Informasi Umum

Kode

21.21.1726

Klasifikasi

006.3 - Special Computer Methods- Artificial intelligence

Jenis

Buku - Elektronik (E-Book)

Subjek

Network

No. Rak

Tel-U Bandung - Gedung Manterawu Lantai 5 : Rak 4
Tel-U Purwokerto : Rak 3

Dilihat

185 kali

Informasi Lainnya

Abstraksi

This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks.

This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama Anthony L. Caterini, Dong Eui Chang
Jenis Perorangan
Penyunting
Penerjemah

Penerbit

Nama Springer International Publishing
Kota New York
Tahun 2018

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi

Download / Flippingbook

diunduh 2 kali