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Abstract

Applied Regression and Modeling: A Computer Integrated Approach  creates a 
balance between the theory, practical applications, and computer imple-
mentation behind Regression—one of the most widely used techniques 
in analyzing and solving real world problems. The book begins with a 
 thorough explanation of prerequisite knowledge with a discussion of 
 Simple Regression Analysis including the computer applications. This is 
followed by Multiple Regression—a widely used tool to predict a response 
variable using two or more predictors. Since the analyses of regression 
models involve tedious and complex computations,  complete computer 
analysis including the interpretation of multiple regression problems 
along with the model adequacy tests and residual analysis using widely 
used computer software are presented. The use of computers relieves the 
analyst of tedious, repetitive calculations, and allows one to focus on 
 creating and interpreting successful models.

Finally, the book extends the concepts to Regression and  Modeling. 
Different models that provide a good fit to a set of data and provide a 
good prediction of the response variable are discussed. Among  models 
 discussed are the nonlinear, higher order, and interaction models, 
including models with qualitative variables. Computer analysis and 
interpretation of computer results are presented with real world applica-
tions. We also discuss all subset regression and stepwise regression with 
 applications. Several flow charts are presented to illustrate the concepts. 
The statistical  concepts for regression, computer instructions for the soft-
ware—Excel and MINITAB—used in the book and all of the data files 
used can be downloaded from the website link provided.

Keywords

coefficient of correlation, correlation, dependent variable, dummy vari-
able, independent variable, interaction model, least squares estimates, 
least squares prediction equation, linear regression, multiple coefficient 
of determination, multiple regression and modeling, nonlinear models, 
regression line, residual analysis, scatterplot, second-order model, step-
wise regression
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Preface

This book is about regression and modeling—one of the most widely 
used techniques in analyzing and solving real-world problems. Regres-
sion analysis is used to investigate the relationship between two or more 
variables. Often we are interested in predicting one variable using one 
or more variables. For example, we might be interested in the relation-
ship between two variables: sales and profit for a chain of stores,  number 
of hours required to produce certain number of products, number of 
accidents versus blood alcohol level, advertising expenditures and sales, 
or the height of parents compared to their children. In all these cases, 
 regression analysis can be applied to investigate the relationship between 
the  variables.

The book is divided into three parts—(1) prerequisite to regression 
analysis followed by a discussion on simple regression, (2) multiple regres-
sion analysis with applications, and (3) regression and modeling including 
second-order models, nonlinear regression, regression using qualitative or 
dummy variables, and interaction models in regressions. All these sections 
provide examples with complete computer analysis and instructions com-
monly used in modeling and analyzing these problems. The book deals 
with detailed analysis and interpretation of computer results. This will 
help readers to appreciate the power of computer in applying  regression 
models. The readers will find that the understanding of computer results is 
critical to implementing regression and modeling in real-world  situation.

The purpose of simple regression analysis is to develop a statistical 
model that can be used to predict the value of a response or dependent 
variable using an independent variable. In a simple linear regression 
method, we study the linear relationship between two variables. For 
example, suppose that a Power Utility company is interested in develop-
ing a model that will enable them to predict the home heating cost based 
on the size of homes in two of the Western states that they serve. This 
model involves two variables: the heating cost and the size of the homes. 
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The first part of the book shows how to model and analyze this type of 
problem.

In the second part of the book, we expand the concept of simple regres-
sion to include multiple regression analysis. A multiple linear regression 
involves one dependent or response variable, and two or more independent 
variables or predictors. The concepts of simple regression discussed in the 
previous chapter are also applicable to the multiple regression. We provide 
graphical analysis known as matrix plots that are very useful in analyzing 
multiple regression problems. A complete computer analysis including 
the interpretation of multiple regression problems along with the model 
adequacy tests and residual analysis using a computer are  presented.

In the third part of the book, we discuss different types of models 
using regression analysis. By model building, we mean selecting the model 
that will provide a good fit to a set of data, and the one that will provide a 
good prediction of the response or the dependent variable. In experimen-
tal situations, we often encounter both the quantitative and qualitative 
variables. In the model building examples, we will show how to deal with 
qualitative independent variables. The model building part also discusses 
the nonlinear models including second-order, higher order, and interac-
tion models. Complete computer analysis and interpretation of computer 
results are presented with real-world applications. We also explain how to 
model a regression problem using dummy variables. Finally, we discuss all 
subset regression and stepwise regression and their applications.

The book is written for juniors, seniors, and graduate students in 
business, MBAs, professional MBAs, and working people in business and 
industry. Managers, practitioners, professionals, quality professionals, 
quality engineers, and anyone involved in data analysis, business analyt-
ics, and quality and six sigma will find the book to be a valuable resource.

The book presents an in-depth treatment of regression and model-
ing in a concise form. The readers will find the book easy-to-read and 
comprehend. The book takes the approach of organizing and presenting 
the material in a way that allows the reader to understand the concepts 
easily. The use of computers in modeling and analyzing simple, multi-
ple, and higher order regression problems is emphasized throughout the 
book. The book uses the most widely used computer software in data 
analysis and quality used in industry and academia. Readers interested in 
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more complex and in-depth analysis of regression models are referred to 
additional resources that provides further details of the subject matter. In 
this book, we have provided numerous examples with data files, stepwise 
computer instructions, and case problems.
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CHAPTER 1

Introduction to Regression 
and Correlation Analysis

Introduction

In real world, managers are always faced with massive amount of data 
involving several different variables. For example, they may have data 
on sales, advertising, or the demand for one of the several products his 
or her company markets. The data on each of these categories—sales, 
advertising, and demand is a variable. Any time we collect data on any 
entity, we call it a variable and statistics is used to study the variation in 
the data. Using statistical tools we can also extract relationships between 
different variables of interest. In dealing with different variables, often 
a question arises regarding the relationship between the variables being 
studied. In order to make effective decisions, it is important to know and 
understand how the variables in question are related. Sometimes, when 
faced with data having numerous variables, the decision-making process 
is even more complicated. The objective of this text is to explore the tools 
that will help the managers investigate the relationship between different 
variables. The relationships are critical to making effective decisions. They 
also help to predict one variable using the other variable or variables of 
interest.

The relationship between two or more variables is investigated using 
one of the most widely used tools—regression and correlation analysis. 
Regression analysis is used to study and explain the mathematical rela-
tionship between two or more variables. By mathematical relationship we 
mean whether the relationship between the variables is linear or nonlin-
ear. Sometimes we may be interested in only two variables. For example, 
we may be interested in the relationship between sales and advertising. 
Companies spend millions of dollars in advertising and expect that an 
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increase in the advertising expenditure will significantly improve the sales. 
Thus, these two variables are related. Other examples where two vari-
ables might be related are production cost and the volume of production, 
increase in summer temperature and the cooling cost, or the size of house 
in square-feet and its price. Once the relationship between two variables is 
explained, we can predict one of the variables using the other variable. For 
example, if we can establish a strong relationship between sales and adver-
tising, we can predict the sales using advertising expenditure. This can be 
done using a mathematical relationship (to be explained later) between 
sales and advertising. There is another tool often used in conjunction 
with regression analysis known as correlation analysis. This correlation 
explains the degree of association between the two variables; that is, it 
explains how strong or weak the relationship between the two variables is.

The relationship between two variables is explained and studied using 
the technique of simple regression analysis. Managers are also faced with 
situations where many variables are involved. In such cases, they might be 
interested in the possible relationship between these variables. They may 
also be interested in predicting one variable using several variables. This 
problem is more involved and complex due to multiple variables involved. 
The problem involving many variables is studied using the technique of 
multiple regression analysis. Owing to the complex nature of multiple 
regression problems, computers are almost always used for this analysis.

The objective in simple regression is to predict one variable using 
the other. The variable to be predicted is known as the dependent or 
response variable and the other one is known as the independent vari-
able or  predictor. Thus, the problem of simple regression involves one 
dependent and one independent variable. An example would be to 
 predict the sales (the dependent variable) using the advertising expendi-
ture (the independent variable). In multiple regression problems, where 
the relationship between multiple variables is of interest, the objective 
is to predict one variable—the dependent variable using the other vari-
ables known as  independent variables. An example of multiple regression 
would be to predict the sales for a grocery chain using the food-item 
sales, nonfood-item sales, size of the store, and the operating hours (12 or 
24 hours). The  multiple regression problem involves one dependent and two 
or more independent variables�
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The problems of simple and multiple linear regressions assume that 
the relationship between the variables is linear. This is the reason these 
are referred to as the simple linear regression and multiple linear regres-
sion. It is important to note that the relationship between the variables is 
not always linear. Sometimes, a linear relationship between the variables 
may not exist. In such cases, the relationship between the variables can be 
best explained using a nonlinear relationship. By nonlinear relationships, 
we mean a curvilinear relationship that can be described using a qua-
dratic or second-order or higher order equation. In analyzing such com-
plex regression models, a computer package is almost always used. In this 
text, we have used Excel and MINITAB computer packages to analyze 
the regression models. We have demonstrated the applications of simple, 
multiple, and higher order regressions using these software. The reason 
for using Excel is obvious. It is one of the most widely used spreadsheet 
programs in industry and academia. MINITAB is the leading statistical 
software for quality improvement and is used by 90% of Fortune 100 
companies. It is also widely used as a teaching tool in colleges and uni-
versities. It is worth mentioning at this point that Excel is a spreadsheet 
program and was not designed for performing in-depth statistical analy-
sis. It can be used for analyses up to a certain level but lacks the capabil-
ity of producing in-depth reports for higher order regression models. If 
you perform regression analysis with substantial amount of data and need 
more detailed analyses, the use of statistical package such as MINITAB, 
SSS, and SPSS is recommended.

The statistical concepts needed for regression are included in Appen-
dix B. This includes a review of statistical techniques that are necessary 
in explaining and building regression models. The graphical and numer-
ical methods used in statistics and some more background information 
including the sampling, estimation and confidence intervals, and hypoth-
esis testing are provided in Appendix B. The readers can download the 
Appendix at their convenience through a link provided. In the subse-
quent chapters of the book, we discuss and provide complete analysis 
(including computer analysis) and interpretation of simple and multiple 
regression analysis with applications; regression and modeling includ-
ing second-order models, nonlinear regression, regression models using 
qualitative (dummy) variables, and interaction models. All these sections 
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provide examples with complete computer analysis and interpretation of 
regression and modeling using real-world data and examples. The detailed 
analysis and interpretation of computer results using widely used software 
packages will help readers to gain an understanding of regression models 
and appreciate the power of computer in solving such problems. All the 
data files in both MINITAB and Excel formats are provided in separate 
folders. The step-wise computer instructions are provided in Appendix A 
of the book. The readers will find that the understanding of computer 
results is critical to implementing regression and modeling in real-world 
situations.

Before we describe the regression models and the statistical and math-
ematical basis behind them, we present some fundamental concepts 
and graphical techniques that are helpful in studying the relationships 
between the variables.

Measures of Association Between Two Quantitative 
Variables: The Scatterplot and the Coefficient 

of Correlation

Describing the relationship between two quantitative variables is called 
a bivariate relationship. One way of investigating this relationship is to 
construct a scatterplot. A scatterplot is a two-dimensional plot where one 
variable is plotted along the vertical axis and the other along the horizon-
tal axis. The pairs of points (xi, yi) plotted on the scatterplot are helpful in 
visually examining the relationship between the two variables.

In a scatterplot, one of the variables is considered a dependent variable 
and the other an independent variable. The data value is thought of as 
having a (x, y) pair. Thus, we have (xi, yi), i = 1, 2, …, n pairs. One of 
the easiest ways to explain the relationship between the two variables is 
to plot the (x, y) pairs in the form of a scatterplot. Computer packages 
such as Excel and MINITAB provide several options for constructing 
 scatterplots. Figure 1.1 shows a scatterplot depicting the relationship 
between sales and advertising expenditure for a company (Data file: 
SALES&AD.MTW).

From Figure 1.1, we can see a distinct increase in sales associated 
with the higher values of advertisement dollars. This is an indication of a 
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positive relationship between the two variables where we can see a positive 
trend. This means that an increase in one variable leads to an increase in 
the other.

Figure 1.2 shows the relationship between the home heating cost and 
the average outside temperature (Data File: HEAT.MTW). This plot 
shows a tendency for the points to follow a straight line with a negative 
slope. This means that there is an inverse or negative relationship between 
the heating cost and the average temperature. As the average outside tem-
perature increases, the home heating cost goes down. Figure 1.3 shows 
a weak or no relationship between quality rating and material cost of a 
product (Data File RATING.MTW).
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Figure 1.1 Scatterplot of sales versus advertisement

Figure 1.2 A scatterplot depicting inverse relationship between 
heating cost and temperature
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In Figure 1.4, we have plotted the summer temperature and the  
amount of electricity used (in millions of kilowatts) (Data File: 
 SCATTER1.MTW). The plotted points in this figure can be well 
approximated by a straight line. Therefore, we can conclude that a linear 
 relationship exists between the two variables.

The linear relationship can be explained by plotting a regression line 
over the scatterplot as shown in Figure 1.5. The equation of this line is 
used to describe the relationship between the two variables—temperature 
and electricity used.

Figure 1.3 Scatterplot of quality rating and material cost (weak or no 
relationship)
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Figure 1.4 A scatterplot of summer temperature and electricity used
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These plots demonstrate the relationship between two variables visu-
ally. The plots are very helpful in explaining the types of relationship 
between the two variables and are usually the first step in studying such 
relationships. The regression line shown in Figure 1.5 is known as the line 
of “best fit.” This is the best-fitting line through the data points and is 
uniquely determined using a mathematical technique known as the least 
squares method. We will explain the least squares method in detail in 
the subsequent chapters. In regression, the least squares method is used 
to determine the best-fitting line or curve through the data points in the 
scatterplot and provides the equation of the line or curve that is used in 
predicting the dependent variable. For example, the electricity used for a 
particular summer temperature in Figure 1.5 can be predicted using the 
equation of the line.

In these examples, we demonstrated some cases where the relation-
ships between the two variables of interest were linear—positive or direct 
linear and inverse or negative linear. In a direct linear or positive relation-
ship, the increase in the value of one variable leads to an increase in the 
other. An example of this was shown earlier using the sales and adver-
tising expenditure for a company (Figure 1.1). The inverse relationship 
between the two variables shows that the increase in the value of one of 
the variables leads to a decrease in the value of the other. This was demon-
strated in Figure 1.2, which shows that as the average outside temperature 
increases, the heating cost for homes decreases.

Figure 1.5 Scatterplot with regression line
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The covariance and coefficient of correlation are used to study the 
strength or degree of association between the two variables. Out of these 
two—the covariance has certain limitations. The coefficient of correlation 
is a better measure of degree of association between two variables and is 
widely used. The value of the correlation coefficient shows how strong 
the relationship between the two variables is. This is very important in 
the decision-making process, which involves making predictions. We will 
provide more details on these two measures in Chapter 2.

Scatterplot Showing a Nonlinear Relationship 
Between x and y

In many cases, the relationship between the two variables under study may 
be nonlinear. Figure 1.6 shows the plot of the yield of a chemical process at 
different temperatures (Data File: YIELD.MTW). The scatterplot of the 
variables, temperature (x) and the yield (y) shows a nonlinear relationship 
that can be best approximated by a quadratic equation. The plot shows a 
strong relationship between x and y. The equation relating the temperature 
and the yield can be very useful in predicting the maximum yield or opti-
mizing the yield of the process. The fitted curve along with the equation is 
shown in Figure 1.6. Usually a computer package is used to develop such 
relationship. The equation of the fitted curve in Figure 1.6 obtained using 
a computer package is y = −1,022 + 320.3x − 1.054x2. The equation can 

Figure 1.6 Scatterplot with best-fitting curve
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be used to predict the yield (y) for a particular temperature (x). This is an 
example of nonlinear regression. The detailed analysis and explanation of 
such regression models will be discussed in subsequent chapters.

Matrix Plots

A matrix plot is a useful graphical tool to investigate the relationships 
between pairs of variables by creating an array of scatterplots. In regres-
sion analysis and modeling, often the relationship between multiple vari-
ables is of interest. In such cases, matrix plots can be created to visually 
investigate the relationship between the response variable and each of the 
independent variables or predictors. Matrix plots can also be created to 
display the relationship between the response variable and one or many 
independent variables simultaneously.

The visual displays in the form of matrix plots can show whether there 
is a linear or nonlinear relationship between the response and each of the 
independent variables or the predictors. They also display whether there is 
direct or indirect relationships between the response and the independent 
variables. This information obtained from the matrix plots is very helpful 
in building the correct model and prediction equation.

Figure 1.7 shows a matrix plot of the dependent variable—heating 
cost (y) with each of the independent variables: average temperature (x1), 
house size (x2), and age of the furnace (x3).

Figure 1.7 Matrix plot of heating cost (y) and each of the 
independent variable

50250

531

1284

450
400

350

300

250
200

150

100

50

Avg. temp. House size Age of furnace

H
ea

tin
g 

co
st



10 APPLIED REGRESSION AND MODELING

The matrix plot in Figure 1.7 was developed using each Y versus 
each X. From this plot, it is evident that there is a negative relationship 
between the heating cost and the average temperature. This means that 
an increase in the average temperature leads to decreased heating cost. 
Similarly, the relationship between the heating cost and the other two 
independent variables—house size and age of the furnace is obvious from 
this matrix plot. Figure 1.8 shows another form of matrix plot depicting 
the relationship between the home heating cost based on the average out-
side temperature, size of the house (in thousands of square feet), and the 
life of the furnace (years) by creating an array of scatterplots.

Using Figure 1.8, the simultaneous effect of heating cost and the three 
independent variables can be assessed easily. The plot has three columns 
and three rows.

The first column and the first row in Figure 1.8 show the relationship 
between the heating cost (the response variable) and one of the indepen-
dent variables, average temperature. The second row shows the relation-
ship between the heating cost and two of the independent variables—the 
average temperature and the house size, while the third row in the plot 
shows the relationship between the heating cost and the three indepen-
dent variables. The previous visual displays are very useful in studying 
the relationships among variables and creating the appropriate regression 
models.

Figure 1.8 A matrix plot of average temp, house size, furnace age, 
and heating cost
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Summary

This chapter introduced a class of decision-making tools known as regres-
sion and correlation analysis. Regression models are widely used in the 
real world in explaining the relationship between two or more variables. 
The relationships among the variables in question are critical to making 
effective decisions. They also help to predict one variable using the other 
variable or variables of interest. Another tool often used in conjunction 
with regression analysis is known as correlation analysis. The correlation 
explains the degree of association between the two variables; that is, it 
explains how strong or weak the relationship between the two variables 
is. The simplest form of regression explores the relationship between two 
variables and is studied using the technique of simple regression analy-
sis. The problem involving many variables is studied using the technique 
of multiple regression analysis. The objective in simple regression is to 
predict one variable using the other. The variable to be predicted is known 
as the dependent or response variable and the other one is known as 
the independent variable or predictor. The multiple regression problem 
involves one dependent and two or more independent variables� Describing 
the relationship between two quantitative variables is called a bivariate 
relationship. The chapter also introduced and presented several scatter-
plots and matrix plots� These plots are critical in investigating the relation-
ships between two or more variables and are very helpful in the initial 
stages of constructing the correct regression models. A computer software 
is almost always used in building and analyzing regression models. We 
introduced some of these widely used computer packages in this chapter.





CHAPTER 2

Regression, Covariance, and 
Coefficient of Correlation

This chapter provides an introduction of regression and correlation anal-
ysis. The techniques of regression enable us to explore the relationship 
between variables. We will discuss how to develop regression  models 
that can be used to predict one variable using the other variable, or 
even  multiple variables. We will explain the following features related to 
regression analysis: (1) Concepts of dependent or response variable and 
independent variables, or predictors; (2) the basics of the least squares 
method in  regression analysis and its purpose in estimating the regres-
sion line; (3) determining the best-fitting line through the data points; 
(4)  calculating the slope and y-intercept of the best-fitting regression 
line and  interpreting the meaning of regression line; and (5) measures 
of  association between two quantitative variables: the covariance and 
 coefficient of correlation.

Linear Regression

Regression analysis is used to investigate the relationship between two or 
more variables. Often we are interested in predicting a variable y using 
one or more independent variables x1, x2, … xk. For example, we might be 
interested in the relationship between two variables: sales and profit for 
a chain of stores, number of hours required to produce a certain number 
of products, number of accidents versus blood alcohol level, advertising 
expenditures and sales, or the height of parents compared to their chil-
dren. In all these cases, regression analysis can be applied to investigate 
the relationship between the two variables.

In general, we have one dependent or response variable, y, and one 
or more independent variables, x1, x2, … xk. The independent variables 
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are also called predictors� If there is only one independent variable x that 
we are trying to relate to the dependent variable y, then this is a case of 
simple regression. On the other hand, if we have two or more indepen-
dent variables that are related to a single response or dependent variable, 
then we have a case of multiple regression. In this section, we will discuss 
simple regression, or to be more specific, simple linear regression. This 
means that the relationship we obtain between the dependent or response 
variable y and the independent variable x will be linear. In this case, there 
is only one predictor or independent variable (x) of interest that will be 
used to predict the dependent variable (y).

In regression analysis, the dependent or response variable y is a ran-
dom variable, whereas the independent variable or variables x1, x2, … xk 
are measured with negligible errors and are controlled by the analyst. The 
relationship between the dependent and independent variable or variables 
are described by a mathematical model known as a regression model.

The purpose of simple regression analysis is to develop a statistical 
model that can be used to predict the value of a response or dependent 
variable using an independent variable.

The Regression Model

In a simple linear regression method, we study the linear relationship 
between two variables, the dependent or the response variable (y) and the 
independent variable or predictor (x). An example explaining the simple 
regression is presented as follows.

Suppose that the Mountain Power Utility company is interested in 
developing a model that will enable them to predict the home heating 
cost based on the size of homes in two of the Western states that they 
serve. This model involves two variables: the heating cost and the size of 
the homes. We will denote them by y and x, respectively. The manager in 
charge of developing the model believes that there is a positive relation-
ship between x and y meaning that the larger homes (homes with larger 
square-footage) tend to have higher heating cost. The regression model 
relating the two variables—home heating cost y as the dependent variable 
and the size of the homes as the independent variable x—can be denoted 
using Equation 2.1. This equation shows the relationship between the 
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values of x and y, or the independent and dependent variable and an error 
term in a simple regression model.

 y x= + +b b e0 1   (2.1)

where y = dependent variable x = independent variable
	 b0 =  y-intercept (population) b1 = slope of the population regression 

line
	 e = random error term (e is the Greek letter “epsilon”)

The model represented by Equation 2.1 can be viewed as a population 
model in which b0 and b1 are the parameters of the model. The error term 
e represents the variability in y that cannot be explained by the relation-
ship between x and y.

In our example, the population consists of all the homes in the region. 
This population consists of subpopulations of each home of size, x. Thus, 
one subpopulation may be viewed as all homes with 1,500 square feet, 
another consisting of all homes with 2,100 square feet, and so on. Each of 
these subpopulations consisting of size x will have a corresponding distri-
bution of y values with the mean or expected value E(y). The relationship 
between the expected value of y or E(y) and x is the regression equation 
given by:

 E y x( ) = +b b0 1
 (2.2)

where E(y) = is the mean or expected value of y for a given value of x
	 b0 =  y-intercept of the regression line b1 = slope of the regression 

line

The regression equation represented by Equation 2.2 is of a straight 
line describing the relationship between E(y) and x. This relationship 
shown in Figure 2.1(a) to (c) can be described as positive, negative, or 
no relationship. The positive linear relationship is identified by a positive 
slope. It shows that an increase in the value of x causes an increase in the 
mean value of y or E(y), whereas a negative linear relationship is identified 
by a negative slope and indicates that an increase in the value x causes a 
decrease in the mean value of y.
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The no relationship between x and y means that the mean value of y or 
E(y) is the same for every value of x. In this case, the regression equation 
cannot be used to make a prediction because of a weak or no relationship 
between x and y.

The Estimated Equation of Regression Line

In Equation 2.2, b0 and b1 are the unknown population parameters that 
must be estimated using the sample data. The estimates of b0 and b1 are 
denoted by b0 and b1 that provide the estimated regression equation 
given by:

 y b b x^ = +0 1  (2.3)

where ŷ =  point estimator of E(y) or the mean value of y for a given value 
of x

 b0 = y-intercept of the regression line b1 = slope of the regression line

Positive linear relationship
(positive slope)

x

x

x

Negative linear relationship
(negative slope)

Regression line

E(y)

E(y)

E(y)

Regression line

Slope, b1:positive
Slope, b1:negative

Slope, b1 = 0

No relationship

Regression line

(a) (b)

(c)

Figure 2.1 Possible linear relationship between E(y) and x in simple 
linear regression
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The preceding regression equation represents the estimated line of 
regression in the slope intercept form. The y-intercept b0 and the slope 
b1 in Equation 2.3 are determined using the least squares method. 
Before we discuss the least squares method in detail, we will describe 
the process of estimating the regression equation. Figure 2.2 explains 
this process.

The Method of Least Squares

The regression model is described in the form of a regression equation that 
is obtained using the least squares method. In a simple linear  regression, 
the form of the regression equation is y b b x= +0 1 . This is the equation of 
a straight line in the slope intercept form.

We will illustrate the least squares method using an example. 
 Suppose that the sales manager of a company is interested in the rela-
tionship between the advertising expenditures and sales. He has a 
good reason to believe that an increase in advertising dollars leads to 
increased sales. The manager has the sales and advertising data from 
15 different regions shown in Table 2.1. To investigate the relationship 

�

Simple regression model
y = b0 + b1 x + e

Regression equation
E(y) = b0 + b1x

Estimate the unknown parameters
(b0 and b1)

using the sample data

Sample data:

Estimate of (b0 and b1) the regression
coefficients and the regression equation

x
x1 y1
x2 y2

xn yn

x3 y3
: :

y

y = b0 + b1x

Figure 2.2 Estimating the regression equation
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between the sales and advertisement expenditures, a scatterplot was 
created that visually depicts the possible relationship between two 
variables.

Figure 2.3 shows a scatterplot of the data of Table 2.1 (Data File: 
SALES & ADEXP). Scatterplots are often used to investigate the 
 relationship between two variables. An investigation of the plot shows 
a positive relationship between sales and advertising expenditures; there-
fore, the manager would like to predict the sales using the advertising 
expenditure using a simple regression model.

As outlined earlier, a simple regression model involves two vari-
ables where one variable is used to predict the other. The variable to be 
 predicted is the dependent or response variable, and the other one is the 
 independent variable. The dependent variable is usually denoted by y 
while the independent variable is denoted by x.

In a scatterplot the dependent variable (y) is plotted on the vertical 
axis and the independent variable (x) is plotted on the horizontal axis.

Sales (y)
($1,000s)

Advertising (x)
($1,000s)

458 34

390 30

378 29

426 30

330 26

400 31

458 33

410 30

628 41

553 38

728 44

498 40

708 48

719 47

658 45

Table 2.1 Sales and advertisement data
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The scatterplot in Figure 2.3 suggests a positive linear relationship 
between sales (y) and the advertising expenditures (x). From the figure, it 
can be seen that the plotted points can be well approximated by a straight 
line of the form y b b x= +0 1  where, b0 and b1 are the y-intercept and the 
slope of the line. The process of estimating this regression equation uses a 
widely used mathematical tool known as the least squares method.

The least squares method requires fitting a line through the data points 
so that the sum of the squares of errors or residuals is a minimum� These 
errors or residuals are the vertical distances of the points from the fitted line� 
Thus, the least squares method determines the best-fitting line through 
the data points that ensures that the sum of the squares of the vertical 
distances or deviations from the given points and the fitted line are a 
minimum.

Figure 2.4 shows the concept of the least squares method. The figure 
shows a line fitted to the scatterplot of Figure 2.3 using the least squares 
method. This line is the estimated line denoted using y-hat (ŷ). The equa-
tion of this line is given in the following. The method of estimating this 
line will be illustrated later.

y x^ . .= − +150 9 18 33

Figure 2.3 Scatterplot of sales and advertisement expenditures
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The vertical distance of each point from the line is known as the error 
or residual. Note that the residual or error of a point can be positive, 
 negative, or zero depending on whether the point is above, below, or on 
the fitted line. If the point is above the line, the error is positive, whereas 
if the point is below the fitted line, the error is negative.

Figure 2.4 graphically shows the errors for a few points. To demon-
strate how the error or residual for a point is calculated, refer to the data 
in Table 2.1.

This table shows that for the advertising expenditure of 40 (or, x = 40) 
the sales is 498 or (y = 498). This is shown graphically in Figure 2.4. The 
estimated or predicted sales for x = 40 equals the vertical distance all the 
way up to the fitted regression line from y = 498. This predicted value can 
be determined using the equation of the fitted line as:

y x^ . . . . ( ) .= − + − + =150 9 18 33 150 9 18 33 40 582 3 = 

This is shown in Figure 2.4 as y^ .= 582 3. The difference between the 
observed sales, y = 498, and the predicted value of y is the error or residual 
and is equal to

( ) ( . ) .^y y− = − = −498 582 3 84 3

y = 582.3�

y = 728

y = 498

25

700

600

500
498Sa

le
s 

(y
)

400

300
30 35 40

Advertising (x)

45 50

Error or 
residual

Error or residual
y = –150.9 + 18.33x�

y = 655.62�

(y–y) = (498–582.3) = –84.3�

Figure 2.4 Fitting the regression line to the sales and advertising data 
of Table 2.1



 REGRESSION, COvARIANCE, AND COEFFICIENt OF CORRELAtION 21

The figure shows this error value. This error is negative because the 
point y = 498 lies below the fitted regression line.

Now, consider the advertising expenditure of x = 44. The observed 
sales for this value is 728 or y = 728 (from Table 2.1). The predicted sales 
for x = 44 equals the vertical distance from y = 728 to the fitted regression 
line. This value is calculated as:

y x^ . . . . ( ) .= − + − + =150 9 18 33 150 9 18 33 44 655 62 = 

The value is shown in Figure 2.4. The error for this point is the differ-
ence between the observed and the predicted value, which is:

( ) ( . ) .^y y− = − =728 655 62 72 38

This value of the error is positive because the point y = 728 lies above 
the fitted line.

The errors for the other observed values can be calculated in a simi-
lar way. The vertical deviation of a point from the fitted regression line 
represents the amount of error associated with that point. The least 
squares method determines the values b0 and b1 in the fitted regression 
line y b b x^ = +0 1  that will minimize the sum of the squares of the errors. 
Minimizing the sum of the squares of the errors provides a unique line 
through the data points such that the distance of each point from the 
fitted line is a minimum.

Since the least squares criteria require that the sum of the squares of 
the errors be minimized, we have the following relationship:

 ( ) ( )^y y y b b x− = − −∑ ∑2
0 1

2  (2.4)

where y is the observed value and ŷ  is the estimated value of the depen-
dent variable given by y b b x^ = +0 1 .

Equation 2.4 involves two unknowns, b0 and b1. Using differential 
calculus, the following two equations can be obtained:

 
y nb b x

xy b x b x

= +

= +
∑ ∑
∑ ∑ ∑

0 1

0 1
2  (2.5)
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These equations are known as the normal equations and can be solved 
algebraically to obtain the unknown values of the slope and y-intercept b0 
and b1. Solving these equations yields the results shown as follows.

 
b

n xy x y

n x x
1 2 2=

− ( )( )
− ( )
∑ ∑∑

∑∑  (2.6)

and

b
n

y b x0 1
1= −( )∑∑  that can be written as

 b y b x0 1= −  where (2.7)

y
y

n
= ∑  and x

x

n
= ∑

The values b0 and b1 when calculated using Equations 2.6 and 2.7 
minimize the sum of the squares of the vertical deviations or errors. These 
values can be calculated easily using the data points (xi, yi), which are 
the observed values of the independent and dependent variables (the 
 collected data in Table 2.1).

Measures of Association Between Two Quantitative 
Variables: The Covariance and the Coefficient 

of Correlation

In the study of regression, the relationship between two or more quan-
titative variables is of interest. This relationship is described using scat-
terplots. These plots are very effective in describing such relationships 
visually. In a scatter plot, the pairs of points (xi, yi) plotted in order  visually 
shows the relationship between the two variables. In this plot, a distinct 
increase in one variable (x-variable) resulting into an increase in the other 
variable (the y-variable) is an indication of a positive relationship between 
the two variables. On the other hand, an increase in one variable leading 
to a decrease in the other variable indicates a negative or inverse relation-
ship. An example would be the relationship between the home heating 
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cost and the average outside temperature. As the average outside tempera-
ture increases, the home heating cost goes down.

In this section, we examine two measures of relationship between two 
quantitative variables: the covariance and the coefficient of correlation. 
The covariance has certain limitations; therefore, coefficient of correlation 
is widely used to measure how strong the relationship is between two 
variables.

The Covariance

The covariance is a measure of strength of linear relationship between two 
quantitative variables x and y.

Example 2.1

We will calculate the covariance of the data in Table 2.1. This table 
shows the advertising expenditures and the corresponding sales for 
15  companies. Both the sales and advertising are in thousands of 
dollars.

 a. Construct a scatterplot with sales on the vertical axis and advertis-
ing on the horizontal axis. Comment on the relationship between 
the sales and advertising.

 b. Calculate the covariance and interpret the result.

Solution:

(a) The scatterplot was shown earlier in Figure 2.3.
(b) The covariance calculated using the following equation is:

s
x x y y

nxy
i i=

− −
−

=∑( )( )
.

1
978 586

Interpretation of Covariance

The positive value of Sxy indicates a positive linear relationship between 
x and y. This means that as the value of x increases, the value of y also 
increases. A negative value of Sxy is an indication of a negative linear 



24 APPLIED REGRESSION AND MODELING

relationship between x and y. If the covariance is negative, the value of 
y decreases as the value of x increases. A value of Sxy close to zero indi-
cates no or very weak relationship between x and y. The scatterplot in 
Figure 2.3 shows a positive relationship between x and y; that is, as the 
advertising expenditure (x) increases, the value of sales (y) also increases. 
This shows a positive covariance that is confirmed by the calculated value 
of Sxy = 978.586.

Limitation of Covariance

It should be noted that a large positive value of the covariance does not 
mean a strong positive linear relationship between x and y. Similarly, a 
large negative value of the covariance does not necessarily mean a strong 
negative linear relationship. In fact, the value of the covariance is a quantity 
that depends on the units of measurement for x and y� For example, if x and 
y are measured in feet and then converted to inches, the covariance will show 
a much larger value for the values measured in inches� This is a drawback of 
calculating the covariance. There is another measure of the relationship 
between two variables that is not affected by the units of measurement for 
x and y. This is known as correlation coefficient or coefficient of correla-
tion and is discussed in the next section.

The Coefficient of Correlation

The sample coefficient of correlation (rxy) is a measure of relative strength 
of a linear relationship between two quantitative variables. This is a unit 
less quantity. Unlike covariance, where the value depends on the units 
of measurements of x and y, the coefficient of correlation has a value 
between −1 and +1 where a value of −1 indicates a perfect negative cor-
relation and a value of +1 indicates a perfect positive correlation. A perfect 
negative or positive correlation means that if the x and y values are plotted 
using a scatterplot, all the points will lie on a straight line. If the scatter-
plot shows a positive linear relationship between x and y the calculated 
coefficient of correlation will be positive, whereas a negative relationship 
between x and y on the scatterplot will provide a negative value of the 
coefficient of correlation.
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Example 2.2: Calculating the Covariance and 
Coefficient of Correlation

Calculate the sample coefficient of correlation (rxy) of the advertising 
and sales data (Table 2.1).

Solution: Often the covariance and coefficient of correlation (rxy) 
can be calculated easily using a computer because of the complexity 
involved in manual calculations. The computer results are shown in 
Table 2.2.

Table 2.2 Covariance and correlation coefficient using MINITAB
Covariance: Sales (y), Advertising (x)
                                          Sales (y)         Advertising (x)
Sales ($1,000)                 19,032.410
Advertising ($100)            978.586             53.400

Correlation: Sales (y), Advertising (x)
Pearson correlation of Sales (y) and Advertising (x) = 0.971
P-value = 0.000

Note: the coefficient of correlation is also known as Pearson correlation. the coefficient of 
correlation is 0.971. this indicates a strong positive correlation between sales and advertising. 
the covariance of 978.586 is also an indication of positive covariance.

Note that a value of correlation coefficient (rxy) closer to +1 indicates 
a strong positive relationship between x and y, whereas a value of rxy closer 
to −1 indicates a strong negative correlation between the two variables 
x and y. A value of rxy that is zero or close to zero, indicates no or weak 
correlation between x and y.

Examples of Coefficient of Correlation

Figure 2.5(a) through (d) shows several scatterplots with the correlation 
coefficient. Figure 2.5(a) shows a positive correlation between the profit 
and sales with a correlation coefficient value r = +0.979.

Figure 2.5(b) shows a positive relationship between the sales and 
advertisement expenditures with a calculated correlation coefficient, 
r  =  +0.902. Figure 2.5(c) shows a negative relationship between the 
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heating cost and the average temperature. Therefore, the coefficient of 
correlation (r) for this plot is negative (r = −0.827).

The correlation for the scatterplot in Figure 2.5(d) indicates a weak 
relationship between the quality rating and the material cost. This can 
also be seen from the coefficient of correlation that shows a low value of 
r = 0.076. These graphs are very helpful in describing bivariate relation-
ships or the relationship between the two quantitative variables and can 
be easily created using computer packages such as MINITAB or Excel. 
Note that the plots in Figure 2.5(a) and (b) show strong positive correla-
tion; (c) shows a negative correlation while (d) shows a weak correlation.

Summary

This chapter presented the mathematical model of simple linear regres-
sion. The simple linear regression method studies the linear relationship 
between two variables, the dependent or the response variable (y) and the 
independent variable or predictor (x).

Both the population and sample regression models were introduced. 
The model represented by y x= + +b b e0 1  can be viewed as a population 
regression model in which b0 and b1 are the parameters of the model. In 
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the regression model, b0 and b1 are the unknown population parameters 
that must be estimated using the sample data. The estimates of b0 and b1 
are denoted by b0 and b1 that provide the estimated regression equation 
given as ŷ  = b0 + b1x. This regression equation is obtained using the least 
squares method. The form of the regression equation is y b b x= +0 1 ,  
which is an equation of a straight line in the slope intercept form. We 
illustrated the least squares method using an example. The second part 
of the chapter examined the strength of the relationship between two 
quantitative variables: the covariance and the coefficient of correlation.





CHAPTER 3

Illustration of Least Squares 
Regression Method

In this chapter we provide a complete analysis of simple regression model. 
The least squares method that is the basis of regression model is used to 
estimate the best-fitting regression line. We will discuss the process of 
finding the regression equation, and calculate and interpret several mea-
sures to assess the quality of the regression model. The analysis in this 
chapter will help us understand and interpret the computer results in the 
subsequent chapters.

Analysis of a Simple Regression Problem

This section provides a complete analysis of a simple regression problem. 
The following example demonstrates the analysis steps and their interpre-
tation for a regression problem involving two variables.

Problem Statement: Suppose an operations manager wants to predict 
the number of hours required or the time to produce a certain number of 
products. The past data for the number of units produced and the time 
in hours to produce those units are shown in the Table 3.1 (Data File: 
Hours_Units). This is a simple linear regression problem, so we have one 
dependent or response variable that we are trying to relate to one inde-
pendent variable or predictor. Since we are trying to predict the number 
of hours using the number of units produced; hours is the dependent or 
response variable (y) and number of units is the independent variable 
or predictor (x).

For these data, we first calculate the intermediate values shown in 
Table 3.2. All these values are calculated using the observed values of 
x and y in Table 3.1. These intermediate values will be used in the compu-
tations related to simple regression analysis.
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We will demonstrate the use of computer packages such as MINITAB 
and Excel to analyze the simple regression problem but first we will 
explain the manual calculations and interpret the results. Readers will 
notice that all the formulas in the subsequent sections will be written in 
terms of the values calculated in Table 3.2.

Constructing a Scatterplot of the Data

We can use Excel or MINITAB to do a scatterplot of the data. From 
the data in Table 3.1, enter the units (x) in the first column and hours 
(y) in second column of Excel or MINITAB and construct a scatterplot. 

Obs. no. 1 2 3 4 5 6 7 8 9 10
Units (x) 932 951 531 766 814 914 899 535 554 445

Hours (y) 16.20 16.05 11.84 14.21 14.42 15.08 14.45 11.73 12.24 11.12

continued......

Obs. no. 11 12 13 14 15 16 17 18 19 20
Units (x) 704 897 949 632 477 754 819 869 1,035 646

Hours (y) 12.63 14.43 15.46 12.64 11.92 13.95 14.33 15.23 16.77 12.41

continued....

Obs. no. 21 22  23 24 25 26 27 28 29 30
Units (x) 1,055 875 969 1075 655 1,125 960 815 555 925

Hours (y) 17.00 15.50 16.20 17.50 12.92 18.20 15.10 14.00 12.20 15.50

Table 3.1 Data for regression example

Table 3.2 Intermediate calculations for data in Table 3.1
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Figure 3.1 shows the scatterplot for this data. The data clearly show an 
increasing trend. It shows a linear relationship between x and y; therefore, 
the data can be approximated using a straight line with a positive slope.

Finding the Equation of the Best-Fitting Line (Estimated Line)

The equation of the estimated regression line is given by: y b b x^ = +0 1
 

where b0 = y-intercept, and b1 = slope. These are determined using the 
least squares method. Using the values in Table 3.2, first calculate the 
values of b1 (the slope) and b0 (the y-intercept) as follows.

b
n xy x y

n x x
1 2 2

30 357055 24132 431 23
30 20

=
− ( )( )

− ( )
= −∑ ∑∑

∑∑
( ) ( )( . )

( 4467220 24132
0 009642) ( )

.
−

=

and

b y b x0 1 14 374 0 00964 804 40 6 62= − = − =. ( . )( . ) .

Therefore, the equation of the estimated line,

y b b x x^ . .= + = +0 1 6 62 0 00964

The regression equation or the equation of the “best” fitting line can 
also be written as:

Units (x)
400 500 600 700 800 900 1,000 1,100 1,200
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11

Figure 3.1 Scatterplot of hours (y) and units (x)
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Hours (y) = 6.62 + 0.00964 Units (x) 

or simply y x^ . .= +6 62 0 00964

where y is the hours and x is the number of units produced. The hat (^) 
over y means that the line is estimated. Thus, the equation of the line, 
in fact, is an estimated equation of the best-fitting line. The line is also 
known as the least squares line which minimizes the sum of the squares 
of the errors. This means that when the line is placed over the scatterplot, 
the vertical distance from each of the points to the line is minimized. The 
vertical distance of each point from the estimated line is the error that is 
commonly known as the residual. Figure 3.2 shows the least squares line 
and the residuals. The residual for a point is given by ( )^y y−  that is the 
vertical distance of a point from the estimated line. We will provide more 
details on residuals later. Figure 3.3 shows the fitted regression line over 
the scatterplot.

Properties of the Least Squares Regression Line

The least squares regression line has the following important properties:

 (i) The regression line passes through the point ( , )x y , the mean of x and 
y values. Therefore, to draw the regression line manually, we need to 
draw the line connecting the y-intercept b0 value to the ( , )x y  point.

Figure 3.2 The least squares line and residuals

Note: the estimated line is denoted by ŷ  and the residual for a point yi  is given by ( y yi − ^
).
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Residual



 ILLUStRAtION OF LEASt SQUARES REGRESSION MEtHOD 33

 (ii) The sum of the deviations of the y values from the estimated regres-
sion line is zero, or

( )^y y− =∑ 0

  This equation means that the positive and negative deviations from 
the estimated regression line cancel each other, so that the least 
squares regression line passes through the center of data points.

 (iii) The sum of the square of the errors or residuals is a minimum and is 
denoted by SSE. Thus,

SSE = −∑( )^y y 2

 (iv) The expected values of b0 and b1 are b0 and b1, or the least squares 
regression coefficients are unbiased estimates of b0 and b1.

Interpretation of the Fitted Regression Line

The estimated least squares line is of the form y b b x= +0 1  where b1 is the 
slope and b0 is the y-intercept. The equation of the fitted line is

y x^ . .= +6 62 0 00964

In this equation of the fitted line, 6.62 is the y-intercept and 0.00964 
is the slope. This line provides the relationship between the hours and 
the number of units produced. The equation means that for each unit 
increase in x (the number of units produced), y (the number of hours) 
will increase by 0.00964. The value 6.62 represents the portion of the 
hours that is not affected by the number of units. Figure 3.3 shows the 
best-fitting line and its equation.

Making Predictions Using the Regression Line

The regression equation can be used to predict the number of hours 
required to produce a certain number of units. For example, suppose we 
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want to predict the number of hours (y) required to produce 900 units 
(x). This can be determined using the equation of the fitted line as:

Hours (y) = 6.62 + 0.00964 units (x)

Hours (y) = 6.62 + 0.00964 * (900) = 15.296 hours

Thus, it will take approximately 15.3 hours to produce 900 units 
of the product. Note that making a prediction outside of the range will 
introduce error in the predicted value. For example, if we want to predict 
the time for producing 2,000 units, this prediction will be outside the 
data range (see the data in Table 3.1, the range of x values is from 445 to 
1,125). The value x = 2,000 is far greater than all the other x values in the 
data. From the scatterplot, a straight line fit with an increasing trend is 
evident for the data but we should be cautious about assuming that this 
straight line trend will continue to hold for values as large as x = 2,000. 
Therefore, it may not be reasonable to make this prediction for values that 
are far beyond or outside the range of the data values.

The Standard Error of the Estimate (s)

The standard error of the estimate measures the variation or scatter of the 
points around the fitted line of regression. This is measured in units of the 
response or dependent variable (y). The standard error of the estimate is 

Figure 3.3 Fitted line regression plot
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analogous to the standard deviation. The standard deviation measures the 
variability around the mean, whereas the standard error of the estimate 
(s) measures the variability around the fitted line of regression. A large 
value of s indicates larger variation of the points around the fitted line 
of regression. The standard error of the estimate is calculated using the 
following formula:

 s
y y

n
=

−
−

∑( )^ 2

2
 (3.1)

The equation can also be written as:

 s
y b y b xy

n
=

− −
−

∑∑∑ 2
0 1

2
 (3.2)

Equation 3.1 measures the average deviation of the points from the 
fitted line of regression. Equation 3.2 is mathematically equivalent to 
Equation 3.1 and is computationally more efficient. Using the values of 
b0, b1, and the values in Table 3.2, the standard error of the estimate can 
be calculated as:

s
y b y b xy

n
=

− −
−

∑ ∑ ∑2
0 1

2

=
− −

=
6302 3 6 62 431 23 0 00964 357055

28
0 4481

. . ( . ) . ( )
.

Thus,

s = 0.4481

A small value of s indicates less scatter of the data points around the fitted line 
of regression (see Figure 3�3)� The value s = 0�4481 indicates that the average 
deviation is 0�4481 hours (measured in units of dependent variable y)� Note: 
These values were verified using MINITAB�
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The Coefficient of Determination (r2) and Its Meaning

The coefficient of determination r2 is an indication of how well the inde-
pendent variable predicts the dependent variable. In other words, it is 
used to judge the adequacy of the regression model. The value of r2 lies 
between 0 and 1 (0 ≤ r2 ≤ 1) or 0% to 100%. The closer the value of 
r2 to 1 or 100%, the better is the model because the r2 value indicates 
the amount of variation in the data explained by the regression model. 
 Figure 3.4 shows the relationship between the explained, unexplained, 
and the total variation.

In regression, the total sum of squares is partitioned into two compo-
nents, the regression sum of squares and the error sum of squares giving 
the following relationship:

 SST = SSR + SSE (3.3)

SST = total sum of squares for y
SSR =  regression sum of squares (measures the variability in y, accounted 

for by the regression line, also known as explained variation)
SSE =  error sum of squares (measures the variation due to the error or 

residual). This is also known as unexplained variation).
yi = any point i; y  = average of the y values
From Figure 3.4, the SST and SSE are calculated as

 SST = − = −
( )∑ ∑ ∑

( )y y y
y

n
2 2

2

 (3.4)

and

 SSE = − = − −∑ ∑ ∑ ∑( )^y y y b y b xy2 2
0 1  (3.5)

Note that we can calculate SSR by calculating SST and SSE since,

SST = SSR + SSE or SSR = SST − SSE

Using the SSR and SST values, the coefficient of determination r2 is 
 calculated using

 r 2 = SSR
SST

 (3.6)
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The coefficient of determination r2 is used to measure the goodness of 
fit for the regression equation. It measures the variation in y explained by 
the variation in independent variable x. The r2 can be seen as the ratio of 
the explained variation to the total variation.

The calculation of r2 is explained as follows. First, calculate SST and 
SSE using Equations 3.4 and 3.5 and the values in Table 3.2.

SST = − = −
( )

= − =∑ ∑ ∑
( ) .

( . )
.y y y

y

n
2 2

2
2

6302 3
431 23

30
103 680

 SSE = − = − − = − −∑ ∑ ∑( ) . . ( . ) . (^y y y b y b xy2 2
0 1 6302 3 6 62 431 23 0 00964 3570055 5 623) .=∑

 SSE = − = − − = − −∑ ∑ ∑( ) . . ( . ) . (^y y y b y b xy2 2
0 1 6302 3 6 62 431 23 0 00964 3570055 5 623) .=∑

Since
SST = SSR + SSE

Therefore, SSR = SST − SSE = 103.680 − 5.623 = 98.057 (3.7)

and

r 2 98 057
103 680

0 946= = =SSR
SST

.
.

.

Figure 3.4 SST = SSR + SSE

SST = Total sum of squares

SSE = Sum of squares of the error
(unexplained variation)

SSR = Sum of squares due to regression
(explained variation)

x

y

yi
y�

y–
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or, r2 = 94.6%

This means that 94.6% variation in the dependent variable y 
is explained by the variation in x and 5.4% of the variation is due to 
 unexplained reasons or error.

The Coefficient of Correlation (r) and Its Meaning

The coefficient of correlation, r can be calculated by taking the square 
root of r2 or,

 r r= 2  (3.8)

Therefore,

r r= = =2 0 946 0 973. .

In this case, r = 97.3% indicates a strong positive correlation between 
x and y. Note that r is positive if the slope b1 is positive indicating a pos-
itive correlation between x and y. The value of r is between −1 and +1.

 − ≤ ≤1 1r  (3.9)

The value of r determines the correlation between x and y variables. 
The closer the value of r to −1 or +1, the stronger is the correlation 
between x and y.

The value of the coefficient of correlation r can be positive or nega-
tive. The value of r is positive if the slope b1 is positive; it is negative if 
b1 is  negative. If r is positive it indicates a positive correlation, whereas a 
 negative r indicates a negative correlation. The coefficient of correlation r 
can also be calculated using the following formula:

 r
xy

x y

n

x
x

n
y

y

n

=
−

( )( )

−
( )

−
( )

∑ ∑∑

∑∑ ∑∑2

2

2

2

*

 (3.10)

Using the values in Table 3.2, we can calculate r from Equation 3.10.
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Confidence Interval for the Mean (Average) Response y for 
a Given Value of x

A confidence interval may be constructed for the mean or average value 
of y for a given or specified value of x, say x0. This is a confidence interval 
denoted by my x0 .

Note that ŷ is the point estimate of y and will be used to build the 
confidence interval around the mean response. The accuracy of this con-
fidence interval depends on the number of observations n, the variability 
in the sample, and the value of x = x0.

A (1 − α) 100% confidence interval around the true regression line at 
x = x0 may be calculated using the following expression:

 y t s
n

x x

x
x

n

n
^

/ , ( )
( )

± +
−

−
( )−

∑ ∑
a 2 2

0
2

2

2
1

 (3.11)

Equation 3.11 can be written in expanded form as follows:
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(3.12)

where ŷ  is the point estimate of y for a given x:
 tn−2 2, /a  is the t-value for (n − 2) degrees of freedom and α/2,
 S is the standard error of the estimate, and
 

s
n

Sx x

x
x

n

y
1 0

2

2
2+

∑ ∑
=−

−
( )

( ) ;  the standard deviation of y

Calculation of Confidence Interval

Suppose we want to calculate a 95% confidence interval for the average 
value of hours (y) for x = 951 units. This can be calculated as follows.
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The regression equation for our example problem is

y x^ . .= +6 62 0 00964

Therefore, ŷ  for x = 951

ŷ . . ( ) .= + =6 62 0 00964 951 15 79

Now we can use Equation 3.11 to calculate the confidence interval. In 
this equation, t tna / , . , .2 2 0 025 28 2 0484− = =  (from the t-table),

S = standard error of estimate = 0.4481 (calculated earlier using 
 Equation 3.2) and

1 1
30

951 804 40

20467220 24132
30

0
2

2
2

2

2n
x x

x
x

n

+
∑ ∑

= + −

−
=−

−
( )

( ) ( . )
( )

00 232.

Substituting the values in the confidence interval Equation 3.11

y t s
nn

x x

x
x

n

^
/ ,

( ) . . ( . )( .± +
∑∑

= ±−
−

−
( )a 2 2

1
15 79 2 0484 0 4481 0 230

2

2
2 22)

which gives a confidence interval of 15.6 to 16.0 hours. The confidence 
interval is written as:

15 6 16 0
0

. .≤ ≤my x

This is the confidence interval estimate for the average hours required 
for all production units of 951. The confidence interval means that we are 
95% confident that on the average 15.6 to 16.0 hours will be required to 
produce 951 units.

Prediction Interval for an Individual Response, ŷ

The regression equation is also used to predict or forecast a new or future 
value of the dependent value y for a given or specified value of x, the 
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independent value. This is one of the important and common appli-
cations of the regression model. The individual predicted value of y is 
denoted by yx0

 for x = x0.
In general, a (1 − α) 100% prediction interval is calculated for yx0

.  
The interval is not referred to as a confidence interval because yx0

 is a 
 random variable and not a parameter. The (1 − α) 100% prediction 
 interval for a future predicted value is given by:

 y t s
n

x x

x
x

n

n
^

/ , ( )
( )

± + +
−

−
( )−

∑ ∑
a 2 2

0
2

2

21
1

 (3.13)

Equation 3.13 is very similar to the confidence interval formula 
of Equations 3.11 or 3.12 except that a “1” is added to the expression 
under the square root. It makes the prediction interval wider than the 
confidence interval. While the confidence interval provides the average 
response for a given value of x, the prediction interval predicts the interval 
for an individual response for a given value of x. This is the reason that the 
prediction interval is wider than the confidence interval.

Calculation for Prediction Interval

Suppose we want to calculate a 95% prediction interval for an individual 
value of hours (y) for x = 951 units. This can be calculated as follows. Note 
that the regression equation for our example problem is

y x^ . .= +6 62 0 00964

and the ŷ  for x = 951 can be calculated as follows:

ŷ . . ( ) .= + =6 62 0 00964 951 15 79 hours

Now we can use Equation 3.13 to calculate the prediction interval as 
follows:

t tna / , . , .2 2 0 025 28 2 0484− = =  (from the t-table)
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S = standard error of estimate = 0.4481 (calculated earlier using 
 Equation 3.2)
and

1
1

1
1
30

951 804 40

20467220 24132
0

2

2
2

2
+ +

∑ ∑
= + + −

−

−

−
( )n

x x

x
x

n

( ) ( . )
( )22

30

1 0265= .

Substituting the values in the prediction interval Equation 3.13

y t s
nn

x x

x
x

n

^
/ ,

( ) . . ( . )( .± + +
∑∑

= ±−
−

−
( )a 2 2 1

1
15 79 2 0484 0 4481 10

2

2
2 00265)

This provides an interval of 14.85 to 16.73 hours. The prediction 
interval is written as:

14 85 16 73
0

. .≤ ≤myx

This is the prediction interval estimate for an individual response 
(hours) for a given value of x.

Testing the Significance of Regression

The following three tests can be conducted to test the significance of 
regression:

1. Test for the significance using the coefficient of the regression slope 
or t-test

2. Test for the significance of regression using the F-test
3. Test for the significance using the correlation coefficient (r)

In the following, we have demonstrated the tests for significance of 
regression for our example problem (Table 3.1 data).
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test 1: testing the Regression Slope—t-test

From our earlier discussion, we know that the regression model is given 
by y x= + +b b e0 1  where b1 is the population slope. Test for the signif-
icance of regression involves testing whether there is a linear relationship 
between x and y. If there is a linear relationship between x and y, we must 
have b1 ≠ 0. This can be tested by performing a hypothesis test about b1 
using the sample data. The steps for conducting this test are discussed as 
follows.

Step 1: State the null and alternate hypotheses

 
H
H

0 1

1 1

0
0

:
:

b
b

=
≠

 (3.14)

The null hypothesis states that there is no relationship between x and 
y, or the slope is zero. The alternate hypothesis states that there is an 
 evidence of a linear relationship between x and y. If the null hypothesis 
H0 is rejected, we can conclude that there is a significant relationship 
between the two variables.

Step 2: Specify the test statistic to test the hypothesis
The test statistic uses the sample slope b1, which is the unbiased esti-
mator of b1. The sampling distribution b1 follows a normal distribution 
with the following expected value and standard deviation: E b( )1 1= b  and 

s s
b

x
x

N

1

2

2
=

−
( )∑ ∑

Since, s and sb1
 are unknown, we estimate s by s and sb1

 the standard 
deviation of b1 using

s
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Using these sample estimates, the test statistic is given by:

 t
b
sn
b

− =2
1

1

 (3.15)

In Equation 3.15, b1 is the slope and sb1 is the standard deviation of 
the slope b1.

Step 3: Calculate the value of the test statistic
The calculations are shown as follows. We know that the slope b1 = 
0.00964. The value S = 0.4481 is the standard error of the estimate 
 (calculated earlier). Therefore:

s
s

x
x

n

b1

2

2 2

0 4481

20467220 24132
30

0 000436=

−
( )

=

−

=

∑ ∑
.

( )
.

which gives the test-statistic value of

t
b
sn
b

− = = =2
1

1

0 00964
0 000436

22 11
.
.

.

Step 4: Specify the critical value
The critical values for a 5% level of significance are:

t tn− = =2 2 28 0 025 2 048, / , . .a  (from the t-table)

The critical values are shown in Figure 3.5.

Step 5: Specify the decision rule

Reject H0 if the test statistic value tn−2 > 2.048

or,                                              if tn−2 < −2.048
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Step 6: Reach a decision and state your conclusion
The test statistic value is tn−2 = 22.11 > 2.048; therefore, reject H0 and 
conclude that the regression is significant overall.

test 2: testing for the Significance of Regression Using the F-test

In the simple regression, the F-test will provide the same conclusion as 
the t-test. The F-test is based on the F-distribution. Recall that this distri-
bution compares the ratio of two variances. The test for the significance 
of regression is based on the development of two independent estimates 
of the variances: the mean square due to regression (MSR) and the mean 
square due to error (MSE). MSR and MSE are given by:

MSR
SSR=

Regression degrees of freedom
 and 

MSE
SSE=

Error or residual degrees of freedom

The regression degrees of freedom is given by k and the error degrees 
of freedom is given by (n −2) where k is the number of independent 

t-critical = –2.048

0.025

t-critical = 2.048

0.025

Do not reject H0

Reject H0 Reject H0

Figure 3.5 Critical values for testing the significance of regression
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variables and n is the number of observations. For simple linear regres-
sion, the regression degree of freedom is always equal to one.

If the null hypothesis ( : )H0 1 0b =  is true, the ratio of two variances 
MSR/MSE follows an F-distribution with numerator degrees of freedom 
equal to 1 and the denominator degrees of freedom equal to n − 2. When 
b1 = 0, the ratio MSR/MSE is 1 or close to 1. On the other hand, if b1 ≠ 0,  
the MSR value will be much larger than the MSE. The larger values of the 
ratio MSR/MSE will lead to the rejection of the null hypothesis indicat-
ing a significant relationship between x and y. The steps for conducting 
the F-test are described as follows.

Step 1: State the null and alternate hypotheses

H
H

0 1

1 1

0
0

:
:

b
b

=
≠

Step 2: Specify the test statistic to test the hypothesis

 F = MSR
MSE

 (3.16)

Step 3: Calculate the value of the test statistic
Note that MSR = SSR/k and MSE = SSE/n − 2 where k is the regression 
degrees of freedom, which is equal to the number of independent vari-
ables. The value of k is always equal to 1 for simple regression. For our 
example, n = 30 therefore, the error degrees of freedom are 28. We have 
already calculated the values of SSR and SSE using Equation 3.7. These 
values are SSE = 5.623 and SSR = 98.057. Using these values,

F
k

n
= =

−
= =MSR

MSE
SSR

SSE
/

/
. /

. /
.

2
98 057 1
5 623 28

488 28

Step 4: Specify the critical value
The critical value:

 F Fk n, , , , . .− = =2 1 28 0 05 4 196a  (from the F-table)



 ILLUStRAtION OF LEASt SQUARES REGRESSION MEtHOD 47

Step 5: Specify the decision rule

Reject H0 if the test statistic value F Fcritical>

Step 6: Reach a decision and state your conclusion
The test statistic value F = 488.28 is greater than the critical value of F 
(4.196); therefore, reject H0 and conclude that the regression is significant 
overall.

test 3: test for the Significance Using the Correlation Coefficient (r)

The test for the significance for a linear relationship between x and y can 
also be performed using the sample correlation coefficient r. This test con-
ducts a hypothesis test to determine whether the population correlation is 
equal to zero. The steps for conducting this test are described as follows.

Step 1: State the null and alternate hypotheses

 
H
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1

0
0

:
:

r
r

=
≠

 (3.17)

where r (read as “rho”) denotes the population correlation coefficient. 
The null hypothesis indicates no correlation between x and y, whereas 
the alternate hypothesis indicates an evidence of correlation. If the null 
hypothesis is rejected, we conclude that there is evidence of a linear rela-
tionship between x and y and the regression is significant.

Step 2: Specify the test statistic to test the hypothesis and calculate the 
test statistic value
The test statistic and its value for this test are given by:

t
r

r
n

n− =
−
−

=
−

=2 2 21
2

0 973

1 0 973
28

22 31
.

( . )
.

Note that r is the sample coefficient of correlation that can be calcu-
lated using Equation 3.10 or can be determined by taking the square root 
of coefficient of determination r2.
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Step 3: Specify the critical value
The critical values to test the hypothesis are given by

± = ± = ±−t tn 2 2 28 0 025 2 048, / , . .a  (from the t-table)

(where the number of observations, n = 30 and α = 0.05).
The critical values are shown in Figure 3.5.

Step 4: Specify the decision rule

Reject H0 if the test statistic value tn−2 > 2.048 or if tn−2 < −2.048

Step 5: Reach a decision and state your conclusion
Since tn−2 = 22.31 is greater than the critical value 2.048, we reject the 
null hypothesis in Equation 3.17 and conclude that there is an evidence 
of linear relationship between x and y.

Summary

This chapter illustrated the least squares method that is the basis of 
regression model. The process of finding the regression equation using 
the least squares method was demonstrated. The analysis of this simple 
regression problem was presented by calculating and interpreting several 
measures. As a part of the analysis, the following analyses were performed: 
(a) constructing a scatterplot of the data, (b) finding the equation of the 
best-fitting line, (c) interpreting the fitted regression line, and (d) making 
predictions using the fitted regression equation. Other important mea-
sures critical to assessing the quality of the regression model were calcu-
lated and explained. These measures include: (a) the standard error of the 
estimate (s) that measures the variation or scatter of the points around 
the fitted line of regression, (b) the coefficient of determination (r2) that 
measures how well the independent variable predicts the dependent vari-
able or the percent of variation in the dependent variable y explained 
by the variation in the independent variable x, and (c) the coefficient of 
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correlation (r) that measures the strength of relationship between x and 
y. We also calculated and interpreted: (a) the confidence interval for the 
mean (average) response y for a given value of x and (b) the prediction 
interval for an individual response. Finally, the tests for the significance 
of regression—the t-test and F-test were conducted. The steps for these 
tests were outlined.





CHAPTER 4

Regression Analysis Using 
a Computer

This chapter provides a detailed stepwise computerized analysis of 
 regression models. In real world, software is almost always used to  analyze 
regression problems. A number of software are currently available for 
analysis of regression models, of which MINITAB, Excel, SAS, SPSS are 
a few to name.

In this text, we have used Excel and MINITAB® software to analyze 
the regression models. The applications of simple, multiple, and higher 
order regressions using Excel and MINITAB are demonstrated in this 
and the subsequent chapters. The reason for using Excel is that it is the 
most widely used spreadsheet program in both industry and academia. 
MINITAB is a leading software for statistics, data analysis, and quality 
improvement and is used by 90% of Fortune 100 companies. It is also 
widely used as a teaching tool in colleges and universities. Note that Excel 
is a spreadsheet program and was not designed for performing in-depth 
statistical analysis. It can be used for analyses up to a certain level but lacks 
the capability of producing in-depth reports for higher order regression 
models. If one performs regression analysis using a substantial amount of 
data and needs more detailed analyses, the use of statistical packages such 
as MINITAB, SAS®, and SPSS® are recommended.

Besides these, a number of software, including R, Stata, and others, 
are readily available and widely used in research and data analysis. We 
have provided a detailed description of regression analysis using Excel and 
MINITAB. The steps to create data file and the analysis procedures are 
outlined in the following table.
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Simple Regression Using Excel

The instructions to run the simple regression using Excel are in  Appendix 
A_Table A.1, and also listed in Table 4.1. The Excel and MINITAB data 
files can be downloaded from the website.

The partial regression output will be displayed. If one checks the 
boxes under Residuals and the Line Fit Plots, the residuals and fitted 
line plot will be displayed. In the later section, we will describe the com-
puter results using MINITAB, including the residuals and residual plots.

Table 4.2 shows the output with regression statistics. We calculated 
all these manually except the adjusted R-Square in the previous chapter. 
The regression equation can be read from the Coefficients column. The 
regression coefficients are b0 and b1: the y-intercept and the slope. In the 

Table 4.1 Excel instructions for regression

1. Label columns A and B of Excel worksheet with Units (x) and Hours (y) and enter
    the data of Table 3.1 (Chapter 3) or, open the Excel data file: Hours_Units.xlsx
    (Table A.1, Appendix A)
2. Click the Data tab on the main menu
3. Click Data Analysis tab (on far right)
4. Select Regression
5. Select Hours (x) for Input y range and Units (x) for Input x range (including the labels)
6. Check the Labels box
7. Click on the circle to the left of Output Range, click on the box next to output range
    and specify where you want to store the output by clicking a blank cell (or select New  
    Worksheet Ply)
8. Check the Line Fit Plot under residuals. Click OK
    You may check the boxes under residuals and normal probability plot as desired.

Table 4.2 Excel regression output
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coefficients column, 6.620904991 is the y-intercept and 0.009638772 is 
the slope. The regression equation from this table is:

y x^ . .= +6 62 0 00964

This is the same equation we obtained earlier using manual calcula-
tions in Chapter 3.

