Informasi Umum

Kode

25.04.472

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Science

Dilihat

74 kali

Informasi Lainnya

Abstraksi

<p>Multi-label classification is a critical task in text analysis, particularly for complex datasets like Qur’an verses, which often encapsulate multiple thematic labels. This study investigates the use of ensemble methods by combining traditional machine learning models, such as Support Vector Machine (SVM) and Naïve Bayes, with the transformer-based BERT model. The research evaluates individual and ensemble performances under varying preprocessing conditions and uses Hamming Loss as the primary evaluation metric. SVM emerged as the most effective standalone model, achieving the lowest Hamming Loss of 0.0881, while the SVM and Naïve Bayes ensemble demonstrated competitive results with a Hamming Loss of 0.0891. Interestingly, minimal preprocessing outperformed extensive text transformations, underscoring the importance of preserving semantic richness in Qur’an verses analysis. The inclusion of BERT in ensembles, while promising, often underperformed due to its sensitivity to small datasets and contextual depe

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama FAUZAN NAUFAL RIZQI
Jenis Perorangan
Penyunting Moch. Arif Bijaksana, Bunyamin
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi