Informasi Umum

Kode

24.21.736

Klasifikasi

006.31 - Machine Learning

Jenis

Buku - Elektronik (E-Book)

Subjek

Machine Learning

No. Rak

4

Dilihat

20 kali

Informasi Lainnya

Abstraksi

This book introduces readers to the fundamentals of and recent advances in federated learning, focusing on reducing communication costs, improving computational efficiency, and enhancing the security level. Federated learning is a distributed machine learning paradigm which enables model training on a large body of decentralized data. Its goal is to make full use of data across organizations or devices while meeting regulatory, privacy, and security requirements.

The book starts with a self-contained introduction to artificial neural networks, deep learning models, supervised learning algorithms, evolutionary algorithms, and evolutionary learning. Concise information is then presented on multi-party secure computation, differential privacy, and homomorphic encryption, followed by a detailed description of federated learning. In turn, the book addresses the latest advances in federate learning research, especially from the perspectives of communication efficiency, evolutionarylearning, and privacy preservation. The book is particularly well suited for graduate students, academic researchers, and industrial practitioners in the field of machine learning and artificial intelligence. It can also be used as a self-learning resource for readers with a science or engineering background, or as a reference text for graduate courses.

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama Yaochu Jin, Hangyu Zhu, et al.
Jenis Perorangan
Penyunting
Penerjemah

Penerbit

Nama Springer Cham
Kota New York
Tahun 2022

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi

Download / Flippingbook

belum pernah diunduh