The Coefficient of Determination (r2) using Excel

The values of SST and SSR were calculated manually in the previous 
chapter. Recall that in regression, the total sum of squares is partitioned 
into two components; the regression sum of squares (SSR) and the error 
sum of squares (SSE), giving the following relationship: SST = SSR + 
SSE� The coefficient of determination r2, which is also the measure of 
goodness of fit for the regression equation, can be calculated using

r 2 = SSR
SST

The values of SSR, SSE, and SST can be obtained using the analysis of 
variance (ANOVA) table of regression output, which is part of the regres-
sion analysis output of Excel. Table 4.3 shows the Excel regression output 
with SSR and SST values. Using these values, the coefficient of determi-
nation, r 2 0 9458= =SSR SST/ . . This value is reported under regression 
statistics in Table 4.3.

The t-test and F-test for the significance of regression can be easily 
performed using the information in the Excel computer output. Table 4.4 

Table 4.3 Excel regression output (1)
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shows the Excel regression output with the ANOVA table. (The table 
shows other computed values that will be used for analysis.)

(1) Conducting the t-test using the regression output in Table 4.4
The test statistic for conducting the significance of regression is given by 
the following equation:

t
b
sn
b

− =2
1

1

The values of b1, sb1
 and the test-statistic value tn−2 are labeled in 

Table 4.4.
Using the test-statistic value, the hypothesis test for the significance of 

regression can be conducted. This test has been explained in the previous 
chapter. The appropriate hypotheses for the test are:

H
H

0 1

1 1

0
0

:
:

b
b

=
≠

The null hypothesis states that the slope of the regression line is zero. 
Thus, if the regression is significant, the null hypothesis must be rejected. 
A convenient way of testing the preceding hypotheses is to use the p-value 
approach. The test statistic value tn−2 and the corresponding p values are 
reported in the regression output table. Note that the p is very close to 
zero (p = 2.92278E-19). If we test the hypothesis at a 5% level of signif-
icance (α = 0.05) then p = 0.000 is less than α = 0.05; we reject the null 
hypothesis and conclude that the regression is significant overall.

Table 4.4 Excel regression output (2)
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(2) Conducting the F-test using the regression output in Table 4.4.
The ANOVA table of the regression output in Table 4.4 provides the 
values for MSR, MSE, and the test-statistic value. It also provided the sig-
nificance F or the p-value for conducting the test. Using the test- statistic 
value and the p-value approach, the decision rule for the test can be given 
by:

If p ≥ α; do not reject H0

If p < α; reject H0

Suppose we want to conduct the test at 5% level of significance, or at 
α = 0.05. Since p = 0.000 is less than α = 0.05; we reject H0 and conclude 
that the regression is significant. This test is described in more detail in 
the computer analysis part.

Simple Regression Using MINITAB

We have provided a detailed regression analysis using MINITAB. The 
steps to create the data file and run the regression are explained as follows.

Step 1:  Label columns C1 and C2 of MINITAB worksheet with Units (x) 
and Hours (y) and enter the data of  Table 3.1 (from Chapter 3) or 
open the data file Hours_Units. Column C1 contains the inde-
pendent variable or predictor (units, x) and column C2 contains 
the response variable (hours, y).

Step 2:  Construct a scatter plot of the data. Follow the instructions 
in Appendix A_Table A.2. The scatterplot will be similar to 
 Figure 4.1 without the line through the points.

Note: Readers can download a free 30 days trial copy of the 
MINITAB version 17 software from www.minitab.com

 The scatter plot clearly shows an increasing or direct relation-
ship between the number of units produced (x) and the num-
ber of hours ( y). Therefore, the data may be approximated by a 
straight line of the form y b b x= +0 1 , where b0 is the y-intercept 
and b1 is the slope.

Step 3:  Run the regression model with fitted line plot option. The 
instructions are in Appendix A _Table A.3.

http://www.minitab.com
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The fitted line plot with the regression equation from MINITAB is 
shown in Figure 4.1. Also, the “Regression Analysis” and “Analysis of 
Variance” tables shown in Table 4.5 will be displayed. We will first ana-
lyze the regression and the analysis of variance tables and then provide 
further analysis.

Analysis of Regression Output in Table 4.5

Refer to the Regression Analysis part. In this table, the regression equa-
tion is printed as Hours (y) = 6.62 + 0.00964 Units (x). This is the equa-
tion of the best-fitting line using the least squares method. Just below the 

Figure 4.1 Fitted line and regression equation
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Table 4.5 The regression analysis and analysis of variance tables 
using MINITAB
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regression equation, a table is printed that describes the model in more 
detail. The values under the Coef column means coefficients. The values 
in this column refer to the regression coefficients b0 and b1, where b0 is the 
y-intercept or constant and b1 is the slope of the regression line. Under 
the Predictor, the value of Units (x) is 0.0096388, which is b1 (or the 
slope of the fitted line). The Constant is 6.6209. These values form the 
regression equation.

The StDev in the printout means standard deviation and contains 
the standard deviation of the constant b0 and the slope b1. The standard 
deviation of the slope is referred to as sb1

 and is an important quantity. 
In the regression analysis printout, sb1

 = 0.0004362. We will discuss this 
later.

The T column contains the values that can be used for conducting 
t-tests for the slope and the y-intercept or the constant. The t-test for the 
slope is conducted to determine the significance of the regression or to 
determine whether there is an evidence of a linear relationship between 
the dependent and independent variable. In the T column, the T value 
for the constant is 18.38, which is obtained by dividing the constant 
(b0 = 6.6209) by the standard deviation of b0, which is 0.3603. Thus, 
6.6209/0.3603 = 18.38 is the T value for the constant. This value is 
not of much importance since we do not conduct a t-test for the con-
stant. The T value for the slope is an important quantity, which is used 
in conducting the t-test for the slope to determine the significance of 
regression. The T value for the slope is 22.10 in the printout. This value 
is obtained by:

t
b
sb

= = =1

1

0 0096388
0 0004362

22 10
.
.

.

Finally, the p-column contains the associated probabilities with the 
T values. The probability p of the given T value can be used to test the 
hypothesis using the p-value approach. Later in our analysis, we will 
explain the hypothesis test and the use of p-value.

Further Analysis of Regression Output in Table 4.5

Refer to Table 4.5:
1. The regression equation or the equation of the “best” fitting line is:
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Hours ( y) = 6.62 + 0.00964 Units (x)
or

y x^ . .= +6 62 0 00964

where y is the Hours and x is the units produced.
This line minimizes the sum of the squares of the errors. This means 

that when the line is placed over the scatter plot, the vertical distance 
from each of the points to the line is minimum. The error or the residual 
is the vertical distance of each point from the estimated line.

The estimated least squares line is of the form y = b0 + b1x, where b1 is 
the slope and b0 is the y-intercept. In the regression equation: Hours (y) =  
6.62 + 0.00964 Units (x), where 6.62 is the y-intercept and 0.00964 is 
the slope. This line provides the relationship between the hours and the 
number of units produced. The equation states that for each unit increase 
in x (the number of units produced), the value of dependent variable, 
y (the number of hours) will increase by 0.00964.

2. The Standard Error of the Estimate(s)
The standard error of the estimate measures the variation of the points 
around the fitted line of regression. This is measured in units of the 
response or dependent variable ( y).

In regression analysis, the standard error of the estimate is reported 
as s. The value of s is reported in Table 4.5 under “Regression Analysis.” 
This value is:

s = 0.4481

A small value of s indicates less scatter of the points around the fitted 
line of regression.

3. The Coefficient of Determination (r2)
The coefficient of determination, r2, is an indicator of how well the 
independent variable predicts the dependent variable. In other words, 
it is used to judge the adequacy of the regression model. The value 
of r2 lies between 0 and 1 (0 ≤ r2 ≤ 1) or 0% to 100%. The closer the 
value of r2 to 1 or 100%, the better is the model. The r2 value indi-
cates the amount of variability in the data explained by the regression 
model.
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In our example, the r2 value is 94.6% (Table 4.5, regression analysis). 
The value of r2 is reported as:

R-Sq = 94.6%

This means that 94.6% variation in the dependent variable y can be 
explained by the variation in x and 5.4% of the variation is due to unex-
plained reasons or error.

The R-Sq(adj) = 94.4% next to the value of r2 in the regression output 
is the r2-adjusted value. This is the r2 value adjusted for the degrees of 
freedom. This value has more importance in multiple regression.

Analysis of variance (ANOVA) table: Interpretation and testing 
hypothesis using this table 

The analysis of variance table is printed just below the regression anal-
ysis (see Table 4.5). This table is used to test the significance of the regres-
sion model discussed earlier.

As discussed earlier, the ANOVA table can be used to test the evidence 
of a linear relationship between x and y, the independent and dependent 
variable, respectively. The hypotheses H0 : b1

	=	0 versus H1 : b1
	≠	0 is tested  

for this purpose. If the null hypothesis is not rejected, we conclude that 
there is no linear relationship between x and y.

Confidence Interval for the Slope b1

In the estimated equation of the regression line:

y b b x^ = +0 1

b1 and b0 are the point estimates of the slope and the y-intercept.
For our example, the equation of the estimated line is ŷ  = 6.62 + 

0.00964x, where b0 = 6.62 and b1 = 0.00964. In many cases, we might 
be interested in the confidence interval of the slope. The width of this 
confidence interval is a measure of the quality of the regression line. In 
other words, the narrower the width of this confidence interval, the more 
reliable is our estimate of the population slope b1. As a result, the model 
will be more accurate and the independent variable x will be a more reli-
able predictor of the dependent variable y.
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The (1 − α) 100% confidence interval for the population slope b1 is 
calculated using the following expression:

 b t s b t sn b n b1 2 2 1 1 2 21 1
− ≤ ≤ +− −, / , /a ab  (4.1)

where tn−2 2, /a  is the t-value for (n − 2) degrees of freedom and α/2, 
where n is the number of observations, b1 is the point estimate of the slope 
(slope from the fitted regression line), and sb1

 is the standard deviation of 
this slope.

A 95% confidence interval for the population slope b1 is shown as fol-
lows. Note that for our example, b1 = 0.00964, t tn− = =2 2 28 0 025 2 0484, / , . .a  
and sb1 = 0.0004362. In the computer printout, Table 4.5 above, these 
values are labeled except for the t tn− = =2 2 28 0 025 2 0484, / , . .a , which is the 
value from the t-table. Substituting these values in the confidence interval 
formula (Equation 4.1):

0.00964 − (2.0484) (0.0004362) ≤ b1 ≤ 0.00964 + (2.0484) (0.0004362)
0.00964 − 0.000894 ≤ b1 ≤ 0.00964 + 0.000894

0.0087 ≤ b1≤ 0.01053

This confidence interval means that we are 95% confident that the 
value of the estimated slope b1 = 0.00964 is within 0.000894 of the actual 
slope b1. This width is very small, indicating that the regression line is a 
reliable predictor of the dependent variable.

Confidence and Prediction Intervals in Simple Linear Regression 
Using MINItAB

The confidence and prediction intervals can be calculated using com-
mands in MINITAB. The instructions for computing confidence and 
prediction intervals are in Appendix A_Table A.4. Following the instruc-
tions, we can calculate fits, standard deviation of fits, 95% confidence 
and prediction intervals and store them in separate columns. Note that 
these columns are stored as PFITS (for predicted fitted values),  PSEFITS 
 (standard deviation of the fits), CLIM and CLIM1 (lower and upper 
 limits of the confidence intervals), and PLIM and PLIM1 (for lower and 
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upper limits of the prediction intervals). These are shown in Table 4.6. 
The columns in the table are labeled differently for clarity. The fitted 
value, confidence and prediction intervals are labeled as Fit, 95% CI and 
95% PI.

Sample Calculation for Confidence Interval

Suppose we want to calculate a 95% confidence interval for the average 
value of y when x = 951. The regression equation for this problem is:

y b b x^ = +0 1

The predicted value ŷ for x = 951 can be calculated as shown:

ŷ . . ( ) .= + =6 62 0 00964 951 15 79

(shown as 15.7874 in the column labeled Fit; the underlined row in 
Table 4.6). We can now calculate the confidence interval using the fol-
lowing equation:

y t s
nn

x x

x
x

n

^
/ ,

( )
( )

( )± +
∑∑

−
−

−
a 2 2

1 0
2

2
2

In the previous equation, t tna / ,( ) . , .2 2 0 025 28 2 0484− = =  (from the  
t-table), Sy = 0.1038 and

ŷ = 15.7874 for x = 951.

Therefore, the confidence interval for x = 951 is calculated as:

15.7874 − 2.0484 (0.1038) ≤ my x| 0 ≤ 15.7874 + 2.0484 (0.1038) or

15.5748 ≤ my x| 0 ≤ 16.0000

This confidence interval means that we are 95% confident that the 
average number of hours required to produce 951 units is between 15.57 
and 16.00 hours. The confidence interval calculated by MINITAB is 
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underlined in Table 4.6. The program calculates the confidence intervals 
for all the x values in data. If the confidence intervals are desired for other 
values, they can be specified in the program.

Prediction Intervals

Generally, a prediction interval is calculated for a given value of x denoted 
by yx0. The interval is not referred to as confidence interval because yx0 is 
a random variable and not a parameter.

Sample Calculation for Prediction Interval

Suppose we want to calculate a prediction interval for the predicted value 
of y for x = 951 units. This prediction of y can be calculated as:

 y x^ . .= +6 62 0 00964

= 6.62 + 0.00964 (951) = 15.79 hours

(see the underlined row and the column labeled Fit in Table 4.6. The 
number is 15.7874).

The aforementioned is a prediction of a future value y for a given 
value of x, that is yx0. The (1 − α) 100% prediction interval for a future 
predicted value can be calculated using the equation:

y t s y y t sn y x n y
^

/ ,
^

/ ,− ≤ ≤ +− −a a2 2 2 20
 where,

S s
n

x x
SSy

x
= + +

−
1

1 0
2( )

The 95% prediction level for x = 951 is shown in Table 4.6 under 
95% PI column and the underlined row. The prediction intervals for 
other  predicted values are also calculated in this table and are shown 
under column 95.0% PI.
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Plotting the Confidence Intervals and Prediction Intervals 

It is sometimes convenient to plot the confidence and prediction intervals 
along with the fitted line plot. Figure 4.2 shows such a plot. The plot was 
created using MINITAB. The instructions can be found in  Appendix A_
Table A.5.

Table 4.6 Fits, standard deviation of fits, confidence 
and prediction intervals (CI and PI)

Fit        StDev Fit          95.0% CI                     95.0% PI

15.6042     0.0990   ( 15.4015, 15.8070)  ( 14.6639, 16.5445)  
15.7874     0.1038   ( 15.5746, 16.0001)  ( 14.8449, 16.7299)  
11.7391     0.1446   ( 11.4428, 12.0354)  ( 10.7743, 12.7039)  
14.0042     0.0835   ( 13.8331, 14.1753)  ( 13.0702, 14.9382)  
14.4669     0.0819   ( 14.2990, 14.6347)  ( 13.5335, 15.4003)  
15.4307     0.0948   ( 15.2366, 15.6249)  ( 14.4923, 16.3692)  
15.2862     0.0916   ( 15.0984, 15.4739)  ( 14.3490, 16.2233)  
11.7776     0.1432   ( 11.4843, 12.0710)  ( 10.8137, 12.7416)  
11.9608     0.1365   ( 11.6812, 12.2404)  ( 11.0010, 12.9206)  
10.9102     0.1768   ( 10.5478, 11.2725)  ( 9.9231,    11.8972)  
13.4066     0.0928   ( 13.2165, 13.5967)  ( 12.4689, 14.3443)  
15.2669     0.0912   ( 15.0799, 15.4538)  ( 14.3299, 16.2039)  
15.7681     0.1033   ( 15.5564, 15.9798)  ( 14.8258, 16.7104)  
12.7126     0.1111   ( 12.4849, 12.9403)  ( 11.7666, 13.6586)  
11.2186     0.1646   ( 10.8814, 11.5558)  ( 10.2404, 12.1968)  
13.8885     0.0847   ( 13.7150, 14.0621)  ( 12.9541, 14.8230)  
14.5151     0.0821   ( 14.3469, 14.6832)  ( 13.5816, 15.4485)  
14.9970     0.0865   ( 14.8197, 15.1743)  ( 14.0619, 15.9321)  
16.5970     0.1297   ( 16.3314, 16.8627)  ( 15.6412, 17.5529)  
12.8476     0.1071   ( 12.6281, 13.0670)  ( 11.9035, 13.7916)  
16.7898     0.1365   ( 16.5100, 17.0696)  ( 15.8300, 17.7497)  
15.0548     0.0874   ( 14.8757, 15.2339)  ( 14.1193, 15.9903)  
15.9609     0.1089   ( 15.7378, 16.1839)  ( 15.0160, 16.9058)  
16.9826     0.1436   ( 16.6883, 17.2769)  ( 16.0184, 17.9468)  
12.9343     0.1046   ( 12.7200, 13.1486)  ( 11.9914, 13.8772)  
17.4645     0.1620   ( 17.1326, 17.7965)  ( 16.4882, 18.4409)  
15.8741     0.1063   ( 15.6563, 16.0919)  ( 14.9305, 16.8178)  
14.4765     0.0819   ( 14.3086, 14.6444)  ( 13.5431, 15.4099)  
11.9704     0.1361   ( 11.6915, 12.2493)  ( 11.0108, 12.9300)  
15.5368     0.0973   ( 15.3375, 15.7361)  ( 14.5972, 16.4763)

ŷ sy
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In Figure 4.2, the outermost bands are prediction intervals, and the 
inner bands are confidence intervals. The solid line is the fitted line of 
regression. From this figure, we can see that the width of prediction inter-
val increases as the value of x increases or decreases from x. It has a min-
imum width at x = x. In general, the width of the prediction interval is 
always wider than the width of the confidence interval.

Assumptions of Regression Model

In linear regression analysis, the relationship between the dependent vari-
able (y) to the independent variable (x) is assumed to be a model of the 
form y x= + +b b e0 1 . This is a population model in which b0 and b1 are 
the parameters of the model and e is the random error term.

The unknown population parameters b0 and b1 are estimated using 
the sample data. The estimates of b0 and b1 are denoted by b0 and b1 that 
provide the estimated regression equation given by the equation:

y b b x^ = +0 1

where ŷ =  point estimator of E(y) or the mean value of y for a given value 
of x

 b0 =  y−intercept of the regression line
 b1 = slope of the regression line

Figure 4.2 Confidence and prediction intervals
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The preceding equation is the estimated line of regression in the slope 
intercept form. As discussed earlier, the y-intercept b0 and the slope b1 are 
determined using the least squares method that minimizes the sum of 
the square of the errors. The assumed regression model: y x= + +b b e0 1  
is based on the following assumptions about the error e.

1. The independence of errors assumption. This means that the indi-
vidual values of the error terms, e are independent of each other. 
That is, the error for a particular value of x is independent of any 
other value of x, or the value y for a given value of x is independent 
of the value of y for any other value of x. This assumption is critical 
when the data are collected over different time periods. When the 
data are collected over time, the errors in one time period may be 
correlated with another time period.

2. The normality assumption. This means that the errors (ei) are nor-
mally distributed at each value of x. Note that for a given value of x, 
there may be several values of y leading to several values of error e. 
The distribution of errors ei for any value of x is normal.

   The normality assumption in regression is fairly robust against 
departures from normality. Unless the distribution of errors at each 
level of x is extremely different from normal, the inferences about the 
regression parameters b0 and b1 are not affected seriously.

3. The population regression model. The mean values of the depen-
dent variable y for a given value of the independent variable x is the 
expected or the mean value of y denoted by E(y) and is the popula-
tion regression model given by: E y x( ) + +b b0 1 .

   The expected values of y fall on the same straight line described by 
the model E y x( ) + +b b0 1 . The mean value E(y) is also written as 
my x| .

4. Equality of variance assumption. This assumption requires that the 
variance of the errors (ei), denoted by s2 are constant for all values 
of x. This means that the variability of y values is the same for low 
or high values of x. In case of serious departure from the equality of 
variance assumption, methods such as weighted least squares or data 
transformation may be used.
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5. Linearity assumption. Besides the previous assumptions, one basic 
assumption regarding the relationship between x and y is the linear-
ity assumption, which means that the relationship between the two 
variables is linear. The linearity assumption can be verified using a 
residual plot to be discussed later. The assumptions are explained in 
Figure 4.3.

Figure 4.3 illustrates the assumptions 2, 3, and 4. In this figure, the 
regression model E y x( ) = +b b0 1  is shown using a straight line. This line 
connects the average values of y or E(y) for each specified value of the 
independent variable x. Note that the E(y) value changes for a specified 
value of x but for each level of x, the probability distribution of error term 
e and the distribution of y-values for a given x are normally distributed 
each with the same variance.

The assumption regarding the independence of errors can be eval-
uated by plotting the errors or residuals in the order or the sequence in 
which the data were collected. If the errors are not independent, a rela-
tionship exists between consecutive residuals, which is a violation of the 
assumption of independence of errors. When the errors are not indepen-
dent, the plot of residuals versus the time (or the order) in which the data 
were collected will show a cyclical pattern. Meeting this assumption is 
particularly important when data are collected over a period of time. If 
the data are collected at different time periods, the errors for specific time 

Figure 4.3 Illustration of linear regression model assumptions

Note: Distributions of y have the same shape for each value of x.

Distribution of y
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period may be correlated with the errors of those of the previous time 
periods.

The assumption that the errors are normally distributed, or the 
 normality assumption requires that the errors have a normal or approx-
imately normal distribution. Note that this assumption means that the 
errors do not deviate too much from normality. The assumption can 
be verified by plotting the histogram or the normal probability plot of 
errors.

The assumption regarding the mean value of y states that the means, 
E(y) or my x|  all lie on the same straight line given by the population regres-
sion model: E y x( ) + +b b0 1 .

The assumption that the variance of errors are equal (equality of vari-
ance) is also known as homoscedasticity. This requires that the errors are 
constant for all values of x or the variability of y values is the same for both 
the low and high values of x. The equality of variance assumption is of 
particular importance for making inferences about b0 and b1.

The linearity assumption means that the relationship between the 
variables is linear. This assumption can be verified using the residual plot, 
which will be discussed in the next section.

To check the validity of the preceding regression assumptions, a 
graphical approach known as the residual analysis is used. The residual 
analysis is also used to determine whether the selected regression model 
is an appropriate one.

Checking the Adequacy of the Regression Model: Residual 
Analysis

Before we conduct a residual analysis, we suggest a review of the resid-
uals or errors discussed earlier. In this section, we will show how to use 
MINITAB to calculate the residuals and perform residual analysis.

Residuals: A residual or error for any point is the difference between 
the actual y value and the corresponding estimated value (denoted by 
y-cap, ŷ). Thus, for a given value of x, the residual is given by:

e y yi= −( )^
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Calculating and Storing Residuals and Standardized Residuals 
Using MINITAB

The residuals can be easily computed using Excel or MINITAB. Table 4.7 
shows values of Fits, Residuals, and Standardized residuals calculated 
using MINITAB. The instructions for computing this table is shown in 
Appendix A _Table A.6.

Here we demonstrate the calculations of residuals in Table 4.4. Sup-
pose we want to calculate the residuals for the points (x = 932, y = 16.20) 
and (x = 914, y = 15.08). These are the first two values in the original data. 
The estimated equation of the regression line as reported on the session 
window should be:

y x^ . .= +6 62 0 00964

for x = 932 ŷ . . ( ) .= + =6 62 0 00964 932 15 6042

which is the estimated value of y at x = 932. This is shown under the 
FITS1 column in Table 4.7. Also, at x = 932, the observed value (actual 
data) of y is 16.20, therefore the residual or the error for (x = 932,  
y = 16.20) is ( )^y y−  = (16.20 − 15.6042) = 0.5958.

Using a similar approach, it can be verified that the residual (x = 914, 
y = 15.08) is −0.3507 (see Table 4.7). A negative value of the residual 
means that the observed point is below the fitted line; a positive residual 
indicates that the observed y is above the fitted line of regression. The 
residual for x = 932 is shown graphically in Figure 4.4.

The standardized residuals (SRES1) shown in the last column of 
Table 4.7 are calculated using the expression:

 
e

i ni

MSE
; , , ,= 1 2…  (4.2)

where ei is the residual for point i and n is the number of observations, 
and MSE is the mean square error from the ANOVA table of regression 
output (see analysis of variance part of Table 4.5).
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Figure 4.4 Calculation of residuals

Residual = (y–y) = 0.5958�

y = 16.20

y

x

�y = 15.602

�y = 6.62 + 0.00964x

y = actual or observed value;
y is the estimated value calculated as y = 6.62 + 0.00964(932) = 15.6042��

Table 4.7 Residuals and standardized residuals

Row Units(x) Hours(y) FITS1    RESI1     SRES1
1    932      16.20  15.6042  0.595759   1.36306
2    951      16.05  15.7874   0.262623   0.60243
3   531      11.84  11.7391   0.100907   0.23790
4    766      14.21  14.0042   0.205796   0.46741
5   814      14.42  14.4669  −0.046866  −0.10637
6   914      15.08  15.4307  −0.350743  −0.80077
7    899      14.45  15.2862  −0.836161  1.90613
8    535      11.73 11.7776  −0.047648  −0.11221
9   554      12.24 11.9608   0.279215  0.65413
10  445      11.12 10.9102   0.209841  0.50961
11  704      12.63 13.4066  −0.776601  −1.77135
12  897      14.43 15.2669  −0.836884  −1.90743
13   949      15.46 15.7681  −0.308100  −0.70654
14   632      12.64  12.7126  −0.072609 −0.16725
15  477      11.92 11.2186   0.701401  1.68275
16  754      13.95  13.8885   0.061461  0.13967
17   819      14.33  14.5151  −0.185059  −0.42006
18  869      15.23  14.9970   0.233002  0.52991
19 1035      16.77 16.5970   0.172966  0.40321
20  646      12.41  12.8476  −0.437552  −1.00551
21   1055     17.00  16.7898   0.210190  0.49245
22  875      15.50  15.0548   0.445169  1.01283
23  969      16.20  15.9609   0.239125  0.55007
24  1075      17.50  16.9826   0.517415  1.21888
25  655      12.92  12.9343  −0.014301  −0.03282
26  1125      18.20 17.4645   0.735476  1.76026
27  960      15.10 15.8741  −0.774126  −1.77818
28   815      14.00 14.4765  −0.476504  −1.08153
29   555      12.20 11.9704   0.229576   0.53770
30   925      15.50 15.5368  −0.036769 −0.08405

Standardized
Residuals

x y

Fits 

ŷ

Residuals 

y ŷ−( (
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Figure 4.5 Plots for residual analysis
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The sum of the residuals is always zero. We can see in Figure 4.4, 
the residual is the vertical distance from the fitted line of regression to 
the observed data point. The estimated least squares regression line is the 
“best” fit line through all of the data points. Therefore, the vertical dis-
tances from the estimated line to the points will cancel each other and 
the sum of the residuals would be zero. This can be verified by adding the 
residual (RESI1) column in Table 4.7.

Checking the Assumptions of Regression Using MINITAB 
Residual Plots

Several residual plots can be created using Excel and MINITAB to check 
the adequacy of the regression model. The instructions for creating resid-
uals plots are shown in Appendix A_Table A.7. The plots are shown in 
Figure 4.5(a) through (d).

The plots to check the regression assumptions include the histogram 
of residuals, normal plot of residuals, plot of the residuals versus fits, and 
residuals versus order of data. The residuals can also be plotted with each 
of the independent variables.

Figure 4.5(a) and (b) are used to check the normality assumption. The 
regression model assumes that the errors are normally distributed with 
mean zero. Figure 4.5(a) shows the normal probability plot. This plot is 
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used to check for the normality assumption of regression model. In this 
plot, if the plotted points lie on a straight line or close to a straight line, 
then the residuals or errors are normally distributed. The pattern of points 
appear to fall on a straight line, indicating no violation of the normality 
assumption.

Figure 4.5(b) shows the histogram of residuals. If the normality 
assumption holds, the histogram of residuals should look symmetrical 
or approximately symmetrical. Also, the histogram should be centered 
at zero because the sum of the residuals is always zero. The histogram of 
residuals is approximately symmetrical, which indicates that the errors 
appear to be approximately normally distributed. Note that the histo-
gram may not be exactly symmetrical. We would like to see a pattern that 
is symmetrical or approximately symmetrical.

In Figure 4.5(c), the residuals are plotted against the fitted value and 
the order of the data points. These plots are used to check the assump-
tions of linearity. The points in this plot should be scattered randomly 
around the horizontal line drawn through the zero residual value for the 
linear model to be valid. As can be seen, the residuals are randomly scat-
tered about the horizontal line, indicating that the relationship between 
x and y is linear.

The plot of residual versus the order of the data shown in Figure 4.5(d) 
is used to check the independence of errors. The independence of errors 
can be checked by plotting the errors or the residuals in the order or 
sequence in which the data were collected. The plot of residuals versus the 
order of data should show no pattern or apparent relationship between 
the consecutive residuals. This plot shows no apparent pattern indicating 
that the assumption of independence of errors is not violated. Note that 
checking the independence of errors is more important in cases where 
the data were collected over time. Data collected over time sometimes 
may show an autocorrelation effect among successive data values. In these 
cases, there may be a relationship between consecutive residuals that vio-
lates the assumption of independence of errors.

The equality of variance assumption requires that the errors are con-
stant for all values of x or the variability of y is the same for both the low 
and high values of x. This can be checked by plotting the residuals and the 
order of data points. This plot is shown in Figure 4.5(d). If the equality 
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of variance assumption is violated, this plot will show an increasing trend 
showing an increasing variability. This demonstrates a lack of homoge-
neity in the variances of y values at each level of x. The plot shows no 
violation of equality of variance assumption.

Test for Outliers and Influential Observations 
in Simple Regression

Outliers are the points with large x or y values or both, and they affect the 
fitted line of regression and the overall model. The fitted regression line is 
pulled in the direction of an outlier. They generally do not fit with the rest 
of the data and may have a strong impact on correlation, coefficient of 
determination, and other statistics. The outliers may produce large errors 
affecting the overall prediction ability of the regression model. The outlier 
may be detected through the visual observation of points on the scatter 
plot, but sometimes more formal analysis is required. These points should 
be detected and their cause or causes investigated so that the points may 
be removed or corrected to improve the overall effectiveness of the model.

In regression analysis, we are interested in determining how influen-
tial the outliers are in estimating the regression line. Influential points 
are those points whose removal will cause a shift in the regression line. 
Several statistical packages, including MINITAB, provide  computations 
to study the outlier effect or the influence of each of the points on the 
 fitted regression line. This is also called Influence Analysis. We will 
 consider the following:

1. Sample leverages [Hi (leverages)] to identify the outlying values of 
the independent variable x.

2. Standardized residuals to identify the outlying values of the depen-
dent variable y�

3. Cook’s distance to identify the influential observations.

The previous values are shown in Table 4.8. The table is  generated using 
MINITAB (the instructions can be found in Appendix A_Table A.8. The 
table shows the values [Units (x) and Hours (y)], FITS1 (Fits), RESI1 
(residuals), SRES1 (standardized residuals), HI1 (leverages), and COOK1 
(Cook’s distance). We will discuss these columns in our further analysis of  
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outliers. First, we will discuss the leverages (HI1) column, then the stan-
dardized residuals (SRES1) followed by the Cook’s distance (COOK1). 
These values are used to detect the outlier and influential points.

(1) Hi (Leverages) 

The Hi or the leverages are used to determine extremely large or small 
values of the independent variable x that may have an effect on the regres-
sion line. The large or the small values of hi are based on the distances of 
the x or independent values from the mean x. The leverage hi of the ith 
observation is given by:
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n
x x
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x

n
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i= +
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1

2
2

( )
( )  (4.3)

The leverages are calculated and stored as Hi in MINITAB. To deter-
mine whether an independent variable x is an outlier or not, the following 
decision rule is used:

If the leverage Hi > 6/n for a given independent variable x then that value 
of x is an outlier�

Note that n is the number of observations. In our example, n = 30 so 
6/n = 6/30 = 0.2. This means that any H value larger than 0.2 would be 
considered an outlier. Table 4.8 shows the leverages Hi (labeled HI1) for 
our example. If you look into the column labeled HI1, none of the values 
are greater than 0.2, which indicates that there are no extremely large or 
small x values or outliers.

(2) SRES1 (Standardized Residuals)

The other column of interest in Table 4.8 is SRES1 or standardized resid-
uals column. The standardized residuals are used to detect unusually large 
or small values of dependent variable y. The standardized residuals are 
calculated using the following formula:

 SRES1
1

=
−
−

y y
s hi

^

( )  (4.4) 

where ( )^y y−  = residual, s = standard error of the estimate (s = 0.4481 for 
our example), hi is given by Equation 4.3. Suppose we want to calculate 
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the standardized residual for the 20th point in Table 4.8 where x = 646 
and y = 12.41. For row number 20, we have HI1= 0.057106, and ( )^y y− ,  
which is the residual or RESI1 = −0.437552, and S = 0.4481. Substituting 
these values in Equation 4.4 gives the value of standardized residual  = 
−1.00551 (see row 20 and column labeled SRES1 in Table 4.8). The other 
values of standardized residuals are calculated in a similar way.

As indicated earlier, the standardized residuals are used to detect the 
outlying value of the dependent variable y. The following decision rule is 
applied to detect the outlying value of y:

If the standardized residual value (SRES1 column in Table 4�8) for any 
y value is larger than +2 or smaller than −2, then that value y would be 
considered an outlier�

An examination of the SRES1 column of Table 4.8, where the stan-
dardized residuals are stored, shows that none of the values are greater 
than +2 or less than −2, therefore, we will conclude that there are no 
outlying y values in this case.

(3) COOK1 (Cook’s Distance)

The Cook’s distance (column labeled COOK1 in Table 4.8) is used to 
detect the influential points in the model. An influential point is one 
that has a great impact on the fitted line of regression and the removal of 
which would result in a change in the slope b1 and y-intercept b0 of the 
fitted line.

The Cook’s distance combines the leverage value hi and the standard-
ized residual value together to provide a single measure that can be used 
to detect the influential points in the model. Recall that the leverage value 
hi detects the outlying x value and the standardized residual detects the 
outlying y value. The outliers detected by either measures may not be 
influential points (i.e., their removal may or may not have an impact on 
the fitted line of regression). The Cook’s distance provides a more reliable 
measure for the detection of influential points. It is calculated using the 
following expression:

 D
h

hi
i

i
=

−
1
2 1

2

( )
( )SRES  (4.5)
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where, hi are the leverage values and SRES are the standardized residuals. 
The standardized residuals are calculated using Equation 4.4. Therefore, 
substituting into Equation 4.5 we get:

 D
Y Y h
s hi
i i

i
=

−
−

( )
( )

� 2

2 22 1
 (4.6)

Equation 4.6 can be used to calculate the Cook’s distance for any 
point. For example, suppose we want to calculate the Cook’s distance 
for point 20 in Table 4.8. For this point, y = 12.41, ŷ  = 12.8476, (under 
FIT column), hi = 0.057106 (under HI column), and s = 0.4481 (from 
regression analysis Table 4.5). Substituting the preceding values in 
 Equation 4.6, we get:

   Di = −
−

=( . . ) ( . )
( . ) ( . )

.
12 41 12 8476 0 057106
2 0 4481 1 0 057106

0 030
2

2 2 662

Table 4.8 Calculated values for analysis of outlier

Row Units(x) Hours(y) FITS1     RESI1      SRES1      HI1      COOK1
1    932    16.20  15.6042   0.595759   1.36306  0.048760  0.047618
2    951      16.05  15.7874   0.262623   0.60243  0.053696  0.010297
3    531      11.84  11.7391   0.100907   0.23790  0.104155  0.003290
4    766      14.21  14.0042   0.205796   0.46741  0.034730  0.003930
5    814      14.42  14.4669  −0.046866  −0.10637  0.033421  0.000196
6    914      15.08  15.4307  −0.350743  −0.80077  0.044715  0.015007
7    899      14.45  15.2862  −0.836161  −1.90613  0.041812  0.079274
8    535      11.73  11.7776  −0.047648  −0.11221  0.102097  0.000716
9    554      12.24  11.9608   0.279215   0.65413  0.092740  0.021869
10    445     11.12  10.9102   0.209841   0.50961  0.155717  0.023949
11    704     12.63  13.4066  −0.776601  −1.77135  0.042884  0.070292
12    897     14.43  15.2669  −0.836884  −1.90743 0.041458  0.078679
13    949     15.46  15.7681  −0.308100  −0.70654  0.053144  0.014009
14    632     12.64  12.7126  −0.072609  −0.16725  0.061494  0.000916
15    477     11.92  11.2186   0.701401   1.68275  0.134894  0.220766
16    754     13.95  13.8885   0.061461   0.13967  0.035740  0.000362
17    819     14.33  14.5151  −0.185059  −0.42006  0.033535  0.003061
18    869     15.23  14.9970   0.233002   0.52991  0.037287  0.005438
19   1035     16.77  16.5970   0.172966   0.40321  0.083716  0.007427
20    646     12.41  12.8476  −0.437552  −1.00551  0.057106  0.030617
21   1055     17.00  16.7898   0.210190   0.49245  0.092835  0.012408
22    875     15.50  15.0548   0.445169   1.01283  0.038056  0.020292
23    969     16.20  15.9609   0.239125   0.55007  0.059003  0.009486
24   1075     17.50  16.9826   0.517415   1.21888  0.102711  0.085031
25    655     12.92  12.9343  -0.014301  −0.03282  0.054481  0.000031
26   1125     18.20  17.4645   0.735476   1.76026  0.130719  0.232970
27    960     15.10  15.8741  −0.774126  −1.77818  0.056273  0.094271
28    815     14.00  14.4765  −0.476504  −1.08153  0.033440  0.020234
29    555     12.20  11.9704   0.229576   0.53770  0.092266  0.014694
30    925     15.50  15.5368  −0.036769  −0.08405 0.047114  0.000175

yx Cook’s
Residuals Residuals Distance

Standardized Leverage^y y− )(ŷ
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which is close to the value in the row under COOK1 column. The Cook’s 
distance for all the other points are calculated and reported under the 
COOK1 column of Table 4.8. The decision rule to detect an influential 
point using the Cook’s distance is given as:

If the Cook’s distance Di > 0�8 for a given point, then the point is an 
influential point�

An examination of COOK1 column of Table 4.8 shows that, for our 
example, none of the distances are larger than 0.8. This indicates that 
none of the points are influential.

The Durbin–Watson Statistic: Measuring and 
Checking Autocorrelation in Regression

One of the basic assumptions of regression analysis is that the errors are 
independent. This assumption is sometimes violated if the data are col-
lected over sequential time period. Data collected over time sometimes show 
an autocorrelation effect among successive data values� In such cases, there will 
be a relationship between consecutive residuals that violates the assumption of 
independence of errors�

The autocorrelation effect among successive observations can be tested 
using the Durbin–Watson statistic�

Durbin–Watson statistic 
The Durbin–Watson statistic tests the autocorrelation. The null hypoth-
esis using the Durbin–Watson statistic is that the residuals from an 
 ordinary least squares regression are not autocorrelated. In other words, 
it is a test performed to determine whether the residuals from a linear 
or multiple regression are independent. Regression analysis using time 
series data (data collected over time) usually exhibit positive autocorrela-
tion that violates the independence of error assumption of regression. The 
steps for the test are explained as follows:

Step 1: State the null and alternate hypotheses.
The hypothesis for Durbin–Watson test can be stated as: 

H0 : r = 0 (residuals are not autocorrelated)
 H1 : r > 0 (residuals are autocorrelated)  

(4.7)
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Step 2: Specify the test statistic.
The test statistic for the test is given by:
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where ei is the residual given by e y yi i= − ^; the difference between the 
observed and predicted values for the ith value of the response variable. 
Note that the value of the test statistic d becomes smaller as the serial 
correlations increase.

Step 3: Calculate the test statistic value.
Calculating the value of the Durbin–Watson Statistic d using 
 Equation (4.8)
We will use the example problem (Table 3.1_Chapter 3) or the data 
file: Hours_Units to test the hypothesis stated in Equation 4.7. First, 
we calculate the Durbin–Watson statistic (d) using Equation 4.8. To 
 calculate d, the residuals are calculated using MINITAB (instructions in 
 (Appendix A_Table A.9). Once the residuals are known, the statistic d 
can be calculated as shown in Table 4.9.

Step 4: Determine the critical values for the test using Durbin– Watson 
statistical table.
Durbin–Watson Statistical Table
Upper and lower critical values of the test statistic d – dU and dL have been 
tabulated for different values of k (the number of explanatory or indepen-
dent variables) and n (the number of observations) in Durbin–Watson 
statistic table (Table 4.10). This table can be used to test the hypothesis 
in Equation 4.7.

Critical values: The lower and upper critical points, dL and dU are 
obtained from Table 4.10. Refer to this table for the number of observa-
tions (n) and the number of independent variables (k) in the example. For 
our example, n = 30 and k = 1, the corresponding values are:  

dL = 1.352 and dU = 1.489
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Step 5: Specify the decision rule. The decision rule is given by:

If d < dL; reject H0 : r = 0 (indicating evidence of autocorrelation)
If d > dU; do not reject H0 : r = 0 (indicating no evidence of autocorrelation)
If dL < d < dU (test is inconclusive) (4.9)

Step 6: Make a decision and state your conclusion.
The computed value, d = 1.5262 (see Table 4.9), is greater than dU 
(=1.489); therefore, do not reject H0 and conclude that there is no evi-
dence of autocorrelation.

Table 4.9 Calculation of Durbin–Watson statistic, d

1       932      16.20   0.595759       *        *  0.35493
2       951      16.05   0.262623   0.33314 0.11098  0.06897
3       531      11.84   0.100907  0.16172 0.02615  0.01018
4       766      14.21   0.205796  −0.10489 0.01100  0.04235
5   814      14.42  −0.046866  0.25266  0.06384  0.00220
6       914      15.08  −0.350743   0.30388  0.09234  0.12302
7       899      14.45  −0.836161  0.48542  0.23563  0.69917
8       535      11.73  −0.047648  −0.78851  0.62175  0.00227
9       554 12.24   0.279215  −0.32686 0.10684  0.07796
10       445      11.12   0.209841  0.06937  0.00481  0.04403
11       704      12.63  −0.776601  0.98644 0.97307  0.60311
12       897      14.43  −0.836884  0.06028 0.00363  0.70037
13       949     15.46  −0.308100  −0.52878 0.27961  0.09493
14       632      12.64  −0.072609  −0.23549 0.05546  0.00527
15       477      11.92   0.701401  −0.77401 0.59909  0.49196
16       754      13.95   0.061461  0.63994 0.40952  0.00378
17       819      14.33  -0.185059  0.24652 0.06077  0.03425
18       869      15.23   0.233002  −0.41806 0.17478  0.05429
19      1035      16.77   0.172966  0.06004 0.00360  0.02992
20       646      12.41  −0.437552  0.61052 0.37273  0.19145
21      1055      17.00  0.210190 −0.64774 0.41957  0.04418
22       875      15.50   0.445169  -0.23498 0.05522  0.19818
23       969      16.20   0.239125  0.20604  0.04245  0.05718
24      1075      17.50   0.517415  −0.27829  0.07745  0.26772
25       655      12.92  −0.014301  0.53172  0.28272  0.00020
26      1125      18.20   0.735476  −0.74978  0.56217  0.54093
27       960      15.10  −0.774126  1.50960  2.27890  0.59927
28       815      14.00  −0.476504  −0.29762  0.08858  0.22706
29       555      12.20   0.229576  −0.70608  0.49855  0.05271
30       925      15.50  −0.036769   0.26635 0.07094  0.00135

(ei–ei–1) =
n

i=2
∑

n

i=1
∑8.58216     = 5.623182 2ei

(ei–ei–1)
(ei–ei–1) (ei–ei–1)

(ei–ei–1)

=

n

i=2
∑

d = =
5.62318

1.5262
8.58216

2

n

i=1
∑ 2ei

Row Unit (x) Hours (y) Residuals 2 ei
2
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Summary

This chapter provided a detailed and stepwise computer analysis of the 
simple regression using Excel and MINITAB. Instructions were pro-
vided for running the simple regression using both these software and the 
computer results were explained. The Excel regression output is divided 
into two parts: Regression Statistics and ANOVA. The Regression Statistics 
part contains important measures such as Multiple R, R-Square, Adjusted 
R-Square, and Standard Error. These measures are important in assessing 
the regression model. The ANOVA table of the regression output con-
tains the information to calculate the value of R-Square—the coefficient 
of determination, which is a measure of goodness of fit for the regression 
equation. The ANOVA table can be used to conduct the F-test for the 

Table 4.10 Durbin–Watson statistic table of dL and dU at 5% 
significance level (k is the number of independent variables and  
n = number of observations)

Source: Savin and Kenneth (1977).
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significance of regression. Another test for the significance of regression—
the t-test was also discussed.

A more detailed computer analysis was provided using the MINITAB 
statistical software. MINITAB provides more detailed analysis, includ-
ing the visual representation wherever applicable. Among the key analysis 
features were: (a) creating and interpreting a scatter diagram; (b) con-
structing a fitted line plot, including the equation of the best fitting line; 
(c) interpreting the regression analysis and analysis of variance tables. Both 
these tables were explained in detail. In addition, we used MINITAB to 
calculate and interpret the following: (a) confidence interval for the slope 
of the fitted regression line, b1 and (b) confidence and prediction inter-
vals and their interpretation in simple linear regression. We provided a 
detailed discussion on residual analysis and discussed assumptions under-
lying the regression model. Finally, we discussed how the outliers influ-
ence the results of regression and provided tests for outliers and influential 
observations in simple regression. One of the considerations in simple 
regression is to check for autocorrelation effect. This can be checked 
using the Durbin–Watson statistic that allows us to measure and check 
the autocorrelation in regression. A computer analysis was presented for 
Durbin–Watson test.



CHAPTER 5

Multiple Regression: 
Computer Analysis

This chapter provides in-depth analysis of multiple regression model. This 
is one of the most widely used prediction techniques used in data anal-
ysis and decision making. Multiple regression enables us to explore the 
relationship between a response variable, and two or more independent 
variables or the predictors. The multiple regression model can be used to 
predict a response variable using two or more predictors or independent 
variables. In this chapter we will:

• Outline the difference between simple and multiple 
 regression;

• Explain the multiple regression model and how to establish 
multiple regression equation;

• Use the multiple regression model to make inferences;
• Assess the quality of multiple regression model by calculating 

different measures;
• Interpret the computer results from computer packages, such 

as Excel and MINITAB;
• Test the hypotheses to assess the overall significance of 

 multiple regression model (F-test);
• Test the hypotheses to determine whether each of the 

 independent variables is significant (t-tests);
• Explain multicollinearity problem in multiple regression and 

explain how to detect multicollinearity;
• Outline the underlying assumptions of multiple regression; 

and
• Perform residual analysis to check whether the assumptions 

of multiple regression are met.
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Introduction to Multiple Regression

In the previous chapter, we explored the relationship between two vari-
ables using simple regression and correlation analysis. We demonstrated 
how the estimated regression equation can be used to predict a depen-
dent variable (y) using an independent variable (x). We also discussed the 
correlation between two variables that explains the degree of association 
between two variables. In this chapter, we expand the concept of  simple 
linear regression to include multiple regression analysis. A multiple linear 
regression involves one dependent or response variable, and two or more inde-
pendent variables or predictors. The concepts of simple regression discussed 
in the previous chapter are also applicable to the multiple regression.

Multiple Regression Model

The mathematical form of multiple linear regression model relating the 
dependent variable y and two or more independent variables x1, x2, …, xk 

with the associated error term is given by:

 y = b0 + b1x1 + b2x2 + b3x3 + … + bkxk + e (5.1)

where x1, x2, …, xk are k independent or explanatory variables; b0, b1,  
b2, …, bk are the regression coefficients, and e is the associated error term. 
Equation 5.1 can be viewed as a population multiple regression model 
in which y is a linear function of unknown parameters b0, b1, b2, …, bk 
and an error term, e. The error e explains the variability in y that cannot 
be explained by the linear effects of the independent variables. The multi-
ple regression model is similar to the simple regression model except that 
multiple regression involves more than one independent variable.

One of the basic assumptions of the regression analysis is that the 
mean or the expected value of the error is zero. This implies that the mean 
or expected value of y or E(y) in the multiple regression model can be 
given by:

 E(y) = b0 + b1x1 + b2x2 + b3x3 + … + bkxk (5.2)

Equation 5.2 relating the mean value of y and the k independent vari-
ables is known as the multiple regression equation.
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It is important to note that b0, b1, b2, …, bk are the unknown popu-
lation parameters, or regression coefficients, and they must be estimated 
using the sample data to obtain the estimated equation of multiple regres-
sion. The estimated regression coefficients are denoted by b0, b1, b2, …, bk.  
These are the point estimates of the parameters b0, b1, b2, …, bk. The esti-
mated multiple regression equation using the estimates of the unknown 
population regression coefficients can be written as:

 ŷ  = b0 + b1x1 + b2x2 + b3x3 + … + bkxk (5.3)

where ŷ = point estimator of E(y) or the estimated value of the response y,
b0, b1, b2, …, bk are the estimated regression coefficients and are the esti-
mates of b0, b1, b2, …, bk.

Equation 5.3 is the estimated multiple regression equation and can 
be viewed as the sample regression model. This equation is written with 
sample regression coefficients. This equation defines the regression equa-
tion for k independent variables.

In Equation 5.1, b0, b1, b2, …, bk denote the regression coefficients 
for the population. The sample regression coefficients b0, b1, b2, …, bk are 
the estimates of the population parameters and can be determined using 
the least squares method.

In a multiple linear regression, the variation in y (the response vari-
able) may be explained using two or more independent variables or pre-
dictors. The objective is to predict the dependent variable y. Compared to 
simple linear regression, a more precise prediction can be made because 
we use two or more independent variables. By using two or more inde-
pendent variables, we are often able to make use of more information 
in the model. The simplest form of a multiple linear regression model 
involves two independent variables and can be written as:

 y = b0 + b1x1 + b2x2 + e (5.4)

Equation 5.4 describes a plane. In this equation, b0 is the y-intercept 
of the regression plane. The parameter b1 indicates the average change in y 
for each unit change in x1 when x2 is constant. Similarly, b2 indicates the 
average change in y for each unit change in x2 when x1 is held constant. 
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When we have more than two independent variables, the regression 
equation of the form described using Equation 5.3 is the equation of a 
 hyperplane in an n-dimensional space.

The Least Squares Multiple Regression Model

The regression model is described in the form of a regression equation 
that is obtained using the least squares method. Recall that in a simple 
regression, the least squares method requires fitting a line through the data 
points so that the sums of the squares of errors or residuals are minimized. 
These errors or residuals are the vertical distances of the points from the fitted 
line. The same concept of simple regression is used to develop the multi-
ple regression equation.

In a multiple regression, the least squares method determines the 
best-fitting plane or the hyperplane through the data points that ensures 
that the sum of the squares of the vertical distances or deviations from the 
given points and the plane are a minimum.

Figure 5.1 shows a multiple regression model with two independent 
variables. The response y with two independent variables x1 and x2 forms 
a regression plane. The observed data points in the figure are shown using 
dots. The stars on the regression plane indicate the corresponding points 
that have identical values for x1 and x2. The vertical distance from the 
observed points to the point on plane are shown using vertical lines. These 

Figure 5.1 Scatterplot and regression plane with two independent 
variables

Error yi

y�

�y = y0 + b1x1 + b2x2 

x2

x1

y

Estimated regression plane
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vertical lines are the errors. The error for a particular point yi is denoted 
by (yi – ŷ) where the estimated value ŷ is calculated using the regression 
equation: ŷ  = b0 + b1x1+ b2x2 for a given value of x1 and x2.

The least squares criteria requires that the sum of the squares of the 
errors be minimized, or,

∑ (y – ŷ)2

where y is the observed value and ŷ is the estimated value of the depen-
dent variable given by ŷ  = b0 + b1x1 + b2x2.

Similar to the simple regression, the least squares method uses the 
sample data to estimate the regression coefficients b0, b1, b2, …, bk and 
hence the estimated equation of multiple regression. Figure 5.2 shows the 
process of estimating the regression coefficients and the multiple regres-
sion equation.

Models with Two Quantitative Independent 
Variables x1 and x2

The model with two quantitative independent variables is the simplest 
multiple regression model. It is a first-order model and is written as:

Sample data:
…

: : : :
: : : :
: : : :
: : : :

Multiple regression model
y = b0 + b1x + b2x2 + … + bkxk + e

Multiple regression equation
E(y) = b0 + b1x1 + b2x2 + … + bkxk

x1

x1n x2n xnk y1n

x2 xk y

Estimate the unknown parameters

using the sample data
(b0, b1, b2,…,bk)

Estimated (b0, b1,...,bk) the regression coefficients
and the estimated regression equation 

y = b0 + b1x + b2x2 + … + bkxk�

Figure 5.2 Process of estimating the multiple regression equation
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 y = b0 + b1x1 + b2x2  (5.5)

where, b0 = y-intercept, the value of y when x1 = x2 = 0
b1 = change in y for a 1-unit increase in x1 when x2 is constant
b2 = change in y for a 1-unit increase in x2 when x1 is constant

The graph of the first-order model is shown in Figure 5.3. This graph 
with two independent quantitative variables x1 and x2 plots a plane in a 
three-dimensional space. The plane plots the value of y for every combina-
tion (x1, x2). This corresponds to the points in the (x1, x2) plane.

Note: The terms independent, or explanatory variables, and the 
 predictors have the same meaning and are used interchangeably in this 
 chapter. The dependent variable is often referred to as the response vari-
able in multiple regression.

The first-order model with two quantitative variables x1 and x2 is based 
on the assumption that there is no interaction between x1 and x2. This 
means that the effect on the response y of a change in x1 (for a fixed value 
of x2) is same regardless of the value of x2 and the effect on y of a change 
in x2 (for a fixed value of x1) is same regardless of the value of x1.

In case of simple regression analysis in the previous chapter, we pre-
sented both the manual calculations and the computer analysis of the 
problem. Most of the concepts we discussed for simple regression also 
apply to the multiple regression; however, the computations for mul-
tiple regression are more involved and require the use of matrix alge-
bra and other mathematical concepts that are beyond the scope of this 

Figure 5.3 A multiple regression model with two quantitative variables

x2

x1

y
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text. Therefore, in this chapter, we have provided computer analysis of 
the multiple linear regression models using Excel and MINITAB. The 
instructions to run the multiple regression using these packages are pro-
vided in the appendix (Appendix A: Tables A.10 and A.13). This  chapter 
contains numerous examples with computer instructions and analysis 
of the computer results. The assumptions and the interpretation of the 
multiple linear regression models are similar to that of the simple linear 
regression. As we provide the analysis, we will point out the similarities 
and the differences between the simple and multiple regression models.

Assumptions of Multiple Regression Model

As discussed earlier, the relationship between the response variable (y) 
to the independent variables x1, x2, …, xk in the multiple regression is 
assumed to be a model of the form y = b0 + b1x1 + b2x2 + b3x3 + … + bkxk + e  
where b0, b1, b2, …, bk are the regression coefficients, and e is the associ-
ated error term. The multiple regression model is based on the following 
assumptions about the error term e.

1. The independence of errors assumption. The assumption— 
independence of errors means that the errors are independent of 
each other. That is, the error for a set of values of independent vari-
ables is not related to the error for any other set of values of indepen-
dent variables. This assumption is critical when the data are collected 
over different time periods. When the data are collected over time, 
the errors in one time period may be correlated with another time 
period.

2. The normality assumption. This means that the errors or residuals 
(ei) calculated using (yi – ŷ) are normally distributed. The normal-
ity assumption in regression is fairly robust against departures from 
normality. Unless the distribution of errors is extremely different 
from normal, the inferences about the regression parameters b0, b1, 
b2, …, bk are not affected seriously.

3. The error assumption. The error, e is a random variable with mean 
or expected value of zero, that is, E(e) = 0. This implies that the 
mean values of the dependent variable y, for a given value of the 
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 independent variable, x is the expected, or the mean value of y 
denoted by E(y) and the population regression model can be written 
as: E(y) = b0 + b1x1 + b2x2 + b3x3 + … + bkxk.

4. Equality of variance assumption. This assumption requires that the 
variance of the errors (ei), denoted by s2 are constant for all values of 
the independent variables x1, x2, …, xk. In case of serious departure 
from the equality of variance assumption, methods such as weighted 
least-squares, or data transformation may be used.

Note: The terms error and residual have the same meaning and these terms 
are used interchangeably in this chapter.

Computer Analysis of Multiple Regression

In this section, we provide a computer analysis of multiple regression. 
Owing to the complexity involved in the computation, computer soft-
ware is always used to model and solve regression problems. We discuss 
the steps using MINITAB and Excel.

Problem description: The home heating cost is believed to be 
related to the average outside temperature, size of the house, and the 
age of the heating furnace. A multiple regression model is to be fitted 
to investigate the relationship between the heating cost and the three 
predictors or independent variables. The data in Table 5.1 show the 
average temperature (x1), house size (x2) in thousands of square feet, 
the age of the furnace (x3) in years, and the home heating cost (y). The 
home heating cost is the response variable and the other three variables 
are predictors. The data for this problem are available in MINITAB 
data file: HEAT_COST.MTW, Excel data file: HEAT_COST.xlsx and 
is also listed later.

(a) Constructing Scatterplots and Matrix Plots

We begin our analysis by constructing scatterplots and matrix plots of the data. 
These plots provide useful information about the model.

We first construct scatterplots of the response (y) versus each of 
the independent or predictor variables. If the scatterplots of y on the 
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independent variables appear to be linear enough, a multiple regression 
model can be fitted. Based on the analysis of the scatterplots of y and each 
of the independent variables, an appropriate model (e.g., a first-order 
model) can be recommended to predict the home heating cost.

A first-order multiple regression model does not include any higher order 
terms (e.g., x2). An example of a first-order model with five independent vari-
ables can be written as:

 y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 (5.6)

Table 5.1 Data for home heating cost

Avg.
temp.

House
size

Age of
furnace

Heating
costRow

1     37    3.0        6      210
2     30    4.0        9      365
3     37    2.5        4      182
4     61    1.0        3       65
5     66    2.0        5       82
6     39    3.5        4      205
7     15    4.1        6      360
8      8    3.8        9      295
9     22    2.9       10      235

10     56    2.2        4      125
11     55    2.0        3       78
12     40    3.8        4      162
13     21    4.5       12      405
14     40    5.0        6      325
15     61    1.8        5       82
16     21    4.2        7      277
17 63    2.3        2       99
18     41    3.0       10      195
19     28    4.2        7      240
20     31    3.0        4      144
21     33    3.2        4      265
22     31    4.2       11      355
23     36    2.8        3      175
24     56    1.2        4       57
25     35    2.3        8      196
26     36    3.6        6      215
27      9    4.3        8      380
28     10    4.0       11      300
29     21    3.0        9      240
30     51    2.5        7      130
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The multiple linear regression model is based on the assumption that 
the relationship between the response and the independent variables is 
linear. This relationship can be checked using a matrix plot. The matrix 
plot is used to investigate the relationships between pairs of variables by 
creating an array of scatterplots. MINITAB provides two options for con-
structing the matrix plot: matrix of plots and each Y versus each X. The 
first of these plots is used to investigate the relationships among pairs 
of variables when there are several independent variables involved. The 
other plot (each y versus each x) produces separate plots of the response 
y and each of the explanatory or independent variable. The instructions 
for constructing these scatterplots using MINITAB are provided in 
 Appendix A_Table A.11.

Recall that in a simple regression, a scatterplot was constructed to 
investigate the relationship between the response y and the predictor x. 
A matrix plot should be constructed when two or more independent 
variables are investigated. To investigate the relationships between the 
response and each of the independent or explanatory variables before 
fitting a multiple regression model, a matrix plot may prove to be very 
useful. The plot allows graphically visualizing the possible relationship 
between response and independent variables. The plot is also very helpful 
in investigating and verifying the linearity assumption of multiple regres-
sion and to determine which explanatory variables are good predictors 
of y. For this example, we have constructed matrix plots using different 
options in MINITAB.

Figure 5.4 shows such a matrix plot (each y versus each x). In this 
plot, the response variable y is plotted with each of the independent 
variables. The plot shows scatterplots for heating cost (y) versus each of 
the independent variables: average temperature, house size, and age of 
the furnace. An investigation of the plot shows an inverse relationship 
between the heating cost and the average temperature (the heating cost 
decreases as the temperature rises) and a positive relationship between 
the heating cost and each of the other two variables: house size and age 
of the furnace. The heating cost increases with the increasing house size 
and also with the older furnace. None of these plots show bending (non-
linear or curvilinear) patterns between the response and the explanatory 
variables. The presence of bending patterns in these plots would suggest 
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transformation of variables. The scatterplots in Figure 5.4 (also known 
as side-by-side scatterplots) show linear relationship between the response 
and each of the explanatory variables indicating all the three explanatory 
variables could be a good predictor of the home heating cost. In this case, 
a multiple linear regression would be an adequate model for predicting 
the heating cost.

(b) Matrix of Plots: Simple

Another variation of the matrix plot is known as “matrix of plots” in 
MINITAB and is shown in Figure 5.5. The computer instructions are in 
Appendix A_Table A.12. This plot provides scatterplots that are helpful 
in visualizing not only the relationship of the response variable with each 
of the independent variables but also provides scatterplots that are useful 
in assessing the interaction effects between the variables. This plot can be 
used when more detailed model beyond a first-order model is of interest. 
Note that the first-order model is the one that contains only the first- 
order terms; with no square or interaction terms and is written as y = b0 + 

b1x1 + b2x2 + … + bkxk.
The matrix plot in Figure 5.5 is a table of scatterplots with each cell 

showing a scatterplot of the variable that is labeled for the column versus 
the variable labeled for the row. The cell in the first row and first column 

Figure 5.4 Matrix plot of each y versus each x
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displays the scatterplot of heating cost (y) versus average temperature (x1). 
The plot in the second row and first column is the scatterplot of heating 
cost (y) and the house size (x2) and the plot in the third row and the first 
column shows the scatterplot of heating cost (y) and the age of the furnace 
(x3).

The second column and the second row of the matrix plot shows a 
scatterplot displaying the relationship between average temperature (x1) 
and the house size (x2). The scatterplots showing the relationship between 
the pairs of independent variables are obtained from columns two and 
three of the matrix plot. The matrix plot is helpful in visualizing the inter-
action relationships. For fitting the first-order model, a plot of y versus 
each x is adequate.

The matrix plots in Figures 5.4 and 5.5 show a negative association 
or relationship between the heating cost (y) and the average temperature 
(x1) and a positive association or relationship between the heating cost 
(y) and the other two explanatory variables: house size (x2) and the age 
of the furnace (x3). All these relationships are linear indicating that all 
the three explanatory variables can be used to build a multiple regression 
model. Constructing the matrix plot and investigating the relationships 
between the variables can be very helpful in building a correct regression 
model.

Heating cost (y) 
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25
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12

8

4
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Matrix plot of heating cost (y) avg. temp. (x1), house size (x2), and age of furnace (x3)

Figure 5.5 Matrix plot
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(c) Multiple Linear Regression Model

Since a first-order model can be used adequately to predict the home 
heating cost, we will fit a multiple linear regression model of the form

y = b0 + b1x1 + b2x2 + b3x3

where y = Home heating cost (in $)
 x1 = Average temperature (in °F)
 x2 = Size of the house (in thousands of square feet)
 x3 = Age of the furnace (in years)

Table 5.1 and data file HEAT_COST.MTW show the data for this 
problem. We used MINITAB to run the regression model for this prob-
lem. The instructions for running the multiple regression using Excel are 
in Appendix A _Table A.10. MINITAB instructions are in Appendix A_ 
Table A.13.

Table 5.2 shows the result of running the multiple regression using 
MINITAB. In this table, we have marked some of the calculations (e.g., 
b0, b1, sb0

, sb1
, etc. for clarity and explanation). These are not the part 

of the computer output. The regression computer output has two parts: 
 Regression Analysis and Analysis of Variance (ANOVA).

Table 5.2 MINITAB regression analysis results
Regression analysis: Heating cost versus Avg. temp., house size, …
The regression equation is

Heating cost = 44.4 − 1.65 Avg. temp. + 57.5 House size + 7.91 Age of furnace

Predictor          Coef        SE Coef         T         P

Constant          44.39 (b0) 59.07 (sb0) 0.75     0.459

Avg. temp.      -1.6457 (b1) 0.6967 (sb1) -2.36     0.026

House size        57.46 (b2) 10.35 (sb2) 5.55     0.000

Age of furnace    7.908 (b3) 3.294 (sb3) 2.40     0.024

S = 37.3174 R-Sq = 88.0%   R-Sq(adj) = 86.6%

Analysis of Variance            SSE

Source          DF        SS     MS       F      P
Regression       3  2,65,777  88,592  63.62  0.000

Residual error  26  36,207 1,393

Total           29  301,985

Regression coef�icients
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(d) the Regression Equation

Refer to the “Regression Analysis” part of Table 5.2 for analysis. Since 
there are three independent or explanatory variables, the regression 
 equation is of the form:

y = b0 + b1x1 + b2x2 + b3x3

The regression equation from the computer output is

 Heating cost =  44.4 − 1.65 Avg. temp. + 57.5 House size  
+ 7.91 Age of furnace  (5.7)

or

 ŷ  = 44.4 – 1.65x1 + 57.5x2 + 7.91x3  (5.8)

where y is the response variable (heating cost), x1, x2, x3 are the indepen-
dent variables as described earlier, the regression coefficients b0, b1, b2, 
b3 are stored under the column Coef. In the regression equation, these 
coefficients appear in rounded form.

The regression equation that can be stated in the form of Equation 5.7 
or 5.8 is the estimated regression equation relating the heating cost to all 
the three independent variables.

 (e) Interpreting the Regression Equation

Equation 5.7 or 5.8 can be interpreted in the following way:

• b1 = −1.65 means that for each unit increase in the average 
temperature (x1), the heating cost y (in $) can be predicted to 
go down by 1.65 (or $1.65) when the house size (x2) and the 
age of the furnace (x3) are held constant.

• b2 = +57.5 means that for each unit increase in the house size 
(x2 in thousands of square feet), the heating cost y (in $) can 
be predicted to go up by 57.5 when the average temperature 
(x1) and the age of the furnace (x3) are held constant.
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• b3 = 7.91 means that for each unit increase in the age of the 
furnace (x3 in years), the heating cost y can be predicted to go 
up by $7.91 when the average temperature (x1) and the house 
size (x2) are held constant.

(f) Standard Error of the Estimate (s) and Its Meaning

The standard error of the estimate or the standard deviation of the 
model s is a measure of scatter or the measure of variation of the points 
around the regression hyperplane. A small value of s is desirable for a 
good regression model. The estimation of y is more accurate for smaller 
values of s. The value of the standard error of estimate is reported in the 
Regression Analysis (see Table 5.2). This value is measured in terms of the 
response variable (y). For our example, the standard error of the estimate,

s = $37.32

The standard error of the estimate is used to check the utility of the 
model and to provide a measure of reliability of the prediction made from 
the model. One interpretation of s is that the interval ±2s will provide 
an approximation to the accuracy with which the regression model will 
predict the future value of the response y for given values of x. Thus, for 
our example, we can expect the model to provide predictions of heating 
cost (y) to be within ±2s = ±2(37.32) = ±$74.64.

(g) the Coefficient of Multiple Determination (r2)

The coefficient of multiple determination is often used to check the ade-
quacy of the regression model. The value of r2 lies between 0 and 1, or 0% 
and 100%, that is, 0 ≤ r2 ≤ 1. It indicates the fraction of total variation of 
the dependent variable y that is explained by the independent variables 
or predictors. Usually, closer the value of r2 to 1 or 100%, the stronger is 
the model. However, one should be careful in drawing conclusions based 
solely on the value of r2. A large value of r2 does not necessarily mean that 
the model provides a good fit to the data. In case of multiple regression, 
addition of a new variable to the model always increases the value of r2 
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even if the added variable is not statistically significant. Thus, addition of 
a new variable will increase r2 indicating a stronger model but may lead 
to poor predictions of new values. The value of r2 can be calculated using 
the expression:

 r 2 1= − SSE
SST

 or (5.9)

 r 2 = SSR
SST

 (5.10)

In these equations, SSE is the sum of square of errors (unexplained 
variation or error), SST is the total sum of squares, and SSR is the sum of 
squares due to regression (explained variation). These values can be read 
from the “Analysis of Variance” part of Table 5.2. From this table:

r 2 1 1
36207
301985

0 88= − = − =SSE
SST

.

r 2 265777
301985

0 88= = =SSR
SST

.

The value of r2 is calculated and reported in the “Regression Analysis” 
part of Table 5.2. For our example the coefficient of multiple determina-
tion r2 (reported as R-sq) is:

r2 = 88.0%

This means that 88.0% of the variability in y is explained by the three 
independent variables used in the model. Note that r2 = 0 implies a com-
plete lack of fit of the model to the data, whereas r2 = 1 implies a perfect 
fit.

The value of r2 = 88.0% for our example implies that using the three 
independent variables: average temperature, size of the house, and the age 
of the furnace in the model, 88.0% of the total variation in heating cost 
(y) can be explained. The statistic r2 tells how well the model fits the data, 
and thus, provides the overall predictive usefulness of the model.
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(h) the Adjusted r2

The adjusted r2 is the coefficient of multiple determination adjusted for 
the independent or predictor variables and the sample size. This value is 
calculated using the following expression:

 r adj r
n

n k
2 21 1

1
1

− = − − −
− +







( )
( )

( )   (5.11)

where r2 is the coefficient of multiple determination, n is the number of 
observations or the sample size, and k is the number of independent vari-
ables in the model. For our example, r2 = 88% (from Table 5.2), n = 30, 
and k = 3. Substituting these values in Equation 5.11:

r adj r
n

n k
2 21 1

1
1

1 1 0 88
30 1

30 3 1
− = − − −

− +






= − − −
− +

( )
( )

( )
( . )

( )
( )







= 0 866.

This value is reported as:

R-Sq(adj.) = 86.6%

in the “Regression Analysis” part of Table 5.2.
The values of r2 and r2-adjusted have similar interpretation but unlike 

r2, r2-adjusted takes into account or “adjusts” for the sample size n and the 
number of b parameters in the model. The value of r2-adjusted is always 
less than r2 and cannot be forced to become 1 by adding more and more 
predictors or independent variables to the model. Therefore, r2-adjusted 
is often preferred in choosing a measure of the model adequacy. However, 
r2 and r2-adjusted are only sample statistic; therefore, the model adequacy 
should not be judged based solely on these values. A better method of 
judging the overall usefulness or the significance of the regression model 
is to conduct a test of hypothesis involving all the b parameters (except 
b0). This hypothesis test is explained in the next section.

The value of adjusted r2 is also used in comparing two regression mod-
els that have the same response variable but different number of inde-
pendent variables or predictors. The adjusted r2 value of 86.6% means 
that 86.6% of the variability in heating cost y can be explained by this 
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model, which is adjusted for the number of independent variables k and 
the sample size n.

Hypothesis Tests in Multiple Regression

In multiple regression, two types of hypothesis tests are conducted to 
measure the model adequacy. These are:

1. Hypothesis test for the overall usefulness, or significance of regres-
sion; and

2. Hypothesis tests on the individual regression coefficients.

The test for overall significance of regression can be conducted using 
the information in the “Analysis of Variance” part of Table 5.2. The 
information contained in the “Regression Analysis” part of this table is 
used to conduct the tests on the individual regression coefficients using 
the “T” or “p” column. These tests are explained in the following.

Testing the Overall Significance of Regression

Recall that in simple regression analysis, we conducted the test for the 
significance using a t-test and F-test. Both these tests in simple regression 
provided the same conclusion. If the null hypothesis was rejected in these 
tests, it led to the conclusion that the slope was not zero, or b1 = 0. In 
a multiple regression, the t-test and the F-test have somewhat different 
interpretations. These tests have the following objectives:

1. The F-test in a multiple regression is used to test the overall signifi-
cance of the regression. This test is conducted to determine whether 
a significant relationship exists between the response variable y and 
the set of independent variables, or predictors x1, x2, …, xn.

2. If the conclusion of the F-test indicates that the regression is sig-
nificant overall, then a separate t-test is conducted for each of the 
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independent variables to determine whether each of the independent 
variables is significant.

Both the F-test and t-test are explained in the following.

F-Test

The null and alternate hypotheses for the multiple regression model  
y = b0 + b1x1 + b2x2 + … + bkxk are stated as:

H0 : b1 = b2= … = bk = 0 (regression is not significant)

 H1 : at least one of the coefficients is nonzero  (5.12)

If the null hypothesis H0 is rejected, we conclude that at least one of 
the independent variables x1, x2, …, xn contributes significantly to the pre-
diction of the response variable y. If H0 is not rejected, then none of the 
independent variables contributes to the prediction of y. The test statistic 
for testing this hypothesis uses an F-statistic and is given by:

 F = MSR
MSE  (5.13)

where MSR = mean squares due to regression, or explained variability, and 
MSE = mean square error, or unexplained variability. In Equation 5.13, 
the larger the explained variation of the total variability, the larger is the 
F-statistic. The values of MSR, MSE, and the F-statistic are calculated 
in the “Analysis of Variance” table of the multiple regression computer 
output (see Table 5.3).

The critical value for the test is given by Fk n k, ( ),− +1 a  where, k is the 
number of independent variables, n is the number of observations in the 
model, and α is the level of significance. Note that k and (n − k − 1) are 
the degrees of freedom (DF) associated with MSR and MSE, respectively. 
The null hypothesis is rejected if F Fk n k> − +, ( ),1 a  where F is the calcu-
lated F-value or the test statistic value in the Analysis of Variance table.
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Test the Overall Significance of Regression for the Example 
Problem at a 5% Level of Significance

Step 1: State the null and alternate hypotheses
For the overall significance of regression, the null and alternate hypoth-
eses are:

H0 : b1 = b2= … = bk = 0 (regression is not significant)

 H1 : at least one of the coefficients is nonzero  (5.14)

Step 2: Specify the test statistic to test the hypothesis
The test statistics is given by:

 F = MSR
MSE   (5.15)

The value of F-statistic is obtained from the “Analysis of Variance” 
(ANOVA) table of the computer output. We have reproduced the 
 Analysis of Variance part of the following table. In this table, the labels  
k, [n − (k + 1)], SSR, SSE, and so on are added for explanation purpose. 
They are not part of the computer results.

In this ANOVA table, the first column refers to the sources of varia-
tion, DF = the degrees of freedom, SS = the sum of squares, MS = mean 
squares, F = the F-statistic, and p is the probability or p-value associated 
with the calculated F-statistic.

The DF for Regression and Error are k and n − (k + 1), respectively, 
where k is the number of independent variables (k = 3 for our example) 
and n is the number of observations (n = 30). Also, the total sum of 

Table 5.3 Analysis of variance table

Analysis of Variance

Source              DF          SS    MS              F      P

Regression        k = 3       265,777 (SSR) 88,592 (MSR) 63.62  0.000

Residual error n −(k + 1)= 26   ,207  (SSE) 1,393 (MSE)
Total              29         301,985 (SST)

F =
MSR
MSE

= 63.62

36
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squares (SST) is partitioned into two parts: sum of squares due to regres-
sion (SSR) and the sum of squares due to error (SSE) having the following 
relationship:

SST = SSR + SSE

We have labeled SST, SSR, and SSE values in Table 5.3. The mean 
square due to regression (MSR) and the mean squares due to error (MSE) 
are calculated using the following relationships:

MSR = SSR/k and MSE = SSE/(n − k − 1)

The F-test statistic is calculated as F = MSR/MSE.

Step 3: Determine the value of the test statistic
The test statistic value or the F-statistic from the ANOVA table (see 
Table 5.3) is:

F = 63.62

Step 4: Specify the critical value
The critical value is given by:

F Fk n k, ( ), , , . .− + = =1 3 26 0 05 2 74a  (from the F-table)

Figure 5.6 shows the rejection and nonrejection region for this test.

Figure 5.6 Rejection and nonrejection region for the F-test

Do not reject H0 Reject H0

F-critical = 2.74
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Step 5: Specify the decision rule
Reject H0 if F-statistic > Fcritical

Step 6: Reach a decision and state your conclusion
The calculated F-statistic value is 63.62. Since F = 63.62 > Fcritical = 2.74, 
we reject the null hypothesis stated in Equation 5.14 and conclude that 
the regression is significant overall. This indicates that there exists a sig-
nificant relationship between the dependent and independent variables.

Alternate Method of Testing the Preceding Hypothesis

The hypothesis stated using Equation 5.14 can also be tested using the 
p-value approach. The decision rule using the p-value approach is given by:

If p ≥ α, do not reject H0

If p < α, reject H0

From Table 5.3, the calculated p-value is 0.000 (see the P column). 
Since p = 0.000 < α = 0.05, we reject the null hypothesis H0 and conclude 
that the regression is significant overall.

Hypothesis Tests on Individual Regression Coefficients

t-tests

If the F-test shows that the regression is significant, a t-test on individ-
ual regression coefficients is conducted to determine whether a particular 
independent variable is significant. We are often interested in determin-
ing which of the independent variables contributes to the prediction of y. 
The hypothesis test described here can be used for this purpose.

To determine which of the independent variables contributes to the 
prediction of the dependent variable y, the following hypotheses test can 
be conducted:

H0 : bj = 0

 H1 : bj ≠ 0 
(5.16)

This hypothesis tests an individual regression coefficient. If the null 
hypothesis H0 is rejected, it indicates that the independent variable xj is 
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significant and contributes in the prediction of y. On the other hand, if 
the null hypothesis H0 is not rejected, then xj is not a significant variable 
and can be deleted from the model or further investigated. The test is 
repeated for each of the independent variables in the model.

This hypothesis test also helps to determine if the model can be made 
more effective by deleting certain independent variables, or by adding 
extra variables. The information to conduct the hypothesis test for each 
of the independent variables is contained in the “Regression Analysis” part 
of the computer output, which is reproduced in Table 5.4. The columns 
labeled T and P are used to test the hypotheses. Since there are three 
independent variables, we will test to determine whether each of the three 
variables is a significant variable; that is, if each of the independent vari-
ables contributes in the prediction of y. The hypothesis to be tested and 
the test procedure are explained in the following. We will use a signifi-
cance level of α = 0.05 for testing each of the independent variables.

Test the hypothesis that each of the three independent variables is 
significant at a 5% level of significance.

Table 5.4 MINITAB regression analysis results

The regression equation is

Heating cost = 44.4 - 1.65 Avg. temp. + 57.5 House size + 7.91 Age of 
furnace

Predictor          Coef        SE Coef         T         P
Constant          44.39 (b0) 59.07 (sb0) 0.75     0.459

Avg. temp.      -1.6457 (b1) 0.6967 (sb1) -2.36     0.026

House size        57.46 (b2) 10.35 (sb2) 5.55     0.000

Age of furnace    7.908 (b3) 3.294 (sb3) 2.40     0.024

S = 37.3174   R-Sq = 88.0%   R-Sq(adj) = 86.6%

Analysis of Variance
Source          DF      SS     MS      F      P
Regression       3  265,777  88,592  63.62  0.000
Residual error  26   36,207   1,393
Total 29  301,985

1
1

1.6457 2.36
0.6967b

bt s
− −= = =

Regression analysis: Heating cost versus Avg. temp., House size, …
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Test for the significance of x1 or Average Temperature

Step 1: State the null and alternate hypotheses
The null and alternate hypotheses are:

H0 : b1 =  0 (x1 is not significant or x1 does not  
contribute in prediction of y)

 H1 : b1 ≠  0 (x1 is significant or x1 does  
contribute in prediction of y) (5.17)

Step 2: Specify the test statistic to test the hypothesis
The test statistics is given by:

 t
b
sb

= 1

1

 (5.18)

where b1 is the estimate of slope b1 and sb1
 is the estimated standard devi-

ation of b1.

Step 3: Determine the value of the test statistic
The values b sb1 1

, , and t are all reported in the Regression Analysis part of 
Table 5.4. From this table, the value for the variable x1 or the average 
temperature (avg. temp.) is:

b sb1 1 6457 0 6967
1

= − =. , .

and the test statistic value is:

t
b
sb

= = − = −1

1

1 6457
0 6967

2 36
.

.
.

This value is reported under the T column.

Step 4: Specify the critical value
The critical values for the test are given by:

t n ka / , ( )2 1− +[ ]
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which is the t-value from the t-table for [n − (k + 1)] DF and α/2, where 
n is the number of observations (n = 30), k is the number of independent 
variables (k = 3), and α is the level of significance (0.05 in this case). Thus,

t t tn ka / , ( ) . , ( ) . , .2 1 0 025 30 3 1 0 025 26 2 056− +[ ] − +[ ]= = =  (from the t-table)

The areas of rejection and nonrejection are shown in Figure 5.7.

Step 5: Specify the decision rule—The decision rule for the test:

Reject H0 if t > +2.056

or if t < −2.056

Step 6: Reach a decision and state your conclusion
The test statistic value (t-value) for the variable “avg� temp�” (x1) from 
Table 5.4 is −2.36.

Since, t = −2.36 < tcritical = −2.056

We reject the null hypothesis H0 (stated in Equation 5.17) and con-
clude that the variable average temperature (x1) is a significant variable 
and does contribute in the prediction of y.

The significance of other independent variables can be tested in the 
same way. The test statistic or the t-values for all the independent variables 

Figure 5.7 Areas of rejection and nonrejection for the t-test

Reject H0 Reject H0

Do not reject H0

t = –2.056 t = +2.056
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are reported in Table 5.4 under T column. The critical values for testing 
each independent variable are the same as in the test for the first indepen-
dent variable shown earlier. Thus, the critical values for testing the other 
independent variables are:

t t tn ka / , ( ) . , ( ) . , .2 1 0 025 30 3 1 0 025 26 2 056− +[ ] − +[ ]= = = ±

The areas of rejection and nonrejection are the same as in Figure 5.7.

Alternate Way of Testing the Previous Hypothesis

The hypothesis stated using Equation 5.17 can also be tested using the 
p-value approach. The decision rule for the p-value approach is given by:

If p ≥ α, do not reject H0

 If p < α, reject H0  (5.19)

From Table 5.4, the p-value for the variable average temperature (avg. 
temp. x1) is 0.026. Since, p = 0.026 < α = 0.05, we reject H0 and conclude 
that the variable average temperature (x1) is a significant variable.

(i) Test for the other independent variables
The other two independent variables are

 x2 = Size of the house (or House Size)
 x3 = Age of the furnace

It is usually more convenient to test the hypothesis using the p-value 
approach. Table 5.5 provides a summary of the tests using the p-value 
approach for all the three independent variables. The significance level α 
is 0.05 for all the tests. The hypothesis can be stated as:

H0 : bj = 0 (xj is not a significant variable)

H1 : bj ≠ 0 (xj is a significant variable)

where j = 1, 2, … 3 for our example.
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From Table 5.5, it can be seen that all the independent variables are 
significant. This means that all the three independent variables contribute 
in predicting the response variable y, the heating cost.

Note: The preceding method of conducting t-tests on each b parame-
ter in a model is not the best way to determine whether the overall model 
is providing information for the prediction of y. In this method, we need 
to conduct a t-test for each independent variable to determine whether 
the variable is significant. Conducting a series of t-tests increases the like-
lihood of making an error in deciding which variable to retain in the 
model and which one to exclude. For example, suppose we are fitting 
a first-order model like the one in this example with 10 independent 
variables and decided to conduct t-tests on all 10 of the bs. Suppose each 
test is conducted at α = 0.05. This means that there is a 5% chance of 
making a wrong or incorrect decision (type I error—probability of reject-
ing a true null hypothesis) and there is a 95% chance of making a right 
decision. If 10 tests are conducted, the probability of making a correct 
decision drops to approximately 60% [(0.95)10 = 0.599] assuming that 
all the tests are independent of each other. This means that even if all the 
b parameters (except b0) are equal to 0, approximately 40% of the time, 
the null hypothesis will be rejected incorrectly at least once leading to the 
conclusion that b differs from 0. Thus, in the multiple regression models 
where a large number of independent variables are involved and a series 
of t-tests are conducted, there is a chance of including a large number of 
insignificant variables and excluding some useful ones from the model. 
In order to assess the utility of the multiple regression models, we need 
to conduct a test that will include all the b parameters simultaneously. 
Such a test would test the overall significance of the multiple regression 
model. The other useful measure of the utility of the model would be to 

Independent
variable

Av. temp. (x1)

House size (x2)

Age furnace (x3)

p-value from
Table 5.4

0.026

0.000

0.024

Decision Significant?

Yes or no

Yes

Yes

Yes

Reject H0

Reject H0

Reject H0

p <  

p <  

p <  

Compare 
   p to α

α

α

α

Table 5.5 Summary table
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find some statistical quantity such as r2 that measures how well the model 
fits the data.

A Note on Checking the Utility of a Multiple Regression Model 
(Checking the Model Adequacy)
Step 1. To test the overall adequacy of a regression model, first test the 
following null and alternate hypotheses:

H0 : b1 = b2= … = bk = 0 (no relationship)

H1 : at least one of the coefficients is nonzero

(a)  If the null hypothesis is rejected, there is evidence that all the b 
parameters are not zero and the model is adequate. Go to Step 2.

(b)  If the null hypothesis is not rejected then the overall regression 
model is not adequate. In this case, fit another model with more 
independent variables, or consider higher order terms.

Step 2. If the overall model is adequate, conduct t-tests on the b param-
eters of interest, or the parameters considered to be most important in 
the model. Avoid conducting a series of t-tests on the b parameters. It 
will increase the probability of type I error α.

Inferences about the b Parameters

For the heating cost example, we would expect that the heating cost will 
decrease linearly as the average temperature (x1) increases. To confirm 
this, suppose we hypothesize that the heating cost (y) will decrease lin-
early as the average temperature (x1) increases. Use the information in the 
MINITAB regression printout in Table 5.4 to test the hypothesis that the 
mean home heating cost decreases as the average temperature increases 
when the size of the house (x2) and age of the furnace (x3) are held con-
stant, that is, b1 < 0. Use α = 0.05. In this case, we would like to test the 
following hypotheses:

H0 : b1 = 0

 H1 : b1 < 0 
(5.20)
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The test statistic for testing this hypothesis:

 t
b
sb

= 1

1

 (5.21)

The values of b sb1 1
, , and t are reported under the “Regression Analysis” 

(Table 5.4). From this table, these values for the variable x1 or the average 
temperature (avg. temp.) are:

b sb1 1 6457 0 6967
1

= − =. , .

and the test statistic value:

 t
b
sb

= = − = −1

1

1 6457
0 6967

2 36
.

.
.  (5.22)

The critical value for the test is given by:

t n ka , ( )− +1

which is the t-value from the t-table for [n − (k + 1)] DF and α, where n 
is the number of observations (n = 30), k is the number of independent 
variables (k = 3), and α is the level of significance (0.05 in this case). Thus,

t t tn ka , ( ) . , ( ) . , .− +[ ] − +[ ]= = =1 0 05 30 3 1 0 05 26 1 706  (from the t-table)

The areas of rejection and nonrejection are shown in Figure 5.8.
The test statistic value t = −2.36 given by Equation 5.22 falls in the 

rejection region; therefore, we have sufficient evidence to reject H0 and 
conclude that the heating cost (y) decreases as the average temperature 
increases.

Confidence and Prediction Intervals

The confidence and prediction intervals for the multiple regression 
model can be calculated using a computer package. The steps to calculate 
these intervals using MINITAB are similar to that of simple regression. 
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Table 5.6 shows these calculated intervals for our example problem (the 
original data is in Table 5.1 also provided in data file HEAT_COST). 
The intervals are calculated for the given values of the independent vari-
ables x1, x2, and x3. Here we provide a discussion on these intervals. In 
Table 5.6, the Fits are the fitted values or ŷ, and the SEs of fits are the 
standard error of the fits.

Interpreting Confidence Intervals and Prediction Intervals for an 
Individual Observation in Table 5.6

The interpretation of the confidence intervals on the mean response at the 
given values of the independent variables x1, x2, x3 and also the prediction 
intervals at these given values of the independent variables are discussed 
here.

The “Fits” (ŷ) are calculated using the fitted regression equation. The 
regression equation for our example is:

Heating cost =  44.4 − 1.65 Avg. temp. + 57.5 House size  
+ 7.91 Age of furnace or,

 ŷ  = 44.4 – 1.65x1 + 57.5x2 + 7.91x3 (5.23)

Figure 5.8 Rejection region for H0 : b1 = 0 versus H0 : b1 < 0

Do not reject H0

Reject H0

τ = –1.706
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where x1, x2, and x3 are the independent variables. For the first row of the 
data file in Table 5.1, the values are x1 = 37, x2 = 3.0, and x3 = 6.0. Substi-
tuting these values in the fitted regression equation, we get:

ŷ  = 44.4 – 1.65(37) + 57.5(3.0) + 7.91(6) = 203.33

This is the predicted value of y for the given values of the independent 
variables aforementioned. In Table 5.6, the value is reported as the “Fit” 
in the first row and the standard error of the fit (SE Fit) is 6.95 (row 1, 
column 2). The confidence and prediction intervals using these values are 
calculated and reported as 95% CI and 95% PI.

New
Obs  Fit     SE Fit 95% CI            95% PI

1  203.33    6.95  (189.05, 217.61)  (125.31, 281.36)
2  296.04   11.03  (273.37, 318.71)  (216.05, 376.03)
3  158.79   11.45  (135.25, 182.33)  (78.55, 239.02)
4   25.19   16.14 (-7.99,  58.37)  (-58.39, 108.77)
5   90.24   15.48  (58.43, 122.05)  (7.20, 173.28)
6  212.96   11.33  (189.66, 236.25)  (132.79, 293.12)
7  302.75   14.29  (273.36, 332.13)  (220.60, 384.89)
8  320.75   15.08  (289.75, 351.75)  (238.02, 403.48)
9  253.90   15.06  (222.95, 284.85)  (171.19, 336.62)

10  110.28   10.70  (88.29, 132.27)  (30.48, 190.08)
11   92.53   11.48  (68.92, 116.13)  (12.27, 172.78)
12  228.55   13.37  (201.06, 256.04)  (147.07, 310.03)
13  363.30   16.88  (328.61, 398.00)  (279.12, 447.49)
14  313.32   22.19  (267.71, 358.93)  (224.08, 402.56)
15   86.98   13.35  (59.54, 114.41) (5.51, 168.44)
16  306.53   10.82  (284.29, 328.76)  (226.66, 386.39)
17   88.69  14.62  (58.64, 118.74) (6.31, 171.07)
18  228.38   15.31  (196.91, 259.85)  (145.47, 311.29)
19  295.01   10.58  (273.26, 316.75)  (215.28, 374.74)
20  197.39   12.32  (172.07, 222.72)  (116.61, 278.17)
21  205.59   11.32  (182.32, 228.86)  (125.43, 285.75)
22  321.70   16.62  (287.54, 355.86)  (237.73, 405.67)
23  169.76   13.25  (142.53, 196.99)  (88.36, 251.16)
24   52.82   15.07  (21.84,  83.80)  (-29.91, 135.55)
25  182.22   12.89  (155.71, 208.72)  (101.06, 263.37)
26  239.46    8.47  (222.04, 256.87)  (160.80, 318.12)
27  339.93   14.00  (311.15, 368.71)  (258.00, 421.86)
28  344.77   14.74  (314.47, 375.06)  (262.30, 427.24)
29  253.39   13.31  (226.03, 280.75)  (171.95, 334.83)
30  159.47   11.72  (135.37, 183.57)  (79.07, 239.87)

Table 5.6 Confidence and prediction intervals

Note: 95% CI: 95% Confidence Interval 95% PI: 95% Prediction Interval.
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Interpretation of Confidence and Prediction Interval

The confidence and prediction intervals in the first row of Table 5.6 (for 
x1 = 37, x2 = 3.0, and x3 = 6) can be interpreted in the following ways:

• The predicted heating cost (y) is $203.33
• The standard error of the heating cost is estimated to be $6.95
• There is a 95% confidence that the mean heating cost is 

between $189.05 and $217.61, and
• There is a 95% chance that the heating cost for an individual 

home is between $125.31 and $281.36 (this is the prediction 
interval).

Note: The confidence and prediction intervals for the values of the 
independent variables not contained in the original data, or for other 
values of independent variables of interest, may also be calculated by 
MINITAB.

Confidence Interval for Regression Coefficients bi

The confidence intervals for the regression coefficients can be calculated 
using the following expression:

 
b t si n k bi

± − +a / , ( )2 1  (5.24)

where bi are the estimated regression coefficients; t n ka , ( )− +1  is the t-value 
for [n − (k + 1)] DF, where n is the number of observations; k is the num-
ber of independent variables in the model; and sbi

 are the standard devi-
ations of the bis. These confidence intervals are based on the assumption 
that the errors are normally and independently distributed with mean 
zero and variance s2.

Suppose, we wish to obtain a 95% confidence interval for the true 
slope b1 [that is, the effect of the independent variable, average tempera-
ture on the heating cost (y), holding all the other independent variables 
constant]. The required confidence interval using Equation 5.24 can be 
written as:
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 b t sn k b1 2 1 1
± − +a / , ( )  (5.25)

where the values of b1 and sb1
 can be obtained from the computer 

output in Table 5.4. From this table, b1 = −1.6457, sb1
 = 0.6967, and 

t t tn ka / , ( ) . , ( ) . , .2 1 0 025 30 3 1 0 025 26 2 056− + − += = =  (from the t-table). Using 
these values, a 95% confidence interval for b1 is

b t sn k b1 2 1 1

1 6457 2 056 0 6967
1 6457 1 4324
3

±
− ±
− ±
−

− +a / , ( )

. ( . )( . )

. .

.0079 0 21331≤ ≤ −b .

The previous interval means that we are 95% confident that b1 falls 
between −3.08 and −0.21. Since b1 is the slope of the line relating the 
heating cost (y) to the average temperature (x1), we can conclude that 
the heating cost decreases between $0.21 to $3.08 for every one degree 
increase in the average temperature, holding the size of the house (x2) and 
the age of the furnace (x3) constant.

In a similar way, we can find a 95% confidence interval for the true 
slope b3 or, the effect of the variable “age of furnace,” on the heating cost 
(y) holding the other predictors constant.

From Table 5.4, b3 = 7.908, sb3 = 3.294, and

t t tn ka / , ( ) . , ( ) . , .2 1 0 025 30 3 1 0 025 26 2 056− + − += = =  (from the t-table).

Therefore, a 95% confidence interval for b3 is:

b t sn k b3 2 1

3

3

7 908 2 056 3 294
7 908 6 772
1 136

±
±
±
≤ ≤

− +a / , ( )

. ( . )( . )

. .
. b 114 68.

Thus, we are 95% confident that b3 falls between 1.14 and 14.68. 
Since b3 is the slope relating the heating cost (y) to the age of furnace 
(x3), we can conclude that the heating cost increases between $1.14 and 
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$14.68 for every one year increase in the age of the furnace, holding the 
average temperature (x1) and the size of the house (x2) constant.

Multicollinearity and Autocorrelation in Multiple Regression

Multicollinearity is a measure of correlation among the predictors in a 
regression model. Multicollinearity exists when two or more independent 
variables in the regression model are correlated with each other. In prac-
tice, it is not unusual to see correlations among the independent variables. 
However, if serious multicollinearity is present, it may cause problems by 
increasing the variance of the regression coefficients and making them 
unstable and difficult to interpret. Also, highly correlated independent 
variables increase the likelihood of rounding errors in the calculation of 
b estimates and standard errors. In the presence of multicollinearity, the 
regression results may be misleading.

Effects of Multicollinearity

 a. Consider a regression model where the production cost (y) is related 
to three independent variables: machine hours (x1), material cost 
(x2), and labor hours (x3):

y = b0 + b1x1+ b2x2 + b3x3

  MINITAB computer output for this model is shown in Table 5.5. 
If we perform t-tests for testing b1, b2, and b3, we find that all the 
three independent variables are nonsignificant at α = 0.05 while 
the F-test for H0 : b1 = b2 = b3 = 0 is significant (see the p-value in  
the Analysis of Variance results shown in Table 5.7). The results are 
contradictory but, in fact, they are not. The tests on individual bi 
parameters indicate that the contribution of one variable, say x1 = 
machine hours is not significant after the effects of x2 = material cost, 
and x3 = labor hours have been accounted for. However, the result 
of the F-test indicates that at least one of the three variables is sig-
nificant, or is making a contribution to the prediction of response y.  



 MULtIPLE REGRESSION: COMPUtER ANALYSIS 115

It is also possible that at least two or all the three variables are con-
tributing to the prediction of y. Here, the contribution of one vari-
able is overlapping with that of the other variable or variables. This is 
because of the multicollinearity effect.

 b. Multicollinearity may also have an effect on the signs of the parameter 
estimates. For example, refer to the regression equation in Table 5.7. 
In this model, the production cost (y) is related to the three explana-
tory variables: machine hours (x1), material cost (x2), and labor hours 
(x3). If we check the effect of the variable machine hours (x1), the 
regression model indicates that for each unit increase in machine 
hour, the production cost (y) decreases when the other two factors 
are held constant. However, we would expect the production cost (y) 
to increase as more machine hours are used. This may be due to the 
presence of multicollinearity. Because of the presence of multicol-
linearity, the value of a b parameter may have the opposite sign from 
what is expected.

One way of avoiding multicollinearity in regression is to conduct 
design of experiments and select the levels of factors in a way that the 
levels are uncorrelated. This may not be possible in many situations. It 
is not unusual to have correlated independent variables; therefore, it is 

Table 5.7 Regression analysis: PROD COST versus MACHINE 
HOURS, MATERIAL COST, and LABOR Hours

Regression a nalysis: PROD COST versus MACHINE HOURS, MATERIAL COST,…
The regression equation is
PROD COST = -336 - 0.897 MACHINE HOURS + 0.825 MATERIAL COST

+ 0.271 LABOR HOURS

Predictor            Coef  SE Coef      T P VIF
Constant           -335.5    159.9  -2.10  0.044
MACHINE HOURS     -0.8973   0.8087  -1.11 0.276  24.239
MATERIAL COST      0.8247   0.4676   1.76  0.088  14.064
LABOR HOURS        0.2707   0.2276   1.19  0.243  10.846

S = 101.674   R-Sq = 45.6%   R-Sq(adj) = 40.4%

Analysis of Variance
Source          DF SS MS F P
Regression       3  269,108  89,703  8.68  0.000
Residual error  31  320,465  10,338
Total           34  589,573
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important to detect the presence of multicollinearity to make the neces-
sary modifications in the regression analysis.

Detecting Multicollinearity

Several methods are used to detect the presence of multicollinearity in 
regression. We will discuss two of them.

1. Detecting multicollinearity using variance inflation factor (VIF): 
MINITAB provides an option to calculate VIFs for each predic-
tor variable that measures how much the variance of the estimated 
regression coefficients are inflated as compared to when the predictor 
variables are not linearly related. Use the guidelines in Table 5.8 to 
interpret the VIF.

   VIF values greater than 10 may indicate that multicollinearity 
is unduly influencing your regression results. In this case, you may 
want to reduce multicollinearity by removing unimportant indepen-
dent variables from your model.

   For comparison, refer to Table 5.8 for the values of VIF for the 
production cost example. The VIF value for each predictor has a 
value greater than 10 indicating the precedence of multicollinearity. 
The VIF values indicate that the predictors are highly correlated. The 
VIF for each of the independent variables is calculated automati-
cally when a multiple regression model is run using the MINITAB 
instruction in Appendix A_Table A.13�

 2. Detecting multicollinearity by calculating coefficient of 
 correlation r

  A simple way of determining multicollinearity is to calculate the 
coefficient of correlation r between each pair of predictor or inde-
pendent variables in the model. The degree of multicollinearity 

Table 5.8 Detecting correlation using VIF values

Values of VIF Predictors are…

VIF =1 Not correlated

1 < VIF < 5 Moderately correlated

VIF = 5 to10 or greater Highly correlated
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depends on the magnitude of the value of r. Use Table 5.9 as a guide 
to determine the multicollinearity.

Table 5.10 shows the correlation coefficient r between each pair of 
predictors for the production cost example.

The values of r in Table 5.10 show that the variables are highly cor-
related. The instructions to calculate the correlation coefficient matrix can 
be found in Appendix A_Table A.14.

Table 5.9 Determining multicollinearity using correlation 
coefficient, r

Extreme multicollinearity

Moderate multicollinearity

Low multicollinearity

|r| ≥ 0.8

Correlation coefficient, r

0.2 ≤ |r| < 0.8

|r| < 0.2

Table 5.10 Correlation coefficient between pairs of variable

Correlations: MACHINE HOURS, MATERIAL COST, LABOR HOURS   

MACHINE HOURS     MATERIAL COST(y)
MATERIAL COST          0.964
LABOR HOURS            0.953             0.917
Cell contents: Pearson correlation

Example 5.1

A pharmaceutical company is concerned about declining sales of one 
of its drugs. The drug was introduced in the market approximately 
two-and-a half years ago. In recent few months, the sales of this prod-
uct is in constant decline and the company is concerned about losing 
its market share as it is one of the major drugs the company markets. 
The head of the sales and marketing department wants to investigate 
the possible causes and evaluate some strategies to boost the sales. He 
would like to build a regression model of the sales volume and several 
independent variables believed to be strongly related to the sales. A mul-
tiple regression model will help the company to determine the import-
ant variables and also predict the future sales volume. The marketing 
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director believes that the sales volume is directly related to three major 
factors: dollars spent on advertisement, commission paid to the sales-
persons, and the number of salespersons deployed for marketing this 
drug. The data on these independent variables were obtained from 
the company records and are shown in Table 5.11. The data can also 
be obtained from data file: SALES_VOLUME. The instructions to 
run the multiple regression model using Excel and MINITAB can be 
found in Appendix A.

The variables in the study are: Sales volume (y) in thousands of 
dollars, advertisement dollars spent (x1) in hundreds of dollars, com-
mission paid to the salespersons (x2) in hundreds of dollars, numbers 
of sales persons (x3).

A side-by-side scatterplots of y—the sales volume and each of the 
independent variables: x1—the advertisement dollars spent, x2—the 
commission paid to the salespersons, and x3—the number of salesper-
sons is shown in Figure 5.9. The regression outputs relating y and x1, 
x2, x3 are shown in Tables 5.12 and 5.13.

Table 5.11 Sales data for a pharmaceutical company

Sales                                            No. of
Row  volume 

(y)
  Advertisement  Commission     salespersons

(x1)          (x )2 (x )3
1      973.62           580.17          235.48                8
2       903.12            414.67          240.78                7
3     1,067.37            420.48          276.07               10
4     1,193.37            454.59          295.70               14
5     1,429.62            524.05          286.67               16
6     1,557.87            623.77          325.66               18
7     1,590.12            641.89          298.82               17
8     1,081.62            453.03          310.19             12
9     1,088.37            495.76          242.91               13
10     1,132.62            506.73          275.88               11
11     1,314.87            490.35          337.14               15
12     1,562.37            624.24          266.30               19
13     1,050.12            459.56          240.13               10
14     1,055.37            447.03          254.18               12
15     1,112.37            493.96          237.49               14
16     1,235.37            543.84          276.70               16
17     1,518.12            618.38          271.14               18
18     1,574.37            620.50          281.94               15
19     1,644.87            591.27          316.75               20
20     1,169.37            530.73          297.37               10
21     1,212.87            541.34          272.77               13
22     1,304.37            492.20          314.35               11
23     1,477.62            546.34          295.53              15
24     1,593.87            590.02          293.79               19
25     1,134.87            505.32          277.05               11
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Refer to the side-by-side scatterplots in Figure 5.9, the MINITAB 
regression outputs in Table 5.12, the Excel output in Table 5.13, and 
answer the following questions.

Figure 5.9 Side-by-side scatterplots of y versus x1, x2, x3
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Table 5.12 MINITAB regression output
Regression analysis: Sales volume versus advertisement, commission, no. of salespersons
The regression equation is
Sales volume (y) = -407 + 1.32 Advertisement(x1) + 1.94

Commission(x2)+ 32.4 No. of salespersons(x3)

Predictor                 Coef  SE Coef      T      P
Constant      -407.4    191.8  -2.12  0.046
Advertisement(x1)        1.3191   0.3072   4.29  0.000
Commission(x2)          1.9357   0.5908   3.28  0.004
No. of salespersons(x3)  32.404    6.398   5.06  0.000

S = 72.9022   R-Sq = 91.1%   R-Sq(adj) = 89.8%

Analysis of Variance
Source          DF       SS      MS      F      P
Regression       3  1,137,364  379,121  71.33  0.000
Residual error  21   111,609    5,315
Total           24  1,248,974

Source                  DF  Seq SS
Advertisement(x1)         1  816,537
Commission(x2)           1  184,515
No. of salespersons(x3)   1  136,313
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 a. Interpret the scatterplots. Do you think a multiple linear model 
of the first order is appropriate for this data?

 b. Refer to the MINITAB output or the Excel regression output and 
write the regression equation.

 c. Interpret the meaning of the regression equation in part (b).
 d. Use the MINITAB or Excel regression output to test the hypoth-

esis that each of the independent variables: advertisement, com-
mission paid, and the number of salespersons is significant. Use a 
5% level of significance. What conclusion can be drawn from the 
results of these tests?

 e. Refer to the MINITAB or Excel output. What percent of vari-
ation in sales volume has been explained by the regression? or 
What is the coefficient of determination? What is adjusted r2? 
Interpret the meanings of r2 and r2-adjusted.

 f. Conduct the F-test for the overall significance of the regression 
using the “Analysis of Variance” or the ANOVA table in either 
regression output table. Use a 5% level of significance. What con-
clusion can be drawn from the result of F-test for overall fit?

 g. What are the values of residuals or the errors? Create the resid-
ual plots to check the adequacy of this regression model. Check 
whether all the assumptions of regression are satisfied using the 
residual plots.

Table 5.13 Excel regression output
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Solution:

 a. The side-by-side scatterplots shown in Figure 5.9 can be used to 
examine the bivariate relationships between y and x1, y and x2, and 
y and x3. All the independent variables: advertisement (x1), com-
mission paid (x2), and number of salespersons (x3) appear to have 
strong linear relationship with the sales volume (y). It is evident 
that a first-order multiple linear regression model of the form:

y = b0 + b1x1 + b2x2 + b3x3

  will provide a good fit to the data and can be used to predict the 
sales volume (y).

 b. From the MINITAB regression output in Table 5.12, the regres-
sion equation is:

 Sales volume (y) =  −407 + 1.32 advertisement (x1) + 1.94 com-
mission (x2) + 32.4 no. of salespersons (x3)

 or  ŷ  = –407 + 1.32x1 + 1.94x2 + 32.4x3

  The regression equation can also be obtained from the Excel 
regression output in Table 5.13. In this table, refer to the column 
“coefficients,” which has the same values as obtained in the preced-
ing regression equation.

 c. The regression equation in part (b) is interpreted as an estimate of 
mean sales volume and can be interpreted in the following way.

  The sales volume y is an estimate of a given level of advertisement 
dollars, commission paid, and number of sales persons. To be spe-
cific, the regression equation tells that for each unit increase in 
advertisement dollars (or each $100 increase), the sales volume 
goes up by 1.32 ($1,320) when the other variables are held con-
stant. The other variables can be interpreted in a similar way. It is 
clear that for each unit increase in commissions paid while keeping 
the other variables constant; and for each increase in  salesperson 
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while keeping the advertisement and commissions fixed, the sales 
volume increases by $1,940 and $32,400, respectively.

 d. The first hypothesis is to test whether the variable advertising dol-
lars (x1) is significant. This test is explained as follows.

Steps for testing the significance of the first variable, advertising 
 dollars (x1).

Step 1: The null and alternate hypotheses are:

H0 : b1 = 0

H1 : b1 ≠ 0

where b1 is the coefficient of “Advertisement.”

Step 2: Specify the test statistic value (from the T column of MINITAB 
computer output or t-statistic from the Excel output)
The test statistic value, t for advertisement is 4.29. Therefore,

Test statistic value = 4.29

Step 3: Determine the critical values for the test:

t tn ka / , . , .2 1 0 025 21 2 080− − = = ±

where n = number of observations, k = number of independent vari-
ables; therefore, t t tn ka / , . , . , .2 1 0 025 25 3 1 0 025 21 2 080− − − −= = = ± , which is the 
t-value with 21 DF for a two-tailed test with a 5% level of significance.

Step 4: Specify the decision rule for the test

Reject H0 if t > 2.080
or if t < −2.080

Step 5: Make a decision and state your conclusion
Decision: Since t = 4.29 is greater than the critical value 2.080; therefore, 
reject H0.
Conclusion: Advertisement is a significant variable and can contribute in 
predicting the sales volume.
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Method 2: Use the p-value approach to test the hypothesis
Decision rule: If p ≥ α, do not reject H0

If p < α, reject H0

The p-value for advertisement can be read from either the computer out-
put, MINITAB, or Excel (Table 5.12 or 5.13). This value is

p = 0.000

Since p = 0.000 < α	= 0.05; reject H0.

Test for the significance of the second variable, commission paid (x2)
We test the following hypotheses:

H0 : b2 = 0

H1 : b2 ≠ 0

where b2 is the coefficient of “Commission.”

Use the p-value approach to test the hypothesis using the following 
decision rule:
Decision rule: If p ≥ α, do not reject H0.
 If p < α, reject H0.

The p-value for the variable commission can be read from either the 
MINITAB or Excel table. This value is 0.004 or,

p = 0.004

Since p = 0.000 < α	= 0.05, therefore, reject H0.
Conclusion: Commission is a significant variable and is related to the 
sales volume.
Test for the significance of the third variable, number of salespersons 
(x3)
Test the hypotheses:

H0 : b3 = 0

H1 : b3 ≠ 0

where b3 is the coefficient of “number of salespersons.”
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Using the p-value approach, the decision rule can be written as:

If p ≥ α, do not reject H0

If p < α, reject H0

The p-value for number of salespersons from the computer output:
p = 0.000

Since p = 0.000 < α	= 0.05, therefore, reject H0.
Conclusion: Number of salespersons is a significant variable and is related 
to the sales volume.
 e. From the MINITAB Regression output Table 5.12 or the Excel out-

put Table 5.13, the r2 value is 91.1% or

r2 = 91.1% (or, 0.911)

This means that approximately 91% of the variation in the sales vol-
ume (y) has been explained by the regression. In other words, the model 
explains 91.1% of the variation. The unexplained or the variation due to 
the error is 8.9%. Note that the closer r2 is to 1.0 or 100%, the stronger 
is the model.
The adjusted r2

The adjusted r2 is the coefficient of multiple determination adjusted for 
the independent or predictor variables and the sample size. This value is 
calculated using Equation 5.11 outlined earlier. The R2-adjusted is given 
by:

 r adj R
n

n k
2 21 1

1
1

− = − − −
− −







( )
( )

 (5.26)

where r2 is the coefficient of multiple determination, n is the number 
of observations or the sample size, and k is the number of independent 
variables in the model. For our example problem, r2 = 91.1%, n = 25, and  
k = 3. Substituting these values in Equation 5.26, we get:

r adj2 1 1 0 911
25 1

25 3 1
0 898− = − − −

− −






=( . )
( )

.
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This value can be read from either computer output Table 5.12 or 
5.13. The reported value in the MINITAB computer printout is:

R-Sq(adj.) = 89.8%

This value of adjusted r2 is used in comparing two regression models 
that have the same response variable but different numbers of indepen-
dent or predictor variables. The adjusted r2 value of 89.8% means that 
89.8% of the variability in the sales volume y can be explained by this 
model, which is adjusted for the number of predictor variables k and the 
sample size n.
 f.  The hypotheses for the F-test for overall fit of the regression is:

H0 : b1 = b2 = b3 = 0

H1 : at least one of the coefficients (bi) is not equal to zero.
Method 1
This test is done using the ANOVA table in the regression output of 
MINITAB or Excel. The ANOVA table from the Excel is reproduced in 
Table 5.14.

The critical value for the test can be obtained from the F-table.
The critical value:

F Fk n k, , , , . .− − = =1 5 21 0 05 3 07a (from the F-table)

The test statistic value:

F = 71.33 (from the ANOVA table)

Table 5.14 The ANOVA table reproduced from the Excel 
regression output

df
Regression 3 1137364.34 379121.45 71.33 0.00

5314.73111609.40
1248973.74

21
24

Residual
Total

SS MS F F
Significance
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Decision rule:

Reject H0 if F > Fcritical = 3.07

Decision:
 Since F = 71.33 > Fcritical = 3.07, reject H0 (the regression overall is 
significant).

Method 2
Use the p-value approach.

Decision rule: If p ≥ α, do not reject H0

 If p < α, reject H0

The p-value from the ANOVA table shown previously is 0.000.
(Reported as Significance F-value in the Excel output previously.)
Since, p = 0.000 < α	= 0.05, reject H0.

Conclusion from the F-test:
From the F-test, we can draw conclusion regarding the overall signifi-
cance of regression that at least one of the coefficients (b1, b2, b3) is not 
equal to zero. This means that at least one of the variables (x1, x2, x3) is 
important in explaining the variation in the sales volume (y).
 g. Residuals:

A residual is the difference between the actual y value and the corre-
sponding estimated value ŷ for a given value of x, or the residual:

e = (yi – ŷ)

Table 5.15 shows the calculated residuals for the data of this problem 
(see Table 5.11 for the actual data). We have explained the calculation of 
residual for the first data value (refer to the first row of Table 5.15 that 
shows residual (RESI)). The residuals for other data values are calculated 
in a similar way.

Sample calculation of residual: Refer to the underlined row in 
Table 5.15.

The columns labeled y and x1, x2, x3 are the actual data values. The 
estimated regression equation determined earlier for this problem is:

ŷ  = –407 + 1.32x1 + 1.94x2 + 32.4x3
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This equation can be used to calculate the estimated (predicted) value 
of y when x1 = 580.17, x2 = 235.48, and x3 = 8.

ŷ  = –407 + 1.32(580.17) + 1.94(235.48) + 32.4(8) = 1072.99

This value is reported under the “FITS” column. This value is com-
monly referred to as ŷ. The residual for this data value is the difference 
between the actual y value and the corresponding estimated value ŷ or

e = (yi – ŷ) = 973.62 – 1072.99 = – 99.369

This is the residual or the error for the first value reported under the 
“RESI” column. The residual for other values are calculated in a similar 
way.

Residual Analysis
Figure 5.10 shows the residual plots for this regression model. The plots 
are created using MINITAB and are explained as follows.

Table 5.15 Residuals for the pharmaceutical company data

1      973.62            580.17          235.48         8  1,072.99   −99.369
2      903.12            414.67        240.78         7   832.52    70.595
3     1,067.37            420.48          276.07        10  1,005.71    61.659
4     1,193.37            454.59          295.70        14  1,218.32   −24.949
5     1,429.62            524.05          286.67        16  1,357.28    72.344
6     1,557.87            623.77          325.66        18  1,629.10   −71.231
7     1,590.12            641.89          298.82        17  1,568.65    21.473
8     1,081.62            453.03          310.19        12  1,179.50   −97.882
9     1,088.37            495.76          242.91        13  1,138.04   −49.670
10    1,132.62            506.73          275.88        11  1,151.52   −18.903
11    1,314.87            490.35          337.14        15  1,378.11   −63.241
12    1,562.37     624.24          266.30        19  1,547.22    15.148
13    1,050.12            459.56          240.13        10   987.69    62.425
14    1,055.37            447.03          254.18        12  1,063.17    −7.799
15    1,112.37            493.96       237.49        14  1,157.58   −45.208
16    1,235.37            543.84          276.70        16  1,364.08  −128.713
17    1,518.12            618.38          271.14        18  1,516.46     1.663
18    1,574.37            620.50          281.94        15 1,442.95   131.422
19    1,644.87            591.27          316.75        20  1,633.79    11.081
20    1,169.37            530.73          297.37        10  1,192.38   −23.007
21    1,212.87            541.34          272.77        13  1,255.97   −43.097
22    1,304.37            492.20          314.35        11  1,206.82    97.548
23    1,477.62            546.34          295.53        15  1,371.43   106.194
24    1,593.87            590.02          293.79        19  1,555.29    38.577
25    1,134.87   505.32          277.05        11  1,151.93   −17.058
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Figure 5.10(a)—the four plots under residual plots show the normal 
probability plot of residuals, plot of residuals versus Fits, histogram of 
residuals, and residuals versus the order of the data. Figure 5.10(b), (c), 
and (d) are the plots of residuals versus each of the independent variables.

The assumptions of regression can be checked using the plot of resid-
uals. The regression analysis is based on the following assumptions:

(a) Linearity
(b) Normality assumption
(c) Independence of errors
(d) Equal variance

Checking the Linearity Assumption

The linearity assumption means that the relationship between y and the 
independent variables is linear. To evaluate the linearity assumption, the 
plot of residuals versus the independent variable x is used. If the linear 
model is appropriate for the data, there will be no apparent pattern visi-
ble on the plots of residuals and each of the independent variables. If the 
relationship between x and y is not linear, the residual plot will show a 
relationship (pattern) between the xi values and the residuals, ei.

Figure 5.10 Residual plots for the pharmaceutical company data
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Refer to the plots in Figure 5.10(b), (c), and (d). These are the plots 
of residuals versus each of the independent variables: advertisement (x1), 
commission paid (x2), and number of salespersons (x3). None of these 
plots show any pattern indicating that the linearity assumption holds.

Checking the Normality Assumption

The normality assumption requires that the errors have a normal or 
approximately normal distribution. This can be checked in several ways, 
such as, by constructing (1) a histogram of residuals, (2) a box plot, or 
(3) a normal probability plot of residuals. Refer to the normal probability 
plot and also the histogram of residuals in Figure 5.10(a). The plotted 
points in the normal probability plot fall close to the straight line. Also, 
the histogram of residuals shows an approximate symmetrical pattern. 
These two plots indicate that the residuals have approximately normal 
distribution and the normality assumption is not violated.

Checking the Independence of Errors Assumption

The independence of errors can be checked by plotting the errors or the 
residuals in the order or sequence in which the data were collected. 
The plot of residuals versus the order of data should show no pattern or 
apparent relationship (e.g., an increasing or decreasing trend) between the 
 consecutive residuals. The plot of residuals versus order in Figure 5.10(a) 
shows the residuals plotted in the sequence in which the data were 
 collected. This plot is random and does not show any pattern, which is an 
indication that the errors or the residuals are independent.

Checking the Equality of Variance Assumption

The equality of variance assumption requires that the errors are constant 
for all values of x or the variability of y values is the same for both the low 
and high values of x. This can be checked by plotting the residuals with 
x values. In cases where the equality of variance assumption is violated, 
the plot of residuals versus the x values would show a plot similar to 
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 Figure 5.11. This plot shows that the variability of the residuals increases 
as x increases. This demonstrates a lack of homogeneity in the variances 
of y values at each level of x.

Conclusion: None of the plots indicate the violation of any assump-
tions on which the regression model is based. The residual analysis shows 
that the model is adequate.

Summary

This chapter extended the concept of the simple linear regression model 
and provided an in-depth analysis of the multiple regression model—one 
of the most widely used prediction techniques used in data analysis and 
decision making. We explored the multiple regression model to estab-
lish the relationship between a response variable, and two or more inde-
pendent variables or the predictors. The chapter outlined the difference 
between the simple and multiple regression models, provided an in-depth 
analysis of multiple regression model using computer software. The high-
light of this chapter is the computer analysis and interpretation of mul-
tiple regression models. Several examples of matrix plots were presented. 
These plots are helpful in the initial stages of model building. Using the 
computer results, the following key features of multiple regression model 
were explained: (a) the multiple regression equation and its interpreta-
tion; (b) the standard error of the estimate—a measure used to check 
the utility of the model and to provide a measure of reliability of the 

Figure 5.11 Plot of residuals versus x values showing a violation of 
equal variance assumption
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prediction made from the model; (c) the coefficient of multiple determi-
nation r2 that explains the variability in the response y, explained by the 
independent variables used in the model; and (d) the adjusted-r2. Besides 
these, we discussed the hypothesis tests using the computer results. Step-
wise instructions were provided to conduct the F-test and t-tests. The 
overall significance of the regression model is tested using the F-test. The 
t-test is conducted on individual predictor or the independent variable 
to determine the significance of that variable. Both these tests were con-
ducted using computer results.

Using the computer software, we also demonstrated the computation 
of confidence and prediction intervals for the given values of the indepen-
dent variables x1, x2, and x3 and provided interpretation of these intervals. 
The effect of multicollinearity and detection of multicollinearity using 
computer was discussed with examples. Finally, a detailed analysis of mul-
tiple regression model was presented. Residual analysis was presented to 
check whether the assumptions of regression were satisfied.





CHAPTER 6

Model Building and 
Computer Analysis

Introduction to Model Building

In the previous chapters, we discussed simple and multiple regression 
where we provided detailed analysis of these techniques including the 
analysis and interpretation of computer results. In both the simple and 
multiple regression models, the relationship among the variables is linear. 
In this chapter we provide an introduction to model building and nonlin-
ear regression models. By model building, we mean selecting the model 
that will provide a good fit to a set of data, and the one that will provide 
a good estimate of the response or the dependent variable y that is related 
to independent variables or factors x1, x2, …, xn. It is important to choose 
the right model for the data.

In regression analysis, the dependent or the response variable is usu-
ally quantitative. The independent variables may be either quantitative or 
qualitative. The quantitative variable is one that assumes numerical values 
or can be expressed as numbers. The qualitative variable may not assume 
numerical values.

In experimental situations we often encounter both the quantitative 
and qualitative variables. In the model building examples, we will show 
later how to deal with qualitative independent variables.

Model with a Single Quantitative Independent Variable

The models relating the dependent variable y to a single quantitative inde-
pendent variable x are derived from the polynomial of the form:

 y = b0 + b1x + b2x
2 + b3x

3 +…+ bnx
n (6.1)
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In Equation 6.1, n is an integer and b0, b1, …, bn are unknown param-
eters that must be estimated.

(a) First-order model
The first-order model is given by:

y = b0 + b1x
or
 y = b0 + b1x1 + b2x2 + b3x3 +…+ bnxn (6.2)

where b0 = y-intercept, bi = regression coefficients.

(b) Second-order model
A second-order model can be written as:

 y = b0 + b1x + b2x
2
 (6.3)

Equation 6.3 is a parabola in which:
b0 = y-intercept, b1 = a change in the value of b1 shifts the parabola to the 
left or right; increasing the value of b1 causes the parabola to shift to the 
left, b2 = rate of curvature.

The second-order model is a parabola. If b2 > 0 the parabola opens up; 
if b2 < 0, the parabola opens down. The two cases are shown in Figure 6.1.

(c) Third-order model
A third-order model can be written as:

 y = b0 + b1x + b2x
2 + b3x

3
  (6.4)

y

x

b2 < 0

b2 > 0b0

Figure 6.1 The second-order model
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b0 : y-intercept and b3 : controls the rate of reversal of the curvature of 
curve.

A second-order model has no reversal in curvature. In a second-order 
model, the y value either continues to increase or decrease as x increases 
and produces either a trough or a peak. A third-order model produces one 
reversal in curvature and produces one peak and one trough. Reversals 
in curvature are not very common but can be modeled using third- or 
higher order polynomial. The graph of an nth-order polynomial contains 
(n − 1) peaks and troughs. Figure 6.2 shows the graph of a third-order 
polynomial. In real-world situation, the second-order model is perhaps 
the most useful.

Figure 6.2 The third-order model

y

b3 > 0

b3 < 0

x

Example 6.1: A Quadratic (Second-Order) Model

The life of an electronic component is believed to be related to the 
temperature in the operating environment. Table 6.1 shows 25 obser-
vations (Data File: COMP_LIFE) that show the life of the compo-
nents (in hours) and the corresponding operating temperature (in °F). 
We would like to fit a model to predict the life of the component. In 
this case, the life of the component is the dependent variable (y) and 
the operating temperature is the independent variable (x).

Figure 6.3 shows the scatterplot of the data in Table 6.1. From the 
scatterplot, we can see that the data can be well approximated by a 
quadratic model.
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Obs x (Temp.) y (Life)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

99
101
100
113
72
93
94
89
95

111
72
76

105
84

102
103
92
81
73
97

105
90
94
79
91

141.0
136.7
145.7
194.3
101.5
121.4
123.5
118.4
137.0
183.2
106.6
97.5

156.9
111.2
158.2
155.1
119.7
105.9
101.3
140.1
148.6
116.4
121.5
108.9
110.1

Table 6.1 Life of electronic components

Figure 6.3 Scatterplot of life (y) versus operating temp. (x)
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Second-Order Model Using MINITAB

A second-order model was fitted using MINITAB. The regression output 
of the model is shown in Table 6.3.

A quadratic model in MINITAB can also be run using the fitted 
line plot option. The results of the quadratic model using this option 
provide a fitted line plot (shown in Figure 6.4). The regression output 
using the fitted line option is slightly different from the conventional 
regression model. Table 6.3 shows the regression output using the fitted 
line option plot in MINITAB. Note that the regression output using 
the conventional regression model shown in Table 6.2 shows more 
details.

Results for: QUADMOD.MTW
Regression Analysis: Life (y) versus Temp. (x), x*x

The regression equation is
Life (y) = 433 - 8.89 Temp. (x) + 0.0598 x*x

Predictor      Coef   SE Coef      T      P
Constant     433.01     61.84   7.00  0.000
Temp. (x)    −8.891     1.374  −6.47  0.000
x*x 0.059823  0.007549   7.93  0.000

S = 5.37620   R-Sq = 95.9%   R-Sq(adj) = 95.6%

Analysis of Variance
Source          DF       SS      MS       F      P
Regression       2  15,011.8  7,505.9  259.69  0.000
Residual Error  22     635.9     28.9
Total           24  15,647.7

Table 6.2 Computer results of second-order model

We used MINITAB and Excel to fit a second-order model to 
the data. The instructions for running the second-order model using 
MINITAB are provided in Appendix A_Table A.15. The analysis of 
the computer results is presented in Table 6.2.
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While running the quadratic model, the data values and residuals can 
also be stored. Table 6.4 shows the actual data and residuals. The plots of 
residuals are explained in the next section.

Figure 6.4 Regression plot with equation

Fitted line plot
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Polynomial Regression Analysis: y versus x

The regression equation is

y = 433 − 8.891 x + 0.05982 x^2                                     

S = 5.37620      R-Sq = 95.9%      R-Sq(adj) = 95.6%

Analysis of Variance

Source            DF          SS          MS         F      P
Regression         2    15,011.8    7,505.89   259.687  0.000
Error             22       635.9       28.90
Total             24    15,647.7                            

Source      DF      Seq SS          F      P
Linear       1    13,196.4    123.821  0.000
Quadratic    1     1,815.4     62.808  0.000

Table 6.3 Regression analysis table
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Residual Plots for the Example 6.1 Using MINITAB

Figure 6.5 shows the residual plots for this quadratic model. The residual 
plots are useful in checking the assumptions of the model and the model 
adequacy.

The analysis of residual plots for this model is similar to that of simple 
and multiple regression models. The investigation of the plots shows that 
the normality assumption is met. The plot of residuals versus the fitted 
values shows a random pattern indicating that the quadratic model fitted 
to the data is adequate.

Table 6.4 Data with stored residuals and fitted values

Row      x y RESI1     FITS1     COEF1

1     99   141.0    1.8501   139.150   433.006
2    101   136.7   −8.5977   145.298    −8.891
3    100   145.7    3.5361   142.164     0.060
4    113   194.3    2.0650   192.235          
5     72   101.5   −1.4959   102.996          
6     93   121.4   −2.1779   123.578          
7     94   123.5   −2.3741   125.874          
8     89   118.4    2.8105   115.590          
9     95   137.0    8.7100   128.290          
10    111   183.2   −0.0156   183.216          
11     72   106.6    3.6041   102.996          
12     76    97.5   −5.3483   102.848          
13    105   156.9   −2.1291   159.029          
14     84   111.2    2.9039   108.296          
15    102   158.2    9.6489   148.551          
16    103   155.1    3.1759   151.924          
17     92   119.7   −1.7013   121.401          
18     81   105.9    0.5442   105.356          
19     73   101.3   −1.4795   102.780          
20     97   140.1    6.6194  133.481          
21    105   148.6  −10.4291   159.029          
22     90   116.4   −1.0072   117.407          
23     94   121.5   −4.3741   125.874          
24     79   108.9    4.9061   103.994          

25 91   110.1   −9.2444    119.344
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Running a Second-Order Model Using Excel

Unlike MINITAB, Excel does not provide an option to run a quadratic 
model of the form:

y = b0 + b1x + b2x
2

However, we can run a quadratic regression model by calculating the 
x2 column from the x column in the data file. To run the quadratic regres-
sion model, enter the data from Table 6.1 in columns A and B of Excel 
worksheet, where column A contains the response variable y and column 
B contains the predictor or the x variable. Next, create the x2 column by 
typing the following expression in cell C2: = B2*B2 and copying this 
formula into the cells C3 to C26. This will create the x2 column. Label 
column C with x**2. Part of the data file is shown in Table 6.5.

Once the data file is created, follow the steps in Table 6.6 to run the 
quadratic model. The data are shown in the file: COMP_LIFE and also 
in Table 6.1 shown earlier.

The Excel computer results are shown in Table 6.7.

Figure 6.5 Residual plots for the quadratic model example
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Table 6.5 Part of Excel data file

Table 6.6 Steps for quadratic regression in Excel

1. Click on the Data tab.
2. Click Data Analysis.
3. Select Regression. 
4. Select Life (y) for Input y range and the other two columns x, and x**2 for the input x
    range (make sure to select the first row or the row with the labels).

5. Check the Labels box. 
6. Click on the circle next to Output Range, click on the box (cell)next to output range
    and specify where you want to store the output by clicking a blank cell in the
    worksheet. 

7. You may check the boxes under residuals and normal probability plot as desired.
8. Click OK.

Table 6.7 Excel computer output for the quadratic model
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Analysis of Computer Results of Tables 6.3 and 6.7

Refer to MINITAB output in Table 6.3 or the Excel computer output in 
Table 6.7. The prediction equation from either table can be written using 
the coefficients column. The equation is:

ŷ = 433 − 8.89x + 0.0598x2

In the Excel output, the prediction equation can be read from the 
“coefficients” column.

The r 2 value is 95.9%, which is an indication of a strong model. It 
indicates that 95.9% of the variation in y can be explained by the vari-
ation in x and 4.1% of the variation is unexplained or due to error. The 
equation can be used to predict the life of the components at a specified 
temperature.

We can also test a hypothesis to determine if the second-order term in 
our model, in fact, contributes to the prediction of y. The null and alternate 
hypotheses to be tested for this can be expressed as:

H0 : b2
 = 0

 H1 : b2
 ≠ 0 

(6.5) 

The test statistic for this test is given by

t
b
sb

= 2

2

The test statistic value is calculated by the computer and is shown in 
Table 6.7. In this table, the t-value is reported in x**2 row and under t-stat 
column. This value is 7.93. Thus,

t
b
sb

= =2

2

7 93.

The critical value for the test is

tn − k	− 1,α/2	=	t22,0.025 = 2.074



 MODEL BUILDING AND COMPUtER ANALYSIS 143

(Note: tn – k − 1 is the t-value from the t-table for (n − k − 1) degrees of 
freedom where n is the number of observations and k is the number of 
independent variables.

For our example, n = 25, k = 2, and the level of significance, α = 0.05. 
Using these values, the critical value or the t-value from the t-table for 22 
degrees of freedom and α = 0.025 is 2.074. Since the calculated value of 
t is 7.93, which is greater than the critical value that is,

t = 7.93 > tcritical = 2.074

We reject the null hypothesis and conclude that the second-order 
term in fact contributes to the prediction of the life of components (y). 
Note: we could also have tested the following hypotheses:

H0 : b = 0

H1 : b > 0

which would determine that the value of b2 = 0.0598 in the prediction 
equation is large enough to conclude that the life of the components 
increases at an increasing rate with temperature. This hypothesis will have 
the same test statistic and can be tested at α = 0.05.

Therefore, our conclusion is that the mean component life increases at an 
increasing rate of temperature and the second-order term in our model, in 
fact, is significant and contributes to the prediction of y.

Comparing the Quadratic Model to the Linear Model

We fitted a linear model of the form y = b0 + b1x1 using MINITAB for 
the data in Table 6.1. Figure 6.6 shows the plot with fitted prediction 
equation. The regression output is shown in Table 6.8, and the plots of 
residual are shown in Figure 6.7.

In Figure 6.6, the r2 value is 84.3% (it is a drop in r2 value of 95.9% 
in the quadratic model when compared to the r2 value of the quadratic 
model in Table 6.3). Also, refer to the Residual versus Fitted values plot in 
Figure 6.7. This plot shows a pattern that is an indication that the linear 
model is inadequate for the given data.
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Figure 6.7 Residuals plots for linear model
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Figure 6.6 Fitted line plot
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Table 6.8 The regression output for the linear model
The regression equation is
y = −52.2758 + 1.97646x

S = 10.3236 R-Sq = 84.3% R-Sq(adj) = 83.7%

Analysis of Variance

Source            DF         SS         MS         F      P
Regression         1    13,196.4   13,196.4   123.821  0.000
Error             23     2,451.3       106.6                 
Total             24    15,647.7
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Comparing the residual versus the fitted value plot for the linear 
model in Figure 6.7 to the corresponding residual plot for the quadratic 
model of Figure 6.5, we see no apparent pattern for the residual versus 
the fitted value plot for the quadratic model. This is an indication that the 
quadratic model is an appropriate model for the problem.

Example 6.2: Quadratic (Second-Order) Model

The data in Table 6.9 (Data File: YIELD.MTW) shows the yield of a 
chemical process at different temperatures. The fitted line plot of the tem-
perature and yield in Figure 6.8 indicates a nonlinear relationship. The 
plot shows that the data can be well approximated by a quadratic model.

Table 6.9 Yield at different temperatures
Obs.  Temp.(x)  Yield (y) Obs.  Temp.(x) Yield (y)

1     50      12,506
2     55      12,485
3     60      14,513
4     65      14,301
5     70      16,630
6     75      17,900
7     80      17,680
8     85      17,300
9     90      19,900

10     95      19,520
11    100     21,020
12    105      20,500
13    110      22,900
14    115      23,300
15    120      21,606
16    125      24,890
17    130      21,118
18    135      22,281
19    140      23,410
20    145      24,480
21    150      22,530
22    155      21,490
23    160      23,406
24    165      24,290
25    170      22,106

26    175      22,890
27    180      23,610
28    185      22,281
29    190      21,905
30    195      22,481
31    200      20,006
32    205      20,500
33    210      19,900
34    215      18,281
35    220      17,610
36    225      17,890
37    230      16,106
38    235      15,281
39    240      15,410
40    245      14,500
41    250      14,520
42    255      16,681
43    260      13,516
44    265       6,281
45    270      10,119
46    275       7,890
47    280      15,610
48    285       7,280
49    290       5,906
50 295       8,481
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 a. Use MINITAB to run a quadratic model to the data.
 b. Use Excel to run this quadratic model. Enter the x and y values 

from Table 6.9 in columns A and B of Excel then create column 
C by squaring the x values. Label this column x2 (or x**2) then 
follow the instructions in Example 6.1 (Running Second-Order 
Model using Excel).

 c. Show the fitted quadratic model and the regression output from 
MINITAB or Excel.

 d. What is the prediction equation relating yield (y) and the 
 temperature (x). 

  What is the coefficient of determination? What does it tell you 
about the model?

Solution:
(a) and (b): The regression output from MINITAB is shown in 
Table 6.10. Similar result can be obtained using Excel.

(c) The fitted quadratic model with the regression equation is shown 
in Figure 6.8.

(d) The prediction equation from the regression output in Table 6.10 
is

Yield ( y) = 1,459 + 277 Temperature (x) − 0.896 x*x

Figure 6.8 Plot showing the points and the fitted curve

Yield (y) = 1459 + 277.1 temperature (x)
– 0.8959 temperature (x)**2
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or
ŷ = 1459 + 277x − 0.896x2

The coefficient of determination, R2 is 88.2% (reported as R-Sq = 
88.2%) in Table 6.10. This tells us that 88.2% of the variation in y is 
explained by the regression and 11.8% of the variation is unexplained 
or due to error.

Summary

This chapter provided an introduction to model building. We explained 
the first-order, second-order, and third-order models. Unlike the  simple 
and multiple regression models, where the relationship among the 
 variables is linear, there are situations where the relationship among 
the variables under study may not be linear. This chapter explained the 

Table 6.10 Regression output for Example 6.2

Results for: YIELD1.MTW

Regression Analysis: Yield (y) versus Temperature (x), x*x

The regression equation is
Yield (y) = 1,459 + 277 Temperature (x) - 0.896 x*x

Predictor            Coef    SE Coef       T      P
Constant             1,459     1,493    0.98  0.334
Temperature (x)    277.12     19.16   14.47  0.000
x*x −0.89585   0.05458    −16.41  0.000

S = 1,796.14   R-Sq = 88.2%   R-Sq(adj) = 87.7%

Analysis of Variance

Source          DF          SS MS       F      P
Regression       2  1134859671  567429836  175.89  0.000
Residual Error  47   151628370    3226136
Total           49  1286488041
Source           DF     Seq SS
Temperature (x)   1  265772263
x*x 1  869087408
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 situation where higher order and nonlinear models provide a better rela-
tionship between the response and independent variables. We provided 
examples of quadratic or second-order models. Scatterplots were created 
to select the model that would provide a good fit to a set of data and 
can be used to obtain a good estimate of the response or the dependent 
variable y that is related to the independent variables or predictors. Since 
the second-order or quadratic models are appropriate in many appli-
cations, we provided a detailed computer analysis of such models. The 
computer analysis and interpretation of computer results were explained 
through examples. Residual analysis was conducted to check whether the 
 second-order model provided a good fit to the data. We also compared the 
second-order model to the linear model to demonstrate why the  former 
provided a better fit to the data.



CHAPTER 7

Models with Qualitative 
Independent (Dummy) 
Variables, Interaction 

Models, All Subset and 
Stepwise Regression Models 

with Computer Analysis

Dummy or Indicator Variables in Multiple Regression

In regression, we often encounter qualitative or indicator variables that 
need to be included as one of the independent variables in the model. For 
example, if we are interested in building a regression model to predict the 
salary of male and female employees based on their education and years of 
experience, the variable male or female is a qualitative variable that must 
be included as a separate independent variable in the model. To include 
such qualitative variables in the model we use a dummy or indicator vari-
able. The use of dummy or indicator variables in a regression model allows 
us to include qualitative variables in the model. For example, to include 
the sex of employees in a regression model as an independent variable, we 
define this variable as:

x1 0
1= {

In the preceding formulation, a “1” indicates that the employee is a 
male and a “0” means the employee is a female. Which one of the male or 
female is assigned the value of 1 is arbitrary.
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In general, the number of dummy or indicator variables needed is 
one less than the total number of indicator variables to be included in 
the model.

One Qualitative Independent Variable at Two Levels

Suppose we want to build a model to predict the mean salary of male and 
female employees. This model can be written as:

y = b0 + b1x

where x is the dummy variable coded as: 

x1 0
1

= 

 if female

if male

This coding scheme will allow us to compare the mean salary for male 
and female employees by substituting the appropriate code in the regres-
sion equation: y = b0 + b1x.

Suppose mM = mean salary for the male employees
	mF = mean salary for the female employees

Then the mean salary for the male: mM = y = b0 + b1(1) = b0 + b1

and the mean salary for the female: mF = y = b0 + b1(0) = b0

Thus, the mean salary for the female employees is b0. In a 0–1 coding 
system, the mean response will always be b0 for the qualitative variable 
that is assigned the value 0. This is also called the base level.

The difference in the mean salary for the male and female employees 
can be calculated by taking the difference (mM −	mF).

mM −	mF = (b0 + b1) − b0 = b1

The aforementioned is the difference between the mean response for 
the level that is assigned the value 1 and the level that is assigned the value 
0 or the base level. The mean salary for the male and female employees is 
shown graphically in Figure 7.1. We can also see that:

b0 = mF

b1 = mM −	mF
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Model with One Qualitative Independent Variable 
at Three Levels

As an example, we would like to write a model relating the mean profit 
of a grocery chain. It is believed that the profit to a large extent depends 
on the location of the stores. Suppose that the management is interested 
in three specific locations where the stores are located. We will call these 
locations A, B, and C. In this case, the store location is a single qualitative 
variable that is at three levels corresponding to the three locations A, B, 
and C. The prediction equation relating the mean profit (y) and the three 
locations can be written as:

y = b0 + b1x1 + b2x2

where

x1 0
1

= 

 if not

if locationB

x2 0
1

= 

 if not

if locationC

The variables x1 and x2 are known as the dummy variables that make 
the model function.

Figure 7.1 Mean salary of female and male employees
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Explanation of the Model

Suppose, mA = mean profit for location A
	 mB = mean profit for location B
	 mC = mean profit for location C
If we set x1 = 0 and x2 = 0, we will get the mean profit for location A. 

Therefore, the mean value of profit y when the store location is A is:

mA = y = b0 + b1(0) + b2(0)
or,

mA = b0

Thus, the mean profit for location A is b0 or

b0 = mA

Similarly, the mean profit for location B can be calculated by setting 
x1 = 1 and x2 = 0. The resulting equation is:

mB = y = b0 + b1x1 + b2x2 = b0 + b1(1) + b2(0)
or,

mB = b0 + b1

Since
b0 = mA, we can write

mB = mA + b1

or
b1 = mB − mA

Finally, the mean profit for location C can be calculated by setting  
x1 = 0 and x2 = 1. The resulting equation is:

mC = y = b0 + b1x1 + b2x2 = b0 + b1(0) + b2(1)
or,

mC = b0 + b2

Since
b0 = mA, we can write
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The bar graph in Figure 7.2 shows the values of mean profit (y) for 
the three locations.

In the preceding bar chart, the height of the bar corresponding to 
location A is y = b0. Similarly, the heights of the bars corresponding to 

mC = mA + b2

b2 = mC − mA

Thus, in the previous coding system, one qualitative independent 
variable is at three levels:

mA = b0 and b1 = mB − mA

mB = b0 + b1  b2 = mC − mA

mC = b0 + b2

where mA, mB, mC are the mean profits for locations A, B, and C.

Note that the three levels of the qualitative variable can be described with 
only two dummy variables� This is because the mean of the base level (in 
this case location A) is accounted for by the intercept b0� In general form, 
for m levels of qualitative variable, we need (m−1) dummy variables. 

b0 b0

A B C

Location
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b2b1

Figure 7.2 Bar chart showing the mean profit for three locations A, 
B, C
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Example 7.1: Dummy Variables

Consider the problem of the pharmaceutical company model where the 
relationship between the sales volume (y) and three quantitative indepen-
dent variables—advertisement dollars spent (x1) in hundreds of  dollars, 
commission paid to the salespersons (x2) in hundreds of dollars, and the 
number of salespersons (x3)—were investigated. The company is now 

locations B and C are y = b0 + b1 and y = b0 + b2, respectively. Note that 
either b1 or b2, or both could be negative. In Figure 7.2, b1 and b2 are both 
positive. The general form of the model when one qualitative indepen-
dent variable is at m levels is shown as follows.

General form of the model with one qualitative independent vari-
able at m levels

The model:

y = b0 + b1x1 + b2x2 + … + bm − 1 xm − 1

where xi is the dummy variable for level (i + 1) and

xi = 

0
1

otherwise
if  is observed at level ( +1)y i

For the preceding system of coding

mA = b0

mB = b0 + b1

mC = b0 + b2

mD = b0 + b3

:

and
b1 = mB − mA

b2 = mC − mA

b3 = mD − mA

:
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interested in including different sales territories where they market the 
drug. The territory in which the company markets the drug is divided 
into three zones: zone A, B, and C. The management wants to predict the 
sales for the three zones separately. To do this, the variable “zone,” which 
is a qualitative independent variable, must be included in the model. 
The company identified the sales volumes for the three zones along with 
the variables considered earlier. The data including the sales volume  
and the three zones are shown in the last column of Table 7.1 (Data 
File: DummyVar_File1). Since there are three zones (A, B, and C) in 
which the company markets the drug, we have three qualitative vari-
ables. To include these three zones in the model, we will need only two 
indicator or dummy variables because for three dummy variables we will 

No. of
Sales     Advertisement  Commission    salespersons

Row  volume (y) (x )1 (x )2 (x )3  Zone
1      973.62        580.17      235.48            8    A
2      903.12        414.67      240.78            7    A
3     1067.37        420.48      276.07           10    A
4     1193.37        454.59      295.70           14    B
5     1429.62        524.05      286.67           16    C
6     1557.87        623.77      325.66           18    A
7     1590.12        641.89      298.82           17    A
8     1081.62        403.03      210.19           12    C
9     1088.37        415.76      202.91           13    C
10     1132.62        506.73      275.88           11    B
11     1314.87 490.35      337.14           15    A
12     1562.37        624.24      266.30           19    C
13     1050.12        459.56      240.13           10    C
14     1055.37        447.03      254.18           12    B
15     1112.37        493.96   237.49           14    B
16     1235.37        543.84      276.70           16    B
17     1518.12        618.38      271.14           18    A
18     1574.37        690.50      281.94           15    C
19     1644.87        591.27      316.75       20    C
20     1169.37        530.73      297.37           10    C
21     1212.87        541.34      272.77           13    B
22     1304.37        492.20      344.35           11    B
23     1477.62        546.34      295.53           15    C
24 1593.87        590.02      293.79           19    C
25     1134.87        505.32      277.05           11    B

Table 7.1 Sales for different zones
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need only two variables and use the code 0 or 1 to represent the zones. 
To represent the three zones, we use two dummy variables as follows:

x x4 50
1

0
1

= 



= 

otherwise

if zone A
otherwise
if zone B

In this coding system, the choice of 0 and 1 in the coding is arbitrary.
Note that, we have defined only two dummy variables—x4 and x5 

for a total of three zones. It is not necessary to define a third dummy 
variable for zone C because we have the following scheme:

Zone x4 x5

A 1 0
B 0 1
C 0 0

It can be shown that a third dummy variable is not necessary for all 
the three zones. For example, suppose a third dummy variable x6 is intro-
duced that is equal to 1 if the sale is from zone C. Then for each obser-
vation in the sample, the following relationship holds: x6 = 1 − x4 − x5.

This means that this predictor variable is a linear function of 
other predictors. Whenever one predictor variable is a linear  function 
of one or more predictor variables (including any constant term), 
then there is no solution for the least squares coefficients because of 
multi collinearity. Therefore, any such predictor variable must not be 
included in the model for the equation to be meaningful.

From the previous discussion, it follows that the regression 
model for the data in Table 7.1 including the variable “zone” can be 
written as:

y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5

where ( y): sales volume ( y),
(x1): advertisement dollars spent in hundreds of dollars,
(x2): commission paid to the salespersons in hundreds of dollars,
(x3): the numbers of salespersons, and the dummy variables:
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x x4 50
1

0
1

= 



= 

otherwise

if zone A
otherwise
if zone B

Table 7.2 shows the data file for this regression model with the 
dummy variables. We will use both MINITAB and Excel to run this 
model and provide analysis of the computer results. The data can be 
obtained from the MINITAB data file—[Data File: DummyVar_
File(2)] or from the Excel data file—DummyVar_File (2).xlsx. The 
instructions for running this model can be found in Appendix A_
Table A.16.

 a. Using the MINITAB data file, run a regression model. Show your 
regression output.

 b. Using the Excel data file, run a regression model. Show your 
regression output.

No. of   Zone A    Zone B

Row  Volume (y)     Advertisement Commission salespersons (x4)     (x5)

(y) (x1) (x2) (x3)

1     973.62            580.17          235.48                8      1       0

2      903.12            414.67          240.78                 7       1        0

3     1,067.37            420.48          276.07                10       1        0

4     1,193.37       454.59         295.70                14       0        1

5     1,429.62            524.05         286.67                16       0       0

6     1,557.87            623.77          325.66                18       1        0

7     1,590.12            641.89          298.82                17       1        0

8     1,081.62            403.03          210.19                12       0        0

9     1,088.37            415.76          202.91               13       0        0
10     1,132.62            506.73          275.88                11       0        1

11     1,314.87            490.35          337.14                15       1        0

12     1,562.37            624.24         266.30                19       0        0

13     1,050.12            459.56          240.13                10       0        0

14     1,055.37            447.03          254.18                12       0        1

15     1,112.37            493.96          237.49                14       0        1

16     1,235.37            543.84          276.70                16       0        1

17     1,518.12            618.38          271.14               18       1        0

18     1,574.37            690.50          281.94                15      0        0
19     1,644.87            591.27          316.75                20       0        0

20     1,169.37            530.73          297.37                 10       0        0

21     1,212.87            541.34          272.77                13       0        1

22     1,304.37            492.20         344.35                11       0        1

23  1,477.62            546.34          295.53                15       0        0

24     1,593.87            590.02          293.79                19       0        0

25     1,134.87            505.32          277.05                11       0        1

Table 7.2 Data file for the model with dummy variables
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 c. Using the MINITAB or Excel regression output, write down the 
regression equation.

 d. Using a 5% level of significance and the column “p” in the 
MINITAB regression output or “p-value” column in the Excel 
regression output, conduct appropriate hypotheses tests to deter-
mine that the independent variables: advertisement, commission 
paid, and number of sales persons are significant or they contrib-
ute in predicting the sales volume.

 e. Write separate regression equations to predict the sales for each of 
the zones A, B, and C.

 f. Refer to the given MINITAB residual plots and check that all the 
regression assumptions are met and the fitted regression model is 
adequate.

Solution:

 a. The MINITAB regression output is shown in Table 7.3.
 b. Table 7.4 shows the Excel regression output.
 c. From the MINITAB or the Excel regression outputs in Tables 7.3 

and 7.4, the regression equation is:

Sales volume ( y) = −98.2 + 0.884 Advertisement (x1)
+ 1.81 Commission (x2) + 33.8 No. of 
 salespersons (x3) − 67.2 Zone A (x4) 
− 105 Zone B (x5)

or

y = −98.2 + 0.884x1 + 1.81x2 + 33.8x3 − 67.2x4 − 105x5

The regression equation from the Excel output in Table 7.4 can be 
written using the coefficients column.
 d. The hypotheses to check the significance of each of the indepen-

dent variables can be written as:

H0 : bj = 0 (xj is not a significant variable)

H1 : bj ≠ 0 (xj is a significant variable)
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This hypothesis can be tested using the “p” column in either 
MINITAB or the p-value column in Excel computer results. The deci-
sion rule for the p-value approach is given by:

If p ≥ α, do not reject H0

 If p < α, reject H0

Table 7.4 Excel regression output

Table 7.3 MINITAB regression output
The regression equation is
Sales volume (y) = −98.2 + 0.884 Advertisement(x1) + 1.81 Commission(x2)

+ 33.8 No. of salespersons(x3) - 67.2 Zone A (x4)
- 105 Zone B (x5)

Predictor                   Coef  SE Coef      T      P
Constant                  -98.16    90.57  -1.08  0.292
Advertisement(x1)          0.8843   0.1759   5.03 0.000
Commission(x2)            1.8092   0.3367   5.37  0.000
No. of salespersons(x3)   33.763    3.979   8.48  0.000
Zone A (x4)               -67.20    26.29  -2.56  0.019
Zone B (x5)              -105.40    25.62  -4.11  0.001

S = 49.9433   R-Sq = 96.2%   R-Sq(adj) = 95.2%

Analysis of Variance
Source          DF       SS      MS      F      P
Regression       5  1201581  240316  96.35  0.000
Residual error  19    47392    2494
Total           24  1248974

p-values

Regression Coefficients

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.980844
R Square 0.962055
Adjusted R Square 0.952070
Standard Error 49.943256
Observations 25

ANOVA
df SS MS F Significance F

Regression 5 1201581.493 240316.299 96.345 0.000
Residual 19 47392.247 2494.329
Total 24 1248973.740

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -98.16329 90.57232 -1.08381 0.29201 -287.73333 91.40675 -287.73333 91.40675
Adverisement(x1) 0.88430 0.17587 5.02807 0.00007 0.51619 1.25240 0.51619 1.25240
Commission(x2) 1.80917 0.33674 5.37256 0.00003 1.10436 2.51398 1.10436 2.51398
No. of Salespersons(x3) 33.76343 3.97941 8.48453 0.00000 25.43443 42.09243 25.43443 42.09243
Zone A (x4) -67.19612 26.28512 -2.55643 0.01929 -122.21150 -12.18075 -122.21150 -12.18075
Zone B (x5) -105.40027 25.62300 -4.11350 0.00059 -159.02982 -51.77072 -159.02982 -51.77072
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Independent 
variable

p-value from 
table 7.3 or 7.4

Compare
p to α

Decision Significant? 
Yes or no

Advertisement (x1) 0.000 p < α Reject H0 Yes

Commissions (x2) 0.000 p < α Reject H0 Yes

No. of salespersons 
(x3)

0.000 p < α Reject H0 Yes

Table 7.5 Summary table

Table 7.5 shows the p-value for each of the predictor variables. 
Refer to MINITAB or Excel computer results in Table 7.3 or 7.4 
(see the “p” or the “p-value” columns in these tables).

From this table it can be seen that all the three independent vari-
ables are significant.

 e. As indicated, the overall regression equation is:

 Sales volume (y) =  −98.2 + 0.884 Advertisement (x1)
 + 1.81 Commission (x2) + 33.8 No. of salespersons 
(x3) − 67.2 Zone A (x4) − 105 Zone B (x5)

 Separate equations for each zone can be written from this equa-
tion as explained in the following.

Zone A: x4 = 1.0, x5 = 0
Therefore, the equation for the sales volume of Zone A can be written 
as

Sales volume (y) = −98.2 + 0.884 Advertisement (x1) + 1.81 Commission (x2)
+ 33.8 No� of salespersons (x3) − 67.2 (1) − 105 (0.0) or,

Sales volume (y) = −98.2 + 0.884 Advertisement (x1) + 1.81 Commission (x2)
+ 33.8 No. of salespersons (x3) − 67.2 or,

Sales volume (y) = −165.4 + 0.884 Advertisement (x1)
+ 1.81 Commission (x2) + 33.8 No. of salespersons (x3)

Similarly, the regression equations for the other two zones are 
 shown below.
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Zone B: x4 = 0, x5 = 1.0
Substituting these values in the overall regression equation of part (c)

Sales volume (y) =  −98.2 + 0.884 Advertisement (x1) + 1.81 Commission 
(x2) + 33.8 No. of salespersons (x3) − 105 or,

Sales volume (y) = −203.2 + 0.884 Advertisement (x1)
+ 1.81 Commission (x2) + 33.8 No. of salespersons (x3)

Zone C: x4 = 0, x5 = 0
Substituting these values in the overall regression equation of part (c)

Sales volume (y) =  −98.2 + 0.884 Advertisement (x1) + 1.81 Commission 
(x2) + 33.8 No. of salespersons (x3) 

Note that in all of the preceding equations, the slopes are same but 
intercepts are different.

 f.  The MINITAB residual plots are shown in Figure 7.3.
The residual plots in Figure 7.3 show that the normal probability 

plot and the histogram of residuals are approximately normally dis-
tributed. The plot of residuals versus fits does not show any pattern 
and is quite random indicating that the fitted linear regression model 
is adequate. The plot of residuals and the order of data points show no 
apparent pattern indicating that there is no violation of independence 
of error assumptions.
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Example 7.2: Dummy Variables

An article in the IT Salary Survey magazine recently reported an 
employment discrimination case in the IT industry. It compared 
mean salaries of male and female employees and arrived at a conclu-
sion that the female employees earn significantly less than their male 
counterparts for the same job. One of the IT companies facing several 
 discrimination law suits hired an independent consultant to look into 
their salary structure. The consultant collected the data on the  variables 
(shown in Table 7.6). The variables include: y—salary (in thousands of 
dollars) paid to the employees, years of education (x1), years of experi-
ence (x2), dummy variable coded (x3), 1 for male employees and 0 for 
female employees.

Table 7.6 Salary data for male and female employees
Row   Salary  Years of education Years of Male

(y)          (x1)        experience (x2) (x3)

------------------------------------------------------------------------------------------------------

1      42             10            0           1

2     40             10            2           0

3      44             12             1           0

4      56             15             3            1

5      44             12             2            0

6      45             12             3            1

7      54             12             7            1

8      43             12             2            0

9      47             10             3            1

10      51             12             4            1

11      48             12             4            0

12      49             12             5            0

13      58             16             4            0

14      60             16             6            1

15      63             16             7            1

16      58             12             7            1

17      40              8             3            0

18      48             12             4            1

19      52             12             6            0

20      56             15             7            0

21      59             15            6            1

22      62             16             8            1

23      63             16             6            1

24      62             15             8            0

25      61             16             4            1

26      62             16             5            1

27      54             12             6            0

28      43              8             3            0

29      51             12             5            0

30      65             16             7            0
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A regression model was fitted using this data. Tables 7.7 and 7.8 
show the MINITAB and Excel results for the data in Table 7.6 [the 
data files are: [Data File: DummyVar_File (3)], refer to the regression 
outputs and answer the questions that follow. Is there an evidence of 
discrimination in salary between the male and female employees?

 a. Write down the regression equation using either the MINITAB or the 
Excel output and interpret the meaning of the regression equation.

 b. Is there a difference, on the average, between the salaries of male 
and female employees? Test appropriate hypothesis to answer this 
 question. Use a 5% level of significance.

Table 7.8 Excel output for the data in Table 7.6

Table 7.7 MINITAB output for the data in Table 7.6
Regression analysis: Salary (y) versus Yrs. of education, Yrs of 
exp(x,..
The regression equation is
Salary (y) = 19.3 + 1.93 Yrs of education (x1) + 1.62 Yrs of exp(x2)

+ 1.78 Male (x3)

Predictor               Coef  SE Coef     T      P
Constant              19.280    2.216  8.70  0.000
Yrs of education (x1   1.9273   0.2078  9.27  0.000
Yrs of exp(x2)        1.6180   0.2328  6.95  0.000
Male (x3)             1.7769   0.8346  2.13  0.043

S = 2.17582   R-Sq = 93.2%   R-Sq(adj) = 92.4%

Analysis of Variance

Source          DF       SS      MS       F      P
Regression       3  1675.58  558.53  117.98  0.000
Residual error  26   123.09    4.73
Total           29  1798.67

)
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 c. What salary would you predict for males with 12 years of educa-
tion and 5 years of experience? What salary would you predict for 
females for the same years of education and work experience?

Solution:

 a. The regression equation is shown in the MINITAB output 
(Table 7.7). The regression equation can also be written using 
the “coefficients” column of Excel output. The regression 
 equation is

Salary (y) = 19.3 + 1.93 Yrs of education (x1) + 1.62 Yrs of exp (x2)
+ 1.78 Male (x3) or,

 ŷ = 19.3 + 1.93x1 + 1.62x2 + 1.78x3 (7.1)

Note that the regression equation is of the form:

y = b0 + b1x1 + b2x2 + b3x3

where x3 is a dummy or indicator variable coded as “1” if the employee 
is a male or “0” if the employee is a female. It follows that we can 
write two separate equations: one for the male and other for the female 
employees.

For the male employees, x3 = 1 and the relationship between the 
salary and the other indicator variables will take the following form:

y = b0 + b1x1 + b2x2 + b3(1)
or,

y = (b0 + b3) + b1x1 + b2x2

For the female employees, x3 = 0 and the relationship between the 
salary and the other indicator variables will take the following form:

y = b0 + b1x1 + b2x2 + b3(0)
or,

y = b0 + b1x1 + b2x2
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The preceding are the two separate equations for the male and 
female employees. The regression equation (Equation 7.1) can be 
interpreted in the following ways:

• For each unit increase in the education or each additional 
year of education the salary increases by 1.93 (or 1.93 × 
1,000 = $1930).

• For each year of experience obtained, the salary increases 
by 1.62 (or 1.62 × 1,000 = $1,620).

• Male employees earn, on average 1.78 or $1,780 more 
(or 1.78 × 1,000 = $1,780) per year than their female 
 counterparts.

 b. From the analysis of regression equation in part(a) we know that 
the males on the average earn $1,780 more than the females. We 
would like to know whether this amount is large enough to be 
considered statistically significant or this difference is purely by 
chance. To determine this, we need to test the coefficient of the 
indicator variable. This hypotheses can be written as:

H0 : b3 = 0 (No significant difference in average salary)

H1 : b3 ≠ 0 (There is a significant difference in salary)

Thus, if the null hypothesis is not rejected, we conclude that 
there is no significant difference in the average salaries between male 
and female employees. On the other hand, if the null hypothesis is 
rejected, the difference is significant and the difference is not merely 
due to chance.

The previous hypothesis can be tested using the “p” column in 
either MINITAB or Excel computer results (Table 7.7 or 7.8). The 
decision rule for the p-value approach is given by:

If p ≥ α, do not reject H0

If p < α, reject H0

From the tables, the p-value for the indicator variable male (x3) is 
0.0429 or
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p = 0.0429

Since p = 0.0429 is less than α = 0.05, we reject H0 and conclude 
that there is a significant difference between the salaries of male and 
female employees, and males on the average earn significantly more 
than the females.

(a) The prediction equation:

ŷ = 19.3 + 1.93x1 + 1.62x2 + 1.78x3

The prediction of average salary for males with 12 years of educa-
tion and 5 years of work experience is:

x1 = 12, x2 = 5 and x3 = 1

ŷ = 19.3 + 1.93(12) + 1.62(5) + 1.78(1) =	52.34

or $52,340.
The corresponding average salary for females can be predicted as:

x1 = 12, x2 = 5, and x3 = 0

y = 19.3 + 1.93(12) + 1.62(5) + 1.78(0) = 50.56

or $50,560.

Interaction Models

In the regression models discussed earlier, it was assumed that the effect 
that an independent variable has on the dependent variable is indepen-
dent of the other independent variables in the model. Sometimes, there 
may be an interaction between the independent variables. In such cases, 
the interaction between two independent variables means that the rela-
tionship between the dependent variable y and one independent variable 
x depends on the other x. For example, consider a regression model where 
we want to investigate the relationship between the profit of large retail 
stores and two independent variables: store location and store size. In this 
case, it is possible for the store location to have a large effect on the profit 
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Example 7.3: Regression Model with No Interaction

Suppose in a model, the response or the dependent variable y is related to 
two quantitative independent variables x1 and x2 by the first-order model:

y = 6 + 3x1 + x2

where b0 = 6, b1 = 3, and b2 =1.
In the preceding model, when x2 = 0, the relationship between y 

and x1 is given by:

y = 6 + 3x1 + (0) = 6 + 3x1

When x2 = 1 and x2 = 2, the relationships between y and x1 can be 
given by:

y = 6 + 3x1 + x2 = 6 + 3x1 + 1 = 7 + 3x1

y = 6 + 3x1 + x2 = 6 + 3x1 + 2 = 8 + 3x1

when the store size is large. On the other hand, if the store location is at a 
remote area, even the large stores may not change the profit significantly. 
In this case, store location and store size are said to interact and we can 
say that the effect that the store location has on the sale also depends on 
the size of the store. An interaction term can be used in this model to 
include the interaction effect. This interaction term is also known as a 
cross-product term.

An interaction model relating y and two quantitative independent 
variables can be written as:

 y = b0 + b1x1 + b2x2 + b3x1x2  (7.2)

where (b1 + b3x2) represents the change in y for every 1-unit increase in 
x1 when x2 is held constant, and (b2 + b3x1) represents the change in y for 
every 1-unit increase in x2 when x1 is held constant.

Note that the interaction effect may occur between quantitative 
independent variables and also between a quantitative and a dummy 
variable.
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Figure 7.4 Graph y = 6 + 3x1 + x2 for x2 = 0,1,2

25 Variable
x2 = 0
x2 = 1
x2 = 220

15

Y
-d

at
a

10

5
0 1 2 3

x

Plot of y vs. x1

4 5

A graph of these relationships is shown in Figure 7.4. Note that the 
slopes of all these lines are equal to 3 and hence these lines are parallel. 
This figure shows an important characteristic of the first-order model. 
If we graph the equation of the type:

y = 6 + 3x1 + x2

for one variable x1 while keeping the value of other variable fixed, the 
result will always be a straight line with slope equal to b1. If we plot this 
equation for other values of fixed independent variables, we will obtain 
a set of parallel lines as shown in Figure 7.4.

This indicates that the effect of independent variable xi on the 
dependent variable y is independent of all the other independent 
variables, or in other words, the relationship between y and any inde-
pendent variable does not depend on the values of other independent 
variables. This also shows that there is no interaction among the inde-
pendent variables.

Example 7.4: Regression Model with Interaction

Suppose in a model, the response of the dependent variable y is related 
to two quantitative independent variables, x1 and x2 by the model:

y = 3 + 5x1 − x2 + 4x1x2

A graph of y and x1 for x2 = 0, 1, and 2 is shown in Figure 7.5.
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Figure 7.5 Graph of y = 3 + 5x1 − x2 + 4x1x2
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The plot in Figure 7.5 shows three nonparallel straight lines indi-
cating that the slopes of the lines differ. The slopes of the lines can be 
determined by substitution of the different values of x2 = 0, 1, and 2 as 
shown in the following.

For x2 = 0:

y = 3 + 5x1 − x2 + 4x1x2 = 3 + 5x1 − 0 + 4x1(0) = 3 + 5x1

For x2 = 1: 

y = 3 + 5x1 − x2 + 4x1x2 = 3 + 5x1 − 1 + 4x1(1) = 2 + 9x1

For x2 = 2:

y = 3 + 5x1 − x2 + 4x1x2 = 3 + 5x1 − 2 + 4x1(2) = 1 + 13x1

The preceding shows that the effect on y of a change in x1 (or the 
slope) depends on the value of x2. This means that x1 and x2 interact 
or have an interaction effect. The term x1.x2, which is a cross-product 
term, is known as an interaction term and the model:

y = b0 + b1x1 + b2x2 + b3x1x2

is an interaction model.
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Example 7.5: Interaction Model

The data file MPG-INTERACTION.MTW and  MPG- INTER- 
  ACTION.xlsx contains the variables shown in the following. We 
would like to  predict the fuel consumption in miles per gallon (Mpg) 
using the independent variables. Since we are trying to predict the 
fuel consumption, this variable is the dependent or response variable. 
The variables involved in the model and their units of measurements 
are described as follows.

 y = miles per gallon (Mpg)
 x1 = average speed of the car in miles per hour (Av. speed)
 x2 = Weight of the automobile (in thousands of pounds)
 x3 = Horsepower
 x4 = Altitude (in thousands of feet)

 a. Using MINITAB or Excel, develop a regression model that 
includes x1, x2, x3, and x4. Show the computer results of MINITAB 
or Excel.

 b. Using MINITAB or Excel, develop a regression model that 
includes x1, x2, x3, x4, and the interaction of x2 and x3 (interaction 
of weight and horsepower, x2 * x3). Show the computer results of 
MINITAB or Excel.

 c. At a 5% level of significance, is there evidence that the interaction 
term makes a significant contribution in predicting y?

 d. Which regression model: the model in part (a) or (b) should be 
used to predict the miles per gallon ( y)?

Solution:

 a. The MINITAB regression output is shown in Table 7.9.
 b. The interaction model using Excel is shown in Table 7.10.
 c. To test whether the interaction is significant, we test the null 

 hypothesis

H0 : b5 = 0

H1 : b5 ≠ 0
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Table 7.9 Regression output for Mpg (y) and four 
independent variables
Regression analysis: Mpg (y) versus Av. speed (x1), Weight (x2), 
...
The regression equation is
Mpg (y) = 12.3 + 0.299 Av. speed (x1) − 2.51 Weight (x2) + 0.0939 

Horsepower (x3) − 2.08 Altitude (x4)

Predictor           Coef  SE Coef      T      P
Constant          12.290    5.552   2.21   0.039
Av. speed (x1)    0.29858  0.03742   7.98  0.000
Weight (x2)      −2.5060   0.6909  −3.63  0.002
Horsepower (x3)  0.09386  0.02804   3.35   0.003
Altitude (x4)    −2.0763   0.3027  −6.86   0.000

S = 1.45399   R-Sq = 93.2%   R-Sq(adj) = 91.9%

Analysis of Variance

Source          DF      SS      MS      F      P
Regression       4  581.16  145.29  68.72  0.000
Residual error  20   42.28    2.11
Total           24  623.44

Table 7.10 Interaction model using Excel

   The null hypothesis means that the interaction—weight*horse-
power(x2 * x3) is not significant, whereas the alternate hypothesis 
means that the interaction is significant.

   The previous hypothesis can be tested using the p-value 
approach. From the computer output in Table 7.10, the p-value 
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for the interaction term, weight*horsepower(x2 * x3) is 0.0015. 
At α = 0.05, we see that p is less than 0.05 (or, p = 0.0015 < α = 
0.05); therefore, we reject the null hypothesis and conclude that 
the interaction is significant.

 d. The interaction model in part (b) should be used to predict the 
miles per gallon ( y). Note that the r2 and also the standard error 
of the estimate (s) both improved for the interaction model (com-
pare the results in Tables 7.9 and 7.10).

Example 7.6: Another Example on Interaction Model

The general manager of a chain of stores hired a consultant to develop 
a model to learn whether there is a relationship between the sales of 
the chain’s three stores located in different areas of a small town. The 
manager would like to predict the sales of one of its larger store using 
the sales of the other two stores. The consultant decided to build a 
multiple regression model relating the sales of three stores. He used the 
sales of store 2 and 3 to predict the sales for store 1. Table 7.11 shows 
the sales for three stores.

Sales—Store 1 ( y)
Sales—Store 2, x1 (×100)
Sales—Store 3, x2 (×100)

The data files: STORE SALES.MTW and STORE SALES.xlsx 
show the MINITAB and Excel data files for this problem.

 a. Using MINITAB or Excel, develop a regression model that 
includes x1 and x2 to predict the sales for store 1. Show the com-
puter results of MINITAB or Excel.

 b. Using MINITAB or Excel, develop a regression model that 
includes x1 and x2 and the interaction of x1 and x2 (interaction of 
store 1 and store 2 sales) to predict the sales for store 1. Show the 
computer results of MINITAB or Excel.

 c. At a 5% level of significance, is there evidence that the interaction 
term makes a significant contribution in predicting the sales y?
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 d. Comment on the regression models in part (a) and (b).

Solution:

 a. The MINITAB computer output with the prediction equation is 
shown in Table 7.12.

 b. The interaction model using MINITAB is shown in Table 7.13. 
Note that the interaction model is of the form:

y = b0 + b1x1 + b2x2 + b3x1x2

 c. To test whether the interaction is significant, we test the null 
 hypotheses:

H0 : b3 = 0

H1 : b3 ≠ 0

Table 7.11 Sales of three stores

Sales-Store 1   Sales-Store 2     Sales-Store 3

Row         (y)       (x1)          (x2)

1 82          72          70

2          78         72          70

3          76          76          64

4          90    102 82

5          92         104          78

6          86         110         110

7          94         114         104

8          88         106         108

9          82         124         130

10          70         140         154

11          72         144         150

12          78         148         148

13          66         166         162

14          66         166         162

15          56         202 184

16          62         214         182
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Table 7.12 MINITAB regression output
Regression analysis: Sales-Store (1) versus Sales-Store (2), Sales-Store (3)

The regression equation is
Sales-Store 1(y) = 103 − 0.069 Sales-Store 2 (x1) − 0.138 

Sales-Store 3 (x2)

Predictor              Coef  SE Coef      T      P
Constant            103.109    6.379  16.16  0.000
Sales-Store 2 (x1)  −0.0686   0.1626  −0.42  0.680
Sales-Store 3 (x2)  −0.1381   0.1676  −0.82  0.425

S = 7.83825   R-Sq = 58.4%   R-Sq(adj) = 51.9%

Analysis of Variance

Source          DF       SS      MS     F      P
Regression       2  1119.05  559.53  9.11  0.003
Residual error  13   798.70   61.44
Total           15 1917.75

Table 7.13 Interaction model using MINITAB
Regression analysis: Sales-Store (1) versus Sales-Store (2), Sales-Store (3), and 

interaction ….
The regression equation is
Sales-Store 1(y) = 23.8 + 0.973 Sales-Store 2 (x1) + 0.143 Sales-
Store 3 (x2) − 0.00514 x1 * x2

Predictor                 Coef    SE Coef      T      P
Constant                 23.82    12.64   1.88  0.084
Sales-Store 2 (x1)      0.9730     0.1796   5.42  0.000
Sales-Store 3 (x2)     0.14332    0.09307   1.54  0.150
x1 * x2 −0.0051393  0.0007939  −6.47  0.000

S = 3.84941   R-Sq = 90.7%   R-Sq(adj) = 88.4%

Analysis of Variance

Source          DF       SS      MS      F      P
Regression       3  1739.93  579.98  39.14  0.000
Residual error  12   177.82   14.82
Total           15  1917.75
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  The null hypothesis means that the interaction is not significant, 
whereas the alternate hypothesis means that the interaction is 
 significant.

   The preceding hypotheses can be tested using the p-value 
approach. From the computer output in Table 7.13, the p-value 
for the interaction term (x1 * x2) is 0.000. At α = 0.05, we see that 
p is less than 0.05 (or, p = 0.000 < α = 0.05); therefore, we reject 
the null hypothesis and conclude that the interaction is significant.

 d. The regression model in part (a)—the model without the interac-
tion term in Table 7.12 shows that both the independent variables 
are insignificant at a 5% level of significance (the p-values for x1 
and x2 are 0.680 and 0.425). This model also has a low r2 value 
of 58.4%. However, the overall model is significant as can be 
seen from the Analysis of Variance part of the computer output in 
Table 7.12, which shows an F-value of 9.11 with a corresponding 
p-value of 0.003. At α = 0.05, we see that p is less than 0.05 (or 
p = 0.003 < α = 0.05); therefore, we can conclude that the overall 
model is statistically  significant.

Table 7.13 shows the interaction model with independent vari-
ables x1 and x2 and the interaction term x1x2. This model shows a signif-
icant improvement both in the value of r2 and the standard error of the 
estimate (s). The r2 in this model is 90.7% compared to 58.4% in the 
model of part (a). The standard error of the estimate (s) also dropped to 
3.849 compared to 7.838 in the model without interaction in part (a).  
Overall, there is a significant improvement in the model because of the 
inclusion of the interaction term.

It is important to investigate the effect of interaction terms in the model 
because the effect of the independent variables sometimes is not additive 
because of interacting effects between the variables� In such cases, the inclu-
sion of interaction terms may significantly improve the model� The other 
important point to note here is that once it is determined that the interac-
tion is significant in the model:

y = b0 + b1x1 + b2x2 + b3x1x2
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it is not necessary to conduct t-tests on the individual bi coefficients 
of the first-order terms x1 and x2 as these terms should be retained in the 
model regardless of their p-values once the interaction term x1x2 has been 
deemed significant.

Finding the Best Possible Prediction Equation 
Using Regression

In a data set involving several variables, there is generally one response 
variable y whose value we want to predict using several independent vari-
ables. In doing so we often ask the question which variables are significant 
or which independent variables should be included in the model, and 
which ones should be discarded. In course of finding the best prediction 
equation, we would like to achieve the following:

• Find a regression line, a plane, or a hyperplane that explains 
a high percentage of variability in y. The appropriate measure 
for this purpose is the coefficient of determination r2.

• Keep the regression equation simple. This can be done by 
minimizing the number of independent variables or predic-
tors in the model.

The previous two goals are contradictory. The amount of unexplained 
variation can be increased by adding more predictors or independent vari-
ables to the model and this can make the model more complex. There-
fore, some trade-off must be made between getting a high r2 and finding 
a suitable number of independent variables. The following section shows 
how to search for the best predictors.

All Subset Regression

Suppose we have m independent variables in a regression model. All 
these predictors may not be significant; that is, all m predictors may 
not be needed to obtain the best predictor equation. Our objective is 
to find the best predictors. To achieve this we may have to perform all 
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possible sets of regression. In general, if there are m independent vari-
ables, we have:

2m − 1

predictor set, each having a distinct regression equation. Thus, in a data 
set containing three predictors or independent variable, there are:

23 − 1 = 7

possible regressions. This is explained with an example. Suppose we want 
to predict the fuel consumption in miles per gallon (y) for a particular 
size of automobile and would like to relate the response y to three predic-
tors, average speed of the automobile, weight of the car in thousands of 
pounds, and the horsepower. That is,

 y = miles per gallon (mpg)  x1 = average speed
 x2 = weight    x3 = horsepower

The all possible subset regression for the preceding problem would 
 contain seven regression equations. These are shown in Table 7.14. If 

Table 7.14 All possible regressions for three predictors

Predictor set Regression equation Coeficient of 
determination

(r2) (%)

x1 Mpg (y) = 7.37 + 0.324 Av. speed (x1) R-Sq = 25.6

x2 Mpg (y) = 46.9 − 5.64 Weight (x2) R-Sq = 40.9

x3 Mpg (y) = −11.0 + 0.261 Horsepower (x3) R-Sq = 54.5

x1, x2 Mpg (y) = 30.7 + 0.307 Av. speed (x1) − 5.46 Weight (x2) R-Sq = 63.8

x1, x3 Mpg (y) = −18.8 + 0.230 Av. speed (x1) + 0.233 
Horsepower (x3)

R-Sq = 66.7

x2, x3 Mpg (y) = 8.6 − 2.66 Weight (x2) + 0.196 Horsepower (x3) R-Sq = 60.2

x1, x2, x3 Mpg (y) = 3.8 + 0.253 Av. speed (x1) − 3.17 Weight (x2) + 
0.152 Horsepower (x3)

R-Sq = 74.7



178 APPLIED REGRESSION AND MODELING

there are 4 predictors, there would be 15 predictor sets and 15 distinct 
regression equations. Similarly, the number of possible regressions for 10 
predictors or independent variables would be:

210 − 1 = 1023

Thus, if we want to perform all possible regressions on a set of data 
having several predictors, it would be a tremendous amount of work 
and the process would not be efficient. There is another procedure that 
is often used in cases where several predictors are involved. This pro-
cedure minimizes the computational effort and is known as stepwise 
regression.

Stepwise Regression

Stepwise regression is often used to select the independent variables in 
a regression model that may have a large set of independent variables. 
In many regression problems the list of potentially important indepen-
dent variables may be extremely long and it may be difficult to select 
the variables to include in the model. For example, in predicting sales, 
the independent variables may include the advertisement cost, bonus 
paid, number of sales persons, the regions where the marketing efforts 
are diverted, and so on. Similarly, in determining which variables affect 
the profit of a firm, such as blood sugar level of patients, salary of the 
executives, and fuel consumption of automobiles, the list of potential 
independent variables may be extremely long. Building an effective regres-
sion model with a large number of independent variables is a common 
regression problem and is also challenging. The problem becomes more 
complex if higher order terms and interactions are needed in the model. 
Stepwise regression is helpful in such cases. It is a screening process that 
helps to determine which of the large set of independent variables to 
include in the model.

In the stepwise regression procedure, the response variable y and a set 
of potentially important independent variables, x1, x2, x3, x4, …, xk are 
identified. The independent variables may include first-order or higher 
order terms and also dummy variables. In our example, we will only con-
sider the first-order terms. Often a computer software is used to run the 
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The software program first fits the regression model with all possible variables, 
one variable at a time. This model is of the form 

y = b0 + b1xi

y = b0 + b1x1 + b2xi

y = b0 + b1x1 + b2x2 + b3xi

H0 : b1 = 0
H1 : b1 ≠ 0

where xi are the independent variables with i = 1, 2, 3, …, k.
Next, the following hypotheses are tested using the t-test or the equivalent F-test for
each model:

Step 2:

Step 3:

NOTE:

After adding a new variable at each step, the software program retests the 
coefficients of previously added variables and removes the variables with 
t-values that have become nonsignificant. Once no further variables are found 
that yield significant t-values at a specified     level, the procedure terminates.

Step 1:

The independent variable with the largest t-value (in absolute term) is considered 
the best one-variable predictor and is the first one to be included in the model.

In this step, the software program searches for the second variable from the remaining
(k−1) variables to be included in the model. This is done to determine the best two
variables to be included in the model. The second model contains the x1 variable
determined in the first step and the second variable determined from the remaining
(k−1) variables and is of the form:

Then the hypotheses H0 : b2 = 0 versus H1 : b2 ≠ 0 are tested for each of the (k−1)
variables to search for the second variable. The t-values for the tests are computed
for each of the variables, where, i = 1, 2, 3, …, k and the variable with the largest t 
is selected as the second variable to be included in the model. 

At this point, the stepwise regression works like backward elimination procedure. 
This means that after adding a new variable to the model, the procedure retests the
t-value of b1 after b2x2 has been added to the model. If it finds that the t-value has 
become insignificant at some specified     level (say     = 0.15), then x1 is removed
from the model and a new search is made for an independent variable that provides 
the most significant t-value to be included in the model. 

The reason the t-value for x1 may change after including the second variable in Step 2
is that the inclusion of second variable results in a response surface with a plane and 
the equation of a best fitting plane may yield a different value for b1 than what was 
obtained in Step 1. For this reason, the software packages that recheck the t-values at 
each step should be used for stepwise procedure.  

In the third step, the software program searches for a third variable from the 
remaining (k−2) variables to be included in the model to determine the third 
variable for the model with x1 and x2 in the model. That is, we search the best 
model of the form

To obtain the third best variable to be included in the model, the software fits 
the models using x1, x2 and each of the remaining (k−2) variables, xi and finds
the best third variable x3. 

The stepwise procedure uses an extremely large number of t-tests
(depending on the number of independent variables). This may lead to a high
probability of type I or type II error. When a large number of t-tests are conducted
on the regression coefficients, the probability may be very high that some
unimportant independent variables are included in the model (Type I errors) or 
some important variables are excluded (Type II errors).  

αα

α

Table 7.15 Stepwise regression steps

stepwise regression model. Once the data including the response and the 
independent variables are submitted to the software, the stepwise regres-
sion procedure works as described in Table 7.15.
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Example 7.7—Stepwise Regression

For the stepwise regression example, we will use the data shown in 
Table 7.16. In this problem the fuel consumption of automobiles in 
miles per gallon (Mpg) is related to five independent variables or pre-
dictors. We will use MINITAB to run a stepwise regression model to 
screen out the nonsignificant variables and build a regression model. 
The data are in file MULTIREG (MPG). MTW.

The stepwise regression output is shown in Table 7.17 followed 
by an analysis of the computer results. The steps to run the stepwise 
regression using MINITAB are explained in Appendix A_Table A.17.

Note that in Table 7.17, the first variable included in the model 
is x3 (horsepower). The next variable to be included in the model is 

Table 7.16 Fuel consumption (Mpg)

1   18        40     4.2         120         3        5
2   22        37     3.8         135         2        3
3   31        60     4.0         140         1        4
4   25        50     3.9         132         2        3
5   30        51     4.2         142         1        4
6 21        44     3.0         130         3        5
7   29        45     3.8         142         1        3
8   32        64     3.2         148         3        2
9   15        46     4.8          96         4        5

10   20        45     4.5 130         2        3
11   23        57     4.2         138         3        3
12   32        57     3.4         140         1        1
13   22        38     4.1         141         3        2
14   24        40     4.0         142         2   3
15   17        52     5.5         100         4        5
16   20        48     4.3         110         2        2
17   23        40     4.1         142         2        3
18   25        56     3.8         135         3        4
19   15        52     5.5         110         5        5
20   26        60     4.5         148         3        3
21   26        52     3.8         138         3        3
22   30        62     3.7         135         3        5
23   22        48     4.0         140   4        3
24   26        60     4.4         148         3        4
25   18        53     4.3         136         5        4
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Altitude (x4) in Step 2. In Steps 3 and 4, the variables to be included 
in the model are x1 (Average speed) and x2 (the weight). After Step 4, 
MINITAB stops because no other variables met the criterion for inclu-
sion into the model. Note that MINITAB uses α = 0.15 for the t-tests. 
This means that if the p-value associated with a regression coefficient 
(b) exceeds α = 0.15, the variable is not included in the model.

The computer results using the stepwise regression in MINITAB 
suggest that we should include the four independent variables x3, x4, 

Table 7.17 MINITAB output for stepwise regression

Alpha-to-Enter: 0.15  Alpha-to-Remove: 0.15

Response is Mpg (y) on 5 predictors, with N = 25

Step                   1      2       3      4
Constant         −10.965  2.669  −4.099  7.409

Horsepower (x3)     0.261  0.198   0.145  0.107
T-value             5.24   4.37    5.16   3.66
P-value            0.000  0.000   0.000  0.002

Altitude (x4)             −1.94   −2.43  −2.20
T-value                   −3.37   −6.96  −6.78
P-value                   0.003   0.000  0.000

Av. speed (x1)                    0.301 0.307
T-value                            6.45   7.35
P-value                           0.000  0.000

Weight (x2)                              −1.80
T-value                                  −2.49
P-value                                  0.021

S 3.51   2.92    1.73   1.55
R-Sq 54.46  70.00   89.94  92.33
R-Sq (adj)          52.48  67.27   88.50  90.79
Mallows Cp          92.1   55.5     8.0    4.0

Stepwise regression: Mpg (y) versus Av. speed (x1), Weight (x2), …
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x1, and x2 in the model. Based on the result of the stepwise regression 
in Table 7.17, the best model appears to be:

Mpg ( y) =  7.409 + 0.307 Av. speed (x1) − 1.80 Weight (x2)  
+ 0.107 Horsepower (x3) − 2.20 Altitude (x4)

The previous model is written using the column labeled (4) in 
the stepwise regression output in Table 7.17. At this point, mod-
els with interactions and second-order terms should be evaluated 
to determine the best possible model for predicting the fuel con-
sumption y or Mpg.

Another Look at Stepwise Regression

In building the regression model, often we want to find the model that 
explains a high percentage of variability in y. The appropriate measure 
for this purpose is the coefficient of determination r2. Refer to the 
row that displays the coefficient of multiple determination “R-sq” in 
Table 7.17. Figure 7.6(a) and (b) display decision trees that show how 
the independent variables are added in a stepwise regression based on 
the value of r2.

In Figure 7.6(a), regression is performed with each of the indepen-
dent variables. The coefficient of determination with each independent 
variable is shown in this figure. The largest coefficient of determination 
r2 is 54.5% for the third variable x3 (horsepower). Therefore, this is the 
first predictor variable added to the model. The decision tree shows 
that the variable x3 with a r2 value of 54.5% is the first one to be 
included in the model.

In the second step, the regression is performed with y, the response 
variable x3 (the variable selected in Step 1), and the remaining indepen-
dent variables added one at a time. The r2 values with each of indepen-
dent variables are shown in Figure 7.6(a). The largest r2 is obtained by 
adding the predictor x4 to the model. This value is shown as R2yx3x4 = 
70.0% and also in Step 2 of Table 7.17. This is the next predictor to be 
included in the model.
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The steps are continued in Figure 7.6(b). The process continues in 
the same way and is usually terminated when there is no improvement 
in the r2 value by adding other predictor to the model. Note that in 
each step of the decision tree in Figure 7.6(a) and (b), there is a branch 
indicating “No predictor.” This simply means that we may choose not 
to add any predictor to be included in the model.

The prediction equation based on the decision-tree model:

Mpg ( y) =  7.41 + 0.307 Av. speed (x1) − 1.80 Weight (x2)  
+ 0.107 Horsepower (x3) − 2.20 Altitude (x4)

Figure 7.6(a) Decision tree for adding predictors in stepwise 
regression
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Summary

In this chapter, we discussed models other than the multiple and quadratic 
or nonlinear models. In particular, we explored the following models: 
(a) models with qualitative independent (dummy) variables, (b) interac-
tion models, (c) all subset regression, and (d) stepwise regression models. 
The dummy variables are the qualitative variables that are often required 
to be included in the regression model. The example of dummy variables 
would be the sales territories where a company operates. To include dif-
ferent zones or the territories in predicting the sales for a company, the 
dummy variables could be included in a regression model. In this chapter, 
we presented examples of dummy variables and provided computer anal-
ysis of these models. The other regression model we discussed is known as 
the interaction model. This type of model takes into account the effect of 
interaction between the independent variables. We presented a regression 
model that investigated the relationship between the profit of large retail 
stores and two independent variables store location and store size. We 
demonstrated that the profit of the stores under investigation depends 
not only on the store size and location of stores but a combination of 
these two variables—the store size and location also influences the profit. 
This required an interaction term to be added to the model. In many 
cases, there may be an interaction among the variables. Adding an inter-
action term can greatly improve the predicting ability of the model.

We also introduced the concept of All Subset Regression. In building 
a regression model, often the objective is to determine the model that 
explains a high percentage of variability in the response variable y. This is 
measured using the coefficient of determination r2. The all subset regres-
sion method can be used to search for the best predictors to be included in 
the model. Finally, we discussed Stepwise Regression method. This method 
is often used to select the independent variables or predictors from a large 
set of independent variables in the model. A computer example was pre-
sented to demonstrate the procedure of identifying potentially important 
independent variables to be included in the model.



There are other regression models that are not discussed here. Other 
models can be developed using the concepts presented. Some of these 
models are explained here.

CHAPTER 8

Notes on Implementation of 
Regression Models

Regression Models

Regression is a powerful tool and is widely used in studying the relation-
ships among the variables. A number of regression models were discussed 
in this book. These models are summarized here:

Simple linear regression y = b
0
 + b

1
x + e

Multiple regression y = b
0
 + b

1
x1 + b

2
x2 + … + bkxk + e

Polynomial regression 
(second-order models 
can be extended to 
higher order model)

Second-order polynomial:

y = b
0
 + b

1
x1 + b

2
x2

2
 + e

Higher order polynomial:

y = b
0
 + b

1
x1 + b

2
x2

2
 + … + bkx

k
 + e

Interaction models An interaction model relating y and two quantitative 
 independent variables can be written as
y = b0 + b1x1 + b2x2 + b3x1x2

Models with dummy 
variables 

General form of model with one qualitative (dummy) 
 independent variable at m levels 

y = b0 + b1x1 + b2x2 + … + bm − 1
xm − 1

where xi is the dummy variable for level (i + 1) and

xi
i

=
+{0

1 1
otherwise
if is observed at levely ( )

All subset and stepwise 
regression

Finding the best set of predictor variables to be included in 
the model
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Implementation Steps and Strategy for 
Regression Models

Successful implementation of regression models requires an understand-
ing of different types of models. A knowledge of least squares method on 
which many of the regression models are based as well as the awareness 
of the assumptions of least squares regression are critical in evaluating 
and implementing the correct regression models. The computer pack-
ages have made the model building and analysis easy. As we have demon-
strated, the scatterplots and matrix plots constructed using the computer 
are very helpful in the initial stages of selecting the right model for the 
given data. The residual plots for checking the assumptions of regression 
can be easily constructed using computer. While the computer packages 
have removed the computational hurdle, it is important to understand 
the fundamentals underlying the regression to use the regression mod-
els properly. A lack of understanding of least squares method and the 

Reciprocal transfor-
mation of x variable

this transformation can produce a linear relationship and is of 
the form:

y
x

= + 



 +b b e0 1

1

this model is appropriate when x and y have an inverse rela-
tionship. Note that the inverse relationship is not linear.

Log transformation 
of x variable

Log transformation 
of x and y variables

the logarithmic transformation is of the form:

y = b0 + b1ln(x) + e

this is a useful curvilinear form where ln(x) is the natural 
logarithm of x and x > 0.

ln(y) = b0 + b1ln(x) + e

the purpose of this transformation is to achieve a linear rela-
tionship. the model is valid for positive values of x and y. this 
transformation is more involved and is difficult to compare to 
the other models with y as the dependent variable.

Logistic regression this model is used when the response variable is categorical. In 
all the regression models we developed in this book, response 
variable was a quantitative variable. In cases where the response 
is categorical or qualitative, the simple and multiple least 
squares regression model violates the normality assumption. 
the correct model in this case is logistic regression and is not 
discussed in this book.
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assumptions underlying the regression may lead to drawing wrong con-
clusions and selecting incorrect alternative course of action. For example, 
if the assumptions of regression are violated, it is important to determine 
the alternate course or courses of action. The following are important 
considerations in regression and modeling.

Guidelines for Simple Linear Regression

• In case of simple regression, construct a scatterplot to identify 
the possible relationship between x and y.

• Construct a matrix plot to investigate the possible relation-
ships between the response variable y and the independent 
variables.

• Compute and interpret the regression statistics including the 
standard error of the estimate, coefficient of determination 
(r2), and adjusted-r2.

• Construct the plots of residuals and check for the assumptions 
of regression. In case of linear regression, analyze the residual 
plots to check whether normality, equality of variance, and 
the independence of error assumptions are met.

• Check the plot of residuals versus the fitted values or fits to 
confirm that the selected linear or quadratic model is appro-
priate. Always perform residual analysis to check for the 
model adequacy.

• If data were collected over time, plot the residuals versus time 
and use the Durbin–Watson test to check for the indepen-
dence or errors (check whether the errors are correlated).

• If the assumptions of regression are not met, consider alterna-
tive methods to least squares regression.

• If regression assumptions are met, carry out the tests for the 
significance of regression coefficients and develop confidence 
and prediction intervals.

• Test for outliers and influential observations.
• Make prediction using the fitted regression line. Avoid mak-

ing predictions outside the relevant range of the independent 
variable. Figure 8.1 outlines these steps.
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Simple linear regression and
correlation

Simple regression
(relationship between two

variables)

Scatter plot

Leastsquares
regression analysis

Best fitting line

Model adequacy tests

Plot residual over time
Data collected in
sequential order
(or, over time)?

Residual analysis

All assumptions met?

Check for outlier and influential
observations

Perform significance test
H

0 
: b

1 
= 0

Is regression model
significant?

Use the model for prediction and
estimation

No

Yes

Yes

No

No
Conduct Durbin–Watson

test for autocorrelation

Is there evidence of
autocorrelation?

Use alternative to
regression

Yes

No

Yes

Correlation
(Degree of association between

two variables)

Coefficient of correlation, r

Test the Hypothesis
H

0
:r = 0

Figure 8.1 Flow chart depicting the simple regression steps
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Guidelines for Multiple Regression and Modeling

The flow chart in Figure 8.2 provides guidelines and possible steps for 
building the multiple regression models. Many of these steps are similar 
to what we discussed earlier for the simple regression model and described 
in the flow chart of Figure 8.1. Some additional steps are needed for 
 multiple regression models. These are outlined as follows:

• For multiple regression models, construct the matrix plot to 
identify the correct model.

• Decide whether the first-order model is adequate for the data, 
or the interaction or higher order terms should be included.

• Build the appropriate model and check for the model ade-
quacy by evaluating the residual plots. Make sure that all the 
assumptions of the model are satisfied.

• If the interaction or higher order terms are included in the 
model, evaluate these terms.

• If all the assumptions of regression are satisfied, conduct the 
F-test for the overall significance of the model.

• Conduct the t-tests for the significance of each of the inde-
pendent variables.

• Compute the variance inflation factor (VIF) for each inde-
pendent variable to determine which ones to include in the 
model.

• Conduct the influence analysis and tests for outliers to deter-
mine whether to remove any observations from the model.

• Consider alternative models for the problem if necessary.
• Use all subset and stepwise regression models if a large 

 number of variables are under consideration.

Summary

This chapter provided an overview of the models considered in this book. 
Two flow charts were presented outlining the steps to guide the user 
through the regression and modeling steps. The first flow chart described 
the steps that should be followed in building, constructing, and imple-
menting the simple regression model. The second flow chart relates to 



190 APPLIED REGRESSION AND MODELING

the implementation steps for multiple regression, interaction, and other 
models. Model building is an art that can be mastered through  practice. 
A  number of models are at the disposal of the user and it is difficult 
to agree on the best multiple regression model. The strategies in this 
 chapter are expected to avoid some of the pitfalls of multiple regression 
and  modeling. Use of computers in building and implementing these 
models definitely relieves one from complex computations involved in 
these models.

Multiple regression
models

Is the dependent
(response) variable

quantitative?

Do a matrix plot (plot each y vs.
each x or matrix of plots)

Is the first-order model
with no interaction terms

appropriate?

Are interaction terms
and or dummy variables 

or both needed?

Include the possible interaction
terms and the dummy variables

Fit the selected model

Determine whether interaction
terms are significant

Check for model
adequacy or select
alternate model

Perform residual analysis

Are the assumptions
of regression

satisfied?

Check the overall significance of
regression model

Is the overall
model significant?

Test for the significance of each
independent variable or test portions of

model (Partial F-test)

Use the model for prediction
and estimation

Yes

Yes

No

No

No

No

Yes

Yes
Yes

Use logistic
regression or alternative

to regression

Figure 8.2 Flow chart depicting the multiple regression and modeling 
steps
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Linear regressions, 13–14

Matrix plots, 9–10, 91–92
MINITAB, 3, 25, 137–140, 159, 

173–175, 181–182
Model building

description, 133
first-order model, 134
second-order model, 134–135
single quantitative independent 

variable, 133–137
third-order model, 134–135

Multicollinearity, 114–122
Multiple linear regressions, 3
Multiple regression computer analysis

adjusted coefficient of multiple 
determination, 96–98, 
124–126

assumptions, 128–130
coefficient of multiple 

determination, 95–96
confidence and prediction intervals, 

109–114
F-test, 99–102
hypothesis tests, 98
inferences, 108–109
interpreting regression equation, 

94–95
linear model, 93
matrix plots, 91–92
multicollinearity, 114–122
overall significance testing, 98–99
problem description, 88
regression equation, 94
residual analysis, 126–128
scatterplots, 88–91
standard error of the estimate, 95
testing significance, 123–124
t-test, 102–109

Multiple regression equation, 82–83
Multiple regression model

assumptions, 87–88

computer analysis (See multiple 
regression computer analysis)

definition, 2
estimated multiple regression 

equation, 83
guidelines for, 189–190
least squares method, 83–85
mathematical form of, 82
multiple regression equation, 

82–83
population, 82
quantitative independent variables, 

85–87

Negative relationship, 5
Normal equations, 22

One qualitative independent variables
at three levels, 151–154
at two levels, 150–151

Outlier analysis, 72–76

Population multiple regression model, 
82

Positive relationship, 5, 22
Prediction equation using regression, 

176–178
Prediction intervals, 40–42, 62–64, 

109–114
Predictors, 14
p-value approach, 123

Quadratic model vs� linear model
example, 145–147
fitted line plot, 144
residuals plots, 144–145

Regression analysis
description, 1–2
multiple, 2
simple, 2

Regression equation, 15
Regression model

estimated regression equation, 
16–17

implementation steps and strategy 
for, 186–187

least squares method, 17–22
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normal equations, 22
regression equation, 15
simple linear regression method, 

15–17
Regression model assumptions

equality of variance assumption, 
65, 67

independence of errors, 65–66
linearity assumption, 66–67
normality assumption, 65, 67
population regression model, 65
residual analysis, 67–72

Regression testing
correlation coefficient, 47–48
F-test, 45–47
t-test, 43–45

Residual analysis
calculating and storing residuals 

and standardized residuals 
using MINITAB, 68–70

using MINITAB residual plots, 
70–72

Scatterplots
best-fitting curve, 8–9
with correlations, 26
definition, 4
heating cost vs� temperature, 5
hours vs� units, 31
multiple regression computer 

analysis, 88–91
quality rating vs� material cost, 6
with regression line, 7
sales vs� advertisement, 5
sales vs� advertisement expenditures, 

18–19
summer temperature vs� electricity 

used, 6
x and y, nonlinear relationship, 8–9

Second-order model
computer results, 137, 142–143

examples, 135–137, 145–147
scatterplot, 136
single quantitative independent 

variable, 134–135
using Excel, 140–141
using MINITAB, 137–140

Simple linear regressions, 3
guidelines for, 187–188

Simple regression analysis, 2, 14
Durbin-Watson statistic tests, 

76–79
influential points, 72–76
outlier analysis, 72–76

Simple regression using Excel
coefficient of determination, 53–54
F-test, 55
instructions, 52
regression output, 52
t-test, 54

Simple regression using MINITAB

best fitting line equation, 57–58
coefficient of determination, 58–59
confidence interval, 59–62
output analysis, 56–57
prediction interval, 62–64
standard error of the estimate, 58
steps to create, 55–56

Single quantitative independent 
variable, 133–137

SRES1 (Standardized Residuals), 
73–74

Standard error of estimate, 34–35, 
58, 95

Stepwise regression, 178–183

Third-order model, 134–135
t-test, 43–45, 54, 102–109

Variance inflation factor (VIF), 116
VIF. See Variance inflation factor
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