20.04.227
004.6 - Data communications, computer communications
Karya Ilmiah - Skripsi (S1) - Reference
Big Data
380 kali
Twitter adalah salah satu media sosial yang banyak sekali para penggunanya menceritakan berbagai macam banyak kejadian oleh karena itu perlu megklasifikasi topik menjadi dengan akurasi tinggi untuk lebih baik pengambilan informasi. Oleh karena itu penulis melakukan penelitian untuk mengatasi masalah ini dengan membagi beberapa tren topik twitter. Pembobotan yang digunakan adalah TF-IDF dengan menggunakan Naïve Bayes. Akurasi terbaik pada pembobotan TF-IDF menggunakan klasifikasi Naïve Bayes didapat pada skenario data training, data tesing 80:20 adalah 57.08% dan memiliki nilai f-measure 0.52. Trending pertama yang terdeteksi dari pengambilan data dari bulan 25 Juli sampai 28 Agustus adalah politik dengan persentase 26.88% lalu kedua senbud persentase 8.65% dan yang ketiga hukam 8.27%.
Seluruh 1 koleksi sedang dipinjam
Nama | SAUT SIHOL JULIANTO M.T RITONGA |
Jenis | Perorangan |
Penyunting | ERWIN BUDI SETIAWAN, ISMAN KURNIAWAN |
Penerjemah |
Nama | Universitas Telkom, S1 Informatika |
Kota | Bandung |
Tahun | 2020 |
Harga sewa | IDR 0,00 |
Denda harian | IDR 0,00 |
Jenis | Non-Sirkulasi |