Informasi Umum

Kode

24.04.4881

Klasifikasi

006.37 - Computer Vision

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Tugas Akhir

Dilihat

131 kali

Informasi Lainnya

Abstraksi

<i>Human pose Estimation</i> (HPE) merupakan salah satu hal dalam <i>vision</i> komputer dimana model yang digunakan mencoba untuk mengestimasi pose dari sebuah gambar atau video. Penelitian tentang HPE sudah banyak dilakukan sebelumnya dengan menggunakan <i>Convolutional Neural Networks </i>(CNN). Pada penelitian ini, dengan menggunakan <i>Mediapipe </i>akan membangun model sistem untuk melakukan estimasi aktivitas manusia berbasis <i>vision</i> dan mengklasifikasinya menggunakan <i>random forest </i>yang hasilnya akan dibandingkan dengan estimasi aktivitas berbasis sensor. Hasil penelitian ini mengungkapkan bahwa <i>random forest </i>dapat mencapai tingkat akurasi 47.2% dalam mengenali aktivitas berjalan. Namun, masih banyak kesalahan klasifikasi pada aktivitas jalan cepat dan berlari. Berbeda dengan estimasi pose aktivitas manusia berbasis sensor yang dapat mencapai akurasi 69% dalam mengenali aktivitas berlari. Ketidakseimbangan data latih, dengan distribusi terbesar pada kelas ‘walking’ sebesar 40%, menyebabkan model kurang baik dalam melakukan klasifikasi. Faktor lainnya seperti variasi gaya antar individu dan teknik pengambilan data juga mempengaruhi akurasi klasifikasi

  • CSH4373 - INTERNET OF THINGS

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama MUHAMMAD RIFKY ANAMI
Jenis Perorangan
Penyunting Bayu Erfianto
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2024

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi