Informasi Umum

Kode

21.04.3225

Klasifikasi

300.285 - Data Analysis of Social Science

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Analysis

Dilihat

270 kali

Informasi Lainnya

Abstraksi

Ujaran kebencian dianggap sebagai kasus tertinggi yang terjadi di media sosial terutama Twitter. Twitter membatasi penggunanya dalam mengunggah sebuah tweet hanya 280 karakter, sehingga memungkinkan terjadinya ketidakcocokan kosakata. Oleh karena itu penulis menerapkan metode Feature Expansion yaitu Word2vec dan metode pembobotan TF-IDF, untuk mengatasi permasalahan tersebut serta membangun sistem deteksi ujaran kebencian. Metode klasifikasi yang digunakan untuk membangun sistem tersebut adalah Support Vector Machine (SVM) dan Random Forest. Hasil akhir penelitian menunjukkan bahwa penggunaan metode Feature Expansion dengan pembobotan TF-IDF pada klasifikasi Random Forest memberikan hasil paling optimal yaitu 88,37% pada nilai akurasi dan 0,8819 pada nilai F1 score.

Koleksi & Sirkulasi

Seluruh 1 koleksi sedang dipinjam

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama MILA PUTRI KARTIKA DEWI
Jenis Perorangan
Penyunting Erwin Budi Setiawan
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2021

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi