Informasi Umum

Kode

21.04.3175

Klasifikasi

006.312 - Data mining

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Mining

Dilihat

216 kali

Informasi Lainnya

Abstraksi

Personality provides a deep insight of someone and has an important part in someone’s job performance. Predicting personality through social media has been studied on several research. The problem is how to improve the performance of personality prediction system. The purpose of this research is to predict personality on Twitter users and increase the performance of the personality prediction system. An online survey using Big Five Inventory (BFI) questionnaire has been distributed and gathered 295 Twitter users with 511,617 tweets data. In this research, we experiment on two different methods using Support Vector Machine (SVM), and the combination of SVM and BERT as the semantic approach. This research also implements Linguistic Inquiry Word Count (LIWC) as the linguistic feature for personality prediction system. The results showed that combination of these two methods achieve 79.35% accuracy score and with the implementation of LIWC can improve the accuracy score up to 80.07%. Overall, these results showed that the combination of SVM and BERT as the semantic approach with the implementation of LIWC is recommended to gain a better performance for the personality prediction system.

Koleksi & Sirkulasi

Seluruh 1 koleksi sedang dipinjam

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama GHINA DWI SALSABILA
Jenis Perorangan
Penyunting Erwin Budi Setiawan
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2021

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi