ABSTRAK

Nanofluida mempunyai potensi untuk menggantikan fluida pendingin konvensional. Penelitian ini membahas mengenai invensigasi nanofluida Air-Al₂O₃ dengan menggunakan model radiator. Al₂O₃ anopartikel diperoleh dari proses bayer dan solgel. Bahan alam bijih bauksit diekstraksi hingga menghasilkan senyawa Al₂O₃. Al₂O₃ ditambah sukrosa, dipanaskan, kemudian dikalsinasi sehingga diperoleh Al₂O₃ nanopartikel berukuran 6,31 nm dengan menggunakan metode karakterisasi Surface Area Meter. Al₂O₃ nanopartikel didispersikan dengan air dengan konsentrasi 0,03 % volume, 0,08% volume dan 0.13% volume per 300 ml air sehingga diperoleh nanofluida Air-Al₂O₃ yang kemudian diaplikasikan pada model radiator. Hasil yang didapatkan pada penelitian yaitu makin besar konsentrasi Al₂O₃ nanopartikel yang dimasukan, makin besar penurunan suhu yang terjadi. Penurunan suhu terbesar sebesar 3°C pada konsentrasi Al₂O₃ nanopartikel 0,13% volume. Kapasitas panas nanofluida menurun seiring ditabahkan konsentrasi nanopartikel Al₂O₃, sementara nilai laju perpindahan kalor meningkat seiring dengan kenaikan selisih suhu fluida sebelum dan sesudah didinginkan dengan nilai laju perpindahan kalor tertinggi terjadi pada nanofluida Air-Al2O3 0,13 % volume yaitu sebesar 70,15 J/s.

Kata kunci: Al₂O₃ nanopartikel, nanofluida Air-Al₂O₃, model radiator, koefisiensi kerja