Informasi Umum

Kode

25.06.268

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - TA (D3) - Reference

Subjek

Internet Of Things

Dilihat

66 kali

Informasi Lainnya

Abstraksi

This Final Task discusses the design and implementation of an IoT-based animal behavior monitoring and classification system using accelerometer sensors and machine learning algorithms. The system is designed to monitor key animal activities such as standing, sitting, and sleeping in real-time using accelerometer data, which is processed to reduce noise using the window moving avarage. Several machine learning models, including Random Forest, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost), are evaluated to determine the best algorithm for classifying animal activities. The system is implemented on an ESP32 Mini C3 microcontroller integrated into the Internet of Things (IoT) framework, enabling real-time data transmission via Wi-Fi to a web based dashboard. The testing results show that the Random Forest algorithm provides the highest classification accuracy, exceeding 90%, with minimal latency, making it an effective solution for automatic and efficient animal behavior monitoring. This study highlights the potential of using IoT technology and machine learning to enhance efficiency and productivity in modern livestock management.

  • VKI1A3 - SISTEM KOMPUTER
  • VKI1B3 - SISTEM OPERASI

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama AL FAHRI SUHAIMI
Jenis Perorangan
Penyunting Mochammad Fahru Rizal, Giva Andriana Mutiara
Penerjemah

Penerbit

Nama Universitas Telkom, D3 Teknologi Komputer
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi