Informasi Umum

Kode

17.04.517

Klasifikasi

006.312 - Data mining

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Prices-stock

Dilihat

262 kali

Informasi Lainnya

Abstraksi

Dalam penelitian ini akan dibahas prediksi indeks harga saham dengan metode Deep Belief Network (DBN). Penelitian ini menggunakan indeks saham dari pasar saham Indonesia yaitu Indeks Harga Saham Gabungan (IHSG). Percobaan ini didasarkan pada data historis harian selama 5 tahun. Prediksi dilakukan dengan menggunakan Restricted Boltzman Machines (RBM) dua tahap dan RBM tiga tahap, dengan input data menggunakan (20 + ri) dan (40 + ri) dengan jumlah neuron (n = 10) dan (n = 50). Dengan menggunakan metode Deep Belief Network (DBN) didapatkan hasil Root Mean Square Eror (RMSE) sepuluh kali percobaan. Mendapatkan hasil data (20 + ri) dengan (n = 10) dengan RBM dua tahap 0,18291 dan RBM tiga tahap 0.17912. Pada data (40 + ri) dengan (n = 10) dengan RBM dua tahap 0,1804 dan tiga tahap RBM 0.17118. Pada data (20 + ri) dengan (n = 50) dengan RBM dua tahap 0,16996 dan tiga tahap RBM 0.05892. Pada data (40 + ri) dengan (n = 50) didapatkan RBM dua tahap 0,17781 dan tiga tahap RBM 0.16904. dapat disimpulkan bahwa RBM tiga tahap lebih baik dibandingkan RBM dua tahap, dan nilai neuron yang besar mempengaruhi hasil prediksi. Kata kunci : prediksi saham, Indeks Harga Saham Gabungan (IHSG), Deep Belief Network (DBN).

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama GIALI GHAZALI
Jenis Perorangan
Penyunting Jondri, Deni Saepudin
Penerjemah

Penerbit

Nama Universitas Telkom
Kota Bandung
Tahun 2017

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi