ABSTRACT

In today's digital telecommunication technology, data is transmitted through wireless

technology. Institute of Electrical and Electronics Engineering (IEEE) has issued

specification of Worldwide Interoperability for Microwave Access (WiMAX), which is

802.16. WiMAX contain blocks named forward error correction (FEC). Inside FEC, there

is a convolutional encoder and viterbi decoder that works to address and correct errors that

occur in the data information.

The method used in this design are viterbi decoding algorithm at the receiver side

and convolutional coding on the sender side. The advantage of this method is more

efficient to obtain maximum likelihood estimates of the optimal sequence that has been

encoded. But the level of difficulty increases exponentially viterbi decoding with

increasing length restrictions. In this final project will be implemented convolutional

encoder and viterbi decoder on 802.16e WiMAX technology using Field Programmable

Array (FPGA) and language Very High Speed Integrated Circuit Hardware Description

Language (VHDL). Stages of design conducted that make a design with VHDL language

and implemented into the FPGA.

The results of this final project of the design is implemented on the FPGA and the

proven ability convolutional encoder and viterbi decoder to address and correct errors

when information signal transmitted, and compare the results of both software and

hardware simulation. In the test system can be proven capability of convolutional encoder

and viterbi decoder can address and correct errors up to 6 bits, given sequentially every 2

bits, and 3 bits of a given sequence every 4 bits.

Keywords: Convolutional Encoder, Viterbi Decoder, WiMAX, FPGA, VHDL.

iv