LIST OF FIGURES

Figure 1.1.	Spectrum hole in cognitive radio	
Figure 2.1.	OFDM Diagram	
Figure 2.2.	A conceptual illustration of spectrum holes over time and frequency	/
Figure 2.3.	The hidden terminal problem occurs when a CR user experiences shadowing	
	or lies outside coverage area of the transmitter of a primary user (licensed	0
F: 0.4	user)	
Figure 2.4.	Hypothesis test and possible outcomes with their corresponding probabilities	
Figure 2.5.	Primary transmitter detection.	10
Figure 2.6.	Transmitter detection problem: (a) receiver uncertainty and (b) shadowing uncertainty	13
Figure 2.7.	Cooperative transmitter detection under highly faded and shadowed environment	13
Figure 2.8.	Cooperative transmitter detection using fusion center	14
Figure 2.9.	Collaborative spectrum sensing	
Figure 2.10.	Primary receiver detection	
Figure 2.11.	Interference temperature management	16
Figure 2.12.	An OFDM Block. A CP of Tc symbols is copied in front of the data Block	16
Figure 2.13.	Parallel topology with fusion center used for distributed signal processing	19
Figure 2.14.	Data distribution at each sensor under hypotheses H ₁ and H ₀ , and confidence	
	regions. Threshold is indicated by T. The intervals $(-\infty, T_L)$ and (T_U, ∞) are	
	designated "confidence" regions. Interval (T_L, T_U) is designated "no	
	confidence" region	20
Figure 2.15.	Data distribution at each sensor under hypotheses H ₁ and H ₀ , and confidence	
	regions	21
Figure 3.1.	System configuration of distributed detection	24
Figure 3.2.	Data distribution at each sensor under hypotheses H ₁ and H ₀ and confidence	
-	regions	25
Figure 3.3.	The Process Flow of Detection System Model	30
Figure 4.1.	Distribution data of detection result by single local detector at SNR= -10dB	31
Figure 4.2.	Distribution data of detection result by single local detector at SNR= 0 dB	32
Figure 4.3.	ROC graphic of detection result by single local detector at SNR= -10dB	32
Figure 4.4.	ROC graphic of detection result by single local detector at SNR= 0 dB	33
Figure 4.5.	ROC graphic of detection result by single detector with various SNR	33
Figure 4.6.	Probability of detection by single local detector with various SNR	34
Figure 4.7.	ROC of global decision with 32 local detectors	34
Figure 4.8.	ROC of global decision with various number of local detectors at SNR=-10dB	35
Figure 4.9.	ROC of global decision with various SNR	35
Figure 4.10.	Probability of detection of global decision with various number of local detectors at SNR= -10dB	36
Figure 4.11.	Probability of detection of global decision with various number of local	
8	detectors and SNR	36
Figure 4.12.	ROC of global decision using SDC and HDC at SNR = -10dB	37
Figure 4.13.	Probability of detection of global decision with various SNR using HDC and	
	SDC	37
Figure 4.14.	ROC of global decision using SDC, HDC, and HDC 2-bit at SNR = -10dB	38
Figure 4.15.	Probability of detection of global decision with various SNR using SDC,	
	HDC, and HDC 2-bit	39
Figure 4.16.	Probability of detection of global decision with various number of local	
<i>J</i>	detectors using SDC HDC 1-bit and HDC 2-bit	40