Informasi Umum

Kode

21.04.3185

Klasifikasi

006.31 - Machine Learning

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Machine Learning

Dilihat

241 kali

Informasi Lainnya

Abstraksi

GERD or Gastroesophageal Reflux Disease is a situation when the reflux of stomach contents leads to unpleasant symptoms and/or complications. The prevalence range of GERD is approximately 18.1% to 27.8% in North America, 8.8% to 25.9% in Europe, 2.5% to 7.8% in East Asia, 8.7% to 33.1% in the Middle East, 11.6% in Australia, and 23.0% in South America. The numbers may seem small, but GERD will lead to several complications including esophagitis, peptic stricture, and Barrett’s esophagus if left untreated. The most common diagnostic test for the assessment of GERD along with its possible complications is the upper gastrointestinal endoscopy, or esophagogastroduodenoscopy (EGD). However, endoscopy has several risks. Disease detection using machine learning can be done and is needed due to the increment in medical data, new detection, and diagnostic modalities being developed. One of the machine learning algorithms often used in text classification is Support Vector Machine (SVM). This research applies SVM to do text-based classification, classifying data into two classes, namely “GERD patient” and “not GERD patient," using drug review data. The best model has 91.32% accuracy, 91% f1-score, and 91.32% AUC score with unigram as the n-gram range, and RBF with C is 1000, and gamma auto as the SVM kernel.

Koleksi & Sirkulasi

Seluruh 1 koleksi sedang dipinjam

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama ASTY NABILAH `IZZATURRAHMAH
Jenis Perorangan
Penyunting Isman Kurniawan,, Fhira Nhita
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2021

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi