Informasi Umum

Kode

23.04.2727

Klasifikasi

006.31 - Machine Learning

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Machine - Learning, Fuel Systems,

Dilihat

263 kali

Informasi Lainnya

Abstraksi

<p><strong>Sentiment analysis is a technique used to analyze the subjectivity of opinions expressed in the text. In this research, we evaluate sentiment classification methods for analyzing public opinion about fuel inflation on Twitter, including Naive Bayes, Support Vector Machine (SVM), and Random Forest. Our results show that the SVM and Random Forest methods produced the highest accuracy rates of 78%, while Naive Bayes achieved an accuracy rate of 70%. Based on these findings, the SVM and Random Forest methods are good choices for sentiment analysis on public opinion about fuel price increases on Twitter.</strong></p>

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama MUHAMAD RIKBAL IKHSANI
Jenis Perorangan
Penyunting Bambang Ari Wahyudi, Irma Palupi
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika (International Class)
Kota Bandung
Tahun 2023

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi