Informasi Umum

Kode

20.04.267

Klasifikasi

005.1 - software engineering

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Software Engineering

Dilihat

226 kali

Informasi Lainnya

Abstraksi

Email merupakan teknologi komunikasi yang umum dalam kehidupan modern ini. Semakin banyak email yang kita terima semakin sulit dan membutuhkan waktu untuk memilah. salah satu solusi untuk mengatasi masalah ini dengan cara membuat model matematis menggunakan pembelajaran mesin untuk memilah email berdasarkan konteks tertentu. Setiap jenis pembelajaran mesin dan distribusi data menghasilkan performansi yang berbeda. Ensemble merupakan suatu metode untuk megabungkan beberapa model menjadi satu kesatuan untuk mendapatkan performansi yang lebih baik. maka pada penelitian kami kami mencoba mengkombinasikan model pembelajaran, sampling dan beberapa kelas data untuk mendapatkan pengaruh bagging dan voting terhadap performansi macro average f1 score suatu model ensemble dan membandingkan dengan model non-ensemble. Hasil penelitian ini menunjukan sensitifitas Naïve Bayes terhadap data tak imbang terbantu oleh bagging dan voting dengan delta performansi 0.0001 – 0.0018, logistic regresi memiliki kenaikan performansi relative rendah untuk bagging dan voting dengan delta performansi 0.0001-0.00015, dan voting decision tree memiliki performansi yang terbebankan oleh Naïve Bayes dengan delta performansi -0.01.

Koleksi & Sirkulasi

Seluruh 1 koleksi sedang dipinjam

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama ALI HELMUT
Jenis Perorangan
Penyunting ADIWIJAYA, DANANG TRIANTORO MURDIANSYAH
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2020

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi