
D A V I D A S C H

A p p l y i n g A g i l e P r i n c i p l e s t o
D r i v e O r g a n i z a t i o n a l S u c c e s s

T H E A G I L E

E N T E R P R I S E

THE AGILE ENTERPRISE
Applying Agile Principles to Drive
Organizational Success
DAVID ASCH
“Not only does Asch make a compelling case for using Agile methodologies across
departments in an organization, he does it through relatable examples and with immense
humour. I continually found myself excited to move on to the next chapter, both for the
educational value and for the raw entertainment.”—Pete Devenyi, (Retired) Senior Vice
President, Global Products and Solutions, Dematic/Author, Decoding Your Stem Career

“I had honestly never thought about Agile for other business functions the way Asch does
and he manages to do so with a great sense of humor. I wish David Asch had written
this book 7 years ago and handed it to me. It would have saved me many headaches.”
—Javier Ferraez, Product Management, Amazon.com

A group of eminent so� ware developers gathered at a Colorado ski lodge in 2001,
codifying The Agile Manifesto, a philosophy for effi ciently accomplishing technical work. In
this accessible, real-world-example-laden, and unexpectedly entertaining book, The Agile
Enterprise explains how to apply The Agile Manifesto’s ideas companywide.

The wisdom imparted in The Agile Enterprise teaches students to decompose large problems
into manageable chunks, helps managers fi nd their value among self-managing teams, and
enables executives to measure and recognize success in their own Agile enterprises.

David Asch produced robust, Enterprise So� ware-as-a-Service, cloud-
based products in all his managerial positions throughout a storied 36-year
career. He introduced Agile philosophy and methodologies to each of
his companies, enabling his teams to meet their goals. Asch currently owns
and operates 10xPrinciples, a management/organizational consulting
company, that helps technology companies navigate the transition from
startup to mid-stage. During this time of rapid growth and change, teams
typically fi nd that the “wearing many hats” behavior from their startup

days is no longer the best approach to honoring commitments. Asch helps these companies
weave Agile practices into the fabric of their cultures.

Portfolio and Project Management Collection

Tim Kloppenborg and Kam Jugdev, Editors

A
SC

H

ISBN: 978-1-63742-547-3

TH
E A

G
ILE EN

TER
P

R
ISE

The Agile Enterprise

The Agile Enterprise

Applying Agile Principles to Drive
Organizational Success

David Asch

The Agile Enterprise

Applying Agile Principles to Drive
Organizational Success

David Asch

The Agile Enterprise: Applying Agile Principles to
Drive Organizational Success

Copyright © Business Expert Press, LLC, 2024

Cover design by Charlene Kronstedt

Interior design by Exeter Premedia Services Private Ltd., Chennai, India

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means—electronic, mechanical, photocopy, recording, or any other
except for brief quotations, not to exceed 400 words, without the prior
permission of the publisher.

First published in 2023 by
Business Expert Press, LLC
222 East 46th Street, New York, NY 10017
www.businessexpertpress.com

ISBN-13: 978-1-63742-547-3 (paperback)
ISBN-13: 978-1-63742-548-0 (e-book)

Business Expert Press Portfolio and Project Management Collection

First edition: 2023

10 9 8 7 6 5 4 3 2 1

For Laurie

Description

A group of eminent software developers gathered at a Colorado ski
lodge in 2001, codifying The Agile Manifesto, a philosophy for efficiently
accomplishing technical work. In this accessible, real-world-example-
laden, and unexpectedly entertaining book, The Agile Enterprise explains
how to apply The Agile Manifesto’s ideas companywide.

The wisdom imparted in The Agile Enterprise teaches students to
decompose large problems into manageable chunks, helps managers
find their value among self-managing teams, and enables executives to
measure and recognize success in their own Agile enterprises.

Keywords

applying the agile manifesto; agile development philosophy; how to build
metrics in an agile environment; best practices for OKRs; managing agile
projects; agile discovery

Contents

Testimonials���xi
Acknowledgments��xiii
Introduction�� xv

Chapter 1	 The Agility Myth���1
Chapter 2	 Brief Tour of Agile Software Development�����������������������17
Chapter 3	 Holistic Challenges of Agile���35
Chapter 4	 The Dirty Secret of Agile���49
Chapter 5	 A Closer Look: Obstacles to Agile�����������������������������������61
Chapter 6	 Measuring Success���81
Chapter 7	 Implementing Organizational Change���������������������������101
Chapter 8	 When Everything’s in Place: What Works Best?�������������123

Glossary��139
References��145
About the Author���147
Index��149

Testimonials

“Over the years, I have read multiple books on Agile methodologies. Some
were quite good, but none was particularly entertaining. David possesses a
unique gift. Not only does he make a compelling case for the use of Agile meth-
odologies across departments in an organization, he does it through relatable
examples and with immense humour. I continually found myself excited to
move on to the next chapter, both for the educational value and for the raw
entertainment. This is far and away the best book on Agile I have ever read.”
—Pete Devenyi, (Retired) Senior Vice President, Global Products and
Solutions, Dematic/Author, Decoding Your Stem Career (BEP 2022)

“For some recent time, many of the professionals involved in innovation proj-
ects, me included, have claimed to follow the guidelines of the Agile meth-
odology. However, at the same time, they have often been aware that such
claims were partially true. In his excellent book, David Asch provides an
enlightening description of how the Agile Manifesto, originally founded on a
theoretical basis, apparently tricky to apply, can be put into practice in simple
and effective ways. Asch shows how Agile can really become a tool to improve
the efficiency of a working group, be it the Engineering core team of a new
startup looking for its place in the business or the HR department of a large
company struggling to keep up with an increasingly competitive market.

Through simple and clear language, made up of examples, checklists, quizzes,
and tutorials, the author intrigues you as a reader, and stimulates to review
your way of dealing with daily work challenges, starting from the aware-
ness of your own room for improvement. By overcoming the Waterfall model,
instinctively and widely adopted, especially when under pressure, he shows
how the more meticulous Agile approach based on broad overview, organi-
zation in micro tasks, strong synergy between teams and real-time evaluation
of results through objectively measurable parameters, can effectively take your
performance to a next level.

xii	 Testimonials

You will discover the importance of deeply comprehending one question and
accurately estimating the effort for its possible resolutions. And you will appre-
ciate the value of analyzing failures and raising red flags to prevent problems
in the future. The Agile managerial mentality that Asch proposes is illuminat-
ing, not aimed at purely providing directions, instead more focused on under-
standing problems and paving the ways to teams’ operations, according to a
deep knowledge of collaborators and work context.”—Alessandro Ossoli,
Chief Operating Officer, KoolSpan, Inc.

“If you’re a CEO, executive, or employee at a firm that wants to be more agile
or that is already in the process, but things are not quite working out, this
book is for you. Also, if you’re interested in Agile, but think it’s only something
for tech companies or for people in IT, this book is also for you. David Asch
explains that much of what Agile is about, has nothing to do specifically with
software, but rather an approach and philosophy of how to tackle work.

One of the most notable aspects of this book is its accessibility. Even if you
have no prior knowledge of Agile methodologies, the book does an exceptional
job of explaining the basics in a way that is easy to understand. The case
studies and real-world examples included in the book are also incredibly
helpful. They provide a clear understanding of how Agile methodologies can
be applied to a range of business functions, from marketing to HR to sales.
I had honestly never thought about Agile for other business functions the way
Asch does and he manages to do so with a great sense of humor.

I wish David Asch had written this book seven years ago and handed it to
me. It would have saved me many headaches.”—Javier Ferraez, Product
Management, Amazon.com

Acknowledgments

Like many first-time authors, I didn’t realize I had a book in me until
others provided encouragement. The writing was an arduous process that
I wouldn’t have completed without the support of colleagues, friends, and
family.

Interestingly, my most formative Agile experiences occurred long
before Agile became a thing. The late Jim Carbonara, whom I cite in
the book’s introduction, provided a seminal Agile working environment
early in my career. A few years later at a startup called Roadshow Inter-
national, I worked for a superb Vice President of Engineering, Annie
Bernstein, who instinctively broke big problems into small ones and had
us work iteratively. The President and CEO of Roadshow, the late Don
Soults, provided my first glimpse into executive-think when we’d hang
out together working and kibitzing in the office on Saturdays. These early
mentors and friends provided the base upon which I built my subsequent
thinking and Agile practices.

The Business Expert Press team has been amazing. When Ed Stone
reached out to ask if I was interested in writing an Agile book, I didn’t
take him seriously. However, Ed persisted and worked brilliantly to
help me to create a viable outline and proposal. Ed introduced me to
Managing Executive Editor, Scott Isenberg, who provided intelligent
advice and immediate responses to my questions. Kam Jugdev and
Tim Kloppenborg reviewed my proposal and delivered constructive,
thoughtful feedback with a velvet hammer. Charlene Kronstedt provided
expertise, helping me package the book, including her front cover
design. The Exeter Premedia Services Private Ltd. team lent their eagle
eyes, taking my manuscript and producing a cohesive book adhering to
BEP standards.

When I finished writing a solid draft, I had two concerns. First,
I didn’t want to impose my tome on my friends/colleagues with busy jobs
and full lives. Second, would I expose myself as a fraud by putting my
work in front of people who know and live Agile? I needn’t have worried.

xiv	 Acknowledgments

My friends and colleagues were uniformly supportive. I am deeply grate-
ful to Pete Devenyi, Alessandro Ossoli, and Javier Ferraez, who generously
took the time to read the manuscript and write thoughtful testimonials.

Many people have wonderful spouses. Many writers have superb edi-
tors. Few are as fortunate as I am to have a wonderful spouse and superb
editor rolled into one smart, beautiful package. My wife and best friend,
Laurie Adler, has provided unequivocal spousal support and thought-
ful, critical editing in equal measure. Not only does Laurie address my
grammatical deficiencies, but she also challenges my ideas. All the mis-
takes in this book are mine, but Laurie’s contributions immeasurably
elevate the book’s content and readability.

Introduction

Agility is the Holy Grail for today’s corporations. Sleek, speedy, nimble,
and athletic—who doesn’t want that? That’s why most CEOs boast about
leading agile companies. Sadly, even though a CEO sees her business as
an agile panther in the jungle, in most cases, it’s more likely a clumsy,
lumbering elephant, crashing into obstacles instead of adroitly avoiding
them.

The term Agile comes from software development, where teams
achieve success by undertaking small batches of work and fully completing
them rather than engaging in months-long entire systems design sessions.

I came of professional age before anyone boasted about corporate
agility and before Agile became formalized as a software development
philosophy. During these ancient times, I experienced my first brush with
Agile when I was a few years out of college in 1988.

I was a contractor working at the Office of Naval Research (ONR)
in Ballston, Virginia. This was before the Metro was constructed when
Ballston was a sleepy suburb. Mom & Pops dotted the streets, and it was
easy to get terrific and inexpensive Mexican or Asian food for lunch.

I was assigned to the University Business Affairs division of the ONR,
which administered research grants awarded to university professors.
My sponsor was an affable 40-something guy named Jim, the Director
of University Business Affairs. He explained that he wanted to build a
software product for ONR personnel who manage and administer many
grants at university field office sites.

Jim had a spacious office with a large desk, a credenza behind the desk
with a desktop computer, and a small conference table. Jim’s managerial
job didn’t require him to use the computer. This was in the days before
most office workers were tethered to their computers. For the next year,
I sat behind Jim’s desk and worked at his computer while he selflessly sat
at his conference table.

I came to the job with some mad dBase III Plus skills and used them
to build the software. For those not of the 20th century, dBase III Plus

xvi	 Introduction

was a pre-Windows, MS-DOS-based database management system that
allowed a programmer to design data entry screens and navigation.

Nothing was magical about our routine, but we developed a steady
cadence. Jim and I would chat about a piece of the product. Maybe he’d
sketch out a couple of his ideas. I’d go code it up. dBase III Plus made it
remarkably quick to translate an idea to the screen. When I had some-
thing demonstrable, Jim would take a look at the monitor, over my shoul-
der. Sometimes it was hours, sometimes a day or two. We iterated in this
manner until he was satisfied with my work.

When we had a shippable (literally—this was pre-Internet days, and
we used the post office) version, I’d write some documentation and instal-
lation instructions, Then I’d prepare floppy disks (I cannot recall if they
were 5 1/4 or 3.5 inches) for each of the university sites. Jim and I would
take trips to university field offices every few months to train users and
listen to their suggestions.

Our road trips were especially memorable. Although Jim was in a
managerial position and it behooved the workers at these sites to treat
him nicely, it was obvious to me that everyone genuinely loved him. Since
I had Jim’s full support, even though my work was replacing their home-
grown systems, I was treated mostly with kindness and acceptance—
and occasional pushback. With Jim’s encouragement, the government
employees at these university sites worked with me to build features and
workflow that enabled them to perform their jobs more efficiently.

This was Agile development on a small scale a decade before the Agile
Manifesto was written. Jim created an environment where we worked
shoulder-to-shoulder in an iterative process. We talked instead of writing
complicated specifications for the work. We shipped working software
at regular intervals and sought immediate feedback from end-users.
Although Jim had probably never heard of the title, Product Manager,
this was his role as well as Subject Matter Expert.

Under the eminently sensible guidance of my beloved mentor, Jim,
we did Agile development before there was Agile development.

The subsequent popularization of Agile and Agile methodologies
provided me the vocabulary, like sprints and iterations, to describe my
early work at the ONR. The most interesting aspect of the experience

	 Introduction	 xvii

was its naturalness. Jim and I fell into an efficient work partnership,
with no special tools or methodologies to guide us.

I imagine the software luminaries who produced the Agile Manifesto a
decade later were guided by the same principles Jim and I practiced. They
merely formalized a set of ideas they were already following that seemed
like old-fashioned common sense.

One of the key ideas in the Agile Manifesto is the suggestion to tackle
large problems by breaking them into small, more easily accomplishable
pieces. Finding large problems needing decomposition requires no imag-
ination when real-life problems are ubiquitous.

Take, for example, the Internal Revenue Service (IRS), the govern-
ment agency tasked with funding approximately everything the govern-
ment does. The IRS operates a monolithic mainframe system running
COBOL, a programming language that was already long-in-the-tooth in
the 1980s.

Unsurprisingly, the IRS is having trouble finding COBOL program-
mers who are still alive. Equally unsurprisingly, the IRS has a long and
unfruitful history of IT projects without end dates.

So, the IRS has a monumental challenge. With the weight of funding
the entire U.S. government on its shoulders, there are probably many
areas of the software that are so brittle, the IRS programmers are afraid to
touch them when problems occur.

If anything screams for an Agile approach, it’s the IRS’s antiquated
systems. By chipping away at pieces of the system, and replacing obsolete
chunks with modern, well-built software, the IRS could slowly but pre-
dictably replace old with new. Instead, the IRS appears to be planning a
big bang approach where they take years to design and implement a new
system that invariably falls flat because it’s outdated before it’s unveiled.

I’m picking on the IRS because its immense problem illustrates the
need for this book. Computing was in its infancy when the IRS designed
its software. The software development process was modeled after build-
ing construction projects at that time.

Given the immense costs of making mistakes, building construction
requires a fully approved architectural design before pouring the first drop
of concrete. Unlike construction mistakes, software errors are inexpensive

xviii	 Introduction

to repair when they’re caught early. Still, it wasn’t until the 21st century
that software development philosophy diverged sharply from the con-
struction project mindset.

Many corporate and government enterprise software projects are still
mired in old-school thinking. Consequently, many modern software
projects involve lengthy upfront design and documentation, followed by
lengthy development, followed by lengthy testing. When the user finally
receives the finished product, they may no longer be interested in the
problems the software solves.

Fortunately, most companies don’t face crises as gargantuan as the
IRS. Still, a problem’s a problem, and even the most well-run compa-
nies have them in spades. Over the course of my long career in small- to
mid-sized commercial software companies, I’ve witnessed the success of
Agile thinking across the board, not just for technical teams. Nontech-
nical departments like HR, Customer Support, Marketing, and Sales all
benefit by approaching their work from an Agile mindset.

I started a consulting practice in 2020, 10xPrinciples, based on the
idea that the best engineers are 10 times (10x) more effective than most
of their colleagues. 10x performance isn’t unique to engineers. Any
high-performing company has superstar marketers, salespeople, magical
customer support agents, and über-emotionally intelligent recruiters.

In the nature versus nurture debate, 10x performance demands a level
of innate talent, but it also relies upon learned behavior. Teaching peo-
ple to think and work in small chunks is one especially effective way
to nurture 10x talent. I’ve found that skills like problem-solving and
open-mindedness are just as important to 10x performance as having a
first-rate technical toolbelt to draw from.

The most important aspect of my work at 10xPrinciples is helping
companies apply Agile philosophies to all their intractable problems,
not just the technical ones. With a base of Agile philosophy, a dollop of
creativity, and several tablespoons of trust and collaboration, I’ve seen
companies solve even their most complex problems.

Like many first-time authors, I questioned my qualifications before
I embarked on writing this book. I began my career teaching math and
computers at a private New England high school for a couple of years.

	 Introduction	 xix

Although I loved teaching and vowed to return to it somehow, comput-
ers were my passion. I subsequently became a programmer, seeking and
securing my first job as a contractor at the Federal Aviation Adminis-
tration in Washington, DC, by phoning tech companies I found in the
Yellow Pages. After a few years of government contracting, I decided to
work at software companies in the private sector. Midway through my
career, I started managing mostly Engineering and Product teams.

I’ve influenced cross-company processes at the executive level and
applied the Agile principles I espouse in this book. Much like the cycli-
cal nature of Agile projects, my career trajectory is circular. I began as a
teacher and have become a teacher again, albeit not in the classroom.

One of the marvelous aspects of consulting is living the experiences
I write about. My work is my laboratory. My especially experimental
customers have taught me about failing fast, tweaking the variables, and
trying again.

Agile is a philosophy. Most philosophies don’t come with instructions
about applying them to real life. Although the Agile philosophy isn’t par-
ticularly esoteric, it doesn’t prescribe behavior for actual work scenarios.
This book is packed with examples and case studies that help illustrate
Agile concepts and how they can be applied to real business problems.
Some of the examples and case studies I include are loosely adapted
from my real-life consulting engagements. The names and situations are
changed to protect privacy.

When critics complain, “Agile doesn’t work,” they’re usually knocking
Agile methodologies like Scrum and not the Agile philosophy. As this
book discusses in detail, in addition to teams fully internalizing the Agile
philosophy, it’s also important to take the useful pieces of methodolo-
gies and adapt them. Many of the Agile problems and solutions outlined
in this book result from incorrect interpretations of Agile itself, heavy-
handed processes, corporate dysfunction, or the inability to recognize
success or failure.

For completeness, I present several methodologies that help teams
to operationalize Agile concepts. There’s nothing wrong with a meth-
odology if it increases a team’s effectiveness. But caveat emptor—
tools and processes are at best a secondary distraction and at worst an

xx	 Introduction

obstacle. Like the Agile aficionados say, “Individuals and interactions
over processes and tools.” This book focuses on using Agile ideas to
become a lean, mean, problem-solving team.

How to Read the Agile Enterprise

I hope this text is such a page-turner that readers consume the entire book
in one big gulp, forgoing all other responsibilities and biological needs.
At the same time, I also recognize this book is for harried people trying
to get a leg up. Therefore, I acknowledge that some may pick and choose
to read the parts of the book with the highest correlation to their most
pressing problems.

Piecemeal readers, rejoice. Each chapter in The Agile Enterprise stands
alone. Except for some case studies introduced in one chapter and refer-
enced elsewhere, understanding a chapter is not predicated on absorbing
the previous ones.

If terminology in a chapter is unclear, it was likely defined in an earlier
chapter. A handy Glossary at the end provides definitions for every piece
of business/technology jargon in the text.

CHAPTER 1

The Agility Myth

Agility is a positive word connoting nimbleness, speediness, and adapt-
ability. Every CEO wants their company to be agile, and no CEO wants
their company to be the opposite—lumbering, slow, and rigid. Yet few
companies are truly agile.

Most companies aren’t agile because developing cohesion between the
Sales, Marketing, Human Resources, Product, and Engineering teams is
difficult. While the leaders of each team are technically aligned as corpo-
rate representatives, their goals and objectives may be incompatible with
their peers’ goals and objectives. Before bemoaning a company’s inflexi-
bility or celebrating its sprightliness, a good first step is to examine exec-
utives’ differing objectives.

The Mistaken CEO

The CEO of a publicly traded company may view her purpose as
maximizing shareholder value. The same company’s Chief Technical
Officer (CTO) may see his role as delivering a technically sound software
architecture. The head of Customer Success may say her job is to ensure
that every customer has a good experience with the product and remains
a customer.

Two interesting takeaways from the previous paragraph:

1.	Three different leaders in the same company state three different rai-
son d’êtres. One’s mission depends on where one sits. People on the
financial side of a business tend to focus on money. People on tech-
nology teams care about the nerdy engineering stuff. Customer-facing
employees view their roles as an extension of customer happiness.

2.	A company does not have goals. Indeed, a company cannot be agile.
Only the people within a company may be agile. Only actual living,

2	 THE AGILE ENTERPRISE

breathing people have a purpose. The company is merely a legal
construct with a Tax ID number. Although this may seem like split-
ting hairs, it’s important to remember that a company is nothing
more than an aggregation of great people who contribute their ideas
and energy.

To maximize shareholder value, the CEO must make the company
as profitable as possible. Companies profit when their customers clamor
to buy the company’s products. A CTO wants to build a robust software
architecture that supports the products customers clamor to buy. The
Customer Success Officer undoubtedly recognizes that helping custom-
ers solve their problems with the company’s products leads to customer
satisfaction. One of the coolest things about well-run companies is how
all roads lead back to the customer.

Agile companies are responsive to their customers’ ever-changing
problems. Lumbering companies are slow to understand or acknowledge
their customers’ problems and deliver inappropriate solutions. Again,
“agile companies” is merely shorthand for companies that employ a
nimble workforce with some special qualities. The qualities required for
agility are in short supply and, as a rule, are difficult to harness.

Every Rule Has Exceptions

Some companies have the prescience to conjure needs and desires before
customers articulate them. Take Apple’s invention of the iPod. Apple
didn’t invent digital music, nor did they invent portable music players;
that distinction goes to Sony with their 1979 Walkman. Apple did,
however, build an irresistibly beautiful device to store and play music
while also providing a mechanism for monetizing and streaming music.

Apple created a solution to a problem customers couldn’t articulate
because they didn’t have the right vocabulary. The popularity of the
Walkman demonstrated a market for portable music. Apple riffed on the
concept for the digital age.

Steve Jobs was a singularly unique CEO whose direct involvement
in product development and design led Apple to greatness. He also
ushered in a generation of Steve Jobs wannabe CEOs whose tone-deaf

	 The Agility Myth	 3

micromanagement hindered their companies’ forward progress. Jobs was
an outlier whose uniqueness has already been examined by terrific writers
in thick biographies.

Rather than rehash Steve Jobs’ genius, his approach to decision-
making is germane to this agile discourse. A well-known example: Steve
Jobs famously maintained a wardrobe of identical black turtlenecks and
black jeans to avoid the cognitive overhead of deciding what to wear
every morning. Did this make Jobs sartorially agile? Not really. The Jobs
uniform was merely a way for him to avoid decision-making.

However, the point of this much-imitated Jobsian approach to small,
personal decisions is that it freed him to focus on the important ones.
The first principle of agility is classifying decisions by importance. Jobs
classified his wardrobe as inconsequential, and he put it on autopilot. He
regarded the user experience of the iPhone as super-important, demand-
ing intense focus.

