Informasi Umum

Kode

25.04.470

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Recommender Systems

Dilihat

113 kali

Informasi Lainnya

Abstraksi

Conversational recommender systems (CRS) have revolutionized personalized recommendations in recommender systems by using interactive and adaptive decision-making, particularly in complex domains (e.g., laptops). Existing CRS provides interaction between the system and the user through Form-based Layouts and Natural Language. Natural language- based interactions are typically constructed using Conventional Natural Language Processing (C-NLP) methods. While both interactions have shown certain successes, they also have limitations. Form-based layouts restrict users from expressing their preferences freely because of their rigid and structured nature. On the other hand, C-NLP allows for more dynamic interactions but relies heavily on domain-specific datasets and still struggles to interpret complex user requirements. To tackle these issues, we propose the development of a CRS using Large Language Models (LLMs). Specifically, we combined a Fine-Tuned GPT-4o model and the retrieval technique of Retrieval-Augmente

  • CII4H3 - SISTEM PEMBERI REKOMENDASI

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama FATHAN ASKAR
Jenis Perorangan
Penyunting Z. K. Abdurahman Baizal
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi