List of Figures

The lateral view of the experiment with the parameters $H_0 = 0.20 \text{ m}$, $H_S = 0.10 \text{ m}$ $L_u = 3.00 \text{ m}$, $L_d = 3.03 \text{ m}$ and $L_1 = 1.00 \text{ m}$. The value of Φ are depend on X_{TOP} and X_{TOE} .	2
Sketch of 1D shallow water equations and their primitive variables. 1D staggered grids. The orange area represents volume control for mass conservation, association with unknown h_i and z_i . Vol- ume control for momentum conservation $(u_{i+\frac{1}{2}})$ shown in red area.	4 5
Flowchart algorithm of Dam-break over an erodible embank- ment Simulation.	7
The comparison of numerical result and data experiment dam- break over an erodible embankment [2]. Figures (a), (b) and (c) are the comparison results in slope $\Phi = 59.04$ using $A_g =$ 9×10^{-6} , $A_g = 10^{-5}$ and $A_g = 2 \times 10^{-5}$ respectively. Figures (d), (e) and (f) are the comparison results in slope $\Phi = 41.42$ using $A_g = 9 \times 10^{-6}$, $A_g = 10^{-5}$ and $A_g = 2 \times 10^{-5}$ respectively.	10
	The lateral view of the experiment with the parameters $H_0 = 0.20 \text{ m}$, $H_S = 0.10 \text{ m}$ $L_u = 3.00 \text{ m}$, $L_d = 3.03 \text{ m}$ and $L_1 = 1.00 \text{ m}$. The value of Φ are depend on X_{TOP} and X_{TOE}