As the CEO of not just Apple, but Pixar as well, Jobs spread him-
self very thin. Add to this his insistence on controlling every aspect of
the Apple product design and development, it’s no wonder he wouldn’t
spare five seconds to consider his clothing. People like Jobs tend to under-
stand all the decisions awaiting them, determine the ones they must solve
themselves, and farm out the rest to others. It may seem like Apple was a
one-man band, but Jobs was aided by a strong management team, each
an expert in their area.

Apple is an exception to the agility myth. Even in the absence of Steve
Jobs, the company continues to innovate. With a market cap of U.S.$2.8
trillion, Apple is unimaginably large and different from most of the rest.

Large Companies Are Vulnerable to Competition

Large companies that lack an enigmatic CEO have an understandably
difficult time focusing on the most important decisions and changing
course when necessary. It’s hard enough for a romantic couple to stay
in sync, much less expect everyone in an immense or even mid-sized
company to march to the same beat.

The big players have the benefit of ample money, personnel, and other
resources to overpower competitors even if they cannot outmaneuver

4	 THE AGILE ENTERPRISE

them. However, even the mighty may fall when a large, unavoidable
obstacle presents itself.

Two well-known examples:

1.	The Titanic was a whiz-bang state-of-the-art ocean liner that sank
on April 15, 1912, four days into her maiden voyage. The obsta-
cle was an iceberg. The mighty Titanic could not avoid the obstacle
and suffered unrecoverable damage to its hull. Students of history or
those who watched James Cameron’s eponymous Jack and Rose epic
movie know the sad outcome.

2.	Kodak was sitting pretty in the late 1970s, dominating the mar-
ket in camera and film with sales nearing U.S.$10 billion. While
Kodak wasn’t blindsided by digital photography, its razors/razor
blades business model is what doomed them. Kodak treated its
cameras as a loss leader, using them to sell zillions of rolls of film
later processed and printed on Kodak paper. Although they were
marginally prepared for digital photography, Kodak filed for bank-
ruptcy in 2012, without ever wrapping its head around the idea
that people would digitally share photos instead of printing them
(Brand Minds 2018).

The Titanic and Kodak faced vastly different situations, but both fell
victim to immovable large objects. While the Titanic wasn’t physically
nimble enough to avoid its obstacle, Kodak lacked intellectual nimble-
ness. The common denominator of both is shared hubris and the belief
they were too big to fail. The Titanic may have been lax about iceberg
lookout, believing they could plow through anything. Ditto, Kodak with
the digital photography onslaught.

The Darwinian business landscape is littered with once-great compa-
nies that couldn’t adapt and became extinct. Business evolution is natural
and expected. Nothing lasts forever.

More surprising is the graveyard of failed businesses with outstanding
business models cut down in their youths before realizing their potential
to become household names. Smaller companies may lack the size advan-
tages of the Goliaths, but smallness promotes easier communication,
faster decision-making, and easier pivoting.

	 The Agility Myth	 5

Armchair quarterbacking the failures of smaller companies with
stellar business plans is easy because ivory tower punditry is a bloodless
sport. The real, bloody challenge is fighting in the trenches for a compa-
ny’s survival. That is, nothing is easy about succeeding in business even
with the best ideas and the best teams.

Startups are typically staffed by young idealistic people willing to
work punishing hours for an uncertain future. Older employees may
buy into the company’s vision but have family responsibilities requiring a
steady paycheck and preventing them from making the same time com-
mitment. The danger of attracting solely young employees, or hiring a
homogenous workforce, is the absence of diversity. Diversity in business
isn’t a Woke concept—it’s necessary to have employees of all shapes,
sizes, ages, ethnicities, races, and genders to ensure broadly reasoned,
well-considered decisions.

Potential employees understandably prefer to join rocket ships, not
Titanics. Identifying a business with the best chance for success is too
important for a potential employee to flip a coin. How should outsid-
ers discern the winners from the losers? For that matter, how should
company leaders determine if they are assiduously addressing their
challenges?

Agility Checklist

An Agility Checklist provides a deceptively simple way to determine if
a company can roll with the punches—absorb glancing blows, duck
knockout punches, learn from mistakes, and have fun along the way.

Table 1.1  Agility Checklist

Capability Description Yes/No?
1 Vision Are leaders in place who articulate the raison d’être

of the company—why its idea is the best, why the
best people are in place, and how to best execute
the business plan?

2 Communication Are executives effectively communicating the
company vision and also explaining how individual
teams will contribute to the endeavor?

(Continues)

6	 THE AGILE ENTERPRISE

How Did Your Company Fare?

0–2 Yeses—Not gonna lie, your company may suffer from unenlight-
ened management. However, the first step in fixing a problem is
acknowledging it. If you can effect change in your company, it’s
time to marshal the troops and chip away at the problems.

3–6 Yeses—Most of the respondents who candidly answer probably
fall into this happy middle. Things aren’t terrible, but there’s room
for improvement.

7–8 Yeses—Congratulations! Your company is perfect. Maybe you
shouldn’t have paid for this book because you don’t need it. Joking,
of course. Even the finest organizations have dysfunction if one
examines their nooks and crannies. Look more closely, amigo!

Capability Description Yes/No?
3 Cohesion Is there employee buy-in and understanding of the

vision? The best way to determine this is to ask
employees about the company’s purpose.

4 Measurement Does the company know how to differentiate success
from failure? Ideally, no work is ever undertaken
without also establishing a way to measure success.

5 Experimentation Is there a culture of experimentation? Since no
team has all the answers, the employees need the
capability to run short, controlled experiments.

6 Risk-taking Is failure accepted? There’s plenty written about
failing fast and learning from mistakes. Failure is
often slow and agonizing. An appetite for healthy
risk-taking without recrimination for failure often
results in breakthroughs.

7 Diversity Is the company diverse? Every aspect of diversity—
ethnicity, gender, race, religion, sexual-
ity, age, economic—leads to better-considered
decision-making.

8 Judiciousness Do the decision-makers in the company have
wisdom? A challenge for youthful startups is youthful
decision-making without the benefit of experience.
This isn’t suggesting that old fogeys occupy the
executive suite, but some “old souls” are essential
regardless of age.

(Continued)

	 The Agility Myth	 7

Fixing the Problems

The problem with a checklist like this one is it raises deep, complicated
issues and requests glib Yes/No answers. The answers to just about all
these questions are nuanced and often subjective.

The questions in this Agility Readiness checklist contain enough
ambiguity that many of the answers are probably like, “I’m not really
sure—kinda, sorta, I guess.” If so, not to worry. Many of these items are
aspirational for most companies. Being aware of the capabilities is the first
step in developing the necessary agility muscles.

Still, the Agility Checklist should provide a general feeling of
whether your company is in the agility-ready ballpark. Most of the
items cannot be fixed by snapping one’s fingers or issuing an edict from
on high. However, with some effort, thoughtful, hard-working man-
agers can articulate a vision, communicate it to employees, and ensure
that everyone is rowing the boat in the same direction. Some of the
other items are cultural and must be understood and demonstrated by
the management team.

If colleagues compare their agility assessments, answers will probably
vary wildly. Differing assessments of agility reflect an important point.
Wouldn’t it be terrific if the different departments in a company behaved
like independent human organs working cooperatively to keep their
human host alive? But get real. Yes, everyone in the company is moti-
vated to seek success for the company. But the cooperative organs within
the human body aren’t subject to office politics, kingdom building,
information hoarding, and self-defeating behavior. The human organs
operate independently from the human brain with emotions, jealousy,
and squirrely pettiness.

Piecemeal Agile

Now is the time to differentiate Agile from agile. The adjective agile is
merely an appealing word to which virtually every company aspires.
Agile with a capital A is a different animal referencing an entire software
development philosophy.

8	 THE AGILE ENTERPRISE

Leave it to the software developers. For all their professed iconoclasm,
software folks know a savvy marketing hook when they see one. Taking
a philosophy and labeling it Agile brilliantly frames a concept that holds
universal appeal.

From this point on, the software philosophy is called capital-A, Agile
and the adjective meaning speedy and nimble is lowercase agile.

Software teams in many companies practice some form of Agile.
However, the practice of a software philosophy doesn’t mean this team
has any special enlightenment that’s lacking in the rest of the company.
A software team utilizing Agile software methods isn’t necessarily more
agile than any other team in the company.

Meeting the Implications of Agility

The capabilities in the Agility Checklist (FYI: Agility is capitalized here
because it’s a formal name, not a software philosophy) are easy to under-
stand and devilishly difficult to implement. Companies tend to succeed
when they serve a preexisting need or create a new desire and execute
better than anyone else. Winning seems so simple, but it requires all the
factors in the Agility Checklist. Shortcomings in these capabilities tend to
get in the way of success.

Virtually all the capabilities in the Agility Checklist require coop-
eration among humans. The idea of people working well together may
feel like a quaint concept in this age of artificial intelligence (AI) and
machine learning (ML). Rest assured, although AI/ML will impact jobs
and careers, building a successful company cannot be left to machines
alone. Humans working alongside machines must tackle the communi-
cation, risk-taking, and challenges of judiciousness that make or break
companies.

People can talk a blue streak, process complicated ideas, and evaluate
different opinions. Yet, effective communication is perhaps the biggest
barrier to success. Why is communication so difficult? When companies
begin, communication is easy. A startup company may fit into a garage

	 The Agility Myth	 9

with so few people sitting close together it is almost impossible not to
communicate.

Case Study: The Burger Shack

Suppose two beach-bum friends start up a burger stand at the beach.
They share a vision of high-quality burgers at a fair price. They also
want a lifestyle enabling them to surf every morning and make enough
money to afford their rent. They set up a grill in a little hut with a
window where they serve lunch to customers. When the friends begin,
they offer hamburgers, cheeseburgers, lettuce, tomato, onion, pickles,
ketchup, and mustard. That’s it. The two friends have plenty to juggle
between managing their vendors, deliveries, food preparation, cooking,
and finances.

Demand grows as their reputation builds for quality and price. Lines
go around the corner, and it’s hard for the two friends to keep up. They
decide to take some of their profits and hire two additional staff to help
prepare, cook, and serve food. The company has just doubled in size.
What began as shorthand between the like-minded friends now must be
explicitly communicated to the two workers. It’s still manageable.

The business continues to thrive. Word of mouth and some excellent
restaurant reviews bring in people from far-flung locations. Customers
want more. They request french fries, milkshakes, and hot dogs. The
crowds are great for business but annoying for customers waiting outside
in line for upward of an hour. When they finally get their food, customers
complain the limited outdoor seating is already taken. Customers request
indoor seating to eat their food instead of just a carry-out window with
weather-dependent seating. They want the restaurant to open for longer
hours so they can come for either lunch or dinner.

The two friends are at a crossroads. Although they’re happy with their
business as-is, they see sales plummet on rainy or cold days when cus-
tomers are unwilling to wait outside in discomfort. To satisfy customer
demands, they must enlarge their menu, increase business hours, and find

10	 THE AGILE ENTERPRISE

a location that accommodates sit-down dining. Any one of these changes
complicates their original idea. The would-be burger kings decide to
go for broke, quadrupling their staff and securing loans to cover their
up-front expenses.

In the process of becoming business moguls, the two beach bums have
too much going on to manage every aspect of the restaurant. Still, they
want to retain their original ideas of quality and value. However, instead
of having an implicit understanding, the founders must communicate
their vision through a new management layer.

Without belaboring the Burger Shack example, it’s easy to imagine
how everything becomes more complicated as businesses achieve levels
of success and grow larger. For restaurants, growth often means open-
ing additional locations and possibly franchising. New teams form to
address the different restaurant functions like waitstaff, procurement,
cuisine, and finance. Each team may have different objectives and dif-
ferent locations. What used to be an implicit understanding because
everyone was in the same room now must be communicated over Zoom
in a company all-hands meeting from all the various locations. As com-
panies grow and expand on the original simple idea, the message and
vision become diffuse, sometimes to the point that employees no longer
share a common understanding of the purpose of the business.

The burger example is at once familiar, but it also raises plenty of
questions. The familiar part is the tale of two beach bums who never
aspire to greatness but somehow fall into it. The unlikely success of the
founders changes the nature of their problems. Cracks in agility are most
evident when organizations experience growth.

Burger Shack Agility Checklist

The fast-growing Burger Shack may be a success on paper. However, the
business is undergoing many predictable stresses. A second viewing of
the Agility Checklist from earlier with Burger Shack-specific issues and
mitigations illustrates how a fledgling business positions itself for positive
growth.

	 The Agility Myth	 11

(Continues)

Table 1.2  Burger Shack Agility Checklist

Capability
Burger Shack

Problem Mitigation
1 Vision The founders had the

original vision of quality
and value. Now that the
business has expanded, the
original vision doesn’t really
apply to some aspects of the
business, like the waitstaff
or managing the compli-
cated maze of suppliers and
fulfillment. There is no
longer a vision that unifies
the entire enterprise.

This is one of those Kumbaya
times when management needs
to come together to consider
the business in its entirety. If
the founders are lacking in this
vision, it’s possible they’re not up
to the task of running this new
company.

2 Communication Managers are now in charge
of different parts of the
business—kitchen, serving,
menu, finance, ordering, and
expansion. Although each
manager is part of the Burger
Shack team, they have
different criteria for success
and different incentives. For
example, the waiters may
be incentivized to increase
the total ticket by upselling
fries and other non burger
options, drinks, and desserts;
this has nothing to do with
quality or value.

Setting objectives specific to each
manager’s area of business is fine.
However, these objectives must
be unified and complementary.

3 Cohesion Employees are unable to
articulate why their jobs at
Burger Shack are special.
Many, when answering
anonymously, state, “It’s
a job with a paycheck, no
more no less.” The food
buyers may still be commit-
ted to sourcing the finest
foods from local farmers,
but this isn’t something
the front-line workers even
know about.

Management’s most important
mission is to communicate the
same message to employees
regardless of their jobs or stations.
Leadership should inspire pride in
the company and the importance
of each person to the mission.
In this case, educating front-line
workers about the farm-to-table
aspects of the business illustrates
the uniqueness of Burger Shack
and may become a source of pride
in the mission.

12	 THE AGILE ENTERPRISE

(Continued)

Capability
Burger Shack

Problem Mitigation
4 Measurement The founders never built

tools to measure the effec-
tiveness of their decisions.
Instead, they made their
decisions based purely on
what they liked. They con-
tinue to view measurement
as too corporate and still
take a gut-level approach
to decision-making. Rather
than understanding their
sales numbers at a detailed
level, the founders just
care about their net profit.
Therefore, they have no
idea how a big change like
increasing their hours might
affect the business because
they have no concept of
tracking sales totals by the
hour, tracking the food
items that are popular at
different times, or myriad
other measurements that
help to understand the
business at a microlevel.

The need to measure instead of
going with gut-level decision-
making is a cultural shift that
needs to come from the top.
If the leaders of the company
insist on nonscientific thinking,
it’s likely they will make costly
mistakes.

5 Experimenta-
tion

Burger Shack has lost a sig-
nificant amount of money
chasing customer sugges-
tions that didn’t pan out.
For example, they increased
their hours only to find
that their dinner traffic was
light without a license to
serve alcohol. When the
founders started serving
french fries, they adhered to
their values and tried to buy
high-quality ingredients at
a good price. However, they
didn’t spend time trying out
different oils and experi-
menting with hand-cutting
potatoes.

As the restaurant expands to
multiple locations, experimen-
tation is easy and important.
Instead of committing, testing
the waters with easily reversible
experiments enables the teams to
rapidly cycle through ideas and
commit to the best ones.

	 The Agility Myth	 13

Capability
Burger Shack

Problem Mitigation
6 Risk-taking Given that there’s little

culture of experimentation,
there’s also little appetite
for trying and failing. The
business impact of failures is
considered too detrimental
to take big risks.

When the founders decided
to sell french fries, they
invested U.S.$10,000 in an
industrial fryer. Although
they were reasonably certain
they’d make their money
back, they figured they could
withstand the loss if it didn’t
pan out. They didn’t view
the french fryer as a big risk.

When a signage vendor vis-
ited the Burger Shack, she
told them a large, neon sign
affixed to the roof would pay
for itself in two years with
the increased foot traffic it
would bring. The founders
passed on this because they
didn’t want to spend the
money on something they
didn’t view as a sure thing.

Much like measurement,
risk-taking is a cultural value
that must come from conscious
management. That is, managers
must decide that they welcome
fast failure and will reward rather
than penalize new ideas—even
the ones that fail.

For decisions like expensive sig-
nage, a risk-taking organization
devotes research time to better
understand how signage and
advertising help to grow similar
businesses.

Smart companies take calculated
risks where they believe the odds
for success are in their favor based
on the data they’ve evaluated.

7 Diversity The company is still led
by the two founders, both
like-minded, young, White
males. The management
team consists mostly of their
homogeneous friends.

Until the management team
diversifies, they are subject to
groupthink. The lack of diversity
stymies progress, especially as the
business considers expanding into
neighborhoods or cuisines that
the management team doesn’t
understand.

8 Judiciousness There’s little disagreement
between the management
team and the founders
because they have similar
outlooks. This makes a fun,
harmonious environment
for the management team.

Blanket agreement is problematic.
No, management teams shouldn’t
fight to the death in a cage
match, but the lack of dissension
reflects a lack of judiciousness.
This is where broader, less nepo-
tistic hiring is important.

14	 THE AGILE ENTERPRISE

The Delicate Balance of Process

The Burger Shack example is typical of many businesses. The two found-
ers had a good formula and great chemistry and successfully navigated
through the initial startup phase. Growing the business requires a level
of management agility the team does not currently possess. If the found-
ers get a team on board with diverse viewpoints and experiences, Burger
Shack stands a good chance of successful growth.

Starting and growing a business isn’t for the faint of heart. Look at
almost any successful business that began with two or more cofounders,
and a few years out, at least one of them will invariably be acrimoni-
ously out the door. The intense stress of running a business, from money
problems to people problems, is enough to break up most partnerships.
It doesn’t help that many startups are begun by people barely beyond
childhood who lack sufficient frontal lobe development to navigate both
business decisions and interpersonal relationships.

For example, the two Steves, Jobs and Wozniak, parted ways early
on due to philosophical differences. Bill Gates and Paul Allen also got a
quickie divorce. Ben and Jerry, still friends after their exit to Unilever, are
the exceptions to the rule of failed partnerships. Perhaps Ben and Jerry
succeeded because they were older when they began their company and
had a mature, lifelong friendship. Or maybe ice cream is less stressful than
the computer biz.

When companies start going off the rails, investors frequently step
in, demanding the youthful founders hire some seasoned veterans. The
proverbial “adults in the room.”

The challenges of hiring older managers:

1.	Older managers bring preconceived ideas about how to tame unruly
companies. The taming of unruly companies often ushers in new
processes—formulas and dictates to put some structure around the
work—this sure doesn’t sound like much fun.

2.	Older managers are often less fun and raucous than youngsters.

Process heaviness is a term that generally means: The hoops to jump
through to meet the process are more onerous than the problem it’s

	 The Agility Myth	 15

attempting to solve. Introducing new processes to a company is a delicate
act of needle-threading. Although companies shouldn’t be governed as
dictatorships, neither should they be democracies where everyone gets an
equal vote. Still, for new processes to be accepted, the affected employees
must buy into them. Processes seldom succeed when they are inflicted
upon employees by senior management without worker buy-in.

Companies achieve agility by introducing sensible processes that
fit the business, not vice versa. It never works to take a boilerplate
process from a business management guide and mold the company
around the process. Seasoned managers who join a company first spend
time getting the lay of the land before making any changes. These
enlightened managers become acquainted with employees’ skills and
aspirations and solicit their opinions since many of the best ideas come
from the bottom up.

Key Takeaways

1.	Even though they’re all on the same management team, leaders in
any company have different goals and different measures for success.

2.	Seeking customer satisfaction is the common denominator that
coalesces leaders who have different objectives.

3.	Agile companies are quick to recognize and pivot when their solu-
tions do not adequately address their customers’ problems.

4.	Non-agile companies are slow, lumbering, and unable to recognize
the need to change course.

5.	Apple under Steve Jobs is an example of an agile company.
6.	Most companies are nothing like Apple.
7.	Companies that don’t meet enough of the criteria for agility may

successfully emerge from their startup phase but will face growth
problems.

8.	Increasing corporate agility requires some combination of process
change, culture change, and possibly personnel change.

9.	Every company is unique. A process that works for one company
won’t necessarily work for another company.

10.	Smart managers understand the needs of their company and build
processes to fit, not vice versa.

CHAPTER 2

Brief Tour of Agile
Software Development

A February 2001 gathering of 17 legendary software developers at a
Wasatch Mountain, Utah ski resort, resulted in a set of ideas so ground-
breaking that they named it the Agile Manifesto. Since the ski resort
attendees gathered to have some fun with their friends, they likely never
imagined the global impact of their after-dinner bull session on the soft-
ware development profession (Highsmith 2001).

When many of us hear the term Manifesto, we may think of Marx’s
and Engels’s fiery rhetoric in The Communist Manifesto, which laid the
ideological groundwork for socialism. Comparatively, The Agile Manifesto
is surprisingly brief and gentle. Nowhere in the Agile Manifesto do its
authors call for the “forcible overthrow of all existing social conditions”
demanded by Marx and Engels (Marxist Internet Archive n.d.). Although
the Communist Manifesto may be one of the world’s most influential
political documents, the Agile Manifesto is plenty important within the
world of software development.

The Agile Manifesto

The Agile Manifesto is concise:

“We are uncovering better ways of developing software by doing
it and helping others do it.

Through this work we have come to value:
1.	Individuals and interactions over processes and tools
2.	Working software over comprehensive documentation
3.	Customer collaboration over contract negotiation
4.	Responding to change over following a plan

18	 THE AGILE ENTERPRISE

That is, while there is value in the items on the right, we value
the items on the left more.”

(Beck et al. 2001)

Principles of the Agile Manifesto

The Agile Manifesto’s authors also published a set of 12 underlying
guiding principles (Beck et al. 2001). Instead of reprinting the principles,
the following bullets capture the high points of the Agile Manifesto:

•	 Deliver working software—There’s no better way to
collaborate with customers and other stakeholders than to
give them something to see and touch. Even if each release
is small, establishing a regular cadence of software delivery
opens the door to continuous feedback.

•	 Expect change—As a Programming team scurries around
writing software, the world doesn’t stop. Deals are won and
lost. Senior management comes and goes. New opportunities
arise. The needs of a robust business change much faster
than the cycle of delivering a finished software product.
Architecting a solution with the expectation it will change
is eminently more sensible than hoping for an unchanging
business landscape.

•	 No handoffs—The collaborative nature of Agile development
is antithetical to the notion of Product Management handing
Engineering a brain dump and leaving them to their own
devices. Furthermore, Engineering doesn’t toss a completed
product over the fence for Quality Assurance’s blessing. The
Product, Engineering, and Quality Assurance teams work
side-by-side from start to end, communicate constantly, and
work iteratively.

•	 Sustainability—Nope, this isn’t about saving electricity or
shifting to nonfossil fuels. With Agile, teams must create
schedules, enabling them to sustainably maintain a constant
pace. A sustainable pace is achieved by building in periods
of heads-down work, periods of information gathering, and

	 Brief Tour of Agile Software Development	 19

periods of reflection. Avoiding antipatterns like 80-hour
weeks because they are unsustainable is a key to maintaining
a steady pace.

•	 Self-management—The team takes responsibility for its
working style, standards, and deliverables. Trusting Agile
teams to take responsibility is the way to best ensure they
invest themselves fully in the project.

Review of the Agile Manifesto

With an understanding of the Manifesto’s underlying principles, it’s time
to dig into the meanings of its four simple rules. As its creators state, they
place more value on the left-hand side of each statement but still heed the
right-hand side.

1.	Individuals and interactions over processes and tools—
Remember, the authors of the Agile Manifesto are renowned soft-
ware developers. They recognize that software development is equal
parts art and science. Although processes and tools may provide
an assist, the way to solve difficult problems and deliver elegant
solutions requires the constant collaboration of teammates. It’s
fine if a tool or process helps to facilitate the project, but there’s
no substitute for whiteboarding and talking through complicated
problems.

2.	Working software over comprehensive documentation—The
measure of a successful project is the software. If the software robustly
solves its users’ problems, everyone can go on vacation and celebrate
a job well done. Internal documentation is especially important to
capture an institutional memory of the software’s inner workings,
design considerations, and caveats. If the team successfully delivers
an intuitive, simple product, user documentation can be lightweight,
covering only the areas of potential confusion.

3.	Customer collaboration over contract negotiation—A constant
feedback loop results from delivering small-batch chunks of working
software. Although there’s probably a contract in place with a cus-
tomer stating the parameters of the work, the final product is always

20	 THE AGILE ENTERPRISE

better if it accommodates steady feedback, which invariably differs
from the letter of the contract.

4.	Responding to change over following a plan—Flexibility is
the key to virtually any business project. A plan is merely a set of
forethoughts imagined by businesspeople before the project begins.
When the circumstances of the business change or the iterative devel-
opment gives customers new and better ideas, it’s time to modify
the plan. As Mike Tyson says, “Everyone has a plan until they get
punched in the mouth.” Tyson means having a game plan is fine, but
be ready to change it when reality intercedes.

What’s the Big Deal About Agile?

This Agile stuff seems perfectly sensible, right? To modern ears, Agile
is common sense. Software engineering didn’t start in earnest until the
1970s. Most colleges and universities didn’t even have computer science
majors until the mid to late 1980s. Therefore, the Agile Manifesto authors
were the pioneers.

The Agile software movement replaced a software development
approach called Waterfall. Based on building construction, the Waterfall
method takes a radically different approach than Agile. Imagine pouring
the concrete, laying a building’s foundation, and building the walls, only
to learn the building is pointed in the wrong direction.

There’s no room for winging it in building construction. The architec-
tural plan for the entire building must be created, scrutinized, modified,
and approved before anyone even thinks about construction. The plan
must be followed to a tee. Any deviations from the plan result in costly
redoing of work.

Software is completely different from building construction. The cost
of deviating from a building construction plan is potentially immense,
even life-threatening. The stakes of deviating from a software plan are
significantly lower. Yet, Waterfall was the accepted method for software
development before Agile overtook Waterfall. The software highway is
littered with failed Waterfall projects. Yet, Waterfall projects are still being
initiated.

	 Brief Tour of Agile Software Development	 21

A Brief Tour of Waterfall Development

Understanding Waterfall is the only way to appreciate Agile’s revolu-
tionary nature. Like a real-life waterfall, there’s only one way down and,
hopefully, you don’t crash into the rocks at the bottom. Waterfall is all
about handoffs. A Planning team begins a Waterfall project by mapping
out all the screens, all the interactions, all the system architecture, and
everything else about the project. The upfront planning process is under-
standably long and arduous. The weight and thickness of the resulting
documentation depend on the size of the project, but Waterfall project
documentation is typically voluminous.

The Programming team gets to work after the Design team delivers
a document. Since the document spells out everything in excruciating
detail, there are few reasons for the document’s authors to interact with
the programmers. The programmers build against the specification they
have received and work until completion. Then, the Testing team takes
the finished release and scrutinizes it. The programmers fix any issues, and
the software is released to customers.

What are the chances of success from the Waterfall method? It depends
on how one defines success. Waterfall projects may succeed if success is
measured by the delivery of a documentation tome and a product that
slavishly follows the specification.

The Waterfall method tends to fall apart when success is measured by
how well the software solves a customer’s problems. The Waterfall process
of handing off without circling back and iterating almost guarantees an
ill-fitting solution to a problem that may no longer even exist.

Is There Anything Good About Waterfall?

Although Waterfall has been mostly debunked as an unacceptable soft-
ware methodology, remember that nothing is ever 100 percent good or
evil. The tortuous upfront Waterfall design process does provide a holistic
understanding of the system. Sometimes the Agile approach of chipping
away at a problem with iterative deliverables results in an incomplete
understanding of the whole.

22	 THE AGILE ENTERPRISE

As an example of Waterfall versus Agile, imagine an autonomous ride-
share startup, JustTrustMe, with a shoestring budget, trying to compete
with Uber and Lyft. Since JustTrustMe can’t yet afford developers,
they outsource their Web app to a mobile development company. The
budget-conscious JustTrustMe requests pricing and time estimates from
their contractor.

The contractor may respond:

We’re unsure how long it will take because we don’t yet understand
what you need. Give us a month to work with your team so that
we can sketch out a preliminary set of low-fidelity flow diagrams
that reflect the entire website. After we complete this work and
you review it, we’ll be able to provide pricing and time estimates.

Isn’t the contractor proposing a Waterfall project to holistically
understand the landscape? Not exactly. The contractor needs to learn
enough about the project to size and price it. The diagrams they pro-
duce reflect a general understanding of the entire application but lack a
detailed understanding of any of it.

One of the misconceptions about Agile is that working iteratively on
small chunks of functionality means it’s unnecessary to possess a high-
level understanding of the system as a whole and how the pieces will
ultimately fit together. Gaining a high-level understanding should never
require a multi-month or years-long design cycle, but it requires a rapid,
up-front discovery period.

Weaknesses of Waterfall

Waterfall, oh Waterfall. How do I hate thee? Let me count the ways:

1.	Assumption of stasis: An oft-used “time is passing us by” device in
movies shows the main character walking along, while everyone else
around them is frozen in time. A snap of the fingers starts everyone
up again, unaware of the break in the time continuum. Waterfall
assumes the business problems being addressed remain unchanged
during a long design process. More realistically, the problems that

	 Brief Tour of Agile Software Development	 23

existed at the beginning of the design process will be entirely replaced
by new and different problems by the end of the design process.

2.	No feedback loop: The long handoff cycle of completed work from
one team to another compounds the magnitude of mistakes. Imagine
a finished product delivered to a customer after a multi-year Waterfall
process that no longer serves their needs. The absence of an iterative,
cyclical process means that customers couldn’t opine about early-stage
functionality to nip problems in the bud. Even if the Development
team followed the design specification to a tee, if the spec is wrong,
so is everything else.

3.	Quality control of large batch development: Imagine a small craft
brewery that produces award-winning India Pale Ales (IPAs) and
stouts. The brewery is acquired by a national brand determined to
make the beer available countrywide. Somehow, the beer doesn’t
taste as good as before, and whatever gave it its uniqueness in small
batches cannot be replicated on a large scale. It may be a matter of
micromanaging small-batch brewing along the way.

For example, the brewmaster may taste an interim batch and
decide to make slight changes to subtly improve quality. By impro-
vising instead of adhering to a recipe, a small-batch brewer responds
to minute differences in the hops, malt, and barley to create a unique
and delicious batch each time.

These extemporaneous beer brewing changes become more diffi-
cult in large-scale production because consumers expect consistency.
With Agile, chipping away at a big feature set in short, iterative
work cycles is akin to small-batch brewing. The brew master’s quick
modifications to improve quality are conceptually identical to a team
changing direction after a sprint. Small batch software promotes eas-
ier quality control than large batch software because short delivery
cycles enable developers to incorporate customer feedback and make
small modifications.

A multi-month Waterfall software development effort is like
large batch brewing. Testing large batch software is more difficult
than small batch testing because of the sheer size and greater number
of features, and the lack of small batch checks and balances along the
way. Small batch software is easier to test and fix than large batch

24	 THE AGILE ENTERPRISE

software for a couple of reasons. For one, small batch testing goes
faster because there are fewer conditions to explore. Additionally,
when bugs are discovered in testing small batch work, the code is still
at the forefront of developers’ minds, making the fixes easier.

Throwing the Baby Out With the Bathwater

The idiomatic expression, “throwing out the baby with the bathwater,”
reflects the kneejerk attitude that if an idea is partially incorrect, it’s best
to eliminate the entire idea. When a shiny, new idea replaces an old,
debunked idea, it takes time for the pendulum to return to the sensible
middle ground. Such is the case with Agile and Waterfall.

Although the Agile approach of chipping away at a problem, dou-
bling back, and regularly reevaluating is more sensible than the Waterfall
approach, Agile zealotry is unwise.

Employing a Waterfall process, home builders closely scrutinize the
architect’s plans before moving on to construction. There’s no room for an
architect to half design a building, and wing it on the rest as the building
takes shape.

Constructing software is different from constructing buildings. How-
ever, some aspects of software require an upfront complete understanding
before moving forward. For example, suppose a Software team is building
a new architectural framework for a company’s suite of products. Even
though it’s unnecessary to exhaustively design each architectural com-
ponent at the outset, it’s vitally important to understand the full set of
requirements. Although an upfront big think isn’t precisely a Waterfall
methodology, it is Waterfall-ish.

Misunderstanding the Agile Manifesto

One of the challenges with manifestos, including the Agile Manifesto, is
that instruction manuals don’t typically accompany them. Although the
Agile Manifesto’s authors included their set of guiding principles, these
principles are open to interpretation. For example, one could inter-
pret the Working Software Over Comprehensive Documentation tenet to
mean it’s far better to build something that works instead of writing
about how it should work. While working software is better than great

	 Brief Tour of Agile Software Development	 25

documentation, it doesn’t mean the documentation is optional. That is,
accomplishing the first tenet of a principle doesn’t obviate the need for the
second. A common-sense reading of the Agile Manifesto and its guiding
principles isn’t a heavy lift because its language is simple, and its concepts
are clear. However, applying these principles to the rough and tumble of
actual work is devilishly difficult.

The following scenario illustrates how a team might misinterpret the
Agile Manifesto and fail to achieve its objectives: A grocery store technical
team is tasked to build an e-commerce website for online shopping.

All the stakeholders may agree on a general understanding of the
components required for an online shopping website. In the interest of
delivering working software, the team wants to deliver software quickly
with minimal interference. The technical team asks their customers to
choose the most important piece of the application as a starting point.
There’s general agreement that selecting grocery items into a basket is
most important. The developers confer with the product managers and
start coding away. Lickety-split, the team produces the fundamentals of
selecting items and creating shopping carts. In a demo, customers have a
few suggestions but are enthusiastic about the speedy delivery of a work-
ing piece of software.

The customers next request a product search capability. Once again,
the developers discuss as a team and produce a search feature in record
time. The presentation doesn’t go so smoothly when customers review
the search feature. For one, the search requires fuzzy matching instead
of an exact match. For example, fruit roll-ups isn’t recognized because it’s
fruit rollups in the database. The team also neglects to build any filtering
capabilities. For example, typing mango brings up fresh mangos, mango
juices, mango ice creams, and mango face creams, and the user is forced
to wade through hundreds of products without a way to refine the search.

The point of this grocery example isn’t to delve into the minutiae
of an e-commerce website. It’s to point out that Agile development
requires plenty of planning, design, and forethought while also engag-
ing with users. Agile is more a way to focus on small pieces than a
shortcut. So, when the Agile Manifesto states, “Customer collaboration
over contract negotiation,” it’s not a zero-sum sentence. Yes, customer
collaboration is paramount, but there’s also a set of behaviors to which
both sides must agree.

26	 THE AGILE ENTERPRISE

The Agile Industry

The Agile Manifesto creators penned the behaviors they already followed.
What seemed revolutionary to the larger software world was, to the cre-
ators, merely business as usual. Therefore, Kent Beck, Martin Fowler, and
other software celebrities on the ski trip probably didn’t imagine their
ideas about Agile development would spawn the burgeoning industry.

The translation of philosophical ideas into concrete steps is called a
methodology. The methodologies invented to make the Agile Manifesto
approachable are each quite different, but they all have the same goals—
to deliver all the goodies of the Agile Manifesto—working software built
in a collaborative environment with enough wiggle room to turn on a
dime and respond to changes.

Although there are plenty of comprehensive books about each Agile
methodology, here’s a quick and handy guide that hits some of the high
points of each.

Scrum

Scrum is such a well-known methodology that many people incorrectly
consider it synonymous with Agile. Scrum is built around user stories,
which is a whimsical name for a feature that Engineering will build. User
stories, however, have a specific format:

As a [WHO—user persona], I want to [WHAT—explain the action] so
that [WHY—express the reason]

Using our grocery scenario from before, here are a few user story
examples:

•	 As a grocery shopper with a broken leg, I want to order my
groceries online so that I can maintain my independence
without having to pester my daughter to shop for me.

•	 As a grocery shopper, I want to search for items I need to
save time from having to page through every food item on
the website.

•	 As a grocery shopper, I want to filter the results of my searches
when too many items appear so that I can easily see the ones
I care about.

	 Brief Tour of Agile Software Development	 27

There are a few important points to understand about these user
stories:

1.	These stories express a shopper’s needs instead of a website admin-
istrator’s. Often, there are several different types of users of the
same system, and it’s important to identify each feature’s intended
audience.

2.	These stories are quite general and provide no details about imple-
menting these features. By keeping stories vague, the stakeholders
must discuss them to better understand users’ motivations, accept-
able outcomes, and myriad other details. User stories are merely a
starting point.

3.	These example stories are expressed simply but may be too large to
implement. The person with the broken leg in the first story requests
an entire website. The goal of each story is to explain a need that can
be fulfilled within a reasonable amount of time. When user stories
are too unwieldy, writing more focused stories is best.

4.	The Why part of the story is key. If the story writer omits the reason
for the request, the Development team should smell blood in the
water and become piranhas. Sometimes the why is omitted because
the story creator doesn’t know the users’ reason for the request.
Before this story moves forward, the creator should return to the
source and get more information. Implementing user stories without
solid whys leads to unnecessary development or software that doesn’t
adequately address the users’ needs.

There’s an art and science to writing effective user stories, and these
tips just touch the surface. Once the team has an acceptable set of stories
and the engineers understand them, the engineers size the stories relative
to one another based on their estimation of the implementation time for
the story. One common approach to sizing stories is to assign a prime
number between 1 and 11 (1, 3, 5, 7, 11) to each story where a 1 is triv-
ial, and an 11 is exceedingly time-consuming. If the engineers attempt to
assign a number above 11, like in the broken leg example, the story needs
to be trimmed into something more manageable.

28	 THE AGILE ENTERPRISE

At the end of the sizing process, each story will be assigned a number,
aka, story points. Based on experience, an Engineering team may know
they can complete a specific number of story points during a two-week
development cycle, aka, a sprint. If a Product Manager is given the num-
ber of story points that will fit into the sprint, they will choose the most
important combination of stories for the team to implement.

The goal of Scrum is for Engineering teams to deliver working soft-
ware at a regular cadence. Limiting the duration of sprints helps ensure
that stories aren’t obsolete before engineers complete them. Moreover,
short sprints enable the team to focus intensely on a manageable chunk
of work during the sprint.

The best track and field sprinters have ample fast-twitch muscle fibers
as opposed to the slow-twitch muscle fibers of endurance athletes. Sprint-
ers go fast, empty their tanks, and then need to rest. An Agile sprint is
similar—the team works heads-down, uninterrupted, to complete their
stories in a short burst of speed. Then they rest up and regroup. Sprints
are not marathons. After a sprint ends, Scrum teams have a retrospec-
tive where the team evaluates what went well, what didn’t, and how to
improve/pivot in the next sprint.

Kanban

Kanban is an Agile methodology focused on task visualization. Although
Kanban supports all the Agile Manifesto principles, it lacks the structure
and constraints of Scrum. The key to Kanban is a board that displays
all the tasks that may be accomplished in a development cycle. When
engineers select their tasks, a Kanban board provides a window into who
is responsible for each piece of work. Typically, a Kanban board has sev-
eral columns that reflect the various stages of completion—evaluation,
in-progress, in-review, in-testing, and finished.

The concept of sprinting belongs to Scrum. Kanban is more of a mara-
thon where engineers work steadily until all the work items are completed
or when the due date arrives. Nothing in Kanban, however, precludes
working in short bursts. This merging of Scrum and Kanban is called
Scrumban and marries the structural and cultural advantages of Scrum
with the visualization of Kanban.

	 Brief Tour of Agile Software Development	 29

Kanban work is governed by a concept called Work In Progress (WIP).
Each engineer is only permitted a limited amount of WIP and, therefore,
cannot take on new work until enough preexisting work is completed.

Think of the beloved I Love Lucy episode when Lucy and Ethel
worked in the chocolate factory. Their job was to wrap chocolates in
paper as they came off the assembly line and place them back onto the
conveyor belt. They were told that they’d be fired if any chocolates were
unwrapped. Initially, the assembly line moved slowly. Lucy and Ethel
kept up easily and smugly believed the job was a cinch. When their
supervisor saw her two workers succeeding, she sped up the assembly
line and left the room. Lucy and Ethel couldn’t keep up—they stuffed
chocolates in their mouths, in their hats, and in their blouses (Lucy and
the Chocolate Factory, YouTube 2012).

The chocolate factory violated the WIP rule of Kanban. The results
were compromised by pushing too much work onto the new employees.
Lucy and Ethel ate more chocolate than they wrapped. The point of WIP
is to govern work so that engineers can concentrate without becoming
overwhelmed.

Extreme Programming

The previous two methodologies, Scrum and Kanban, are targeted
at Software Development teams but are easily adaptable for any team
that needs to produce reliable and transparent small-batch work. Extreme
Programming (XP) is more technically focused than the other two and,
therefore, harder to adapt to nonengineering pursuits.

Explaining a few of XP’s key practices helps to illustrate the technical
nature of this methodology:

Pair Programming is an XP key practice mandating two program-
mers work together to write or modify a piece of code. A manager might
reasonably inquire, “If I’m paying big bucks for two programmers, why
should they work on the same code instead of working separately and
completing twice the number of features?”

XP aficionados explain that by working together, the product of
two programmers’ work is guaranteed to be more robust and better rea-
soned than one programmer’s solution. This two heads are better than one

30	 THE AGILE ENTERPRISE

approach ultimately saves money. By working out the technical kinks
upfront, the pair programming-produced software doesn’t require exten-
sive code review nor is it likely to have bugs.

Test-Driven Development (TDD) is another XP key practice requir-
ing programmers to write tests that assess the effectiveness of the fea-
ture before writing the code itself. If this sounds crazy, it’s not. To write
upfront tests of nonexistent code, a programmer must have a clear idea
about the purpose of the code and how it will be used.

Continuous Integration/Continuous Delivery (CI/CD) is a third import-
ant XP key practice followed by many Engineering teams. Remember the
Agile Manifesto principle that reads, “Working software over comprehen-
sive documentation?” CI/CD provides Engineering teams with a way to
deliver the working software. That is, CI/CD is a technical solution for
putting software in front of customers.

The challenge of delivering working software to customers requires
significantly more than a programmer applying their brilliance to the
keyboard. After the code is completed, it must be deployed to a testing
environment where automated tests and manual tests validate the work.
The continuous integration part of CI/CD handles the deployment
automation and commences automated tests. Following a green light
from the Quality team, the continuous deployment part of CI/CD
pushes the software into a production environment, so customers get
their working software.

Implementing a CI/CD system is nontrivial and typically involves at
least one dedicated employee. Most Development teams buy a CI/CD
framework or use an open-source product instead of building this func-
tionality in-house. Most frameworks require a scripting language to pull
code from a source code repository and perform the builds. CI/CD needs
additional scripting to invoke automated tests. The frameworks typically
alert developers of test failures that demand their attention.

Lean Development

Lean development is a jaunty name for the manufacturing process,
originated by Toyota in the mid-20th century, to streamline the

	 Brief Tour of Agile Software Development	 31

production of cars and eliminate waste. Lean development takes its cues
from these Toyota manufacturing principles (ProductPlan.com 2022):

1.	Value to the customer—the streamlined approach is designed to
deliver more functionality in less time.

2.	Value stream—mapping every step that is required to bring func-
tionality from conception to completion.

3.	Flow—the consistent, immediate movement of work items through
the value stream.

4.	Pull—build products based on preorders rather than Field of Dreams
thinking—If we build it, they will come.

5.	Perfection—teams are self-managing and encouraged to seek
continuous improvement.

Although the manufacturing process results in tangible goods, and
software projects produce bits and bytes, the two have enough simi-
larities to make Lean a viable development methodology. Much of the
Lean Development methodology borrows heavily from the other meth-
odologies, especially Scrum and XP. However, Lean development takes
a more philosophical approach, focusing on waste reduction by under-
engineering and building only on demand. The elimination of bottle-
necks to create flow parallels Scrum’s daily standup meetings, which are
intended to identify blocker problems and nip them in the bud.

Lean development requires both a strong, disciplined team and com-
prehensive documentation. If either is lacking, Lean may not be the most
appropriate methodology. On the other hand, for the right team in the
right circumstances, Lean ruthlessly focuses on waste reduction and elim-
inates any activities that don’t contribute directly to delivering the agreed-
upon functionality.

A Few Final Words About Agile Methodologies

One of the guiding principles of the Agile Manifesto is that teams must
be self-managing and take responsibility for their work. The autonomy
afforded Development teams also applies to decision-making around

32	 THE AGILE ENTERPRISE

their development processes. Very few teams follow the textbook defini-
tion of any methodology to the letter. Instead, teams determine the best
approach for their unique situation. Managers overseeing multiple teams
may demand a single set of rules across the board, but this will be success-
ful only if the multiple teams buy into the same rules.

Typically, large Engineering departments are separated into smaller
development teams. One team may choose to use Scrum and another
Kanban. A third may combine the two and use Scrumban. A fourth may
choose XP. Although these different approaches may rankle a microman-
ager, there’s nothing wrong with teams choosing how they want to work
because a methodology has no effect on the final product. If a team meets
its goals, how they accomplish the feat is no one’s business.*

*Two caveats:

1.	Development teams are seldom static. Programmers may hop from
team to team for many different reasons. If each team’s methodology
is different, there may be a small period of adjustment that’s easily
surmountable with a little extra effort.

2.	Development teams don’t exist in a vacuum. Large engineering groups
are separated into teams for efficiency, but they must coordinate their
schedules. Therefore, the duration of work iterations may require
inter-team agreement, even if each group’s methodologies differ.

In many respects, the four methodologies feel like the search to build
a better mousetrap. Except for XP, the other methodologies have core
similarities with slightly different implementation details.

Becoming wrapped up in the mechanics of a methodology to the
detriment of forward progress is verboten by the Agile Manifesto tenet,
“Individuals and interactions over processes and tools.” So, caveat emptor.
Methodologies may prescribe rules and behaviors but should never get in
the way of delivering software.

Key Takeaways

1.	The 2001 Agile Manifesto reflects a new way of thinking, mostly
replacing the older Waterfall approach to software development.

2.	The Agile Manifesto is a philosophy of software development that
espouses a pragmatic small-batch approach to delivering working

	 Brief Tour of Agile Software Development	 33

software. Overall, the Agile Manifesto’s importance is favoring
communication and collaboration with fellow programmers and
customers over an onerous cycle of documentation and written
specifications.

3.	The biggest problem with the Waterfall method is the design phase
takes so long that the business problem will change before the design
is completed.

4.	There are some valuable aspects of a Waterfall approach like gaining
a holistic understanding of a product domain, sometimes lost with
the uptake of Agile.

5.	The Agile Manifesto is written in simple English but is often misun-
derstood. The Agile Manifesto recommends balancing process with
communication, not eliminating process.

6.	An Agile methodology industry was formed to address the difficulty
of successfully implementing Agile.

7.	The most popular Agile methodology, Scrum, recommends short
cycles of work called sprints, in which programmers complete work
contained in user stories describing the what and why of a problem.

8.	XP is the most technical of the Agile methodologies, introducing
concepts like pair programming, TDD, and CI/CD.

9.	Each methodology has strengths and weaknesses. Most program-
ming teams that adopt a methodology never follow it completely.
Instead, teams tend to take the pieces that fit into their workstyle
and improvise.

10.	Ultimately, implementing a methodology for Agile is more import-
ant than the specific methodology that’s chosen.

CHAPTER 3

Holistic Challenges of Agile

While originally intended for software development, the sensible ideas in
the Agile Manifesto apply equally to Marketing, Sales, HR, and all other
departments in a company. The challenge for non-Engineering groups is
taking an idea like, “Working software over comprehensive documenta-
tion,” and making it meaningful for the non-technical tasks at hand.

Agile methodologies, like XP, focus on the technical nitty-gritty and
have no crossover application for nontechnical usage. The more general
Scrum methodology, however, is usage-agnostic. Granted, the originators
of Scrum and the other Agile methodologies had software delivery in
mind just as the Agile Manifesto guys sought innovative ways to better
approach software projects.

The following case study explores the application of an Agile meth-
odology and the Agile Manifesto philosophy to an entirely non technical
business problem. Anyone in a growing company will be familiar with
this use case. The challenge of hiring stellar candidates can overwhelm
even moderate-sized HR teams. However, an Agile approach to the prob-
lem yields surprising results.

Case Study: Growing a Company

A software startup receives a large angel investment, enabling it to expand
its team. The newly appointed Director of HR, Nisha, is tasked with
creating and executing a hiring plan, thus enabling the company to make
good on its ambitious promises to dominate its market.

A tall order, indeed, for a recent psychology major without any hiring
experience. Nisha fell into her job responsibilities because she success-
fully arbitrated a scuffle over the last Pamplemousse La Croix seltzer water
that two developers simultaneously grabbed for in the kitchen. Since she
exhibited more maturity than the developers, it was decided she possessed
the necessary people skills to scale up the company. Plus, the CEO had

36	 THE AGILE ENTERPRISE

previously witnessed Nisha’s emotional intelligence and recognized he
had no one else on staff to do the job.

Bright employees working in startups may end up in positions they
never imagined because of an urgent corporate need. Startups have rich
histories of giving inexperienced employees challenging positions where
they sink or swim. This new head of HR is determined to swim.

Initial Waterfall Plans

Nisha’s first instinct is to demonstrate her mastery of scaling the organi-
zation by concocting a six-month plan that results in filling all the open
positions. Sure, it will take hard work, but Nisha reasons she can sleep
when she retires. She imagines she’ll gain the respect of her manager
and peers if she consistently logs 80-hour weeks and fills open positions
through sheer grit and determination.

Nisha’s mentor, the VP of Engineering, Jamal, makes a few gentle sug-
gestions. At first, Nisha is reluctant to listen to her 45-year-old mentor.
The other Gen-Zers consider Jamal the office grandpa. Instead of engag-
ing in Nerf gun wars or Foosball tournaments in the office, Jamal spends
his day huddled with the Engineering team around the whiteboard in his
office. Instead of hitting the bars with his coworkers after they knock off
at 10:00 pm, Jamal leaves hours before anyone else to have dinner with
his family and put his children to bed. Jamal’s rep around the office is that
he neither works hard nor plays hard.

The 25-year-old CEO, however, absolutely loves Jamal. Maybe that’s
because the Engineering team consistently meets or exceeds its goals and
never misses a deliverable. For all the crazy hours logged by the other depart-
ments, none of them comes anywhere close to Engineering’s performance.

Some Agile Advice

So, Nisha decides to listen to whatever Jamal has to say. Jamal makes the
following general points:

1.	You don’t understand this company’s mission well enough to under-
stand its hiring needs. You shouldn’t confuse your title with actual
experience. Block out time to develop expertise in what you’re
undertaking.

	 Holistic Challenges of Agile	 37

2.	If you make a six-month plan, there are too many unknowns that
will interfere with your ultimate goals. Making a grandiose plan with
a big payoff at the end is like a Vegas high roller who bets his entire
savings on one spin of the roulette wheel. You need to accumulate
smaller wins instead of making one huge bet that you’re likely to lose.

3.	Break this big hiring problem into smaller, accomplishable chunks.
Make sure you can measure success or failure for each smaller piece
of work. Set yourself up for success by committing to reasonably
difficult but achievable goals.

4.	Don’t be timid. Take some educated risks and stretch yourself. How-
ever, if you break up the work into small pieces and fail, acknowledge
the failures, take your lumps, and change course.

5.	Figure out how to engage others in the plan because you cannot
succeed at this alone. Remember that when you bring in others, they
will have their own ideas that may differ from yours. Rather than
viewing opposing ideas as a challenge to your authority, figure out
how to incorporate the best ideas to make an even better plan.

Nisha listens politely to Jamal. Not once does he mention the 80-hour
workweeks Nisha was planning nor does he imply that success will only
come from Nisha’s heroism and sacrifice. Instead, Jamal is suggesting an
entirely different approach that almost guarantees success without pun-
ishing hours. Nisha finally understands the business cliché, work smarter,
not harder.

As Nisha reviews her notes, Jamal’s first point about her lack of com-
pany knowledge stings as much as it did when he uttered it. Still, Nisha is
fearful of the daunting task ahead of her and believes that Jamal is correct.
Engaging in a period of deep learning is better than a fake it until you
make it approach.

Biting Off a Small Chunk of Work

Nisha already has managers from Marketing, Engineering, Product, and
Sales knocking on her cubicle wall. The four managers are each mak-
ing their pitches to get the largest piece of the hiring pie. She decides to
start with a two-week directed learning project. The goal of this project is
to understand the overall business plan and to understand the expected

38	 THE AGILE ENTERPRISE

contribution of each team. By speaking to the team leaders, digging
into financials, and understanding business plans, Nisha hopes to better
understand the skill-set gaps of the current teams. Although she expects
to learn there are more needs than her pot of money will cover, her goal is
to understand the relative importance of each team’s objectives to meeting
overall company goals.

Making It Measurable

Remembering Jamal’s advice to make each block of work measurable,
Nisha struggles to associate a metric with her two-week research effort.
Watching Shark Tank one evening, Nisha discovers her metric. She will
present her research findings, opinions, and conclusions to the execu-
tive team. If she emerges with only a few nibbles from the sharks, she’ll
know that she’s on the right track. If she’s eaten alive, it’s back to the
drawing board.

At the end of the two-week effort, Nisha presents her findings to the
Management team. Referring to the period as her firehose of education,
the HR Director explains her surprising conclusions. Instead of finding
that one group’s needs exceeded another group’s needs, she observed a
delicate interdependence between the groups. Nisha tries to sell the idea
that hiring should be proportionally spread through the different teams
in the company.

The CEO is the first to take a bite out of Nisha. He wants to spend
the bulk of the investment money to double the Engineering team. He
reasons that the capacity problems Jamal’s team faces will be solved by
adding bodies. Nisha isn’t surprised by the CEO’s reaction. He founded
the company and was its first developer. The belief that adding bodies to
the Engineering team will solve all of a company’s problems is endemic
of technical CEOs.

Nisha is prepared. She counters that chaos will ensue if the Engineer-
ing team grows disproportionately to the Product Management team.
The newly hired engineers’ heightened need for solid specifications will
exceed Product Management’s capacity. Similarly, if the Product and
Engineering teams grow, their increased output will require additional
salespeople and marketers. She devised a formula to produce a general

	 Holistic Challenges of Agile	 39

headcount plan by division, based on the relative sizes of the present
groups and the available budget.

The CEO grouses a bit. When Jamal and the other leaders back up
Nisha, the CEO admits he doesn’t have all the answers, which is why
he relies on his smart executive team. He then points out that what he
envisioned as a hiring effort confined to one department is now a larger
endeavor spread out through the entire company. He wants to ensure fair-
ness in hiring across departments, hiring for cultural fit, and the technical
expertise of every candidate as it relates to their position. In short, the
CEO challenges Nisha to put together a holistic hiring plan that works
for each department.

Building a Self-Managing Team

Remembering Jamal’s last piece of advice about engaging other people in
her cause, Nisha uses the Management team’s support to corral them into
becoming members of her Hiring team. She devises another two-week
effort to create a plan to address all of the CEO’s concerns. Initially, Nisha
intended to ask each department head to produce the draft requirements
for their open positions. She planned to use the drafts to write polished,
cohesive position descriptions.

When she assembles a kickoff meeting, her new team has different
ideas. As the most experienced and successful Hiring Manager, Jamal
takes the lead. He shocks everyone by recommending scrapping tradi-
tional interviews. He claims that most people lie during job interviews,
which often results in hiring the best actor. Instead, he advocates using
an hour to audition candidates, giving them problems to assess their
creative, analytical, technical, and strategic capabilities. For engineers,
Jamal’s team will sit with candidates working together on a few carefully
selected programming problems designed to expose the aforementioned
capabilities. Jamal explains that the process of collaborating to solve
problems also reveals a candidate’s willingness to lead, willingness to take
direction, and provides a window into their inherent curiosity.

Jamal barely finishes speaking when the other department heads
start excitedly imagining how they will audition candidates in a similar
manner. As a group, the managers agree to provide Nisha with the basic

40	 THE AGILE ENTERPRISE

requirements for their job positions and let her craft them into compel-
ling position descriptions. They also commit to each other to have their
audition scripts ready by the end of the two-week period.

At first, Nisha is miffed that Jamal stepped in and derailed her plan.
When she sees the enthusiasm from her colleagues, she remembers Jamal’s
point that the best ideas emerge from an empowered team. She riffs on
Jamal’s idea, suggesting she first engage candidates in a short behavioral
interview to assess cultural fit, discuss salary expectations, and explain the
logistics of the interview process. She also suggests incorporating a final
executive interview to field candidate questions and explain company
strategic direction. She gets buy-in from the team.

Nisha feels less like a one-woman band and more like the quarterback
of a championship team.

Evaluation of the HR Case Study

The HR case study stops before the hiring process is completed because
its point is to illustrate how to apply Agile principles to an untraditional
situation. Rest assured, Nisha and her team continue their short work
cycles and hire many superstars.

The most important Agile aspect of Nisha’s approach is the decom-
position of the big problem of hiring lots of new employees into smaller,
more manageable problems. Without knowing any Agile terminology,
Nisha took Jamal’s advice and planned sprints. Each sprint ended
with a completed, measurable deliverable. If any aspect of the sprint
failed and they needed to change course, the team would lose no more
than the two-week work effort. If Nisha hadn’t listened to Jamal and
embarked on her six-month Waterfall project, failure at the end would
be catastrophic.

Nisha also set aside time for learning. Remember, she went into the
hiring project as a new hire herself, fresh out of college with absolutely
no people management experience. Injecting some Agile terminology,
Nisha created a research spike that is sprint time devoted to studying and
learning. Agile teams must frequently tackle new things. Time-boxing
the learning into a short sprint keeps the research directed and avoids a
sustained academic project.

	 Holistic Challenges of Agile	 41

Nisha’s self-managing team is another important Agile concept. One
of the key pillars of the Agile Manifesto is the trust in teams to take respon-
sibility for their work product. In her case, Nisha recruited her Hiring
Team, giving them enough freedom to be innovative and flesh out an
untraditional hiring approach.

At first, Nisha equated the creation of a self-managing team with the
elimination of her management job. After all, if the team manages itself,
they don’t need a manager. Nisha discovered, however, that even if the
team didn’t need a people manager, there was a lot of process to manage.
She provided much-needed oversight to ensure the hiring process was fair
within each department and equitable across the company.

The HR Director created an Agile process with Jamal’s guidance
without knowing the first thing about Agile.

Why Extend Agile Beyond Software Teams?

Yes, a bunch of software people invented the Agile Manifesto, and they
intended for it to help them solve frustrating and thorny software devel-
opment problems. However, it’s easy to substitute a couple of words in
the Agile Manifesto and its underlying principles, like software and devel-
opers, to make it applicable to all of a company’s departments.

A contrarian might argue that generalizing something as specific as the
Agile Manifesto invariably results in a half-baked philosophy that doesn’t
really apply to anything. The counterargument is that the Agile Manifesto
is a philosophy, and philosophies are typically nonspecific. The method
ologies like Lean, Scrum, and XP are software-specific, and some aspects
may not be adaptable to non technical work products. If a methodology
doesn’t fit the use case, it’s the wrong methodology, and it’s necessary to
either find a new methodology or cook up a new one.

Measuring Progress

Look beneath the glossy veneer of any company and imperfections
emerge. Understanding these imperfections is one of the most challeng-
ing aspects of a CEO’s job. Suppose Sales isn’t hitting their goals and
points the finger at Engineering, saying they’re not delivering sellable

42	 THE AGILE ENTERPRISE

software. Passing the buck, Engineering throws Product Management
under the bus, by insisting that their requirements are wrong. Without
a transparent process for measuring across-the-board success or failure,
otherwise functional companies often resort to political finger-pointing
to avoid accepting responsibility.

Truthfully, when Sales misses their targets, it’s almost impossible to
unwind the cause without having measurements attached to each team’s
deliverables. Even then, missing a sales goal can indicate a host of under-
lying problems. Sometimes missing a sales goal is just a bad twist of fate
where the high probability prospects in a Sales pipeline inexplicably dry
up. Missing sales goals may occur for a multitude of reasons.

Generally, latching onto trends is preferable to reacting to individual
data points. If a Sales team consistently misses its targets, perhaps it is
aiming too high, the company’s product is uncompetitive, or the sales-
people aren’t trying hard enough.

Rather than guessing at the problem, evaluating each team on empir-
ical criteria helps to identify problem areas. For example, suppose each
team commits to objectives like these:

1.	Sales—Quarterly, each salesperson will develop five new pros-
pects, work with a sales engineer to give five data demos, and close
U.S.$100K in new sales.

2.	Product Management—Quarterly, each Product team will fully
explore the next quarter’s roadmap items in enough detail to make
go/no-go decisions. For the items that are deemed worth devel-
oping, Product Management will produce a full set of market
analysis, feature sets, and collateral information like mockups and
prototypes.

3.	Engineering—The Engineering team will make weekly produc-
tion deployments that iteratively deliver the feature sets specified by
Product Management. By the end of the quarter, each feature set
defined by Product Management will be completed as agreed upon
by the teams and delivered to customers.

Although these objectives are broad and somewhat vague, if
Engineering and Product Management deliver as promised and Sales
still misses its goals, it helps identify the problem’s nexus.

	 Holistic Challenges of Agile	 43

The most significant challenge with objectives is making them empiri-
cally testable. It takes effort and know-how to craft objectives for scientific
measurement. For example, take Nisha’s first goal in her HR project to
better understand the business. Instead of making learning the goal of
the research spike and determining success or failure by how much the
Management team chews her up, Nisha would do better to state what she
intends to learn and be judged on the success or failure of concrete objec-
tives. If Nisha had specified the following goals for her learning spike, it
would be easy to evaluate her success:

1.	State the three most significant product features that are in jeopardy
this quarter because of capacity issues.

2.	Of these three features in jeopardy, state the profitability of each
given the company meets its quarterly sales forecast.

3.	Identify the prospective customers who are most likely to be influ-
enced to buy because of these features. Explain the problems these
customers are attempting to solve and how the features are essential.

4.	Present three different departmental headcounts and explain how
each contributes to the success of the company’s goals.

Failing Fast

Failing fast is one of the most overworked business tropes. The underlying
motivation is for companies to take big risks with immense potential pay-
offs. To fail fast, the company must put sensors in place to recognize early
if the risky move is panning out and worth continuing.

In comparative mythology, the hero’s journey requires the protagonist
to face and overcome adversity before they become worthy of winning.
Biographers of business titans use the hero’s journey construct to explain
the role of failures in their ultimate successes.

It’s one thing for Bill Gates to bemoan his reviled Clippy Office Assis-
tant, which debuted in Microsoft Office 97. Everyone else who hasn’t
achieved Gates’ level of success should be wary of highlighting their own
failures.

In general, interviewers want to hear about the lessons candidates
learn from failures. Candidates who glean especially insightful lessons
may paint a positive picture of the failure. Ideally, fast failures are pref-
erable to long failures, but time is relative. In some business scenarios,

44	 THE AGILE ENTERPRISE

a one-year failure is considered short-term, while a three-month failure is
considered long-term in another company.

Most prospective employees are savvy enough not to brag about their
littered highways of failures during job interviews. Although a perceptive
interviewer may want to dig into a candidate’s failures to discover what
they learned from the experience, this is red-flag territory, regardless of
the beautiful credo of failing fast.

Most corporate failures occur excruciatingly slowly, like watching a
tomato seed sprout without time-lapse photography. Companies with a
Waterfall mentality may initially scrutinize a nascent idea with a gimlet
eye, but green light it based on a projected profitability assessment. The
problem with Waterfall is its lack of mid-cycle milestones to recognize
possible cost overruns, unforeseen development complications, or an
altered business landscape that changes the idea’s profitability calculus.
Since the completed product isn’t delivered until the very end of a Water-
fall project, failure awaits the final evaluation.

The ethos of Agile sprints is that they are discrete. A team may elect
to follow one sprint with a second sprint to continue the work, but this is
a conscious decision and not a fait accompli. Sometimes a Development
team encounters unforeseen complications that slow their sprint prog-
ress. Before electing to continue the work in a follow-on sprint, Product
Management will revise its estimates for the completion date of the fea-
ture. The cost or time overrun may render the feature unviable, and it’s
killed or shelved after the first failed sprint.

There’s no shame in failure when it’s recognized after one or two
sprints. Low-cost failures are easy to sweep under the carpet. Realistically,
however, recognizing true failure takes longer than one or two sprints.

A sunk cost mentality frequently overtakes reason in Waterfall’s slow
failures. Managers reason that they’ve already invested so much it’s best
to keep pouring money into the feature. Buying one’s way out of failure
is an expensive proposition that compounds the problem.

Accountability

Agile teams are self-managing, which means they mostly call their own
shots. Product Management typically determines what an Agile team
should build, but deciding how to accomplish the tasks is up to the team.

	 Holistic Challenges of Agile	 45

Professionals will gladly accept accountability if they’re free to control
their destinies. If things go south in a sprint, self-managing teams accept
the failure, dust themselves off, and devise a better approach should the
stakeholders decide to continue the work.

The managers banded together in Nisha’s HR team to espouse an
alternative to traditional candidate interviewing. Each manager defined
the audition script for their positions to expose candidates’ creative, ana-
lytical, technical, and strategic capabilities. If the process failed to provide
a window into the important candidate qualities, each manager should
tweak the audition script. After all, no one outside the team imposed this
approach—the innovation came from within. Therefore, the responsibil-
ity rests with the team.

Overcoming Across-the-Board Agile Challenges

When a CEO brags, “We’re an Agile company,” they imply the com-
pany turns on a dime, immediately responding to the vicissitudes of the
business landscape. In most companies, Agile is limited to Engineer-
ing teams that use some manner of Agile methodology. The disconnect
between a CEO’s imagination and operational reality is resolvable by
having leaders across the company read and absorb the Agile Manifesto.
By challenging each leader to craft Agile for their respective depart-
ments, an ambitious CEO might ultimately transform their lumbering
company into an Agile company.

Leadership Is Required to Adopt Agile

The HR case study illustrates Nisha’s process to craft Agile principles
for her HR domain. Nisha was wise to listen to her mentor, Jamal, who
was already running an Agile Engineering team. A catalyst like Jamal
is sometimes sufficient to pique colleagues’ imaginations in underper-
forming divisions. However, across-the-board agility usually requires a
top-down push from the CEO. A department that radically changes its
workstyle faces significant risks. A CEO endorsing small-batch work and
constant reflection and reevaluation provides the space for departments
to take risks.

46	 THE AGILE ENTERPRISE

Is Agile for the Long Game?

Senior leaders may push back when asked to radically change their
approach. A VP of Sales, for example, might argue that Agile doesn’t apply
to them because they’re playing the long game. The enterprise software
sales process is usually slow, based on cultivating relationships, reaching
the people who make purchasing decisions, and convincing them to find
space in a future budget. Great salespeople keep the flame lit even when
the prospective customer focuses on other higher priorities. The CEO
might counter that the yearly forecast from sales is always incorrect,
sometimes disastrously incorrect. By adopting Agile principles, the VP
of Sales can fine-tune forecasts, respond to changes, and help salespeople
manage their workloads in small batches.

Where Does Agile Fall Short?

Mistakes will occur in adapting a philosophy intended for software devel-
opment to the other departments of a company. Since there are no rules
or established methodologies for nonsoftware development Agility, HR,
Sales, Product Management, Marketing, and Finance are trailblazers.
Some trial and error is to be expected.

These are two red flags for managers to recognize and avoid:

1.	Process heaviness is more a methodology problem than an Agile phil-
osophical problem. For example, if the Marketing team wastes time
every morning with a daily standup meeting, cadged from Scrum,
this may not be the right kind of meeting to have if the team’s work
is largely noncollaborative. Instead, it might be more beneficial
to focus discussions on handoff points from one team member to
another, and forgo daily meetings.

2.	Excluding the big picture is a misunderstanding of Agile philosophy.
In most cases, it’s counterproductive to make concrete plans far into
the future. Agilists may mistakenly focus only on the immediate
with no regard for the future. For example, if HR plans an ambitious
rework of company policies, complete with benefits changes, it’s a
long-term project requiring several milestones. Focusing exclusively
on writing a new employee manual without planning to interview
new insurance companies is too myopic.

	 Holistic Challenges of Agile	 47

Key Takeaways

1.	The Agile Manifesto was written by Software Developers attempting
to codify a better software development process.

2.	Regardless of the originator’s intentions, the Agile Manifesto is a phi-
losophy easily adaptable to a company’s non-Engineering functions.

3.	The most important aspect of Agile is chunking work into smaller
pieces, each of which can be completed quickly.

4.	With practice and guidance, any short-term deliverable may be
defined to be empirically measurable.

5.	Biting off small pieces of a large project and addressing them in short
sprints promotes the concept of failing fast. If an idea doesn’t pan out
in a two-week sprint, there’s not enough sunk cost to cause pain or
prevent a change in direction.

6.	Self-managing teams bring innovation and accountability to
projects.

7.	Establishing across-the-board agility requires the buy-in from the
most senior management.

8.	Senior employees may push back when asked to transition from a
Waterfall mentality to an Agile mentality.

9.	Process heaviness is one of the ways a project can get bogged down.
Teams can avoid the quicksand of too much process by focusing less
on Agile methodologies and more on the principles of Agile.

10.	There’s no playbook for across-the-board Agile. Smart, thoughtful
leaders will work with their teams to devise processes that fit their
needs.

CHAPTER 4

The Dirty Secret of Agile

Ask just about any technical team nowadays and they’ll claim they’re using
some flavor of Agile practices in lieu of the debunked Waterfall method.
Teams using Scrum may engage in story point poker-playing, a method of
estimating the level of effort of stories. Or they may actually relinquish
their chairs for daily standup meetings. The corniness of Scrum aside,
there’s no arguing that the Agile Manifesto is rock solid. Still, the technical
landscape is dotted with software releases that don’t cut the mustard, from
quality problems to software that fails to effectively address customers’
most significant pain points.

Perhaps the most important tenet of the Agile Manifesto is to build
working software one piece at a time. If a team adheres to the Scrum
methodology, they work heads-down in short sprints writing software
and attempting to finish it by the end of the work cycle. The only way to
build something functional after a short work period is to be certain of
the requirements before beginning. With Scrum, certainty comes from
well-considered and right-sized user stories that enable developers to
work without digging for answers to fundamental questions.

The concept of heads-down sprinting applies equally to any other
department undertaking an Agile approach to their work. Before begin-
ning a sprint, the people on the team must possess a deep understanding
of the problems being addressed, how to finish the stories, and the param-
eters that define success.

Practical Challenge of Agile #1: Research Spikes

What if a team is attempting something they’ve never undertaken and need
to learn before they can effectively tackle the work? The Agile Manifesto
isn’t much help here, but the purpose of philosophy isn’t to fill in all the
nitty-gritty details. The Agile methodologies exist to help address some of the

50	 THE AGILE ENTERPRISE

practical details. Scrum provides the concept of a Research Spike to block
time for learning within the confines of a sprint. Like other user stories, a
research spike is a time-boxed iteration of work. Unlike other user stories,
research spikes do not result in working software—they result in learning.

In the HR example in Chapter 3, Nisha devotes an entire two-week
sprint to learning about the business. Her goal isn’t to get a quickie MBA.
Instead, Nisha hopes to learn just enough to develop an educated opinion
about how to best structure her company’s recruitment program.

Research spikes are a pragmatic addition to Scrum utilized by most
teams in the normal course of tackling new projects.

Practical Challenge of Agile #2: Continuity

Figure 4.1 depicts the typical Agile Scrum work cycle. The portion to
the left of the Scrum team circle concerns sprint planning. Typically, a
Product Manager reviews the backlog, a collection of already-written user
stories, and determines the best ones to tackle in the upcoming sprint.
Before starting the sprint, the developers meet with the Product Manager
to seek clarification about the stories. After the meeting ends, the sprint
begins, and the clock starts ticking. The development team works heads-
down, hopefully avoiding distractions until the sprint ends. The software
is delivered at the end of the sprint, and the team slows down to reflect on
the good, the bad, and the ugly of the previous sprint, vowing to do better
next time. Then the process starts all over again.

Daily
Scrum

Sprint
Backlog

Product
Backlog

Sprint
Planning

Sprint
Review

Increment

1 Scrum Team

Sprint
Retrospective

Figure 4.1  Scrum framework

Source: Scrum Framework ©2020 Scrum.org.

	 The Dirty Secret of Agile	 51

The Hidden Implications of a Product Backlog

On paper, the workflow of Scrum sprints appears orderly and well con-
sidered. A sprint planning meeting is considered successful if the Product
Manager answers all the developers’ questions. However, large, compli-
cated projects of any type require a depth of thought that isn’t represented
in the diagram. Implicit in the product backlog, the repository of user
stories, is a full and thorough discovery process that precedes a sprint
planning meeting.

User Stories are intentionally vague because they’re intended to
prompt enough discussion to fill in the missing gaps. Often, the miss-
ing gaps are large enough to necessitate creating additional stories.
The sprint planning meetings with the development team, typically
no more than a couple of hours, are long enough for developers to
poke holes in stories and receive guidance. Sprint planning meet-
ings, however, are too short to fully explore the contours of each user
story.

A vital part of the process for delivering stellar work products is
scheduling in-depth discussions and taking the time to let ideas gel before
writing the first user story.

For any application of Agile across a company, it’s important to
remember there are no shortcuts in problem-solving. The hard work of
understanding the core nugget of a problem and building a solution to
address it elegantly and sensibly isn’t any easier with Agile. Sometimes, an
Agile approach obfuscates the true problems with too-vague stories that
are inadequately explored.

Scenario: Zoom-Like Communications App

Suppose an Engineering team is asked to build a Zoom-like product
supporting audio and video calls. The Product Management team would
likely break the problem into manageable chunks, perhaps focusing first
on person-to-person audio calls.

Almost everyone has experience making phone calls and using Zoom,
GoTo-Meeting, or Slack. The hidden risk in undertaking seemingly famil-
iar problem domains, like audio calls, is the hubris of assuming known
problems are simple and don’t require deep analysis.

52	 THE AGILE ENTERPRISE

If a Product Manager spends an afternoon thinking about the app and
reviewing competitors’ products, writing a large set of user stories for all
the features an audio call app requires is simple. This Product Manager
may believe they have met their responsibility after holding a two-hour
planning meeting with the Engineering team to clarify and fine-tune the
user stories. Unfortunately, a Product Manager who acts alone to frame a
feature set is working in a vacuum. Feature discovery is a collaborative act
demanding interaction with stakeholders.

Examples of How a Sprint Fails

The Engineering team is confident they understand the requirements to
build the person-to-person audio app. The Product Manager has whit-
tled the list of must-have features down to a set the engineers believe
they can accomplish in their first two-week sprint. They begin and the
clock starts ticking.

The first obstacle the team faces is technical, creating the back-end
for a notification server. The notification server is responsible for alerting
users to incoming calls. Although the team knew they would need to
spend time building this back-end service, the Product Manager neglected
to write these targeted stories. Instead, stories like, “As a user, I want to be
notified when a call comes in because I may be using another application
on my phone and otherwise wouldn’t see the call come in,” imply that a
notification service is required. However, there are no stories that delve
into the specifications and performance requirements of the notification
service. Therefore, the team needs to stop and work with Product Man-
agement to produce specifications for the notification server.

The second obstacle reflects insufficient discussion. In this case, the
Product Manager focuses on how users receive text notifications on their
phones to the exclusion of other scenarios. Everyone has experienced
missing an incoming call because they’re away from their phone. Phones
offer a rich set of ringtones to provide audio notifications. Yet, the sprint
starts without any stories about the phone ringing to announce incom-
ing calls. Additionally, the call’s initiator should hear a tone when the
phone is dialing. Although it’s not a huge technical challenge to make
a phone ring or provide a dial tone, inserting missed user stories in an

	 The Dirty Secret of Agile	 53

already full story bucket is the sort of scope creep that immutable sprints
should prevent.

Merits of Waterfall

One benefit of Waterfall is that its exhaustive upfront exploration would
likely prevent both of the two aforementioned sprint failures. The noti-
fication server would be explicitly identified and scoped in a Waterfall
process, along with the details of every other piece of the application.
The detailed workflows in a Waterfall project would have also uncovered
the requirement for audio notifications of incoming calls.

The key merit of Waterfall is that nothing falls through the cracks.

Weaknesses of Waterfall

The inadvisability of planning out an entire system upfront is already
addressed in earlier chapters and needn’t be reiterated. The lack of tech-
nical diversity among the team is an infrequently discussed but equally
damaging aspect of Waterfall. The team performing the lengthy upfront
analysis and design typically comprises product managers and designers.
Although a Waterfall team may identify the technical pieces and specify
the requirements, they will probably not have the technical chops to eval-
uate the approach’s feasibility.

Many engineers say, “From a technical perspective, almost anything is
possible.” However, the subtext of their statement is, “Anything is possible
provided you’re willing to pay exorbitant sums and wait forever.” Product
Management’s role is to understand any feature’s potential return on invest-
ment (ROI). ROI is roughly calculated by estimating the sales boost and
subtracting development costs. Technically complex solutions are sometimes
infeasible from an ROI perspective. Waterfall’s fatal flaw is omitting engi-
neers capable of assessing technical difficulties from the upfront design team.

Multidisciplinary Exploration Teams

The cycle of planning, sprinting, retrospectives, and recalibrating doesn’t
leave much space to tackle complexity. Even the simplest-sounding

54	 THE AGILE ENTERPRISE

endeavors mask complexity under a thin veneer. Once a team looks under
the hood at a seemingly easy problem, they will undoubtedly discover
challenges they hadn’t even contemplated.

Examples of the myth of simplicity could easily fill an entire book.
Take any endeavor like operating a soft-serve ice cream shop and it will
have its unique issues that a layperson would never imagine. The same
holds true for the problems spanning the different departments in a
company. Nothing is ever as simple as it appears from the outside.

In an earlier case study, the HR manager, Nisha, spent a couple of
weeks learning. Her learning time was considered a research spike as part
of a sprint. Sometimes, however, it isn’t possible to time-box the learning
and evaluation process. Before a company commits to any new, signifi-
cant project, prudent managers attempt to first understand the value of
the project. Most smart managers will reject a project if it is so difficult
and time-consuming that it’s unlikely to ever pay for itself. Discovering
whether a project is or isn’t worth the effort is a devilishly difficult deter-
mination that usually requires more than a two-week research spike.

One challenge of ROI determination is entirely distinct from the
technical aspects of project completion. Estimating customer demand
and determining the optimal price point of a new product or feature set
are often as difficult as providing a solution.

A business exploration team behaves much like a military reconnais-
sance scout, surreptitiously spying on the enemy’s position before com-
mitting an entire unit to annihilation. Fortunately, it’s not life or death in
a business setting, but the business exploration team can save the larger
team from costly mistakes that might potentially kill a company.

The goals of an exploration team are to make a learned-enough
feasibility judgment and to gain some general ideas about how best to
approach the problem. If the exploration team develops expertise and
fully designs a solution, they have likely veered into a Waterfall approach
and need to rein themselves in.

Exploration Team Model for the Audio App

In the previous scenario where an engineering team is asked to build
an audio app for person-to-person calls, they embark on the work only

	 The Dirty Secret of Agile	 55

to discover hidden landmines that scuttle the sprint. Exploration teams
evaluate approaches to the work without producing a design specifi-
cation. Although the exploration team’s work is open-ended without
the constraint of a short sprint, the team members are sensitive to the
balance between making informed decisions and getting a product to
market. That is, the exploration team performs directed research, not a
PhD dissertation.

In much the same way, engineers in a sprint planning meeting attempt
to tease the underlying work from user stories, the exploration team seeks
out the rough edges of a new project and works to understand them well
enough to smooth them out. In the audio app example, the team may
undertake these steps:

1.	Design workflows for phone calls from the caller’s and the call recip-
ient’s perspectives. The workflows should consider the different states
of the recipient—receiving a call while using the app, receiving a call
while using another app, receiving a call while away from the device,
and receiving a call while the user is asleep.

2.	Write brief narratives of the caller’s and recipient’s experiences in the
different scenarios from #1.

3.	Understand the delta between the backend technology required
for calls and the software the engineering team has already
developed.

4.	Based on a set of performance specifications, assess the effort required
to build the backend technology that doesn’t already exist.

5.	Research alternatives to building new software, like buying off-the-
shelf backend software.

6.	Evaluate the feasibility of building new software versus buying
off-the-shelf software, and make recommendations.

An Exploration Dream Team

The audio app exploration team covers a lot of ground. Not only do
they map the workflows, but they also research the build versus buy
conundrum and assess the feasibility of building the backend in-house.
The exploration team needs members with the skills to felicitously

56	 THE AGILE ENTERPRISE

address each of the steps above. This discovery team requires the fol-
lowing roles:

1.	Engineering—Assessing the feasibility of a technical solution
demands an engineer with enough experience to be a credible source
of information.

2.	Design—This discovery exercise aims to understand the problem
and explore potential approaches. Designers help the team and
stakeholders to visualize the flow. The designer isn’t attempting to
provide high-fidelity renderings.

3.	Quality—The quality team exists not just to test, but to assess the
viability of proposed solutions from user experience and maintenance
perspectives. Sometimes a nice user experience may be devilishly
difficult to maintain.

4.	Operations—The ability to deliver and deploy the software prod-
uct is a key part of its feasibility. A proposed solution that demands
an esoteric deployment package may be deemed too expensive and,
therefore, infeasible.

5.	Product—The Product Management role possesses the business
understanding, user relationships, and market knowledge to assess
the fit of the proposed solution.

The makeup of the team depends on the specifics of the explo-
ration. If, for example, the exploration team is determining the best
place to dig a mine, the team might consist of geologists, hydrologists,
safety inspectors, and conservationists. The team to explore a new
sales strategy might include Sales, Marketing, Finance, and Business
Development.

A Common Denominator of Exploration Teams

Regardless of the exploration, the teams performing the discovery
require a base of experience. Although the exploration team members
don’t have to possess precise knowledge of the topic, they should draw
from a reservoir of varied knowledge. If the team has already performed
the work they’re exploring, there is no need to explore. The common
denominator of all exploration teams is experience. The team members

	 The Dirty Secret of Agile	 57

must have sufficient seniority to make relatively fast assessments with-
out having all the facts.

Challenges of Assembling Exploration Teams

Bringing together a group of senior-level employees for an indeterminate
amount of time poses two significant problems:

1.	Employees with enough seniority to act as discovery trailblazers are
valuable. Exploration isn’t directly tied to profits, so the siren song
of revenue may coerce management to give exploration the short
shrift by delegating these senior employees to profit-generating activ-
ities. For example, a senior engineer capable of exploration is also an
invaluable resource on Sales calls.

2.	Roles on the exploration team are investigative, not executive. That
is, the explorers get so close to executing a solution they can taste
it, but they are intentional about not crossing the line. The explorer
role may be frustrating for employees who derive satisfaction from
building new things.

Mitigating Exploration Team Challenges

Software development teams are considered a cost center, yet these teams
are considered a very expensive necessity. The folly of having an inade-
quately prepared development team embark on a sprint destined for fail-
ure should chagrin a company’s bean counters. By framing exploration
teams as the inoculation against wasted engineering sprints, it follows that
exploration teams are as necessary as software teams.

Rather than yanking senior employees off other projects to perform
discovery, budgeting for and building permanent teams demonstrates
a commitment to this discipline. Building a permanent discovery team
also ensures that the team members want to be there. The trailblazer role
uniquely appeals to many, but it’s not for everyone.

Putting It All Together—Case Study

StaidCorp is a fictitious life insurance company founded in 1920 by
Hiram Staid. The company prospered through the 20th century selling

58	 THE AGILE ENTERPRISE

term- and whole-life insurance policies. The StaidCorp business model
included word-of-mouth sales with a strong agent network, magazine
advertising, and direct mail campaigns. Management of StaidCorp passed
from Hiram to his son, Hiram Staid II, in the 1970s. Hiram II’s daugh-
ter Helene Staid has recently assumed control and envisions big changes
to reinvigorate the company. Helene represents the third generation of
Staids to steer the company.

Helene, a millennial, acknowledges that the StaidCorp sales model
enabled the company to thrive for nearly a century, but this same sales
model is now causing the company to flounder. Policyholders are dying
faster than new ones are signing up.

As Helene explains to her father:

1.	Word of mouth now occurs in online forums like Twitter (now X)
or Signal.

2.	Few pay attention to print advertisements.
3.	Most people regard direct mail as junk that goes directly into the

recycling bin.

Helene wants to digitize the primarily analog StaidCorp.
Helene is so certain she’s correct about digitizing StaidCorp that she’s

willing to bet the company by restructuring and hiring a new crop of
forward-thinking employees. The StaidCorp board, mainly consisting
of old schoolers, doesn’t doubt Helene’s contentions but demands some
empirical proof that it’s the best direction to take the company.

The StaidCorp board is, in effect, demanding an exploration team
scout the landscape and report on their reconnaissance before committing
the entire company to potential bloodshed. Although Helene believes the
exploration team will delay progress and ultimately corroborate what she
already believes, she has no choice but to listen to the board.

Helene assembles an exploration team from senior staff who understand
the ins and outs of the insurance business. Although StaidCorp has an old-
school business model, it’s a savvy insurance company with an analytics team
run by PhD data scientists. Helene includes a senior data scientist on the
exploration team. StaidCorp is thin on social media expertise, so Helene is
forced to add a couple of college-aged interns.

	 The Dirty Secret of Agile	 59

Hiram Staid was an innovator in the life insurance industry. He intu-
ited that people buy life insurance when they experience significant life
milestones like marriage, buying a first house, childbirth, and death.

StaidCorp became notorious for stalking maternity ward halls to sign
up new customers among the sleep-deprived, stressed fathers in the wait-
ing rooms. Yes, these were sexist times when men were excluded from
the birthing process. Even more egregiously, StaidCorp representatives
attended funerals to sell insurance to children of deceased parents who
were likely considering their own mortality.

Helene expects to retrofit Hiram Staid’s arguably underhanded meth-
ods to the digital age. Rather than take advantage of people’s vulnerability,
Helene hopes to provide important insurance coverage when potential
customers face life changes. She envisions microtargeting Facebook users,
giving offers to people who post baby pictures. She hopes to use popup
Google Ads to offer policies to people searching for a mortuary.

The exploration team poses several questions:

1.	Will Hiram Staid’s methods work in the digital age?
2.	Is it possible to target potential customers based on what they post

on Facebook, Twitter (now X), or Instagram?
3.	Are there other digital approaches, like webinars and downloadable

whitepapers, that will establish StaidCorp as thought leaders and
draw in new customers?

4.	Do millennials care about purchasing life insurance?
5.	Will potential customers be turned off if they feel their privacy is

being violated to sell them insurance?
6.	How are competitors using the Web to sell insurance?
7.	How can we determine the ROI of digital advertising?

Although Helene has the idea that StaidCorp must go digital, she’s
unable to answer a single question posed by the exploration team. By
allowing the exploration team the time to answer their questions, Helene
expects them to deliver a well-defined digital path to bring StaidCorp
back into the black.

Helene is starting to see the value of taking time for applied research
before engaging the larger team with a vague mandate.

60	 THE AGILE ENTERPRISE

Key Takeaways

1.	The Agile Manifesto philosophy doesn’t address some real-world
difficulties in Agile development cycles.

2.	The most common Agile challenge is beginning a sprint when the
targeted stories are inadequately understood. When this occurs, the
team stops sprinting and must dig for answers.

3.	The Agile work cycle appears to be a continuous productivity loop.
The need for deep thinking about especially complicated feature sets
is implicit in the Agile workflow.

4.	Agile is not a shortcut to producing better software in a shorter time.
Successful Agile sprints require at least an equal amount of discovery.

5.	Sprints fail during the planning process when Product teams and
developers overlook the complexity of seemingly simple stories.

6.	The benefit of a Waterfall approach is that the exhaustive upfront
study ensures every piece of the system is considered.

7.	The downfall of Waterfall is the lack of engineers on the team who
may identify infeasible solutions.

8.	Talented multidisciplinary exploration teams perform just enough
applied research to understand the contours of a potential project.

9.	Engaging a small exploration team is a small commitment that may
lead to a no-go decision if the ROI is insufficient.

10.	Exploration teams must include senior-level employees typically in
high demand for other profit-generating projects. Therefore, budget-
ing must include funding for a permanent discovery team.

CHAPTER 5

A Closer Look

Obstacles to Agile

Agile is merely a sensible way to chip away at large chunks of work, not a
panacea to cure all corporate ills. Organizational dysfunction manifests in
myriad ways, many of which result in failed Agile sprints. The first step in
achieving agility is to recognize and address the issues in a company that
prevent heads-down work.

Humans aren’t designed to do two things at once except for walking
and chewing gum. Rather, people are unable to simultaneously concen-
trate on two things. No matter how much a teenager claims superhuman
multitasking abilities, they are merely devoting small slices of time to
multiple endeavors, likely performing well on none of them.

Almost every state in America, and many other countries, has dis-
tracted driving laws prohibiting people from texting while driving
(Schwartz, “Is Texting and Driving Illegal?”). Teenagers bent on texting
while driving need to travel to Montana, virtually the only state lacking
distracted driving laws.

The nearly global enforcement of distracted driving rules acknowl-
edges the deadliness of multitasking while operating a vehicle. Most other
distractions aren’t outlawed because their outcomes are more benign.
Still, distractions generally lead to subpar results, regardless of the poten-
tial loss of life.

Workers, especially those who sit in an office, face distractions all the
time. Although it’s something of an exaggeration, many people claim that
the office is no place to perform actual work. Between e-mail, phone
calls, messaging apps, noisy coworkers, and meeting happy managers, it’s
a wonder that office workers produce anything whatsoever.

62	 THE AGILE ENTERPRISE

Agile sprints are intended to address the problem of distracted work-
ers. When an Agile team is sprinting, they are supposed to work heads-
down without disturbance. If a company heeds the rules of Agile, it’s
generally understood that sprinting employees are not available for any-
thing else until the sprint ends.

Chapter 4 addresses sprint failures caused by insufficient upfront dis-
covery. The people on the sprint team must stop and dig for answers
when user stories aren’t fully considered before a sprint starts. This need
to stop and dig for answers is a distraction, not to mention a time sink.

Other common types of distraction, detailed in this chapter, are even
more pernicious than the lack of upfront discovery.

Management Disrespecting Sanctity
of Iterations

One of the important rules of iterative work is the immutability of the
plan. That is, once the stakeholders agree upon the user stories for the
sprint, the stories do not change after the sprint begins.

Managers may not sneak in additional stories. The formal term for
this type of gilding the lily is scope creep, meaning that management
increases the team’s obligations by piling on unsanctioned stories. Scope
creep is typically caused by human forgetfulness rather than nefarious-
ness. Managers or customers may overlook an important piece of work
and cajole the team to slip the additional work into the sprint. Scope
creep is a slippery slope. Once a team gives in to demands, it becomes
harder to refuse similar requests in the future.

What enables a sprint team to refuse additional work? After all, busi-
ness needs change all the time. What may have been important yesterday
may be usurped by something else today. Surely, a sprint should reflect
the most important work at the moment.

The saving grace of the immutable sprint is the short cycle for the
work. It’s much simpler to refuse changes to a sprint when its duration
is only a week or two. When the sprint ends, it’s legitimate for changed
business priorities to trigger an entirely unexpected new set of user stories.

	 A Closer Look	 63

Why Interrupting Sprints Is Inadvisable

If the business landscape changes more rapidly than a sprint cycle, isn’t it
better to have the work reflect the new problems? Is this immutability of
an active sprint insistence merely the edict of beleaguered developers and
not a real necessity?

No, and no, for three very good reasons:

1.	Inability to measure success—Self-managing teams value the
reflective postmortem after each sprint when the team discusses how
to perform better the next time. If the rug is pulled out by swapping
work mid-sprint, the team loses the ability to keep score. Keeping
score is about more than computing sprint velocity by adding up
story points. The intrinsic joy a team feels by meeting its obligations
gets lost when the team loses its autonomy.

2.	Cognitive overload—When a wrench is tossed into the sprint,
professional teams stop, consider the new problems, and make the
best of it. Although the team cannot make the proverbial lemonade
from lemons, they do their best to accommodate their new situation.
The team loses their heads-down focus because the sprint changes
require the sprinting to temporarily stop to understand and absorb
the new work.

3.	Morale problems—Saving the worst for last, changes to a sprint
are demoralizing. Most professionals value controlling their work as
the key to job satisfaction. Uncertainty about the day’s work unset-
tles all but the most schizophrenic workers. When management or
a customer runs roughshod over a self-managing team, they no lon-
ger call their own shots, and therefore, lose one of their keys to job
contentment.

A Failed Sprint Scenario

A startup is reinventing itself. After some contentious marketing-led ses-
sions, the Management team has agreed upon a new mission statement,
a new value proposition, and an overall strategy. With an opinionated

64	 THE AGILE ENTERPRISE

Management team, reaching a consensus about such fundamental issues
is a heavy lift. Therefore, Marketing structured it as a two-week sprint.
Although each participant lost some sleep and suffered bumps and
bruises, the team met their goals. Mission accomplished.

With this hard work out of the way, the Marketing team is now sprint-
ing to insert the new messaging into the corporate slide decks and web-
site. The company is introducing a new product in a month. Marketing
wants their messaging and design ready for the new product rollout. As
they envision the work, they will devote this two-week sprint to ensuring
consistency of messaging in their print and digital materials.

Marketing will use their third two-week sprint to work alongside a
designer to ensure the graphics are consistent across their materials.

A new head of Sales joined the company shortly after the Manage-
ment team had produced their mission statement, value proposition,
and strategy. When she was interviewing for the position, the CEO
loved her, but she did nothing to endear herself to the other executives
with whom she spoke. She said she intended to ruffle feathers, question
the other managers’ productivity, and do whatever it takes to hit ambi-
tious sales goals. The CEO was thrilled to finally have a sales leader with
a cutthroat attitude after years of team players who routinely missed
their sales targets.

True to her word, the new head of Sales reviewed the mission state-
ment, value proposition, and strategy, declaring all of them inadequate.
She complained to the CEO that the constraints of the team’s thinking
compromise her ability to meet her quarterly sales goals.

Loathe to alienate his new hotshot head of Sales, the CEO instructs the
Marketing team to incorporate the Sales head’s revisions into their sprint.
Marketing quickly realizes that the revisions are a complete rewrite that
directly opposes much of what the Management team already decided.
Although a few of the new head of Sales’ points have merit, the Marketing
team disagrees with most of them. They think the revisions reek of a new
employee who lacks an understanding of the company and its products.

The time that would have been spent completing their sprint goals
is devoted to new rounds of Management team squabbling. Ultimately,
the Management team comes to an agreement, and the final mission
statement, value proposition, and strategy are similar to the original
incarnation.

	 A Closer Look	 65

Unfortunately, Marketing declares their sprint a failure because
they accomplished none of their goals of aligning their slides and
website with the new messaging. All the time they would have spent
finishing the work of the sprint was devoted to an unnecessary revisiting
of completed work.

Marketing will not have enough time to complete the design work
before the product rollout. Although the team had an inflexible schedule,
they felt confident and excited about their plan. The last-minute changes
usurp the team’s self-management and prevent them from maximizing
the marketing around the new product rollout. The Marketing team is
demoralized.

The Trickiness of Interdependent Sprints

In most cases, the failure of a two-week sprint isn’t especially damaging
because there’s only so much that’s lost in a short iteration. On the other
hand, allowing work that’s destined to fail to continue for months or
years can sink a company. In the case of the second Marketing sprint,
the inability to incorporate the new mission statement and value
proposition into the marketing slides and website results in cascading
failure. The subsequent sprint that is intended to unify the design across
the marketing materials will not begin before the product is released.
Consequently, insufficient marketing may cause the new product to miss
its sales projections.

Although Marketing faced an unnecessary obstacle, they didn’t coor-
dinate well enough with the Product team. Marketing’s just-in-time
approach to finishing their collateral to coincide with the new product
release leaves no room for failure or unexpected wrenches in the works.
The failure of Marketing’s second sprint makes it impossible for their
third sprint to succeed. Building slack into the schedule for important
interdependent sprints allows for the recovery from an unexpected failure
without scuttling the entire mission.

Implications of Too Much Interruption

Aside from a preponderance of introversion, software developers tend to
favor working from home because it enables them to have uninterrupted

66	 THE AGILE ENTERPRISE

blocks of concentration. The most obvious implication of interruptions is
that work isn’t completed.

As noted at the beginning of this chapter, humans aren’t built to mul-
titask. Humans are built to focus. Internet-fueled doom-scrolling trains
people not to focus. The distractedness of today’s adults gave rise to the
self-help publishing category about focusing with books about finding
one’s flow state, gaming one’s productivity, and emulating legendary high
producers like Bill Gates and Elon Musk.

A more subtle implication of excessive interruption is the damage
caused by allowing reactionary responses to overpower corporate strategy.
Ideally, an underlying business strategy guides workers, even though they
may be forced to stray because of more immediate concerns. More simply,
short-term pressures often conflict with long-term goals. Anyone who’s
worked at a struggling company probably has a laundry list of examples
like these where short-term pragmatism trumped long-term strategy:

1.	An important potential customer makes a missing feature a condi-
tion of a sale. Even though the strategically inadvisable feature was
previously deep-sixed, the feckless CEO strongarms the Engineering
team to squeeze it into a release.

2.	A VP of Sales is preparing to visit an important customer who just
complained bitterly about a usability issue. Although the Product
team acknowledges the usability issue, it has a low priority because
the Engineering team has more important issues to address first. The
VP of Sales pushes for a quick modification to mollify the customer
because it will demonstrate commitment and likely result in add-on
business.

3.	A CEO has some free time over a weekend and fires up her com-
pany’s product. She finds something she considers a bug. Based on
actual customer usage, the Product team is aware of the issue and
explains it’s a low-priority usability issue. The CEO pulls rank and
demands it be addressed with an emergency patch.

A sprint cycle is usually so short that most interruptions are borne
from emergencies. High-severity bugs and usability issues may derail even
the most disciplined product teams.

	 A Closer Look	 67

Fires and Firefighting

Startups are motivated by youthful energy, fueled by adrenaline, and
supplemented by caffeine. The frenetic pace of a startup cannot be sus-
tained forever. If a company remains a startup too long, it will either
burn through its cash or the original team will become too long in the
tooth to muster the same enthusiasm that powered its early victories. Or
both. Companies that successfully navigate the transition from a startup
to a growth phase are forced to reconsider their approach to all hands on
deck events.

The preeminent all-consuming events for startups are potentially
catastrophic, customer-affecting events, aka fires. For example, when a
startup’s biggest, and possibly sole, customer phones the CEO in a rage
to report their data have suddenly gone absent without official leave
(AWOL), there’s no question that it’s a four-alarm fire.

In almost all fires associated with a company’s technology, the most
valuable firefighters are often working heads-down in a sprint. If a cus-
tomer is unable to use the company’s product because of this issue and
cannot conduct their business, a responsible team must abandon their
sprint and go into firefighting mode. The unfortunate outcome of fires
is the disruption of planned work and the slippage of delivery sched-
ules. Every company that delivers software on an aggressive schedule has
the occasional fire. When fires become routine events, it indicates deeper
problems.

Customer-affecting events aren’t the only types of corporate fires
requiring a massive response. From the sales side, the loss of an important
customer or the disintegration of a sure-thing deal is a revenue-affecting
event with immense potential implications. Companies budget based on
a sales forecast. When a structural leg of the sales forecast collapses, the
company risks missing revenue targets. The firefighting of a sales loss is
often a mad scramble to make up for the scuttled deal with additional
sales to avoid having to reset year-end expectations and avoid layoffs.

In real life, about 65 percent of the nation’s fire departments are
entirely or mostly composed of volunteers (Fahy et al. 2022). These brave
volunteers put their own lives aside when called to fight fires. Similarly,

68	 THE AGILE ENTERPRISE

firefighters at startups have regular jobs that get tossed aside when it’s
time to douse the flames.

In real life, fires are mesmerizing events that attract neighbors who
want to help. Similarly, those not directly responsible for extinguishing
the fire often act in supporting roles until the crisis passes. Startups typi-
cally employ an it takes a village approach to attack crises and engage most
if not all of their employees. This all-consuming firefighting may succeed,
but it comes at a great cost. Not only is the entire company diverted from
their regular responsibilities, but employees may start to crave the adren-
aline of fighting a huge blaze.

Developing fire containment plans and procedures designed to
quickly identify the key players helps to contain fires to only essential
personnel. By not engaging bystanders in fires, even small companies may
continue forward progress while also fighting fires.

No company can afford to expend all its resources on a single fire.
Although a fire remains an important and potentially catastrophic event,
most companies have multiple customers and deadlines that can’t be
derailed. A company cannot afford to marshal the entire team to fight
fires. However, it’s exceedingly difficult to change all-consuming firefight-
ing behavior for the following reasons, which also happen to represent the
ingredients of fire:

1.	Oxygen—Actual fires require oxygen in the atmosphere. The
atmosphere at a startup is all about heroics, and nothing illustrates
it better than individuals saving the day. It’s been well documented
that a minority of firefighters become arsonists, possibly for the
thrill of the blaze and the recognition of extinguishing it. Although
company employees aren’t intentionally wreaking havoc on their
customers, the underlying culture may not encourage employees
to avoid fires.

2.	Fuel—One of the essential components of a fire is the presence of
material that will burn. The corporate equivalent of fuel are weak-
nesses that are vulnerable to dysfunction. In the sales context, pre-
spending against a deal before the contract is signed is fuel for a fire.
Similarly, the loss of a customer almost always has a forewarning
which, if not heeded, is fuel for a budgetary fire.

	 A Closer Look	 69

The technical equivalent of fuel is weakness in the codebase.
Every team faces pragmatic challenges to release software before
it’s perfect. Experienced engineering leaders learn the appropriate
corners to cut to deliver software on time. These same engineer-
ing leaders are also responsible enough to keep track of these cut
corners, aka technical debt, to properly address them when time
permits. The accrued technical debt that isn’t paid down is like a
gasoline can; neither the technical debt nor the gasoline will spon-
taneously combust, but their absence will prevent fires.

3.	Heat—Although oxygen and fuel are two essential ingredients
of fire, there will be no fire without a source of heat. The most
likely source of heat in a company fire is human error. The pressure
to release software in complicated hosting configurations often
results in production surprises that didn’t occur in preproduction
environments.

Here’s how a company contains its fires. The following practices
eliminate or reduce the elements that compose a fire.

1.	Culture—Unlearning a culture of heroism is hard. However, the
fire is containable, and the company won’t be derailed if managers
assemble small, multidisciplinary teams. A firefighting team requires
the technical skills to address the issue, the business savvy to craft
a schedule for the fix, and effective communication skills to keep
stakeholders informed.

2.	Prioritization—Engineers know the risks of un-repaid technical
debt. In the push for new features, the paydown of debt that yields
no visible customer benefit often becomes a low priority to those
outside the Engineering team. In the quest for the latest whiz-bang
feature that blows away the competition, Product Management
often develops an out-of-sight, out-of-mind mentality about technical
debt and deprioritizes it. Instead of playing Chicken Little about
the potential dangers of technical debt, Engineering does better by
highlighting the benefits of addressing technical debt with metrics.
For example, 20 percent better throughput or 25 percent less code
complexity. Explaining the positive impact of addressing technical

70	 THE AGILE ENTERPRISE

debt ensures it will be prioritized fairly. The removal of technical
debt is akin to starving a fire of its fuel.

3.	Process and quality—As companies grow and releases become
more complicated, automation becomes an essential tool to reduce
human error. Automatically executing an ever-expanding library of
tests when code is merged provides immediate feedback. If any of
the tests fail, Engineering makes fixes until the tests pass. In addi-
tion, although most startups test their software, few have employ-
ees who focus solely on quality; this becomes a key role in a growth
company. Quality assurance is concerned with validating that pro-
posed engineering solutions address customer problems without
introducing unnecessary product complexity—and the potential
for additional bugs.

It is unrealistic to expect that any one plan will eliminate fires. There-
fore, building some slack into schedules seems reasonable to account for
unexpected events. Unfortunately, planning for fires is impossible because
they are inherently chaotic events that defy the best-laid plans. Still, a
game plan outlining the participants and responsibilities provides some
safe harbor when the house is burning. Ideally, companies avoid derail-
ment by following a prescribed set of firefighting steps.

Compartmentalizing a Fire

It is too late to figure out how to respond when a fire is blazing. Having
a playbook that dictates the firefighting process gives companies a logical
set of steps when the stress of a fire might otherwise force reactive solu-
tions. A well-considered process might enable small companies to survive
fires without losing too much ground. Playbooks help teams to maintain
focus when fires threaten to upend everything. For example, designing a
process where the reproduction of the issue, triage, and outward commu-
nication occurs outside of Engineering spreads the burden of firefighting
across the company. Ultimately, it may take Engineering time to fix a
problem, but the delay in its involvement allows forward development
progress for as long as possible.

	 A Closer Look	 71

Postmortem Examinations

When a real fire has been reduced to smoking embers, there’s an investi-
gation to determine its cause. The investigation results hopefully provide
sufficient education to avoid similar fires in the future and determine the
insurance payout. It behooves a company to perform the same sort of
postmortem investigation for mostly the same reasons.

Often, a company’s firefighters have lost so much ground that they
want to forget about the fire and return to their regularly scheduled
responsibilities. Furthermore, producing postmortem fire reports usu-
ally requires an admission of culpability, which makes many people
uncomfortable. To avoid similar future fires, managers must demand the
accountability of a postmortem report. Managers who carefully read and
question the content of these reports may gain important insights.

Reading Between the Postmortem Lines

Nontechnical postmortem explanations of technical failures have become
the expected denouement of catastrophic events. When the servers rely-
ing on U.S. East AWS hosting all go down, AWS issues an explanation.
When 70 million customer records are breached, Target issued its own
postmortem explanation.

Interestingly, the actual details of immense failures are frequently
mundane, embarrassing human errors like forgetting a semicolon in a
script file or overlooking easily avoidable code vulnerabilities. An appro-
priately self-flagellating e-mail is often sufficient for forgiveness. After all,
humans are fallible, and a willingness to identify the root cause feels to
many like taking ownership.

Smart managers demand more than an exposition of a problem’s ori-
gins. They want plans for the prevention of the same problems in the
future. Crowing about grandiose plans to right all the wrongs of the
catastrophe is one thing, but implementing the plan requires much more
time and energy than the glib rhapsodizing in a postmortem report.

The follow-through on a postmortem report is the hidden time-sink
of fires. The catastrophe itself is already a significant distraction and the

72	 THE AGILE ENTERPRISE

cause of missed sprint goals. Preventing future fires of the same type often
requires an even more painful investment of resources.

Repeatedly Fighting the Same Fire

Human mistakes will occur until artificial intelligence bots take over
human jobs. That’s just the nature of humans running the show. Although
humans are destined to make mistakes, humans are not destined to
repeat the same mistakes. Generally, companies are forgiven a human-
fueled gaffe if a sufficiently groveling postmortem report accompanies it.
Patience wears thin, however, when a company repeats the same mistakes
because it hasn’t taken the steps to fix the problems.

Typically, postmortem reports of episodes repeating the same mis-
take will mask the circumstances to avoid the embarrassing admission of
not having fixed the problem the first time. Bloodhound-nosed managers
will demand an in-depth explanation of the root causes if they smell the
rottenness of a repeated mistake. These insistent managers may not like
what they hear.

In the best case, the same issue causes recurrent fires because time
wasn’t devoted to repairing simple problems. In the worst case, fixing
fire-related problems is more expensive than fires.

A couple of examples help to illustrate the fire/fix cost calculus:

1.	A longstanding, financially important customer leaves for a compet-
itor. This departure leaves an immense hole in the budget that sales
scrambles to fill. The postmortem report reveals the software doesn’t
accommodate the expanded needs of the customer’s business. The
customer clearly communicated their dissatisfaction for the past year.

Customers constantly push vendors to expand the footprint of
products to support increasingly broad new business requirements.
For example, an accounting software company may receive a request
from a customer to automatically build an executive slide deck to
present financial numbers to investors. Although the accounting
software company acknowledges the value of the request, they pre-
fer spending their time improving the product’s accounting features.
Understandably, a vendor like the accounting software company

	 A Closer Look	 73

wants to focus on the narrow product in their sweet spot—the
accounting software, instead of building a fancy reporting system.
Equally understandably, customers value all-in-one solutions that
seamlessly address all their needs.

In this case, Sales didn’t recognize the seriousness of the custom-
er’s threat. Sales believed that the customer was so firmly entrenched
that leaving for another vendor would be more painful than dealing
with the lack of new functionality. A fatal miscalculation.

When customers demand product expansion that isn’t part of
the vendor’s strategic direction, the best approach is to integrate with
another company’s product that provides the needed functionality.
In the accounting software company example, the appropriate solu-
tion is integrating with a third party to build attractive slide presen-
tations. The worst approach is for the company to bury its head in
the sand, pretending it never heard the request.

The customer specified what they needed. Not only didn’t the
company address the customer’s needs, but they also didn’t anticipate
losing the customer. After losing the customer, the company may
lose the impetus to build the integration, leaving the door open for
additional customer exodus.

Integrations are, at best, difficult, and at worst, excruciating.
However, the cost of integrating is generally significantly lower than
building something new from scratch. In terms of cost calculus, the
best decision is to build integrations instead of risking losing lucra-
tive customers.

2.	Reading multiple postmortem reports, an astute CEO deduces that
an important product feature is causing a disproportionate number
of fires. Due to time constraints, Engineering took too many short-
cuts over the years in this heavily trafficked area of the code. Further-
more, the team was never allowed the time to properly refactor the
code and fix the problems. Consequently, Engineering has built a
sprawling city on top of a swampy foundation.

The code is now so complex that even seemingly benign enhance-
ments tend to break the software in unexpected places. Junior devel-
opers are reluctant to touch this Bermuda Triangle area of the product
when even senior developers get tangled in the byzantine code.

74	 THE AGILE ENTERPRISE

The most fraught words a CEO hears from Engineering are,
“We need a complete software re-architecture.” Visions of months,
possibly years, of software rewriting resulting in a lesser-featured,
buggy release dance like rotten sugarplums before the CEO’s eyes. In
this case, however, it sure sounds like this part of the product needs
a complete redo.

The Cost of Rearchitecture

Many homeowners have experienced snowballing renovation projects.
Replacing the wood on a front porch may reveal rotten subflooring,
which may uncover a cracked foundation. Suddenly, the simple wood
replacement turns into a whole-house teardown.

Technical projects built on flimsy foundations have a way of multi-
plying in the same way. Pieces of the software tied to one another without
well-defined interfaces may result in interrelationships that are impossible
to separate. Therefore, redoing one part of the software may mushroom
into redoing the whole kit and caboodle.

Regardless of the precise application, from housing to software,
rearchitecture projects often contain these pitfalls:

1.	Time/cost overruns—Very large projects are difficult to accurately
estimate. If a redo project is approached with an Agile mindset, the
time and cost will be reevaluated and refined after each milestone.
In most cases, redo projects cost more and take more time than was
initially estimated.

2.	Minimal first versions—A family squeezed into a small Airbnb
while their house is being rebuilt are likely to move back in before
the landscaping is completed and the light fixtures are installed.
Eventually, the builder will finish the final touches, but it may take
some time.

From a software perspective, any new product’s first version is
invariably less featured than the legacy product it replaces. Custom-
ers accustomed to the full-featured product may grouse until parity
is achieved in the new product.

	 A Closer Look	 75

3.	Bugginess—Auto experts advise against purchasing the first model
year of a new car. Getting the kinks out of a new car sometimes
takes until the second or third model year. Similarly, a large software
release will invariably be buggy.

4.	Lost opportunity cost—Instead of building new features into a
product, a company deciding to rebuild from scratch makes a stra-
tegic long-term decision. Forgoing new features on a flimsy founda-
tion in favor of fewer features on a firm foundation is often a bitter
pill for customers to swallow.

The steep costs of a product redo may be justified by the higher costs
of not doing anything and losing customers. Seldom are these decisions a
slam dunk. Rearchitecture projects require clear-eyed justification because
they have so many potential downsides.

Process Issues Hamper Agility

This chapter presents two different kinds of fires. The first fire has tech-
nical origins for Engineering to address. The second fire is a scramble for
Sales to recover from the loss of a sure-thing deal. Better processes may
have prevented or minimized both of these fires.

Customer Churn

The first situation, where a customer expressed their dissatisfaction and
ultimately left, could have been avoided by proactively addressing the
complaints. Most Customer Success teams are skilled at recognizing
potential customer churn and taking measures to prevent it. If, however,
the customer’s complaints never reached Customer Success, it’s possible
that the risk was never fully understood.

The sales cycle is sometimes so long with enterprise software that the
salesperson develops a personal relationship with the customer along the
way. Consequently, after the sale closes, the customer may continue to bring
their issues directly to the salesperson. The customer likely expects the sales-
person to act as the funnel, routing issues to the appropriate internal team.

76	 THE AGILE ENTERPRISE

The salesperson may not have recognized the customer churn risk in
part because that’s not the job of sales. When the customer asked why the
software couldn’t accommodate a new need, the salesperson may have
recommended the customer buy a solution from another vendor rather
than pass the issue along to Customer Success.

A better process might have preserved this customer. Instead, losing
the customer upended progress while the Sales team tried to make up the
budget shortfall.

Culture of Testing

Technical fires are the most common type of software company catastro-
phe. The elimination of bugs also starves fires of fuel. Bugs are killed
through comprehensive testing. Surprisingly, many Engineering teams
don’t include unit tests that fully exercise new code in their development
process.

Even if a Software team doesn’t use TDD and writes tests before
writing code, tests are still mandatory. Writing unit tests that verify code
in isolation identifies problems from the outset and uncovers new bugs
when the code is changed. Although test development is more of a culture
than a process, once an engineering team agrees to require tests, their
inclusion becomes a part of the normal development process.

Boy Scouts have a rule that demands they leave a campsite cleaner
than they found it. With Boy Scouting, it’s all about citizenship and
responsibility. The Boy Scout rule of programming means that develop-
ers should leave the code in better condition than they found it. For old
code without tests, applying the Boy Scout rule suggests including tests
to improve the codebase.

The Agility Quiz

Agility is a hard-won characteristic of functional organizations. Unfor-
tunately, as this chapter illustrates, agility is also a mixed blessing. All
manner of calamities, bad luck, willful sabotage, and damaged processes
conspire to rob companies of their agility.

	 A Closer Look	 77

The following quiz requires no late-night cramming. Simply count
your yeses and noes and refer to the scale at the end.

1.	Does upper management respect work in progress and refrain from
making urgent requests?

2.	When a team is working heads-down, are they empowered to refuse
new work until they reach a stopping point?

3.	Is the work of teams guided more by strategic direction than short-
term tactical concerns?

4.	Has your company been working at a relaxed pace to bring carefully
designed, well-tested products to market?

5.	Are teams provided the space and time to refactor shortcuts taken in
earlier iterations?

6.	Are processes in place to effectively recognize and promptly address
customer complaints?

7.	Are emergency processes in place that attempt to contain the response
to a small group of employees?

8.	Does your company emphasize group collaboration and success over
individual heroics?

9.	Does your company commit to a budget but revisit it regularly to
align spending with actual sales?

10.	Does your company require postmortem reports after a fire?
11.	Are the postmortem reports scrutinized and questioned by management?
12.	Are employees given the time to address the fire prevention measures

they identify in the aftermath of calamitous events?
13.	Are employees willing to take the time to fully address any fire

prevention recommendations they make?
14.	Are fires in your company seldom repeats of the same problem?
15.	Are the products your company ships fully covered with tests?

Scoring the Agility Quiz

0–5 yeses: Time for a reckoning. A score this low suggests a company is
constantly inundated with unexpected problems that cause missed
deliverables and customer dissatisfaction. Furthermore, employee
morale may be so low that attrition compounds the problems.

