DAFTAR GAMBAR

2.1	Arsitektur jaringan GSM	7
2.2	Alokasi frekuensi untuk GSM-R	11
2.3	Spektrum frekuensi FRMCS (a.) uplink, (b.) downlink	12
2.4	Konfigurasi link budget	13
2.5	(a.) Sinyal transmisi, (b.) sinyal terima.	14
2.6	Perbedaan FDM dan OFDM pada domain frekuensi	16
2.7	Konsep <i>cyclic prefix</i>	17
3.1	Blok diagram pengujian interferensi pada FRMCS	23
3.2	Flow chart perancangan sistem interferensi FRMCS dengan GSM	
	seluler di Indonesia	24
3.3	Tampilan simulator pemodelan kanal FRMCS Indonesia dari	
	NYUSIM Channel Simulator	26
3.4	Struktur blok transmitter dan receiver dari pengujian validasi per-	
	formansi pada interferensi FRMCS	29
4.1	Representative PDP untuk pemodelan FRMCS kota Bandung	33
4.2	Representative PDP untuk pemodelan FRMCS kota Jakarta	34
4.3	Outage Performances pada kanal FRMCS Indonesia	35
4.4	Performansi BER pada model kanal kota Bandung saat kereta diam	
	v = 0 km/h tanpa interferensi dan tidak menggunakan <i>channel coding</i> .	37
4.5	Performansi BER pada model kanal kota Jakarta saat kereta diam	
	v = 0 km/h tanpa interferensi dan tidak menggunakan <i>channel coding</i> .	38
4.6	Performansi BER pada model kanal kota Bandung saat kereta	
	berkecepatan tinggi $v=250$ km/h tanpa interferensi dan tidak	
	menggunakan channel coding	39
4.7	Performansi BER pada model kanal kota Jakarta saat kereta berke-	
	cepatan tinggi $v = 250$ km/h tanpa interferensi dan tidak menggu-	
	nakan channel coding	40
4.8	Performansi BER pada model kanal kota Bandung saat kereta diam	
	v = 0 km/h dengan daya interferensi ($I = -20$ dB) dan tidak meng-	
	gunakan channel coding	41

4.9	Performansi BER pada model kanal kota Jakarta saat kereta diam	
	v = 0 km/h dengan daya interferensi ($I = -20$ dB) dan tidak meng-	
	gunakan channel coding	42
4.10	Performansi BER pada model kanal kota Bandung saat kereta	
	berkecepatan tinggi $v=250$ km/h dengan daya interferensi ($I=$	
	−20 dB) dan tidak menggunakan <i>channel coding</i>	43
4.11	Performansi BER pada model kanal kota Jakarta saat kereta berke-	
	cepatan tinggi $v = 250$ km/h dengan daya interferensi ($I = -20$ dB)	
	dan tidak menggunakan channel coding	44
4.12	Performansi BER pada model kanal kota Bandung saat kereta diam	
	v = 0 km/h dengan daya interferensi ($I = -10$ dB) dan tidak meng-	
	gunakan channel coding	45
4.13	Performansi BER pada model kanal kota Jakarta saat kereta diam	
	v = 0 km/h dengan daya interferensi ($I = -10$ dB) dan tidak meng-	
	gunakan channel coding	46
4.14	Performansi BER pada model kanal kota Bandung saat kereta	
	berkecepatan tinggi $v=250$ km/h dengan daya interferensi ($I=$	
	$-10~\mathrm{dB})$ dan tidak menggunakan <i>channel coding</i>	47
4.15	Performansi BER pada model kanal kota Jakarta saat kereta berke-	
	cepatan tinggi $v=250$ km/h dengan daya interferensi ($I=-10$ dB)	
	dan tidak menggunakan channel coding	48
4.16	Performansi BER pada model kanal kota Bandung saat kereta diam	
	v=0 km/h tanpa interferensi dan menggunakan <i>channel coding</i>	
	(repetition codes)	49
4.17	Performansi BER pada model kanal kota Jakarta saat kereta diam	
	v=0 km/h tanpa interferensi dan dengan menggunakan $channel$	
	coding (repetition codes)	50
4.18	Performansi BER pada model kanal kota Bandung saat kereta	
	berkecepatan tinggi $v=250$ km/h tanpa interferensi dan menggu-	
	nakan channel coding (repetition codes)	51
4.19	Performansi BER pada model kanal kota Jakarta saat kereta berke-	
	cepatan tinggi $v=250$ km/h tanpa interferensi dan dengan meng-	
	gunakan channel coding (repetition codes)	52
4.20	Performansi BER pada model kanal kota Bandung saat kereta diam	
	v=0 km/h dengan daya interferensi ($I=-20$ dB) dan dengan	
	menggunakan channel coding (repetition codes)	53

4.21	Performansi BER pada model kanal kota Jakarta saat kereta diam	
	v=0 km/h dengan daya interferensi ($I=-20$ dB) dan dengan	
	menggunakan channel coding (repetition codes)	54
4.22	Performansi BER pada model kanal kota Bandung saat kereta	
	berkecepatan tinggi $v=250$ km/h dengan daya interferensi ($I=$	
	$-20\mathrm{dB})$ dan dengan menggunakan <i>channel coding (repetition codes)</i> .	55
4.23	Performansi BER pada model kanal kota Jakarta saat kereta berke-	
	cepatan tinggi $v = 250$ km/h dengan daya interferensi ($I = -20$ dB)	
	dan dengan menggunakan channel coding (repetition codes)	56
4.24	Performansi BER pada model kanal kota Bandung saat kereta diam	
	v=0 km/h dengan daya interferensi ($I=-10$ dB) dan dengan	
	menggunakan channel coding (repetition codes)	57
4.25	Performansi BER pada model kanal kota Jakarta saat kereta diam	
	v=0 km/h dengan daya interferensi ($I=-10$ dB) dan dengan	
	menggunakan channel coding (repetition codes)	58
4.26	Performansi BER pada model kanal kota Bandung saat kereta	
	berkecepatan tinggi $v=250$ km/h dengan daya interferensi ($I=$	
	$-10\mathrm{dB})$ dan dengan menggunakan <i>channel coding (repetition codes)</i> .	59
4.27	Performansi BER pada model kanal kota Jakarta saat kereta berke-	
	cepatan tinggi $v=250$ km/h dengan daya interferensi ($I=-10$ dB)	
	dan dengan menggunakan channel coding (repetition codes)	60
4.28	Performansi BER pada model kanal kota Bandung dengan meng-	
	gunakan channel coding (repetition codes) pada SNR 25 dB	61
4.29	Performansi BER pada model kanal kota Jakarta dengan menggu-	
	nakan channel coding (repetition codes) pada SNR 25 dB	62
4.30	Hubungan daya interferensi (I) dengan jarak (d) antara rel kereta	
	cepat dengan BTS publik untuk redaman pada tanah datar dan	
	redaman pada jembatan	64