Informasi Umum

Kode

24.05.409

Klasifikasi

006.31 - Machine Learning

Jenis

Karya Ilmiah - Thesis (S2) - Reference

Subjek

Communication Engineering-telecommunication Systems

Dilihat

98 kali

Informasi Lainnya

Abstraksi

This thesis proposes a deep learning-based demapper that utilizes feedforward neural networks to learn the complex mapping functions required for multiuser detection in non-orthogonal multiple access (NOMA) system. By utilizing neural networks, the proposed deep learning-based demapper eliminates the need for the system to check each constellation point individually, hence decreasing the computational complexity of the demapping process, while maintaining a good bit-error rate (BER) performances.<br /> <br /> This thesis developed a deep learning-based demapper, trained using a dataset generated with iterative spatial demapping (ISM), to process the received signals from a two-user NOMA scheme. This thesis analyzes two NOMA scenarios: (i) an uncoded scheme that utilizes binary phase-shift keying (BPSK) modulation, and (ii) a coded scheme that employs repetition coding and interleaver to improve transmission reliability. The proposed demapper trained on essential features such as the superposition received sig

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama ALIFIA SAFRIDA ARINI
Jenis Perorangan
Penyunting Khoirul Anwar, Gelar Budiman
Penerjemah

Penerbit

Nama Universitas Telkom, S2 Teknik Elektro
Kota Bandung
Tahun 2024

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi