Informasi Umum

Kode

25.04.7016

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Recommender Systems

Dilihat

36 kali

Informasi Lainnya

Abstraksi

This paper introduces Antaka, a Conversational Recommender System (CRS) designed for personalized tourist route planning in Indonesia. Unlike traditional recommender systems that rely on content-based or collaborative filtering methods, An taka incorporates natural language understanding through the BERT Transformer model to dynamically capture user preferences during multi-turn conversations. The system is fine-tuned using a Named Entity Recognition (NER) approach on Indonesian tourism datasets to identify key entities, including destination categories, cities, price ranges, and user rating preferences. Antaka’s architecture enables real-time interaction and personalized suggestions tailored to the user’s intent and context. Experimental results show significant improvements after fine-tuning: precision increased from 0.53 to 0.90, recall from 0.09 to 0.86, F1-score from 0.06 to 0.88, and accuracy reached 0.86. In recommendation evaluations, Antaka achieved a Mean Reciprocal Rank (MRR) of 0.87 and Precision@3 of 0.79. These findings highlight Antaka’s potential to deliver relevant and contextual route recommendations through natural conversations, offering a novel contribution to CRS research in low-resource languages and explicitly addressing the Indonesian tourism landscape.

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama CLARA ISRA SYAMDAH
Jenis Perorangan
Penyunting Z. K. Abdurahman Baizal
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi

Download / Flippingbook