24.05.611
610 - Medicine and helath, Medical services
Karya Ilmiah - Thesis (S2) - Reference
Tugas Akhir
74 kali
<span calibri="" style="font-size:11.0pt;font-family:">The<span style="letter-spacing: .05pt"> </span>integration<span style="letter-spacing:.05pt"> </span>of<span style="letter-spacing:.05pt"> </span>Electronic<span style="letter-spacing: .05pt"> </span>Health<span style="letter-spacing:.05pt"> </span>Records<span style="letter-spacing:.05pt"> </span>(EHR)<span style="letter-spacing:.05pt"> </span>with<span style="letter-spacing:.05pt"> </span>Drug-Drug<span style="letter-spacing:.05pt"> </span>Interaction<span style="letter-spacing:.05pt"> </span>(DDI)<span style="letter-spacing:.05pt"> </span>knowledge graphs holds significant potential for improving patient safety and personalized<span style="letter-spacing: -2.5pt"> </span>medicine. This study presents a comprehensive methodology for constructing a knowledge<span style="letter-spacing:-2.5pt"> </span>graph from EHR data and subsequently fusing it with a pre-existing DDI database.<span style="letter-spacing: .05pt"> </span>The<span style="letter-spacing:.05pt"> </span>fusion process involves aligning entities and relationships between the EHR and DDI graphs<span style="letter-spacing:-2.5pt"> </span>to create a unified representation of medical knowledge. To ensure the integrity and utility<span style="letter-spacing: -2.5pt"> </span>of<span style="letter-spacing:-.35pt"> </span>the<span style="letter-spacing:-.35pt"> </span>fused<span style="letter-spacing:-.35pt"> </span>knowledge<span style="letter-spacing:-.35pt"> </span>graph,<span style="letter-spacing:-.3pt"> </span>a<span style="letter-spacing:-.35pt"> </span>multi-faceted<span style="letter-spacing:-.3pt"> </span>evaluation<span style="letter-spacing: -.35pt"> </span>framework<span style="letter-spacing:-.35pt"> </span>is<span style="letter-spacing:-.35pt"> </span>employed,<span style="letter-spacing: -.3pt"> </span>including<span style="letter-spacing:-2.45pt"> </span>validation<span style="letter-spacing:-.2pt"> </span>of<span style="letter-spacing:-.15pt"> </span>the<span style="letter-spacing:-.2pt"> </span>fused<span style="letter-spacing:-.15pt"> </span>graph,<span style="letter-spacing:-.1pt"> </span>entity<span style="letter-spacing:-.2pt"> </span>coverage,<span style="letter-spacing:-.1pt"> </span>relationship<span style="letter-spacing: -.2pt"> </span>coverage,<span style="letter-spacing:-.1pt"> </span>entity<span style="letter-spacing:-.2pt"> </span>correctness,<span style="letter-spacing: -.15pt"> </span>relationship correctness, and clinical accuracy. The validation process assesses the accuracy<span style="letter-spacing:.05pt"> </span>of the fusion, ensuring that the integrated graph faithfully represents the underlying data<span style="letter-spacing:.05pt"> </span>from<span style="letter-spacing:1.9pt"> </span>both<span style="letter-spacing:1.95pt"> </span>EHR<span style="letter-spacing:1.95pt"> </span>and<span style="letter-spacing:1.9pt"> </span>DDI<span style="letter-spacing:1.95pt"> </span>sources.<span style="letter-spacing:1.75pt"> </span>Entity<span style="letter-spacing:1.95pt"> </span>and<span style="letter-spacing:1.9pt"> </span>relationship<span style="letter-spacing:1.95pt"> </span>coverage<span style="letter-spacing:1.95pt"> </span>using<span style="letter-spacing:1.95pt"> </span>python<span style="letter-spacing:1.9pt"> </span>scripts<span style="letter-spacing:-2.5pt"> </span></span><span calibri="" style="font-size:11.0pt;font-family:">are used to quantify the completeness of the graph, while correctness measures evaluate the<span style="letter-spacing:.05pt"> </span><span style="mso-font-width:105%">accuracy of the represented information. Finally, clinical accuracy is assessed to determine<span style="letter-spacing:.05pt"> </span>the practical relevance and reliability of the knowledge graph in a real-world healthcare<span style="letter-spacing:.05pt"> </span>setting. The correctness of entities and relationships, as well as clinical accuracy, are eval-<span style="letter-spacing:.05pt"> </span>uated by medical experts to ensure the practical relevance and reliability of the graph in<span style="letter-spacing:.05pt"> </span>clinical settings. This dynamic approach, which leverages both machine-based and human<span style="letter-spacing: .05pt"> </span>expert<span style="letter-spacing:1.95pt"> </span>methodologies,<span style="letter-spacing:2.3pt"> </span>proves<span style="letter-spacing:1.95pt"> </span>to<span style="letter-spacing:2.0pt"> </span>be<span style="letter-spacing: 1.95pt"> </span>effective<span style="letter-spacing:2.0pt"> </span>in<span style="letter-spacing:1.95pt"> </span>ensuring<span style="letter-spacing:1.95pt"> </span>the<span style="letter-spacing:2.05pt"> </span>quality<span style="letter-spacing:1.95pt"> </span>and<span style="letter-spacing:1.95pt"> </span>clinical<span style="letter-spacing:2.0pt"> </span>utility<span style="letter-spacing:-2.5pt"> </span>of the fused knowledge graph.<span style="letter-spacing:.05pt"> </span>The study concludes that such an integrated evaluation<span style="letter-spacing: .05pt"> </span>strategy is essential for developing reliable and accurate knowledge graphs in healthcare,<span style="letter-spacing:.05pt"> </span>enhancing<span style="letter-spacing:.85pt"> </span>decision<span style="letter-spacing:.85pt"> </span>support<span style="letter-spacing:.85pt"> </span>systems,<span style="letter-spacing:.85pt"> </span>and<span style="letter-spacing:.8pt"> </span>ultimately<span style="letter-spacing:.85pt"> </span>improving<span style="letter-spacing:.85pt"> </span>patient<span style="letter-spacing:.9pt"> </span>outcomes.</span></span>
Tersedia 1 dari total 1 Koleksi
Nama | ABDI JEPRI BANGUN |
Jenis | Perorangan |
Penyunting | Kemas Rahmat Saleh Wiharja |
Penerjemah |
Nama | Universitas Telkom, S2 Informatika |
Kota | Bandung |
Tahun | 2024 |
Harga sewa | IDR 0,00 |
Denda harian | IDR 0,00 |
Jenis | Non-Sirkulasi |