Edge’s four LEDs

M|C1

Handling Output on SparkFun Edge

We can use the board’s bank of LEDs to make a simple animation, because nothing says
cutting-edge Al like blinkenlights.

The LEDs (red, green, blue, and yellow) are physically lined up in the following order:
[RGBY]

The following table represents how we will light the LEDs for different y values:

Range LEDs lit

0.75<=y<=1 [0011]
0<y<0.75 [0010]
y=20 [6000]
-0.75<y <0 [06100]

“1<=y<=0.75[1100]

Each inference takes a certain amount of time, so tweaking kInferencesPerCycle,
defined in constants.cc, will adjust how fast the LEDs cycle.

Figure 6-12 shows a still from an animated .gif of the program running.

mmmmmmmm’ b |
AULLEREUNRRRARNTACRERAE)

o Powered by

113 TensorFlow

@'IHI& {Q

\(\ﬂﬂ(ﬂ)s

Figure 6-12. A stlll from the animation of the SparkFun Edge’s LEDs

The code that implements output handling for the SparkFun Edge is in
hello_world/sparkfun_edge/output_handler.cc, which is used instead of the original file,
hello_world/output_handler.cc.

Let’s start walking through it:

#include "tensorflow/lite/micro/examples/hello_world/output_handler.h"
#include "am_bsp.h"

First, we include some header files. Our output_handler.h specifies the interface for this
file. The other file, am_bsp.h, comes from something called the Ambiq Apollo3 SDK.
Ambiq is the manufacturer of the SparkFun Edge’s microcontroller, which is called the
Apollo3. The SDK (short for software development kit) is a collection of source files that
define constants and functions that can be used to control the microcontroller’s
features.

Because we are planning to control the board’s LEDs, we need to be able to switch the

microcontroller’s pins on and off. This is what we use the SDK for.
Note

The Makefile will automatically download the SDK when we eventually build the
project. If you’re curious, you can read more about it or download the code to explore
on SparkFun’s website.

Next, we define the HandleOutput() function and indicate what to do on its first run:

voild HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
float y_value) {
// The first time this method runs, set up our LEDs correctly
static bool is_initialized = false;
if (!is_initialized) {
// Set up LEDs as outputs
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_RED, g_AM_HAL_GPIO_OUTPUT_12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_BLUE, g AM_HAL_GPIO_OUTPUT_ 12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_GREEN, g_AM_HAL_GPIO_OUTPUT_12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_YELLOW, g_AM_HAL_GPIO_OUTPUT_12);
// Ensure all pins are cleared
am_hal_gpio_output_clear(AM_BSP_GPIO_LED RED);
am_hal_gpio_output_clear (AM_BSP_GPIO_LED BLUE);
am_hal_gpio_output_clear (AM_BSP_GPIO_LED_GREEN);
am_hal_gpio_output_clear(AM_BSP_GPIO_LED_YELLOW);
is_initialized = true;

Phew, that’s a lot of setup! We're using the am_hal_gpio_pinconfig() function,
provided by am_bsp.h, to configure the pins connected to the board’s built-in LEDs,

putting them into output mode (represented by the g_AM_HAL_GPIO_OUTPUT_12
constant). The pin number of each LED is represented by a constant, such as

AM_BSP_GPIO_LED_RED.

We then clear all of the outputs using am_hal_gpio_output_clear(), so the LEDs are
all switched off. As in the Arduino implementation, we use a static variable named
is_initialized to ensure the code in this block is run only once. Next, we determine
which LEDs should be lit if the y value is negative:

// Set the LEDs to represent negative values
if (y_value < 0) {
// Clear unnecessary LEDs
am_hal_gpio_output_clear(AM_BSP_GPIO_LED_GREEN);
am_hal_gpio_output_clear(AM_BSP_GPIO_LED_YELLOW);
// The blue LED is lit for all negative values
am_hal_gpio_output_set(AM_BSP_GPIO_LED_BLUE);
// The red LED is lit in only some cases
if (y_value <= -0.75) {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_RED);
} else {
am_hal_gpio_output_clear (AM_BSP_GPIO_LED_RED);

First, in case the y value only just became negative, we clear the two LEDs that are used

to indicate positive values. Next, we call am_hal_gpio_output_set() to switch on the
blue LED, which will always be lit if the value is negative. Finally, if the value is less
than -0.75, we switch on the red LED. Otherwise, we switch it off.

Next up, we do the same thing but for positive values of y:

// Set the LEDs to represent positive values
} else if (y_value > 0) {
// Clear unnecessary LEDs
am_hal_gpio_output_clear(AM_BSP_GPIO_LED_RED);
am_hal_gpio_output_clear (AM_BSP_GPIO_LED_BLUE);
// The green LED is lit for all positive values
am_hal_gpio_output_set(AM_BSP_GPIO_LED_GREEN);
// The yellow LED is lit in only some cases
if (y_value >= 0.75) {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_YELLOW);
} else {
am_hal_gpio_output_clear (AM_BSP_GPIO_LED_YELLOW);

That’s just about it for the LEDs. The last thing we do is log the current output values
to anyone who is listening on the serial port:

// Log the current X and Y values
error_reporter->Report("x_value: %f, y_value: %f\n", x_value, y value);

Note

Our ErrorReporter is able to output data via the SparkFun Edge’s serial interface due
to a custom implementation of micro/sparkfun_edge/debug_log.cc that replaces the

original implementation at mmicro/debug_log.cc.
Running the Example

Now we can build the sample code and deploy it to the SparkFun Edge.

Tip

There’s always a chance that the build process might have changed since this book was
written, so check README.md for the latest instructions.

To build and deploy our code, we’'ll need the following:

e A SparkFun Edge board

e A USB programmer (we recommend the SparkFun Serial Basic Breakout, which
is available in micro-B USB and USB-C variants)

» A matching USB cable

 Python 3 and some dependencies

Python and Dependencies

This process involves running some Python scripts. Before continuing, you should
make sure that you have Python 3 installed. To check whether it’s present on your
system, open a terminal and enter the following:

python --version

If you have Python 3 installed, you will see the following output (where x and y
are minor version numbers; the exact ones don’t matter):

Python 3.x.y

If this worked, you can use the command python to run Python scripts later in
this section.

If you saw a different output, try the following command:
python3 --version

You should hopefully see the same output we were looking for earlier:

Python 3.x.y

If you do, this means that you can use the command python3 to run Python
scripts when needed.

If not, you’ll need to install Python 3 on your system. Search the web for
instructions on installing it for your specific operating system.

After you've installed Python 3, you'll have to install some dependencies. Run the
following command to do so (if your Python command is python3, you should use
the command pip3 instead of pip):

pip install pycrypto pyserial --user

After you've installed the dependencies, you're ready to go.

To begin, open a terminal, clone the TensorFlow repository, and then change into its
directory:

git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow

Next, we're going to build the binary and run some commands that get it ready for
downloading to the device. To avoid some typing, you can copy and paste these

commands from README.md.
Build the binary

The following command downloads all the required dependencies and then compiles a
binary for the SparkFun Edge:

make -f tensorflow/lite/micro/tools/make/Makefile \
TARGET=sparkfun_edge hello_world_bin

Note

A binary is a file that contains the program in a form that can be run directly by the
SparkFun Edge hardware.

The binary will be created as a .bin file, in the following location:

tensorflow/lite/micro/tools/make/gen/ \
sparkfun_edge_cortex-m4/bin/hello_world.bin

To check that the file exists, you can use the following command:

test -f tensorflow/lite/micro/tools/make/gen/ \
sparkfun_edge_cortex-m4/bin/hello_world.bin \
&% echo "Binary was successfully created" || echo "Binary is missing"

If you run that command, you should see Binary was successfully created printed
to the console.

If you see Binary is missing, there was a problem with the build process. If so, it’s

likely that you can find some clues to what went wrong in the output of the make

command.
Sign the binary

The binary must be signed with cryptographic keys to be deployed to the device. Let’s
now run some commands that will sign the binary so it can be flashed to the SparkFun

Edge. The scripts used here come from the Ambiq SDK, which is downloaded when the
Makefile is run.

Enter the following command to set up some dummy cryptographic keys that you can
use for development:

cp tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0/ \
tools/apollo3_scripts/keys_info0.py \
tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0/ \
tools/apollo3_scripts/keys_info.py

Next, run the following command to create a signed binary. Substitute python3 with
python if necessary:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_image_blob.py \
--bin tensorflow/lite/micro/tools/make/gen/ \
sparkfun_edge_cortex-m4/bin/hello_world.bin \
--load-address 0xC000 \
--magic-num OxCB -o main_nonsecure_ota \
--version 0x0

This creates the file main_nonsecure_ota.bin. Now run this command to create a final

version of the file that you can use to flash your device with the script you will use in
the next step:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbigSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_wireupdate_blob.py \
--load-address 0x20000 \
--bin main_nonsecure_ota.bin \
-16\
-0 main_nonsecure_wire \
--options Ox1

You should now have a file called main_nonsecure_wire.bin in the directory where you

ran the commands. This is the file you’ll be flashing to the device.
Flash the binary

The SparkFun Edge stores the program it is currently running in its 1 megabyte of
flash memory. If you want the board to run a new program, you need to send it to the
board, which will store it in flash memory, overwriting any program that was
previously saved.

This process is called flashing. Let’s walk through the steps.
Attach the programmer to the board

To download new programs to the board, you’ll use the SparkFun USB-C Serial Basic
serial programmer. This device allows your computer to communicate with the
microcontroller via USB.

To attach this device to your board, perform the following steps:

1. On the side of the SparkFun Edge, locate the six-pin header.

2. Plug the SparkFun USB-C Serial Basic into these pins, ensuring that the pins
labeled BLK and GRN on each device are lined up correctly.

You can see the correct arrangement in Figure 6-13.

Figure 6-13. Connecting the SparkFun Edge and USB-C Serial Basic (courtesy of SparkFun)

Attach the programmer to your computer

Next, connect the board to your computer via USB. To program the board, you need to
determine the name that your computer gives the device. The best way of doing this is
to list all of the computer’s devices before and after attaching it and then look to see
which device is new.

Warning

Some people have reported issues with their operating system’s default drivers for the

programmer, so we strongly recommend installing the driver before you continue.

Before attaching the device via USB, run the following command:

mac0S:
1s /dev/cu*

Linux:
1s /dev/tty*

This should output a list of attached devices that looks something like the following:

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.MALS
/dev/cu.S0C

Now, connect the programmer to your computer’s USB port and run the command
again:

mac0S:
1s /dev/cu*

Linux:
1s /dev/tty*

You should see an extra item in the output, as in the example that follows. Your new
item might have a different name. This new item is the name of the device:

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.MALS

/dev/cu.S0C
/dev/cu.wchusbserial-1450

This name will be used to refer to the device. However, it can change depending on
which USB port the programmer is attached to, so if you disconnect the board from
your computer and then reattach it, you might need to look up its name again.

Tip

Some users have reported two devices appearing in the list. If you see two devices, the
correct one to use begins with the letters “wch”; for example, “/dev/wchusbserial-
14410.”

After you've identified the device name, put it in a shell variable for later use:

export DEVICENAME=<your device name here>

This is a variable that you can use when running commands that require the device
name, later in the process.
Run the script to flash your board

To flash the board, you need to put it into a special “bootloader” state that prepares it
to receive the new binary. You can then run a script to send the binary to the board.

First create an environment variable to specify the baud rate, which is the speed at
which data will be sent to the device:

export BAUD_RATE=921600

Now paste the command that follows into your terminal—but do not press Enter yet!. The
${DEVICENAME} and ${BAUD_RATE} in the command will be replaced with the values

you set in the previous sections. Remember to substitute python3 with python if
necessary:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/ \
vart_wired_update.py -b ${BAUD_RATE} \
${DEVICENAME} -r 1 -f main_nonsecure_wire.bin -1 6

Next, you'll reset the board into its bootloader state and flash the board. On the board,
locate the buttons marked RST and 14, as shown in Figure 6-14.

HHHm
tH mm

ol
o
i

I=!
s’
 —

Figure 6-14. The SparkFun Edge’s buttons
Perform the following steps:

1. Ensure that your board is connected to the programmer and that the entire
thing is connected to your computer via USB.

2. On the board, press and hold the button marked 14. Continue holding it.

3. While still holding the button marked 14, press the button marked RST to reset
the board.

4. Press Enter on your computer to run the script. Continue holding button 14.

You should now see something like the following appearing on your screen:

Connecting with Corvette over serial port /dev/cu.usbserial-1440..
Sending Hello.

Received response for Hello
Received Status

length = 0x58

version = 0x3

Max Storage = 0x4ffa0

Status = 0Ox2

State = Ox7

AMInfo =

0x1

oxff2da3ff

Ox55fff

ox1

0x49f40003

oxffffffff

[...lots more Oxffffffff...]
Sending OTA Descriptor = 0xfe000
Sending Update Command.

number of updates needed = 1
Sending block of size 0x158b0 from Ox0 to 0x158b0
Sending Data Packet of length 8180
Sending Data Packet of length 8180
[...lots more Sending Data Packet of length 8180...]

Keep holding button 14 until you see Sending Data Packet of length 8180. You can
release the button after seeing this (but it’s okay if you keep holding it).

The program will continue to print lines on the terminal. Eventually you will see
something like the following:

[...lots more Sending Data Packet of length 8180...]
Sending Data Packet of length 8180

Sending Data Packet of length 6440

Sending Reset Command.

Done.

This indicates a successful flashing.
Tip

If the program output ends with an error, check whether Sending Reset Command.
was printed. If so, flashing was likely successful despite the error. Otherwise, flashing
might have failed. Try running through these steps again (you can skip over setting the

environment variables).
Testing the Program

The binary should now be deployed to the device. Press the button marked RST to
reboot the board. You should see the device’s four LEDs flashing in sequence. Nice
work!

What If It Didn’t Work?

Here are some possible issues and how to debug them:

Problem: When flashing, the script hangs for a while at Sending Hello. and then
prints an error.

Solution: You need to hold down the button marked 14 while running the script.
Hold down button 14, press the RST button, and then run the script while holding
down button 14 the entire time.

Problem: After flashing, none of the LEDs are coming on.

Solution: Try pressing the RST button, or disconnecting the board from the
programmer and then reconnecting it. If neither of these works, try flashing the
board again.

Viewing Debug Data

Debug information is logged by the board while the program is running. To view it, we
can monitor the board’s serial port output using a baud rate of 115200. On macOS and
Linux, the following command should work:

screen ${DEVICENAME} 115200

You will see a lot of output flying past! To stop the scrolling, press Ctrl-A, immediately
followed by Esc. You can then use the arrow keys to explore the output, which will

contain the results of running inference on various x values:
x_value: 1.1843798*272, y_value: -1.9542645*2/-1

To stop viewing the debug output with screen, press Ctrl-A, immediately followed by

the K key, and then press the Y key.
Note

The program screen is a helpful utility program for connecting to other computers. In
this case, we're using it to listen to the data the SparkFun Edge board is logging via its
serial port. If you're using Windows, you could try using the program CoolTerm to do

the same thing.
Making Your Own Changes

Now that you've deployed the basic application, try playing around and making some
changes. You can find the application’s code in the
tensorflow/lite/micro/examples/hello_world folder. Just edit and save, and then repeat the
previous instructions to deploy your modified code to the device.

Here are a few things you could try:
o Make the LED blink slower or faster by adjusting the number of inferences per
cycle.

o Modify output_handler.cc to log a text-based animation to the serial port.

* Use the sine wave to control other components, like additional LEDs or sound
generators.

ST Microelectronics STM32F746G Discovery Kit

The STM32F746G is a microcontroller development board with a relatively powerful
Arm Cortex-M7 processor core.

This board runs Arm’s Mbed 0S, an embedded operating system designed to make it
easier to build and deploy embedded applications. This means that we can use many of
the instructions in this section to build for other Mbed devices.

The STM32F746G comes with an attached LCD screen, which will allow us to build a

much more elaborate visual display.
Handling Output on STM32F746G

Now that we have an entire LCD to play with, we can draw a nice animation. Let’s use
the x-axis of the screen to represent number of inferences, and the y-axis to represent
the current value of our prediction.

We'll draw a dot where this value should be, and it will move around the screen as we
loop through the input range of 0 to 2m. Figure 6-15 presents a wireframe of this.

Each inference takes a certain amount of time, so tweaking kInferencesPerCycle,
defined in constants.cc, will adjust the speed and smoothness of the dot’s motion.

Figure 6-16 shows a still from an animated .gif of the program running.

The dot's coordinates O O
will change to reflect)

the x and y values of

each inference. O O

O O O

Figure 6-15. The animation we’ll draw on the LCD display

Figure 6-16 shows a still from an animated .gif of the program running.

Figure 6-16. The code running on an STM32F746G Discovery kit, which has an LCD display

The code that implements output handling for the STM32F746G is in

hello_world/disco_f746ng/output_handler.cc, which is used instead of the original file,
hello_world/output_handler.cc.

Let’s walk through it:

#include "tensorflow/lite/micro/examples/hello_world/output_handler.h"
#include "LCD_DISCO_F746NG.h"
#include "tensorflow/lite/micro/examples/hello_world/constants.h"

First, we have some header files. Our output_handler.h specifies the interface for this
file. LCD_DISCO_F74NG.h, supplied by the board’s manufacturer, declares the interface
we will use to control its LCD screen. We also include constants.h, since we need access

to kInferencesPerCycle and kXrange.

Next, we set up a ton of variables. First comes an instance of LCD_DISCO_F746NG, which
is defined in LCD_DISCO_F74NG.h and provides methods that we can use to control the
LCD:

// The LCD driver
LCD_DISCO_F746NG lcd;

Details on the LCD_DISCO_F746NG classes are available on the Mbed site.

Next, we define some constants that control the look and feel of our visuals:

// The colors we'll draw
const uint32_t background_color
const uint32_t foreground_color
// The size of the dot we'll draw
const int dot_radius = 10;

OxFFF4B400; // Yellow
OxFFDB4437; // Red

The colors are provided as hex values, like @xFFF4B400. They are in the format
AARRGGBB, where AA represents the alpha value (or opacity, with FF being fully
opaque), and RR, GG, and BB represent the amounts of red, green, and blue.

Tip

With some practice, you can learn to read the color from the hex value. 0xFFF4B400 is
fully opaque and has a lot of red and a fair amount of green, which makes it a nice
orange-yellow.

You can also look up the values with a quick Google search.

We then declare a few more variables that define the shape and size of our animation:

// Size of the drawable area
int width;

int height;

// Midpoint of the y axis

int midpoint;

// Pixels per unit of x_value
int x_increment;

After the variables, we define the HandleOutput() function and tell it what to do on its
first run:

// Animates a dot across the screen to represent the current x and y values
voild HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
float y_value) {
// Track whether the function has run at least once
static bool is_initialized = false;

// Do this only once

if (!is_initialized) {
// Set the background and foreground colors
lcd.Clear(background_color);
lcd.SetTextColor(foreground_color);
// Calculate the drawable area to avoid drawing off the edges
width = lcd.GetXSize() - (dot_radius * 2);
height = lcd.GetYSize() - (dot_radius * 2);
// Calculate the y axis midpoint
midpoint = height / 2;
// Calculate fractional pixels per unit of x_value
x_increment = static_cast<float>(width) / kXrange;
is_1initialized = true;

There’s a lot in there! First, we use methods belonging to 1cd to set a background and

foreground color. The oddly named lcd.SetTextColor() sets the color of anything we
draw, not just text:

// Set the background and foreground colors
lcd.Clear(background_color);
lcd.SetTextColor(foreground_color);

Next, we calculate how much of the screen we can actually draw to, so that we know
where to plot our circle. If we got this wrong, we might try to draw past the edge of the
screen, with unexpected results:

width = lcd.GetXSize() - (dot_radius * 2);
height = lcd.GetYSize() - (dot_radius * 2);

After that, we determine the location of the middle of the screen, below which our
negative y values will be drawn. We also calculate how many pixels of screen width

represent one unit of our x value. Note how we use static_cast to ensure that we get
a floating-point result:

// Calculate the y axis midpoint

midpoint = height / 2;

// Calculate fractional pixels per unit of x_value
x_increment = static_cast<float>(width) / kXrange;

As we did before, use a static variable named is_initialized to ensure that the code
in this block is run only once.

After initialization is complete, we can start with our output. First, we clear any
previous drawing:

// Clear the previous drawing
lcd.Clear(background_color);

Next, we use x_value to calculate where along the display’s x-axis we should draw our
dot:

// Calculate x position, ensuring the dot is not partially offscreen,
// which causes artifacts and crashes
int x_pos = dot_radius + static_cast<int>(x_value * x_increment);

We then do the same for our y value. This is a little more complex because we want to
plot positive values above the midpoint and negative values below:

// Calculate y position, ensuring the dot is not partially offscreen
int y_pos;
if (y_value >= 0) {
// Since the display's y runs from the top down, invert y_value
y_pos = dot_radius + static_cast<int>(midpoint * (1.f - y_value));
} else {
// For any negative y value, start drawing from the midpoint
y_POs =
dot_radius + midpoint + static_cast<int>(midpoint * (0.f - y_value));

As soon as we've determined its position, we can go ahead and draw the dot:

// Draw the dot

lcd.FillCircle(x_pos, y_pos, dot_radius);
Finally, we use our ErrorReporter to log the x and y values to the serial port:

// Log the current X and Y values
error_reporter->Report("x_value: %f, y _value: %f\n", x_value, y value);

Note

The ErrorReporter can output data via the STM32F746G’s serial interface due to a
custom implementation, micro/disco_f746ng/debug_log.cc, that replaces the original

implementation at micro/debug_log.cc.
Running the Example

Next up, let’s build the project! The STM32F746G runs Arm’s Mbed OS, so we’ll be using

the Mbed toolchain to deploy our application to the device.
Tip

There’s always a chance that the build process might have changed since this book was
written, so check README.md for the latest instructions.

Before we begin, we’ll need the following:
e An STM32F746G Discovery kit board
e A mini-USB cable

e The Arm Mbed CLI (follow the Mbed setup guide)
e Python 3 and pip

Like the Arduino IDE, Mbed requires source files to be structured in a certain way. The
TensorFlow Lite for Microcontrollers Makefile knows how to do this for us, and can
generate a directory suitable for Mbed.

To do so, run the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
TARGET=mbed TAGS="CMSIS disco_f746ng" generate_hello_world_mbed_project

This results in the creation of a new directory:

tensorflow/lite/micro/tools/make/gen/mbed_cortex-m4/prj/ \
hello_world/mbed

This directory contains all of the example’s dependencies structured in the correct way
for Mbed to be able to build it.

First, change into the directory so that your can run some commands in there:

cd tensorflow/lite/micro/tools/make/gen/mbed_cortex-m4/prj/ \
hello_world/mbed

Now you’ll use Mbed to download the dependencies and build the project.

To get started, use the following command to specify to Mbed that the current
directory is the root of an Mbed project:

mbed config root .

Next, instruct Mbed to download the dependencies and prepare to build:
mbed deploy
By default, Mbed will build the project using C++98. However, TensorFlow Lite requires

C++11. Run the following Python snippet to modify the Mbed configuration files so that
it uses C++11. You can just type or paste it into the command line:

python -c 'import fileinput, glob;
for filename in glob.glob("mbed-os/tools/profiles/*.json"):
for line in fileinput.input(filename, inplace=True):
print(line.replace("\"-std=gnu++98\"","\"-std=c++11\", \"-fpermissive\""))'

Finally, run the following command to compile:
mbed compile -m DISCO_F746NG -t GCC_ARM
This should result in a binary at the following path:
cp ./BUILD/DISCO_F746NG/GCC_ARM/mbed.bin
One of the nice things about using Mbed-enabled boards like the STM32F746G is that

deployment is really easy. To deploy, just plug in your STM board and copy the file to
it. On macOS, you can do this with the following command:

cp ./BUILD/DISCO_F746NG/GCC_ARM/mbed.bin /Volumes/DIS_F746NG/

Alternately, just find the DIS_F746NG volume in your file browser and drag the file
over. Copying the file will initiate the flashing process. When this is complete, you
should see an animation on the device’s screen.

In addition to this animation, debug information is logged by the board while the
program is running. To view it, establish a serial connection to the board using a baud
rate of 9600.

On macOS and Linux, the device should be listed when you issue the following
command:

1s /dev/tty*
It will look something like the following:
/dev/tty.usbmodem1454203

After you've identified the device, use the following command to connect to it,
replacing </dev/tty. devicename> with the name of your device as it appears in /dev:

screen /[<dev/tty.devicename> 9600

You will see a lot of output flying past. To stop the scrolling, press Ctrl-A, immediately
followed by Esc. You can then use the arrow keys to explore the output, which will

contain the results of running inference on various x values:
x_value: 1.1843798%272, y value: -1.9542645*2/-1

To stop viewing the debug output with screen, press Ctrl-A, immediately followed by
the K key, then hit the Y key.
Making Your Own Changes

Now that you’ve deployed the application, it could be fun to play around and make
some changes! You can find the application’s code in the
tensorflow/lite/micro/tools/make/gen/mbed_cortex-m4/prj/hello_world/mbed folder. Just
edit and save, and then repeat the previous instructions to deploy your modified code
to the device.

Here are a few things you could try:

o Make the dot move slower or faster by adjusting the number of inferences per
cycle.

o Modify output_handler.cc to log a text-based animation to the serial port.
* Use the sine wave to control other components, like LEDs or sound generators.
Wrapping Up

Over the past three chapters, we’ve gone through the full end-to-end journey of
training a model, converting it for TensorFlow Lite, writing an application around it,
and deploying it to a tiny device. In the coming chapters, we’ll explore some more
sophisticated and exciting examples that put embedded machine learning to work.

First up, we’ll build an application that recognizes spoken commands using a tiny, 18
KB model.

Chapter 7. Wake-Word Detection: Building an Application

TinyML might be a new phenomenon, but its most widespread application is perhaps
already at work in your home, in your car, or even in your pocket. Can you guess what
it is?

The past few years have seen the rise of digital assistants. These products provide a
voice user interface (UI) designed to give instant access to information without the
need for a screen or keyboard. Between Google Assistant, Apple’s Siri, and Amazon
Alexa, these digital assistants are nearly ubiquitous. Some variant is built into almost
every mobile phone, from flagship models to voice-first devices designed for emerging
markets. They’re also in smart speakers, computers, and vehicles.

In most cases, the heavy lifting of speech recognition, natural language processing, and
generating responses to users’ queries is done in the cloud, on powerful servers
running large ML models. When a user asks a question, it’s sent to the server as a
stream of audio. The server figures out what it means, looks up any required
information, and sends the appropriate response back.

But part of an assistants’ appeal is that they’re always on, ready to help you out. By
saying “Hey Google,” or “Alexa,” you can wake up your assistant and tell it what you
need without ever having to press a button. This means they must be listening for your
voice 24/7, whether you’re sitting in your living room, driving down the freeway, or in
the great outdoors with a phone in your hand.

Although it’s easy to do speech recognition on a server, it’s just not feasible to send a
constant stream of audio from a device to a data center. From a privacy perspective,
sending every second of audio captured to a remote server would be an absolute
disaster. Even if that were somehow okay, it would require vast amounts of bandwidth
and chew through mobile data plans in hours. In addition, network communication
uses energy, and sending a constant stream of data would quickly drain the device’s
battery. What’s more, with every request going to a server and back, the assistant
would feel laggy and slow to respond.

The only audio the assistant really needs is what immediately follows the wake word
(e.g., “Hey Google”). What if we could detect that word without sending data, but start
streaming when we heard it? We’d protect user privacy, save battery life and
bandwidth, and wake up the assistant without waiting for the network.

And this is where TinyML comes in. We can train a tiny model that listens for a wake
word, and run it on a low-powered chip. If we embed this in a phone, it can listen for
wake words all the time. When it hears the magic word, it informs the phone’s
operating system (0S), which can begin to capture audio and send it to the server.

Wake-word detection is the perfect application for TinyML. It’s ideally suited to
delivering privacy, efficiency, speed, and offline inference. This approach, in which a
tiny, efficient model “wakes up” a larger, more resource-hungry model, is called
cascading.

In this chapter, we examine how we can use a pretrained speech detection model to
provide always-on wake-word detection using a tiny microcontroller. In Chapter 8,

we’ll explore how the model is trained, and how to create our own.
What We’re Building

We're going to build an embedded application that uses an 18 KB model, trained on a
dataset of speech commands, to classify spoken audio. The model is trained to
recognize the words “yes” and “no,” and is also capable of distinguishing between
unknown words and silence or background noise.

Our application will listen to its surroundings with a microphone and indicate when it
has detected a word by lighting an LED or displaying data on a screen, depending on
the capabilities of the device. Understanding this code will give you the ability to

control any electronics project with voice commands.
Note

Like with Chapter 5, the source code for this application is available in the TensorFlow
GitHub repository.

We'll follow a similar pattern to Chapter 5, walking through the tests, then the
application code, followed by the logic that makes the sample work on various devices.

We provide instructions for deploying the application to the following devices:

e Arduino Nano 33 BLE Sense
e SparkFun Edge

¢ ST Microelectronics STM32F746G Discovery kit

Note

TensorFlow Lite regularly adds support for new devices, so if the device you’d like to
use isn't listed here, check the example’s README.md. You can also check there for
updated deployment instructions if you run into trouble following these steps.

This is a significantly more complex application than the “hello world” example, so
let’s begin by walking through its structure.
Application Architecture

Over the previous few chapters, you've learned that a machine learning application

does the following sequence of things:

1. Obtains an input

2. Preprocesses the input to extract features suitable to feed into a model
3. Runs inference on the processed input

4. Postprocesses the model’s output to make sense of it

5. Uses the resulting information to make things happen

The “hello world” example followed these steps in a very straightforward manner. It
took a single floating-point number as input, generated by a simple counter. Its output
was another floating-point number that we used directly to control visual output.

Our wake-word application will be more complicated for the following reasons:

o It takes audio data as an input. As you’ll see, this requires heavy processing
before it can be fed into a model.

o Its model is a classifier, outputting class probabilities. We’ll need to parse and
make sense of this output.

e It’s designed to perform inference continually, on live data. We’ll need to write
code to make sense of a stream of inferences.

o The model is larger and more complex. We’ll be pushing our hardware to the
limits of its capabilities.

Because much of this complexity results from the model we’ll be using, let’s learn a

little more about it.
Introducing Our Model

As we mentioned earlier, the model we use in this chapter is trained to recognize the
words “yes” and “no,” and is also capable of distinguishing between unknown words
and silence or background noise.

The model was trained on a dataset called the Speech Commands dataset. This consists
of 65,000 one-second-long utterances of 30 short words, crowdsourced online.

Although the dataset contains 30 different words, the model was trained to distinguish
between only four categories: the words “yes” and “no,” “unknown” words (meaning
the other 28 words in the dataset), and silence.

The model takes in one second’s worth of data at a time. It outputs four probability

scores, one for each of these four classes, predicting how likely it is that the data
represented one of them.

However, the model doesn’t take in raw audio sample data. Instead, it works with
spectrograms, which are two-dimensional arrays that are made up of slices of frequency
information, each taken from a different time window.

Figure 7-1 is a visual representation of a spectrogram generated from a one-second
audio clip of someone saying “yes.” Figure 7-2 shows the same thing for the word “no.

”

Figure 7-1. Spectrogram for “yes”

Figure 7-2. Spectrogram for “no”

By isolating the frequency information during preprocessing, we make the model’s life
easier. During training, it doesn’t need to learn how to interpret raw audio data;
instead, it gets to work with a higher-layer abstraction that distills the most useful
information.

We’ll look at how the spectrogram is generated later in this chapter. For now, we just
need to know that the model takes a spectrogram as input. Because a spectrogram is a
two-dimensional array, we feed it into the model as a 2D tensor.

There’s a type of neural network architecture that is specifically designed to work well
with multidimensional tensors in which information is contained in the relationships
between groups of adjacent values. It’s called a convolutional neural network (CNN).

The most common example of this type of data is images, for which a group of adjacent
pixels might represent a shape, pattern, or texture. During training, a CNN is able to
identify these features and learn what they represent.

It can learn how simple image features (like lines or edges) fit together into more
complex features (like an eye or an ear), and in turn how those features might be
combined to form an input image, such as a photo of a human face. This means that a
CNN can learn to distinguish between different classes of input image, such as between
a photo of a person and a photo of a dog.

Although they’re often applied to images, which are 2D grids of pixels, CNNs can be
used with any multidimensional vector input. It turns out they’re very well suited to
working with spectrogram data.

In Chapter 8, we’ll look at how this model was trained. Until then, let’s get back to

discussing the architecture of our application.
All the Moving Parts

As mentioned earlier, our wake-word application is a more complicated than the “hello
world” example. Figure 7-3 shows the components that comprise it.

Main loop

Device microphone Audio provider
Captures audio

= > samples from

v microphone

Feature provider
Converts raw audio
data into spectrograms

TF Lite interpreter Model
Runs the model Trained to classify
> “yes,” “no," silence, and
unknown

Command recognizer
Uses inference output
to decide if command

was heard
Device LEDs Command responder
Takes action based on
Q @1 | which command was
heard

Figure 7-3. The components of our wake-word application

Let’s investigate what each of these pieces do:
Main loop

Like the “hello world” example, our application runs in a continuous loop. All of
the subsequent processes are contained within it, and they execute continually, as
fast as the microcontroller can run them, which is multiple times per second.

Audio provider

The audio provider captures raw audio data from the microphone. Because the
methods for capturing audio vary from device to device, this component can be
overridden and customized.

Feature provider

The feature provider converts raw audio data into the spectrogram format that our
model requires. It does so on a rolling basis as part of the main loop, providing the
interpreter with a sequence of overlapping one-second windows.

TF Lite interpreter
The interpreter runs the TensorFlow Lite model, transforming the input
spectrogram into a set of probabilities.

Model
The model is included as a data array and run by the interpreter. The array is

located in tiny_conv_micro_features_model_data.cc.

Command recognizer

Because inference is run multiple times per second, the RecognizeCommands class
aggregates the results and determines whether, on average, a known word was

heard.
Command responder

If a command was heard, the command responder uses the device’s output
capabilities to let the user know. Depending on the device, this could mean flashing
an LED or showing data on an LCD display. It can be overridden for different device

types.

The example’s files on GitHub contain tests for each of these components. We’ll walk

through them next to learn how they work.
Walking Through the Tests

As in Chapter 5, we can use tests to learn how the application works. We've already
covered a lot of C++ and TensorFlow Lite basics, so we won’t need to explain every
single line. Instead, let’s focus on the most important parts of each test and explain
what’s going on.

Wwe'll explore the following tests, which you can find in the GitHub repository:
micro_speech_test.cc

Shows how to run inference on spectrogram data and interpret the results

audio_provider_test.cc

Shows how to use the audio provider

feature_provider_mock_test.cc

Shows how to use the feature provider, using a mock (fake) implementation of the
audio provider to pass in fake data

recognize_ commands_test.cc

Shows how to interpret the model’s output to decide whether a command was
found

command_responder_test.cc

Shows how to call the command responder to trigger an output

There are many more tests in the example, but exploring these few will give us an

understanding of the key moving parts.
The Basic Flow

The test micro_speech_test.cc follows the same basic flow we’re familiar with from the
“hello world” example: we load the model, set up the interpreter, and allocate tensors.

However, there’s a notable difference. In the “hello world” example, we used the

All0psResolver to pull in all of the deep learning operations that might be necessary
to run the model. This is a reliable approach, but it’s wasteful because a given model
probably doesn’t use all of the dozens of available operations. When deployed to a
device, these unnecessary operations will take up valuable memory, so it’s best if we
include only those we need.

To do this, we first define the ops that our model will need, at the top of the test file:

namespace tflite {

namespace ops {

namespace micro {

TfLiteRegistration* Register_ DEPTHWISE_CONV_2D();
TfLiteRegistration* Register_FULLY_CONNECTED();
TfLiteRegistration* Register_SOFTMAX();

} // namespace micro

} // namespace ops

} // namespace tflite

Next, we set up logging and load our model, as normal:

// Set up logging.

tflite: :MicroErrorReporter micro_error_reporter;

tflite: :ErrorReporter* error_reporter = µ_error_reporter;

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.

const tflite::Model* model =
::tflite: :GetModel(g_tiny_conv_micro_features_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.\n",
model->version(), TFLITE_SCHEMA_VERSION);

After our model is loaded, we declare a MicroMutableOpResolver and use its method

AddBuiltin() to add the ops we listed earlier:

tflite: :MicroMutableOpResolver micro_mutable_op_resolver;
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_FULLY_CONNECTED,
tflite::ops::micro::Register_FULLY_CONNECTED());
micro_mutable_op_resolver.AddBuiltin(tflite: :BuiltinOperator_SOFTMAX,
tflite::ops::micro::Register_SOFTMAX());

You're probably wondering how we know which ops to include for a given model. One

way is to try running the model using a MicroMutableOpResolver, but without calling

AddBuiltin() at all. Inference will fail, and the accompanying error messages will

inform us which ops are missing and need to be added.
Note

The MicroMutableOpResolver is defined in
tensorflow/lite/micro/micro_mutable_op_resolver.h, which you’ll need to add to your
include statements.

After the MicroMutableOpResolver is set up, we just carry on as usual, setting up our

interpreter and its working memory:

// Create an area of memory to use for input, output, and intermediate arrays.
const int tensor_arena_size = 10 * 1024;
uint8_t tensor_arena[tensor_arena_size];
// Build an interpreter to run the model with.
tflite: :MicrolInterpreter interpreter(model, micro_mutable_op_resolver,
tensor_arena,

tensor_arena_size, error_reporter);
interpreter.AllocateTensors();

In our “hello world” application we allocated only 2 * 1,024 bytes for the

tensor_arena, given that the model was so small. Our speech model is a lot bigger, and

it deals with more complex input and output, so it needs more space (10 1,024). This
was determined by trial and error.

Next, we check the input tensor size. However, it’s a little different this time around:

// Get information about the memory area to use for the model's input.
TfLiteTensor* input = interpreter.input(0);

// Make sure the input has the properties we expect.
TF_LITE_MICRO_EXPECT_NE(nullptr, input);

TF_LITE_MICRO_EXPECT_EQ(4, input->dims->size);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(49, input->dims->data[1]);
TF_LITE_MICRO_EXPECT_EQ(40, input->dims->data[2]);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[3]);
TF_LITE_MICRO_EXPECT_EQ(KTfLiteUInt8, input->type);

Because we're dealing with a spectrogram as our input, the input tensor has more
dimensions—four, in total. The first dimension is just a wrapper containing a single
element. The second and third represent the “rows” and “columns” of our
spectrogram, which happens to have 49 rows and 40 columns. The fourth, innermost
dimension of the input tensor, which has size 1, holds each individual “pixel” of the
spectrogram. We’ll look more at the spectrogram’s structure later on.

Next, we grab a sample spectrogram for a “yes,” stored in the constant

g_vyes_micro_f2e59fea_nohash_1_data. The constant is defined in the file
micro_features/yes_micro_features_data.cc, which was included by this test. The

spectrogram exists as a 1D array, and we just iterate through it to copy it into the input

tensor:

// Copy a spectrogram created from a .wav audio file of someone saying "Yes"
// into the memory area used for the input.
const uint8_t* yes_features_data = g_yes_micro_f2e59fea_nohash_1_data;
for (int 1 = 0; 1 < input->bytes; ++i) {
input->data.uint8[i] = yes_features_data[i];

}

After the input has been assigned, we run inference and inspect the output tensor’s
size and shape:

// Run the model on this input and make sure it succeeds.

TfLiteStatus invoke_status = interpreter.Invoke();

if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed\n");

}
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, invoke_status);

// Get the output from the model, and make sure it's the expected size and
// type.

TfLiteTensor* output = interpreter.output(0);

TF_LITE_MICRO_EXPECT_EQ(2, output->dims->size);

TF_LITE_MICRO_EXPECT_EQ(1, output->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(4, output->dims->data[1]);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteUInt8, output->type);

Our output has two dimensions. The first is just a wrapper. The second has four
elements. This is the structure that holds the probabilities that each of our four classes
(silence, unknown, “yes,” and “no”) were matched.

The next chunk of code checks whether the probabilities were as expected. A given
element of the output tensor always represents a certain class, so we know which
index to check for each one. The order is defined during training:

// There are four possible classes in the output, each with a score.
const int kSilenceIndex = 0;

const int kUnknownIndex = 1;

const int kYesIndex = 2;

const int kNoIndex = 3;

// Make sure that the expected "Yes" score is higher than the other classes.
uint8_t silence_score = output->data.uint8[kSilencelndex];

uint8_t unknown_score = output->data.uint8[kUnknownIndex];

uint8_t yes_score = output->data.uint8[kYesIndex];

uint8_t no_score = output->data.uint8[kNoIndex];
TF_LITE_MICRO_EXPECT_GT(yes_score, silence_score);
TF_LITE_MICRO_EXPECT_GT(yes_score, unknown_score);
TF_LITE_MICRO_EXPECT_GT(yes_score, no_score);

We passed in a “yes” spectrogram, so we expect that the variable yes_score contains a
higher probability than silence_score, unknown_score, and no_score.

When we're satisfied with “yes,” we do the same thing with a “no” spectrogram. First,
we copy in an input and run inference:

// Now test with a different input, from a recording of "No".
const uint8_t* no_features_data = g_no_micro_f9643d42_nohash_4_data;
for (int 1 = 0; 1 < input->bytes; ++1) {
input->data.uint8[i1] = no_features_data[i];
}

// Run the model on this "No" input.

invoke_status = interpreter.Invoke();

if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed\n");

}

TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, invoke_status);

After inference is done, we confirm that “no” achieved the highest score:

// Make sure that the expected "No" score is higher than the other classes.
silence_score = output->data.uint8[kSilenceIndex];

unknown_score = output->data.uint8[kUnknownIndex];

yes_score = output->data.uint8[kYesIndex];

no_score = output->data.uint8[kNoIndex];

TF_LITE_MICRO_EXPECT_GT(no_score, silence_score);
TF_LITE_MICRO_EXPECT_GT(no_score, unknown_score);
TF_LITE_MICRO_EXPECT_GT(no_score, yes_score);

And we’re done!

To run this test, issue the following command from the root of the TensorFlow
repository:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_micro_speech_test

Next up, let’s look at the source of all our audio data: the audio provider.
The Audio Provider

The audio provider is what connects a device’s microphone hardware to our code.
Every device has a different mechanism for capturing audio. As a result,
audio_provider.h defines an interface for requesting audio data, and developers can
write their own implementations for any platforms that they want to support.

Tip

The example includes audio provider implementations for Arduino, STM32F746G,
SparkFun Edge, and macOS. If you’d like this example to support a new device, you can
read the existing implementations to learn how to do it.

The core part of the audio provider is a function named GetAudioSamples(), defined
in audio_provider.h. 1t looks like this:

TfLiteStatus GetAudioSamples(tflite::ErrorReporter* error_reporter,
int start_ms, int duration_ms,
int* audio_samples_size, intl6_t** audio_samples);

As described in audio_provider.h, the function is expected to return an array of 16-bit
pulse code modulated (PCM) audio data. This is a very common format for digital
audio.

The function is called with an ErrorReporter instance, a start time (start_ms), a

duration (duration_ms), and two pointers.

These pointers are a mechanism for GetAudioSamples() to provide data. The caller
declares variables of the appropriate type and then passes pointers to them when it
calls the function. Inside the function’s implementation, the pointers are dereferenced
and the variables’ values are set.

The first pointer, audio_samples_size, will receive the total number of 16-bit samples

in the audio data. The second pointer, audio_samples, will receive an array containing
the audio data itself.

By looking at the tests, we can see this in action. There are two tests in
audio_provider_test.cc, but we need to look only at the first to learn how to use the audio
provider:

TF_LITE_MICRO_TEST(TestAudioProvider) {
tflite: :MicroErrorReporter micro_error_reporter;
tflite::ErrorReporter* error_reporter = µ_error_reporter;

int audio_samples_size
int16_t* audio_samples
TfLiteStatus get_status =
GetAudioSamples(error_reporter, 0, kFeatureSliceDurationMs,
&audio_samples_size, &audio_samples);

TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, get_status);
TF_LITE_MICRO_EXPECT_LE(audio_samples_size, kMaxAudioSampleSize);
TF_LITE_MICRO_EXPECT_NE(audio_samples, nullptr);

0;
nullptr;

// Make sure we can read all of the returned memory locations.
int total = 0;
for (int 1 = 0; 1 < audio_samples_size; ++1i) {
total += audio_samples[i];
}
}

The test shows how GetAudioSamples() is called with some values and some pointers.

The test confirms that the pointers are assigned correctly after the function is called.
Note

You’'ll notice the use of some constants, kFeatureSliceDurationMs and

kMaxAudioSampleSize. These are values that were chosen when the model was
trained, and you can find them in micro_features/micro_model_settings.h.

The default implementation of audio_provider.cc just returns an empty array. To prove
that it’s the right size, the test simply loops through it for the expected number of
samples.

In addition to GetAudioSamples(), the audio provider contains a function called

LatestAudioTimestamp(). This is intended to return the time that audio data was last
captured, in milliseconds. This information is needed by the feature provider to
determine what audio data to fetch.

To run the audio provider tests, use the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_audio_provider_test

The audio provider is used by the feature provider as a source of fresh audio samples,

so let’s take a look at that next.
The Feature Provider

The feature provider converts raw audio, obtained from the audio provider, into
spectrograms that can be fed into our model. It is called during the main loop.

Its interface is defined in feature_provider.h, and looks like this:

class FeatureProvider {
public:
// Create the provider, and bind it to an area of memory. This memory should
// remain accessible for the lifetime of the provider object, since subsequent
// calls will fill it with feature data. The provider does no memory
// management of this data.
FeatureProvider(int feature_size, uint8_t* feature_data);
~FeatureProvider();

// Fills the feature data with information from audio inputs, and returns how

// many feature slices were updated.

TfLiteStatus PopulateFeatureData(tflite::ErrorReporter* error_reporter,
int32_t last_time_in_ms, int32_t time_in_ms,
int* how_many_new_slices);

private:

int feature_size_;

uint8_t* feature_data_;

// Make sure we don't try to use cached information if this is the first call
// into the provider.

bool is_first_run_;

b

To see how it’s used, we can take a look at the tests in feature_provider_mock_test.cc.

For there to be audio data for the feature provider to work with, these tests use a
special fake version of the audio provider, known as a mock, that is set up to provide

audio data. It is defined in audio_provider_mock.cc.
Note

The mock audio provider is substituted for the real thing in the build instructions for
the test, which you can find in Makefile.inc under FEATURE_PROVIDER_MOCK_TEST_SRCS.

The file feature_provider_mock_test.cc contains two tests. Here’s the first one:

TF_LITE_MICRO_TEST(TestFeatureProviderMockYes) {
tflite: :MicroErrorReporter micro_error_reporter;
tflite::ErrorReporter* error_reporter = µ_error_reporter;

uint8_t feature_data[kFeatureElementCount];
FeatureProvider feature_provider(kFeatureElementCount, feature_data);

int how_many_new_slices = 0;

TfLiteStatus populate_status = feature_provider.PopulateFeatureData(
error_reporter, /* last_time_in_ms= */ 0, /* time_in_ms= */ 970,
&how_many_new_slices);

TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, populate_status);

TF_LITE_MICRO_EXPECT_EQ(kFeatureSliceCount, how_many_new_slices);

for (int 1 = 0; 1 < kFeatureElementCount; ++1i) {
TF_LITE_MICRO_EXPECT_EQ(g_yes_micro_f2e59fea_nohash_1_data[1],
feature_data[i]);

To create a FeatureProvider, we call its constructor, passing in feature_size and
feature_data arguments:

FeatureProvider feature_provider(kFeatureElementCount, feature_data);

The first argument indicates how many total data elements should be in the
spectrogram. The second argument is a pointer to an array that we want to be
populated with the spectrogram data.

The number of elements in the spectrogram was decided when the model was trained
and is defined as kFeatureElementCount in micro_features/micro_model_settings.h.

To obtain features for the past second of audio,
feature_provider.PopulateFeatureData() is called:

TfLiteStatus populate_status = feature_provider.PopulateFeatureData(
error_reporter, /* last_time_in_ms= */ 0, /* time_in_ms= */ 970,
&how_many_new_slices);

We supply an ErrorReporter instance, an integer representing the last time this

method was called (Llast_time_in_ms), the current time (time_in_ms), and a pointer to
an integer that will be updated with how many new feature slices we receive
(how_many_new_slices). A slice is just one row of the spectrogram, representing a
chunk of time.

Because we always want the last second of audio, the feature provider will compare
when it was last called (last_time_in_ms) with the current time (time_1in_ms), create
spectrogram data from the audio captured during that time, and then update the
feature_data array to add any additional slices and drop any that are older than one
second.

When PopulateFeatureData() runs, it will request audio from the mock audio
provider. The mock will give it audio representing a “yes,” and the feature provider
will process it and provide the result.

After calling PopulateFeatureData(), we check whether its result is what we expect.
We compare the data it generated to a known spectrogram that is correct for the “yes”
input given by the mock audio provider:

TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, populate_status);
TF_LITE_MICRO_EXPECT_EQ(kFeatureSliceCount, how_many_new_slices);
for (int 1 = 0; 1 < kFeatureElementCount; ++i) {
TF_LITE_MICRO_EXPECT_EQ(g_yes_micro_f2e59fea_nohash_1 data[i],
feature_data[1]);

The mock audio provider can provide audio for a “yes” or a “no” depending on which
start and end times are passed into it. The second test in feature_provider_mock_test.cc
does exactly the same thing as the first, but for audio representing “no.”

To run the tests, use the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_feature_provider_mock_test

How the feature provider converts audio to a spectrogram

The feature provider is implemented in feature_provider.cc. Let’s talk through how it
works.

As we've discussed, its job is to populate an array that represents a spectrogram of one
second of audio. It’s designed to be called in a loop, so to avoid unnecessary work, it
will generate new features only for the time between now and when it was last called.

If it were called less than a second ago, it would keep some of its previous output and
generate only the missing parts.

In our code, each spectrogram is represented as a 2D array, with 40 columns and 49
rows, where each row represents a 30-millisecond (ms) sample of audio split into 43
frequency buckets.

To create each row, we run a 30-ms slice of audio input through a fast Fourier transform
(FFT) algorithm. This technique analyzes the frequency distribution of audio in the
sample and creates an array of 256 frequency buckets, each with a value from 0 to 255.
These are averaged together into groups of six, leaving us with 43 buckets.

The code that does this is in the file micro_features/micro_features_generator.cc, and is
called by the feature provider.

To build the entire 2D array, we combine the results of running the FFT on 49
consecutive 30-ms slices of audio, with each slice overlapping the last by 10 ms.
Figure 7-4 shows how this happens.

You can see how the 30-ms sample window is moved forward by 20 ms each time until
it has covered the full one-second sample. The resulting spectrogram is ready to pass
into our model.

We can understand how this process happens in feature_provider.cc. First, it determines

which slices it actually needs to generate based on the time PopulateFeatureData()
was last called:

// Quantize the time into steps as long as each window stride, so we can
// figure out which audio data we need to fetch.

const int last_step = (last_time_in_ms / kFeatureSliceStrideMs);

const int current_step = (time_in_ms / kFeatureSliceStrideMs);

int slices_needed = current_step - last_step;

Audio Sample Data

| < 256 values > |

Spectrogram

[<43 values > | e——)

e - - - -

Figure 7-4. Diagram of audio samples being processed

If it hasn’t run before, or it ran more than one second ago, it will generate the
maximum number of slices:

if (is_first_run_) {
TfLiteStatus init_status = InitializeMicroFeatures(error_reporter);
if (init_status != kTfLiteOk) {
return init_status;

}
is_first_run_ = false;
slices_needed = kFeatureSliceCount;

if (slices_needed > kFeatureSliceCount) {
slices_needed = kFeatureSliceCount;

}

*how_many_new_slices = slices_needed;

The resulting number is written to how_many_new_slices.

Next, it calculates how many of any existing slices it should keep, and shifts data in the

array around to make room for any new ones:

const int slices_to_keep = kFeatureSliceCount - slices_needed;

const int slices_to_drop = kFeatureSliceCount - slices_to_keep;
// If we can avoid recalculating some slices, just move the existing data
// up in the spectrogram, to perform something like this:

// last time = 80ms current time = 120ms
J) A + o +
// | data@2oms | --> [data@66ms |
VAR SRR TR + -- R 5
// | data@46ms | -- --> [data@8oms |
R + .- -- e +
// | data@eéms [-- -- | <empty> |
)/ Fmmmmmm - + - Fommmmm - +
// | data@8oms | -- | <empty> |
J) A + o +

if (slices_to_keep > 0) {
for (int dest_slice = 0; dest_slice < slices_to_keep; ++dest_slice) {
uint8_t* dest_slice _data =
feature_data_ + (dest_slice * kFeatureSliceSize);
const int src_slice = dest_slice + slices_to_drop;
const uint8_t* src_slice _data =
feature_data_ + (src_slice * kFeatureSliceSize);
for (int 1 = 0; 1 < kFeatureSliceSize; ++1) {
dest_slice_data[i] = src_slice_data[i];
}
}
}

Note

If you're a seasoned C++ author, you might wonder why we don’t use standard libraries
to do things like copying data around. The reason is that we’re trying to avoid
unnecessary dependencies, in an effort to keep our binary size small. Because
embedded platforms have very little memory, a smaller application binary means that
we have space for a larger and more accurate deep learning model.

After moving data around, it begins a loop that iterates once for each new slice that it
needs. In this loop, it first requests audio for that slice from the audio provider using

GetAudioSamples():

for (int new_slice = slices_to_keep; new_slice < kFeatureSliceCount;
++new_slice) {
const int new_step = (current_step - kFeatureSliceCount + 1) + new_slice;
const 1nt32_t slice_start_ms = (new_step * kFeatureSliceStrideMs);
int16_t* audio_samples = nullptr;
int audio _samples_size = 0;
GetAudioSamples(error_reporter, slice_start_ms, kFeatureSliceDurationMs,
&audio_samples_size, &audio_samples);
if (audio_samples_size < kMaxAudioSampleSize) {
error_reporter->Report("Audio data size %d too small, want %d",
audio_samples_size, kMaxAudioSampleSize);
return kTfLiteError;

}

To complete the loop iteration, it passes that data into GenerateMicroFeatures(),
defined in micro_features/micro_features_generator.h. This is the function that performs
the FFT and returns the audio frequency information.

It also passes a pointer, new_slice_data, which points at the memory location where
the new data should be written:

uint8_t* new_slice_data = feature_data_ + (new_slice * kFeatureSliceSize);
size_t num_samples_read;
TfLiteStatus generate_status = GenerateMicroFeatures(
error_reporter, audio_samples, audio_samples_size, kFeatureSliceSize,
new_slice_data, &num_samples_read);
if (generate_status != kTfLiteOk) {
return generate_status;

}
}

After this process has happened for each slice, we have an entire second’s worth of up-

to-date spectrogram.
Tip

The function that generates the FFT is GenerateMicroFeatures(). If you're interested,
you can read its definition in micro_features/micro_features_generator.cc.

If you're building your own application that uses spectrograms, you can reuse this code
as is. You'll need to use the same code to pre-process data into spectrograms when
training your model.

Once we have a spectrogram, we can run inference on it using the model. After this
happens, we need to interpret the results. That task belongs to the class we explore

next, RecognizeCommands.
The Command Recognizer

After our model outputs a set of probabilities that a known word was spoken in the last

second of audio, it’s the job of the RecognizeCommands class to determine whether this
indicates a successful detection.

It seems like this would be simple: if the probability in a given category is more than a
certain threshold, the word was spoken. However, in the real world, things become a
bit more complicated.

As we established earlier, we’re running multiple inferences per second, each on a one-
second window of data. This means that we’ll run inference on any given word
multiple times, in multiple windows.

In Figure 7-5, you can see a waveform of the word “noted” being spoken, surrounded
by a box representing a one-second window being captured.

1-second window

Figure 7-5. The word “noted” being captured in our window

Our model is trained to detect the word “no,” and it understands that the word
“noted” is not the same thing. If we run inference on this one-second window, it will
(hopefully) output a low probability for the word “no.” However, what if the window
came slightly earlier in the audio stream, as in Figure 7-6?

1-second window

Figure 7-6. Part of the word “noted” being captured in our window

In this case, the only part of the word “noted” that appears within the window is its
first syllable. Because the first syllable of “noted” sounds like “no,” it’s likely that the
model will interpret this as having a high probability of being a “no.”

This problem, along with others, means that we can’t rely on a single inference to tell

us whether a word was spoken. This is where RecognizeCommands comes in!

The recognizer calculates the average score for each word over the past few
inferences, and decides whether it’s high enough to count as a detection. To do this, we
feed it each inference result as they roll in.

You can see its interface in recognize_commands.h, partially reproduced here:

class RecognizeCommands {
public:
explicit RecognizeCommands(tflite::ErrorReporter* error_reporter,
int32_t average_window_duration_ms = 1000,
uint8_t detection_threshold = 200,
int32_t suppression_ms = 1500,
int32_t minimum_count = 3);

// Call this with the results of running a model on sample data.

TfLiteStatus ProcessLatestResults(const TfLiteTensor* latest_results,
const int32_t current_time_ms,
const char** found_command, uint8_t* score,
bool* is_new_command);

The class RecognizeCommands is defined, along with a constructor that defines default
values for a few things:

e The length of the averaging window (average_window_duration_ms)

o The minimum average score that counts as a detection
(detection_threshold)

o The amount of time we’ll wait after hearing a command before recognizing a
second one (suppression_ms)

e The minimum number of inferences required in the window for a result to
count (3)

The class has one method, ProcessLatestResults(). It accepts a pointer to a
TfLiteTensor containing the model’s output (latest_results), and it must be called
with the current time (current_time_nms).

In addition, it takes three pointers that it uses for output. First, it gives us the name of
any word that was detected (found_command). It also provides the average score of the
command (score) and whether the command is new or has been heard in previous
inferences within a certain timespan (is_new_command).

Averaging the results of multiple inferences is a useful and common technique when
dealing with time-series data. In the next few pages, we’ll walk through the code in
recognize_commands.cc and learn a bit about how it works. You don’t need to
understand every line, but it’s helpful to get some insight into what might be a helpful
tool in your own projects.

First, we make sure the input tensor is the right shape and type:

TfLiteStatus RecognizeCommands: :ProcessLatestResults(
const TfLiteTensor* latest_results, const int32_t current_time_ms,
const char** found_command, uint8_t* score, bool* is_new_command) {
if ((latest_results->dims->size != 2) ||
(latest_results->dims->data[0] != 1) ||
(latest_results->dims->data[1] != kCategoryCount)) {
error_reporter_->Report(
"The results for recognition should contain %d elements, but there are
"% in an %d-dimensional shape",
kCategoryCount, latest_results->dims->data[1],
latest_results->dims->size);
return kTfLiteError;

}

if (latest_results->type != kTfLiteUInt8) {
error_reporter_->Report(
"The results for recognition should be uint8 elements, but are %d",
latest_results->type);
return kTfLiteError;

}

Next, we check current_time_ms to verify that it is after the most recent result in our
averaging window:

if ((!previous_results_.empty()) &&
(current_time_ms < previous_results_.front().time_)) {
error_reporter_->Report(
"Results must be fed in increasing time order, but received a
"timestamp of %d that was earlier than the previous one of %d",
current_time_ms, previous_results_.front().time_);
return kTfLiteError;

}

After that, we add the latest result to a list of results we’ll be averaging:

// Add the latest results to the head of the queue.
previous_results_.push_back({current_time_ms, latest_results->data.uint8});
// Prune any earlier results that are too old for the averaging window.
const int64_t time_limit = current_time_ms - average_window_duration_ms_;
while ((!previous_results_.empty()) &&

previous_results_.front().time_ < time_limit) {

previous_results_.pop_front();

If there are fewer results in our averaging window than the minimum number (defined
by minimum_count_, which is 3 by default), we can’t provide a valid average. In this

case, we set the output pointers to indicate that found_command is the most recent top
command, that the score is 0, and that the command is not a new one:

// If there are too few results, assume the result will be unreliable and
// bail.
const int64_t how_many results = previous_results_.size();
const int64_t earliest_time = previous_results_.front().time_;
const int64_t samples_duration = current_time_ms - earliest_time;
if ((how_many_results < minimum_count_) ||
(samples_duration < (average_window_duration_ms_ / 4))) {

*found_command = previous_top_label_;

*score = 0;

*1s_new_command = false;

return kTfLiteOk;

Otherwise, we continue by averaging all of the scores in the window:

// Calculate the average score across all the results in the window.
int32_t average_scores[kCategoryCount];
for (int offset = 0; offset < previous_results_.size(); ++offset) {
PreviousResultsQueue: :Result previous_result =
previous_results_.from_front(offset);
const uint8_t* scores = previous_result.scores_;
for (int 1 = 0; 1 < kCategoryCount; ++i) {
if (offset == 0) {
average_scores[i] = scores[i];
} else {
average_scores[i] += scores[1i];
}
}

for (int 1 = 0; 1 < kCategoryCount; ++i) {
average_scores[i] /= how_many_results;
}

We now have enough information to identify which category is our winner.
Establishing this is a simple process:

// Find the current highest scoring category.
int current_top_index = 0;
int32_t current_top_score = 0;
for (int 1 = 0; 1 < kCategoryCount; ++1) {
if (average_scores[i] > current_top_score) {

average_scores[i];
i

current_top_score
current_top_index

}

const char* current_top_label = kCategoryLabels[current_top_1index];

The final piece of logic determines whether the result was a valid detection. To do this,
it ensures that its score is above the detection threshold (200 by default), and that it
didn’t happen too quickly after the last valid detection, which can be an indication of a
faulty result:

// If we've recently had another label trigger, assume one that occurs too
// soon afterwards is a bad result.
int64_t time_since_last_top;
if ((previous_top_label_ == kCategorylLabels[0]) ||
(previous_top_label_time_ == std::numeric_limits<int32_t>::min())) {
time_since_last_top = std::numeric_limits<int32_t>::max();
} else {
time_since_last_top = current_time_ms - previous_top_label_time_;

if ((current_top_score > detection_threshold_) &&
((current_top_label != previous_top_label) ||
(time_since_last_top > suppression_ms_))) {

previous_top_label_ = current_top_label;
previous_top_label_time_ = current_time_ms;
*1s_new_command = true;

} else {

*1s_new_command = false;

*found_command = current_top_label;
*score = current_top_score;

If the result was valid, is_new_command is set to true. This is what the caller can use to
determine whether a word was genuinely detected.

The tests (in recognize_commands_test.cc) exercise various different combinations of
inputs and results that are stored in the averaging window.

Let’s walk through one of the tests, RecognizeCommandsTestBasic, which

demonstrates how RecognizeCommands is used. First, we just create an instance of the
class:

TF_LITE_MICRO_TEST(RecognizeCommandsTestBasic) {
tflite: :MicroErrorReporter micro_error_reporter;
tflite::ErrorReporter* error_reporter = µ_error_reporter;

RecognizeCommands recognize_commands(error_reporter);

Next, we create a tensor containing some fake inference results, which will be used by
ProcessLatestResults() to decide whether a command was heard:

TfLiteTensor results = tflite::testing::CreateQuantizedTensor(
{255, 0, 0, 0}, tflite::testing::IntArrayFromInitializer({2, 1, 4}),
"{nput_tensor", 0.0f, 128.0f);

Then, we set up some variables that will be set with the output of
ProcessLatestResults():

const char* found_command;
uint8_t score;
bool is_new_command;

Finally, we call ProcessLatestResults(), providing pointers to these variables along
with the tensor containing the results. We assert that the function will return

kTfL1iteOk, indicating that the input was processed successfully:

TF_LITE_MICRO_EXPECT_EQ(
kTfLiteOk, recognize_commands.ProcesslLatestResults(
&results, 0, &found_command, &score, &is_new_command));

The other tests in the file perform some more exhaustive checks to make sure the
function is performing correctly. You can read through them to learn more.

To run all of the tests, use the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_recognize_commands_test

As soon as we've determined whether a command was detected, it’s time to share our
results with the world (or at least our on-board LEDs). The command responder is what

makes this happen.
The Command Responder

The final piece in our puzzle, the command responder, is what produces an output to
let us know that a word was detected.

The command responder is designed to be overridden for each type of device. We
explore the device-specific implementations later in this chapter.

For now, let’s look at its very simple reference implementation, which just logs

detection results as text. You can find it in the file command_responder.cc:

voild RespondToCommand(tflite::ErrorReporter* error_reporter,
int32_t current_time, const char* found_command,
uint8_t score, bool is_new_command) {
if (is_new_command) {
error_reporter->Report("Heard %s (%d) @%dms", found_command, score,
current_time);

That’s it! The file implements just one function: RespondToCommand(). As parameters,
it expects an error_reporter, the current time (current_time), the command that
was last detected (found_command), the score it received (score), and whether the
command was newly heard (is_new_command).

It’s important to note that in our program’s main loop, this function will be called
every time inference is performed, even if a command was not detected. This means

that we should check is_new_command to determine whether anything needs to be
done.

The test for this function, in command_responder_test.cc, is equally simple. It just calls
the function, given that there’s no way for it to test that it generates the correct
output:

TF_LITE_MICRO_TEST(TestCallability) {
tflite: :MicroErrorReporter micro_error_reporter;
tflite::ErrorReporter* error_reporter = µ_error_reporter;

// This will have external side-effects (like printing to the debug console
// or lighting an LED) that are hard to observe, so the most we can do 1is
// make sure the call doesn't crash.

RespondToCommand(error_reporter, 0, "foo", 0, true);

To run this test, enter this in your terminal:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_command_responder_test

And that’s it! We’ve walked through all of the components of the application. Now, let’s

see how they come together in the program itself.
Listening for Wake Words

You can find the following code in main_functions.cc, which defines the setup() and
loop() functions that are the core of our program. Let’s read through it together!

Because you're now a seasoned TensorFlow Lite expert, a lot of this code will look
familiar to you. So let’s try to focus on the new bits.

First, we list the ops that we want to use:

namespace tflite {

namespace ops {

namespace micro {

TfLiteRegistration* Register DEPTHWISE_CONV_2D();
TfLiteRegistration* Register_FULLY_CONNECTED();
TfLiteRegistration* Register_SOFTMAX();

} // namespace micro

} // namespace ops

} // namespace tflite

Next, we set up our global variables:

namespace {

tflite::ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
TfLiteTensor* model_input = nullptr;
FeatureProvider* feature_provider = nullptr;
RecognizeCommands* recognizer = nullptr;

int32_t previous_time = 0;

// Create an area of memory to use for input, output, and intermediate arrays.
// The size of this will depend on the model you're using, and may need to be
// determined by experimentation.

constexpr int kTensorArenaSize = 10 * 1024;

uint8_t tensor_arena[kTensorArenaSize];

} // namespace

Notice how we declare a FeatureProvider and a RecognizeCommands in addition to the

usual TensorFlow suspects. We also declare a variable named g_previous_time, which
keeps track of the most recent time we received new audio samples.

Next up, in the setup() function, we load the model, set up our interpreter, add ops,
and allocate tensors:

void setup() {
// Set up logging.
static tflite::MicroErrorReporter micro_error_reporter;
error_reporter = µ_error_reporter;

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
model = tflite::GetModel(g_tiny_conv_micro_features_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.",
model->version(), TFLITE_SCHEMA_VERSION);
return;

}

// Pull in only the operation implementations we need.
static tflite::MicroMutableOpResolver micro_mutable_op_resolver;
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_FULLY_CONNECTED,
tflite::ops::micro::Register_FULLY_CONNECTED());
micro_mutable_op_resolver.AddBuiltin(tflite: :BuiltinOperator_SOFTMAX,
tflite::ops::micro::Register_SOFTMAX());

// Build an interpreter to run the model with.

static tflite::Microlnterpreter static_interpreter(
model, micro_mutable_op_resolver, tensor_arena, kTensorArenaSize,
error_reporter);

interpreter = &static_interpreter;

// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
error_reporter->Report("AllocateTensors() failed");
return;

}

After allocating tensors, we check that the input tensor is the correct shape and type:

// Get information about the memory area to use for the model's input.
model_input = interpreter->input(0);
if ((model_input->dims->size != 4) || (model_input->dims->data[0] != 1) ||
(model_input->dims->data[1] != kFeatureSliceCount) ||
(model_input->dims->data[2] != kFeatureSliceSize) ||
(model_input->type != kTfLiteUInt8)) {
error_reporter->Report("Bad input tensor parameters in model");
return;

}

Next comes the interesting stuff. First, we instantiate a FeatureProvider, pointing it
at our input tensor:

// Prepare to access the audio spectrograms from a microphone or other source

// that will provide the inputs to the neural network.

static FeatureProvider static_feature_provider(kFeatureElementCount,
model_input->data.uint8);

feature_provider = &static_feature_provider;

We then create a RecognizeCommands instance and initialize our previous_time
variable:

static RecognizeCommands static_recognizer(error_reporter);
recognizer = &static_recognizer;

previous_time = 0;

}

Up next, it’s time for our loop() function. Like in the previous example, this function
will be called over and over again, indefinitely. In the loop, we first use the feature
provider to create a spectrogram:

void loop() {
// Fetch the spectrogram for the current time.
const int32_t current_time = LatestAudioTimestamp();
int how_many_new_slices = 0;
TfLiteStatus feature_status = feature_provider->PopulateFeatureData(
error_reporter, previous_time, current_time, &how_many_new_slices);
if (feature_status != kTfLiteOk) {
error_reporter->Report("Feature generation failed");
return;
} . . .
previous_time = current_time;
// If no new audio samples have been received since last time, don't bother
// running the network model.
if (how_many_new_slices == 0) {
return;

}

If there’s no new data since the last iteration, we don’t bother running inference.

After we have our input, we just invoke the interpreter:

// Run the model on the spectrogram input and make sure it succeeds.
TfLiteStatus invoke_status = interpreter->Invoke();
if (invoke_status != kTfLiteOk) {

error_reporter->Report("Invoke failed");

return;

}

The model’s output tensor is now filled with the probabilities for each category. To

interpret them, we use our RecognizeCommands instance. We obtain a pointer to the

output tensor, then set up a few variables to receive the ProcessLatestResults()
output:

// Obtain a pointer to the output tensor
TfLiteTensor* output = interpreter->output(0);
// Determine whether a command was recognized based on the output of inference
const char* found_command = nullptr;
uint8_t score = 0;
bool is_new_command = false;
TfLiteStatus process_status = recognizer->ProcesslLatestResults(
output, current_time, &found_command, &score, &is_new_command);
if (process_status != kTfLiteOk) {
error_reporter->Report("RecognizeCommands: :ProcessLatestResults() failed");
return;

}

Finally, we call the command responder’s RespondToCommand() method so that it can
notify users if a word was detected:

// Do something based on the recognized command. The default implementation

// just prints to the error console, but you should replace this with your

// own function for a real application.

RespondToCommand(error_reporter, current_time, found_command, score,
is_new_command) ;

And that’s it! The call to RespondToCommand() is the final thing in our loop. Everything
from feature generation onward will repeat endlessly, checking the audio for known
words and producing some output if one is confirmed.

The setup() and loop() functions are called by our main() function, defined in
main.cc, which begins the loop when the application starts:

int main(int argc, char* argv[]) {
setup();
while (true) {
Loop();

Running Our Application

The example contains an audio provider compatible with macOS. If you have access to
a Mac, you can run the example on your development machine. First, use the following

command to build it:

make -f tensorflow/lite/micro/tools/make/Makefile micro_speech

After the build completes, you can run the example with the following command:

tensorflow/lite/micro/tools/make/gen/osx_x86_64/bin/micro_speech

You might see a pop-up asking for microphone access. If so, grant it, and the program
will start.

Try saying “yes” and “no.” You should see output that looks like the following:

Heard yes (201) @4056ms
Heard no (205) @6448ms

Heard unknown (201) @13696ms
Heard yes (205) @15000ms
Heard yes (205) @16856ms
Heard unknown (204) @18704ms
Heard no (206) @21000ms

The number after each detected word is its score. By default, the command recognizer
component considers matches as valid only if their score is more than 200, so all of the
scores you see will be at least 200.

The number after the score is the number of milliseconds since the program was
started.

If you don’t see any output, make sure your Mac’s internal microphone is selected in
the Mac’s Sound menu and that its input volume is turned up high enough.

We’ve established that the program works on a Mac. Now, let’s get it running on some

embedded hardware.
Deploying to Microcontrollers

In this section, we deploy the code to three different devices:

e Arduino Nano 33 BLE Sense
e SparkFun Edge

* ST Microelectronics STM32F746G Discovery kit

For each one, we’ll walk through the build and deployment process.

Because every device has its own mechanism for capturing audio, there’s a separate
implementation of audio_provider.cc for each one. The same is true for output, so each
has a variant of command_responder.cc, too.

The audio_provider.cc implementations are complex and device-specific, and not
directly related to machine learning. Consequently, we won’t walk through them in
this chapter. However, there’s a walkthrough of the Arduino variant in Appendix B. If
you need to capture audio in your own project, you’re welcome to reuse these
implementations in your own code.

Alongside deployment instructions, we’re also going to walk through the

command_responder.cc implementation for each device. First up, it’s time for Arduino.
Arduino

As of this writing, the only Arduino board with a built-in microphone is the Arduino
Nano 33 BLE Sense, so that’s what we’ll be using for this section. If you’re using a
different Arduino board and attaching your own microphone, you’ll need to implement
your own audio_provider.cc.

The Arduino Nano 33 BLE Sense also has a built-in LED, which is what we use to
indicate that a word has been recognized.

Figure 7-7 shows a picture of the board with its LED highlighted.

Figure 7-7. The Arduino Nano 33 BLE Sense board with the LED highlighted

Now let’s look at how we use this LED to indicate that a word has been detected.
Responding to commands on Arduino

Every Arduino board has a built-in LED, and there’s a convenient constant called
LED_BUILTIN that we can use to obtain its pin number, which varies across boards. To

keep this code portable, we’ll constrain ourselves to using this single LED for output.

Here’s what we’re going to do. To show that inference is running, we’ll flash the LED by
toggling it on or off with each inference. However, when we hear the word “yes,” we’ll
switch on the LED for a few seconds.

What about the word “no”? Well, because this is just a demonstration, we won’t worry
about it too much. We do, however, log all of the detected commands to the serial port,
so we can connect to the device and see every match.

The replacement command responder for Arduino is located in
arduino/command_responder.cc. Let’s walk through its source. First, we include the
command responder header file and the Arduino platform’s library header file:

#include "tensorflow/lite/micro/examples/micro_speech/command_responder.h"
#include "Arduino.h"

Next, we begin our function implementation:

// Toggles the LED every inference, and keeps it on for 3 seconds if a "yes"
// was heard
voild RespondToCommand(tflite::ErrorReporter* error_reporter,
int32_t current_time, const char* found_command,
uint8_t score, bool is_new_command) {

Our next step is to place the built-in LED’s pin into output mode so that we can switch
it on and off. We do this inside an if statement that runs only once, thanks to a static

bool called is_initialized. Remember, static variables preserve their state
between function calls:

static bool is_initialized = false;

if (!is_initialized) {
pinMode(LED_BUILTIN, OUTPUT);
is_initialized = true;

}

Next, we set up another couple of static variables to keep track of the last time a
“yes” was detected, and the number of inferences that have been performed:

static int32_t last_yes_time = 0;
static int count = 0;

Now comes the fun stuff. If the is_new_command argument is true, we know we’ve
heard something, so we log it with the ErrorReporter instance. But if it’s a “yes” we

heard—which we determine by checking the first character of the found_command
character array—we store the current time and switch on the LED:

if (is_new_command) {
error_reporter->Report("Heard %s (%d) @%dms", found_command, score,
current_time);
// If we heard a "yes", switch on an LED and store the time.
if (found_command[0] == 'y') {
last_yes_time = current_time;
digitalWrite(LED_BUILTIN, HIGH);
}
}

Next, we implement the behavior that switches off the LED after a few seconds—three,
to be precise:

// If last_yes time is non-zero but was >3 seconds ago, zero it
// and switch off the LED.
if (last_yes_time !'= 0) {
if (last_yes_time < (current_time - 3000)) {
last_yes_time = 0;
digitalWrite(LED_BUILTIN, LOW);
}

// If it is non-zero but <3 seconds ago, do nothing.
return;

}

When the LED is switched off, we also set last_yet_time to 0, so we won'’t enter this if

statement until the next time a “yes” is heard. The return statement is important: it’s
what prevents any further output code from running if we recently heard a “yes,” so
the LED stays solidly lit.

So far, our implementation will switch on the LED for around three seconds when a
“yes” is heard. The next part will toggle the LED on and off with each inference—
except for while we're in “yes” mode, when we're prevented from reaching this point

by the aforementioned return statement.

Here’s the final chunk of code:

// Otherwise, toggle the LED every time an inference is performed.
++count;
if (count & 1) {

digitalWrite(LED_BUILTIN, HIGH);

} else {
digitalWrite(LED_BUILTIN, LOW);

By incrementing the count variable for each inference, we keep track of the total
number of inferences that we’ve performed. Inside the if conditional, we use the &
operator to do a binary AND operation with the count variable and the number 1.

By performing an AND on count with 1, we filter out all of count’s bits except the
smallest. If the smallest bit is a ©, meaning count is an odd number, the result will be a
0.Ina C++ if statement, this evaluates to false.

Otherwise, the result will be a 1, indicating an even number. Because a 1 evaluates to

true, our LED will switch on with even values and off with odd values. This is what
makes it toggle.

And that’s it! We’ve now implemented our command responder for Arduino. Let’s get it

running so that we can see it in action.
Running the example

To deploy this example, here’s what we’ll need:

e An Arduino Nano 33 BLE Sense board
¢ A micro-USB cable
e The Arduino IDE

Tip

There’s always a chance that the build process might have changed since this book was
written, so check README.md for the latest instructions.

The projects in this book are available as example code in the TensorFlow Lite Arduino
library. If you haven’t already installed the library, open the Arduino IDE and select
Manage Libraries from the Tools menu. In the window that appears, search for and
install the library named Arduino_TensorFlowLite. You should be able to use the latest
version, but if you run into issues, the version that was tested with this book is 1.14-
ALPHA.

Note

You can also install the library from a .zip file, which you can either download from the
TensorFlow Lite team or generate yourself using the TensorFlow Lite for
Microcontrollers Makefile. If you'd prefer to do the latter, see Appendix A.

After you've installed the library, the micro_speech example will show up in the File
menu under Examples— Arduino_TensorFlowLite, as shown in Figure 7-8.

Click “micro_speech” to load the example. It will appear as a new window, with a tab
for each of the source files. The file in the first tab, micro_speech, is equivalent to the
main_functions.cc we walked through earlier.

File Edit Sketch Tools Help

New #EN

Open... #0

Open Recent >

Sketchbook | 2

Examples > Built-in Examples
Close #$W 01.Basics

Save #8S 02.Digital

Save As... 0 ¥8S 03.Analog

04.Communication
Page Setup QP g e

Print *®P 06.Sensors

07.Display

08.Strings

09.USB
10.StarterKit_BasicKit
11.ArduinolSP

VVVVVVVVVYYY

Sxarmples vor any bosd
Adafruit Circuit Playground
Arc_!yinoéSMQQS‘l

hello_world
magic_wand
micro_speech
person_detection

Ethernet
Firmata
LiquidCrystal
SD

Stepper
Temboo
RETIRED

YYVVVVVYVYRYY

Sxatrnlies o
ArduCAM
JPEGDecoder

Figure 7-8. The Examples menu

Note

“Running the Example” already explained the structure of the Arduino example, so we
won'’t cover it again here.

To run the example, plug in your Arduino device via USB. Make sure the correct device
type is selected from the Board drop-down list in the Tools menu, as shown in Figure 7-
9.

Tools Help

Auto Format 3 Mld | Arduino 1.8.9
Archive Sketch

Fix Encoding & Reload

Manage Libraries...

Serial Monitor

Serial Plotter

e tias. I Boerds Manager...

e e} Arduino SAMD (32-bits ARM Cortex-M0+) Boards
Board: "Arduino Nano 33 BLE" m::llmlcomln(o Zero (Programming Pon;
::rt: mm«m 454301 (Arduino Nano 33 BLE)" Arduino/Genuino Zero (Native USB Port)

t ° Arduino/Genuino MKR1000

Programmer: "AVRISP mkil* Arduino MKRZERO

Burn Boctioader Arduino MKR WiFi 1010

g arr— Arduino NANO 33 loT
Arduino MKR FOX 1200
Arduino MKR WAN 1300

e detatled Tensorflow Lite exarple code. Arduino MKR GSM 1400

Arduino MKR NB 1500

'duino kno's to build the TF Lite library. Arduino MKR Vidor 4000

Adafrult Circuit Playground Express

Arduino MO Pro (Programming Port)

in funct
nn function Arduino MO Pro (Native US8 Port)

5 chor® ergv);

Arduino MO
wt ¢ serial connection, Arduino Tian
we giving w.

V Arduino Nano 33 BLE

Figure 7-9. The Board drop-down list

If your device’s name doesn’t appear in the list, you’ll need to install its support
package. To do this, click Boards Manager. In the window that appears, search for your
device, and then install the latest version of the corresponding support package. Next,
make sure the device’s port is selected in the Port drop-down list, also in the Tools
menu, as demonstrated in Figure 7-10.

Tools Help

Auto Format d | Arduino 1.8.9
Archive Sketch

Fix Encoding & Reload

Manage Libraries...

Serial Monitor

Serial Plotter

WIFi101 / WiFININA Firmware Updater

Board: "Arduino Nano 33 BLE"

Port: "/dev/cu.usbmodem 1454301 (Arduino Nano 33 BLE)" .

Get Board Info {dev/cu.Bluetooth-incoming-Port
/devfcu.DixleDewdrop-SPPDev-2
/dev/cu.DixieDewdrop-SPPDev-5
/devfcu.MALS
{devicu.SOC

v /dev/cu.usbmodem1454301 (Arduino Nano 33 BLE)

Programmer: “AVRISP mkii®
Burn Bootloader

Figure 7-10. The Port drop-down list

Finally, in the Arduino window, click the upload button (highlighted in white in
Figure 7-11) to compile and upload the code to your Arduino device.

7 i Upload Using Programmer

Figure 7-11. The upload button, a right-facing arrow

After the upload has successfully completed you should see the LED on your Arduino
board begin to flash.

To test the program, try saying “yes.” When it detects a “yes,” the LED will remain lit
solidly for around three seconds.

Tip

If you can’t get the program to recognize your “yes,” try saying it a few times in a row.

You can also see the results of inference via the Arduino Serial Monitor. To do this,
open the Serial Monitor from the Tools menu. Now, try saying “yes,” “no,” and other
words. You should see something like Figure 7-12.

@ @ jdevicu.usbmodem 1454301

| Send

‘Heard yes (249) #92256ns
‘Heard yes (232) #93760ns
Heard yes (241) #99360ns
Heard yes (226) 0103104ms
‘Heard yes (211) 0105376m
MHeard yes (202) #108352ns
Heard unknown (213) @109856ns
Heard unknown (225) €111744as
Heard unknown (216) €121888ns
Meard no (232) €137568ns
‘Heard unknown (2083) €144288as
Meard unknown (221) €149152ns
Heard unknown (222) €157376ms
MHeard unknown (218) €219496ns
'Heard unknown (229) €385216ms
Heard unknown (223) @485486as
Heard unknown (205) €407296ms
Heard unknown (204) @413280ns
‘Heard yes (222) €417732ms

Autoscroll Show imestamp Newline <] 115200 baud | Clear output

Figure 7-12. The Serial Monitor displaying some matches

Note

The model we’re using is small and imperfect, and you’ll probably notice that it’s
better at detecting “yes” than “no.” This is an example of how optimizing for a tiny
model size can result in issues with accuracy. We cover this topic in Chapter 8.
Making your own changes

Now that you’ve deployed the application, try playing around with the code! You can
edit the source files in the Arduino IDE. When you save, you’ll be prompted to re-save
the example in a new location. After you’ve made your changes, you can click the
upload button in the Arduino IDE to build and deploy.

Here are a few ideas you could try:

o Switch the example to light the LED when “no” is spoken, instead of “yes,”

o Make the application respond to a specific sequence of “yes” and “no”
commands, like a secret code phrase.

¢ Use the “yes” and “no” commands to control other components, like
additional LEDs or servos.

SparkFun Edge

The SparkFun Edge has both a microphone and a row of four colored LEDs—red, blue,
green, and yellow—which will make displaying results easy. Figure 7-13 shows the
SparkFun Edge with its LEDs highlighted.

-
= lensorFlow

&
i i Hcﬁ:gzg é’
MIC1 L E.El@@OOQO

Figure 7-13. The SparkFun Edge’s four LEDs

Responding to commands on SparkFun Edge

To make it clear that our program is running, let’s toggle the blue LED on and off with
each inference. We’ll switch on the yellow LED when a “yes” is heard, the red LED when
a “no” is heard, and the green LED when an unknown command is heard.

The command responder for SparkFun Edge is implemented in

sparkfun_edge/command_responder.cc. The file begins with some includes:

#include "tensorflow/lite/micro/examples/micro_speech/command_responder.h"
#include "am_bsp.h"

The command_responder.h include is this file’s corresponding header. am_bsp.h is the
Ambiq Apollo3 SDK, which you saw in the last chapter.

Inside the function definition, the first thing we do is set up the pins connected to the
LEDs as outputs:

// This implementation will light up the LEDs on the board in response to
// different commands.
void RespondToCommand(tflite::ErrorReporter* error_reporter,
int32_t current_time, const char* found_command,
uint8_t score, bool is_new_command) {
static bool is_initialized = false;
if (!is_initialized) {
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_RED, g_AM_HAL_GPIO_OUTPUT_12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED BLUE, g_AM_HAL_GPIO_OUTPUT_12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED GREEN, g_AM HAL_GPIO_OUTPUT 12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_YELLOW, g_AM_HAL_GPIO_OUTPUT_12);
is_1initialized = true;

We call the am_hal_gpio_pinconfig() function from the Apollo3 SDK to set all four
LED pins to output mode, represented by the constant g_AM_HAL_GPIO_OUTPUT_12. We
use the is_initialized static variable to ensure that we do this only once!

Next comes the code that will toggle the blue LED on and off. We do this using a count
variable, in the same way as in the Arduino implementation:

static int count = 0;
// Toggle the blue LED every time an inference is performed.
++count;
if (count & 1) {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_BLUE);
} else {
am_hal_gpio_output_clear (AM_BSP_GPIO_LED_BLUE);

This code uses the am_hal_gpio_output_set() and am_hal_gpio_output_clear()
functions to switch the blue LED’s pin either on or off.

By incrementing the count variable at each inference, we keep track of the total
number of inferences we’ve performed. Inside the if conditional, we use the &
operator to do a binary AND operation with the count variable and the number 1.

By performing an AND on count with 1, we filter out all of count’s bits except the
smallest. If the smallest bit is a ®, meaning count is an odd number, the result will be a
0.Ina C++ if statement, this evaluates to false.

Otherwise, the result will be a 1, indicating an even number. Because a 1 evaluates to

true, our LED will switch on with even values and off with odd values. This is what
makes it toggle.

Next, we light the appropriate LED depending on which word was just heard. By
default, we clear all of the LEDs, so if a word was not recently heard the LEDs will all be
unlit:

am_hal_gpio_output_clear(AM_BSP_GPIO_LED_RED);
am_hal_gpio_output_clear (AM_BSP_GPIO_LED_YELLOW);
am_hal_gpio_output_clear (AM_BSP_GPIO_LED_GREEN);

We then use some simple if statements to switch on the appropriate LED depending
on which command was heard:

if (is_new_command) {
error_reporter->Report("Heard %s (%d) @%dms", found_command, score,
current_time);
if (found_command[0] == 'y') {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_YELLOW);

if (found_command[0] == 'n') {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_RED);

if (found_command[0] == 'u') {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_GREEN);

As we saw earlier, is_new_command is true only if RespondToCommand() was called
with a genuinely new command, so if a new command wasn’t heard the LEDs will

remain off. Otherwise, we use the am_hal_gpio_output_set() function to switch on
the appropriate LED.
Running the example

We’ve now walked through how our example code lights up LEDs on the SparkFun

Edge. Next, let’s get the example up and running.
Tip

There’s always a chance that the build process might have changed since this book was
written, so check README.md for the latest instructions.

To build and deploy our code, we’ll need the following:

e A SparkFun Edge board

e A USB programmer (we recommend the SparkFun Serial Basic Breakout, which

is available in micro-B USB and USB-C variants)
» A matching USB cable

 Python 3 and some dependencies

Note

Chapter 6 shows how to confirm whether you have the correct version of Python
installed. If you already did this, great. If not, it’s worth flipping back to “Running the
Example” to take a look.

In your terminal, clone the TensorFlow repository and then change into its directory:

git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow

Next, we're going to build the binary and run some commands that get it ready for
downloading to the device. To avoid some typing, you can copy and paste these

commands from README.md.
Build the binary

The following command downloads all of the required dependencies and then compiles
a binary for the SparkFun Edge:

make -f tensorflow/lite/micro/tools/make/Makefile \
TARGET=sparkfun_edge TAGS=cmsis-nn micro_speech_bin

The binary is created as a .bin file, in the following location:

tensorflow/lite/micro/tools/make/gen/ \
sparkfun_edge_cortex-m4/bin/micro_speech.bin

To check whether the file exists, you can use the following command:

test -f tensorflow/lite/micro/tools/make/gen/ \
sparkfun_edge_cortex-m4/bin/micro_speech.bin \
&% echo "Binary was successfully created" || echo "Binary is missing"

If you run that command, you should see Binary was successfully created printed

to the console. If you see Binary is missing, there was a problem with the build
process. If so, it’s likely that there are some clues to what went wrong in the output of

the make command.

Sign the binary

The binary must be signed with cryptographic keys to be deployed to the device. Let’s
now run some commands that will sign the binary so it can be flashed to the SparkFun

Edge. The scripts used here come from the Ambiq SDK, which is downloaded when the
Makefile is run.

Enter the following command to set up some dummy cryptographic keys that you can
use for development:

cp tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0/ \
tools/apollo3_scripts/keys_info0.py \
tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0/ \
tools/apollo3_scripts/keys_info.py

Next, run the following command to create a signed binary. Substitute python3 with
python if necessary:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_image_blob.py \
--bin tensorflow/lite/micro/tools/make/gen/ \
sparkfun_edge_cortex-m4/bin/micro_speech.bin \
--load-address 0xC000 \
--magic-num OxCB -o main_nonsecure_ota \
--version 0x0

This creates the file main_nonsecure_ota.bin. Now run this command to create a final
version of the file that can be used to flash your device with the script you will use in
the next step:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_wireupdate_blob.py \
--load-address 0x20000 \
--bin main_nonsecure_ota.bin \
-1 6 -0 main_nonsecure_wire \
--options 0Ox1

You should now have a file called main_nonsecure_wire.bin in the directory where you

ran the commands. This is the file you’ll be flashing to the device.
Flash the binary

The SparkFun Edge stores the program it is currently running in its 1 megabyte of
flash memory. If you want the board to run a new program, you need to send it to the
board, which will store it in flash memory, overwriting any program that was

previously saved.
Attach the programmer to the board

To download new programs to the board, you’ll use the SparkFun USB-C Serial Basic
serial programmer. This device allows your computer to communicate with the
microcontroller via USB.

To attach this device to your board, perform the following steps:

1. On the side of the SparkFun Edge, locate the six-pin header.

2. Plug the SparkFun USB-C Serial Basic into these pins, ensuring the pins labeled
BLK and GRN on each device are lined up correctly, as illustrated in Figure 7-
14.

Figure 7-14. Connecting the SparkFun Edge and USB-C Serial Basic (courtesy of SparkFun)

Attach the programmer to your computer

You connect the board to your computer via USB. To program the board, you need to
find out the name that your computer gives the device. The best way of doing this is to
list all the computer’s devices before and after attaching it, and look to see which

device is new.
Warning

Some people have reported issues with their operating system’s default drivers for the
programmer, so we strongly recommend installing the driver before you continue.

Before attaching the device via USB, run the following command:

macO0S:
1s /dev/cu*

Linux:
1s /dev/tty*

This should output a list of attached devices that looks something like the following:

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.MALS
/dev/cu.S0C

Now, connect the programmer to your computer’s USB port and run the command
again:

mac0S:
1s /dev/cu*

Linux:
1s /dev/tty*

You should see an extra item in the output, as shown in the example that follows. Your
new item might have a different name. This new item is the name of the device:

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.MALS

/dev/cu.S0C
/dev/cu.wchusbserial-1450

This name will be used to refer to the device. However, it can change depending on
which USB port the programmer is attached to, so if you disconnect the board from
your computer and then reattach it, you might need to look up its name again.

Tip

Some users have reported two devices appearing in the list. If you see two devices, the
correct one to use begins with the letters “wch”; for example, “/dev/wchusbserial-
14410.”

After you've identified the device name, put it in a shell variable for later use:

export DEVICENAME=<your device name here>

This is a variable that you can use when running commands that require the device
name, later in the process.
Run the script to flash your board

To flash the board, you must put it into a special “bootloader” state that prepares it to
receive the new binary. You'll then run a script to send the binary to the board.

First create an environment variable to specify the baud rate, which is the speed at
which data will be sent to the device:

export BAUD_RATE=921600

Now paste the command that follows into your terminal—but do not press Enter yet! The
${DEVICENAME} and ${BAUD_RATE} in the command will be replaced with the values

you set in the previous sections. Remember to substitute python3 with python if
necessary:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/uart_wired_update.py \
-b ${BAUD_RATE} ${DEVICENAME} \
-r 1 -f main_nonsecure_wire.bin \
-1 6

Next, you'll reset the board into its bootloader state and flash the board. On the board,

locate the buttons marked RST and 14, as shown in Figure 7-15. Perform the following
steps:

1. Ensure that your board is connected to the programmer and the entire thing is
connected to your computer via USB.

2. On the board, press and hold the button marked 14. Continue holding it.

3. While still holding the button marked 14, press the button marked RST to reset
the board.

4. Press Enter on your computer to run the script. Continue holding button 14.

You should now see something like the following appearing on your screen:

Connecting with Corvette over serial port /dev/cu.usbserial-1440...

Sending Hello.

Received response for Hello
Received Status

length = 0x58

version = 0Ox3

Max Storage = 0x4ffa0

Status = 0Ox2

State = Ox7

AMInfo =

Ox1

Oxff2da3ff

Ox55fff

ox1

0x49f40003

Oxffffffff

[...lots more Oxffffffff...]
Sending OTA Descriptor = 0xfe@00
Sending Update Command.

number of updates needed = 1
Sending block of size 0x158b0 from Ox0 to ©0x158b0
Sending Data Packet of length 8180
Sending Data Packet of length 8180
[...lots more Sending Data Packet of length 8180...]

I
RRhRRARABRARARA

'ii-
.
(e

&' 5 _ g Powered by
om | 1B TensorFIow
— u a: a2

dEiiiueule ¢9
EE@‘)OOQO

=
e
—’

2
:

Figure 7-15. The SparkFun Edge’s buttons

Keep holding button 14 until you see Sending Data Packet of length 8180. You can
release the button after seeing this (but it’s okay if you keep holding it). The program
will continue to print lines on the terminal. Eventually, you’ll see something like the
following:

[...lots more Sending Data Packet of length 8180...]
Sending Data Packet of length 8180

Sending Data Packet of length 6440

Sending Reset Command.

Done.

This indicates a successful flashing.
Tip

If the program output ends with an error, check whether Sending Reset Command.

was printed. If so, flashing was likely successful despite the error. Otherwise, flashing
might have failed. Try running through these steps again (you can skip over setting the

environment variables).
Testing the program

To make sure the program is running, press the RST button. You should now see the
blue LED flashing.

To test the program, try saying “yes.” When it detects a “yes,” the orange LED will
flash. The model is also trained to recognize “no,” and when unknown words are
spoken. The red LED should flash for “no,” and the green for unknown.

If you can’t get the program to recognize your “yes,” try saying it a few times in a row:
“yes, yes, yes.”

The model we’re using is small and imperfect, and you’ll probably notice that it’s
better at detecting “yes” than “no,” which it often recognizes as “unknown.” This is an
example of how optimizing for a tiny model size can result in issues with accuracy. We
cover this topic in Chapter 8.

What If It Didn’t Work?

Here are some possible issues and how to debug them:

Problem: When flashing, the script hangs for a while at Sending Hello. and then
prints an error.

Solution: You need to hold down the button marked 14 while running the script.
Hold down button 14, press the RST button, and then run the script, while holding
the button marked 14 the entire time.

Problem: After flashing, none of the LEDs are coming on.

Solution: Try pressing the RST button, or disconnecting the board from the
programmer and then reconnecting it. If neither of these works, try flashing the
board again.

Viewing debug data

The program will also log successful recognitions to the serial port. To view this data,
we can monitor the board’s serial port output using a baud rate of 115200. On macOS
and Linux, the following command should work:

screen ${DEVICENAME} 115200

You should initially see output that looks something like the following:

Apollo3 Burst Mode is Available

Apollo3 operating in Burst Mode (96MHz)

Try issuing some commands by saying “yes” or “no.” You should see the board
printing debug information for each command:

Heard yes (202) @65536ms

To stop viewing the debug output with screen, press Ctrl-A immediately followed by
the K key, and then press the Y key.
Making your own changes

Now that you've deployed the basic application, try playing around and making some
changes. You can find the application’s code in the
tensorflow/lite/micro/examples/micro_speech folder. Just edit and save and then repeat
the preceding instructions to deploy your modified code to the device.

Here are a few things that you could try:
» RespondToCommand()’s score argument shows the prediction score. Use the
LEDs as a meter to show the strength of the match.

o Make the application respond to a specific sequence of “yes” and “no”
commands, like a secret code phrase.

 Use the “yes” and “no” commands to control other components, like
additional LEDs or servos.

ST Microelectronics STM32F746G Discovery Kit

Because the STM32F746G comes with a fancy LCD display, we can use this to show off
whichever wake words are detected, as depicted in Figure 7-16.

Figure 7-16. STM32F746G displaying a “no”

Responding to commands on STM32F746G

The STM32F746G’s LCD driver gives us methods that we can use to write text to the
display. In this exercise, we’ll use these to show one of the following messages,
depending on which command was heard:

e “Heard yes!”
e “Heard no :(”
e “Heard unknown”

e “Heard silence”

We’ll also set the background color differently depending on which command was
heard.

To begin, we include some header files:

#include "tensorflow/lite/micro/examples/micro_speech/command_responder.h"

#include "LCD_DISCO_F746NG.h"

The first, command_responder.h, just declares the interface for this file. The second,
LCD_DISCO_F74NG.h, gives us an interface to control the device’s LCD display. You can
read more about it on the Mbed site.

Next, we instantiate an LCD_DISCO_F746NG object, which holds the methods we use to
control the LCD:

LCD_DISCO_F746NG lcd;

In the next few lines, the RespondToCommand() function is declared, and we check
whether it has been called with a new command:

// When a command is detected, write it to the display and log it to the

// serial port.

void RespondToCommand(tflite::ErrorReporter *error_reporter,
int32_t current_time, const char *found_command,
uint8_t score, bool is_new_command) {

if (is_new_command) {
error_reporter->Report("Heard %s (%d) @%dms", found_command, score,
current_time);

When we know this is a new command, we use the error_reporter to log it to the
serial port.

Next, we use a big 1f statement to determine what happens when each command is
found. First comes “yes”:

if (*found_command == 'y') {
lcd.Clear (OxFFOF9D58);
lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard yes!", CENTER_MODE);

We use lcd.Clear () to both clear any previous content from the screen and set a new
background color, like a fresh coat of paint. The color ©xFFOF9ID58 is a nice, rich green.

On our green background, we use lcd.DisplayStringAt() to draw some text. The first
argument specifies an x coordinate, the second specifies a y. To position our text

roughly in the middle of the display, we use a helper function, LINE(), to determine
the y coordinate that would correspond to the fifth line of text on the screen.

The third argument is the string of text we’ll be displaying, and the fourth argument

determines the alignment of the text; here, we use the constant CENTER_MODE to
specify that the text is center-aligned.

We continue the if statement to cover the remaining three possibilities, “no,”
“unknown,” and “silence” (which is captured by the else block):

} else if (*found_command == 'n')
lcd.Clear (OxFFDB4437);
lcd.DisplayStringAt(0, LINE(S),

} else if (*found_command == 'u')
lcd.Clear (0xFFF4B400);
lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard unknown", CENTER_MODE);

} else {
lcd.Clear(OxFF4285F4);
lcd.DisplayStringAt(®, LINE(5), (uint8_t *)"Heard silence", CENTER_MODE);

}

{
(uint8_t *)"Heard no :(", CENTER_MODE);
{

And that’s it! Because the LCD library gives us such easy high-level control over the
display, it doesn’t take much code to output our results. Let’s deploy the example to

see this all in action.
Running the example

Now we can use the Mbed toolchain to deploy our application to the device.

Tip

There’s always a chance that the build process might have changed since this book was
written, so check README.md for the latest instructions.

Before we begin, we’ll need the following:

* An STM32F746G Discovery kit board
e A mini-USB cable
e The Arm Mbed CLI (follow the Mbed setup guide)

e Python 3 and pip

Like the Arduino IDE, Mbed requires source files to be structured in a certain way. The
TensorFlow Lite for Microcontrollers Makefile knows how to do this for us and can
generate a directory suitable for Mbed.

To do so, run the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
TARGET=mbed TAGS="cmsis-nn disco_f746ng" generate_micro_speech_mbed_project

This results in the creation of a new directory:

tensorflow/lite/micro/tools/make/gen/mbed_cortex-m4/prj/ \
micro_speech/mbed

This directory contains all of the example’s dependencies structured in the correct way
for Mbed to be able to build it.

First, change into the directory so that you can run some commands within it:

cd tensorflow/lite/micro/tools/make/gen/mbed_cortex-m4/prj/micro_speech/mbed

Next, you’ll use Mbed to download the dependencies and build the project.

To begin, use the following command to inform Mbed that the current directory is the
root of an Mbed project:

mbed config root .
Next, instruct Mbed to download the dependencies and prepare to build:

mbed deploy
By default, Mbed builds the project using C++98. However, TensorFlow Lite requires
C++11. Run the following Python snippet to modify the Mbed configuration files so that

it uses C++11. You can just type or paste it into the command line:

python -c 'import fileinput, glob;
for filename in glob.glob("mbed-os/tools/profiles/*.json"):
for line in fileinput.input(filename, inplace=True):
print(line.replace("\"-std=gnu++98\"","\"-std=c++11\", \"-fpermissive\""))'

Finally, run the following command to compile:
mbed compile -m DISCO_F746NG -t GCC_ARM
This should result in a binary at the following path:

. /BUILD/DISCO_F746NG/GCC_ARM/mbed.bin

One of the nice things about the STM32F746G board is that deployment is really easy.
To deploy, just plug in your STM board and copy the file to it. On macOS, you can do
this by using the following command:

cp ./BUILD/DISCO_F746NG/GCC_ARM/mbed.bin /Volumes/DIS_F746NG/

Alternately, just find the DIS_F746NG volume in your file browser and drag the file
over.

Copying the file initiates the flashing process.
Testing the program

When this is complete, try saying “yes.” You should see the appropriate text appear on
the display and the background color change.

If you can’t get the program to recognize your “yes,” try saying it a few times in a row,
like “yes, yes, yes.”

The model we’re using is small and imperfect, and you’ll probably notice that it’s
better at detecting “yes” than “no,” which it often recognizes as “unknown.” This is an
example of how optimizing for a tiny model size can result in issues with accuracy. We
cover this topic in Chapter 8.

Viewing debug data

The program also logs successful recognitions to the serial port. To view the output,
establish a serial connection to the board using a baud rate of 9600.

On macOS and Linux, the device should be listed when you issue the following
command:

1s /dev/tty*
It will look something like the following:
/dev/tty.usbmodem1454203

After you've identified the device, use the following command to connect to it,
replacing </dev/tty. devicename> with the name of your device as it appears in /dev:

screen /dev/<tty.devicename 9600>

Try issuing some commands by saying “yes” or “no.” You should see the board
printing debug information for each command:

Heard yes (202) @65536ms

To stop viewing the debug output with screen, press Ctrl-A, immediately followed by
the K key, and then press the Y key.
Note

If you're not sure how to make a serial connection on your platform, you could try
CoolTerm, which works on Windows, macOS, and Linux. The board should show up in

CoolTerm’s Port drop-down list. Make sure you set the baud rate to 9600.
Making your own changes

Now that you’ve deployed the application, it could be fun to play around and make
some changes. You can find the application’s code in the
tensorflow/lite/micro/tools/make/gen/mbed_cortex-m4/prj/micro_speech/mbed folder. Just
edit and save and then repeat the preceding instructions to deploy your modified code
to the device.

Here are a few things you could try:

» RespondToCommand()’s score argument shows the prediction score. Create a
visual indicator of the score on the LCD display.

o Make the application respond to a specific sequence of “yes” and “no”
commands, like a secret code phrase.

e Use the “yes” and “no” commands to control other components, like
additional LEDs or servos.

Wrapping Up

The application code we’ve walked through has been mostly concerned with capturing
data from the hardware and then extracting features that are suitable for inference.
The part that actually feeds data into the model and runs inference is relatively small,
and it’s very similar to the example covered in Chapter 6.

This is fairly typical of machine learning projects. The model is already trained, thus
our job is just to keep it fed with the appropriate sort of data. As an embedded
developer working with TensorFlow Lite, you’ll be spending most of your
programming time on capturing sensor data, processing it into features, and
responding to the output of your model. The inference part itself is quick and easy.

But the embedded application is only part of the package—the really fun part is the
model. In Chapter 8, you’ll learn how to train your own speech model to listen for
different words. You’'ll also learn more about how it works.

Chapter 8. Wake-Word Detection: Training a Model

In Chapter 7, we built an application around a model trained to recognize “yes” and
“no.” In this chapter, we will train a new model that can recognize different words.

Our application code is fairly general. All it does is capture and process audio, feed it
into a TensorFlow Lite model, and do something based on the output. It mostly doesn’t
care which words the model is looking for. This means that if we train a new model, we
can just drop it into our application and it should work right away.

Here are the things we need to consider when training a new model:
Input

The new model must be trained on input data that is the same shape and format,
with the same preprocessing as our application code.

Output

The output of the new model must be in the same format: a tensor of probabilities,
one for each class.

Training data

Whichever new words we pick, we’ll need many recordings of people saying them
so that we can train our new model.

Optimization

The model must be optimized to run efficiently on a microcontroller with limited
memory.

Fortunately for us, our existing model was trained using a publicly available script that
was published by the TensorFlow team, and we can use this script to train a new
model. We also have access to a free dataset of spoken audio that we can use as
training data.

In the next section, we’ll walk through the process of training a model with this script.
Then, in “Using the Model in Our Project”, we’ll incorporate the new model into our
existing application code. After that, in “How the Model Works”, you’ll learn how the
model actually works. Finally, in “Training with Your Own Data”, you’ll see how to

train a model using your own dataset.
Training Our New Model

The model we are using was trained with the TensorFlow Simple Audio Recognition

script, an example script designed to demonstrate how to build and train a model for
audio recognition using TensorFlow.

The script makes it very easy to train an audio recognition model. Among other things,
it allows us to do the following:

e Download a dataset with audio featuring 20 spoken words.

Choose which subset of words to train the model on.

Specify what type of preprocessing to use on the audio.

Choose from several different types of model architecture.

Optimize the model for microcontrollers using quantization.

When we run the script, it downloads the dataset, trains a model, and outputs a file
representing the trained model. We then use some other tools to convert this file into

the correct form for TensorFlow Lite.
Note

It’s common for model authors to create these types of training scripts. It allows them
to easily experiment with different variants of model architectures and
hyperparameters, and to share their work with others.

The easiest way to run the training script is within a Colaboratory (Colab) notebook,

which we do in the following section.
Training in Colab

Google Colab is a great place to train models. It provides access to powerful computing
resources in the cloud, and it comes set up with tools that we can use to monitor the
training process. It’s also completely free.

Over the course of this section, we will use a Colab notebook to train our new model.
The notebook we use is available in the TensorFlow repository.

Open the notebook and click the “Run in Google Colab” button, as shown in Figure 8-1.

Run in Google Colab | View source on GitHub

Figure 8-1. The “Run in Google Colab” button
Tip
As of this writing, there’s a bug in GitHub that results in intermittent error messages
when displaying Jupyter notebooks. If you see the message “Sorry, something went

wrong. Reload?” when trying to access the notebook, follow the instructions in
“Building Our Model”.

This notebook will guide us through the process of training a model. It runs through
the following steps:

e Configuring parameters

* Installing the correct dependencies

e Monitoring training using something called TensorBoard
¢ Running the training script

 Converting the training output into a model we can use

Enable GPU training

In Chapter 4, we trained a very simple model on a small amount of data. The model we
are training now is a lot more sophisticated, has a much larger dataset, and will take a
lot longer to train. On an average modern computer CPU, training it would take three
or four hours.

To reduce the time it takes to train the model, we can use something called GPU
acceleration. A GPU, or graphics processing unit. It’s a piece of hardware designed to
help computers process image data quickly, allowing them to smoothly render things
like user interfaces and video games. Most computers have one.

Image processing involves running a lot of tasks in parallel, and so does training a deep
learning network. This means that it’s possible to use GPU hardware to accelerate deep
learning training. It’s common for training to be 5 to 10 times faster when run on a
GPU as opposed to a CPU.

The audio preprocessing required in our training process means that we won’t see
quite such a massive speed-up, but our model will still train a lot faster on a GPU—it
will take around one to two hours, total.

Luckily for us, Colab supports training via GPU. It’s not enabled by default, but it’s easy
to switch on. To do so, go to Colab’s Runtime menu, then click “Change runtime type,”
as demonstrated in Figure 8-2.

Runtime Tools Help

) Run all 38/Ctrl+F9
Run before 38/Ctrl+F8
Run the focused cell 38 /Ctrl+Enter

] Run selection 38/Ctrl+Shift+Enter]
Run after 38/Ctrl+F10

: Interrupt execution #/Ctrl+M | 2
Restart runtime... 38 /Ctrl+M .

Restart and run all...

Reset all runtimes...

Change runtime type

HYl
o

Manage sessions

) I
”' View runtime logs :

Figure 8-2. The “Change runtime type” option in Colab

When you select this option, the “Notebook settings” box shown in Figure 8-3 opens.

Notebook settings

Runtime type

Python 3 v

Hardware accelerator

None v @

|:| Omit code cell output when saving this notebook

CANCEL SAVE

Figure 8-3. The “Notebook settings” box

Select GPU from the “Hardware accelerator” drop-down list, as in Figure 8-4, and then
click SAVE.

Notebook settings

Runtime type

Python 3

Hardware accelerator

GPU None @

[J omit code cell « 1 saving this notebook

GPU

TPU CANCEL SAVE

Figure 8-4. The “Hardware accelerator” drop-down list

Colab will now run its Python on a backend computer (referred to as a runtime) that
has a GPU.

The next step is to configure the notebook with the words we’d like to train.
Configure training

The training scripts are configured via a bunch of command-line flags that control
everything from the model’s architecture to the words it will be trained to classify.

To make it easier to run the scripts, the notebook’s first cell stores some important
values in environment variables. These will be substituted into the scripts’ command-
line flags when they are run.

The first one, WANTED_WORDS, allows us to select the words on which to train the model:

os.environ["WANTED_WORDS"] = "yes,no"

By default the selected words are “yes” and “no,” but we can provide any combination

of the following words, all of which appear in our dataset:

e Common commands: yes, no, up, down, left, right, on, off, stop, go, backward,
forward, follow, learn

« Digits zero through nine: zero, one, two, three, four, five, six, seven, eight, nine

o Random words: bed, bird, cat, dog, happy, house, Marvin, Sheila, tree, wow

To select words, we can just include them in a comma-separated list. Let’s choose the
words “on” and “off” to train our new model:

os.environ["WANTED_WORDS"] = "on,off"

Any words not included in the list will be grouped under the “unknown” category

when the model is trained.
Note

It’s fine to choose more than two words here; we would just need to tweak the
application code slightly. We provide instructions on doing this in “Using the Model in
Our Project”.

Notice also the TRAINING_STEPS and LEARNING_RATE variables:

os.environ["TRAINING_STEPS"]="15000,3000"
os.environ["LEARNING_RATE"]="0.001,0.0001"

In Chapter 3, we learned that a model’s weights and biases are incrementally adjusted
so that over time, the output of the model gets closer to matching the desired value.

TRAINING_STEPS refers to the number of times a batch of training data will be run

through the network and its weights and biases updated. LEARNING_RATE sets the rate
of adjustment.

With a high learning rate, the weights and biases are adjusted more with each
iteration, meaning convergence happens fast. However, these big jumps mean that it’s
more difficult to get to the ideal values because we might keep jumping past them.
With a lower learning rate, the jumps are smaller. It takes more steps to converge, but
the final result might be better. The best learning rate for a given model is determined
through trial and error.

In the aforementioned variables, the training steps and learning rate are defined as
comma-separated lists that define the learning rate for each stage of training. With the

values we just looked at, the model will train for 15,000 steps with a learning rate of
0.001, and then 3,000 steps with a learning rate of 0.0001. The total number of steps
will be 18,000.

This means we’ll do a bunch of iterations with a high learning rate, allowing the
network to quickly converge. We’ll then do a smaller number of iterations with a low
learning rate, fine-tuning the weights and biases.

For now, we’ll leave these values as they are, but it’s good to know what they are for.
Run the cell. You'll see the following output printed:

Training these words: on,off

Training steps in each stage: 15000,3000
Learning rate in each stage: 0.001,0.0001
Total number of training steps: 18000

This gives a summary of how our model will be trained.

Install dependencies

Next up, we grab some dependencies that are necessary for running the scripts.
Run the next two cells to do the following:
* Install a specific version of the TensorFlow pip package that includes the ops
required for training.

e Clone a corresponding version of the TensorFlow GitHub repository so that we
can access the training scripts.

Load TensorBoard

To monitor the training process, we use TensorBoard. It’s a user interface that can
show us graphs, statistics, and other insight into how training is going.

When training has completed, it will look something like the screenshot in Figure 8-5.
You'll learn what all of these graphs mean later in this chapter.

TensorBoard SCALARS WMAGES GRAPHS INACTIVE ~rCc 8 ®

[0 Show data download links Q filter tage tregular exprassions Lapported]
ignore outhers In chart scaing

ol

Toohip sorting
method defautt

acoracy
183 evaliactiracy

VN 4 e T e s
duta

() vmn

() wasdation

TOGGLE ALL RUNS

fontentirettan Lgs

Crods_enrcpy
a3 evel/cross_emropy

A\

Figure 8-5. A screenshot of TensorBoard after training is complete

Run the next cell to load TensorBoard. It will appear in Colab, but it won’t show
anything interesting until we begin training.
Begin training

The following cell runs the script that begins training. You can see that it has a lot of
command-line arguments:

Ipython tensorflow/tensorflow/examples/speech_commands/train.py \
--model_architecture=tiny_conv --window_stride=20 --preprocess=micro \
--wanted_words=${WANTED_WORDS} --silence_percentage=25 --unknown_percentage=25 \
--quantize=1 --verbosity=WARN --how_many_training_steps=${TRAINING_STEPS} \
--learning_rate=${LEARNING_RATE} --summaries_dir=/content/retrain_logs \
--data_dir=/content/speech_dataset --train_dir=/content/speech_commands_train

Some of these, like - -wanted_words=${WANTED_WORDS}, use the environment variables
we defined earlier to configure the model we're creating. Others set up the output of

the script, such as - -train_dir=/content/speech_commands_train, which defines
where the trained model will be saved.

Leave the arguments as they are, and run the cell. You’ll begin to see some output
stream past. It will pause for a few moments while the Speech Commands dataset is

downloaded:

>> Downloading speech_commands_v0.02.tar.gz 18.1%

When this is done, some more output will appear. There might be some warnings,
which you can ignore as long as the cell continues running. At this point, you should
scroll back up to TensorBoard, which should hopefully look something like Figure 8-6.
If you don’t see any graphs, click the SCALARS tab.

TensorBoard SCALARS IMAGES GRAPHS INACTIVE - 80

D Show data download bnks QFHIN Figs (GG S piessdns suppidivd]

ignare outliers n chart scaling
eval
Toolp sarting default

cross, entropy
g m oy 127 el tross_entrocy

Smoothing
e
Hortzonal Axts
n Wt e

Runs

||l

g o e hy
data
O trein

TOCGLE ALL ALNS

‘contersireran bags

Figure 8-6. A screenshot of TensorBoard at the beginning of training

Hooray! This means that training has begun. The cell you’ve just run will continue to
execute for the duration of training, which will take up to two hours to complete. The

cell won’t output any more logs, but data about the training run will appear in
TensorBoard.

You can see that TensorBoard shows two graphs, “accuracy” and “cross_entropy,” as
shown in Figure 8-7. Both graphs show the current steps on the x-axis. The “accuracy”
graph shows the model’s accuracy on its y-axis, which signals how much of the time it
is able to detect a word correctly. The “cross_entropy” graph shows the model’s loss,
which quantifies how far from the correct values the model’s predictions are.

accuracy cross_entropy
tag: eval/accuracy tag: eval/cross_entropy

m
[]

KR R DECSAS B RS AR I MR N LAl
r"
d

Figure 8-7. The “accuracy” and “cross_entropy” graphs
Note

Cross entropy is a common way of measuring loss in machine learning models that
perform classification, for which the goal is to predict which category an input belongs
to.

The jagged lines on the graph correspond to performance on the training dataset,
whereas the straight lines reflect performance on the validation dataset. Validation
occurs periodically, so there are fewer validation datapoints on the graph.

New data will arrive in the graphs over time, but to show it, you need to adjust their
scales to fit. You can do this by clicking the rightmost button under each graph, as
shown in Figure 8-8.

Figure 8-8. Click this button to adjust the graph’s scale to fit all available data
You can also click the button shown in Figure 8-9 to make each graph larger.
| e |

Figure 8-9. Click this button to enlarge the graph

In addition to graphs, TensorBoard can show the inputs being fed into the model. Click
the IMAGES tab, which displays a view similar to Figure 8-10. This is an example of a
spectrogram that is being input to the model during training.

O Show ectua image size Q Filter tags ;regulas expressinas suoported)

Arighineas adurtment data
* FESET data/micro/image B data/spectrogram/image w—
stig © Sun Al 11 2019 17:58 24 Pacific DaySght Time 416p 0 Sun Aug 11 2019 17 5624 Pacife Daigh Time
. 4
Contrast adpsstment
® RESET
Rure
TR 2 ceges ta himer pans
= duta
) train
O validation

TUGGLL ALL RUNS

conterroreran 1073

Figure 8-10. The IMAGES tab of TensorBoard

Wait for training to complete

Training the model will take between one and two hours, so our job now is to be

patient. Fortunately for us, we have TensorBoard’s pretty graphs to keep us
entertained.

As training progresses, you'll notice that the metrics tend to jump around within a
range. This is normal, but it makes the graphs appear fuzzy and difficult to read. To

make it easier to see how training is going, we can use TensorFlow’s Smoothing
feature.

Figure 8-11 shows graphs with the default amount of smoothing applied; notice how
fuzzy they are.

accuracy cross_entropy
tag: eval/accuracy tag: eval/cross_entropy

Figure 8-11. Training graphs with the default amount of smoothing

By adjusting the Smoothing slider, shown in Figure 8-12, we can increase the amount
of smoothing, making the trends more obvious.

Smoothing

@ 085

Figure 8-12. TensorBoard’s Smoothing slider

Figure 8-13 shows the same graphs with a higher level of smoothing. The original data
is visible in lighter colors, underneath.

accuracy cross_entropy
1ag: eval/accuracy 1ag: eval/cross_entropy

F N L IS O N D L= ey e b e e Tl Tk T YO Lk
Figure 8-13. Training graphs with increased smoothing
Keeping Colab running

To prevent abandoned projects from consuming resources, Colab will shut down your
runtime if it isn’t actively being used. Because our training will take a while, we need
to prevent this from happening. There are a couple of things we need to think about.

First, if we're not actively interacting with the Colab browser tab, the web user
interface will disconnect from the backend runtime where the training scripts are
being executed. This will happen after a few minutes, and will cause your TensorBoard
graphs to stop updating with the latest training metrics. There’s no need to panic if
this happens—your training is still running in the background.

If your runtime has disconnected, you'll see a Reconnect button appear in Colab’s user
interface, as shown in Figure 8-14. Click this button to reconnect your runtime.

Reconnect ~
Figure 8-14. Colab’s Reconnect button

A disconnected runtime is no big deal, but Colab’s next timeout deserves some
attention. If you don’t interact with Colab for 90 consecutive minutes, your runtime instance
will be recycled. This is a problem: you will lose all of your training progress, along with
any data stored in the instance!

To avoid this happening, you just need to interact with Colab at least once every 90
minutes. Open the tab, make sure the runtime is connected, and take a look at your
beautiful graphs. As long as you do this before 90 minutes have elapsed, the connection

will stay open.
Warning

Even if your Colab tab is closed, the runtime will continue running in the background
for up to 90 minutes. As long as you open the original URL in your browser, you can
reconnect to the runtime and continue as before.

However, TensorBoard will disappear when the tab is closed. If training is still running
when the tab is reopened, you will not be able to view TensorBoard again until training
is complete.

Finally, a Colab runtime has a maximum lifespan of 12 hours. If your training takes longer
than 12 hours, you're out of luck—Colab will shut down and reset your instance before
training has a chance to complete. If your training is likely to run this long, you should
avoid Colab and use one of the alternative solutions described in “Other Ways to Run
the Scripts”. Luckily, training our wake-word model won’t take anywhere near that
long.

When your graphs show data for 18,000 steps, training is complete! We now must run a
few more commands to prepare our model for deployment. Don’t worry—this part is

much quicker.
Freeze the graph

As you learned earlier in this book, training is the process of iteratively tweaking a
model’s weights and biases until it produces useful predictions. The training script
writes these weights and biases to checkpoint files. A checkpoint is written once every
hundred steps. This means that if training fails partway through, it can be restarted
from the most recent checkpoint without losing progress.

The train.py script is called with an argument, - - train_dir, which specifies where
these checkpoint files will be written. In our Colab, it’s set to
/content/speech_commands_train.

You can see the checkpoint files by opening Colab’s lefthand panel, which has a file
browser. To do so, click the button shown in Figure 8-15.

>
Figure 8-15. The button that opens Colab’s sidebar
In this panel, click the Files tab to see the runtime’s filesystem. If you open the

speech_commands_train/ directory you'll see the checkpoint files, as in Figure 8-16. The
number in each filename indicates the step at which the checkpoint was saved.

Table of contents Code snippets Files X

+ UPLOAD (> REFRESH & MOUNT DRIVE
[+ I8

» (@ retrain_logs

» @ sampie_data

~ [speech_commands_train
B checkpoint
B tiny_conv.ckpt-200.data-00000-0f-00001
B tiny_conv.ckpt-200.index
B tiny_conv.ckpt-200.meta
B tiny_conv.ckpt-300.data-00000-0f-00001

Figure 8-16. Colab’s file browser showing a list of checkpoint files

A TensorFlow model consists of two main things:

o The weights and biases resulting from training

* A graph of operations that combine the model’s input with these weights and
biases to produce the model’s output

At this juncture, our model’s operations are defined in the Python scripts, and its
trained weights and biases are in the most recent checkpoint file. We need to unite the
two into a single model file with a specific format, which we can use to run inference.
The process of creating this model file is called freezing—we’re creating a static
representation of the graph with the weights frozen into it.

To freeze our model, we run a script. You'll find it in the next cell, in the “Freeze the
graph” section. The script is called as follows:

Ipython tensorflow/tensorflow/examples/speech_commands/freeze.py \
--model_architecture=tiny_conv --window_stride=20 --preprocess=micro \
--wanted_words=${WANTED_WORDS} --quantize=1 \
--output_file=/content/tiny_conv.pb \
--start_checkpoint=/content/speech_commands_train/tiny_conv. \
ckpt-${TOTAL_STEPS}

To point the script toward the correct graph of operations to freeze, we pass some of
the same arguments we used in training. We also pass a path to the final checkpoint
file, which is the one whose filename ends with the total number of training steps.

Run this cell to freeze the graph. The frozen graph will be output to a file named
tiny_conv.pb.

This file is the fully trained TensorFlow model. It can be loaded by TensorFlow and
used to run inference. That’s great, but it’s still in the format used by regular
TensorFlow, not TensorFlow Lite. Our next step is to convert the model into the
TensorFlow Lite format.

Convert to TensorFlow Lite

Conversion is another easy step: we just need to run a single command. Now that we

have a frozen graph file to work with, we’ll be using toco, the command-line interface
for the TensorFlow Lite converter.

In the “Convert the model” section, run the first cell:

!toco
--graph_def_file=/content/tiny_conv.pb --output_file= \
/content/tiny_conv.tflite \
--input_shapes=1,49,40,1 --input_arrays=Reshape_2
--output_arrays='labels_softmax' \
--inference_type=QUANTIZED_UINT8 --mean_values=0 --std_dev_values=9.8077

In the arguments, we specify the model that we want to convert, the output location
for the TensorFlow Lite model file, and some other values that depend on the model
architecture. Because the model was quantized during training, we also provide some

arguments (inference_type, mean_values, and std_dev_values) that instruct the
converter how to map its low-precision values into real numbers.

You might be wondering why the input_shape argument has a leading 1 before the
width, height, and channels parameters. This is the batch size; for efficiency during
training, we send a lot of inputs in together, but when we’re running in a real-time
application we’ll be working on only one sample at a time, which is why the batch size

is fixed as 1.

The converted model will be written to tiny_conv.tflite. Congratulations; this a fully
formed TensorFlow Lite model!

To see how tiny this model is, in the next cell, run the code:

import os
model_size = os.path.getsize("/content/tiny_conv.tflite")
print("Model is %d bytes" % model_size)

The output shows that the model is super small: Model is 18208 bytes.

Our next step is to get this model into a form that we can deploy to microcontrollers.
Create a C array

Back in “Converting to a C File”, we used the xxd command to convert a TensorFlow
Lite model into a C array. We'll do the same thing in the next cell:

Install xxd if it is not available

lapt-get -qq install xxd

Save the file as a C source file

Ixxd -1 /content/tiny_conv.tflite > /content/tiny_conv.cc
Print the source file

Icat /content/tiny_conv.cc

The final part of the output will be the file’s contents, which are a C array and an
integer holding its length, as follows (the exact values you see might be slightly
different):

unsigned char _content_tiny_conv_tflite[] = {
Ox1lc, Ox00, Ox00, Ox00, 0x54, Ox46, O0x4c, 0x33, Ox00, Ox00, Ox00, 0x00,
0x00, Ox00, Ox0e, Ox00, Ox18, O0x00, O0x04, Ox00, O0x08, O0x00, OxOc, 0x00,
S s

0x00, 0x09, Ox06, Ox00, Ox08, Ox00, 0x07, Ox00, O0x06, Ox00, Ox00, 0x00,
0x00, 0x00, Ox00, 0x04
};

unsigned int _content_tiny_conv_tflite_len = 18208;

This code is also written to a file, tiny_conv.cc, which you can download using Colab’s
file browser. Because your Colab runtime will expire after 12 hours, it’s a good idea to
download this file to your computer now.

Next, we'll integrate this newly trained model with the micro_speech project so that

we can deploy it to some hardware.
Using the Model in Our Project

To use our new model, we need to do three things:

1. In micro_features/tiny_conv_micro_features_model_data.cc, replace the original
model data with our new model.

2. Update the label names in micro_features/micro_model_settings.cc with our new
“on” and “off” labels.

3. Update the device-specific command_responder.cc to take the actions we want
for the new labels.

Replacing the Model

To replace the model, open micro_features/tiny_conv_micro_features_model_data.cc in

your text editor.
Note

If you're working with the Arduino example, the file will appear as a tab in the Arduino
IDE. Its name will be micro_features_tiny_conv_micro_features_model_data.cpp. If you're
working with the SparkFun Edge, you can edit the files directly in your local copy of
the TensorFlow repository. If you’re working with the STM32F746G, you should edit
the files in your Mbed project directory.

The tiny_conv_micro_features_model_data.cc file contains an array declaration that looks
like this:

const unsigned char
g_tiny_conv_micro_features_model_data[] DATA_ALIGN_ATTRIBUTE = {
0x18, Ox00, Ox00, Ox00, O0x54, O0x46, Ox4c, Ox33, Ox00, Ox00, Ox0e, 0x00,
0x18, 0x00, O0x04, Ox00, Ox08, 0x00, OxOc, Ox00, 0x10, Ox00, O0x14, 0x00,

S/
Ox00, 0x09, O0x06, Ox00, Ox08, Ox00, Ox07, O0x00, Ox06, Ox00, Ox00, Ox00,
0x00, 0x00, Ox00, Ox04};

const int g_tiny_conv_micro_features_model_data_len = 18208;

You’ll need to replace the contents of the array as well as the value of the constant
g_tiny_conv_micro_features_model_data_len, if it has changed.

To do so, open the tiny_conv.cc file that you downloaded at the end of the previous
section. Copy and paste the contents of the array, but not its definition, into the array
defined in tiny_conv_micro_features_model_data.cc. Make sure you are overwriting the
array’s contents, but not its declaration.

At the bottom of tiny_conv.cc you'll find _content_tiny_conv_tflite_len, a variable
whose value represents the length of the array. Back in
tiny_conv_micro_features_model_data.cc, replace the value of

g_tiny_conv_micro_features_model_data_len with the value of this variable. Then

save the file; you're done updating it.
Updating the Labels

Next, open micro_features/micro_model_settings.cc. This file contains an array of class
labels:

const char* kCategorylLabels[kCategoryCount] = {
"silence",
"unknown",
||yes||’
||n0ll,

};

To adjust this for our new model, we can just swap the “yes” and “no” for “on” and
“off.” We match labels with the model’s output tensor elements by order, so it’s
important to list these in the same order in which they were provided to the training
script.

Here’s the expected code:

const char* kCategorylLabels[kCategoryCount] = {
"silence",
"unknown",
||on|| A
||O_Ff|| ,
b

If you trained a model with more than two labels, just add them all to the list.

We're now done switching over the model. The only remaining step is to update any

output code that uses the labels.
Updating command_responder.cc

The project contains a different device-specific implementation of
command_responder.cc for the Arduino, SparkFun Edge, and STM32F746G. We show how

to update each of these in the following sections.
Arduino

The Arduino command responder, located in arduino/command_responder.cc, lights an
LED for 3 seconds when it hears the word “yes.” Let’s update it to light the LED when it

hears either “on” or “off.” In the file, locate the following if statement:

// If we heard a "yes", switch on an LED and store the time.
if (found_command[0] == 'y') {

last_yes_time = current_time;

digitalWrite(LED_BUILTIN, HIGH);
}

The if statement tests whether the first letter of the command is “y,” for “yes.” If we
change this “y” to an “0,” the LED will be lit for either “on” or “off,” because they both
begin with “0”:

if (found_command[0] == '0") {
last_yes_time = current_time;
digitalWrite(LED_BUILTIN, HIGH);
}

Project Idea

Switching an LED on by saying “off” doesn’t make much sense. Try changing the
code so that you can turn the LED on by saying “on” and off by saying “off.”

You can use the second letter of each command, accessed via found_command[1],
to disambiguate between “on” and “off™:

if (found_command[0] == 'o' && found_command[1] == 'n') {

After you've made these code changes, deploy to your device and give it a try.
SparkFun Edge

The SparkFun Edge command responder, located in
sparkfun_edge/command_responder.cc, lights up a different LED depending on whether it

heard “yes” or “no.” In the file, locate the following if statements:

if (found_command[0] == 'y"') {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_YELLOW);

if (found_command[0] == 'n') {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_RED);

if (found_command[0] == 'u') {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_GREEN);

It’s simple to update these so that “on” and “off” each turn on different LEDs:

if (found_command[0] == 'o' && found_command[1] == 'n') {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_YELLOW);

if (found_command[0] == 'o' && found_command[1] == 'f') {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_RED);

if (found_command[0] == 'u") {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_GREEN);

Because both commands begin with the same letter, we need to look at their second
letters to disambiguate them. Now, the yellow LED will light when “on” is spoken, and
the red will light for “off.”

Project Idea

Try changing the code so that you can turn on an LED continuously by saying
“on,” and turn it off by saying “off.”

When you’re finished making the changes, deploy and run the code using the same

process you followed in “Running the example”.
STM32F746G

The STM32F746G command responder, located in disco_f746ng/command_responder.cc,
displays a different word depending on which command it heard. In the file, locate the
following if statement:

if (*found_command == 'y') {
lcd.Clear (OxFFOF9D58);

lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard yes!", CENTER_MODE);
} else if (*found_command == 'n') {

lcd.Clear (0xFFDB4437);

lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard no :(", CENTER_MODE);

~—

} else if (*found_command == 'u

{

lcd.Clear (OxFFF4B400);

lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard unknown", CENTER_MODE);
} else {

lcd.Clear(OxFF4285F4);

lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard silence", CENTER_MODE);
}

It’s easy to update this so that it responds to “on” and “off,” instead:

if (found_command[0] == 'o' && found_command[1] == 'n') {

lcd.Clear (OxFFOF9D58);

lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard on!", CENTER_MODE);
} else if (found_command[0] == 'o' && found_command[1] == 'f') {

lcd.Clear (OxFFDB4437);

lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard off", CENTER_MODE);
} else if (*found_command == 'u') {

lcd.Clear (OxFFF4B400);

lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard unknown", CENTER_MODE);
} else {

lcd.Clear (OxFF4285F4);

lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard silence", CENTER_MODE);
}

Again, because both commands begin with the same letter, we look at their second
letters to disambiguate them. Now we display the appropriate text for each command.

Project Idea
Try changing the code so that you can display a secret message by saying “on,”
and hide it by saying “off.”

Other Ways to Run the Scripts

If you're not able to use Colab, there are two other recommended ways to train the
model:

¢ In a cloud virtual machine (VM) with a GPU

 On your local workstation

The drivers necessary for GPU-based training are available only on Linux. Without
Linux, training will take around four hours. For this reason, it’s recommended to use
either a cloud VM with a GPU, or a similarly equipped Linux workstation.

Setting up your VM or workstation is beyond the scope of this book. However, we do
have some recommendations. If you're using a VM, you can launch a Google Cloud

Deep Learning VM Image, which is preconfigured with all of the dependencies you'll
need for GPU training. If you're using a Linux workstation, the TensorFlow GPU Docker
image has everything you’ll need.

To train the model, you need to install a nightly build of TensorFlow. To uninstall any
existing version and replace it with one that is confirmed to work, use the following
commands:

pip uninstall -y tensorflow tensorflow_estimator
pip install -q tf-estimator-nightly==1.14.0.dev2019072901 \
tf-nightly-gpu==1.15.0.dev20190729

Next, open a command line and change to a directory you use to store code. Use the
following commands to clone TensorFlow and open a specific commit that is confirmed
to work:

git clone -q https://github.com/tensorflow/tensorflow
git -c advice.detachedHead=false -C tensorflow checkout 17ce384df70

Now you can run the train.py script to train the model. This will train a model to
recognize “yes” and “no,” and output the checkpoint files to /tmp:

python tensorflow/tensorflow/examples/speech_commands/train.py \
--model_architecture=tiny_conv --window_stride=20 --preprocess=micro \
--wanted_words="on,off" --silence_percentage=25 --unknown_percentage=25 \
--quantize=1 --verbosity=INFO --how_many_training_steps="15000,3000" \
--learning_rate="0.001,0.0001" --summaries_dir=/tmp/retrain_logs \
--data_dir=/tmp/speech_dataset --train_dir=/tmp/speech_commands_train

After training, run the following script to freeze the model:

python tensorflow/tensorflow/examples/speech_commands/freeze.py \
--model_architecture=tiny_conv --window_stride=20 --preprocess=micro \
--wanted_words="on,of f" --quantize=1 --output_file=/tmp/tiny_conv.pb \
--start_checkpoint=/tmp/speech_commands_train/tiny_conv.ckpt-18000

Next, convert the model to the TensorFlow Lite format:

toco
--graph_def_file=/tmp/tiny_conv.pb --output_file=/tmp/tiny_conv.tflite \
--input_shapes=1,49,40,1 --input_arrays=Reshape_2 \
--output_arrays='labels_softmax' \
--inference_type=QUANTIZED_UINT8 --mean_values=0 --std_dev_values=9.8077

Finally, convert the file into a C source file that you can compile into an embedded
system:

xxd -i /tmp/tiny_conv.tflite > /tmp/tiny_conv_micro_features_model_data.cc

How the Model Works

Now that you know how to train your own model, let’s explore how it works. So far,
we've treated the machine learning model as a black box—something that we feed
training data into, and eventually it figures out how to predict results. It’s not essential
to understand what’s happening under the hood to use the model, but it can be helpful
for debugging problems, and it’s interesting in its own right. This section gives you

some insights into how the model comes up with its predictions.
Visualizing the Inputs

Figure 8-17 illustrates what is actually being fed into the neural network. This is a 2D
array with a single channel, so we can visualize it as a monochrome image. We’re
working with 16 KHz audio sample data, so how do we get to this representation from
that source? The process is an example of what’s known as “feature generation” in
machine learning, and the goal is to turn an input format that’s more difficult to work
with (in this case 16,000 numerical values representing a second of audio) into
something that’s easier for a machine learning model to make sense of. You might not
have encountered this if you’ve previously studied machine vision use cases for deep
learning, because it happens that images are usually comparatively easy for a network
to take as inputs without much preprocessing; but in a lot of other domains, like audio
and natural language processing, it’s still common to transform the input before
feeding it into a model.

O Show actua image size Q Filter tags ;regulas expressinas suoported)

Arighineas adurtment data
@ FESET data/micro/image B data/spectrogram/image —
tig © Sun Al 11 2019 17:58 24 Pacific DaySght Time 416p 0 Sun Aug 11 2019 17 5624 Pacife Daigh Time
4
Conirast adpsstment ¥ '

Rure

TR 2 ceges ta himer pans

= duta

O train |
O validation

TUGGLL ALe RUNS

‘conterrreran 1073

Figure 8-17. The IMAGES tab of TensorBoard

To develop an intuition for why it’s easier for our model to deal with preprocessed

input, let’s look at the original raw representations of some audio recordings, as
presented in Figures 8-18 through 8-21.

||

|

oL AR s, ‘ y

M6 i “'ﬂ’; e s
|

!

Figure 8-18. Waveform of an audio recording of someone saying “yes”

Figure 8-19. Waveform of an audio recording of someone saying “no”

Figure 8-20. Another waveform of an audio recording of someone saying “yes”

Figure 8-21. Another waveform of an audio recording of someone saying “no”

Without the labels, you’d have trouble distinguishing which pairs of waveforms
represented the same words. Now look at Figures 8-22 through 8-25, which shows the
result of running those same one-second recordings through feature generation.

i

3 08

Figure 8-22. Spectrogram of an audio recording of someone saying “yes”

i
W

el SN

Figure 8-23. Spectrogram of an audio recording of someone saying “no”

i |

Figure 8-24. Another spectrogram of an audio recording of someone saying “yes”

Figure 8-25. Another spectrogram of an audio recording of someone saying “no”

These still aren’t simple to interpret, but hopefully you can see that both of the “yes”
spectrograms have a shape a bit like an inverted L, and the “no” features show a
different shape. We can discern the difference between spectrograms more easily than
raw waveforms, and hopefully it’s intuitive that it is easier for models to do the same.

Another aspect to this is that the generated spectrograms are a lot smaller than the
sample data. Each spectrogram consist of 1,960 numeric values, whereas the waveform
has 16,000. They are a summary of the audio data, which reduces the amount of work
that the neural network must do. It is in fact possible for a specifically designed model,
like DeepMind’s WaveNet, to take raw sample data as its input instead, but the
resulting models tend to involve more computation than the combination of a neural
network fed with hand-engineered features that we’re using, so for resource-

constrained environments like embedded systems, we prefer the approach used here.
How Does Feature Generation Work?

If you've had experience working with audio processing, you might be familiar with
approaches like mel-frequency cepstral coefficients (MFCCs). This is a common
approach to generating the kind of spectrograms we’re working with, but our example
actually uses a related but different approach. It’s the same method used in production
across Google, which means that it has had a lot of practical validation, but it hasn’t
been published in the research literature. Here, we describe roughly how it works, but
for the details the best reference is the code itself.

The process begins by generating a Fourier transform, (also known as a fast Fourier
transform or FFT) for a given time slice—in our case 30 ms of audio data. This FFT is
generated on data that’s been filtered with a Hann window, a bell-shaped function that
reduces the influence of samples at either end of the 30-ms window. A Fourier
transform produces complex numbers with real and imaginary components for every
frequency, but all we care about is the overall energy, so we sum the squares of the two

components and then apply a square root to get a magnitude for each frequency
bucket.

Given N samples, a Fourier transform produces information on N/2 frequencies. 30 ms
at a rate of 16,000 samples per second requires 480 samples, and because our FFT
algorithm needs a power of two input, we pad that with zeros to 512 samples, giving us
256 frequency buckets. This is larger than we need, so to shrink it down we average
adjacent frequencies into 40 downsampled buckets. This downsampling isn’t linear,
though; instead, it uses the human perception-based mel frequency scale to give more
weight to lower frequencies so that there are more buckets available for them, and
higher frequencies are merged into broader buckets. Figure 8-26 presents a diagram of
that process.

30ms

\" T |1(NMW MWMV ‘MMJW Audio Sample Data
/\ Multiply by Hann window

|

30ms
l Fast Fourier Transform
HE EE S EEEES
256 frequency buckets

| Scale down by non-linear
Mel function, so low
X frequencies have more

—p—bgG—:GG 0G0 e .
1 resolution

:
__§ HEN N EEE BN EEERER

40 frequency buckets

Figure 8-26. Diagram of the feature-generation process

One unusual aspect of this feature generator is that it then includes a noise reduction
step. This works by keeping a running average of the value in each frequency bucket
and then subtracting this average from the current value. The idea is that background
noise will be fairly constant over time and show up in particular frequencies. By
subtracting the running average, we have a good chance of removing some of the
effect of that noise and leaving the more rapidly changing speech that we’re interested
in intact. The tricky part is that the feature generator does retain state to track the
running averages for each bucket, so if you're trying to reproduce the same
spectrogram output for a given input—like we try to for testing—you will need to reset
that state to the correct values.

Another part of the noise reduction that initially surprised us was its use of different
coefficients for the odd and even frequency buckets. This results in the distinctive
comb-tooth patterns that you can see in the final generated feature images (Figures 8-
22 through 8-25). Initially we thought this was a bug, but on talking to the original
implementors, we learned that it was actually added deliberately to help performance.
There’s an extended discussion of this approach in section 4.3 of the “Trainable
Frontend for Robust and Far-Field Keyword Spotting”, by Yuxuan Wang et al. which
also includes the background to some of the other design decisions that went into this
feature generation pipeline. We also tested it empirically with our model, and
removing the difference in the treatment of odd and even buckets did noticeably
reduce accuracy in evaluations.

We then use per-channel amplitude normalization (PCAN) auto-gain to boost the signal
based on the running average noise. Finally, we apply a log scale to all the bucket
values, so that relatively loud frequencies don’t drown out quieter portions of the
spectrum—a normalization that helps the subsequent model work with the features.

This process is repeated 49 times in total, with a 30-ms window that’s moved forward
20 ms each time between iterations, to cover the full one second of audio input data.
This produces a 2D array of values that’s 40 elements wide (one for each frequency
bucket) and 49 rows high (one row for each time slice).

If this all sounds very complicated to implement, don’t worry. Because the code that
implements it is all open source, you’re welcome to reuse it in your own audio projects.
Understanding the Model Architecture

The neural network model we're using is defined as a small graph of operations. You

can find the code that defines it at training time in the create_tiny_conv_model()
function, and Figure 8-27 presents a visualization of the result.

This model consists of a convolutional layer, followed by a fully connected layer, and

then a softmax layer at the end. In the figure the convolutional layer is labeled as
“DepthwiseConv2D,” but this is just a quirk of the TensorFlow Lite converter (it turns
out that a convolutional layer with a single-channel input image can also be expressed
as a depthwise convolution). You'll also see a layer labeled “Reshape_1,” but this is just
an input placeholder rather than a real operation.

[Reshapej]

1% 49x40x1

DepthwiseConv2D

weights (1x10x8x8)
bias (8)

1x25x20x8

FullyConnected

weights {4x4000)
bias (4}

1x4

1x4

[Iabels_softmax J

Figure 8-27. Graph visualization of the speech recognition model, courtesy of the Netron tool

Convolutional layers are used for spotting 2D patterns in input images. Each filter is a
rectangular array of values that is moved as a sliding window across the input, and the
output image is a representation of how closely the input and filter match at every
point. You can think of the convolution operation as moving a series of rectangular
filters across the image, with the result at each pixel for each filter corresponding to
how similar the filter is to that patch in the image. In our case, each filter is 8 pixels
wide and 10 high, and there are 8 of them in total. Figures 8-28 through 8-35 show
what they look like.

Figure 8-28. First filter image

Figure 8-29. Second filter image

Figure 8-30. Third filter image

Figure 8-31. Fourth filter image

Figure 8-32. Fifth filter image

Figure 8-33. Sixth filter image

Figure 8-34. Seventh filter image

Figure 8-35. Eighth filter image

You can think of each of these filters as a small patch of the input image. The operation
is trying to match this small patch to parts of the input image that look similar. Where
the image is similar to the patch, a high value will be written into the corresponding
part of the output image. Intuitively, each filter is a pattern that the model has learned
to look for in the training inputs to help it distinguish between the different classes
that it has to deal with.

Because we have eight filters, there will be eight different output images, each
corresponding to the respective filter’s match value as it’s slid across the input. These
filter outputs are actually combined into a single output image with eight channels. We
have set the stride to be two in both directions, which means we slide each filter by
two pixels each time, rather than just by one. Because we’re skipping every other
position, this means our output image is half the size of the input.

You can see in the visualization that the input image is 49 pixels high and 40 wide, with
a single channel, which is what we’d expect given the feature spectrograms we
discussed in the previous section. Because we’re skipping every other pixel in the
horizontal and vertical directions when we slide the convolutional filters across the
input, the output of the convolution is half the size, or 25 pixels high and 20 wide.
There are eight filters though, so the image becomes eight channels deep.

The next operation is a fully connected layer. This is a different kind of pattern
matching process. Instead of sliding a small window across the input, there’s a weight
for every value in the input tensor. The result is an indication of how closely the input
matches the weights, after comparing every value. You can think of this as a global
pattern match, where you have an ideal result that you’d expect to get as an input, and
the output is how close that ideal (held in the weights) is to the actual input. Each class
in our model has its own weights, so there’s an ideal pattern for “silence,” “unknown,”
“yes,” and “no,” and four output values are generated. There are 4,000 values in the

input (25 * 20 * 8), so each class is represented by 4,000 weights.

The last layer is a softmax. This effectively helps increase the difference between the
highest output and its nearest competitors, which doesn’t change their relative order
(whichever class produced the largest value from the fully connected layer will remain
the highest) but does help produce a more useful score. This score is often informally
referred to as a probability, but strictly speaking you can’t reliably use it like that
without more calibration on what the mix of input data actually is. For example, if you
had more words in the detector, it’s likely that an uncommon one like
“antidisestablishmentarianism” would be less likely to show up than something like
“okay,” but depending on the distribution of the training data that might not be
reflected in the raw scores.

As well as these major layers, there are biases that are added on to the results of the
fully connected and convolutional layers to help tweak their outputs, and a rectified
linear unit (ReLU) activation function after each. The ReLU just makes sure that no
output is less than zero, setting any negative results to a minimum of zero. This type of
activation function was one of the breakthroughs that enabled deep learning to
become much more effective: it helps the training process converge much more

quickly than the network would otherwise.
Understanding the Model Output

The end result of the model is the output of the softmax layer. This is four numbers,
one for each of “silence,” “unknown,” “yes,” and “no.” These values are the scores for
each category, and the one with the highest score is the model’s prediction, with the
score representing the confidence the model has in its prediction. As an example, if the
model output is [10, 4, 231, 80], it’s predicting that the third category, “yes,” is the
most likely result with a score of 231. (We’re giving these values in their quantized
forms, between 0 and 255, but because these are just relative scores it’s not usually
necessary to convert them back to their real-valued equivalents.)

One thing that’s tricky is that this result is based on analyzing the entire last second of
audio. If we run it only once per second, we might end up with an utterance that is half

in the previous second, and half in the current. It’s not possible for any model to do a
good job recognizing a word when it hears only a part of it, so in that case the word
spotting would fail. To overcome this, we need to run the model more often than once
per second to give us as high a chance as possible of catching an entire word in our
one-second window. In practice, we’ve found we have to run it 10 or 15 times per
second to achieve good results.

If we're getting all of these results coming in so fast, how do we decide when a score is
high enough? We implement a postprocessing class that averages the scores over time
and triggers a recognition only when we’ve had several high scores for the same word
in a short amount of time. You can see the implementation of this in the

RecognizeCommands class. This is fed the raw results from the model, and then it uses
an accumulation and averaging algorithm to determine whether any of the categories
have crossed the threshold. These postprocessed results are then fed to the

CommandResponder to take an action, depending on the platform’s output capabilities.

The model parameters are all learned from the training data, but the algorithm used
by the command recognizer was manually created, so all of the thresholds—like the
score value required to trigger a recognition, or the time window of positive results
needed—have been hand-picked. This means that there’s no guarantee they are
optimal, so if you're seeing poor results in your own application, you might want to try
tweaking them yourself.

More sophisticated speech recognition models typically use a model that’s able to take
in streaming data (like a recursive neural network) rather than the single-layer
convolutional network we show in this chapter. Having the streaming baked into the
model design means that you don’t need to do the postprocessing to get accurate
results, though it does make the training significantly more complicated.

Training with Your Own Data

It’s not very likely that the product you want to build only needs to respond to “yes”
and “no,” so you’ll want to train a model that is sensitive to the audio you care about.
The training script we used earlier has been designed to let you create custom models
using your own data. The toughest part of the process is usually gathering a large
enough dataset, and ensuring that it’s appropriate for your problem. We discuss
general approaches to data gathering and cleaning in Chapter 16, but this section

covers some of the ways in which you can train your own audio model.
The Speech Commands Dataset

The train.py script downloads the Speech Commands dataset by default. This is an open
source collection of more than 100,000 one-second WAV files, covering a variety of
short words from a lot of different speakers. It’s distributed by Google, but the

utterances have been collected from volunteers around the world. “Visual Wake Words
Dataset” by Aakanksha Chowdhery et al. provides more details.

As well as yes and no, the dataset includes eight other command words (on, off, up,
down, left, right, stop and go), and the 10 digits from zero through nine. There are several
thousand examples of each of these words. There are also other words, like Marvin,
that have a lot fewer examples each. The command words are intended to have enough
utterances that you can train a reasonable model to recognize them. The other words
are intended to be used to populate an unknown category, so a model can spot when a
word it’s not been trained on is uttered, instead of mistaking it for a command.

Because the training script uses this dataset, you can easily train a model on a
combination of some of the command words that have lots of examples. If you update

the - -wanted_words argument with a comma-separated list of words present in the
training set and run training from scratch, you should find you can create a useful
model. The main things to watch out for are that you are restricting yourself to the 10
command words and/or digits, or you won’t have enough examples to train accurately,

and that you adjust the - -silence_percentage and - -unknown_percentage values
down if you have more than two wanted words. These last two arguments control how
many silent and unknown samples are mixed in during training. The silent examples
aren’t actually complete silence; instead, they’re randomly selected one-second
snippets of recorded background noise, pulled from the WAVs in the background folder
of the dataset. The unknown samples are utterances picked from any of the words that

are in the training set, but aren’t in the wanted_words list. This is why we have a
selection of miscellaneous words in the dataset with comparatively few utterances
each; it gives us the chance to recognize that a lot of different words aren’t actually the
ones we’re looking for. This is a particular problem with speech and audio recognition,
because our products often need to operate in environments in which there are a lot of
words and noises we might never have encountered in training. There are many
thousands of different words that could show up just in common English, and to be
useful, a model must be able to ignore those on which it hasn’t been trained. That’s
why the unknown category is so important in practice.

Here is an example of training on different words using the existing dataset:

python tensorflow/examples/speech_commands/train.py \
--model_architecture=tiny_conv --window_stride=20 --preprocess=micro \
--wanted_words="up,down,left,right" --silence_percentage=15 \
- -unknown_percentage=15 --quantize=1

Training on Your Own Dataset

The default for the training script is to use Speech Commands, but if you have your

own dataset, you can use the - -data_dir argument to use it, instead. The directory
you're pointing to should be organized like Speech Commands, with one subfolder per
class that you want to recognize, each containing a set of WAV files. You should also
have a special background subfolder that contains longer WAV recordings of the kind of
background noise you expect your application to encounter. You’ll also need to pick a
recognition duration if the default of one second doesn’t work for your use case, and

specify it through the - -sample_duration_ms argument. Then you can set the classes

that you want to recognize using the - -wanted_words argument. Despite the name,
these classes can be any kind of audio event, from breaking glass to laughter; as long as
you have enough WAVs of each class the training process should work just as it does
for speech.

If you had folders of WAVs named glass and laughter inside a root /tmp/my_wavs
directory, here’s how you could train your own model:

python tensorflow/examples/speech_commands/train.py \
--model_architecture=tiny_conv --window_stride=20 --preprocess=micro \
--data_url= --data_dir=/tmp/my_wavs/ --wanted_words="laughter,glass" \
--silence_percentage=25 --unknown_percentage=25 --quantize=1

The most difficult part often is finding enough data. As an example, it turns out that
the real sound of breaking glass is very different from the sound effects we’re used to
hearing in movies. This means that you need to either find existing recordings, or
arrange to record some yourself. Because the training process can require many
thousand examples of each class, and they need to cover all of the variations that are
likely to occur in a real application, this data-gathering process can be frustrating,
expensive, and time-consuming.

A common solution for this with image models is to use transfer learning, where you
take a model that’s been trained on a large public dataset and fine-tune its weights on
different classes using other data. This approach doesn’t require nearly as many
examples in the secondary dataset as you would need if you were training from scratch
with it, and it often produces high-accuracy results. Unfortunately transfer learning

for speech models is still being researched, but watch this space.
How to Record Your Own Audio

If you need to capture audio of words you care about, it’s a lot easier if you have a tool
that prompts speakers and splits the result into labeled files. The Speech Commands
dataset was recorded using the Open Speech Recording app, a hosted app that lets
users record utterances through most common web browsers. As a user, you’ll see a

web page that first asks you to agree to being recorded, with a default Google
agreement, that’s easily changeable. After you have agreed, you're sent to a new page
that has recording controls. When you press the record button, words will appear as
prompts, and the audio you say for each word is recorded. When all of the requested
words have been recorded, you’ll be asked to submit the results to the server.

There are instructions in the README for running it on Google Cloud, but it’s a Flask
app written in Python, so you should be able to port it to other environments. If you
are using Google Cloud, you’ll need to update the app.yaml file to point to your own
storage bucket and supply your own random session key (this is used just for hashing,
so it can be any value). To customize which words are recorded, you’ll need to edit a
couple of arrays in the client-side JavaScript: one for the frequently repeated main
words, and one for the secondary fillers.

The recorded files are stored as OGG compressed audio in the Google Cloud bucket, but
training requires WAVs, so you need to convert them. It’s also likely that some of your
recordings contain errors, like people forgetting to say the word or saying it too
quietly, so it’s helpful to automatically filter out those mistakes where possible. If you
have set up your bucket name in a BUCKET_NAME variable, you can begin by copying
your files to a local machine by using these bash commands:

mkdir oggs
gsutil -m cp gs://${BUCKET_NAME}/* oggs/

One nice property of the compressed OGG format is that quiet or silent audio results in
very small files, so a good first step is removing any that are particularly tiny, like so:

find ${BASEDIR}/oggs -iname "*.ogg" -size -5k -delete

The easiest way we’ve found to convert OGGs to WAVs is using the FFmpeg project,
which offers a command-line tool. Here are a set of commands that can convert an
entire directory of OGG files into the format we need:

mkdir -p ${BASEDIR}/wavs
find ${BASEDIR}/oggs -iname "*.ogg" -print® | \
xargs -0 basename -s .ogg | \
xargs -I {} ffmpeg -1 ${BASEDIR}/oggs/{}.ogg -ar 16000 ${BASEDIR}/wavs/{}.wav

The Open Speech Recording application records more than one second for each word.
This ensures that the user’s utterance is captured even if their timing is a bit earlier or
later than we expect. The training requires one-second recordings, and it works best if

the word is centered in the middle of each recording. We've created a small open
source utility to look at the volume of each recording over time to try to get the
centering right and trim the audio so that it is just one second. Enter the following
commands in your terminal to use it:

git clone https://github.com/petewarden/extract_loudest_section \
/tmp/extract_loudest_section_github

pushd /tmp/extract_loudest_section_github

make

popd

mkdir -p ${BASEDIR}/trimmed_wavs

/tmp/extract_loudest_section/gen/bin/extract_loudest_section \
${BASEDIR}' /wavs/*.wav' ${BASEDIR}/trimmed_wavs/

This will give you a folder full of files in the correct format and of the required length,
but the training process needs the WAVs organized into subfolders by labels. The label
is encoded in the name of each file, so we have an example Python script that uses

those filenames to sort them into the appropriate folders.
Data Augmentation

Data augmentation is another method to effectively enlarge your training data and
improve accuracy. In practice, this means taking recorded utterances and applying
audio transformations to them before they’re used for training. These transforms can
include altering the volume, mixing in background noise, or trimming the start or end
of the clips slightly. The training script applies all of these transformations by default,
but you can adjust how often they’re used and how strongly they’re applied using
command-line arguments.

Warning

This kind of augmentation does help make a small dataset go further, but it can’t work
miracles. If you apply transformations too strongly, you can end up distorting the
training inputs so much that they’d no longer be recognizable by a person, which can
cause the model to mistakenly start triggering on sounds that bear no resemblance to
the intended categories.

Here’s how you can use some of those command-line arguments to control the
augmentation:

python tensorflow/examples/speech_commands/train.py \
--model_architecture=tiny_conv --window_stride=20 --preprocess=micro \
--wanted_words="yes,no" --silence_percentage=25 --unknown_percentage=25 \
--quantize=1 --background_volume=0.2 --background_frequency=0.7 \
--time_shift_ms=200

Model Architectures

The “yes"/"no” model we trained earlier was designed to be small and fast. It’s only 18
KB, and requires 400,000 arithmetic operations to execute once. To fit within those
constraints, it trades off accuracy. If you're designing your own application, you might
want to make different trade-offs, especially if you're trying to recognize more than
two categories. You can specify your own model architectures by modifying the

models.py file and then using the - -model_architecture argument. You'll need to
write your own model creation function, like create_tiny_conv_model® but with the
layers you want in your model specified instead. Then, you can update the if

statement in create_model0 to give your architecture a name, and call your new
creation function when it’s passed in as the architecture argument on the command
line. You can look at some of the existing creation functions for inspiration, including
how to handle dropout. If you have added your own model code, here’s how you can
call it:

python tensorflow/examples/speech_commands/train.py \
--model_architecture=my_model_name --window_stride=20 --preprocess=micro \
--wanted_words="yes,no" --silence_percentage=25 \--unknown_percentage=25 \
--quantize=1

Wrapping Up

Recognizing spoken words with a small memory footprint is a tricky real-world
problem, and tackling it requires us to work with many more components than we
need to for a simpler example. Most production machine learning applications require
thinking about issues like feature generation, model architecture choices, data
augmentation, finding the best-suited training data, and how to turn the results of a
model into actionable information.

There are a lot of trade-offs to consider depending on the actual requirements of your
product, and hopefully you now understand some of the options you have as you try to
move from training into deployment.

In the next chapter, we explore how to run inference with a different type of data that,
although seemingly more complex than audio, is surprisingly easy to work with.

Chapter 9. Person Detection: Building an Application

If you asked people which of their senses has the biggest impact on their day-to-day
lives, many would answer vision.’

Vision is a profoundly useful sense. It allows countless natural organisms to navigate
their environments, find sources of food, and avoid running into danger. As humans,
vision helps us recognize our friends, interpret symbolic information, and understand
the world around us—without having to get too close.

Until quite recently, the power of vision was not available to machines. Most of our
robots merely poked around the world with touch and proximity sensors, gleaning
knowledge of its structure from a series of collisions. At a glance, a person can describe
to you the shape, properties, and purpose of an object, without having to interact with
it at all. A robot would have no such luck. Visual information was just too messy,
unstructured, and difficult to interpret.

With the evolution of convolutional neural networks, it’s become easy to build
programs that can see. Inspired by the structure of the mammalian visual cortex, CNNs
learn to make sense of our visual world, filtering an overwhelmingly complex input
into a map of known patterns and shapes. The precise combination of these pieces can
tell us the entities that are present in a given digital image.

Today, vision models are used for many different tasks. Autonomous vehicles use
vision to spot hazards on the road. Factory robots use cameras to catch defective parts.
Researchers have trained models that can diagnose disease from medical images. And
there’s a fair chance your smartphone spots faces in photographs, to make sure they’re
perfectly in focus.

Machines with sight could help transform our homes and cities, automating chores
that were previously out of reach. But vision is an intimate sense. Most of us don’t like
the thought of our actions being recorded, or our lives being streamed to the cloud,
which is traditionally where ML inference is done.

Imagine a household appliance that can “see” with a built-in camera. It could be a
security system that can spot intruders, a stove that knows it’s been left unattended, or
a television that shuts off when there’s no one in the room. In each of these cases,
privacy is critical. Even if no human being ever watches the footage, the security
implications of internet-connected cameras embedded in always-on devices make
them unappealing to most consumers.

But all this changes with TinyML. Picture a smart stove that shuts off its burners if it’s
left unattended for too long. If it can “see” there’s a cook nearby using a tiny
microcontroller, without any connection to the internet, we get all of the benefits of a

smart device without any of the privacy trade-offs.

Even more, tiny devices with vision can go where no sight-enabled machines have
dared to go before. With its miniscule power consumption, a microcontroller-based
vision system could run for months or years on a tiny battery. Planted in the jungle, or
a coral reef, these devices could keep count of endangered animals without the need to
be online.

The same technology makes it possible to build a vision sensor as a self-contained
electronic component. The sensor outputs a 1 if a certain object is in view and a 0 if it
is not, but it never shares any of the image data collected by its camera. This type of
sensor could be embedded in all kinds of products—from smart home systems to
personal vehicles. Your bicycle could flash a light when a car is behind you. Your air
conditioner could know when someone’s home. And because the image data never
leaves the self-contained sensor, it’s guaranteed secure, even if the product is
connected to the internet.

The application we explore in this chapter uses a pretrained person-detection model,
running on a microcontroller with a camera attached, to know when a human being is
in view. In Chapter 10, you will learn how this model works, and how to train your own
models that detect whatever you want.

After reading this chapter, you’ll understand how to work with camera data on a
microcontroller and how to run inference with a vision model and interpret the

output. You might be surprised how easy it actually is!
What We’re Building

We're going to build an embedded application that uses a model to classify images
captured by a camera. The model is trained to recognize when a person is present in
the camera input. This means that our application will be able to detect the presence
or absence of a person and produce an output accordingly.

This is, essentially, the smart vision sensor we described a little earlier. When a person
is detected, our example code will light an LED—but you can extend it to control all

sorts of projects.
Note

As with the application we worked on in Chapter 7, you can find the source code for
this application in the TensorFlow GitHub repository.

Like in the previous chapters, we first walk through the tests and the application code,
followed by the logic that makes the sample work on various devices.

We provide instructions for deploying the application to the following microcontroller

platforms:

¢ Arduino Nano 33 BLE Sense

e SparkFun Edge

Note

TensorFlow Lite regularly adds support for new devices, so if the device you'd like to
use isn't listed here, it’s worth checking the example’s README.md. You can also check
there for updated deployment instructions if you run into trouble following these
steps.

Unlike with the previous chapters, you’ll need some additional hardware to run this
application. Because neither of these boards have an integrated camera, we
recommend buying a camera module. You’ll find this information in each device’s
section.

Camera Modules

Camera modules are electronic components based on image sensors, which capture
image data digitally. The image sensor is combined with a lens and control
electronics and the module is manufactured in a form that is easy to attach to an
electronics project.

Let’s begin by walking through our application’s structure. It’s a lot simpler than you

might expect.
Application Architecture

By now, we’ve established that embedded machine learning applications do the
following sequence of things:

1. Obtain an input.
2. Preprocess the input to extract features suitable to feed into a model.

3. Run inference on the processed input.

1N

. Postprocess the model’s output to make sense of it.

5. Use the resulting information to make things happen.

In Chapter 7 we saw this applied to wake-word detection, which uses audio as its input.
This time around, our input will be image data. This might sound more complicated,

but it’s actually much simpler to work with than audio.

Image data is commonly represented as an array of pixel values. We’ll be obtaining our
image data from embedded camera modules, which all provide data in this format. Our
model also expects its input to be an array of pixel values. Because of this, we won’t
have to do much preprocessing before feeding data into our model.

Given that we don’t have to do much preprocessing, our app will be fairly
straightforward. It takes a snapshot of data from a camera, feeds it into a model, and
determines which output class was detected. It then displays the result in some simple
manner.

Before we move on, let’s learn a little more about the model we’ll be using.
Introducing Our Model

Back in Chapter 7, we learned that convolutional neural networks are neural networks
designed to work well with multidimensional tensors, for which information is
contained in the relationships between groups of adjacent values. They're particularly
well suited to working with image data.

Our person-detection model is a convolutional neural network trained on the Visual
Wake Words dataset. This dataset consists of 115,000 images, each one labeled with
whether or not it contains a person.

The model is 250 KB, which is significantly larger than our speech model. As well as
occupying more memory, this additional size means that it will take a lot longer to run
a single inference.

The model accepts 96 x 96-pixel grayscale images as input. Each image is provided as a

3D tensor with shape (96, 96, 1), where the final dimension contains an 8-bit value
that represents a single pixel. The value specifies the shade of the pixel, ranging from 0
(fully black) to 255 (fully white).

Our camera modules can return images in a variety of resolutions, so we need to
ensure they are resized to 96 x 96 pixels. We also need to convert full-color images to
grayscale so that they work with the model.

You might think 96 x 96 pixels sounds like a tiny resolution, but it will be more than
sufficient to allow us to detect a person in each image. Models that work with images
often accept surprisingly small resolutions. Increasing a model’s input size gives
diminishing returns, and the complexity of the network increases greatly as the size of
the input scales. For this reason, even state-of-the-art image classification models
commonly work with a maximum of 320 x 320 pixels.

The model outputs two probabilities: one indicating the probability that a person was
present in the input, and another indicating the probability that there was nobody
there. The probabilities range from 0 to 255.

Our person detection model uses the MobileNet architecture, which is a well-known and
battle-tested architecture designed for image classification on devices like mobile
phones. In Chapter 10, you will learn how this model was adapted to fit on
microcontrollers and how you can train your own. For now, let’s continue exploring

how our application works.
All the Moving Parts

Figure 9-1 shows the structure of our person detection application.

Main loop

Camera module Image provider
Captures image data

a =% | from the camera

TF Lite interpreter Model

Runs the model Trained to classify
1> presence or absence
of a person

Device LEDs Detection responder
Takes action based on

Q T | whethera person was
detected

Figure 9-1. The components of our person detection application

As we mentioned previously, this is a lot simpler than the wake-word application,
because we can pass image data directly into the model—there’s no preprocessing
required.

Another aspect that keeps things simple is that we don’t average the model’s output.
Our wake-word model ran multiple times per second, so we had to average its output
to get a stable result. Our person detection model is much larger, and it takes a lot
longer to run inference. This means that there’s no need to average its output.

The code has five main parts:

Main loop

Like the other examples, our application runs in a continuous loop. However,
because our model is a lot larger and more complex, it will take longer to run
inference. Depending on the device, we can expect one inference every few seconds
rather than several inferences per second.

Image provider

This component captures image data from the camera and writes it to the input
tensor. The methods for capturing images vary from device to device, so this
component can be overridden and customized.

TensorFlow Lite interpreter
The interpreter runs the TensorFlow Lite model, transforming the input image into
a set of probabilities.

Model

The model is included as a data array and run by the interpreter. At 250 KB, this
model is unreasonably large to commit to the TensorFlow GitHub repository.
Because of this, it is downloaded by the Makefile when the project is built. If you
want to take a look, you can download it yourself at
tf_lite_micro_person_data_grayscale.zip.

Detection responder

The detection responder takes the probabilities output by the model and uses the
device’s output capabilities to display them. We can override it for different device
types. In our example code it will light an LED, but you can extend it to do pretty
much anything.

To get a sense for how these parts fit together, we’ll take a look at their tests.
Walking Through the Tests

This application is nice and simple, since there are only a few tests to walk through.
You can find them all in the GitHub repository:

person_detection_test.cc

Shows how to run inference on an array representing a single image

image_provider_test.cc

Shows how to use the image provider to capture an image

detection_responder_test.cc

Shows how to use the detection responder to output the results of detection

Let’s begin by exploring person_detection_test.cc to see how inference is run on image
data. Because this is the third example we’ve walked through, this code should feel
pretty familiar. You’re well on your way to being an embedded ML developer!

The Basic Flow

First up, person_detection_test.cc. We begin by pulling in the ops that our model is going
to need:

namespace tflite {

namespace ops {

namespace micro {

TfLiteRegistration* Register DEPTHWISE_CONV_2D();
TfLiteRegistration* Register_ CONV_2D();
TfLiteRegistration* Register_AVERAGE_POOL_2D();

} // namespace micro

} // namespace ops

} // namespace tflite

Next, we define a tensor arena that is appropriately sized for the model. As usual, this
number was determined by trial and error:

const int tensor_arena_size = 70 * 1024;
uint8_t tensor_arena[tensor_arena_size];

We then do the typical setup work, to get the interpreter ready to go, which includes
registering the necessary ops using the MicroMutableOpResolver:

// Set up logging.
tflite: :MicroErrorReporter micro_error_reporter;
tflite: :ErrorReporter* error_reporter = µ_error_reporter;

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
const tflite::Model* model = ::tflite::GetModel(g_person_detect_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.\n",
model->version(), TFLITE_SCHEMA_VERSION);

// Pull in only the operation implementations we need.
tflite: :MicroMutableOpResolver micro_mutable_op_resolver;
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(tflite: :BuiltinOperator_CONV_2D,
tflite::ops::micro::Register_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_AVERAGE_POOL_2D,
tflite::ops::micro::Register_AVERAGE_POOL_2D());

// Build an interpreter to run the model with.

tflite: :MicrolInterpreter interpreter(model, micro_mutable_op_resolver,
tensor_arena, tensor_arena_size,
error_reporter);

interpreter.AllocateTensors();

Our next step is to inspect the input tensor. We check whether it has the expected
number of dimensions and whether its dimensions are sized appropriately:

// Get information about the memory area to use for the model's input.
TfLiteTensor* input = interpreter.input(0);

// Make sure the input has the properties we expect.
TF_LITE_MICRO_EXPECT_NE(nullptr, input);
TF_LITE_MICRO_EXPECT_EQ(4, input->dims->size);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(kNumRows, input->dims->data[1]);
TF_LITE_MICRO_EXPECT_EQ(kNumCols, input->dims->data[2]);
TF_LITE_MICRO_EXPECT_EQ(kNumChannels, input->dims->data[3]);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteUInt8, input->type);

From this, we can see that the input is technically a 5D tensor. The first dimension is
just a wrapper containing a single element. The subsequent two dimensions represent
the rows and columns of the image’s pixels. The final dimension holds the number of
color channels used to represent each pixel.

The constants that tell us the expected dimensions, kNumRows, kNumCols, and
kNumChannels, are defined in model_settings.h. They look like this:

constexpr int kNumCols = 96;
constexpr int kNumRows = 96;
constexpr int kNumChannels = 1;

As you can see, the model is expected to accept a 96 x 96-pixel bitmap. The image will
be grayscale, with one color channel for each pixel.

Next in the code, we copy a test image into the input tensor using a straightforward
for loop:

// Copy an image with a person into the memory area used for the input.
const uint8_t* person_data = g_person_data;
for (int 1 = 0; 1 < input->bytes; ++1) {

input->data.uint8[i1] = person_data[i];

The variable that stores image data, g_person_data, is defined by person_image_data.h.
To avoid adding more large files to the repository, the data itself is downloaded along
with the model, as part of tf_lite_micro_person_data_grayscale.zip, when the tests are first
run.

After we've populated the input tensor, we run inference. It’s just as simple as ever:

// Run the model on this input and make sure it succeeds.

TfLiteStatus invoke_status = interpreter.Invoke();

if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed\n");

}
TF_LITE_MICRO_EXPECT_EQ(KTfLiteOk, invoke_status);
We now check the output tensor to make sure it’s the expected size and shape:

TfLiteTensor* output = interpreter.output(0);
TF_LITE_MICRO_EXPECT_EQ(4, output->dims->size);
TF_LITE_MICRO_EXPECT_EQ(1, output->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(1, output->dims->data[1]);
TF_LITE_MICRO_EXPECT_EQ(1, output->dims->data[2]);
TF_LITE_MICRO_EXPECT_EQ(kCategoryCount, output->dims->data[3]);
TF_LITE_MICRO_EXPECT EQ(kTfLiteUInt8, output->type);

The model’s output has four dimensions. The first three are just wrappers around the
fourth, which contains one element for each category the model was trained on.

The total number of categories is available as a constant, kCategoryCount, which
resides in model_settings.h along with some other helpful values:

constexpr int kCategoryCount = 3;

constexpr int kPersonIndex = 1;

constexpr int kNotAPersonIndex = 2;

extern const char* kCategorylLabels[kCategoryCount];

As kCategoryCount shows, there are three categories in the output. The first happens
to be an unused category, which we can ignore. The “person” category comes second,

as we can see from its index, stored in the constant kPersonIndex. The “not a person”
category comes third, with its index shown by kNotAPersonIndex.

There’s also an array of category labels, kCategoryLabels, which is implemented in
model_settings.cc:

const char* kCategorylLabels[kCategoryCount] = {
"unused",
"person",
"notperson”,

b

Extra Dimensions

The output tensor’s structure has some redundancy. Why does it have four
dimensions when it needs to hold only three values, one for each category
probability? And why does it have three categories when we’re only attempting to
discriminate between “person” and “not a person”?

You'll find that models often have slightly funky input and output shapes, or extra
categories that don’t seem to do much. Sometimes, this is a characteristic of their
architecture; other times it’s just an implementation detail. Whatever the reason,
we don’t need to worry about it. Because the data content of tensors is stored as a
flat in-memory array, it doesn’t really make much difference whether it is
wrapped in unnecessary extra dimensions. We can still access a given element
easily via its index.

The next chunk of code logs the “person” and “no person” scores, and asserts that the
“person” score is greater—as it should be given that we passed in an image of a person:

uint8_t person_score = output->data.uint8[kPersonIndex];
uint8_t no_person_score = output->data.uint8[kNotAPersonIndex];
error_reporter->Report(
"person data. person score: %d, no person score: %d\n", person_score,
no_person_score);
TF_LITE_MICRO_EXPECT_GT(person_score, no_person_score);

Since the only data content of the output tensor is the three uint8 values representing
class scores, with the first one being unused, we can access the scores directly by using

output->data.uint8[kPersonIndex] and output->data.uint8[kNotAPersonIndex].

As uint8 types, they have a minimum value of 0 and a maximum value of 255.
Note

If the “person” and “no person” scores are similar, it can signify that the model isn’t
very confident of its prediction. In this case, you might choose to consider the result
inconclusive.

Next, we test for an image without a person, held by g_no_person_data:

const uint8_t* no_person_data = g_no_person_data;

for (int 1 = 0; 1 < input->bytes; ++i) {
input->data.uint8[i] = no_person_data[i];

}

After inference has run, we then assert that the “not a person” score is higher:

person_score = output->data.uint8[kPersonIndex];
no_person_score = output->data.uint8[kNotAPersonIndex];
error_reporter->Report(
"no person data. person score: %d, no person score: %d\n", person_score,
no_person_score);
TF_LITE_MICRO_EXPECT_GT(no_person_score, person_score);

As you can observe, there’s nothing fancy going on here. We may be feeding in images
instead of scalars or spectrograms, but the process of inference is similar to what we’ve
seen before.

Running the test is similarly straightforward. Just issue the following command from
the root of the TensorFlow repository:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_person_detection_test

The first time the test is run, the model and image data will be downloaded. If you
want to take a look at the downloaded files, you can find them in
tensorflow/lite/micro/tools/make/downloads/person_model_grayscale.

Next up, we check out the interface for the image provider.
The Image Provider

The image provider is responsible for grabbing data from the camera and returning it
in a format suitable for writing to the model’s input tensor. The file image_provider.h
defines its interface:

TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width,
int image_height, int channels, uint8_t* image_data);

Because its actual implementation is platform-specific, there’s a reference
implementation in person_detection/image_provider.cc that returns dummy data.

The test in image_provider_test.cc calls this reference implementation to show how it is
used. Our first order of business is to create an array to hold the image data. This
happens in the following line:

uint8_t image_data[kMaxImageSize];

The constant kMaxImageSize comes from our old friend, model_settings.h.

After we've set up this array, we can call the GetImage() function to capture an image
from the camera:

TfLiteStatus get_status =

GetImage(error_reporter, kNumCols, kNumRows, kNumChannels, image_data);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, get_status);
TF_LITE_MICRO_EXPECT_NE(image_data, nullptr);

We call it with an ErrorReporter instance; the number of columns, rows, and channels
that we want; and a pointer to our image_data array. The function will write the image
data into this array. We can check the function’s return value to determine whether
the capture process was successful; it will be set to kTfLiteError if there is a problem,
or kTfLiteOk otherwise.

Finally, the test walks through the returned data to show that all of the memory
locations are readable. Even though the image technically has rows, columns, and
channels, in practice the data is flattened into a 1D array:

uint32_t total = 0;

for (int 1 = 0; 1 < kMaxImageSize; ++1) {
total += image_data[i];

}

To run this test, use the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_image_provider_test

We’ll examine the device-specific implementations of image_provider.cc later in the
chapter; for now, let’s take a look at the detection responder’s interface.
The Detection Responder

Our final test shows how the detection responder is used. This is the code responsible
for communicating the results of inference. Its interface is defined in
detection_responder.h, and the test is in detection_responder_test.cc.

The interface is pretty simple:

voild RespondToDetection(tflite::ErrorReporter* error_reporter,
uint8_t person_score, uint8_t no_person_score);

We just call it with the scores for both the “person” and “not a person” categories, and
it will decide what to do from there.

The reference implementation in detection_responder.cc just logs these values. The test
in detection_responder_test.cc calls the function a couple of times:

RespondToDetection(error_reporter, 100, 200);
RespondToDetection(error_reporter, 200, 100);

To run the test and see the output, use the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_detection_responder_test

We’ve explored all of the tests and the interfaces they exercise. Let’s now walk through
the program itself.
Detecting People

The application’s core functions reside in main_functions.cc. They’re short and sweet,
and we’ve seen much of their logic in the tests.

First, we pull in all of the ops that our model needs:

namespace tflite {

namespace ops {

namespace micro {

TfLiteRegistration* Register_ DEPTHWISE_CONV_2D();
TfLiteRegistration* Register_CONV_2D();
TfLiteRegistration* Register_AVERAGE_POOL_2D();

} // namespace micro

} // namespace ops

} // namespace tflite

Next, we declare a bunch of variables to hold the important moving parts:

tflite::ErrorReporter* g_error_reporter = nullptr;
const tflite::Model* g _model = nullptr;

tflite: :MicroInterpreter* g_interpreter = nullptr;
TfLiteTensor* g_input = nullptr;

After that, we allocate some working memory for tensor operations:

constexpr int g_tensor_arena_size = 70 * 1024;
static uint8_t tensor_arena[kTensorArenaSize];

In the setup() function, which is run before anything else happens, we create an error
reporter, load our model, set up an interpreter instance, and grab a reference to the
model’s input tensor:

void setup() {
// Set up logging.
static tflite::MicroErrorReporter micro_error_reporter;
g_error_reporter = µ_error_reporter;

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
g_model = tflite::GetModel(g_person_detect_model_data);
if (g_model->version() != TFLITE_SCHEMA_VERSION) {
g_error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.",
g_model->version(), TFLITE_SCHEMA_VERSION);
return;

}

// Pull in only the operation implementations we need.
static tflite::MicroMutableOpResolver micro_mutable_op_resolver;
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(tflite::BuiltinOperator_CONV_2D,
tflite::ops::micro::Register_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_AVERAGE_POOL_2D,
tflite::ops::micro::Register_AVERAGE_POOL_2D());

// Build an interpreter to run the model with.

static tflite::Microlnterpreter static_interpreter(
model, micro_mutable_op_resolver, tensor_arena, kTensorArenaSize,
error_reporter);

interpreter = &static_interpreter;

// Allocate memory from the tensor_arena for the model's tensors.

TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
error_reporter->Report("AllocateTensors() failed");
return;

}

// Get information about the memory area to use for the model's input.
input = interpreter->input(0);

The next part of the code is called continually in the program’s main loop. It first grabs
an image using the image provider, passing a reference to the input tensor so that the
image is written directly there:

void loop() {
// Get image from provider.
if (kTfLiteOk !'= GetImage(g_error_reporter, kNumCols, kNumRows, kNumChannels,
g_input->data.uint8)) {
g_error_reporter->Report("Image capture failed.");

}

It then runs inference, obtains the output tensor, and reads the “person” and “no
person” scores from it. These scores are passed into the detection responder’s

RespondToDetection() function:

// Run the model on this input and make sure it succeeds.

if (kTfLiteOk != g_interpreter->Invoke()) {
g_error_reporter->Report("Invoke failed.");

}

TfLiteTensor* output = g_1interpreter->output(0);

// Process the inference results.

uint8_t person_score = output->data.uint8[kPersonIndex];

uint8_t no_person_score = output->data.uint8[kNotAPersonIndex];
RespondToDetection(g_error_reporter, person_score, no_person_score);

After RespondToDetection() has finished outputting the results, the loop() function
will return, ready to be called again by the program’s main loop.

The loop itself is defined within the program’s main() function, which is located in

main.cc. It calls the setup() function once and then calls the loop() function
repeatedly and indefinitely:

int main(int argc, char* argv[]) {

setup();
while (true) {
loop();

And that’s the entire program! This example is great because it shows that working
with sophisticated machine learning models can be surprisingly simple. The model
contains all of the complexity, and we just need to feed it data.

Before we move along, you can run the program locally to give it a try. The reference
implementation of the image provider just returns dummy data, so you won’t get
meaningful recognition results, but you’ll at least see the code at work.

First, use this command to build the program:

make -f tensorflow/lite/micro/tools/make/Makefile person_detection

Once the build completes, you can run the example with the following command:

tensorflow/lite/micro/tools/make/gen/osx_x86_64/bin/ \
person_detection

You'll see the program’s output scroll past until you press Ctrl-C to terminate it:

person score:129 no person score 202
person score:129 no person score 202
person score:129 no person score 202
person score:129 no person score 202
person score:129 no person score 202
person score:129 no person score 202

In the next section, we walk through the device-specific code that will capture camera
images and output the results on each platform. We also show how to deploy and run

this code.
Deploying to Microcontrollers

In this section, we deploy our code to two familiar devices:

e Arduino Nano 33 BLE Sense

e SparkFun Edge

There’s one big difference this time around: because neither of these devices has a

built-in camera, we recommend that you buy a camera module for whichever device
you're using. Each device has its own implementation of image_provider.cc, which
interfaces with the camera module to capture images. There’s also device-specific
output code in detection_responder.cc.

This nice and simple, so it will make an excellent template to start from when you're
creating your own vision-based ML applications.

Let’s begin by exploring the Arduino implementation.
Arduino

As an Arduino board, the Arduino Nano 33 BLE Sense has access to a massive ecosystem
of compatible third-party hardware and libraries. We’re using a third-party camera
module designed to work with Arduino, along with a couple of Arduino libraries that

will interface with our camera module and make sense of the data it outputs.
Which camera module to buy

This example uses the Arducam Mini 2MP Plus camera module. It’s easy to connect to
the Arduino Nano 33 BLE Sense, and it can be powered by the Arduino board’s power
supply. It has a large lens and is capable of capturing high-quality 2-megapixel images
—though we’ll be using its on-board image rescaling feature to obtain a smaller
resolution. It’s not particularly power-efficient, but its high image quality makes it

ideal for building image capture applications, like for recording wildlife.
Capturing images on arduino

We connect the Arducam module to the Arduino board via a number of pins. To obtain
image data, we send a command from the Arduino board to the Arducam that instructs
it to capture an image. The Arducam will do that, storing the image in its internal data
buffer. We then send further commands that allow us to read the image data from the
Arducam’s internal buffer and store it in the Arduino’s memory. To do all of this, we
use the official Arducam library.

The Arducam camera module has a 2-megapixel image sensor, with a resolution of
1920 x 1080. Our person detection model has an input size of only 96 x 96, so we don’t
need all of that data. In fact, the Arduino itself doesn’t have enough memory to hold a
2-megapixel image, which would be several megabytes in size.

Fortunately, the Arducam hardware has the ability to resize its output to a much
smaller resolution, 160 x 120 pixels. We can easily crop this down to 96 x 96 in our code,
by keeping only the central 96 x 96 pixels. However, to complicate matters, the
Arducam’s resized output is encoded using JPEG, a common compression format for
images. Our model requires an array of pixels, not a JPEG-encoded image, which means
that we need to decode the Arducam’s output before we use it. We can do this using an

open source library.

Our final task is to convert the Arducam’s color image output into grayscale, which is
what our person-detection model expects. We'll write the grayscale data into our
model’s input tensor.

The image provider is implemented in arduino/image_provider.cc. We won’t explain its
every detail, because the code is specific to the Arducam camera module. Instead, let’s
step through what happens at a high level.

The GetImage() function is the image provider’s interface with the world. It’s called in
our application’s main loop to obtain a frame of image data. The first time it is called,

we need to initialize the camera. This happens with a call to the InitCamera()
function, as follows:

static bool g_1is_camera_initialized = false;
if (!g_1is_camera_initialized) {
TfLiteStatus init_status = InitCamera(error_reporter);
if (init_status != kTfLiteOk) {
error_reporter->Report("InitCamera failed");
return init_status;
}

g_1s_camera_initialized = true;

}

The InitCamera() function is defined further up in image_provider.cc. We won’t walk
through it here because it’s very device-specific, and if you want to use it in your own
code you can just copy and paste it. It configures the Arduino’s hardware to
communicate with the Arducam and then confirms that communication is working.
Finally, it instructs the Arducam to output 160 x 120-pixel JPEG images.

The next function called by GetImage() is PerformCapture():
TfLiteStatus capture_status = PerformCapture(error_reporter);

We won'’t go into the details of this one, either. All it does is send a command to the
camera module, instructing it to capture an image and store the image data in its
internal buffer. It then waits for confirmation that an image was captured. At this
point, there’s image data waiting in the Arducam’s internal buffer, but there isn’t yet
any image data on the Arduino itself.

The next function we call is ReadData():

TfLiteStatus read_data_status = ReadData(error_reporter);

The ReadData() function uses more commands to fetch the image data from the

Arducam. After the function has run, the global variable jpeg_buffer will be filled
with the JPEG-encoded image data retrieved from the camera.

When we have the JPEG-encoded image, our next step is to decode it into raw image
data. This happens in the DecodeAndProcessImage() function:

TfLiteStatus decode_status = DecodeAndProcessImage(
error_reporter, image_width, image_height, image_data);

The function uses a library named JPEGDecoder to decode the JPEG data and write it
directly into the model’s input tensor. In the process, it crops the image, discarding
some of the 160 x 120 data so that all that remains are 96 x 96 pixels, roughly at the
center of the image. It also reduces the image’s 16-bit color representation down to 8-
bit grayscale.

After the image has been captured and stored in the input tensor, we’re ready to run
inference. Next, we show how the model’s output is displayed
Responding to detections on Arduino

The Arduino Nano 33 BLE Sense has a built-in RGB LED, which is a single component
that contains distinct red, green, and blue LEDs that you can control separately. The
detection responder’s implementation flashes the blue LED every time inference is run.
When a person is detected, it lights the green LED; when a person is not detected, it
lights the red LED.

The implementation is in arduino/detection_responder.cc. Let’s take a quick walk
through.

The RespondToDetection() function accepts two scores, one for the “person”
category and the other for “not a person.” The first time it is called, it sets up the blue,
green, and yellow LEDs for output:

voild RespondToDetection(tflite::ErrorReporter* error_reporter,
uint8_t person_score, uint8_t no_person_score) {
static bool is_initialized = false;
if (!is_initialized) {
pinMode(led_green, OUTPUT);
pinMode(led_blue, OUTPUT);
is_initialized = true;

}

Next, to indicate that an inference has just completed, we switch off all the LEDs and
then flash the blue LED very briefly:

// Note: The RGB LEDs on the Arduino Nano 33 BLE
// Sense are on when the pin is LOW, off when HIGH.

// Switch the person/not person LEDs off
digitalWrite(led_green, HIGH);
digitalWrite(led_red, HIGH);

// Flash the blue LED after every inference.
digitalWrite(led_blue, LOW);

delay(100);

digitalWrite(led_blue, HIGH);

You'll notice that unlike with the Arduino’s built-in LED, these LEDs are switched on

with LOW and off with HIGH. This is just a factor of how the LEDs are connected to the
board.

Next, we switch on and off the appropriate LEDs depending on which category score is
higher:

// Switch on the green LED when a person is detected,
// the red when no person is detected
if (person_score > no_person_score) {
digitalWrite(led_green, LOW);
digitalWrite(led_red, HIGH);
} else {
digitalWrite(led_green, HIGH);
digitalWrite(led_red, LOW);
}

Finally, we use the error_reporter instance to output the scores to the serial port:

error_reporter->Report("Person score: %d No person score: %d", person_score,
no_person_score);

And that’s it! The core of the function is a basic if statement, and you could easily use
similar logic to control other types of output. There’s something very exciting about
such a complex visual input being transformed into a single Boolean output: “person”

or “no person.”
Running the example

Running this example is a little more complex than our other Arduino examples,

because we need to connect the Arducam to the Arduino board. We also need to install
and configure the libraries that interface with the Arducam and decode its JPEG
output. But don’t worry, it’s still very easy!

To deploy this example, here’s what we’ll need:

e An Arduino Nano 33 BLE Sense board

An Arducam Mini 2MP Plus

Jumper cables (and optionally a breadboard)

A micro-USB cable

The Arduino IDE

Our first task is to connect the Arducam to the Arduino using jumper cables. This isn’t
an electronics book, so we won’t go into the details of using the cables. Instead,

Table 9-1 shows how the pins should be connected. The pins are labeled on each
device.

Table 9-1. Arducam Mini 2MP Plus to Arduino Nano 33
BLE Sense connections

Arducam pin Arduino pin

CS D7 (unlabeled, immediately to the right of D6)
MOSI D11

MISO D12

SCK D13

GND GND (either pin marked GND is fine)

VCC 33V

SDA A4

SCL A5

After you’ve set up the hardware, you can continue with installing the software.
Tip

There’s always a chance that the build process might have changed since this book was

written, so check README.md for the latest instructions.

The projects in this book are available as example code in the TensorFlow Lite Arduino
library. If you haven't already installed the library, open the Arduino IDE and select
Manage Libraries from the Tools menu. In the window that appears, search for and
install the library named Arduino_TensorFlowLite. You should be able to use the latest
version, but if you run into issues, the version that was tested with this book is 1.14-
ALPHA.

Note

You can also install the library from a .zip file, which you can either download from the
TensorFlow Lite team or generate yourself using the TensorFlow Lite for
Microcontrollers Makefile. If you’d prefer to do the latter, see Appendix A.

After you've installed the library, the person_detection example will show up in the
File menu under Examples—Arduino_TensorFlowLite, as shown in Figure 9-2.

File Edit Sketch Tools Help

New

Open...

Open Recent

Sketchbook

Examples Built-in Examples
Close #$W 01.Basics

Save #S 02.Digital

Save As... €3S 03.Analog
04.Communication
05.Control
06.Sensors
07.Display
08.Strings

09.UsSB
10.StarterKit_BasicKit
11.ArduinolSP

Page Setup o8P
Print 8P

VVVVVVVYVVYYY

Sxarmples v any bosd

Adafruit Circuit Playground

YYVVVVVYVYRYY

hello_world
magic_wand
micro_speech
person_detection

Ethernet
Firmata
LiquidCrystal
SD

Stepper
Temboo

RETIRED

Sl ¢

ArduCAM
JPEGDecoder

[RIR

Figure 9-2. The Examples menu

Click “person_detection” to load the example. It will appear as a new window, with a
tab for each of the source files. The file in the first tab, person_detection, is equivalent to

the main_functions.cc we walked through earlier.
Note

“Running the Example” already explained the structure of the Arduino example, so we

won'’t cover it again here.

In addition to the TensorFlow library, we need to install two other libraries:

e The Arducam library, so our code can interface with the hardware

o The JPEGDecoder library, so we can decode JPEG-encoded images

The Arducam Arduino library is available from GitHub. To install it, download or clone
the repository. Next, copy its ArduCAM subdirectory into your Arduino/libraries
directory. To find the libraries directory on your machine, check the Sketchbook
location in the Arduino IDE’s Preferences window.

After downloading the library, you'll need to edit one of its files to make sure it is
configured for the Arducam Mini 2MP Plus. To do this, open
Arduino/libraries/ArduCAM/memorysaver.h.

You should see a bunch of #define statements listed. Make sure that they are all
commented out except for #define 0V2640_MINI_2MP_PLUS, as shown here:

//Step 1: select the hardware platform, only one at a time
//#define 0V26460_MINI_2MP

//#define 0V3640_MINI_3MP

//#define OV5642_MINI_5MP

//#define 0V5642_MINI_5MP_BIT_ROTATION_FIXED

#define 0V2640_MINI_2MP_PLUS

//#define 0V5642_MINI_5MP_PLUS

//#define OV5640_MINI_5MP_PLUS

After you save the file, you're done configuring the Arducam library.

Tip

The example was developed using commit #e216049 of the Arducam library. If you run
into problems with the library, you can try downloading this specific commit to make
sure you're using the exact same code.

The next step is to install the JPEGDecoder library. You can do this from within the
Arduino IDE. In the Tools menu, select the Manage Libraries option and search for
JPEGDecoder. You should install version 1.8.0 of the library.

After you've installed the library, you’ll need to configure it to disable some optional
components that are not compatible with the Arduino Nano 33 BLE Sense. Open
Arduino/libraries/JPEGDecoder/src/User_Config.h and make sure that both #define
LOAD_SD_LIBRARY and #define LOAD_SDFAT_LIBRARY are commented out, as shown in
this excerpt from the file:

// Comment out the next #defines if you are not using an SD Card to store

// the JPEGs

// Commenting out the line is NOT essential but will save some FLASH space if
// SD Card access is not needed. Note: use of SdFat is currently untested!

//#define LOAD_SD _LIBRARY // Default SD Card library
//#define LOAD_SDFAT_LIBRARY // Use SdFat library instead, so SD Card SPI can
// be bit bashed

After you've saved the file, you're done installing libraries. You're now ready to run
the person detection application!

To begin, plug in your Arduino device via USB. Make sure the correct device type is
selected from the Board drop-down list in the Tools menu, as shown in Figure 9-3.

Tools Help

Auto Format FE3mlld | Arduino 1.8.9
Archive Sketch

Fix Encoding & Reload

Manage Libraries...

Serial Monitor

Serial Plotter

WiFi101 / WiFININA Firmware Updater b
Ardulno SAMD (32-bits ARM Cortex-M0+) Boards

Board: "Arduino Nano 33 BLE"
ino/Genuino Zero (Program|
Port: */devjcu.usbmodem1454301 (Arduino Nano 33 BLE)" b s diod abcdgie ok

Get Board Info ArduinofGenuino MKR1000
Programmer: "AVRISP mkiI® Arduino MKRZERO
Burn Boctioader Arduino MKR WiFi 1010
" Y —_— Arduino NANO 33 loT
Arduino MKR FOX 1200
Arduino MKR WAN 1300
e detatled Tensorflom Lite exarple code. Arduino MKR GSM 1400
Arduino MKR N8B 1500
'duino knows to build the TF Lite library. Arduino MKR Vidor 4000
Adafrult Circuit Playground Express
Arduino MO Pro (Programming Port)
Arduino MO Pro (Native US8 Port)
Arduino MO
wt a serial connection, Arduino Tian
e giving w.

nn function
o chere argv);

+ Arduino Nano 33 BLE

Figure 9-3. The Board drop-down list

If your device’s name doesn’t appear in the list, you’ll need to install its support
package. To do this, click Boards Manager. In the window that appears, search for your
device and install the latest version of the corresponding support package.

Also in the Tools menu, make sure the device’s port is selected in the Port drop-down
list, as demonstrated in Figure 9-4.

Tools Help

Auto Format d | Arduino 1.8.9
Archive Sketch

Fix Encoding & Reload

Manage Libraries...

Serial Monitor

Serial Plotter

© WIFi101 / WIFININA Firmware Updater

Board: "Arduino Nano 33 BLE"

Port: "/dev/cu.usbmodem 1454301 (Arduino Nano 33 BLE)" .

Get Board Info {dev/cu.Bluetooth-incoming-Port
/devfcu.DixieDewdrop-SPPDev-2
/dev/cu.DixieDewdrop-SPPDev-5
/devfcu.MALS
[devicu. SOC

v /dev/cu.usbmodem1454301 (Arduino Nano 33 BLE)

Programmer: “AVRISP mkil®
Burn Bootloader

Figure 9-4. The Port drop-down list

Finally, in the Arduino window, click the upload button (highlighted in white in
Figure 9-5) to compile and upload the code to your Arduino device.

Upload Using Programmer

Figure 9-5. The upload button

As soon as the upload has successfully completed, the program will run.

To test it, start by pointing the device’s camera at something that is definitely not a
person, or just covering up the lens. The next time the blue LED flashes, the device will
capture a frame from the camera and begin to run inference. Because the vision model
we are using for person detection is relatively large, this will take a long time inference
—around 19 seconds at the time of writing, though it’s possible TensorFlow Lite has
become faster since then.

When inference is complete, the result will be translated into another LED being lit.
You pointed the camera at something that isn’t a person, so the red LED should
illuminate.

Now, try pointing the device’s camera at yourself! The next time the blue LED flashes,
the device will capture another image and begin to run inference. After roughly 19
seconds, the green LED should turn on.

Remember, image data is captured as a snapshot before each inference, whenever the
blue LED flashes. Whatever the camera is pointed at during that moment is what will
be fed into the model. It doesn’t matter where the camera is pointed until the next

time an image is captured, when the blue LED will flash again.

If you're getting seemingly incorrect results, make sure you are in an environment
with good lighting. You should also make sure that the camera is oriented correctly,
with the pins pointing downward, so that the images it captures are the right way up—
the model was not trained to recognize upside-down people. In addition, it’s good to
remember that this is a tiny model, which trades accuracy for small size. It works very
well, but it isn’t accurate 100% of the time.

You can also see the results of inference via the Arduino Serial Monitor. To do this,
from the Tools menu, open the Serial Monitor. You’ll see a detailed log showing what is
happening while the application runs. It’s also interesting to check the “Show
timestamp” box, so you can see how long each part of the process takes:

14:17:50.714 -> Starting capture

14:17:50.714 -> Image captured

14:17:50.784 -> Reading 3080 bytes from ArduCAM
14:17:50.887 -> Finished reading

14:17:50.887 -> Decoding JPEG and converting to greyscale
14:17:51.074 -> Image decoded and processed

14:18:09.710 -> Person score: 246 No person score: 66

From this log, we can see that it took around 170 ms to capture and read the image
data from the camera module, 180 ms to decode the JPEG and convert it to grayscale,

and 18.6 seconds to run inference.
Making your own changes

Now that you've deployed the basic application, try playing around and making some
changes to the code. Just edit the files in the Arduino IDE and save, and then repeat the
previous instructions to deploy your modified code to the device.

Here are a few things you could try:

» Modify the detection responder so that it ignores ambiguous inputs, where
there isn’t much difference between the “person” and “no person” scores.

e Use the results of person detection to control other components, like
additional LEDs or servos.

e Build a smart security camera, by storing or transmitting images—but only
those that contain a person.

SparkFun Edge

The SparkFun Edge board is optimized for low power consumption. When paired with a

similarly efficient camera module, it’s the ideal platform for building vision
applications that will be running on battery power. It’s easy to plug in a camera

module via the board’s ribbon cable adapter.
Which camera module to buy

This example uses SparkFun’s Himax HM01B0 breakout camera module. It’s based on a
320 x 320-pixel image sensor that consumes an extremely small amount of power: less

than 2 mW when capturing at 30 frames per second (FPS).
Capturing images on SparkFun Edge

To begin capturing images with the Himax HM01B0 camera module, we first must
initialize the camera. After this is done, we can read a frame from the camera every
time we need a new image. A frame is an array of bytes representing what the camera
can currently see.

Working with the camera will involve heavy use of both the Ambiq Apollo3 SDK, which
is downloaded as part of the build process, and the HM01BO0 driver, which is located in
sparkfun_edge/himax_driver.

The image provider is implemented in sparkfun_edge/image_provider.cc. We won’t
explain its every detail, because the code is specific to the SparkFun board and the
Himax camera module. Instead, let’s step through what happens at a high level.

The GetImage() function is the image provider’s interface with the world. It’s called in
our application’s main loop to obtain a frame of image data. The first time it is called,

we’ll need to initialize the camera. This happens with a call to the InitCamera()
function, as follows:

// Capture single frame. Frame pointer passed in to reduce memory usage. This
// allows the input tensor to be used instead of requiring an extra copy.
TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int frame_width,
int frame_height, int channels, uint8_t* frame) {
if (!g_1is_camera_initialized) {
TfLiteStatus init_status = InitCamera(error_reporter);
if (init_status != kTfLiteOk) {
am_hal_gpio_output_set(AM_BSP_GPIO_LED RED);
return init_status;
}

If InitCamera() returns anything other than a kTfLiteOk status, we switch on the

board’s red LED (using am_hal_gpio_output_set(AM_BSP_GPIO_LED_RED)) to indicate
a problem. This is helpful for debugging.

The InitCamera() function is defined further up in image_provider.cc. We won’t walk

through it here because it’s very device-specific, and if you want to use it in your own
code you can just copy and paste it.

It calls a bunch of Apollo3 SDK functions to configure the microcontroller’s inputs and
outputs so that it can communicate with the camera module. It also enables interrupts,
which are the mechanism used by the camera to send over new image data. When this
is all set up, it uses the camera driver to switch on the camera and configures it to start
continually capturing images.

The camera module has an autoexposure feature, which calibrates its exposure setting
automatically as frames are captured. To allow it the opportunity to calibrate before

we attempt to perform inference, the next part of the GetImage() function uses the

camera driver’s hm01b0_blocking_read_oneframe_scaled() function to capture
several frames. We don’t do anything with the captured data; we are only doing this to
give the camera module’s autoexposure function some material to work with:

// Drop a few frames until auto exposure is calibrated.
for (int 1 = 0; 1 < kFramesToInitialize; ++i) {
hm01b0_blocking_read_oneframe_scaled(frame, frame_width, frame_height,
channels);

}

g_1s_camera_initialized = true;

After setup is out of the way, the rest of the GetImage() function is very simple. All we
do is call hm@1b6_blocking_read_oneframe_scaled() to capture an image:

hm01b0_blocking_read_oneframe_scaled(frame, frame_width, frame_height,
channels);

When GetImage() is called during the application’s main loop, the frame variable is a
pointer to our input tensor, so the data is written directly by the camera driver to the
area of memory allocated to the input tensor. We also specify the width, height, and
number of channels we want.

With this implementation, we’re able to capture image data from our camera module.
Next, let’s look at how we respond to the model’s output.
Responding to detections on SparkFun Edge

The detection responder’s implementation is very similar to our wake-word example’s
command responder. It toggles the device’s blue LED every time inference is run. When
a person is detected, it lights the green LED, and when a person is not detected it lights

the yellow LED.

The implementation is in sparkfun_edge/detection_responder.cc. Let’s take a quick walk
through.

The RespondToDetection() function accepts two scores, one for the “person”
category, and the other for “not a person.” The first time it is called, it sets up the blue,
green, and yellow LEDs for output:

voild RespondToDetection(tflite::ErrorReporter* error_reporter,
uint8_t person_score, uint8_t no_person_score) {

static bool is_initialized = false;

if (!is_initialized) {
// Setup LED's as outputs. Leave red LED alone since that's an error
// indicator for sparkfun_edge in image_provider.
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_BLUE, g_AM_HAL_GPIO_OUTPUT_12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_GREEN, g_AM_HAL_GPIO_OUTPUT_12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_YELLOW, g_AM_HAL_GPIO_OUTPUT_12);
is_initialized = true;

Because the function is called once per inference, the next snippet of code causes it to
toggle the blue LED on and off each time inference is performed:

// Toggle the blue LED every time an inference is performed.
static int count = 0;
if (++count & 1) {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_BLUE);
} else {
am_hal_gpio_output_clear (AM_BSP_GPIO_LED BLUE);
}

Finally, it turns on the green LED if a person was detected, or the blue LED if not. It also
logs the score using the ErrorReporter instance:

am_hal_gpio_output_clear(AM_BSP_GPIO_LED_YELLOW);

am_hal_gpio_output_clear(AM_BSP_GPIO_LED_GREEN);

if (person_score > no_person_score) {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_GREEN);

} else {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_YELLOW);

}

error_reporter->Report("person score:%d no person score %d", person_score,
no_person_score);

And that’s it! The core of the function is a basic if statement, and you could easily use

similar logic could to control other types of output. There’s something very exciting
about such a complex visual input being transformed into a single Boolean output:

“person” or “no person.”
Running the example

Now that we’ve seen how the SparkFun Edge implementation works, let’s get it up and
running.

Tip

There’s always a chance that the build process might have changed since this book was
written, so check README.md for the latest instructions.

To build and deploy our code, we’ll need the following:

e A SparkFun Edge board with the Himax HM01B0 breakout attached

e A USB programmer (we recommend the SparkFun Serial Basic Breakout, which
is available in both micro-B USB and USB-C variants)

¢ A matching USB cable
¢ Python 3 and some dependencies

Note

If you're unsure whether you have the correct version of Python installed, “Running
the Example” has instructions on how to check.

In a terminal, clone the TensorFlow repository and change into its directory:

git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow

Next, we're going to build the binary and run some commands that get it ready for
downloading to the device. To avoid some typing, you can copy and paste these

commands from README.md.
Build the binary

The following command downloads all of the required dependencies and then compiles
a binary for the SparkFun Edge:

make -f tensorflow/lite/micro/tools/make/Makefile \
TARGET=sparkfun_edge person_detection_bin

The binary is created as a .bin file, in the following location:

tensorflow/lite/micro/tools/make/gen/
sparkfun_edge_cortex-m4/bin/person_detection.bin

To check that the file exists, you can use the following command:

test -f tensorflow/lite/micro/tools/make/gen \
/sparkfun_edge_cortex-m4/bin/person_detection.bin \
&% echo "Binary was successfully created" || echo "Binary is missing"

When you run that command, you should see Binary was successfully created
printed to the console.

If you see Binary is missing, there was a problem with the build process. If so, it’s

likely that there are some clues to what went wrong in the output of the make
command.
Sign the binary

The binary must be signed with cryptographic keys to be deployed to the device. Let’s
now run some commands that will sign the binary so that it can be flashed to the
SparkFun Edge. The scripts used here come from the Ambiq SDK, which is downloaded
when the Makefile is run.

Enter the following command to set up some dummy cryptographic keys that you can
use for development:

cp tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0 \
/tools/apollo3_scripts/keys_info@.py \

tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0 \
/tools/apollo3_scripts/keys_info.py

Next, run the following command to create a signed binary. Substitute python3 with
python if necessary:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbigSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_image_blob.py \
--bin tensorflow/lite/micro/tools/make/gen/ \
sparkfun_edge_cortex-m4/bin/person_detection.bin \
--load-address 0xC000 \
--magic-num OxCB \
-0 main_nonsecure_ota \
--version 0x0

This creates the file main_nonsecure_ota.bin. Now run this command to create a final
version of the file that you can use to flash your device with the script you will use in

the next step:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_wireupdate_blob.py \
--load-address 0x20000 \
--bin main_nonsecure_ota.bin \
16\
-0 main_nonsecure_wire \
--options 0x1

You should now have a file called main_nonsecure_wire.bin in the directory where you

ran the commands. This is the file you’ll be flashing to the device.
Flash the binary

The SparkFun Edge stores the program it is currently running in its 1 megabyte of
flash memory. If you want the board to run a new program, you need to send it to the
board, which will store it in flash memory, overwriting any program that was
previously saved.

As we've mentioned earlier in the book, this process is called flashing.
Attach the programmer to the board

To download new programs to the board, you’ll use the SparkFun USB-C Serial Basic
serial programmer. This device allows your computer to communicate with the
microcontroller via USB.

To attach this device to your board, perform the following steps:

1. On the side of the SparkFun Edge, locate the six-pin header.

2. Plug the SparkFun USB-C Serial Basic into these pins, ensuring that the pins
labeled BLK and GRN on each device are lined up correctly, as demonstrated in
Figure 9-6.

Figure 9-6. Connecting the SparkFun Edge and USB-C Serial Basic (courtesy of SparkFun)

Attach the programmer to your computer

You connect the board to your computer via USB. To program the board, you need to
find out the name that your computer gives the device. The best way of doing this is to
list all of the computer’s devices before and after attaching it and then look to see

which device is new.
Warning

Some people have reported issues with their operating system’s default drivers for the
programmer, so we strongly recommend installing the driver before you continue.

Before attaching the device via USB, run the following command:
macO0S:
1s /dev/cu*
Linux:
1s /dev/tty*

This should output a list of attached devices that looks something like the following:

/dev/cu.Bluetooth-Incoming-Port

/dev/cu.MALS
/dev/cu.S0C

Now, connect the programmer to your computer’s USB port and run the following
command again:

mac0S:
1s /dev/cu*

Linux:
1s /dev/tty*

You should see an extra item in the output, as in the example that follows. Your new
item might have a different name. This new item is the name of the device:

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.MALS

/dev/cu.S0C
/dev/cu.wchusbserial-1450

This name will be used to refer to the device. However, it can change depending on
which USB port the programmer is attached to, so if you disconnect the board from the
computer and then reattach it, you might have to look up its name again.

Tip

Some users have reported two devices appearing in the list. If you see two devices, the
correct one to use begins with the letters “wch”; for example, /dev/wchusbserial-
14410,

After you've identified the device name, put it in a shell variable for later use:

export DEVICENAME=<your device name here>

This is a variable that you can use when running commands that require the device

name, later in the process.
Run the script to flash your board

To flash the board, you need to put it into a special “bootloader” state that prepares it
to receive the new binary. You’ll then run a script to send the binary to the board.

First create an environment variable to specify the baud rate, which is the speed at
which data will be sent to the device:

export BAUD_RATE=921600

Now paste the following command into your terminal—but do not press Enter yet! The
${DEVICENAME} and ${BAUD_RATE} in the command will be replaced with the values

you set in the previous sections. Remember to substitute python3 with python if
necessary.

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbigSuite-Rel2.0.0/tools/apollo3_scripts/uart_wired_update.py -b \
S${BAUD_RATE} ${DEVICENAME} -r 1 -f main_nonsecure_wire.bin -1 6

Next, you’'ll reset the board into its bootloader state and flash the board. On the board,
locate the buttons marked RST and 14, as shown in Figure 9-7.

Perform the following steps:

1. Ensure that your board is connected to the programmer, and the entire thing
is connected to your computer via USB.

2. On the board, press and hold the button marked 14. Continue holding it.

3. While still holding the button marked 14, press the button marked RST to reset
the board.

4. Press Enter on your computer to run the script. Continue on holding button 14.

-.-."f"" .;-
[?h g

- Powered by
= lensorFlow

| ! Soxc»xommﬁg‘
E EEO®®O®®-

Figure 9-7. The SparkFun Edge’s buttons

You should now see something like the following appearing on your screen:

Connecting with Corvette over serial port /dev/cu.usbserial-1440...
Sending Hello.

Received response for Hello
Received Status

length = 0x58

version = 0x3

Max Storage = 0x4ffa0
Status = Ox2

State = Ox7

AMInfo =

Ox1

Oxff2da3ff

Ox55fff

0x1

0x49f40003

OXFFffffff

[...lots more Oxffffffff...]

Sending OTA Descriptor = 0xfe000

Sending Update Command.

number of updates needed = 1

Sending block of size 0x158b0 from Ox0 to 0x158b0
Sending Data Packet of length 81860

Sending Data Packet of length 8180

[...lots more Sending Data Packet of length 8180...]

Keep holding button 14 until you see Sending Data Packet of length 8180. You can
release the button after seeing this (but it’s okay if you keep holding it).

The program will continue to print lines on the terminal. Eventually, you’ll see
something like the following:

[...lots more Sending Data Packet of length 8180...]
Sending Data Packet of length 8180

Sending Data Packet of length 6440

Sending Reset Command.

Done.

This indicates a successful flashing.
Tip

If the program output ends with an error, check whether Sending Reset Command.
was printed. If so, flashing was likely successful despite the error. Otherwise, flashing
might have failed. Try running through these steps again (you can skip over setting the
environment variables).

Testing the program

Start by pressing the RST button, to make sure the program is running.

When the program is running the blue LED will toggle on and off, once for each
inference. Because the vision model we are using for person detection is relatively
large, it takes a long time to run inference—around 6 seconds in total.

Start by pointing the device’s camera at something that is definitely not a person, or
just covering up the lens. The next time the blue LED toggles, the device will capture a
frame from the camera and begin to run inference. After 6 seconds or so, the inference
result will be translated into another LED being lit. Given that you pointed the camera
at something that isn’t a person, the orange LED should light up.

Now, try pointing the device’s camera at yourself. The next time the blue LED toggles,
the device will capture another frame and begin to run inference. This time, the green
LED should light up.

Remember, image data is captured as a snapshot before each inference, whenever the

blue LED toggles. Whatever the camera is pointed at during that moment is what will
be fed into the model. It doesn’t matter where the camera is pointed until the next
time a frame is captured, when the blue LED will toggle again.

If you're getting seemingly incorrect results, make sure that you are in an
environment with good lighting. It’s also good to remember that this is a tiny model,
which trades accuracy for small size. It works very well, but it isn’t accurate 100% all of
the time.

What If It Didn’t Work?

Here are some possible issues and how to debug them:

Problem: When flashing, the script hangs for a while at Sending Hello. and then
prints an error.

Solution: You need to hold down the button marked 14 while running the script.
Hold down button 14, press the RST button, and then run the script, while holding
the button marked 14 the entire time.

Problem: After flashing, none of the LEDs are coming on.

Solution: Try pressing the RST button or disconnecting the board from the
programmer and then reconnecting it. If neither of these works, try flashing the
board again.

Problem: After flashing, the red LED illuminates.

Solution: The red LED indicates a problem with the camera module. Ensure that the
camera module is connected properly and, if so try disconnecting and
reconnecting it.

Viewing debug data

The program will log detection results to the serial port. To view them, we can monitor
the board’s serial port output using a baud rate of 115200. On macOS and Linux, the
following command should work:

screen ${DEVICENAME} 115200

You should initially see output that looks something like the following:

Apollo3 Burst Mode is Available

Apollo3 operating in Burst Mode (96MHz)

As the board captures frames and runs inference, you should see it printing debug
information:

Person score: 130 No person score: 204
Person score: 220 No person score: 87

To stop viewing the debug output with screen, press Ctrl-A, immediately followed by
the K key, and then press the Y key.
Making your own changes

Now that you've deployed the basic application, try playing around and making some
changes. You can find the application’s code in the
tensorflow/lite/micro/examples/person_detection folder. Just edit and save, and then
repeat the preceding instructions to deploy your modified code to the device.

Here are a few things you could try:

» Modify the detection responder so that it ignores ambiguous inputs, where
there isn’t much difference between the “person” and “no person” scores.

* Use the results of person detection to control other components, like
additional LEDs or servos.

e Build a smart security camera, by storing or transmitting images—but only
those that contain a person.

Wrapping Up

The vision model we’ve used in this chapter is an amazing thing. It accepts raw and
messy input, no preprocessing required, and gives us a beautifully simple output: yes, a
person is present, or no, there is no one present. This is the magic of machine learning:
it can filter information from noise, leaving us with only the signals we care about. As
developers, it’s easy to use these signals to build amazing experiences for our users.

When building machine learning applications, it’s very common to use pretrained
models like this one, which already contain the knowledge required to perform a task.
Roughly equivalent to code libraries, models encapsulate specific functionality and are
easily shared between projects. You'll often find yourself exploring and evaluating
models, looking for the proper fit for your task.

In Chapter 10, we’ll examine how the person detection model works. You'll also learn
how to train your own vision models to spot different types of objects.

1In a 2018 YouGov poll, 70% of respondents said that they would miss sight the most if
they lost it.

Chapter 10. Person Detection: Training a Model

In Chapter 9, we showed how you can deploy a pretrained model for recognizing
people in images, but we didn’t explain where that model came from. If your product
has different requirements, you’ll want to be able to train your own version, and this

chapter explains how to do that.
Picking a Machine

Training this image model takes a lot more compute power than our previous
examples, so if you want your training to complete in a reasonable amount of time,
you’ll need to use a machine with a high-end graphics processing unit (GPU). Unless
you expect to be running a lot of training jobs, we recommend starting off by renting a
cloud instance rather than buying a special machine. Unfortunately the free
Colaboratory service from Google that we've used in previous chapters for smaller
models won’t work, and you will need to pay for access to a machine. There are many
great providers available, but our instructions will assume you’re using Google Cloud
Platform because that’s the service we’re most familiar with. If you are already using
Amazon Web Services (AWS) or Microsoft Azure, they also have TensorFlow support
and the training instructions should be the same, but you’ll need to follow their

tutorials for setting up a machine.
Setting Up a Google Cloud Platform Instance

You can rent a virtual machine with TensorFlow and NVIDIA drivers preinstalled from
Google Cloud Platform, and with support for a Jupyter Notebook web interface, which
can be very convenient. The route to setting this up can be a bit involved, though. As of
September 2019, here are the steps you need to take to create a machine:

1. Sign in to console.cloud.google.com. You’ll need to create a Google account if you
don’t already have one, and you’ll have to set up billing to pay for the instance
you create. If you don’t already have a project, you’ll need to create one.

2. In the upper-left corner of the screen, open the hamburger menu (the main
menu with three horizontal lines as an icon, as illustrated in Figure 10-1) and
scroll down until you find the Artificial Intelligence section.

3. In this section, select Al Platform—Notebooks, as shown in Figure 10-1.

Google Cloud Platform

F Omacep

I WI APIS 1 @ Google Cloud Platform status ¥
egorrts (mmanta e A srviews roevet
Durta | abeing n
' 3 Gots Coue muts deshbend
W NPutom warn L=
R
[2] Mastersl Largaage Wikt - ™ Biling '
- . Data Labasing St [— DWW
S Nrwnys — . For the Wiing portod Sep | - 37,3019
& Whtes s i o~ - .- ‘- = > ven
™ T Soltion M 0 Ve san)
Vansieton ‘F' ? @ Emoe Reperting 1
son | i Peporrg?
R ve—. LA D e o 19 st v iy
i
i
! o :
Gacge Mot !
! s a0
e TE—— RNty o vl o

Figure 10-1. The Al Platform menu

4. You might see a prompt asking you to enable the Compute Engine API to
proceed, as depicted in Figure 10-2; go ahead and approve it. This can take
several minutes to go through.

Google Cloud Platform 3 el bockensmghe

Compute Engine API
Google
Compete Eagre AR
B e

v overnen

o

Lont upammd

sy Abcus Gacgle

Catngeny Goegpe ye ~nets e
IR 20d puTCOTS 1o hawth Napt (rmad Andad Locge ey vene sad TouTete Geage plips &
‘asreghd Tle 1 Tu Lty bves 3! Blore 5 pecpl

Sorace rare

TTTRAw yesegn oy Tumorigs 004 donsveststes

Figure 10-2. The Compute Engine API screen

5. A “Notebook instances” screen will open. In the menu bar at the top, select
NEW INSTANCE. On the submenu that opens, choose “Customize instance,” as
shown in Figure 10-3.

o
TP SR —

= Google Coud Platform I seprlbeckantenss v

&5 wpa Notetock nstoncws [0 Qrewnstiace C stree b TN s e -
s Qustonus
T tewes o and ore Jovin Nobonts atr0ne ——gee Select a notabook inssence
APNLID (v ranled 10d 3w covigas -
® e e 38
frmevorta) Ve ety s - com
letalaze v ‘orvored)
e - Sytran o =
e et - et e i retein vy
O @ ‘weeeies - ® eyt
= sea hescetae - - Torscrfiom 1.14 R
B
v e
Toraorfom 2 D EIPTRMENTAL] »
P PP
Pytoreh 1 2 R
risne Tpe eweet
SAPOS XGboost
tonw e errd e ReDAGITR
oA 101

IerTees e R TiA SEUL

Figure 10-3. The instance creation menu

6. On the “New notebook instance” page, in the “instance name” box, give your
machine a name, as illustrated in Figure 10-4, and then scroll down to set up
the environment.

®0 New notebook Instan... - Al Pl X t

< C: 0D # console.cloud.google.com

% Bookmarks @ Simple Mexican Ri Github Issues Pull Requests

Google Cloud Platform 3¢ tinymkbook-example w

é% Al Platform & New notebook instance
!i! Dashboard nstance name *
my-tinyml-examplel
B AHw
Region * Zone *
€ Data Labeling us-west1 (Oregon) - @ us-west1-b - ©
B Notebooks
o R 0 your from the /Jupyter interface may be
iE Jobs routed through a different region than selected sbove depending on
service availability.

Models

Figure 10-4. The naming interface

7. As of September 2019, the correct TensorFlow version to choose is TensorFlow
1.14. The recommended version will likely have increased to 2.0 or beyond by
the time you're reading this, but there might be some incompatibilities, so if
it’s still possible start by selecting 1.14 or another version in the 1.x branch.

8. In the “Machine configuration” section, choose at least 4 CPUs and 15 GB of
RAM, as shown in Figure 10-5.

New notebook instan... — Al F X +

C 0 # console.cloud.google.com

kmarks @9 Simple Mexican Ri Github Issues Pull Requests

Google Cloud Platform 3¢ tinymibaok-example w

é% Al Platform & New notebook instance
nsance name *

!i! Dashboard

Region * Zone *

B AlHub us-west1 (Oregon) - @ us-westl-b *+ @
& DataLabeling

Requests to your instance from the Datalab/Jupyter interface may be
3 Notebooks routed through a different region than selected above depending on

service availability.
= Jobs
® Modeis Environment >

All environment have the latest NVIDIA GPU libraries (CUDA, CUDNN, NCCL) and latest
Inted® libraries (Intel® MKL_DNN/MKL) ready to go, along with the latest supported
drivers. Select the specific image based on the primary machine learning framework you
will be using. If the library you would like to use is not listed, choose the base image,
which provides core packages.

Environment *
TensorFlow 1.14 (with Intel® MKL-DNN/MKL and CUDA 10.0) -

Includes support for Keras and both python2 and python3 with key packages for handling

data, such as scikitdearn, pandas, and nitk

Machine configuration A

Machine type *
4VCPUs, 15 GB RAM - ©

Figure 10-5. The CPU and version interface

9. Picking the right GPU will make the biggest difference in your training speed.
It can be tricky because not all zones offer the same kind of hardware. In our
case, we're using “us-west1 (Oregon)” as the region and “us-west-1b” as the
zone because we know that they currently offer high-end GPUs. You can get
the detailed pricing information using Google Cloud Platform’s pricing
calculator, but for this example we’re choosing one NVIDIA Tesla V100 GPU, as
illustrated in Figure 10-6. This costs $1,300 a month to run but allows us to
train the person-detector model in around a day, so the model training cost
works out to about $45.

New notebook instan... - Al F X -

<« cC O # console.cloud.google.com

% Bookmarks Q'l’ Simple Mexican Ri.. Github Issues Pull Requests

= Google Cloud Platform e tinyml-book-example v

t§§ Al Platform & New notebook instance
30 Dashboard drivers. Select the specific image based on the primary machine learning f rk you
L will be using. If the library you would like to use is not listed, choose the base image,
‘ Al Hub which provides core packages.
Ul
Environment ¢
€& Datalabeling TensorFlow 1.14 (with intel® MKL-DNN/MKL and CUDA 10.0) -
Includes support for Keras and both python2 and python3 with key packages for handling
B Notebooks data, such as scikit4earn, pandas, and nitk
= Jobs
Machine configuration)
[] Models
Machine type *
4vCPUSs, 15GB RAM v @
GPUs

Based on the zone, fr rk, and hine type selected above, the avallable GPU
types and the minimum number of GPUs that can be selected may vary, Learn more

GPU type

b J
NVIDIA Tesla K80

B 4
NVIDIA Tesla P100

N NVIDIA Tesla P100 Virtual Workstation

’

NVIDIA Tesla T4

P NVIDIA Tesla T4 Virtual Workstation ’
NVIDIA Tesla V100

<l o &
C—

Figure 10-6. The GPU selection interface
Tip

These high-end machines are expensive to run, so make sure you stop your
instance when you're not actively using it for training. Otherwise, you’ll be
paying for an idle machine.

10. It makes life easier to have the GPU drivers installed automatically, so make
sure you select that option, as demonstrated in Figure 10-7.

New notebook instan... — Al P x 4

C 0 & console.cloud.google.com

ookmarks @@ Simple Mexican Ri Github Issues Pull Requests

Google Cloud Platform 3= tinyml-book-example v

éé Al Platform & New notebook instance

1! Dashboard

Machine configuration A
@B AHwb
Machine type *
€ Datalabeling 4 vCPUs, 15GB RAM - @
]

Notebooks GPUs

Jobs Based on the zone, f &, and machine type selected above, the available GPU
types and the minimum number of GPUs that can be selected may vary. Learm more

Madels GPU type Number of GPUs
NVIDIA Tesla V100 - 1 -

Install NVIDIA GPU driver automatically for me @

When GPUs are attached 10 this instance, fetch NVIDIA GPU dnvers from a third-party
locaton and install them an my behaif {requires internet access an the instancel

Boot disk v
Networking v
Permission v

Lose I

<
Figure 10-7. The GPU driver interface

11. Because you’ll be downloading a dataset to this machine, we recommend
making the boot disk a bit larger than the default 100 GB; maybe as big as 500
GB, as shown in Figure 10-8.

L New notebook instan... - Al |

&« S0 # console.cloud.google.com

% Bookmarks @ Simple Mexican R Github Issues Pull Requests

= Google Cloud Platform $* tinyml-book-example v

éé Al Platform & New notebook instance

Il Dashboard

Machine configuration A
B AHuwb
Machine type *
€1 Data Labeling SYCPUR TS GREAM v 0
B Notebooks GPUs
- W Based on the zone, framework, and machine type selected above, the available GPU
=5 types and the minimum number of GPUs that can be selected may vary, Learn more
® Models GPU type Number of GPUs
NVIDIA Tesla V100 v 1 -
Install NVIDIA GPU driver automatically forme @
When GPUSs are attached to this instance, fetch NVIDIA GPU drivers from a third-party
location and install them on my behalf (requires intermnet access on the Instance)
Boot disk A
Boot disk type * Boot disk size in GB *
Standard Persistent Disk ~ @ [500 I (7] I
Encryption
(® Google-managed key
No configuration required
(O Customer-managed key
Manage via Google Cloud Key Management Service
<l
Netwaorkina v

Figure 10-8. Increasing the boot disk size

12. When you've set all those options, at the bottom of the page, click the CREATE
button, which should return you to the “Notebook instances” screen. There
should be a new instance in the list with the name you gave to your machine.
There will be spinners next to it for a few minutes while the instance is being

set up. When that’s complete click the OPEN JUPYTERLAB link, as depicted in
Figure 10-9.

et

Figure 10-9. The instances screen

13. In the screen that opens, choose to create a Python 3 notebook (see Figure 10-
10).

File Edit Vew Run Keenel G

3] L 1 Launcher

=l

-
O | Name . Last Modified

- s 2 minutes ago M| Notebook
o W tutoris's 2 minutes ago
®

Pythan3 Jo P
)

-
k-
]
£
8 u Console
£

A"
%

= M ¥ B

Termina Teat File Markdown File Tersorboard Comextual Help

c@o®

Figure 10-10. The notebook selection screen

This gives you a Jupyter notebook connected to your instance. If you're not
familiar with Jupyter, it gives you a nice web interface to a Python interpreter
running on a machine, and stores the commands and results in a notebook you

can share. To start using it, in the panel on the right, type print("Hello

World!") and then press Shift+Return. You should see “Hello World!"” printed
just below, as shown in Figure 10-11. If so, you've successfully set up your
machine instance. We use this notebook as the place in which we enter
commands for the rest of this tutorial.

= JupyterLab X +

C o0 & 6fa180abbcie3c03-dot-datalab-vm-us-westl.googleusercontent.com

% Bookmarks @ Simple Mexican Ri Github Issues Pull Requests

File Edit View Run Kernel Git Tabs Settings Help

B + | 4} L 4 C o # Untitled.ipynb L3
-/ B + X0 » m C Cde +v O
‘> Name - Last Modified
™ s 2 minutes ago print("Hello World!
o W ttorials 3 minutes ago Hello World!
* [W untitled.ipynb seconds ago I |
&
»
-
8
a

Figure 10-11. The “hello world” example

Many of the commands that follow assume that you’re running from a Jupyter
notebook, so they begin with a !, which indicates they should be run as shell
commands rather than Python statements. If you're running directly from a terminal
(for example, after opening a Secure Shell connection to commmunicate with an

instance) you can remove the initial !.
Training Framework Choice

Keras is the recommended interface for building models in TensorFlow, but when the
person detection model was being created it didn’t yet support all the features we
needed. For that reason, we show you how to train a model using tf.slim, an older
interface. It is still widely used but deprecated, so future versions of TensorFlow might
not support this approach. We hope to publish Keras instructions online in the future;
check tinymlbook.com/persondetector for updates.

The model definitions for Slim are part of the TensorFlow models repository, so to get
started, you'll need to download it from GitHub:

! cd ~
! git clone https://github.com/tensorflow/models.git

Note

The following guide assumes that you’ve done this from your home directory, so the
model repository code is at ~/models, and that all commands are run from the home
directory unless otherwise noted. You can place the repository somewhere else, but
you’ll need to update all references to it.

To use Slim, you need to make sure that Python can find its modules and install one
dependency. Here’s how to do this in an iPython notebook:

! pip install contextlib2

import os

new_python_path = (os.environ.get("PYTHONPATH") or '') + ":models/research/slim"
%env PYTHONPATH=$new_python_path

Updating PYTHONPATH through an EXPORT statement like this works only for the
current Jupyter session, so if you’re using bash directly you should add it to a
persistent startup script, running something like this:

echo 'export PYTHONPATH=SPYTHONPATH:models/research/slim' >> ~/.bashrc
source ~/.bashrc

If you see import errors running the Slim scripts, make sure the PYTHONPATH is set up

correctly and that contextlib2 has been installed. You can find more general

information on tf.slim in the repository’s README.
Building the Dataset

To train our person detection model, we need a large collection of images that are
labeled depending on whether they have people in them. The ImageNet 1,000-class
dataset that’s widely used for training image classifiers doesn’t include labels for
people, but luckily the COCO dataset does.

The dataset is designed to be used for training models for localization, so the images
aren’t labeled with the “person,” “not person” categories for which we want to train.
Instead, each image comes with a list of bounding boxes for all of the objects it
contains. “Person” is one of these object categories, so to get to the classification labels
we want, we need to look for images with bounding boxes for people. To make sure
that they aren’t too tiny to be recognizable we also need to exclude very small
bounding boxes. Slim contains a convenient script to both download the data and
convert bounding boxes into labels:

! python download_and_convert_data.py \
- -dataset_name=visualwakewords \
--dataset_dir=data/visualwakewords

This is a large download, about 40 GB, so it will take a while and you’ll need to make
sure you have at least 100 GB free on your drive to allow space for unpacking and
further processing. Don’t be surprised if the process takes around 20 minutes to
complete. When it’s done, you'll have a set of TFRecords in data/visualwakewords
holding the labeled image information. This dataset was created by Aakanksha
Chowdhery and is known as the Visual Wake Words dataset. It’s designed to be useful
for benchmarking and testing embedded computer vision because it represents a very
common task that we need to accomplish with tight resource constraints. We're

hoping to see it drive even better models for this and similar tasks.
Training the Model

One of the nice things about using tf.slim to handle the training is that the parameters
we commonly need to modify are available as command-line arguments, so we can just
call the standard train_image_classifier.py script to train our model. You can use this
command to build the model we use in the example:

! python models/research/slim/train_image_classifier.py \
--train_dir=vww_96_grayscale \
--dataset_name=visualwakewords \
--dataset_split_name=train \
--dataset_dir=data/visualwakewords \
--model_name=mobilenet_v1_025 \

- -preprocessing_name=mobilenet_v1 \
--train_image_size=96 \
--use_grayscale=True \
--save_summaries_secs=300 \
--learning_rate=0.045 \
--label_smoothing=0.1 \
--learning_rate_decay_factor=0.98 \
--num_epochs_per_decay=2.5 \
--moving_average_decay=0.9999 \
--batch_size=96 \

- -max_number_of_steps=1000000

It will take a couple of days on a single-GPU V100 instance to complete all one million
steps, but you should be able to get a fairly accurate model after a few hours if you
want to experiment early. Following are some additional considerations:

e The checkpoints and summaries will be saved in the folder given in the - -
train_dir argument. This is where you’ll need to look for the results.

o The - -dataset_dir parameter should match the one where you saved the
TFRecords from the Visual Wake Words build script.

e The architecture we use is defined by the - -model_name argument. The

mobilenet_v1 prefix instructs the script to use the first version of MobileNet.
We did experiment with later versions, but these used more RAM for their
intermediate activation buffers, so for now we're sticking with the original.
The 025 is the depth multiplier to use, which mostly affects the number of
weight parameters; this low setting ensures the model fits within 250 KB of
flash memory.

e --preprocessing_name controls how input images are modified before they’re
fed into the model. The mobilenet_v1 version shrinks the width and height of

the images to the size given in - -train_image_size (in our case 96 pixels
because we want to reduce the compute requirements). It also scales the pixel
values from integers in the range 0 to 255 to floating-point numbers in the
range -1.0 to +1.0 floating-point numbers (though we’ll be quantizing those
after pass:[training).

e The HM01B0 camera we’re using on the SparkFun Edge board is monochrome,
so to get the best results, we need to train our model on black-and-white

images. We pass in the - -use_grayscale flag to enable that preprocessing.

e The --learning_rate, --label_smoothing, --learning_rate_decay_factor,

--num_epochs_per_decay, - -moving_average_decay, and - -batch_size
parameters all control how weights are updated during the the training
process. Training deep networks is still a bit of a dark art, so these exact values
we found through experimentation for this particular model. You can try
tweaking them to speed up training or gain a small boost in accuracy, but we
can’t give much guidance for how to make those changes, and it’s easy to get
combinations where the training accuracy never converges.

e --max_number_of_steps defines how long the training should continue.
There’s no good way to establish this threshold in advance; you need to
experiment to determine when the accuracy of the model is no longer
improving to know when to cut it off. In our case, we default to a million steps
because with this particular model we know that’s a good point to stop.

After you start the script, you should see output that looks something like this:

INFO:tensorflow:global step 4670: loss = 0.7112 (0.251 sec/step)
10928 00:16:21.774756 140518023943616 learning.py:507] global step 4670: loss
= 0.7112 (0.251 sec/step)

INFO:tensorflow:global step 4680: loss = 0.6596 (0.227 sec/step)
10928 00:16:24.365901 140518023943616 learning.py:507] global step 4680: loss
= 0.6596 (0.227 sec/step)

Don’t worry about the line duplication: this is just a side effect of the way TensorFlow
log printing interacts with Python. Each line has two key bits of information about the
training process. The global step is a count of how far through the training we are.
Because we've set the limit as a million steps, in this case we’re nearly 5% complete.
Together with the steps-per-second estimate, this is useful because you can use it to
estimate a rough duration for the entire training process. In this case, we’re
completing about 4 steps per second, so a million steps will take about 70 hours, or 3
days. The other crucial piece of information is the loss. This is a measure of how close
the partially trained model’s predictions are to the correct values, and lower values are
better. This will show a lot of variation but should on average decrease during training
if the model is learning. Because it’s so noisy the amounts will bounce around a lot
over short time periods, but if things are working well you should see a noticeable
drop if you wait an hour or so and check back. This kind of variation is a lot easier to

see in a graph, which is one of the main reasons to try TensorBoard.
TensorBoard

TensorBoard is a web application that lets you view data visualizations from
TensorFlow training sessions, and it’s included by default in most cloud instances. If
you’re using Google Cloud Al Platform, you can start up a new TensorBoard session by
opening the command palette from the left tabs in the notebook interface and then
scrolling down to select “Create a new tensorboard.” You're then prompted for the

location of the summary logs. Enter the path you used for - - train_dir in the training
script—in the previous example, the folder name is vww_96_grayscale. One common
error to watch out for is adding a slash to the end of the path, which will cause
TensorBoard to fail to find the directory.

If you're starting TensorBoard from the command line in a different environment

you'll need to pass in this path as the - -logdir argument to the TensorBoard
command-line tool, and point your browser to http://localhost:6006 (or the address of
the machine you're running it on).

After navigating to the TensorBoard address or opening the session through Google
Cloud, you should see a page that looks something like Figure 10-12. It might take a
little while for the graphs to have anything useful in them given that the script only
saves summaries every five minutes. Figure 10-12 shows the results after training for
more than a day. The most important graph is called “clone_loss”; it shows the
progression of the same loss value that’s displayed in the logging output. As you can
see in this example it fluctuates a lot, but the overall trend is downward over time. If
you don’t see this sort of progression after a few hours of training, it’s a good sign that
your model isn’t converging to a good solution, and you might need to debug what’s
going wrong either with your dataset or the training parameters.

TensorBoard defaults to the SCALARS tab when it opens, but the other section that can
be useful during training is IMAGES (Figure 10-13). This shows a random selection of
the pictures the model is currently being trained on, including any distortions and
other preprocessing. In the figure, you can see that the image has been flipped and
that it’s been converted to grayscale before being fed to the model. This information
isn’t as essential as the loss graphs, but it can be useful to ensure that the dataset is
what you expect, and it is interesting to see the examples updating as training

progresses.
E maoblenet ¥1.py x * Untitled ipynd X [~] ; Ymmrdl 72-] W jupyter@pete-big-noteboc *
TensorBoard SCALARS IMAGES GRAPHS DISTRIBUTIONS HISTOGRAMS e~ O 0 @

(O show data download links
ignore autkers In chart scadng

Tooltip sonng
method: defoult -
Smaathnng

@ 0e
Horizontal Ans
Runs

Wene Zreqedte titee funs
-
TIGIGE ALL 1A

e e oaw 0 grRgace

Q Hilae "aga rElar e RS ASION L SUZNOMRE]

i o - ‘...m....’.:,.,.m,.,..
”MW"MW"I# B "
- o o .

tag batchraction_ol_430_ful

AL

Figure 10-12. Graphs in TensorBoard

E moblenet v1.py ¥ ™ Uraitied.ipynb

B Tensorboard 2

¥ @ jupyter@pete-big-noteboc X

IMAGES GRAPHS DISTRIBUTIONS HISTOGRAMS macve - G B @
D Show actual image uize Q Fler tags srequ ar expressions supposted)
Bnghtness adjustment distort_mage

— Wt distor_image/cropped_resized_image/image/0 ¥ dstor_image/final_distored_image/image/0 L

step 606507 Sun Sep 29 2019 122111 ooz Daydght Time 53ep 606,607 Sun Sap 29 2019 122111 Pacific Daybght Time
~ 4

—— c——————

Contrast adjustment

° Wit

TOLLL ALL KU

diston_image/image_with_boundng boiss/mage/U ¥ AsStor_image/IMmages_with_ g_boxim

HeD 08307 Sun Sev 29 2010 122111 Peoh Davaght Time aaevl)

Figure 10-13. Images in TensorBoard
Evaluating the Model

The loss function correlates with how well your model is training, but it isn’t a direct,
understandable metric. What we really care about is how many people our model
detects correctly, but to get it to calculate this we need to run a separate script. You
don’t need to wait until the model is fully trained, you can check the accuracy of any

checkpoints in the - -train_dir folder. To do this, run the following command:

! python models/research/slim/eval_image_classifier.py \
--alsologtostderr \
- -checkpoint_path=vww_96_grayscale/model.ckpt-698580 \
- -dataset_dir=data/visualwakewords \
--dataset_name=visualwakewords \
--dataset_split_name=val \
--model_name=mobilenet_v1_025 \
--preprocessing_name=mobilenet_v1 \
--use_grayscale=True \
--train_image_size=96

You'll need to make sure that - -checkpoint_path is pointing to a valid set of
checkpoint data. Checkpoints are stored in three separate files, so the value should be
their common prefix. For example, if you have a checkpoint file called model.ckpt-

5179.data-00000-0f-00001, the prefix would be model.ckpt-5179. The script should produce
output that looks something like this:

INFO:tensorflow:Evaluation [406/406]
10929 22:52:59.936022 140225887045056 evaluation.py:167] Evaluation [406/406]
eval/Accuracy[0.717438412]eval/Recall_5[1]

The important number here is the accuracy. It shows the proportion of the images that
were classified correctly, which is 72% in this case, after converting to a percentage. If
you follow the example script, you should expect a fully trained model to achieve an

accuracy of around 84% after one million steps and show a loss of around 0.4.
Exporting the Model to TensorFlow Lite

When the model has trained to an accuracy you're happy with, you’ll need to convert
the results from the TensorFlow training environment into a form you can run on an
embedded device. As we've seen in previous chapters, this can be a complex process,

and tf.slim adds a few of its own wrinkles, too.
Exporting to a GraphDef Protobuf File

Slim generates the architecture from the model_name every time one of its scripts is
run, so for a model to be used outside of Slim, it needs to be saved in a common format.
We're going to use the GraphDef protobuf serialization format because that’s
understood by both Slim and the rest of TensorFlow:

! python models/research/slim/export_inference_graph.py \
--alsologtostderr \
- -dataset_name=visualwakewords \
- -model_name=mobilenet_vi1_025 \
--image_size=96 \
--use_grayscale=True \
--output_file=vww_96_grayscale_graph.pb

If this succeeds, you should have a new vww_96_grayscale_graph.pb file in your home
directory. This contains the layout of the operations in the model, but it doesn’t yet

have any of the weight data.
Freezing the Weights

The process of storing the trained weights together with the operation graph is known
as freezing. This converts all of the variables in the graph to constants, after loading
their values from a checkpoint file. The command that follows uses a checkpoint from
the millionth training step, but you can supply any valid checkpoint path. The graph-
freezing script is stored in the main TensorFlow repository, so you’ll need to download
this from GitHub before running this command:

! git clone https://github.com/tensorflow/tensorflow
! python tensorflow/tensorflow/python/tools/freeze_graph.py \
--input_graph=vww_96_grayscale_graph.pb \

--input_checkpoint=vww_96_grayscale/model.ckpt-1000000 \
--input_binary=true --output_graph=vww_96_grayscale_frozen.pb \
- -output_node_names=MobilenetVl/Predictions/Reshape_1

After this, you should see a file called vww_96_grayscale_frozen.pb.
Quantizing and Converting to TensorFlow Lite

Quantization is a tricky and involved process, and it’s still very much an active area of
research, so taking the float graph that we’ve trained so far and converting it down to
an 8-bit entity takes quite a bit of code. You can find more of an explanation of what
quantization is and how it works in Chapter 15, but here we’ll show you how to use it
with the model we’ve trained. The majority of the code is preparing example images to
feed into the trained network so that the ranges of the activation layers in typical use
can be measured. We rely on the TFLiteConverter class to handle the quantization
and conversion into the TensorFlow Lite FlatBuffer file that we need for the inference
engine:

import 1
import
import |
import

def representative_dataset_gen():

record_iterator = tf.python_io.tf_record_iterator
(path="data/visualwakewords/val.record-00000-0f-00010")

count = 0
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
image_stream = i10.BytesIO
(example.features.feature['image/encoded'].bytes_list.value[0])

image = PIL.Image.open(image_stream)

image = image.resize((96, 96))

image = image.convert('L")

array = np.array(image)

array = np.expand_dims(array, axis=2)

array = np.expand_dims(array, axis=0)

array = ((array / 127.5) - 1.0).astype(np.float32)

yield([array])

count += 1

if count > 300:
break

converter = tf.lite.TFLiteConverter.from_frozen_graph \
('vww_96_grayscale_frozen.pb', ['input'], ['MobilenetVi/Predictions/ \
Reshape_1'])

converter.inference_input_type = tf.lite.constants.INT8

converter.inference_output_type = tf.lite.constants.INT8

converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen

tflite_quant_model = converter.convert()
open("vww_96_grayscale_quantized.tflite", "wb").write(tflite_quant_model)

Converting to a C Source File

The converter writes out a file, but most embedded devices don’t have a filesystem. To
access the serialized data from our program, we must compile it into the executable
and store it in flash. The easiest way to do that is to convert the file to a C data array,
as we've done in previous chapters:

Install xxd if it is not available

! apt-get -qq install xxd

Save the file as a C source file

! xxd -1 vww_96_grayscale_quantized.tflite > person_detect_model_data.cc

You can now replace the existing person_detect_model_data.cc file with the version

you've trained and will be able to run your own model on embedded devices.
Training for Other Categories

There are more than 60 different object types in the COCO dataset, so an easy way to

customize your model would be to choose one of those instead of person when you
build the training dataset. Here’s an example that looks for cars:

! python models/research/slim/datasets/build_visualwakewords_data.py \
--logtostderr \
--train_image_dir=coco/raw-data/train2014 \
--val_1image_dir=coco/raw-data/val2014 \
--train_annotations_file=coco/raw-data/annotations/instances_train2014.json \
--val_annotations_file=coco/raw-data/annotations/instances_val2014.json \
--output_dir=coco/processed_cars \
--small_object_area_threshold=0.005 \
--foreground_class_of_interest='car'

You should be able to follow the same steps as you did for the person detector,

substituting in the new coco/processed_cars path wherever data/visualwakewords
used to be.

If the kind of object you're interested in isn’t present in COCO, you might be able to use
transfer learning to help you train on a custom dataset you’ve gathered, even if it’s
much smaller. Although we don’t have an example of this to share yet, you can check

tinymlbook.com for updates on this approach.
Understanding the Architecture

MobileNets are a family of architectures designed to provide good accuracy for as few
weight parameters and arithmetic operations as possible. There are now multiple
versions, but in our case we're using the original v1 because it requires the smallest
amount of RAM at runtime. The core concept behind the architecture is depthwise
separable convolution. This is a variant of classic 2D convolutions that works in a much
more efficient way, without sacrificing very much accuracy. Regular convolution
calculates an output value based on applying a filter of a particular size across all
channels of the input. This means that the number of calculations involved in each
output is the width of the filter multiplied by the height, multiplied by the number of
input channels. Depthwise convolution breaks this large calculation into separate
parts. First, each input channel is filtered by one or more rectangular filters to produce
intermediate values. These values are then combined using pointwise convolutions.
This dramatically reduces the number of calculations needed, and in practice produces
similar results to regular convolution.

MobileNet v1 is a stack of 14 of these depthwise separable convolution layers with an
average pool and then a fully connected layer followed by a softmax at the end. We
have specified a width multiplier of 0.25, which has the effect of reducing the number of
computations down to around 60 million per inference, by shrinking the number of
channels in each activation layer by 75% compared to the standard model. In essence
it’s very similar to a normal convolutional neural network in operation, with each
layer learning patterns in the input. Earlier layers act more like edge recognition
filters, spotting low-level structure in the image, and later layers synthesize that
information into more abstract patterns that help with the final object classification.
Wrapping Up

Image recognition using machine learning requires large amounts of data and a lot of
processing power. In this chapter you learned how to train a model from scratch, given
nothing but a dataset, and how to convert that model into a form that is optimized for
embedded devices.

This experience should give you a good foundation for tackling the machine vision
problems that you need to solve for your product. There’s still something a bit magical
about computers being able to see and understand the world around them, so we can’t
wait to see what you come up with!

Chapter 11. Magic Wand: Building an Application

So far, our example applications have worked with data that human beings can easily
comprehend. We have entire areas of our brain devoted to understanding speech and
vision, so it’s not difficult for us to interpret visual or audio data and form an idea of
what’s going on.

A lot of data, however, is not so easily understood. Machines and their sensors
generate huge streams of information that don’t map easily onto our human senses.
Even when represented visually, it can be difficult for our brains to grasp the trends
and patterns within the data.

For example, the two graphs presented in Figure 11-1 and Figure 11-2 show sensor data
captured by mobile phones placed in the front pockets of people doing exercise. The
sensor in question is an accelerometer, which measures acceleration in three
dimensions (we’ll talk more about these later). The graph in Figure 11-1 shows
accelerometer data for a person who is jogging, whereas the graph in Figure 11-2
shows data for the same person walking down stairs.

As you can see, it’s tough to distinguish between the two activities, even though the
data represents a simple and relatable activity. Imagine trying to distinguish between
the operating states of a complex industrial machine, which might have hundreds of
sensors measuring all sorts of obscure properties.

It’s often possible to write handcrafted algorithms that can make sense of this type of
data. For example, an expert in human gait might recognize the telltale signs of
walking up stairs, and be able to express this knowledge as a function in code. This
type of function is called a heuristic, and it’s commonly used in all sorts of applications,
from industrial automation to medical devices.

mx By B:

¥ II
-2 1

: l]|' .lJ”“h.l“ Il s |,1]|J“JJMHIIHJJ

|

JJ”"”IIM’n]l”m“]llJHIH

1M

Figure 11-1. Graph showing data for a person who is jogging (MotionSense dataset)

mx By B:

il

2

1

I

m

Figure 11-2. Graph showing data for a person who is walking down stairs (MotionSense dataset)

To create a heuristic, you need two things. The first is domain knowledge. A heuristic
algorithm expresses human knowledge and understanding, so to write one, you need

to already understand what the data means. To understand this, imagine a heuristic
that determines whether a person has a fever based on their body temperature.
Whoever created it must have had knowledge of the temperature changes that indicate
a fever.

The second requirement for building a heuristic is programming and mathematical
expertise. Although it’s fairly easy to determine whether someone’s temperature is too
high, other problems can be far more complex. Discerning a system’s state based on
complex patterns in multiple streams of data might require knowledge of some
advanced techniques, like statistical analysis or signal processing. For example,
imagine creating a heuristic to distinguish between walking and running based on
accelerometer data. To build this, you might need to know how to mathematically
filter the accelerometer data to get an estimate of step frequency.

Heuristics can be extremely useful, but the fact that they require domain knowledge
and programming expertise means that they can be a challenge to build. First, domain
knowledge is not always available. For example, a small company might not have the
resources to conduct the basic research necessary to know what indicates one state
versus another. Similarly, even given domain knowledge, not everyone has the
expertise required to design and implement the heuristic algorithm in code.

Machine learning gives us an opportunity to shortcut these requirements. A model
trained on labeled data can learn to recognize the signals that indicate one class or
another, meaning there’s less need for deep domain knowledge. For example, a model
can learn the human temperature fluctuations that indicate a fever without ever being
told which specific temperatures are important—all it needs is temperature data
labelled with “fever” or “nonfever.” In addition, the engineering skills required to
work with machine learning are arguably easier to acquire than those that might be
required to implement a sophisticated heuristic.

Instead of having to design a heuristic algorithm from scratch, a machine learning
developer can find a suitable model architecture, collect and label a dataset, and
iteratively create a model through training and evaluation. Domain knowledge is still
extremely helpful, but it might no longer be a prerequisite to getting something
working. And in some cases, the resulting model can actually be more accurate than
the best handcoded algorithms.

In fact, a recent paper’ showed how a simple convolutional neural network is able to
detect congestive heart failure in a patient from a single heartbeat with 100% accuracy.
This is better performance than any previous diagnostic technique. The paper is a
fascinating read, even if you don’t understand every detail.

By training a deep learning model to understand complex data and embedding it in a
microcontroller program, we can create smart sensors that are able to understand the
complexities of their environments and tell us, at a high level, what is going on. This
has huge implications across dozens of fields. Here are just a few potential
applications:

 Environmental monitoring in remote places with poor connectivity
o Automated industrial processes that adjust to problems in real time
* Robots that react to complex external stimuli

« Disease diagnosis without the need for medical professionals

o Computer interfaces that understand physical movement

In this chapter, we build a project in the final category: a digital “magic wand,” which
can be waved by its owner to cast a variety of spells. As its input, it takes complex,
multidimensional sensor data that would be inscrutable to a human. Its output will be
a simple classification that alerts us if one of several classes of movements has recently
occurred. We’ll look at how deep learning can transform strange numerical data into

meaningful information—to magical effect.
What We’re Building

Our “magic wand” can be used to cast several types of spells. To do so, the wielder need
only wave the wand in one of three gestures, named “wing,” “ring,” and “slope,” as
shown in Figure 11-3.

\ v
A/

The wand will react to each spell by lighting an LED. In case the magic of electric light
is not sufficiently exciting, it will also output information to its serial port, which can

\

Figure 11-3. The three magic wand gestures

be used to control an attached computer.

To understand physical gestures, the magic wand application uses a device’s
accelerometer to collect information about its motion through space. An
accelerometer measures the degree of acceleration that it is currently experiencing.
For example, imagine that we’ve attached an accelerometer to a car that has stopped
at a red light and is about to drive away.

When the light turns green, the car starts moving forward, increasing in speed until it
reaches the speed limit. During this period, the accelerometer will output a value that
indicates the car’s rate of acceleration. After the car has reached a steady speed, it is
no longer accelerating, so the accelerometer will output zero.

The SparkFun Edge and Arduino Nano 33 BLE Sense boards are both equipped with
three-axis accelerometers contained within components that are soldered to each
board. These measure acceleration in three directions, which means they can be used
to track the motion of the device in 3D space. To construct our magic wand, we’ll
attach the microcontroller board to the end of a stick so it can be waved in a sorcerous
manner. We’'ll then feed the accelerometer’s output into a deep learning model, which
will perform classification to tell us whether a known gesture was made.

We provide instructions on deploying this application to the following microcontroller
platforms:

e Arduino Nano 33 BLE Sense

e SparkFun Edge

Because the ST Microelectronics STM32F746G Discovery kit doesn’t include an
accelerometer (and is too big to attach to the end of a magic wand), we won’t be

featuring it here.
Note

TensorFlow Lite regularly adds support for new devices, so if the device you’d like to
use isn’t listed here, it’s worth checking the example’s README.md. You can also check
there for updated deployment instructions if you run into trouble.

In the next section, we’ll look at the structure of our application and learn more about

how its model works.
Application Architecture

Our application will again follow the now-familiar pattern of obtaining input, running
inference, processing the output, and using the resulting information to make things
happen.

A three-axis accelerometer outputs three values representing the amount of
acceleration on the device’s x, y, and z-axes. The accelerometer on the SparkFun Edge
board can do this 25 times per second (a rate of 25 Hz). Our model takes these values
directly as its input, meaning we won’t need to do any preprocessing.

After data has been captured and inference has been run, our application will
determine whether a valid gesture was detected, print some output to the terminal,
and light an LED.

Introducing Our Model

Our gesture-detecting model is a convolutional neural network, weighing in at around
20 KB, that accepts raw accelerometer values as its input. It takes in 128 sets of x, y, and
z values at once, which at a rate of 25 Hz adds up to a little more than five seconds’
worth of data. Each value is a 32-bit floating-point number that indicates the amount
of acceleration in that direction.

The model was trained on four gestures performed by numerous people. It outputs
probability scores for four classes: one representing each gesture (“wing,” “ring,” and
“slope”), and one representing no recognized gesture. The probability scores sum to 1,
with a score above 0.8 being considered confident.

Because we’ll be running multiple inferences per second, we’ll need to make sure a
single errant inference while a gesture is performed doesn’t skew our results. Our
mechanism for doing this will be to consider a gesture as being detected only after it
has been confirmed by a certain number of inferences. Given that each gesture takes a
different amount of time to perform, the number of required inferences is different for
each gesture, with the optimal numbers being determined through experimentation.
Likewise, inference runs at varying rates on different devices, so these thresholds are
also set per device.

In Chapter 12, we’ll explore how to train a model on our own gesture data and dig
deeper into how the model works. Until then, let’s continue walking through our

application.
All the Moving Parts

Figure 11-4 shows the structure of our magic wand application.

As you can see, it’s almost as simple as our person detection application. Our model
accepts raw accelerometer data, meaning we don’t need to do any preprocessing.

The code’s six main parts follow a similar structure as in our person detection
example. Let’s walk through them in turn:

Main loop

Our application runs in a continuous loop. Since its model is small and simple and
there’s no preprocessing required, we’ll be able to run multiple inferences per
second.

Accelerometer handler

This component captures data from the accelerometer and writes it to the model’s
input tensor. It uses a buffer to hold data.

TF Lite interpreter

The interpreter runs the TensorFlow Lite model, as in our earlier examples.

Model
The model is included as a data array and run by the interpreter. It’s nice and
small, weighing in at only 19.5 KB.

Gesture predictor

This component takes the model’s output and decides whether a gesture has been
detected, based on thresholds for both probability and the number of consecutive
positive predictions.

Output handler

The output handler lights LEDs and prints output to the serial port depending on
which gesture was recognized.

Main loop

Accelerometer Accelerometer
handler

s3°. » Captures

/ . accelerometer data

TF Lite interpreter Model

Runs the model Trained to classify
> three gestures and
“unknown”

Gesture predictor
Determines if a valid
gesture has been
detected

Device LEDs Output handler
Takes action based on

O 4| which gesture was
detected

Figure 11-4. The components of our magic wand application

Walking Through the Tests

You can find the application’s tests in the GitHub repository:
magic_wand_test.cc

Shows how to run inference on a sample of accelerometer data

accelerometer_handler_test.cc

Shows how to use the accelerometer handler to obtain fresh data

gesture_predictor_ test.cc

Shows how to use the gesture predictor to interpret the results of inference

output_handler._test.cc

Shows how to use the output handler to show results of inference

Let’s begin by walking through magic_wand_test.cc, which will show us the end-to-end

process of inference with our model.
The Basic Flow

We step through the basic flow in magic_wand_test.cc.

First, we list the ops our model will need:

namespace tflite {

namespace ops {

namespace micro {

TfLiteRegistration* Register_ DEPTHWISE_CONV_2D();
TfLiteRegistration* Register_ MAX_POOL_2D();
TfLiteRegistration* Register_CONV_2D();
TfLiteRegistration* Register_ FULLY_CONNECTED();
TfLiteRegistration* Register_SOFTMAX();

} // namespace micro

} // namespace ops

} // namespace tflite

The test itself begins (as usual) by setting up everything required for inference and
grabbing a pointer to the model’s input tensor:

// Set up logging
tflite: :MicroErrorReporter micro_error_reporter;
tflite: :ErrorReporter* error_reporter = µ_error_reporter;

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
const tflite::Model* model =

c:tflite: :GetModel(g_magic_wand_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(

"Model provided is schema version %d not equal "

"to supported version %d.\n",

model->version(), TFLITE_SCHEMA_VERSION);

}

static tflite::MicroMutableOpResolver micro_mutable_op_resolver;
micro_mutable_op_resolver.AddBuiltin(

tflite: :BuiltinOperator_DEPTHWISE_CONV_2D,

tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(

tflite: :BuiltinOperator_MAX_POOL_2D,

tflite::ops::micro::Register_MAX_POOL_2D());
micro_mutable_op_resolver.AddBuiltin(

tflite: :BuiltinOperator_CONV_2D,

tflite::ops::micro::Register_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(

tflite: :BuiltinOperator_FULLY_CONNECTED,

tflite::ops::micro::Register_FULLY_CONNECTED());
micro_mutable_op_resolver.AddBuiltin(tflite: :BuiltinOperator_SOFTMAX,

tflite::ops::micro::Register_SOFTMAX());

// Create an area of memory to use for input, output, and intermediate arrays.
// Finding the minimum value for your model may require some trial and error.
const int tensor_arena_size = 60 * 1024;

uint8_t tensor_arena[tensor_arena_size];

// Build an interpreter to run the model with
tflite: :MicroInterpreter interpreter(model, micro_mutable_op_resolver,
tensor_arena,

tensor_arena_size, error_reporter);

// Allocate memory from the tensor_arena for the model's tensors
interpreter.AllocateTensors();

// Obtain a pointer to the model's input tensor
TfLiteTensor* input = interpreter.input(0);

We then inspect the input tensor to ensure that it’s the expected shape:

// Make sure the input has the properties we expect
TF_LITE_MICRO_EXPECT_NE(nullptr, input);

TF_LITE_MICRO_EXPECT_EQ(4, input->dims->size);

// The value of each element gives the length of the corresponding tensor.
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(128, input->dims->data[1]);
TF_LITE_MICRO_EXPECT EQ(3, input->dims->data[2]);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[3]);

// The input is a 32 bit floating point value
TF_LITE_MICRO_EXPECT_EQ(kTfLiteFloat32, input->type);

Our input’s shape is (1, 128, 3, 1). The first dimension is just a wrapper around the
second, which holds 128 three-axis accelerometer readings. Each reading has three
values, one for each axis, and each value is wrapped within a single-element tensor.
The inputs are all 32-bit floating-point values.

After we've confirmed the input shape, we write some data to the input tensor:

// Provide an input value

const float* ring_features_data = g_circle_micro_f9643d42_nohash_4 data;

error_reporter->Report("%d", input->bytes);

for (int 1 = 0; 1 < (input->bytes / sizeof(float)); ++i) {
input->data.f[1] = ring_features_data[i];

The constant g_circle_micro_f9643d42_nohash_4_ datais defined in
circle_micro_features_data.cc; it contains an array of floating-point values representing

one person’s attempt at performing a circle gesture. In the for loop, we step through
this data and write each value into the input. We write only as many float values as

the input tensor can hold.

Next, we run inference in the familiar manner:

// Run the model on this input and check that it succeeds

TfLiteStatus invoke_status = interpreter.Invoke();

if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed\n");

}

TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, invoke_status);
Afterward, we investigate our output tensor to ensure that it’s the shape we expect:

// Obtain a pointer to the output tensor and make sure it has the
// properties we expect.

TfLiteTensor* output = interpreter.output(0);
TF_LITE_MICRO_EXPECT_EQ(Z2, output->dims->size);
TF_LITE_MICRO_EXPECT EQ(1, output->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(4, output->dims->data[1]);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteFloat32, output->type);

It should have two dimensions: a single-element wrapper, and a set of four values that
indicate our four probabilities (“wing,” “ring,” “slope,” and unknown). Each of these
will be a 32-bit floating-point number.

7«

We can then test our data to make sure the inference result is what we expect. We
passed in data for a circle gesture, so we expect the “ring” score to be the highest:

// There are four possible classes in the output, each with a score.
const int kWingIndex = 0;

const int kRingIndex = 1;

const int kSlopelIndex = 2;

const int kNegativeIndex = 3;

// Make sure that the expected "Ring" score is higher than the other
// classes.

float wing_score = output->data.f[kWingIndex];

float ring_score = output->data.f[kRingIndex];

float slope_score = output->data.f[kSlopeIndex];

float negative_score = output->data.f[kNegativeIndex];
TF_LITE_MICRO_EXPECT_GT(ring_score, wing_score);
TF_LITE_MICRO_EXPECT_GT(ring_score, slope_score);
TF_LITE_MICRO_EXPECT_GT(ring_score, negative_score);

We then repeat this entire process for the “slope” gesture:

// Now test with a different input, from a recording of "Slope".
const float* slope_features_data = g_angle_micro_f2e59fea_nohash_1_data;

for (int 1 = 0; 1 < (input->bytes / sizeof(float)); ++i) {
input->data.f[1] = slope_features_data[i];
}

// Run the model on this "Slope" input.

invoke_status = interpreter.Invoke();

if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed\n");

TF_LITE_MICRO_EXPECT_EQ(KTfLiteOk, invoke_ status);

// Make sure that the expected "Slope" score is higher than the other classes.
wing_score = output->data.f[kWingIndex];

ring_score = output->data.f[kRingIndex];

slope_score = output->data.f[kSlopelndex];

negative_score = output->data.f[kNegativeIndex];
TF_LITE_MICRO_EXPECT_GT(slope_score, wing_score);
TF_LITE_MICRO_EXPECT_GT(slope_score, ring_score);
TF_LITE_MICRO_EXPECT_GT(slope_score, negative_score);

And that’s it! We've seen how we can run inference on raw accelerometer data. Like
the previous example, the fact that we can avoid preprocessing keeps things nice and
simple.

To run this test, use the following command:

make -f tensorflow/lite/micro/tools/make/Makefile test_magic_wand_test

The Accelerometer Handler

Our next test shows the interface for the accelerometer handler. This component’s
task is to populate the input tensor with accelerometer data for each inference.

Because both of these things depend on how the device’s accelerometer works, a
different accelerometer handler implementation is provided for each individual
device. We’ll walk through these implementations later on, but for now, the tests
located in accelerometer_handler_test.cc will show us how the handler should be called.

The first test is very simple:

TF_LITE_MICRO_TEST(TestSetup) {
static tflite::MicroErrorReporter micro_error_reporter;
TfLiteStatus setup_status = SetupAccelerometer(µ_error_reporter);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, setup_status);

}

The SetupAccelerometer () function performs the one-time setup that needs to
happen in order to obtain values from the accelerometer. The test shows how the

function should be called (with a pointer to an ErrorReporter) and that it returns a
TfLiteStatus indicating that setup was successful.

The next test shows how the accelerometer handler is used to fill the input tensor with
data:

TF_LITE_MICRO_TEST(TestAccelerometer) {
float input[384] = {0.0};
tflite: :MicroErrorReporter micro_error_reporter;
// Test that the function returns false before insufficient data is available
bool inference_flag =
ReadAccelerometer(µ_error_reporter, input, 384, false);
TF_LITE_MICRO_EXPECT_EQ(inference_flag, false);

// Test that the function returns true once sufficient data is available to
// fill the model's input buffer (128 sets of values)
for (int 1 = 1; 1 <= 128; i++) {
inference_flag =
ReadAccelerometer(µ_error_reporter, input, 384, false);

TF_LITE_MICRO_EXPECT_EQ(inference_flag, true);

First, we prepare a float array named input to simulate the model’s input tensor.
Because there are 128 three-axis readings, it has a total length of 384 readings (128 * 3).

We initialize every value in the array to 0.0.

We then call ReadAccelerometer (). We provide an ErrorReporter instance, the array

to which we want data to be written (input), and the total amount of data that we
want to obtain (384 bytes). The final argument is a Boolean flag that instructs

ReadAccelerometer() whether to clear the buffer before reading more data, which
needs to be done after a gesture has been successfully recognized.

When called, the ReadAccelerometer () function attempts to write 384 bytes of data to
the array passed to it. If the accelerometer has only just started collecting data, the full
384 bytes might not yet be available. In this case, the function will do nothing and

return a value of false. We can use this to avoid running inference if no data is
available.

The dummy implementation of the accelerometer handler, located in
accelerometer_handler.cc, simulates another reading being available every time it is
called. By calling it 127 additional times we ensure it will have accrued enough data to

start returning true.

To run these tests, use the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_gesture_accelerometer_handler_test

The Gesture Predictor

After inference has occurred, our output tensor will be filled with probabilities that
indicate to us which gesture, if any, was made. However, because machine learning is
not an exact science, there’s a chance that any single inference might result in a false
positive.

To reduce the impact of false positives, we can stipulate that for a gesture to be
recognized, it must have been detected in at least a certain number of consecutive
inferences. Given that we run inference multiple times per second, we can quickly
determine whether a result is valid. This is the job of the gesture predictor.

It defines a single function, PredictGesture(), which takes the model’s output tensor
as its input. To determine whether a gesture has been detected, the function does two
things:

1. Checks whether the gesture’s probability meets a minimum threshold

2. Checks whether the gesture has been consistently detected over a certain
number of inferences

The minimum number of inferences required varies per gesture because some take
longer to perform than others. It also varies per device, given that faster devices are
able to run inference more frequently. The default values, tuned for the SparkFun Edge
board, are located in constants.cc:

const int kConsecutivelInferenceThresholds[3] = {15, 12, 10};

The values are defined in the same order as the gestures appear in the model’s output
tensor. Other platforms, such as Arduino, have device-specific versions of this file that
contain values tuned to their own performance.

Let’s walk through the code in gesture_predictor.cc to see how these are used.

First, we define some variables that are used to keep track of the last gesture seen and
how many of the same gesture have been recorded in a row:

// How many times the most recent gesture has been matched in a row
int continuous_count = 0;

// The result of the last prediction

int last_predict = -1;

Next, we define the PredictGesture() function and determine whether any of the
gesture categories had a probability of greater than 0.8 in the most recent inference:

// Return the result of the last prediction
// 0: wing("W"), 1: ring("0"), 2: slope("angle"), 3: unknown
int PredictGesture(float* output) {
// Find whichever output has a probability > 0.8 (they sum to 1)
int this_predict = -1;
for (int 1 = 0; 1 < 3; 1++) {
if (output[i] > 0.8) this_predict = 1;

We use this_predict to store the index of the gesture that was predicted.

The variable continuous_count is used to track how many times the most recently
spotted gesture has been predicted in a row. If none of the gesture categories meet the
probability threshold of 0.8, we reset any ongoing detection process by setting

continuous_count to 0, and last_predict to 3 (the index of the “unknown”
category), indicating that the most recent result was no known gesture:

// No gesture was detected above the threshold
if (this_predict == -1) {

continuous_count = 0;

last_predict = 3;

return 3;

}

Next, if the most recent prediction aligns with the previous one, we increment
continuous_count. Otherwise, we reset it to 0. We also store the most recent
prediction in last_predict:

if (last_predict == this_predict) {
continuous_count += 1;
} else {

continuous_count = 0;

}
last_predict = this_predict;

In the next section of PredictGesture(), we use continuous_count to check whether
the current gesture has met its threshold yet. If it hasn’t, we return a 3, indicating an

unknown gesture:

// If we haven't yet had enough consecutive matches for this gesture,

// report a negative result
if (continuous_count < kConsecutiveInferenceThresholds[this_predict]) {
return 3;

}

If we get past this point, it means that we’ve confirmed a valid gesture. In this case, we
reset all of our variables:

// Otherwise, we've seen a positive result, so clear all our variables
// and report it

continuous_count = 0;

last_predict = -1;

return this_predict;

The function ends by returning the current prediction. This will be passed by our main
loop into the output handler, which displays the result to the user.

The gesture predictor’s tests are located in gesture_predictor_test.cc. The first test
demonstrates a successful prediction:

TF_LITE_MICRO_TEST(SuccessfulPrediction) {

// Use the threshold from the Oth gesture

int threshold = kConsecutiveInferenceThresholds[0];

float probabilities[4] = {1.0, 0.0, 0.0, 0.0};

int prediction;

// Loop just too few times to trigger a prediction

for (int 1 = 0; 1 <= threshold - 1; i++) {
prediction = PredictGesture(probabilities);
TF_LITE_MICRO_EXPECT_EQ(prediction, 3);

// Call once more, triggering a prediction
// for category 0

prediction = PredictGesture(probabilities);
TF_LITE_MICRO_EXPECT EQ(prediction, 0);

The PredictGesture() function is fed a set of probabilities that strongly indicate that
the first category should be matched. However, until it has been called with these

probabilities threshold number of times, it returns a 3, signifying an “unknown”
result. After it has been called threshold number of times, it returns a positive
prediction for category 0.

The next test shows what happens if a consecutive run of high probabilities for one
category is interrupted by a high probability for a different category:

TF_LITE_MICRO_TEST(FailPartWayThere) {

// Use the threshold from the 0th gesture

int threshold = kConsecutiveInferenceThresholds[0];

float probabilities[4] = {1.0, 0.0, 0.0, 0.0};

int prediction;

// Loop just too few times to trigger a prediction

for (int 1 = 0; 1 <= threshold - 1; i++) {
prediction = PredictGesture(probabilities);
TF_LITE_MICRO_EXPECT_EQ(prediction, 3);

// Call with a different prediction, triggering a failure
probabilities[0] = 0.0;

probabilities[2] = 1.0;

prediction = PredictGesture(probabilities);
TF_LITE_MICRO_EXPECT_EQ(prediction, 3);

In this case, we feed in a set of consecutive high probabilities for category 0, but not a
sufficient number to meet the threshold. We then change the probabilities so that

category 2 is the highest, which results in a category 3 prediction, signifying an
“unknown” gesture.

The final test shows how PredictGesture() ignores probabilities that are below its
threshold. In a loop, we feed in exactly the correct number of predictions to meet

category 0’s threshold. However, although category 0 has the highest probability, its
value is 0.7, which is below PredictGesture()’s internal threshold of 0.8. This results
in a category 3 “unknown” prediction:

TF_LITE_MICRO_TEST(InsufficientProbability) {
// Use the threshold from the 0th gesture
int threshold = kConsecutiveInferenceThresholds[0];
// Below the probability threshold of 0.8
float probabilities[4] = {0.7, 0.0, 0.0, 0.0};
int prediction;
// Loop the exact right number of times
for (int 1 = 0; 1 <= threshold; i++) {
prediction = PredictGesture(probabilities);
TF_LITE_MICRO_EXPECT_EQ(prediction, 3);
}
}

To run these tests, use the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_gesture_predictor_test

The Output Handler

The output handler is very simple; it just takes the class index returned by

PredictGesture() and displays the results to the user. Its test, in
output_handler_test.cc, shows its interface:

TF_LITE_MICRO_TEST(TestCallability) {
tflite: :MicroErrorReporter micro_error_reporter;
tflite: :ErrorReporter* error_reporter = µ_error_reporter;
HandleOutput(error_reporter, 0);
HandleOutput(error_reporter, 1);
HandleOutput(error_reporter, 2);
HandleOutput(error_reporter, 3);

To run this test, use the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
test_gesture_output_handler_test

Detecting Gestures

All of these components come together in main_functions.cc, which contains the core
logic of our program. First it sets up the usual variables, along with some extras:

namespace tflite {

namespace ops {

namespace micro {

TfLiteRegistration* Register_DEPTHWISE_CONV_2D();
TfLiteRegistration* Register_MAX_POOL_2D();
TfLiteRegistration* Register_CONV_2D();
TfLiteRegistration* Register_ FULLY_CONNECTED();
TfLiteRegistration* Register_SOFTMAX();

} // namespace micro

} // namespace ops

} // namespace tflite

// Globals, used for compatibility with Arduino-style sketches.
namespace {

tflite::ErrorReporter* error_reporter = nullptr;

const tflite::Model* model = nullptr;

tflite::MicroInterpreter* interpreter = nullptr;

TfLiteTensor* model_input = nullptr;

int input_length;

// Create an area of memory to use for input, output, and intermediate arrays.
// The size of this will depend on the model you're using, and may need to be
// determined by experimentation.

constexpr int kTensorArenaSize = 60 * 1024;

uint8_t tensor_arena[kTensorArenaSize];

// Whether we should clear the buffer next time we fetch data

bool should_clear_buffer = false;
} // namespace

The input_length variable stores the length of the model’s input tensor, and the

should_clear_buffer variable is a flag that indicates whether the accelerometer
handler’s buffer should be cleared the next time it runs. Clearing the buffer is done
after a successful detection result in order to provide a clean slate for subsequent
inferences.

Next, the setup() function does all of the usual housekeeping so that we're ready to
run inference:

voild setup() {
// Set up logging. Google style is to avoid globals or statics because of
// lifetime uncertainty, but since this has a trivial destructor it's okay.
static tflite::MicroErrorReporter micro_error_reporter; //NOLINT
error_reporter = µ_error_reporter;

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
model = tflite::GetModel(g_magic_wand_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.",
model->version(), TFLITE_SCHEMA_VERSION);
return;

}

// Pull in only the operation implementations we need.
// This relies on a complete list of all the ops needed by this graph.
// An easier approach is to just use the AllOpsResolver, but this will
// incur some penalty in code space for op implementations that are not
// needed by this graph.
static tflite::MicroMutableOpResolver micro_mutable_op_resolver; // NOLINT
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_MAX_POOL_2D,
tflite::ops::micro::Register_MAX_POOL_2D());
micro_mutable_op_resolver.AddBuiltin(
tflite: :BuiltinOperator_CONV_2D,
tflite::ops::micro::Register_CONV_2D());
micro_mutable_op_resolver.AddBuiltin(
tflite::BuiltinOperator_FULLY_CONNECTED,
tflite::ops::micro::Register_FULLY_CONNECTED());
micro_mutable_op_resolver.AddBuiltin(tflite: :BuiltinOperator_SOFTMAX,
tflite::ops::micro::Register_SOFTMAX());

// Build an interpreter to run the model with

static tflite::Microlnterpreter static_interpreter(model,
micro_mutable_op_resolver,
tensor_arena,
kTensorArenaSize,
error_reporter);
interpreter = &static_1interpreter;

// Allocate memory from the tensor_arena for the model's tensors
interpreter->AllocateTensors();

// Obtain pointer to the model's input tensor
model_input = interpreter->input(0);
if ((model_input->dims->size != 4) || (model_input->dims->data[0] != 1) ||
(model_input->dims->data[1] != 128) ||
(model_input->dims->data[2] != kChannelNumber) ||
(model_input->type != kTfLiteFloat32)) {
error_reporter->Report("Bad input tensor parameters in model");
return;

}
input_length = model_input->bytes / sizeof(float);

TfLiteStatus setup_status = SetupAccelerometer(error_reporter);
if (setup_status != kTfLiteOk) {
error_reporter->Report("Set up failed\n");
}
}

The more interesting stuff happens in the loop() function, which is still very simple:

voild loop() {
// Attempt to read new data from the accelerometer
bool got_data = ReadAccelerometer(error_reporter, model_input->data.f,
input_length, should_clear_buffer);

// Don't try to clear the buffer again

should_clear_buffer = false;

// If there was no new data, wait until next time

if (!got_data) return;

// Run inference, and report any error

TfLiteStatus invoke_status = interpreter->Invoke();

if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed on index: %d\n", begin_index);
return;

// Analyze the results to obtain a prediction

int gesture_index = PredictGesture(interpreter->output(0)->data.f);
// Clear the buffer next time we read data

should_clear_buffer = gesture_index < 3;

// Produce an output

HandleOutput(error_reporter, gesture_index);

First, we attempt to read some values from the accelerometer. After the attempt, we

set should_clear_buffer to false to ensure that we stop trying to clear it for the
time being.

If obtaining new data was unsuccessful, ReadAccelerometer () will return a false

value, and we’ll return from the loop() function so that we can try again the next time
it is called.

If the value returned by ReadAccelerometer() is true, we'll run inference on our
freshly populated input tensor. We pass the result into PredictGesture(), which gives
us the index of which gesture was detected. If the index is less than 3, the gesture was
valid, so we set the should_clear_buffer flag in order to clear the buffer next time

ReadAccelerometer() is called. We then call HandleOutput() to report any results to
the user.

Over in main.cc, the main() function kicks off our program, runs setup(), and calls the
loop() function in a loop:

int main(int argc, char* argv[]) {
setup();
while (true) {

loop();

And that’s it! To build the program on your development computer, use the following
command:

make -f tensorflow/lite/micro/tools/make/Makefile magic_wand

Then, to run the program, enter the following:
./tensorflow/lite/micro/tools/make/gen/osx_x86_64/bin/magic_wand
The program won’t produce any output, because there isn’t any accelerometer data

available, but you can confirm that it builds and runs.

Next, we walk through the code for each platform that captures accelerometer data

and produces an output. We also show how to deploy and run the application.
Deploying to Microcontrollers

In this section, we’ll deploy our code to two devices:

e Arduino Nano 33 BLE Sense

¢ SparkFun Edge

Let’s begin with the Arduino implementation.
Arduino

The Arduino Nano 33 BLE Sense has a three-axis accelerometer as well as Bluetooth
support, and is small and lightweight—ideal for building a magic wand.

Bluetooth

The implementation in this chapter doesn’t demonstrate how to use Bluetooth,
but Arduino provides a library with example code that you can use create your
own implementation. You can find the details in “Making your own changes”.

There’s also a chance that Bluetooth support might have been added to the
example since the book was published. Check the latest version in the TensorFlow
repository.

Let’s walk through the Arduino-specific implementations of some of the application’s

key files.
Arduino constants

The constant kConsecutiveInferenceThresholds is redefined in the file
arduino/constants.cc:

// The number of expected consecutive inferences for each gesture type.
// Established with the Arduino Nano 33 BLE Sense.
const int kConsecutivelnferenceThresholds[3] = {8, 5, 4};

As mentioned earlier in the chapter, this constant stores the number of consecutive
positive inferences required for each gesture to be considered detected. The number
depends on how many inferences are run per second, which varies per device. Because
the default numbers were calibrated for the SparkFun Edge, the Arduino
implementation needs its own set of numbers. You can modify these thresholds to
make inference more difficult or easier to trigger, but setting them too low will result

in false positives.
Capturing accelerometer data on Arduino

The Arduino accelerometer handler is located in arduino/accelerometer_handler.cc. It has
the task of capturing data from the accelerometer and writing it to the model’s input
buffer.

The model we are using was trained using data from the SparkFun Edge board. The
Edge’s accelerometer provides a set of readings at a rate of 25 Hz, or 25 times per
second. To work correctly, it needs to be fed data that is captured at the same rate. As
it turns out, the accelerometer on the Arduino Nano 33 BLE Sense board returns
measurements at a rate of 119 Hz. This means that in addition to capturing data, we
need to downsample it to suit our model.

Although it sounds very technical, downsampling is actually pretty easy. To reduce the
sample rate of a signal, we can just throw away some of the data. We look at how this
works in the following code.

First the implementation includes its own header file, along with some others:

#include "tensorflow/lite/micro/examples/magic_wand/
accelerometer_handler.h"

#include <Arduino.h>
#include <Arduino_LSM9DS1.h>

#include "tensorflow/lite/micro/examples/magic_wand/constants.h"

The file Arduino.h provides access to some basic features of the Arduino platform. The
file Arduino_LSM9DS1.h is part of the Arduino_LSM9DS1 library, which we’ll be using to
communicate with the board’s accelerometer.

Next, we set up some variables:

// A buffer holding the last 200 sets of 3-channel values
float save_data[600] = {0.0};

// Most recent position in the save_data buffer

int begin_index = 0;

// True if there is not yet enough data to run inference

bool pending_1initial_data = true;

// How often we should save a measurement during downsampling
int sample_every_n;

// The number of measurements since we last saved one

int sample_skip_counter = 1;

These include a buffer we’ll be filling with our data, save_data, along with some
variables for tracking our current position in the buffer and whether we have enough

data to start running inference. The most interesting two variables, sample_every_n

and sample_skip_counter, are used in the downsampling process. We’ll look at this
more closely in a moment.

Next in the file, the SetupAccelerometer() function is called by the program’s main

loop to get the board ready to capture data:

TfLiteStatus SetupAccelerometer(tflite::ErrorReporter* error_reporter) {
// Wait until we know the serial port is ready
while (!Serial) {

// Switch on the IMU

if (!IMU.begin()) {
error_reporter->Report("Failed to initialize IMU");
return kTfLiteError;

}

Because we’ll be outputting a message to indicate that everything is ready to go, the
first thing it does is make sure that the device’s serial port is ready. It then switches on
the inertial measurement unit (IMU), which is the electronic component that contains

the accelerometer. The IMU object comes from the Arduino_LSM9DS1 library.

The next step is to start thinking about downsampling. We first query the IMU library
to determine the board’s sample rate. When we have that number, we divide it by our

target sample rate, which is defined in kTargetHz as part of constants.h:

// Determine how many measurements to keep in order to

// meet kTargetHz

float sample_rate = IMU.accelerationSampleRate();

sample_every_n = static_cast<int>(roundf(sample_rate / kTargetHz));

Our target rate is 25 Hz, and the board’s sample rate is 119 Hz; thus, the result of our
division is 4.76. This lets us know how many of the 119 Hz samples we need to keep in
order to attain the target sample rate of 25 Hz: 1 sample in every 4.76.

Because keeping a fractional number of samples is difficult, we use the roundf()
function to round to the nearest number, 5. To downsample our signal, then, we need
to keep one in every five measurements. This will result in an effective sample rate of
23.8 Hz, which is a close enough approximation that our model should work well. We

store this value in the sample_every_n variable for use later.

Now that we’ve established the parameters of our downsampling, we give the user a
message to inform them that the application is ready to go and then return from the

SetupAccelerometer() function:

error_reporter->Report("Magic starts!");

return kTfLiteOk;

Next up, we define ReadAccelerometer (). This function is tasked with capturing new
data and writing it to the model’s output tensor. It begins with some code that is used
to clear its internal buffer after a gesture has been successfully recognized, cleaning
the slate for any subsequent gestures:

bool ReadAccelerometer(tflite::ErrorReporter* error_reporter, float* input,
int length, bool reset_buffer) {
// Clear the buffer if required, e.g. after a successful prediction
if (reset_buffer) {
memset(save_data, 0, 600 * sizeof(float));
begin_index = 0;
pending_initial_data = true;

Next, we use the IMU library to check for available data in a loop. If there’s data
available, we read it:

// Keep track of whether we stored any new data
bool new_data = false;
// Loop through new samples and add to buffer
while (IMU.accelerationAvailable()) {
float x, vy, z;
// Read each sample, removing it from the device's FIFO buffer
if (!IMU.readAcceleration(x, vy, z)) {
error_reporter->Report("Failed to read data");
break;

}

The accelerometer on the Arduino Nano 33 BLE Sense board is equipped with
something called a FIFO buffer. This is a special memory buffer, located on the
accelerometer itself, which holds the most recent 32 measurements. Because it’s part
of the accelerometer hardware, the FIFO buffer continues to accrue measurements
even while our application code is running. If it weren’t for the FIFO buffer, we might
lose a lot of data, meaning we wouldn’t have an accurate record of the gestures being
made.

When we call IMU.accelerationAvailable(), we are querying the accelerometer to
see whether new data is available in its FIFO buffer. Using our loop, we continue to
read all the data from the buffer until there is none remaining.

Next up, we implement our super-simple downsampling algorithm:

// Throw away this sample unless it's the nth
if (sample_skip_counter != sample_every_n) {
sample_skip_counter += 1;
continue;

}

Our approach is to keep one in every n samples, where n is the number stored in
sample_every_n. To do this, we maintain a counter, sample_skip_counter, which lets
us know how many samples have been read since the last one we kept. For every
measurement we read, we check whether it is the nth. If it isn’t, we continue the loop
without writing the data anywhere, effectively throwing it away. This simple process
leads to our data being downsampled.

If execution gets further than this point, we’re planning on keeping the data. To do
this, we write it to consecutive positions in our save_data buffer:

// Write samples to our buffer, converting to milli-Gs
// and flipping y and x order for compatibility with
// model (sensor orientation is different on Arduino
// Nano BLE Sense compared with SparkFun Edge)

save_data[begin_index++] = y * 1000;
save_data[begin_index++] = x * 1000;
save_data[begin_index++] = z * 1000;

Our model accepts accelerometer measurements in the order x, y, z. You’ll notice here
that we’re writing the y value to the buffer before the x. This is because our model was
trained on data captured on the SparkFun Edge board, whose accelerometer has its
axes pointing in different physical directions to the one on the Arduino. This
difference means that the SparkFun Edge’s x-axis is equivalent to the Arduino’s y-axis,
and vice versa. By swapping these axes’ data in our code, we can make sure our model
is being fed data that it can understand.

The final few lines of our loop do some housework, setting some state variables that
are used in our loop:

// Since we took a sample, reset the skip counter
sample_skip_counter = 1;
// If we reached the end of the circle buffer, reset
if (begin_index >= 600) {

begin_index = 0;

new_data = true;

We reset our downsampling counter, make sure we don’t run off the end of our sample

buffer, and set a flag to indicate that new data has been saved.

After grabbing this new data, we do some more checks. This time, we’re making sure
that we have sufficient data to perform an inference. If not, or if new data was not
captured this time around, we return from the function without doing anything:

// Skip this round if data is not ready yet
if (!new_data) {
return false;

}

// Check if we are ready for prediction or still pending more initial data
if (pending_initial_data && begin_index >= 200) {
pending_initial_data = false;

// Return if we don't have enough data
if (pending_initial_data) {
return false;

}

By returning false when there’s no new data, we make sure the calling function
knows not to bother running inference.

If we got this far, we’ve obtained some new data. We copy the appropriate amount of
data, including our new samples, to the input tensor:

// Copy the requested number of bytes to the provided input tensor
for (int 1 = 0; 1 < length; ++1) {
int ring_array_index = begin_index + 1 - length;
if (ring_array_index < 0) {
ring_array_1index += 600;

input[i] = save_data[ring_array_1index];

return true;

}

And that’s it! We've populated the input tensor and are ready to run inference. After
inference has been run, the results are passed into the gesture predictor, which
determines whether a valid gesture has been spotted. The result is passed into the
output handler, which we walk through next.

Responding to gestures on Arduino

The output handler is defined in arduino/output_handler.cc. It’s nice and simple: all it
does is log information to the serial port depending on which gesture was detected,

and toggle the board’s LED each time inference is run.

The first time the function runs, the LED is configured for output:

void HandleOutput(tflite::ErrorReporter* error_reporter, int kind) {
// The first time this method runs, set up our LED
static bool is_initialized = false;
if (!is_initialized) {
pinMode(LED_BUILTIN, OUTPUT);
is_initialized = true;

}

Next, the LED is toggled on and off with each inference:

// Toggle the LED every time an inference is performed
static int count = 0;
++count;
if (count & 1) {
digitalWrite(LED_BUILTIN, HIGH);
} else {
digitalWrite(LED_BUILTIN, LOW);
}

Finally, we print some beautiful ASCII art depending on which gesture was matched:

// Print some ASCII art for each gesture
if (kind == 0) {
error_reporter->Report(

"WING:\n\r* * *\n\r * * % !
"*\n\r * * * *\n\r * * * *\n\r W%
"* *\n\r * *\n\r");

} else if (kind == 1) {
error_reporter->Report(
"RING:\n\r *\n\r * *\n\r * *\n\r "
Wi *\n\r * *\n\r *\n\r
. xn\r";
} else if (kind == 2) {
error_reporter->Report(
"SLOPE:\n\r *\n\r *\n\r *\n\r *\n\r .
"*\n\r *\n\r *\n\r ¥ %ok & k% Kk *\n\r”);

*

It’s difficult to read now, but you’ll be rewarded with the output’s full glory when you

deploy the application to your board.
Running the example

To deploy this example, here’s what we’ll need:

e An Arduino Nano 33 BLE Sense board

e A micro-USB cable
e The Arduino IDE
Tip

There’s always a chance that the build process might have changed since this book was
written, so check README.md for the latest instructions.

The projects in this book are available as example code in the TensorFlow Lite Arduino
library. If you haven't already installed the library, open the Arduino IDE and select
Manage Libraries from the Tools menu. In the window that appears, search for and
install the library named TensorFlowLite. You should be able to use the latest version,

but if you run into issues, the version that was tested with this book is 1.14-ALPHA.
Note

You can also install the library from a .zip file, which you can either download from the
TensorFlow Lite team or generate yourself using the TensorFlow Lite for
Microcontrollers Makefile. If you'd prefer to do the latter, see Appendix A.

After you've installed the library, the magic_wand example will show up in the File
menu under Examples—Arduino_TensorFlowLite, as shown in Figure 11-5.

Click “magic_wand” to load the example. It will appear as a new window, with a tab for
each of the source files. The file in the first tab, magic_wand, is equivalent to the

main_functions.cc we walked through earlier.
Note

“Running the Example” already explained the structure of the Arduino example, so we
won'’t cover it again here.

File Edit Sketch Tools Help

New

Open...

Open Recent

Sketchbook

Examples Built-in Examples
Close #$W 01.Basics

Save #S 02.Digital

Save As... €3S 03.Analog
04.Communication
05.Control
06.Sensors
07.Display
08.Strings

09.UsSB
10.StarterKit_BasicKit
11.ArduinolSP

Page Setup o8P
Print 8P

VVVVVVVYVVYYY

carmples tor any boand
Adafruit Circuit Playground
Arduino_LSM3DS1

| L

YYVVVVVYVYRYY

hello_world
magic_wand
micro_speech
person_detection

Ethernet
Firmata
LiquidCrystal
SD

Stepper
Temboo

RETIRED

xasll 1""' R} i
ArduCAM
JPEGDecoder

Poa st Db s

Figure 11-5. The Examples menu

In addition to the TensorFlow library, we also need to install and patch the
Arduino_LSM9DS1 library. By default, the library doesn’t enable the FIFO buffer that is
required by the example, so we have to make some modifications to its code.

In the Arduino IDE, select Tools—Manage Libraries and then search for
Arduino_LSM9DS1. To ensure the following instructions work, you must install version

1.0.0 of the driver.
Note

It’s possible that the driver might have been fixed by the time you are reading this
chapter. You can find the latest deployment instructions in README.md.

The driver will be installed to your Arduino/libraries directory, in the subdirectory
Arduino_LSM9DS]1.

Open the Arduino_LSM9DS1/src/LSM9DS1.cpp driver source file and then go to the
function named LSM9DS1Class: :begin(). Insert the following lines at the end of the
function, immediately before the return 1 statement:

// Enable FIFO (see docs https://www.st.com/resource/en/datasheet/DMOO103319.pdf)
// writeRegister(LSMIDS1_ADDRESS, 0x23, 0x02);

// Set continuous mode

writeRegister (LSMIDS1_ADDRESS, 0Ox2E, 0xC0);

Next, locate the function named LSM9DS1Class: :accelerationAvailable(). You will
see the following lines:

if (readRegister(LSM9DS1_ADDRESS, LSM9IDS1_STATUS_REG) & 0x01) {
return 1;

}

Comment out those lines and then replace them with the following:

// Read FIFO_SRC. If any of the rightmost 8 bits have a value, there is data.
if (readRegister(LSMODS1_ADDRESS, 0x2F) & 63) {
return 1;

}

Save the file. Patching is now complete!

To run the example, plug in your Arduino device via USB. On the Tools menu, make
sure that the correct device type is selected from the Board drop-down list, as shown
in Figure 11-6.

If your device’s name doesn’t appear in the list, you’ll need to install its support
package. To do this, click Boards Manager and then, in the window that appears,
search for your device and install the latest version of the corresponding support
package.

Next, make sure the device’s port is selected in the Port drop-down, also in the Tools

menu, as demonstrated in Figure 11-7.

Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

WIFi101 / WIFININA Firmware Updater

Board: "Arduino Nano 33 BLE"
Port: “/devfcu.usbmodem 1454301 (Arduino Nano 33 BLE)*
Get Board info

Programmer: "AVRISP mkil*
Burn Boctioader

1e detatled Tensorflow Lite exarple code.
'duino kno..s to build the TF Lite library.
nn function

o chere argv):

wt a seriwal connection,
we giving wp.

3 llld | Arduine 1.8.9

Arduino SAMD (32-bits ARM Cortex-MO0+) Boards
Arduino/Genuino Zero (Programming Port)
Arduino/Genulno Zero (Native USB Port)
Arduino/Genuino MKR1000

Arduino MKRZERO

Arduino MKR WiFi 1010

Arduino NANO 33 loT

Arduino MKR FOX 1200

Arduino MKR WAN 1300

Arduino MKR GSM 1400

Arduino MKR NB 1500

Arduino MKR Vidor 4000

Adafrult Circuit Playground Express
Arduino MO Pro (Programming Port)
Arduino MO Pro (Native US8 Port)

Arduino MO

Arduino Tian

V Arduino Nano 33 BLE

Figure 11-6. The Board drop-down list

Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

Board: "Arduino Nano 33 BLE"
Port: "/dev/cu.usbmodem 1454301 (Arduino Nano 33 BLE)"
Get Board Info

Programmer: “AVRISP mkil®
Burn Bootloader

d | Arduino 1.8.9

/devfcu_ Bluetooth-incoming- Port
/devfcu.DixieDewdrop-SPPDev-2
/dev/cu.DixieDewdrop-SPPDev-5
/devicu.MALS
Jdevicu.SOC

v /devfcu.usbmodem1454301 (Arduino Nano 33 BLE)

Figure 11-7. The Port drop-down list

Finally, click the upload button in the Arduino window (highlighted in white in
Figure 11-8) to compile and upload the code to your Arduino device.

1 Upload Using Programmer

Figure 11-8. The upload button

After the upload has successfully completed, you should see the LED on your Arduino
board begin to flash.

To try some gestures, select Serial Monitor in the Tools menu. You should initially see
the following output:

Magic starts!

You can now try to make some gestures. Hold the board up with one hand, with the
components facing up and the USB adapter facing toward the left, as shown in
Figure 11-9.

\

Figure 11-10 presents a diagram showing how to perform each gesture. Because the
model was trained on data collected when the board was attached to a wand, you
might need a few tries to get them to work.

Figure 11-9. How to hold the board while performing gestures

Wing Ring Slope

\
!V

The easiest one to start with is “wing.” You should move your hand quickly enough
that it takes around one second to perform the gesture. If you’re successful, you should
see the following output, and the red LED should illuminate:

\

Figure 11-10. The three magic wand gestures

WING:
*

Congratulations, you've cast your first magic spell using the Arduino!
Note

At this point, you might choose to be creative and attach the board to the tip of a
magic wand, at the point furthest from your hand. Any stick, ruler, or other household
item with a length of around a foot (30 cm) should work well.

Make sure the device is attached firmly, and in the same orientation, with the
components facing up and the USB adapter facing toward the left. And pick a rigid
wand, not a flexible one; any wobbling will affect the accelerometer readings.

Next, try the “ring” gesture, by tracing a clockwise circle with your hand (or the tip of
your wand). Again, aim to take around a second to perform the gesture. You should see
the following appear, as if by magic:

RING:

For the final gesture, trace the corner of a triangle in the air. It’s best described by its
ASCII art demonstration, shown here:

SLOPE:

* % % * % * % %

Like any good magic spells, you might have to practice these a bit before you can
perform them perfectly each time. You can see video demonstrations of the gestures in
README.md.

What If It Didn’t Work?

Here are some possible issues and how to debug them:
Problem: The LED isn’t coming on.

Solution: Try pressing the reset button or disconnecting the board from the USB
cable and then reconnecting it. If neither of these works, try flashing the board
again.

Problem: The LED is stuck on or off.

Solution: It’s normal for the LED to stop flashing immediately after an inference,
while the program waits for enough new data to be available. If the LED stops
flashing for more than a few seconds, the program might have crashed. In that
case, press the reset button.

Problem: You can’t get the gestures to work.

Solution: First, make sure the LED is blinking, which indicates that inference is
happening. If it isn’t, press the reset button. Next, make sure you're holding the
board in the correct orientation, as shown earlier.

To learn the gestures, start with the “W,” which is the easiest to master. The “0”
is a little more difficult because the circle needs to be quite smooth. The angle
gesture is the trickiest. Try watching the videos in README.md for guidance.

Making your own changes

Now that you deployed the basic application, try playing around and making some
changes to the code. Just edit the files in the Arduino IDE and save them, and then
repeat the previous instructions to deploy your modified code to the device.

Here are a few things you could try:

 Experiment with the threshold values in arduino/constants.cc to make the
gestures easier or more difficult to perform (at the cost of more false positives
or negatives).

» Write a program on your computer that lets you perform tasks using physical
gestures.

 Extend the program to transmit detection results via Bluetooth. There are
examples showing how to do this included with the ArduinoBLE library, which
you can download via the Arduino IDE.

SparkFun Edge

The SparkFun Edge features a three-axis accelerometer, a battery mount, and
Bluetooth support. This makes it perfect for a magic wand because it can operate
wirelessly.

Bluetooth

The implementation in this chapter doesn’t demonstrate how to use Bluetooth,
but there’s an example in the Ambiq SDK that shows how you can do it. We
provide a link in “Making your own changes”.

There’s also a chance that Bluetooth support might have been added to the
example since the book was published. Check the latest version in the TensorFlow
repository.

Capturing accelerometer data on SparkFun Edge

The code that captures accelerometer data is located in
sparkfun_edge/accelerometer_handler.cc. A lot of it is device-specific, but we’ll skip over
the implementation details and focus on the important stuff.

The first step involved with capturing accelerometer data is configuring the hardware.

The SetupAccelerometer() function kicks this off by setting various low-level
parameters required by the accelerometer:

TfLiteStatus SetupAccelerometer(tflite::ErrorReporter* error_reporter) {
// Set the clock frequency.
am_hal_clkgen_control(AM_HAL_CLKGEN_CONTROL_SYSCLK_MAX, 0);

// Set the default cache configuration
am_hal_cachectrl_config(&am_hal_cachectrl_defaults);
am_hal_cachectrl_enable();

// Configure the board for low power operation.
am_bsp_low_power_init();

// Collecting data at 25Hz.
int accInitRes = initAccelerometer();

You'll notice a call to a function named initAccelerometer(). This is defined in the
SparkFun Edge BSP’s accelerometer example, which is pulled down as a dependency
when our project is built. It performs various tasks to switch on and configure the
board’s accelerometer.

After the accelerometer is running, we enable its FIFO buffer. This is a special memory
buffer, located on the accelerometer itself, which holds the last 32 datapoints. By
enabling it, we’re able to continue collecting accelerometer measurements even while
our application code is busy running inference. The remainder of the function sets up
the buffer and logs errors if anything goes wrong:

// Enable the accelerometer's FIFO buffer.
// Note: LIS2DH12 has a FIFO buffer which holds up to 32 data entries. It
// accumulates data while the CPU is busy. Old data will be overwritten if
// it's not fetched in time, so we need to make sure that model inference is
// faster than 1/25Hz * 32 = 1.28s
if (lis2dh12_fifo_set(&dev_ctx, 1)) {

error_reporter->Report("Failed to enable FIFO buffer.");

}

if (lis2dh12_fifo_mode_set(&dev_ctx, LIS2DH12_BYPASS_MODE)) {
error_reporter->Report("Failed to clear FIFO buffer.");
return 0;

}

if (lis2dh12_fifo_mode_set(&dev_ctx, LIS2DH12_DYNAMIC_STREAM_MODE)) {
error_reporter->Report("Failed to set streaming mode.");
return 0;

}

error_reporter->Report("Magic starts!");

return kTfLiteOk;

When we’re done with initialization, we can call the ReadAccelerometer () function to
get the latest data. This will happen between every inference.

First, if the reset_buffer argument is true, ReadAccelerometer() performs a reset of
its data buffer. This is done after a valid gesture has been detected in order to provide

a clean slate for further gestures. As part of this process, we use am_util_delay_ms()
to make our code wait for 10 ms. Without this delay, the code often hangs when
reading new data (as of this writing, the cause was unclear, but the TensorFlow open
source project welcomes pull requests if you determine a better fix):

bool ReadAccelerometer(tflite::ErrorReporter* error_reporter, float* input,
int length, bool reset_buffer) {

// Clear the buffer if required, e.g. after a successful prediction

if (reset_buffer) {
memset(save_data, 0, 600 * sizeof(float));
begin_index = 0;
pending_initial_data = true;
// Wait 10ms after a reset to avoid hang

am_util_delay_ms(10);
}

After resetting the main buffer, ReadAccelerometer() checks whether there is any
new data available in the accelerometer’s FIFO buffer. If there’s nothing available yet,
we just return from the function:

// Check FIFO buffer for new samples

1is2dh12_fifo_src_reg_t status;

if (1lis2dh12_fifo_status_get(&dev_ctx, &status)) {
error_reporter->Report("Failed to get FIFO status.");
return false;

}

int samples = status.fss;
if (status.ovrn_fifo) {
samples++;

}

// Skip this round if data is not ready yet
if (samples == 0) {
return false;

}

Our application’s main loop will continue calling, meaning as soon as there’s data
available, we can move past this point.

The next part of the function loops through the new data and stores it in another,
larger bulffer. First we set up a special struct of type axis3bit16_t, designed to hold

accelerometer data. We then call 1is2dh12_acceleration_raw_get() to fill it with the
next available measurement. This function will return zero if it fails, at which point we
display an error:

// Load data from FIFO buffer
axis3bitl6_t data_raw_acceleration;
for (int 1 = 0; 1 < samples; i++) {
// Zero out the struct that holds raw accelerometer data
memset(data_raw_acceleration.u8bit, 0x00, 3 * sizeof(intl6_t));
// If the return value is non-zero, sensor data was successfully read
if (lis2dh12_acceleration_raw_get(&dev_ctx, data_raw_acceleration.u8bit)) {
error_reporter->Report("Failed to get raw data.");

If the measurement was obtained successfully, we convert it into milli-Gs, the unit of
measurement expected by the model, and then write it into save_data[], which is an
array we're using as a buffer to store values that we’ll use for inference. The values for
each axis of the accelerometer are stored consecutively:

} else {

// Convert each raw 16-bit value into floating point values representing

// milli-Gs, a unit of acceleration, and store in the current position of

// our buffer

save_data[begin_index++] =
1is2dh12_from_fs2_hr_to_mg(data_raw_acceleration.i16bit[0]);

save_data[begin_1index++] =
1is2dh12_from_fs2_hr_to_mg(data_raw_acceleration.i16bit[1]);

save_data[begin_1index++] =
1lis2dh12_from_fs2_hr_to_mg(data_raw_acceleration.i16bit[2]);

// Start from beginning, imitating loop array.

if (begin_index >= 600) begin_index = 0;

Our save_data[] array can store 200 sets of three-axis values, so we set our
begin_index counter back to 0 when it reaches 600.

We’ve now incorporated all of the new data into our save_datal[] buffer. Next, we
check whether we have enough data to make a prediction. When testing the model, it
was discovered that around a third of our total buffer size is the bare minimum
amount of data that results in a reliable prediction; therefore, if we have at least this

much data, we set the pending_initial_data flag to false (it defaults to true):

// Check if we are ready for prediction or still pending more initial data
if (pending_initial_data && begin_index >= 200) {
pending_initial_data = false;

Next, if there is still insufficient data to run an inference, we return false:

// Return if we don't have enough data
if (pending_initial_data) {
return false;

}

If we got this far, there’s sufficient data in the buffer to run an inference. The final part

of the function copies the requested data from the buffer into the input argument,
which is a pointer to the model’s input tensor:

// Copy the requested number of bytes to the provided input tensor
for (int 1 = 0; 1 < length; ++1) {
int ring_array_index = begin_index + i - length;
if (ring_array_index < 0) {
ring_array_1index += 600;

}

input[i] = save_data[ring_array_index];

return true;

The variable length is an argument passed into ReadAccelerometer () that determines
how much data should be copied. Because our model takes 128 three-axis readings as

its input, the code in main_functions.cc calls ReadAccelerometer () with a length of 384
(128 * 3).

At this point, our input tensor is filled with fresh accelerometer data. Inference will be
run, the results will be interpreted by the gesture predictor, and the result will be

passed to the output handler to display to the user.
Responding to gestures on SparkFun Edge

The output handler, located in sparkfun_edge/output_handler.cc, is very simple. The first
time it runs, we configure the LEDs for output:

voild HandleOutput(tflite::ErrorReporter* error_reporter, int kind) {

// The first time this method runs, set up our LEDs correctly

static bool is_initialized = false;

if (!is_initialized) {
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_RED, g_AM_HAL_GPIO_OUTPUT_12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_BLUE, g_AM_HAL_GPIO_OUTPUT_12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_GREEN, g_AM_HAL_GPIO_OUTPUT_12);
am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_YELLOW, g _AM_HAL_GPIO_OUTPUT 12);
is_initialized = true;

Next, we toggle the yellow LED with each inference:

// Toggle the yellow LED every time an inference is performed
static int count = 0;
++count;
if (count & 1) {
am_hal_gpio_output_set(AM_BSP_GPIO_LED_YELLOW);
} else {
am_hal_gpio_output_clear(AM_BSP_GPIO_LED_YELLOW);

After that, we check which gesture was detected. For each individual gesture, we light
an LED, clear all the others, and output some beautiful ASCII art via the serial port.
Here’s the code that handles the “wing” gesture:

// Set the LED color and print a symbol (red: wing, blue: ring, green: slope)
if (kind == 0) {
error_reporter->Report(

"WING:\n\r* * *\n\r * * % !

“*\n\r * * * *\n\r * * * *\n\r * *

"* *\n\r - *\n\r");
am_hal_gpio_output_set(AM_BSP_GPIO_LED_RED);
am_hal_gpio_output_clear (AM_BSP_GPIO_LED BLUE);
am_hal_gpio_output_clear (AM_BSP_GPIO_LED_GREEN);

On a serial port monitor, the output will look like this:

WING:
*

A different serial output and LED are used for each gesture.
Running the example

We've now seen how the SparkFun Edge code works. Next, let’s get it running on our
hardware.

Tip
There’s always a chance that the build process might have changed since this book was
written, so check README.md for the latest instructions.

To build and deploy our code, we’ll need the following:

e A SparkFun Edge board with the Himax HM01B0 breakout attached

e A USB programmer (we recommend the SparkFun Serial Basic Breakout, which
is available in micro-B USB and USB-C variants)

e A matching USB cable
e Python 3 and some dependencies

Note

If you're unsure whether you have the correct version of Python installed, “Running
the Example” has instructions on how to check.

Open a terminal window, clone the TensorFlow repository, and then change into its
directory:

git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow

Next, we're going to build the binary and run some commands that get it ready for
downloading to the device. To avoid some typing, you can copy and paste these

commands from README.md.
Build the binary

The following command downloads all the required dependencies and then compiles a
binary for the SparkFun Edge:

make -f tensorflow/lite/micro/tools/make/Makefile \
TARGET=sparkfun_edge magic_wand_bin

The binary will be created as a .bin file, in the following location:

tensorflow/lite/micro/tools/make/gen/
sparkfun_edge_cortex-m4/bin/magic_wand.bin

To check that the file exists, you can use the following command:

test -f tensorflow/lite/micro/tools/make/gen/sparkfun_edge_ \
cortex-m4/bin/magic_wand.bin & echo "Binary was successfully created" || \
echo "Binary is missing"

If you run that command, you should see Binary was successfully created printed
to the console.

If you see Binary is missing, there was a problem with the build process. If so, it’s

likely that there are some clues to what went wrong in the output of the make

command.
Sign the binary

The binary must be signed with cryptographic keys to be deployed to the device. Let’s
run some commands that will sign the binary so that it can be flashed to the SparkFun
Edge. The scripts used here come from the Ambiq SDK, which is downloaded when the
Makefile is run.

Enter the following command to set up some dummy cryptographic keys you can use
for development:

cp tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0/ \
tools/apollo3_scripts/keys_info0.py
tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0/ \
tools/apollo3_scripts/keys_info.py

Next, run the following command to create a signed binary. Substitute python3 with
python if necessary:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_image_blob.py \
--bin tensorflow/lite/micro/tools/make/gen/ \
sparkfun_edge_cortex-m4/bin/micro_vision.bin \
--load-address 0xC000 \
--magic-num OxCB \
-0 main_nonsecure_ota \
--version 0x0

This creates the file main_nonsecure_ota.bin. Now, run this command to create a final

version of the file that you can use to flash your device with the script you will use in
the next step:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_wireupdate_blob.py \
--load-address 0x20000 \

--bin main_nonsecure_ota.bin \

-6\

-0 main_nonsecure_wire \

--options 0x1

You should now have a file called main_nonsecure_wire.bin in the directory where you

ran the commands. This is the file you’ll be flashing to the device.
Flash the binary

The SparkFun Edge stores the program it is currently running in its 1 megabyte of
flash memory. If you want the board to run a new program, you need to send it to the
board, which will store it in flash memory, overwriting any program that was

previously saved. This process is called flashing.
Attach the programmer to the board

To download new programs to the board, you’ll use the SparkFun USB-C Serial Basic
serial programmer. This device allows your computer to communicate with the
microcontroller via USB.

To attach this device to your board, perform the following steps:

1. On the side of the SparkFun Edge, locate the six-pin header.

2. Plug the SparkFun USB-C Serial Basic into these pins, ensuring that the pins
labeled BLK and GRN on each device are lined up correctly.

You can see the correct arrangement in Figure 11-11.

—

Figure 11-11. Connecting the SparkFun Edge and USB-C Serial Basic (image courtesy of SparkFun)

Attach the programmer to your computer

Next, connect the board to your computer via USB. To program the board, you need to
determine the name that your computer gives the device. The best way of doing this is
to list all the computer’s devices before and after attaching it and then look to see
which device is new.

Warning

Some people have reported issues with their operating system’s default drivers for the
programmer, so we strongly recommend installing the driver before you continue.

Before attaching the device via USB, run the following command:

macO0S:
1s /dev/cu*

Linux:
1s /dev/tty*

This should output a list of attached devices that looks something like the following:

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.MALS
/dev/cu.S0C

Now, connect the programmer to your computer’s USB port and run the command
again:

macO0S:
1s /dev/cu*

Linux:
1s /dev/tty*

You should see an extra item in the output, as in the example that follows. Your new
item might have a different name. This new item is the name of the device:

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.MALS

/dev/cu.S0C
/dev/cu.wchusbserial-1450

This name will be used to refer to the device. However, it can change depending on
which USB port the programmer is attached to, so if you disconnect the board from
your computer and then reattach it you might need to look up its name again.

Tip

Some users have reported two devices appearing in the list. If you see two devices, the
correct one to use begins with the letters “wch”; for example, “/dev/wchusbserial-
14410.”

After you've identified the device name, put it in a shell variable for later use:

export DEVICENAME=<your device name here>

This is a variable that you can use when running commands that require the device

name, later in the process.
Run the script to flash your board

To flash the board, you need to put it into a special “bootloader” state that prepares it
to receive the new binary. You can then run a script to send the binary to the board.

First create an environment variable to specify the baud rate, which is the speed at
which data will be sent to the device:

export BAUD_RATE=921600

Now paste the command that follows into your terminal—but do not press Enter yet!. The
${DEVICENAME} and ${BAUD_RATE} in the command will be replaced with the values

you set in the previous sections. Remember to substitute python3 with python if
necessary:

python3 tensorflow/lite/micro/tools/make/downloads/ \
AmbigSuite-Rel2.0.0/tools/apollo3_scripts/uart_wired_update.py -b \
S{BAUD_RATE} S${DEVICENAME} -r 1 -f main_nonsecure_wire.bin -1 6

Next you’ll reset the board into its bootloader state and flash the board.

On the board, locate the buttons marked RST and 14, as shown in Figure 11-12.

!!E
2aQ =

uHN"H"""HH’

ARARMARRRRARARRARARARGS

It

LU P L e)
. ‘

-p L9

Pommdby
TensorFIow

é’

Figure 11-12. The SparkFun Edge’s buttons

Perform the following steps:

1. Ensure that your board is connected to the programmer, and the entire thing
is connected to your computer via USB.

2. On the board, press and hold the button marked 14. Continue holding it.

3. While still holding the button marked 14, press the button marked RST to reset
the board.

4, Press Enter on your computer to run the script. Continue holding button 14.

You should now see something like the following appearing on your screen:

Connecting with Corvette over serial port /dev/cu.usbserial-1440...
Sending Hello.

Received response for Hello

Received Status

length = 0x58

version = 0x3

Max Storage = 0x4ffa0

Status = 0Ox2

State = Ox7

AMInfo =

Ox1

oxff2da3ff

Ox55fff

0x1

0x49f40003

oxffffffff

[...lots more Oxffffffff...]

Sending OTA Descriptor = 0xfe000

Sending Update Command.

number of updates needed = 1

Sending block of size 0x158b0® from ©Ox0 to 0x158b0
Sending Data Packet of length 8180

Sending Data Packet of length 8180

[...lots more Sending Data Packet of length 8180...]

Keep holding button 14 until you see Sending Data Packet of length 8186. Youcan
release the button after seeing this (but it’s okay if you keep holding it).

The program will continue to print lines on the terminal. Eventually, you’ll see
something like the following:

[...lots more Sending Data Packet of length 8180...]
Sending Data Packet of length 8180

Sending Data Packet of length 6440

Sending Reset Command.

Done.
This indicates a successful flashing.
Tip

If the program output ends with an error, check whether Sending Reset Command.
was printed. If so, flashing was likely successful despite the error. Otherwise, flashing
might have failed. Try running through these steps again (you can skip over setting the
environment variables).

Testing the Program

Start by pressing the RST button to make sure the program is running. When the
program is running, the yellow LED will toggle on and off, once for each inference.

Next, use the following command to start printing the serial output of the device:
screen ${DEVICENAME} 115200

You should initially see the following output:
Magic starts!

You can now try to make some gestures. Hold the board up with one hand, with the
components facing up and the USB adapter facing toward the left, as shown in
Figure 11-13.

Figure 11-13. How to hold the board while performing gestures

Figure 11-14 presents a diagram showing how to perform each gesture. Because the
model was trained on data collected when the board was attached to a wand, you
might need a few tries to get them to work.

Wing Ring Slope

\
!V

The easiest one to start with is “wing.” You should move your hand quickly enough
that it takes around one second to perform the gesture. If you're successful, the red
LED should illuminate, and you should see the following output:

\

Figure 11-14. The three magic wand gestures

WING:
*

Congratulations, you've cast your first magic spell using the SparkFun Edge!
Note

At this point, you might choose to be creative and attach the board to the tip of a
magic wand, at the point furthest from your hand. Any stick, ruler, or other household
item with a length of around a foot (30 cm) should work well.

Make sure the device is attached firmly, and in the same orientation, with the
components facing up and the USB adapter facing toward the left. And pick a rigid
wand, not a flexible one because any wobbling will affect the accelerometer readings.

Next try the “ring” gesture, by tracing a clockwise circle with your hand (or the tip of
your wand). Again, aim to take around a second to perform the gesture. You should see
the following appear, as if by magic:

RING:

For the final gesture, trace the corner of a triangle in the air. It’s best described by its
ASCII art demonstration, shown here:

SLOPE:

* k k % k * %k %

Like any good magic spells, you might have to practice these a bit before you can
perform them perfectly each time. You can see video demonstrations of the gestures in
README.md.

What If It Didn’t Work?

Here are some possible issues and how to debug them:

Problem: When flashing, the script hangs for a while at Sending Hello. and then
prints an error.

Solution: You need to hold down the button marked 14 while running the script.
Hold down button 14, press the RST button, and then run the script, while holding
the button marked 14 the whole time.

Problem: After flashing, none of the LEDs are coming on.

Solution: Try pressing the RST button or disconnecting the board from the
programmer and then reconnecting it. If neither of these works, try flashing the
board again.

Problem: The LEDs are stuck on or off.

Solution: It’s normal for the LEDs to stop flashing immediately after an inference,
while the program waits for enough new data to be available. If the LED stops
flashing for more than a few seconds, the program might have crashed. In that

case, press the RST button.
Problem: You can’t get the gestures to work.

Solution: First, make sure the yellow LED is blinking, which indicates that inference

is happening. If it isn’t, press the RST button. Next, make sure you're holding the
board in the correct orientation, as shown earlier.

To learn the gestures, start with the “W,” which is the easiest to master. The “0”
is a little more difficult because the circle needs to be quite smooth. The angle
gesture is the trickiest. For guidance, try watching the videos in README.md.

Making your own changes

Now that you've deployed the basic application, try playing around and making some
changes. You can find the application’s code in the
tensorflow/lite/micro/examples/magic_wand folder. Just edit and save, and then repeat
the previous instructions to deploy your modified code to the device.

Here are a few things you could try:

o Experiment with the threshold values in constants.cc to make the gestures

easier or more difficult to perform (at the cost of more false positives or
negatives).

e Write a program on your computer that lets you perform tasks using physical
gestures.

 Extend the program to transmit detection results via Bluetooth. There’s an
example of how to do this in the Ambiq SDK, in AmbigSuite-
Rel2.0.0/boards/apollo3_evb/examples/uart_ble_bridge. When the magic wand
application is built, the SDK is downloaded to
tensorflow/tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0.

Wrapping Up

In this chapter, you saw a fun example of how obscure sensor data can be interpreted
by an embedded machine learning application into a much more useful form. By seeing
the patterns in noise, embedded machine learning models allow devices to understand
the world around them and alert us to events, even when the raw data might be
difficult for a human to digest.

In Chapter 12, we explore how our magic wand model works and learn how to collect
data and train our own magic spells.

! Mihaela Porumb et al., “A convolutional neural network approach to detect
congestive heart failure.” Biomedical Signal Processing and Control (Jan 2020).
https://oreil.ly/4HBFt

Chapter 12. Magic Wand: Training a Model

In Chapter 11, we used a 20 KB pretrained model to interpret raw accelerometer data,
using it to identify which of a set of gestures was performed. In this chapter, we show
you how this model was trained, and then we talk about how it actually works.

Our wake-word and person detection models both required large amounts of data to
train. This is mostly due to the complexity of the problems they were trying to solve.
There are a huge number of different ways in which a person can say “yes” or “no”—
think of all the variations of accent, intonation, and pitch that make someone’s voice
unique. Similarly, a person can appear in an image in an infinite variety of ways; you
might see their face, their whole body, or a single hand, and they could be standing in
any possible pose.

So that it can accurately classify such a diversity of valid inputs, a model needs to be
trained on an equally diverse set of training data. This is why our datasets for wake-
word and person detection training were so large, and why training takes so long.

Our magic wand gesture recognition problem is a lot simpler. In this case, rather than
trying to classify a huge range of natural voices or human appearances and poses,
we're attempting to understand the differences between three specific and
deliberately selected gestures. Although there’ll be some variation in the way different
people perform each gesture, we're hoping that our users will strive to perform the
gestures as correctly and uniformly as possible.

This means that there’ll be a lot less variation in our expected valid inputs, which
makes it a lot easier to train an accurate model without needing vast amounts of data.
In fact, the dataset we’ll be using to train the model contains only around 150 examples
for each gesture and is only 1.5 MB in size. It’s exciting to think about how a useful
model can be trained on such a small dataset, because obtaining sufficient data is often
the most difficult part of a machine learning project.

In the first part of this chapter, you’ll learn how to train the original model used in the
magic wand application. In the second part, we’ll talk about how this model actually
works. And finally, you’ll see how you can capture your own data and train a new

model that recognizes different gestures.
Training a Model

To train our model, we use training scripts located in the TensorFlow repository. You
can find them in magic_wand/train.

The scripts perform the following tasks:

e Prepare raw data for training.

Generate synthetic data.’

Split the data for training, validation, and testing.
Perform data augmentation.

Define the model architecture.

Run the training process.

Convert the model into the TensorFlow Lite format.

To make life easy, the scripts are accompanied by a Jupyter notebook which
demonstrates how to use them. You can run the notebook in Colaboratory (Colab) on a
GPU runtime. With our tiny dataset, training will take only a few minutes.

To begin, let’s walk through the training process in Colab.
Training in Colab

Open the Jupyter notebook at magic_wand/train/train_magic_wand_model.ipynb and click
the “Run in Google Colab” button, as shown in Figure 8-1.

Run in Google Colab | View source on GitHub

Note

Figure 12-1. The “Run in Google Colab” button

As of this writing, there’s a bug in GitHub that results in intermittent error messages
when displaying Jupyter notebooks. If you see the message “Sorry, something went
wrong. Reload?” when trying to access the notebook, follow the instructions in
“Building Our Model”.

This notebook walks through the process of training the model. It includes the
following steps:

Installing dependencies
Downloading and preparing the data

Loading TensorBoard to visualize the training process

e Training the model
» Generating a C source file

Enable GPU Training

Training this model should be very quick, but it will be even faster if we use a GPU
runtime. To enable this option, go to Colab’s Runtime menu and choose “Change
runtime type,” as illustrated in Figure 12-2.

This opens the “Notebook settings” dialog box shown in Figure 12-3.

From the “Hardware accelerator” drop-down list, select GPU, as depicted in Figure 12-
4, and then click SAVE.

You’re now ready to run the notebook.

Runtime Tools Help

) Run all 38/Ctrl+F9
Run before 38/Ctrl+F8
Run the focused cell 38/Ctrl+Enter

] Run selection 38/Ctrl+Shift+Enter]
Run after 38/Ctrl+F10

: Interrupt execution 3#/Ctrl+M | 3
Restart runtime... 38/Ctrl+M .

Restart and run all...

Reset all runtimes...
Change runtime type

Manage sessions

\)
"' View runtime logs :

Figure 12-2. The “Change runtime type” option in Colab

Notebook settings

Runtime type

Python 3 v

Hardware accelerator

None v @

|:| Omit code cell output when saving this notebook

CANCEL SAVE

Figure 12-3. The “Notebook settings” dialog box

Notebook settings

Runtime type

Python 3

Hardware accelerator

GPU None @

[J omit code cell « 1 saving this notebook

GPU

TPU CANCEL SAVE

Figure 12-4. The “Hardware accelerator” drop-down list

Install dependencies

The first step is to install the required dependencies. In the “Install dependencies”
section, run the cells to install the correct versions of TensorFlow and grab a copy of

the training scripts.
Prepare the data

Next, in the “Prepare the data” section, run the cells to download the dataset and split
it into training, validation, and test sets.

The first cell downloads and extracts the dataset into the training scripts’ directory.
The dataset consists of four directories, one for each gesture (“wing,” “ring,” and
“slope”) plus a “negative” directory for data that represents no distinct gesture. Each
directory contains files that represent raw data resulting from the capture process for
the gesture being performed:

data/

|— slope
— output_slope_dengyl.txt

|: output_slope_hyw. txt

— ring
— output_ring_dengyl.txt
I: output_ring_hyw. txt

— negative
|: output_negative_1.txt

— wing
output_wing_dengyl. txt
output_wing_hyw.txt

There are 10 files for each gesture, which we’ll walk through later on. Each file
contains a gesture being demonstrated by a named individual, with the last part of the
filename corresponding to their user ID. For example, the file output_slope_dengyl.txt

contains data for the “slope” gesture being demonstrated by a user whose ID is dengy.

There are approximately 15 individual performances of a given gesture in each file,
one accelerometer reading per row, with each performance being prefixed by the row

L

-766.0,132.0,709.0
-751.0,249.0,659.0
-714.0,314.0,630.0
-709.0,244.0,623.0
-707.0,230.0,659.0

Each performance consists of a log of up to a few seconds’ worth of data, with 25 rows
per second. The gesture itself occurs at some point within that window, with the
device being held still for the remainder of the time.

Due to the way the measurements were captured, the files also contain some garbage
characters. Our first training script, data_prepare.py, which is run in our second
training cell, will clean up this dirty data:

Prepare the data
'python data_prepare.py

This script is designed to read the raw data files from their folders, ignore any garbage
characters, and write them in a sanitized form to another location within the training
scripts’ directory (data/complete_data). Cleaning up messy data sources is a common
task when training machine learning models given that it’s very common for errors,

corruption, and other issues to creep into large datasets.

In addition to cleaning the data, the script generates some synthetic data. This is a term
for data that is generated algorithmically, rather than being captured from the real

world. In this case, the generate_negative_data() function in data_prepare.py creates
synthetic data that is equivalent to movement of the accelerometer that doesn’t
correspond to any particular gesture. This data is used to train our “unknown”
category.

Because creating synthetic data is much faster than capturing real-world data, it’s
useful to help augment our training process. However, real-world variation is
unpredictable, so it’s not often possible to create an entire dataset from synthetic data.
In our case, it’s helpful for making our “unknown” category more robust, but it
wouldn’t be helpful for classifying the known gestures.

The next script to run in the second cell is data_split_person.py:

Split the data by person
!python data_split_person.py

This script splits the data into training, validation, and test sets. Because our data is
labeled with the person who created it, we're able to use one set of people’s data for
training, another set for validation, and a final set for test. The data is split as follows:

train_names = [
"hyw", "shiyun", "tangsy", "dengyl", "jiangyh", "xunkai", "negative3",
"negative4", "negative5", "negative6"

valid_names = ["lsj", "pengxl", "negative2", "negative7"]
test_names = ["liucx", "zhangxy", "negativel", "negative8"]

We use six people’s data for training, two for validation, and two for testing. In
addition, we mix in our negative data, which isn’t associated with a particular user.
Our total data is split between the three sets at a ratio of roughly 60%/20%/20%, which
is pretty standard for machine learning.

In splitting by person, we're trying to ensure that our model will be able to generalize
to new data. Because the model will be validated and tested on data from individuals
who were not included in the training dataset, the model will need to be robust against
individual variations in how each person performs each gesture.

It’s also possible to split the data randomly, instead of by person. In this case, the
training, validation, and testing datasets would each contain some samples of each

gesture from every single individual. The resulting model will have been trained on
data from every single person rather than just six, so it will have had more exposure to
people’s varying gesturing styles.

However, because the validation and training sets also contain data from every
individual, we’d have no way of testing whether the model is able to generalize to new
gesturing styles that it has not seen before. A model developed in this way might
report higher accuracy during validation and testing, but it would not be guaranteed
to work as well with new data.

Project Idea

You can use the script data_split.py in place of data_split_person.py to split the data
in this manner.

After you've trained the model in the normal way, try modifying the Colab to split
randomly and test which approach works better.

Make sure you’ve run both cells in the “Prepare the data” section before continuing.
Load TensorBoard

After the data has been prepared, we can run the next cell to load TensorBoard, which
will help us monitor the training process:

Load TensorBoard
%load_ext tensorboard
%tensorboard --logdir logs/scalars

Training logs will be written to the logs/scalars subdirectory of the training scripts’

directory, so we pass this in to TensorBoard.
Begin training

After TensorBoard has loaded, it’s time to begin training. Run the following cell:

!python train.py --model CNN --person true

The script train.py sets up the model architecture, loads the data using data_load.py, and
begins the training process.

As the data is loaded, load_data.py also performs data augmentation using code defined

in data_augmentation.py. The function augment_data() takes data representing a
gesture and creates a number of new versions of it, each modified slightly from the

original. The modifications include shifting and warping the datapoints in time, adding
random noise, and increasing the amount of acceleration. This augmented data is used
alongside the original data to train the model, helping make the most of our small
dataset.

As training ramps up, you'll see some output appearing below the cell you just ran.
There’s a lot there, so let’s pick out the most noteworthy parts. First, Keras generates a
nice table that shows the architecture of our model:

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 128, 3, 8) 104
max_pooling2d (MaxPooling2D) (None, 42, 1, 8) 0
dropout (Dropout) (None, 42, 1, 8) 0
conv2d_1 (Conv2D) (None, 42, 1, 16) 528
max_pooling2d_1 (MaxPooling2 (None, 14, 1, 16) 0
dropout_1 (Dropout) (None, 14, 1, 16) 0
flatten (Flatten) (None, 224) 0
dense (Dense) (None, 16) 3600
dropout_2 (Dropout) (None, 16) 0
dense_1 (Dense) (None, 4) 68

It tells us all the layers that are used, along with their shapes and their numbers of
parameters—which is another term for weights and biases. You can see that our model

uses Conv2D layers, as it’s a convolutional model. Not shown in this table is the fact

that our model’s input shape is (None, 128, 3).We'll look more closely at the model’s
architecture later.

The output will also show us an estimate of the model’s size:

Model size: 16.796875 KB

This represents the amount of memory that will be taken up by the model’s trainable
parameters. It doesn’t include the extra space required to store the model’s execution
graph, so our actual model file will be slightly larger, but it gives us an idea of the

correct order of magnitude. This will definitely qualify as a tiny model!

You'll eventually see the training process itself begin:

1000/1000 [1 - 12s 12ms/step - loss: 7.6510 -
accuracy: 0.5207 - val_loss: 4.5836 - val_accuracy: 0.7206

At this point, you can take a look at TensorBoard to see the training process moving

along.
Evaluate the results

When training is complete, we can look at the cell’s output for some useful
information. First, we can see that the validation accuracy in our final epoch looks very
promising at 0.9743, and the loss is nice and low, too:

Epoch 50/50
1000/1000 [] - 7s 7ms/step - loss: 0.0568 -

accuracy: 0.9835 - val_loss: 0.1185 - val_accuracy: 0.9743

This is great, especially as we’re using a per-person data split, meaning our validation
data is from a completely different set of individuals. However, we can’t just rely on

our validation accuracy to evaluate our model. Because the model’s hyperparameters
and architecture were hand-tuned on the validation dataset, we might have overfit it.

To get a better understanding of our model’s final performance, we can evaluate it

against our test dataset by calling Keras’s model.evaluate() function. The next line of
output shows the results of this:

6/6 [] - 0s 6ms/step - loss: 0.2888 - accuracy:
0.9323

Although not as amazing as the validation numbers, the model shows a good-enough
accuracy of 0.9323, with a loss that is still low. The model will predict the correct class
93% of the time, which should be fine for our purposes.

The next few lines show the confusion matrix for the results, calculated by the
tf.math.confusion_matrix() function:

tf.Tensor(

[[75 3 0 4]
[@ 69 0 15]
[@ © 85 3]

[@ o 1129]], shape=(4, 4), dtype=int32)

A confusion matrix is a helpful tool for evaluating the performance of classification
models. It shows how well the predicted class of each input in the test dataset agrees
with its actual value.

Each column of the confusion matrix corresponds to a predicted label, in order
(“wing,” “ring,” “slope,” then “unknown”). Each row, from the top down, corresponds
to the actual label. From our confusion matrix, we can see that the vast majority of
predictions agree with the actual labels. We can also see the specific places where
confusion is occurring: most significantly, a fair number of inputs were misclassified as
“unknown,” especially those belonging to the “ring” category.

7”7

The confusion matrix gives us an idea of where our model’s weak points are. In this
case, it informs us that it might be beneficial to obtain more training data for the
“ring” gesture in order to help the model better learn the differences between “ring”
and “unknown.”

The final thing that train.py does is convert the model to TensorFlow Lite format, in
both floating-point and quantized variations. The following output reveals the sizes of
each variant:

Basic model is 19544 bytes
Quantized model is 8824 bytes
Difference is 10720 bytes

Our 20 KB model shrinks down to 8.8 KB after quantization. This is a very tiny model,
and a great result.
Create a C array

The next cell, in the “Create a C source file” section, transforms this into a C source
file. Run this cell to see the output:

Install xxd if it is not available

lapt-get -qgq install xxd

Save the file as a C source file

Ixxd -1 model_quantized.tflite > /content/model_gquantized.cc
Print the source file

Icat /content/model_quantized.cc

We can copy and paste the contents of this file into our project so that we can use the
newly trained model in our application. Later, you’ll learn how to collect new data and
teach the application to understand new gestures. For now, let’s keep moving.

Other Ways to Run the Scripts

If you’d prefer not to use Colab, or you're making changes to the model training scripts
and would like to test them out locally, you can easily run the scripts from your own
development machine. You can find the instructions in README.md.

Next up, we walk through how the model itself works.
How the Model Works

So far, we’ve established that our model is a convolutional neural network (CNN) and
that it transforms a sequence of 128 three-axis accelerometer readings, representing
around five seconds of time, into an array of four probabilities: one for each gesture,
and one for “unknown.”

CNNs are used when the relationships between adjacent values contain important
information. In the first part of our explanation, we’ll take a look at our data and learn

why a CNN is well suited to making sense of it.
Visualizing the Input

In our time-series accelerometer data, adjacent accelerometer readings give us clues
about the device’s motion. For example, if acceleration on one axis changes rapidly
from zero to positive, then back to zero, the device might have begun motion in that
direction. Figure 12-5 shows a hypothetical example of this.

2000
1500
c
(=}
=
s
& 1000
8
500
0

Figure 12-5. Accelerometer values for a single axis of a device being moved

Any given gesture is composed of a series of motions, one after the other. For example,
consider our “wing” gesture, shown in Figure 12-6.

Wing

Figure 12-6. The “wing” gesture

The device is first moved down and to the right, then up and to the right, then down
and to the right, then up and to the right again. Figure 12-7 shows a sample of real data
captured during the “wing” gesture, measured in milli-Gs.

- X =Y 4
3000

2000

-1000
Figure 12-7. Accelerometer values during the “wing” gesture

By looking at this graph and breaking it down into its component parts, we can
understand which gesture is being made. From the z-axis acceleration, it’s very clear
that the device is being moved up and down in the way we would expect given the
“wing” gesture’s shape. More subtly, we can see how the acceleration on the x-axis
correlates with the z-axis changes in a way that indicates the device’s motion across
the width of the gesture. Meanwhile, we can observe that the y-axis remains mostly
stable.

Similarly, a CNN with multiple layers is able to learn how to discern each gesture
through its telltale component parts. For example, a network might learn to
distinguish an up-and-down motion, and that two of them, when combined with the
appropriate z- and y-axis movements, indicates a “wing” gesture.

To do this, a CNN learns a series of filters, arranged in layers. Each filter learns to spot a
particular type of feature in the data. When it notices this feature, it passes this high-
level information to the next layer of the network. For example, one filter in the first
layer of the network might learn to spot something simple, like a period of upward
acceleration. When it identifies such a structure, it passes this information to the next
layer of the network.

Subsequent layers of filters learn how the outputs of earlier, simpler filters are
composed together to form larger structures. For example, a series of four alternating
upward and downward accelerations might fit together to represent the “W” shape in

our “wing” gesture.

In this process, the noisy input data is progressively transformed into a high-level,
symbolic representation. Subsequent layers of our network can analyze this symbolic
representation to guess which gesture was performed.

In the next section, we walk through the actual model architecture and see how it
maps onto this process.
Understanding the Model Architecture

The architecture of our model is defined in train.py, in the build_cnn() function. This
function uses the Keras API to define a model, layer by layer:

model = tf.keras.Sequential([

tf.keras.layers.Conv2D(# input_shape=(batch, 128, 3)

8: (45 3)1

padding="same",

activation="relu",

input_shape=(seq_length, 3, 1)), # output_shape=(batch, 128, 3, 8)
tf.keras.layers.MaxPool2D((3, 3)), # (batch, 42, 1, 8)
tf.keras.layers.Dropout(0.1), # (batch, 42, 1, 8)
tf.keras.layers.Conv2D(16, (4, 1), padding="same",

activation="relu"), # (batch, 42, 1, 16)

tf.keras.layers.MaxPool2D((3, 1), padding="same"), # (batch, 14, 1, 16)
tf.keras.layers.Dropout(0.1), # (batch, 14, 1, 16)
tf.keras.layers.Flatten(), # (batch, 224)
tf.keras.layers.Dense(16, activation="relu"), # (batch, 16)
tf.keras.layers.Dropout(0.1), # (batch, 16)
tf.keras.layers.Dense(4, activation="softmax") # (batch, 4)

D

This is a sequential model, meaning the output of each layer is passed directly into the
next one. Let’s walk through the layers one by one and explore what’s going on. The

first layer is a Conv2D:

tf.keras.layers.Conv2D(
8, (4, 3),
padding="same",
activation="relu",
input_shape=(seq_length, 3, 1)), # output_shape=(batch, 128, 3, 8)

This is a convolutional layer; it directly receives our network’s input, which is a
sequence of raw accelerometer data. The input’s shape is provided in the input_shape

argument. It’s set to (seq_length, 3, 1), where seq_length is the total number of
accelerometer measurements that are passed in (128 by default). Each measurement is
composed of three values, representing the x-, y-, and z-axes. The input is visualized in

D00

. OOoc
. OO0
: OO0
D00
D00

| 128 tota

Figure 12-8. The model’s input

The job of our convolutional layer is to take this raw data and extract some basic

features that can be interpreted by subsequent layers. The arguments to the Conv2D()
function determine how many features will be extracted. The arguments are described

in the tf.keras.layers.Conv2D() documentation.

The first argument determines how many filters the layer will have. During training,
each filter learns to identify a particular feature in the raw data—for example, one
filter might learn to identify the telltale signs of an upward motion. For each filter, the
layer outputs a feature map that shows where the feature it has learned occurs within
the input.

The layer defined in our code has eight filters, meaning that it will learn to recognize
and output eight different types of high-level features from the input data. You can see
this reflected in the output shape, (batch_size, 128, 3, 8), which has eight feature
channels in its final dimension, one for each feature. The value in each channel
indicates the degree to which a feature was present in that location of the input.

As we learned in Chapter 8, convolutional layers slide a window across the data and
decide whether a given feature is present in that window. The second argument to
Conv2D() is where we provide the dimensions of this window. In our case, it’s (4, 3).
This means that the features for which our filters are hunting span four consecutive
accelerometer measurements and all three axes. Because the window spans four
measurements, each filter analyzes a small snapshot of time, meaning it can generate
features that represent a change in acceleration over time. You can see how this works

in Figure 12-9.
X Y Z

10 101

Convolution
window

Measurements

128 total

Figure 12-9. A convolution window overlaid on the data

The padding argument determines how the window will be moved across the data.

When padding is set to "same", the layer’s output will have the same length (128) and
width (3) as the input. Because every movement of the filter window results in a single

output value, the "same" argument means the window must be moved three times
across the data, and 128 times down it.

Because the window has a width of 3, this means it must start by overhanging the

lefthand side of the data. The empty spaces, where the filter window doesn’t cover an
actual value, are padded with zeros. To move a total of 128 times down the length of the
data, the filter must also overhang the top of the data. You can see how this works in
Figures 12-10 and 12-11.

As soon as the convolution window has moved across all the data, using each filter to
create eight different feature maps, the output will be passed to our next layer,

MaxPool2D:

tf.keras.layers.MaxPool2D((3, 3)), # (batch, 42, 1, 8)

Input Output
(0] o] o]
(0]
(0]
(0]

l128 total l128 total

Figure 12-10. The convolution window in its first position, necessitating padding on the top and left sides

Input Output

l128 total l128 total

Figure 12-11. The same convolution window havinghmoved to its second position, requiring padding only on
the top

This MaxPool2D layer takes the output of the previous layer, a (128, 3, 8) tensor, and

shrinks it down to a (42, 1, 8) tensor—a third of its original size. It does this by
looking at a window of input data and then selecting the largest value in the window
and propagating only that value to the output. The process is then repeated with the

next window of data. The argument