Informasi Umum

Kode

24.04.4985

Klasifikasi

006.31 - Machine Learning

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Machine Learning

Dilihat

264 kali

Informasi Lainnya

Abstraksi

Data sintetis sudah menjadi beberapa penelitian untuk kasus machine learning, salah satunya adalah menambah data baru dikarenakan kurangnya data yang sudah ada. Tetapi bagaimana untuk menghasilkan dan mengatur berbagai variasi dari distribusi data masukan masih menjadi bahan penelitian. Pada penelitian ini menggunakan salah satu variasi metode Variational Auto Encoder (VAE) untuk menghasilkan data sintetis, yaitu Beta-Variational Auto Encoder (Beta-VAE). VAE sendiri merupakan metode unsupervised learning yang dapat menghasilkan data sintetis, tetapi variasi yang dihasilkan tidak terlalu teratur dibandingkan Beta-VAE. Pada penelitian ini digunakan metode Beta- VAE asli untuk menghasilkan data sintetis yang dilatih dengan empat dataset yang berbeda. Digunakan metrik PSNR, SSIM dan FID score untuk mengevaluasi model Beta-VAE. Dibandingkan setiap model Beta-VAE yang dilatih dengan dataset berbeda dan dilakukan analisis pada setiap model. Hasil dari penelitian didapati model yang dilatih dengan CelebA memiliki hasil terbaik terlihat dari metrik evaluasi.

  • CCH3F3 - KECERDASAN BUATAN
  • CSH3L3 - PEMBELAJARAN MESIN
  • CII3L3 - PEMBELAJARAN MESIN LANJUT
  • CCH4D4 - TUGAS AKHIR

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama BRAMANTYA PURBAYA
Jenis Perorangan
Penyunting Bedy Purnama, Edward Ferdian
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2024

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi