ABSTRACT

 MoS_2 has a potential to be applied in flexible electronics and optoelectronic devices. In this study, MoS₂ powder was modified using liquid phase exfoliation method in which the MoS₂ powder diluted in NMP solvent is ultrasonicated for 60 hours and centrifuged for 30 minutes with a 2000 rpm rotational speed. We studied the effect of MoS_2 and NaOH variation on the properties of the obtained flakes. The flakes thickness characterization is performed by depositing the MoS_2 flakes onto a glass substrate and measuring the transmission of visible light which passed through the deposited sample. The results showed that the average thickness of MoS₂ layers vary from 3 to 14 nm when the concentration of MoS_2 are varied from 1 - 3 mg/ml without NaOH. The addition of NaOH reduces the layer thickness. Modification process of $2 \text{ mg/ml } MoS_2$ with 1 mg/ml NaOH produces the average thickness of about 7 nm. This value is smaller compared to the one modified without NaOH which has an average layer thickness of about 10 nm. To study the optoelectronic properties, the MoS_2 flakes were deposited on SiO₂ substrate. The current was measured when the voltage was varied from -3 V to 3 V and light intensity is modified from 0 - 1000 W/m^2 . It is found that the conductivity of MoS_2 layer on SiO_2 was affected by the concentration of MoS_2 powders, the concentration of NaOH, and SiO₂ substrate conductivity. The increasing of MoS₂ concentration increases the MoS_2 layer conductivity. Whereas, the increasing of NaOH concentration decreases the conductivity of MoS_2 layer. The difference of SiO_2 substrate conductivity used in this experiment causes incorrect result, in which the conductivity of MoS₂ exfoliated with NaOH has higher conductivity than the one exfoliated without NaOH. Furthermore, the increasing of light intensity increases the conductivity of MoS₂ layer.

Keywords: powder, MoS₂, liquid phase exfoliation, flakes, layer, thickness, conductivity.