Informasi Umum

Kode

25.04.428

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Science

Dilihat

119 kali

Informasi Lainnya

Abstraksi

The 2024 Regional Elections in Indonesia have sparked significant public discourse, generating polarized opinions as citizens actively discuss political issues, particularly on social media platforms such as X. Sentiment analysis is essential to enhance the understanding of opinion polarization reflected in these discussions. This research applies hyperparameter tuning on Long Short-Term Memory (LSTM) models enhanced with FastText feature expansion to optimize sentiment analysis accuracy for tweets about Indonesia's 2024 Regional Elections. A dataset of 60,000 tweets was collected and labeled into positive, negative, or neutral sentiments. The research involves TF-IDF feature extraction, FastText feature expansion with top similarities of 1, 5, and 10 of Tweet, Indonews, and Tweet+Indonews corpus, followed by hyperparameter tuning to optimize LSTM parameters, including number of layer, hidden size, learning rate, and epoch. The optimized LSTM models, using a top 5 similarities in the Indonews corpus, achieved

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama KHARISMA AYU
Jenis Perorangan
Penyunting Erwin Budi Setiawan
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi