Informasi Umum

Kode

21.04.431

Klasifikasi

518.1 - Algorithms

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Parallel Algorithms

Dilihat

97 kali

Informasi Lainnya

Abstraksi

Abstrak Support Vector Machine (SVM) adalah metode yang andal untuk melakukan klasifikasi dan regresi terutama dalam supervised machine learning. Akan tetapi SVM memiliki masalah skalabilitas dalam waktu komputasi dan penggunaan memori. Oleh karena itu banyak diusulkan Parallel Support Vector Machine (PSVM) untuk menambang data yang besekala besar. Pada penelitian ini penulis melakukan uji konsep PSVM dengan dekomposisi SMO yang dapat mendeteksi dan mengklasifikasika kanker dengan menggunakan data microarray. Penulis menerapkan teknik Sequential Minimal Optimization (SMO) yang menggunakan lagrange multipliers menyelesaikan masalah quadratic programming (QP) yang muncul selama pelatihan. Untuk menguji konsep dekomposisi SMO, data set akan dipecah ke dalam beberapa subset kemudia melakukan pelatihan SMO setiap subset secara independen dan menggabungkan setiap hasil pelatihan ke dalam satu model klasifikasi SMO. Evaluasi dilakukan dengan membandingkan akurasi dan performan dekomposisi SMO dan non-dekomposisi SMO. Evaluasi menghasilkan akurasi dekomposisi SMO 75% dan non-dekomposisi SMO 63% serta waktu pelatihan dekomposisi SMO 5.7 kali lebih cepat daripada non-dekomposisi SMO

Kata kunci : Microarray, Suport Vector Machine (SVM), Parallel Suport Vector Machine (PSVM), Sequential Minimal Optimization(SMO), Microarray

Koleksi & Sirkulasi

Seluruh 1 koleksi sedang dipinjam

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama RAHMAT RAMADAN PRASOJOE
Jenis Perorangan
Penyunting SETYORINI
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2021

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi