Informasi Umum

Kode

25.05.675

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Thesis (S2) - Reference

Subjek

Artificial Intelegence

Dilihat

61 kali

Informasi Lainnya

Abstraksi

The development of open-vocabulary object detection (OVOD) has enabled object recognition from free-form textual prompts. However, most existing OVOD systems, including Grounding DINO, remain constrained to English-language datasets and encoders, limiting their applicability in non-English contexts. This research explores the adaptation of Grounding DINO by replacing its default BERT text encoder with IndoBERT, a monolingual language model trained on Indonesian corpora. Using manually translated subset of the COCO val2017 dataset, this study evaluates the performance of three model configurations: (1) English captions with BERT, (2) Indonesian captions with BERT, and (3) Indonesian captions with IndoBERT. The IndoBERT-enhanced model achieved a precision of 0.758, F1-score of 0.21, and [email protected]:0.9 of 0.132, outperforming the baselines in aligning Indonesian prompts with visual objects. These findings support the feasibility of developing vision-language models tailored to low-resource languages, emphasizing the role of monolingual encoders in cross-modal alignment.

  • ABK7ZAA5 - Tesis 2

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama DIVA ANINDITHA
Jenis Perorangan
Penyunting Suryo Adhi Wibowo, Koredianto Usman
Penerjemah

Penerbit

Nama Universitas Telkom, S2 Teknik Elektro
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi