PERANCANGAN DAN REALISASI PANEL KENDALI UNTUK ROBOT AMFIBI DENGAN KOMUNIKASI WIFI

DESIGN AND REALIZATION OF CONTROL PANEL FOR AMPHIBIOUS ROBOT WITH WIFI COMMUNICATION

¹Prili Vanindya Dinda Utami, ²Agung Nugroho Jati, ³Casi Setianingsih

1,2,3 Prodi S1 Sistem Komputer, Fakultas Teknik Elektro, Universitas Telkom

¹prilivany@student.telkomuniversity.ac.id, ²agungnj@telkomuniversity.ac.id, ³setiacasie@telkomuniversity.ac.id

Abstrak

Penelitian ini merealisasikan panel kendali untuk sistem control robot amfibi dengan menggunakan komunikasi jarak jauh berupa WiFi. Panel kendali dirancang menggunakan platform visual studio dan berfungsi sebagai pengendali gerak robot secara manual, monitoring keadaan disekitar robot menggunakan IP kamera serta dapat mengetahui titik koordinat letak robot secara real-time. Disaat robot kehilangan sinyal WiFi, maka robot akan kembali ke titik awal dijalankan dengan menggunakan konsep dari algoritma semut.

Kata kunci: Sistem Kontrol berbasis WiFi, Panel Kendali.

Abstract

This research realizes the control panel for amphibious robot control system by using long distance communication in the form of WiFi. The control panel is designed using a visual studio platform and functions as a robot motion controller manually, monitoring the circumstances around the robot using IP Camera and can know the point of coordinate location of robot in real-time. While the robot loses WiFi signal, the robot will return to starting point by using concept of ACO algorithm.

Keyword: Control System based on WiFI, Control Panel.

1. Pendahuluan

Perkembangan teknologi dalam bidang robotika saat ini sedang mengalami perkembangan yang sangat pesat. Ada banyak jenis robot yang diciptakan untuk memudahkan pekerjaan manusia, salah satunya yaitu robot amfibi. Robot ini memiliki sifat amfibi dimana dapat melakukan kegiatan eksplorasi di dua jenis medan, yaitu eksplorasi darat dan eksplorasi air [1].

Para peneliti terus melakukan penelitian untuk mengembangkan robot amfibi dengan kemampuan kontrol gerak berupa mode berjalan, berenang dan lainnya. Dimana mode berjalan yang direncakan yaitu meliputi cara berjalan kepiting (*sideways*), cara berjalan serangga (*forward/backward movement*), cara berbalik arah (*turning*), dan berjalan di jalan dengan ketinggian yang berbeda. Sedangkan untuk mode berenang yang direncakan yaitu meliputi memutar *propeller*, naik da turun ke dasar dan permukaan air, dan dengan foil sebagai dayung [2].

Dalam pembuatan tugas akhir ini telah dibuat robot amfibi yang menggunakan sistem kontrol gerak kendali jarak jauh [3] berbasis nirkabel dengan menggunakan panel kendali. Interface yang akan digunakan adalah perangkat komunikasi yaitu komputer. Pengontrolan *robot* dalam tugas-tugasnya menggunakan *processor* atau mikrokontroller, sehingga *processor* atau mikrokontroller tersebut dapat dijadikan sebagai pengontrol dari robot dengan inputan data yang diterima dari modul komunikasi wireless berbasis IPnya dimana datanya tersebut dikirim dari sebuah komputer yang terhubung dengan wireless tersebut.

2. Material dan Perancangan

2.1 Gambaran Umum Sistem

Pada penelitian tugas akhir ini dibuat sebuah panel kendali untuk pengontrolan robot berbasis GUI Desktop. Panel kendali ini berisikan Kontroler untuk robot yang berupa robot maju, mundur, kiri, kanan dan berhenti. Panel kendali ini juga dapat menampilkan hasil dari monitoring IP Camera secara *real-time* dan

monitoring titik koordinat dari GPS dengan menggunakan visual studio yang terhubung dengan komunikasi wireless berupa WIFI.

CONTROLLED AMPHIBI	OUS ROBOT	
CONNECTION BAUDRATE 9600 COM PORT COM3 IP CAM		DNITORING
CONNECT DISC CONTROLLER MAJU	GPS MONI	TORING
KIRI STOP BACK	KANAN	

Gambar 1. Tampilan GUI

Gambar 2. Flowchart Gambaran Umum Sistem

Pada sistem ini, sistem dapat dikatakan dengan baik apabila robot dapat secara autonomous kembali ke titik awal apabila telah kehilangan sinyal WiFi[4].

2.2 Cara Kerja Sistem

Secara umum sistem akan bekerja sepertu blok diagram berikut ini :

Gambar 3. Proses Sistem Bekerja Secara Umum

Gambar 3 merupakan proses yang akan dilakukan sistem secara umum. Input merupakan masukan yang akan diproses yaitu berupa apliaksi desktop berupa GUI, sebelumnya *user* menghubungkan laptop/pc dan modul wifi pada robot dengan sebuah *access point*. Selanjutnya mikrokontroler Arduino mega2560 akan membaca informasi yang diberikan oleh inputan dari GUI dan mengolah informasi tersebut. Setelah mengolah informasi, mikrokontroler akan mejalankan motor pada robot sehingga robot akan berjalan sesuai perintah dari GUI.

2.3 Perancangan Software

2.3.1 Pemrograman Modul WiFi ESP8266

Pemograman pada modul WiFi ESP8266 dilakukan untuk dapat berkomunikasi dengan arduino Mega2560 dan juga dengan GUI yang akan dibuat. Sofware yang digunakan untuk memprogram WiFi ESP8266 adalah Arduino IDE. Adapun langkah-langkah dalam pemrograman modul WiFI sebagai berikut [5]:

1. Penambahan Board ESP8266 pada Arduino IDE

Ini diperuntukan agar ESP8266 dapat dideteksi oleh Arduino IDE. Dengan cara klik *file* > preferences > pada kolom additional board manager diisi dengan link http:/arduino.esp8266.com/stable/package_esp8266com_index.json > lalu ok

2. Pemilihan *Board* dan *Port*

Untuk dapat memilih board dengan cara klik *tools > board > generic esp8266 module*. Sedangakan untuk memilih *port*, klik *tools > port >* pilih *port* yang tersedia.

ESP8266_Robot	
<pre>#include <esp8266wifi.h></esp8266wifi.h></pre>	-
#include <wificlient.h></wificlient.h>	
<pre>#include <esp8266webserver.h></esp8266webserver.h></pre>	
<pre>#include <esp8266mdns.h></esp8266mdns.h></pre>	
<pre>#include <eeprom.h></eeprom.h></pre>	
// Setting WIFI_SSID dan password untuk konek ke access point	
#define CONNECT_TO_AP true //ubah dari false ke true untuk dapat connect ke access po	int
#define WIFI_SSID "Prili Vanindya"	
#define WIFI_PASSWORD "astroboy"	
// Setting WIFI_SSID dan password sebagai access point	
#define WIFI_AP_SSID "Zalfa-Tech"	
#define WIFI_AP_PASSWORD "12345678"	
#define COUNTER WIFI 5	
#define EEPROM MIN ADDR 0	
#define EEPROM_MAX_ADDR 511	
#define WIFI_SSID_LEN 20	
#define WIFI_PSWD_LEN 8	
#define WIFI_SSID_ADDR 0	
<pre>#define WIFI_PSWD_ADDR (WIFI_SSID_ADDR + WIFI_SSID_LEN)</pre>	
ESP8266WebServer server(80);	
MDNSResponder mdns;	
String webPage = "";	
int gpio0_pin = 0;	
<pre>int gpio2_pin = 2;</pre>	
<pre>void setup() {</pre>	
unsigned char counterWifi = COINTER WIFT:	
<	>

Gambar 4. Pemrograman ESP8266

2.3.2 Pemrograman Modul GPS Ublox Neo 6M

Pemrograman pada Modul GPS Ublox Neo 6M bertujuan untuk mengetahui dan menampilkan titik koordinat secara *Real Time*. Modul GPS akan menerima data dari beberapa satelit yang berisi data waktu, latitude, longitude, altitude, dan kecepatan sesuai dengan format NMEA. Tetapi pada pemrograman yang dibuat hanya akan mengambil data berupa latitude dan longitude saja, maka dari itu dari beberapa list yang ditampilkan oleh GPS, hanya akan digunakan pada bagian "\$GPRMC" saja, karena pada bagian tersebut sudah memuat Longitude dan Latitude yang diperlukan[6] [7].

💿 сомва		
		Send
GPG5V, 3, 3, 11, 16, 16, 220, 29, 22, 13, 323, 33, 06, 0	3,229,24*48	
\$GPRMC, 100746.000, A, 3754.9976, S, 14507.0283, E	,0.00,263.36,140114,,	,A*7E
GPGGA, 100747.000, 3754.9976, S, 14507.0283, E, 1	,8,0.90,92.5,M,-4.2,M	,,*6A
GPGSA, A, 3, 16, 21, 22, 05, 26, 29, 18, 15, , , , 1.21,	0.90,0.81*03	
sGPGSV, 3, 1, 11, 21, 64, 230, 34, 29, 62, 066, 32, 18, 4	6,331,38,42,45,352,*7	0
GPGSV, 3, 2, 11, 15, 29, 065, 28, 26, 21, 107, 27, 05, 1	9,135,32,25,18,353,*7	A
GPGSV, 3, 3, 11, 16, 16, 220, 29, 22, 13, 323, 33, 06, 0	3,229,24*48	
GPRMC, 100747.000, A, 3754.9976, S, 14507.0283, E	,0.00,263.36,140114,,	,A*7F
GPGGA, 100748.000, 3754.9976, 5, 14507.0283, E, 1	,8,0.90,92.5,M,-4.2,M	,,*65
GPGSA, A, 3, 16, 21, 22, 05, 26, 29, 18, 15, , , , 1. 21,	0.90,0.81*03	
GPGSV, 3, 1, 11, 21, 64, 230, 33, 29, 62, 066, 32, 18, 4	6,331,38,50,46,359,*7	с
GPGSV, 3, 2, 11, 15, 29, 065, 28, 26, 21, 107, 26, 05, 1	9,135,32,25,18,353,*7	в
GPGSV, 3, 3, 11, 16, 16, 220, 29, 22, 13, 323, 33, 06, 0	3,229,24*48	
GPRMC, 100748.000, A, 3754.9976, S, 14507.0283, E	,0.00,263.36,140114,,	,A*70
GPGGA, 100749.000, 3754.9976, 5, 14507.0283, E, 1	.8.0.90,92.5.M4.2.M	. *64
GPGSA, A, 3, 16, 21, 22, 05, 26, 29, 18, 15,, 1. 21,	0.90.0.81*03	
GPGSV, 3, 1, 11, 21, 64, 230, 33, 29, 62, 066, 33, 18, 4	6,331,38,50,46,359,*7	D
GPGSV. 3. 2. 11. 15. 29. 065. 28. 26. 21. 107. 26. 05. 1	9,135,32,25,18,353,*7	в
¢GPG5V, 3, 3, 11, 16, 16, 220, 29, 22, 13,		
Autoscroll	No line ending	9600 baud 🚽

Gambar 5. Hasil tes koneksi GPS Ublox Neo 6M

2.3.3 Pemrograman Arduino Mega2560

Pemrograman arduino mega dilakukan untuk dapat mengontrol motor pada robot yang telah terintegrasi dengan modul ESP8266. Untuk pemrograman pada Arduino Mega2560 ada beberapa langkah yang harus dilakukan untuk pemilihan *board* dan *port* seperti pada saaat memrogram modul ESP8266. Adapun langkah-langkahnya [8]:

1. Memilih Board

Untuk memilih *board*, klik pada *tools* > *board* > Arduino/Genuino Mega or Mega 2560.

2. Memilih Port

Untuk memilih Port, klik pada tools > port > pilih port yang tersedia.

Gambar 6. Pemrograman pada Arduino Mega2560

2.4 Perancangan Hardware

2.4.1 Koneksi kabel untuk penulisan program ke Arduino mega

Gambar 7. Datasheet penulisan program ke Arduino Mega

Pada Gambar 7 merupakan susunan rangkaian Arduino Mega ke PC untuk melakukan *uploading* atau penulisan program yang telah dibuat pada Arduino IDE untuk di masukkan ke dalam Arduino Mega dengan cara menghubungkan Arduino Mega dan PC menggunakan kabel USB.

2.4.2 Koneksi Kabel untuk penulisan program ke ESP8266

Pada Gambar 8 merupakan susunan rangkaian untuk melakukan penulisan program ke ESP8266 dari PC dengan perantara Arduino Mega. Untuk menghubungkan rangkaian ESP8266 ke Arduino Mega adalah dengan menghubungkan pin dari ESP8266 ke Arduino Mega. Adapun rangkaian pin sebagai berikut :

ARDUINO MEGA	ESP8266
RX	RX
TX	TX
GROUND	GROUND
GROUND	GPI0O
3.3V	3.3V
3.3V	CH-PD
RESET - GROUND	-

Tabel 1 Hubungan antar pin Arduino Mega dan ESP8266

2.4	1.3	3	Kone	ksi	kabel	untuk	: menj	alan	kan	robo	t
-----	-----	---	------	-----	-------	-------	--------	------	-----	------	---

Gambar 9. Datasneet penggabungan selurun rangkalan

Pada Gambar 9 merupakan susunan rangkaian keseluruhan untuk menjalankan robot setelah melakukan uploading untuk Arduino Mega dan ESP8266. Pada rangkaian untuk menjalankan robot ini, ada tambahan Motorshield Adafruit yang berfungsi untuk menjalankan roda. Jika semua sudah terangkai dan terhubung dengan baterai, maka ESP8266 akan secara otomatis terhubung dengan WIFI, dan robot akan dapat dijalankan dengan kendali dari PC menggunakan sinyal WIFI. Adapun rangkaian kabel untuk menjalankan robot yaitu :

ARDUINO MEGA	ESP8266	GPS UBLOX NEO	HMC5983
		6M	
RX	TX	-	-
TX	RX	-	-
GROUND	GROUND	GROUND	GROUND
3.3V	CH-PD, 3.3V	3.3V	3.3V
RX2	-	TX	-
TX2	-	RX	-
SCL1	-	-	SCL
SDA1	-	-	SDA

Tabel 2 Hubungan antar pin Arduino Mega, ESP8266, GPS dan HMC5983

3. Pembahasan

3.1 Implementasi

Aplikasi GUI ini di implementasikan pada aplikasi desktop. Implementasi Antar Muka GUI ini meliputi tampilan awal yang dimana pada tampilan awal ini terdapat beberapa fitur, diantaranya fitur *connection*, fitur *controller*, fitur alamat URL, fitur data GPS dan kompas, serta tampilan dari fitur IP Cam dan Website Google Maps.

3.1.1 Implementasi Antar Muka pada Desktop

Platform yang digunakan untuk membuat dan menjalankan aplikasi desktop yang berupa GUI ini adalah Visual Studio Enterprise 2017 dengan device yang digunakan adalah Ultrabook Asus Zenbook UX3030UB. Berikut tampilan antar muka GUI pada desktop.

Gambar 10. Tampilan Antar Muka pada Desktop

3.2 Pengujian Fungsionalitas

Pengujian panel kendali ini menggunakan metode *blackbox*. Pengujian *blackbox* dilakukan dengan cara menguji setiap fungsi yang terdapat pada panel kendali, apakah menghasilkan keluaran yang telah sesuai dengan fungsi yang diharapkan atau tidak. Apabila hasil keluaran telah sesuai dengan fungsi yang diharapkan atau tidak. Apabila hasil keluaran telah sesuai dengan fungsi yang diharapkan maka fungsi tersebut sudah benar, apabila belum sesuai maka akan diperbaiki berdasarkan fungsionalitas dari fungsi tersebut.

3.2.1 Pengujian *Blackbox*

Pengujian *blackbox* menitikberatkan hasil keluaran dari suatu masukan apakah sudah sesuai dengan fungsionalitasnya atau tidak. Pengujian *blackbox* dilakukan pada setiap fungsi yang ada pada panel kendali. Adapun table pengujian *blackbox* adalah sebagai berikut :

Tabel 3 Pengujian Menu Connection

No	Skenario Pengujian	Menu Uji	Hasil yang Diharapkan	Hasil Pengujian	Kesimpulan
1	Melakukan Tombol		Dengan menekan tombol	Menampilkan	Diterima
	konektivitas ke IP	Connect	Connect maka IP Cam	hasil monitoring	
	Cam dengan cara		akan otomatis terhubung	dari IP Cam	
	memasukkan IP dari		dan akan tampil hasilnya		
	IP Cam		pada layar monitoring		
2	Melakukan	Tombol	Dengan menekan tombol	Tidak akan	Diterima
	pemutusan	Disconnect	Disconnect maka IP Cam	terhubung lagi	
	sambungan untuk		akan otomatis tidak	dengan IP Cam	
	tidak terhubung		terhubung lagi dengan IP		
	dengan IP Cam		Cam		

Table 4 Pengujian Menu Controller

No	Skenario Pengujian	Menu Uji	Hasil yang Diharapkan	Hasil Pengujian	Kesimpulan
1	Memanggil fungsi	Tombol	Dekan menekan tombol	Robot berjalan	Diterima
	maju dengan	Maju	maju, maka robot akan	maju	
	menekan tombol maju		berjalan maju		
	pada menu <i>controller</i>				
2	Memanggil fungsi	Tombol	Dekan menekan tombol	Robot berjalan	Diterima
	mundur dengan	Mundur	mundur, maka robot akan	mundur	
	menekan tombol		berjalan mundur		
	mundur pada menu				
	controller				
3	Memanggil fungsi	Tombol	Dekan menekan tombol	Robot berjalan	Diterima
	kanan dengan	Kanan	kanan, maka robot akan	kearah kanan	
	menekan tombol		berjalan kearah kiri		
	kanan pada menu				
	controller				
4	Memanggil fungsi	Tombol	Dekan menekan tombol	Robot berjalan	Diterima
	kiri dengan menekan	Kiri	kiri, maka robot akan	kearah kiri	
	tombol kiri pada		berjalan kearah kiri		
	menu controller				
5	Memanggil fungsi	Tombol	Dekan menekan tombol	Robot berhenti	Diterima
	stop dengan menekan	Stop	stop, maka robot akan		
	tombol stop pada		berhenti		
	menu controller				

Table 3 I cliguitali Mellu UKI	Table	5	Pengu	ijian	Menu	URI
--------------------------------	-------	---	-------	-------	------	-----

No	Skenario Pengujian	Menu Uji	Hasil yang Diharapkan	Hasil Pengujian	Kesimpulan
1	Menampilan alamat	Tombol Go	Alamat website yang	Alamat website	Diterima
	website yang tertera		dimasukkan akan	terbuka pada	
	pada textebox dengan		ditampilkan pada	tampilan browser	
	menekan tombol Go		tampilan menu website	menu Google	
			_	Maps	
2	Memanggil fungsi	Tombol	Tampilan pada alamat	Halaman	Diterima
	kembali ke halaman	Back	website akan berubah	sebelumnya akan	
	sebelumnya dengan		menjadi alamat	terbuka kembali	
	menekan tombol		sebelumnya dibuka		
	Back				
3	Memanggil fungsi	Tomol	Tampilan pada alamat	Halaman akan	Diterima
	maju ke halaman	Forward	website akan berubah	terbuka	

sebelumnya apabila sudah memanggil	menjadi alamat website yang sesuai dengan yang	
fungsi kembali	diinputkan pada textbox	
dengan menekan		
tombol Forward		

Table	6 Pen	miian	Menu	GPS	dan	Comp	ass Data
rable	o Pen	gujian	Menu	UPS	uan	Comp	ass Data

No	Skenario Pengujian	Menu Uji	Hasil yang Diharapkan	Hasil Pengujian	Kesimpulan
1	Memanggil fungsi	Tombol	Data dari GPS dan	Menampilkan	Diterima
	update untuk	Update	Compass akan muncul	data GPS dan	
	menampilkan hasil	-	ketika tombol update di	Compass	
	dari data GPS dan		tekan dan menampilkan	-	
	Compass secara Real-		data tersebut secara real-		
	Time dengan		time		
	menekan tombol				
	Update				

4 Kesimpulan

- 1. Berdasarkan hasil pengujian fungsionalitas untuk panel kendali, semua fungsi bekerja sesuai fungsi yang telah ditentukan.
- 2. GUI hanya akan berkerja apabila telah terinstall Visual Studio 2017 dan terdapat data dari aplikasi tersebut.
- 3. GUI ini diperlukan untuk mengontrol dan memonitoring robot amfibi secara jarak jauh.
- 4. Saat robot kehilangan sinyal, robot akan kembali ke titik awal dengan konsep dari algoritma semut berdasarkan arah dan waktu.

Daftar Pustaka

- [1] Boxerbaum, Alexander S et al. 2012 *Design, Simulation, Fabrication and Testing of a Bio-Inspired Amphibious Robot with Multiple Modes of Mobility.* USA: Research Engineer, Robotics, SRI International
- [2] Cubero, Samuel N. 2012. *Design Concepts For A Hybrid Swimming And Walking Vehicle*. Abu Dhabi: The Petroleum Institute.
- [3] Pitowarno, E. 2006p. Robotika : Desain, Kontrol dan Kecerdasan Buatan. Yogyakarta. Penerbit Andi.
- [4] Kaur, Er. Sarbjeet. 2013. Shortest Path Finding Algorithm Using Ant Colony Optimization.

International Journal of Engineering Research & Technology

- [5] Espressif Systems IOT Team. 2015. ESP8266 Datasheet ver 4.3. Espressif Systems.
- [6] C, Annex A thru. 1995. GPS SPS Signal Specification. United States Coast Guard.
- [7] U-blox. 2010. Neo-6 U-blox 6 GPS Modules Datasheet. U-Blox Corporate Headquarters.
- [8] F. Arduino, "Arduino Mega 2560 rev 3," Arduino, [Online]. Available: https://store.arduino.cc/usa/arduino-mega-2560-rev3. [Accessed 28 April 2017].