Informasi Umum

Kode

25.04.1325

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Computer Vision

Dilihat

136 kali

Informasi Lainnya

Abstraksi

This study explores an advanced approach to multi-object tracking in surveillance systems by employing the Extended Kalman Filter (EKF) and Aggregate Channel Features (ACF) detection. Our research addresses challenges inherent in real-time object tracking, such as occlusions and complex trajectories, with an EKF-based solution that offers enhanced tracking precision and continuity. By integrating ACF detection, we improve initial object detection speed and accuracy, thereby facilitating more reliable tracking initialization. We tested this approach on diverse datasets—each representing varied environmental conditions—to assess performance across metrics including Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), precision, and recall. The results demonstrate that while the EKF-ACF framework achieves high spatial accuracy and precision, it also encounters limitations in minimizing missed detections in crowded scenes. This study underscores the utility of the EKF-ACF approach in surveillance applications, especially in scenarios demanding real-time, high-precision tracking of dynamic objects.

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama MARIA CHRISTINE
Jenis Perorangan
Penyunting Hilal Hudan Nuha, Muhamad Irsan
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Teknologi Informasi
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi