ABSTRACT

Nanofluids has potential to replace the conventional cooling fluid. This study examines on investigation of nanofluids water-Al₂O₃ by using radiator model. Al₂O₃ nanoparticles are obtained by process of bayer and solgen. Natural material of bauxite ore is extracted to produce compound Al₂O₃. Al₂O₃ is added sucrose, heated, then calcined to obtain Al₂O₃ nanoparticles sized 6,31 nm by using characterization method Surface Area Meter. Al₂O₃ nanoparticles are dispersed by water with a concentration of 0.03% volume, 0,08% volume and 0.13% volume per 300-ml water to obtain nanofluids water-Al₂O₃ applied to the radiator model. The result of this study is the greater the concentration of Al₂O₃ nanoparticles are included, the greater the temperature drop occurs. The largest temperature drop around 3°C at a concentration of Al₂O₃ nanoparticles 0,13% volume. The heat capacity of Nanofluid decreases as the concentration of nanoparticles is added Al₂O₃, while the rate value of heat transfer increase as increase in the difference in temperature of the fluid before and after cooled to the rate value of heat transfer is highest in nanofluids water-Al₂O₃ 0.13% by volume in the amount of 70.15 J / s.

Keywords: Al_2O_3 nanoparticles, nanofluids water- Al_2O_3 , the radiator model, coefficient of performance