78	 THE AGILE ENTERPRISE

6–10 yeses: Plenty of room for improvement, but a company with this
score is on the right path. There may be too many fires that aren’t
well-contained. By addressing root cause issues and giving teams
the space to self-manage, this company may achieve real agility.

11–15 yeses: Congratulations. Unexpected catastrophes seldom derail
this company. When they do occur, fires are well contained. Teams
are provided the time and support to address the recommendations
of postmortem fire reports. Teams are also provided the time to
correct shortcuts and refactor work from previous sprints.

Key Takeaways

1.	Humans are not efficient multitaskers. Distracted driving laws recog-
nize the danger of multitasking while operating a vehicle.

2.	Managers driven by tactical emergencies may push teams to change
course mid-sprint. The short duration of sprints provides teams the
ammunition to refuse any changes once the sprint begins.

3.	The interruption of a sprint is damaging because it makes the
sprint immeasurable. Additionally, interrupted sprints cause cogni-
tive overload.

4.	Failed sprints affect team morale.
5.	Fires are often all-consuming events at small companies. However,

no company can afford to involve too many people in firefighting
because it derails forward progress.

6.	The most well-known fires involve technical breaches or server
failures, but nontechnical fires can be just as calamitous.

7.	Astute managers demand postmortem reports that describe the
causes of fires and pay close attention to them to determine if the
fires represent a recurrence of problems that were never properly
addressed.

8.	Although fires may derail progress, following through on addressing
root cause problems helps ensure the same problems aren’t repeated.
Unfortunately, root cause mitigation may be more expensive than
the fires.

	 A Closer Look	 79

9.	In general, rearchitecting any aspect of a product may be extraordi-
narily expensive. However, more fires will probably occur by patch-
ing a deficient product instead of fixing it.

10.	Adopting processes that foster interteam communications helps to
identify and address problems before they become urgent.

CHAPTER 6

Measuring Success

Although Agile provides teams a way to measure the success of their
sprints, these internal tools, like story points, aren’t intended for manage-
ment’s eyes. Instead, objectives and metrics provide a better way for those
who don’t belong to a team to recognize progress or lack thereof.

Story Points in Detail

As a brief refresher, story points are the numbers assigned to stories to
assess their relative size. Although a story size may obliquely translate to its
implementation time, story points are intentionally abstract. Story point
estimation aims to correctly size stories relative to one another. Complex
stories may receive more points than simple stories. Two stories with the
same implementation complexity should be assigned the same points.

Teams may devise any story point scale they wish. One common story
point scale is T-shirt sizing—XS, S, M, L, XL, and XXL. Another of the
most common story point systems is prime numbers up to 11—1, 2, 3, 5,
7, and 11. Stories awarded one point may be trivial and quick, while those
receiving an 11 are hairy and difficult. If estimations are correct, 11 one-
point stories should take the same time to complete as one 11-point story.
Consistently assigning story points over time is, perhaps, the biggest chal-
lenge of this type of estimation. Consistency of story point estimation is
also an absolute requirement or the whole thing falls apart.

Engineering teams use story point estimation to understand their
capacity. A team may discover over several sprints that they usually finish
24 story points per sprint. Another larger team may complete 40 story
points. A team using a different scale may complete 100 story points.
The number of points is much less important than a team’s ability to
consistently complete roughly the same number of points in each sprint.
The team’s velocity is the number of points completed in a sprint.

82	 THE AGILE ENTERPRISE

Story point velocity is a brittle metric. Any changes in team composi-
tion, like adding, subtracting, or swapping teammates, will affect velocity.
Furthermore, inconsistency in story point assignment over several sprints
makes it impossible to compute velocity.

Story points and velocity are effective ways for Product Management
and Engineering to communicate. When an Engineering team estimates
their stories, they can tell the Product Manager how many points they
can complete. Product Management is then free to choose stories whose
points add up to the total.

One of the most common questions about story points is their rela-
tionship to calendar time. If a five-person team can complete 50 story
points in a two-week sprint, it’s easy to do the math and compute that
the average story points per developer are 10, and each story point reflects
eight hours of work. This computation of story points to actual time is a
slippery slope.

Do Not Fall Into the Story Point Trap

Quantifying story points into actual hours is dangerous. If management
gets ahold of story point estimates and does the math, all manner of crazy
shenanigans may result. For example, if a CEO is unhappy with the rate
of new feature releases, she might say, “If we increase the team size by
50 percent, this will give us an extra 20 story points, which means we will
have space for these extra features.” Another CEO might dole out end-of-
year bonuses based on each employee’s percentage of the total story points
achieved in the year.

There are plenty of reasons why these CEOs are wrong. For one, any
change to team composition changes the team’s capacity. It is incorrect
that adding people to a team linearly increases its capacity. Introducing
new employees initially decreases overall team productivity because
training and mentoring replace some heads-down work.

Expanding a team may permanently decrease its capacity because of
the communication overhead. In the early days of Amazon, Jeff Bezos
instituted the two-pizza rule: Every internal team must be small enough
so no more than two pizzas are required to feed them (Hern 2018). The
two-pizza rule acknowledges the communication challenges of large

	 Measuring Success	 83

teams. When an Amazon team reaches the two-pizza limit, they create a
new team instead of expanding the current team. Amazon’s two-pizza rule
persists to this day.

Story Points Are for Internal Team Use

Workers are generally allergic to providing date estimates for their work.
Estimates become firm commitments when dates are communicated to
customers, even if there’s no business necessity to deliver on that date.
Invariably, promising delivery of specific features on a specific date will
require compromises.

If the delivery date is unbendable and the estimate is incorrect, the
Engineering team may be forced to cut corners. Alternatively, the Engi-
neering team works until the delivery date, and the Testing team doesn’t
have sufficient time to guarantee a robust product. If the date is fungible
and it’s pushed back, the Engineering team will be accused of not hitting
its deliverables. Committing to a wide date range instead of a specific
date is a better delivery strategy. The best delivery strategy is to avoid
date commitments for functionality that isn’t business-critical. There is no
upside to providing date estimates for employees who produce customer-
consumable content.

The abstract nature of story points allows some wiggle room on hard
dates. Story points estimate a team’s capacity to finish stories within a
specified time. Story point estimation seems a reasonable compromise
between the date-wary content producers and the beleaguered customer-
facing employees hounded by customers for firm dates.

As much as employees prefer the laissez-faire, “It will be ready when it’s
ready,” approach to estimation, this doesn’t fly with the customer-facing
sides of businesses. For one, coordination between the Marketing, Sales,
Support, and Product teams requires at least some internal estimates.

However, a CEO’s mere mention of story points is reason enough for
employees to reject story point estimation. There are well-documented
cases of senior executives weaponizing internal metrics to assess individual
employee productivity.

An example of gross misuse of internal metrics occurred with Elon
Musk’s takeover of Twitter (now X) when he used GitHub commits and

84	 THE AGILE ENTERPRISE

accompanying comments to rank employees based on their productivity
(Lavallee 2022).

To better understand Musk’s intentions, nonprogrammers require a
few definitions. Programmers store the code they write in source code
repositories that exist in a central location. GitHub is a popular cloud-
based source code repository. A programmer may write code on their local
computer but wants to ensure it also exists elsewhere, much like using
Dropbox to keep files safe from a hard drive crash. When the programmer
finishes writing a chunk of code, they commit it to GitHub. Many teams
insist on having other programmers review the work to ensure its qual-
ity before the commit is permitted. Also, responsible programmers write
descriptive comments describing the purpose of the new code.

Although Musk is plenty intelligent, he’s not a software developer. His
attempt to judge programmer productivity based on code commits to a
version control system is counterproductive. Programmers are smart, too.
If they’re being evaluated on code commits, they will make more commits
and embellish them with impressive, hifalutin comments.

When executives abuse internal metrics, employees will find ways to
game the numbers. For example, if a CEO wants to base compensation
on the completion of story points, employees will fudge the numbers.
Workers can complete more story points by assigning higher point
values to trivial issues. Employees will avoid truly complex issues with
high story points.

When micromanagers get their fingers into story points, rest assured
that this type of estimation loses all its utility.

Middle Management Needs to Administer Down
and Report Up

When someone in the C-suite starts sniffing around at the team members’
individual productivity, it’s often because the Department Manager isn’t
providing enough transparency regarding schedules, goals, and achieve-
ments. A manager ineffectively reporting up to her managers without
sufficient data leads them to demand numbers to quantify productivity
or lack thereof.

Most managers have an acute understanding of the leaders and
slackers on their teams. These managers know that it takes all types

	 Measuring Success	 85

to make a team. Having a balance of fast, reckless whirling dervishes
mixed with ruminative, meticulous sticklers often yields robust prod-
ucts delivered in a reasonable time frame. Hands-on managers know
the strengths and weaknesses of each employee even without tallying
numeric metrics.

Savvy managers routinely gain enough understanding of new projects
to match the work to the workers’ strengths. For example, when a patient
with a unique medical condition calls for an appointment, the scheduler
tries to find the doctor with the most relevant experience. If there are
multiple qualified doctors, the urgency of the appointment will influence
the scheduler to choose the one with the earliest availability.

The scheduler in a medical practice is a middle manager who han-
dles customer appointments and answers to doctors. If a patient with an
enlarged prostate insists on receiving same-day service, the scheduler may
not find the perfect fit because of the need for expedience.

Even in creative fields, managers use the same qualification and time
window logic to match the work with the worker. Take a profession as
inherently immeasurable as art. Art benefactors are middle managers who
know the go-to person for time-sensitive work.

In his bestselling biography, Leonardo da Vinci, Walter Isaacson
immerses himself in 15th-century Italy. Studying da Vinci’s sketchbooks
and works of art, Isaacson paints a picture of a brilliant and distractable
artist. Occasionally, da Vinci was passed over for big jobs by his benefac-
tor, Lorenzo de’ Medici. For example, the Sistine Chapel ceiling commis-
sion went to Michelangelo, one of da Vinci’s contemporaries (Isaacson
2017, 356).

It’s easy to imagine Lorenzo de’ Medici’s assessment of Leonardo da
Vinci:

Leo has great attention to detail. His drawings of the human
anatomy are astonishingly realistic. That is, if Leo completes his
work. I’ve seldom experienced a more distractable employee. Leo
will start drawing an arm, get excited about the way water flows
in the river, and abandon his original drawing. While his innate
talent is indisputable, his disciple is lacking. He has a pattern of
leaving half-finished works lying around as if he expects others to
complete them.

86	 THE AGILE ENTERPRISE

Leo is also a perfectionist which, I think, is a big part of his
problem. When the going gets tough and Leo can’t get it abso-
lutely correct, he’ll put his painting on the shelf. He’s been work-
ing on this painting he calls “Mona Lisa” for almost a decade.
I keep telling him to finish it, already. He’s letting great get in the
way of good.

His pal Michelangelo, on the other hand, is an absolute work-
horse. He chiseled out “David” in the time Leo was dithering with
his sketchbook. When I need work done tout de suite, I look to
Michelangelo. Leo was miffed when I gave Michelangelo the
Sistine Chapel ceiling. Although it took Michelangelo four years
to complete the ceiling, I knew Leo would never have finished it.

If de’ Medici had upcoming work requiring precise, scientific ana-
tomical drawings, he’d most certainly want to use da Vinci provided the
deadline wasn’t too tight. Otherwise, he’d go with Michelangelo, who was
no slouch in the realistic representation of the human form. If a church
was seeking a graceful religious painting, de’ Medici might go with the
talented but less renowned Sandro Botticelli. de’ Medici understands each
artist well enough to play to their strengths so they can deliver spectacular
results. There’s no need for de’ Medici to provide the reasoning for his
scheduling to his customers.

Like de’ Medici, managers wary of upper management meddling
may hide the inner workings of their teams and let the results speak for
themselves. This strategy of presenting the sausage but hiding the sausage-
making may be acceptable only if the results are stupendous. Senior man-
agers may try to backseat drive the process if they’re offered too much
behind-the-scenes information. The middle manager must provide the
right balance of transparency and opacity.

When a middle manager reports the results of a project to their boss
and hides the progressive details, the boss lacks the context to under-
stand the magnitude of the accomplishment. For example, if de’ Medici
kept the Sistine Chapel priests in the dark about the ceiling project’s
ongoing progress only to report that Michelangelo finished it after four
years, the priests would probably have questions. Instead of celebrating
Michelangelo’s magnificent accomplishment, the priest would probably

	 Measuring Success	 87

grouse, “Sure, it’s beautiful but I was expecting the ceiling to be finished
two years ago. de’ Medici should have put da Vinci on the project as a
second painter so that they could finish on time.”

Unless specific measures are in place that define success and failure,
senior management will question why the team didn’t deliver more.

Why Management Wants Metrics

It’s fair game to bash managers who inappropriately use internal metrics
to unfairly evaluate employees. However, senior managers will grasp at
whatever’s available when they have no visibility into the reasons why a
team is underperforming.

Scenario: Metric-Driven Teams Versus Status
Report-Driven Teams

A company steals a successful salesperson from a direct competitor.
Ordinarily, sales jobs are a revolving door where success or failure hinges
on a few well-defined metrics. The salesperson flounders in her new posi-
tion, missing all her sales targets. In this case, however, the CEO knows
this employee is a top-notch sales professional. The CEO also realizes that
Sales is the company’s only metric-driven department.

The Marketing, Product, Engineering, Support, Human Resources,
and Finance teams provide looser reporting that makes it difficult to
gauge the teams’ performance. Consequently, the conundrum of the
underperforming salesperson remains a mystery. The CEO is unable to
determine if failures in other parts of the company are preventing the
salesperson from reaching her targets or if there’s some hidden problem
in the Sales organization.

The VP of Sales comes to senior management meetings with spread-
sheets that drill into individual salespeople’s performance against the
projected plan. The other departments provide status reports of their
accomplishments since the last meeting. There’s almost no way for
the CEO to determine if the nonsales teams are overperforming or
underperforming.

88	 THE AGILE ENTERPRISE

In her management meeting presentation, the head of Human
Resources communicates information like this:

•	 Five open positions at the start of the month
•	 Received 500 resumes this month and rejected 300 of them
•	 Conducted 60 first-round interviews
•	 Conducted 10 second-round interviews
•	 Made offers to two candidates
•	 Filled one open position

All this sounds pretty good to the CEO until he realizes he has no
frame of reference. How many interviews should have been conducted
this month? Is it reasonable that of 500 resumes, only two candidates
received offers? How much is this recruiting effort costing? The CEO asks
the head of Human Resources a simple question: “Are you satisfied with
these results?”

The head of Human Resources proudly proclaims the busyness of
the small HR department with its immense recruiting burden. She states
that her team cannot continue at this breakneck speed without burning
out. Although the CEO is polite, he can’t resist asserting that working
hard isn’t always the same as working smart. He also wishes that Human
Resources had established recruiting objectives so he could know if they
were meeting them. Instead, Human Resources provided quasi-metrics—
information that is numerically based but without enough context to dif-
ferentiate success from failure.

CEOs Want Numbers

Current-day management theory encourages CEOs to mathematically
assess the performance of every nook and cranny of their companies.
Hence, CEOs demand metrics for each employee and enter them into
spreadsheets. Crunching the numbers allows CEOs to differentiate the
workhorses from the slackers.

Jobs that don’t require humanity are the easiest to quantify with met-
rics. For example, one can easily measure an employee in an Amazon
fulfillment warehouse by their efficiency in picking items within a time

	 Measuring Success	 89

window. The job of an Amazon picker requires no art and no creativity.
When the technology exists for nimble robots to pick products, humans
in these jobs with their weak backs and bum knees will likely become a
quaint artifact of the past.

Jobs requiring humanity are much harder to replace with robots.
For example, a therapist who listens to problems and provides insights
is much harder to replace with AI. From a business perspective, it’s easy
enough to measure a therapist’s billable hours, new patient acquisition,
existing patient retention, and positive Yelp reviews. While these metrics
may have some oblique relationship to the therapist’s skill, real success in
therapy results in patients making positive changes in their lives. Often,
successful therapy depends on the serendipitous alchemy of a stellar
patient–therapist matchup. Great therapists may help patients so much
that they may no longer require therapy.

What about the jobs in a typical company? Are technical geniuses
and marketing savants governable by metrics or should these creatives
have da Vinci’s freedom to do as they please? Any executive responsible
for a business’s bottom line would argue for metrics. The free spirits
who also happen to occupy corporate jobs might argue for artistic
freedom. Managers probably prefer a bit more Michelangelo and a bit
less da Vinci.

A Compromise: Objectives and Key Results

Establishing objectives with success measures that don’t stifle creativity
is a reasonable compromise. This is indeed a tall order. Fortunately,
Kleiner Perkins venture capital investor John Doerr wrote the book on
these types of objectives, called Objectives and Key Results (OKRs) (Doerr
2018).

OKRs are the brainchild of the late Andy Grove, Intel’s legendary
President and CEO. John Doerr worked at Intel before leaving to join
Venture Capital powerhouse, Kleiner Perkins. So, Doerr learned OKRs at
the feet of the master.

OKRs are a management methodology that helps ensure everyone
in a company is focusing their efforts on the same important issues. A
person without corporate experience might question why everyone in a

90	 THE AGILE ENTERPRISE

company wouldn’t focus on the same important issues. After all, isn’t the
point of a company to band together to solve a common set of problems?

Yes, everyone in a company should row their oars in the same direc-
tion. However, it’s a huge challenge, even in small companies, to inculcate
a common understanding of the mission. Masochistic CEOs receive rude
awakenings after asking employees to provide their understanding of the
company’s mission. Rather than expressing anger at employees for not
getting it, these CEOs should first ensure that management has a common
understanding. Then, managers should communicate the mission repeat-
edly until it sticks with all employees.

The objective portion of the OKR is easy. The objective is merely what
is to be achieved. Ideally, objectives are significant, unambiguous, tangi-
ble, and possibly audacious. Ideally, objectives provide clarity and leave
no room for ambiguity.

The key results (KR) portion of the OKRs provides the gates and
accounting for how the objective will be met. The best KRs are exacting
and time-boxed, while also being aggressive yet achievable. Most impor-
tantly, KRs are measurable and demonstrable. Key results must contain
numbers. This way, the OKRs requirements are met, or they aren’t—
there’s no fuzziness. At the end of a prescribed period, the key result is
designated completed or not. When all the key results of an OKR are
completed, the OKR is considered achieved.

Two Flavors of OKRs

The point of committed OKRs is to provide a clear path to accomplish-
ing goals. The rigor of the KRs keeps objectives from being spongy and
nebulous. With metric-driven KRs, determining successful completion
is objective, not subjective. Aspirational OKRs are the second type that
guide moonshot-level thinking. The point of creating aspirational OKRs
is to think big but think logically. If one creates an audacious goal, some
well-considered KRs bring it a bit closer to reality. Even though not all
aspirational OKRs will be achieved, there’s little chance of accomplishing
aspirational goals if they remain in someone’s head without the rigor of
the OKR process.

	 Measuring Success	 91

The Flavor De Jour in Tech

OKRs are all the rage in tech circles. John Doerr/Kleiner Perkins was
an early investor in Google. John Doerr presented OKRs to the original
Google team of 30, and they became early adopters. Google still relies
on OKRs to keep its business aligned. Google Cofounder and Alphabet
CEO, Larry Page, wrote the foreward to Doerr’s book. The Bill & Melinda
Gates Foundation is also an OKR proponent.

Between Intel, Google, and the Gates Foundation, a person might
conclude OKRs are the province of huge organizations. But what about
startups? Does the energy and attention required to construct reasonable
OKRs outweigh the benefits for small companies? Larry Page would say,
No, and remind skeptics that Google became Google because it was a
startup that adopted OKRs (Doerr 2018, X). Page would probably also
admit that OKRs aren’t easy. His team coalesced their OKR experi-
ences and published a useful guide to pitfalls to avoid and best practices
(Google, “Google’s OKR Playbook”).

Potential OKR Pitfalls

Some of the following items reflect Google’s wisdom about OKRs that
can go astray (Google, “Google’s OKR Playbook”). Some of these items
address common OKR mistakes not identified by Google.

1.	Setting too many, too few, or low-value OKRs—OKRs aren’t a
laundry list of tasks that may or may not be completed. The core
idea of committed OKRs is that these are must-have items because
they provide tremendous business value. Having too many OKRs
dilutes their effectiveness. Having too few OKRs suggests the team
isn’t using its full capacity. Low-value OKRs aren’t worth doing.

2.	Status quo OKRs—There’s little point to OKRs that reflect what a
team is already doing. The point of OKRs is to recognize changes in
the business-as-usual that will bring additional value to customers or
to the team.

3.	Confusing key results with tasks—Key results are the measures that
determine the success or failure of the objective. Tasks are items to be

92	 THE AGILE ENTERPRISE

undertaken. The objective of the OKR almost certainly has a set of
associated tasks, but these should not be confused with key results.

4.	Setting and forgetting—OKRs require regular care and feeding.
The most effective OKRs occur during a financial quarter and need
almost constant monitoring. Since OKRs reflect an organization’s
most important goals, well-run companies focus on OKRs during
management meetings. OKRs should be transparent and visible to
everyone across the organization.

5.	Using OKRs to evaluate performance or affect compensation—
Although an employee’s effectiveness in completing OKRs should
be viewed positively in a performance review, tying OKRs directly
to compensation is a huge no-no. If OKRs are used for compen-
sation and advancement, employees will game them to ensure
they’re easy to accomplish; this is exactly what employees do with
story point estimation when management tries to tie them to
compensation.

6.	Small-minded aspirational OKRs—Rather than asking, “What
could we do if we hire a few additional employees?” it’s better to
ask, “What could we do that would rock our customers’ worlds?”
Stating an audacious goal is the first step in achieving it. If the
business rallies around the goal, one of the KRs might be to hire
additional people.

7.	Sandbagging—A team’s committed OKRs should consume all its
available people. A team’s committed and aspirational OKRs should
consume slightly more than its available people. If the sum of a
team’s OKRs can be completed without utilizing everyone, it’s a sign
that the team isn’t pushing hard enough or is over-resourced.

8.	Setting nonmeasurable key results—Although it’s easy to under-
stand that KRs should be numeric, producing these numbers
takes some work. Conceiving non-numeric KRs is a temptation
that shouldn’t be permitted because these kinds of KRs can’t be
measured. For example, if the objective is to make a web page’s
interface more intuitive, the KR, “Everyone agrees the page is easier
to use,” is unacceptable. Instead, a KR like, “Measure the time of
data entry with 100 users and achieve 10 percent faster completion
than before,” is acceptable.

	 Measuring Success	 93

OKR Example and Counterexample

Discussing the concept of OKRs is simple, but constructing great OKRs
is deceptively difficult. The following examples present two OKRs, one
bad and one good.

Example OKR:
Objective: Improve the website
Key Result 1	: Produce more engaging content.
Key Result 2	: Beef up the website design.
Key Result 3	: Poll employees to determine if the website

improves significantly.

This OKR is nebulous and unacceptable. Improving the website is
subjective, meaning different things to different people. Subjective objec-
tives are immeasurable. The first two key results are tasks, not measurable
results. Ideally, these first two tasks are required to achieve numeric key
results. The third key result suggests a numeric measure, but it’s measur-
ing opinions, not an actual improvement.

Counterexample OKR:
Objective: Increase website engagement
Key Result 1: Ensure we get at least 1,000 pageviews from

SEO efforts by end of Q1.
Key Result 2: Decrease bounce rate from 75 percent to 50

percent by end of Q1.
Key Result 3: Increase average pages per visit from 1 to 2.5

by end of Q1.

This OKR introduces a few webby concepts that bear definition:

SEO—Search engine optimization is the process used to optimize a
website’s technical configuration. SEO enables a website’s pages to
become easily findable and higher ranked by search engines.

Bounce rate—The bounce rate measures the percentage of people
who land on a website, don’t interact, and leave. Website designers
work to reduce bounce rates.

94	 THE AGILE ENTERPRISE

Average pages per visit—The number of pages website visitors click
on is an excellent measure of the site’s engagement. Increasing
pages per visit reflects more interesting and engaging content.

This website engagement OKR hits all the high points of a great
OKR:

1.	The objective is clear.
2.	The KRs are measurable and time-bound.
3.	The goals of this OKR are ambitious but achievable.
4.	The business will benefit significantly from successfully completing

this OKR.

Case Study: Customer Retention and OKRs

A vacationing CEO sits on the beach watching his grandchildren build a
sandcastle as he ruminates about his Q4 corporate objectives. One grand-
child runs into the water to fill her pail with water to dribble onto the
sandcastle. By the time she fills the bucket and reaches the sandcastle,
the bucket is empty. The bucket has a hole. Before she notices the leak,
the girl runs back to the water and refills the bucket to no avail—it’s still
empty by the time she reaches the sandcastle. Eventually, the girl notices
the leak, refills the bucket, and sticks her finger in the hole. Some water is
lost, but enough remains to tend to the sandcastle.

The CEO views the leaky bucket as a metaphor for his company.
The company has lost several important customers over the past year.
His small sales team is hitting its targets reeling in new customers.
However, the new sales revenue isn’t replacing the revenue from the lost
customers.

The CEO knows it typically costs five times more to acquire new
customers than retain existing ones. The company’s customer base churn
is like his granddaughter’s leaky bucket. She can run herself ragged refill-
ing the bucket, but until she plugs the leak, she cannot progress forward.
The CEO decides his objective is to stop the leaks.

When he gathers his grandchildren and heads back to their beach
house, the CEO scrawls the following objective on the back of a
takeout menu:

	 Measuring Success	 95

Find a way to eliminate the loss of our lucrative existing customers
because new customers are so expensive to acquire.

As he tries to produce KRs to measure the objective, the CEO
considers why the company is experiencing churn. It doesn’t take him
long to produce a list.

1.	Sales is heavily incentivized to make new sales. Upselling to cur-
rent customers isn’t as well compensated. Therefore, his Sales team
focuses more on new sales than tending to current customers.

2.	The company’s competitors are going to market with whiz-bang
new features much faster than his company is releasing simi-
lar functionality. Customers have complained and left because
the company isn’t keeping up with its competitors. Customers
explained they’re willing to be patient if they know the features are
imminent. However, customers also grouse they lack visibility into
the company’s roadmap.

3.	The company is frequently blindsided. When the CEO asks why
they are leaving, customers often cite problems never communicated
to the Customer Success team.

After a bit more thought, the CEO writes the following OKR:

Objective: Reduce customer churn to zero
Key Result 1: Ensure that Sales visits every customer at least

once a quarter starting at the beginning of Q4.
Key Result 2: Release new software to customers every three

weeks instead of the current quarterly releases. By cutting the time
from three months to three weeks, finished features will get to
customers faster.

Key Result 3: Customer Support ensures it will speak to all
customers monthly and solicit at least three problems or needs
from each conversation.

The CEO is proud of himself. He’s trying to shake things up and
believes bringing OKRs to his company will force better alignment
between departments. While babysitting his grandchildren, he has

96	 THE AGILE ENTERPRISE

produced what he considers a solid OKR and sees it cascading to Sales,
Engineering, and Customer support.

More specifically, the CEO expects to give Sales his first key result,
which they will use as the objective of their OKR. The head of Sales will
make her own key results, which will become objectives for the people
on her team. The same will occur with key results for the Engineering
and Customer Success teams. He envisions a broad, leafy family tree-like
structure that starts with his OKR. Each management level inherits from
the level above. With this approach, OKRs will be fully aligned all the
way down to the nonmanagerial employee level.

The CEO can’t wait to return to work and explain this top-down
approach to OKRs.

The Phony Lure of Cascading Objectives

When the CEO returns to the office after his vacation, he gathers the
management team and explains his beach babysitting revelation. A few
of his longtime managers surreptitiously roll their eyes at one another.
They’re accustomed to their boss returning from vacation with new work
for all of them. One employee mutters to another, “I’m surprised his kids
trust him with the grandchildren when he’s always distracted thinking
about business.”

As the CEO explains his idea of top-down, cascading OKRs, he receives
gentle pushback from some managers and open hostility from others. One
of the managers with deep OKR experience makes three points:

1.	The CEO should provide vision and direction to the company, but
he must leave it to his Management team to figure out for themselves
how their teams should best add value. That is, the CEO’s objectives
are welcome and expected, but he may not dictate his managers’
objectives from his key results.

2.	Constructing significant, measurable OKRs is difficult, even for peo-
ple who have done it before. A top-down approach where each rung
on the reporting ladder inherits its objectives from the higher level
becomes chaotic when key results change at the highest level. And

	 Measuring Success	 97

changing key results to make stronger, more measurable OKRs is
more the rule than the exception.

3.	Adopting a balanced approach of top-down and bottom-up is far
preferable when it comes to setting OKRs. Many of the best ideas
come from nonmanagerial employees who have their own under-
standing of business needs and priorities. OKRs will fail in the
company unless they are a collaborative process.

The manager with the OKR experience in the previous paragraph
speaks the truth. While it’s possible to implement top-down OKRs, this
approach ignores the valuable insights of the people who perform the
work. CEOs and others in the C-suite should provide vision and strategy.
If the rest of the company understands the vision and strategy, they are
better equipped to intelligently execute.

Back to the vacationing CEO. He is accustomed to being the
smartest guy in the room and bristles at the pushback. However, he
handpicked his management team because of their experience and
intelligence. Although he believes he’s correct that his top-down OKRs
are the perfect way to align the company, he’s willing to allow his team
to further explain themselves.

The outspoken VP of Engineering offers additional detail about the
shortcomings of top-down OKRs. He begins, “I understand you’re trying
to plug the leaks, but not only is it offensive to dictate that it’s my team’s
contribution to release software every three weeks, but it’s short-sighted.”
He goes on to suggest these two objectives:

1.	Put new software features in front of customers as soon as they’re ready.
The VP of Engineering explains that the CEO’s three-week release
objective isn’t ambitious enough. The Engineering team wants to
explore continuous delivery, a process that enables immediate deploy-
ments to production environments, to deliver software quickly, and
to solicit immediate customer feedback. Using this approach, soft-
ware could be released daily or multiple times daily.

2.	Offer customers a strategic, outcome-driven roadmap that clearly out-
lines the company’s goals without committing to specific dates for features.
The VP of Engineering is aware of the disconnect between customer

98	 THE AGILE ENTERPRISE

expectations and engineering plans. Since the CEO hadn’t addressed
this disconnect in his objective, this second objective fills the gap.

The CEO silently congratulates himself for hiring managers who
aren’t yes people. He understands how the VP of Engineering absorbed the
big idea of stopping customer churn and produced a significantly more
impressive objective. Furthermore, the second objective is important to
keep customers informed about the company’s plans without promising
specific dates.

The other department managers mimic the VP of Engineering for
their own disciplines. The VP of Sales explains that the CEO’s objective
for sales of visiting customers every quarter doesn’t adequately prevent cus-
tomer churn. The Sales team must change its compensation structure to
treat current customers as precious commodities and take responsibility
for retaining them. The VP of Sales suggests a broader objective like,
“Grow revenue from existing customers while continuing to win new
customers.” She then tosses out a few key results, including customer
visits and stronger collaboration with Customer Success.

The CEO is astonished that the department managers produced more
ambitious objectives than he imagined. After providing the vision, the
CEO starts the ball rolling and wisely decides to get out of the way.

If OKRs are constructed thoughtfully and executed well, they ben-
efit the company. The transparency of OKRs enables all employees to
understand why their work is vital to the company. The cross-team con-
nective tissue that frequently frays as companies grow can be mended
with OKRs. If a Management team focuses on successfully completing
committed OKRs, they can band together to focus on and ensure the
success of OKRs in jeopardy. OKRs are the metrics senior managers
want, enabling them to focus on the big picture without resorting to
internal metrics, like story points, to judge progress.

OKRs Versus Management by Objectives

Peter Drucker introduced his theory of management by objectives (MBO),
a goal-setting framework, in his 1954 book, Practice of Management
(Drucker 1954).

	 Measuring Success	 99

MBO is a management system where managers and employees
collaborate to develop areas of responsibility for employees. Standards are
established and metrics are used to determine employees’ performance.
The underlying belief of MBO is that employees perform better if they
understand what’s expected of them. Employee participation in the MBO
goal-setting process fosters loyalty and dedication while also aligning
objectives across organizations.

MBO sure sounds like OKR. Are OKRs merely a colorized, weak
remake of a successful, old movie designed to appeal to a younger
audience? Actually, no. MBO and OKR have some significant differences
outlined in the following table.

Table 6.1  MBO versus OKR

MBO OKR
Origination Peter Drucker in 1954 Andy Grove in the 1970s

Frequency of
review

Reviewed yearly—objectives set
for the entire year and analyzed at
an employee’s annual performance
review.

Higher frequency of review. OKRs
are generally set for a month or
quarter and frequently reviewed
to make course corrections.

Visibility Strictly confidential between a
manager and an employee.

Completely transparent. The
power of OKRs is that they are
publicly shared.

Purpose Used to determine compensation
and possibly bonus during an
annual review.

Compensation remains unaffected
by the level of achievement.
The focus of OKRs is to push the
boundaries to achieve excellence.

Definition of
success

Since compensation is directly
related to the fulfillment of
objectives, employees are expected
to achieve 100%. Any less and
compensation will be lowered.

An average of 60% to 70%
achievement is expected. 100%
achievement means employees
are just playing in their comfort
zones. Goals should be ambitious
but realistic.

Key Takeaways

1.	Story point estimation is the Agile Scrum approach to sizing work
items relative to one another.

2.	The story point completion achieved by teams, also known as veloc-
ity, is an internal metric.

100	 THE AGILE ENTERPRISE

3.	Upper management’s use of story points to measure the effectiveness
of teams and individual employees isn’t a fair means of evaluation.

4.	Upper management might cling to story points as a measure because
team managers don’t provide any other useful metrics.

5.	Current-day management theory encourages the quantitative
measurement of companies, teams, and employees.

6.	OKRs represent a compromise between quantitative measurement
and creativity-stifling metrics.

7.	OKRs must be significant, unambiguous, and measurable.
8.	There are two flavors of OKRs: committed must-do OKRs and

aspirational OKRs.
9.	The key results part of OKRs must be numeric.

10.	OKRs represent an improvement on the original concept of MBO.

CHAPTER 7

Implementing
Organizational Change

Agile isn’t magic. Becoming an Agile organization requires each team to
build processes for internal and inter-team communication and develop
ways to recognize success. Often a gimlet-eyed outsider is the best person
to provide a dispassionate assessment and execute changes.

Before even considering bringing in an outsider to solve internal
issues, most cost-conscious CEOs prefer a solution from the people
already on the payroll. Before seeking solutions, a CEO must articulate
the problems. No company, even the most respected and valuable enter-
prise, is without problems. However, not all problems are created equal.

If a company with a competent management team consistently misses
its goals, it’s important to determine the root causes. Companies that
shoot for the moon may be aiming too high. Organizations with more
modest goals that never reach them are the ones that should ask why.

Companies fail for myriad reasons. Some startups never find a mar-
ket fit for their products and don’t pivot to meet market demand. That
is, companies that doggedly build products no one is willing to buy are
doomed to fail. Other companies fail for more subtle reasons. For exam-
ple, companies in crowded business verticals must have good products
and be sufficiently differentiated from competitors.

When a Company Reaches a Plateau

One of the most vexing problems is when a company plateaus. Sometimes
it plays out like this: A company has acquired a set of loyal customers who
love the product. The company succeeds enough to grow, either from
profits or additional investment.

102	 THE AGILE ENTERPRISE

When the company cannot reach the next level of growth, it’s likely
because what worked when the company was small no longer works with
an expanded team. The tight coupling of teams in a startup almost guar-
antees that nothing gets dropped on the floor when handing off work
between teams. Company growth frays the connective tissue that exists
between its teams.

Companies in startup mode adopt a we wear many hats approach.
An employee hired to write technical documentation may pitch in to
test the application. A customer service representative may build the
company’s website. The idea of wearing many hats is a euphemism for
doing whatever’s necessary for the company’s success, regardless of the
reporting structure.

Early-stage company employees thrive on the uncertainty, and some-
times the insanity, of what the day holds. Startups can be chaotic, attract-
ing people who love to swim in these choppy waters. When a company
succeeds largely because of the energy of its early-stage employees, contin-
ued success requires a different set of behaviors.

Process and best practices are secondary concerns when an early-stage
company tries to stay afloat. During a startup’s survival phase, employees
may proudly tout its flat organizational structure and lack of bureaucratic
constraints. A startup team may believe they’re following Agile practices,
but pivoting a startup is frequently haphazard, not intentional.

A company is forced to mature as it grows. A startup’s “wear many
hats” mentality is no longer a prized trait. Instead, employees in growth
companies learn to stay in their lanes and hew to the responsibilities of
their positions. When the willingness to work across teams for the com-
mon good becomes suspect instead of rewarded, additional processes are
required to ensure that the benefits of startup cohesion remain, albeit in
a more organized manner.

Companies that don’t execute the organizational changes required
to grow will increase in size without maturing. That is, they become
big babies. Nostalgically relying on the disorganization of the startup
days, instead of introducing new processes, causes companies to floun-
der. Startups can’t scale without some additional bureaucracy and man-
agement structure. Early employees who dislike the constraints of a
growing company may be happier joining another startup.

	 Implementing Organizational Change	 103

Opportunities at Inflection Points

Like a gangly teenager, companies go through awkward transitions as
they fill out. Interestingly, the especially awkward moments in a com-
pany provide the most significant opportunities to grow. For example,
a company that receives an investment injection may now hire for the
positions that were previously shared responsibilities among the startup
team.

Before even publishing descriptions for these new positions, thought-
ful leaders may carefully consider the skill sets required for the company’s
future success that the current team lacks. However, identifying the miss-
ing pieces when hiring additional staff requires both a frank assessment
of the current team’s shortcomings and a clear understanding of what it
takes to reach the next level of success.

In more concrete terms, the following real-world opportunities are
typically considered as companies grow. Note that this list is merely a
set of general growth-oriented questions. The answers to these questions
depend on a company’s business circumstances.

1.	Sales—Should the company hire additional salespeople and con-
tinue a direct sales strategy or implement a channel strategy where
third parties such as partners, distributors, or value-added resellers
sell the company’s products? A channel strategy puts more boots on
the ground but also requires product maturity, including seamless
deployment, clear documentation, and third-party training.

2.	HR—The conundrum of growing companies is teams that most
need to hire additional workers are too busy to recruit. Should HR
take an active role in building a recruiting program, or should hiring
managers continue to shoulder the responsibility for hiring through
outsourced recruiters? A strong HR leader will insist on uniformity
and fairness in hiring across teams.

3.	Quality assurance—When is the right time to transition from a
manual testing organization to automated testing? When a compa-
ny’s products mature and user interfaces stabilize, it’s time to con-
sider an automation framework and transition manual smoke tests
to automated scripts.

104	 THE AGILE ENTERPRISE

4.	Operations—Should Operations migrate from a hosting center to
a cloud provider? Is now the right time to build automation scripts
that make deployments a pushbutton operation? How about build-
ing a deployment pipeline that automatically runs tests and deploys
whenever new software is committed to a version control system? In
most companies, Operations is a growth area that requires strong,
experienced leadership.

5.	Engineering—Should Engineering adopt new practices like test-
driven development that require unit tests to accompany any new
code? Is now the time to consider refactoring or rearchitecture proj-
ects? With a growing team, is it time to break a monolithic product
into individually deployable micro-services?

6.	Product management—When should Product Management tran-
sition from a seat-of-the-pants operation to a more data-driven
organization? Is now the time to hire a full-time user experience
designer instead of continuing to outsource the work? Finding
product–market fit is hard enough in a startup, but lucky or thought-
ful leaders can make it past the startup phase. Making real headway
post-startup requires Product Management to grow up.

Four Keys: Recognizing Corporate Agile Readiness

Acknowledging that a business as usual approach isn’t cutting it is the
first step in retooling a company for agility. The second step to corpo-
rate agility is committing to change. However, making changes without
well-defined reasoning is merely making change for the sake of change.
Different isn’t always better.

These four keys to recognizing corporate Agile readiness constitute a
roadmap for determining the best ways to grow and implement processes
to achieve objectives.

Key 1: Dispassionate Agility Assessment

Each department in a company serves an essential purpose. If a depart-
ment isn’t pulling its load, it’s a drag on the entire business. Although
departmental problems affect business outcomes, determining the cause
of the problems is seldom straightforward.

	 Implementing Organizational Change	 105

Here’s one of the most common business squabbles occurs between
Sales and Engineering:

Engineering—“Sales goes out of their way to sell products we haven’t
built. They should become more knowledgeable about the prod-
ucts we do have, sell these products, and stop selling vaporware.”

Sales—“We keenly understand the company’s products. The problem
is that customers don’t want our current products. If Engineering
built what customers need, we wouldn’t have to get so creative in
the sales process.”

Who’s right and who’s wrong in the engineering/sales argument?
Companies that achieve product–market fit don’t have these problems.
If products are built to address market needs, customers clamor for the
software and Sales isn’t forced to sell vaporware. Sales is in the wrong if
products fit the market and Sales peddles products that don’t exist. Engi-
neering is in the wrong if its products don’t appeal to the company’s target
customers.

Like many corporate disagreements, determining the responsible
party is seldom black and white. There’s almost always plenty of blame to
spread around because no team is ever perfect. The acknowledgment of
imperfection opens the door to change.

Instead of becoming embroiled in the internecine conflict between
departments, assessing a department in isolation provides a better win-
dow into its function or dysfunction. The following types of questions
bring transparency to the workings of a department:

1.	Does the team produce tangible results at a regular cadence?
2.	Does the team have lengthy planning cycles resulting in voluminous

documentation?
3.	Does the team consistently meet its objectives and deadlines?
4.	Does the team believe it’s operating well and sees no need to change

course?
5.	Does the team have processes it follows to manage their work?

Even though these five questions may be answered with a simple Yes
or No, a defensive manager would probably pick apart the questions and

106	 THE AGILE ENTERPRISE

find a way to paint their team positively. Without any firm way of mea-
suring productivity, much of the assessment amounts to hearsay.

Any assessment of a team requires some triangulation and digging.
In the absence of metrics, interviewing the recipients of the team’s work
products offers a window into the team’s effectiveness. Additionally, can-
vassing other teams’ manager’s opinions is valuable if the interviewer
knows enough to separate facts from politics.

Teams that insist they’re well-oiled machines without making changes
almost always need interventions. Hubris is one of the deadly sins of a
team that prevents its growth. Managers and workers with the humility
to acknowledge their imperfections are eager to try new approaches that
promise greater success.

Key 2: Establishing a Structure to Measure Success

The previous chapter took a deep dive into metrics and OKRs. It’s
nearly impossible to assess the effectiveness of a team without metrics.
In the previous section, without metrics, the five Yes/No questions may
be finessed to paint the respondent in the best light. With metrics, the
answers become more definitive with numeric measures to remove the
fuzziness of the answers.

The only hope in Key 1 of being dispassionate in assessing agility is to
implement the measurement structure of Key 2. The subjective analysis
that metrics provide supports assessing teams without emotion or bias.

Even if the five questions expose some weaknesses, having metrics
in place suggests the team cares about accountability and improvement.
Furthermore, even if the team isn’t pressed by management for success
statistics, having metrics supports internal assessments of successes and
failures.

Organizations that push back against metrics may fear the cold cal-
culus of quantifiable results. Metric avoidance enables managers to claim
work product successes that might be considered failures when quanti-
tively evaluated.

Conversely, companies that commit to metric-driven objectives take
a leap of faith. No longer will they be given participation trophies for
simply putting in the hours. Metrics don’t care about effort, attitude, or

	 Implementing Organizational Change	 107

crazy work hours unless these factors contribute to teams completing their
work. Metrics measure results. By creating objectives with measurable
results around the critical work, teams learn to ignore noncritical work.
Instead of spending long days and weekends focusing on too many tasks,
teams work smarter by narrowing their focus. Objectives help teams focus
on just the critical work and allow them to defer noncritical work.

Transparent objectives enable management teams to restructure their
weekly meetings. The discussion in these meetings centers around the
steps a team will take each week to achieve its objectives.

Companies willing to incorporate metrics are good bets to bring
agility into their organizations.

Key 3: A Framework for Inter-Team Communication

The human body is marvelously complex. Although each organ has its
own specific role, the systems work collaboratively to keep the body
healthy. For example, the respiratory and circulatory systems collaborate
to oxygenate the body and to eliminate the body of carbon dioxide. The
lungs enable oxygen to reach the blood and remove carbon dioxide.

The individual departments in a company function like organs in
the human body. Each department has individual responsibilities and
objectives. However, company departments don’t exist in isolation.
They must work together to achieve the greater goals of the company.
Like the human body’s respiratory and circulatory systems, the Engi-
neering, Product Management, and Marketing teams must collaborate
to deliver stellar solutions, educate customers, and inform them about
impending product releases. Product releases require exquisite cooper-
ation between teams. Although not as complex as interactions between
human organs, successful departmental teamwork similarly begets cor-
porate health.

How do busy departments with separate missions stay aligned? First,
each department head must buy into the importance of inter-team align-
ment. Second, designated individuals from each team must take respon-
sibility for the interaction between their team and other teams. Third, the
judicious use of tools enables teams to collaborate without being joined
at the hip.

108	 THE AGILE ENTERPRISE

Although meetings to ensure alignment may be necessary, they
should be an adjunct to processes and tools, not a replacement. As a rule,
companies are best served by avoiding all but essential meetings. Putting
processes in place helps to minimize status meetings and other informa-
tion exchange meetings.

Key 4: Culture of Learning

All the processes, measurement, communication between teams, and
Agile readiness don’t amount to anything if a company doesn’t fully
understand its customers’ most pressing problems. Furthermore, under-
standing customers’ problems is useless unless solid plans for solving
them accompany it.

What does it mean to fully understand a customer’s most pressing
problems? Gaining a full understanding of a problem requires under-
standing the problem and its underlying causes. Customers are willing
to pay big bucks for products that alleviate their most acute suffering.
Customers are less willing to purchase solutions for secondary problems.

The following case study illustrates the importance of digging deep to
understand a problem. On the surface, many problems seem simple and
it takes effort to uncover complexities.

Case Study: Fully Understanding a Customer’s Problem

Remember the Burger Shack from the beginning of the book? If
not, that’s okay because this case study stands alone.

Initially, the Burger Shack only served finely crafted hamburg-
ers with locally sourced beef. Customers clamored for fries to go
with their burgers. The surfer buddies/burger moguls decided to
offer hand-cut fries. They invested in the deep fryers and spent
months perfecting their technique. The Burger Shack serves one
size of hand-cut fries—a generous helping that’s large enough for
two people to share. They succeeded in spades. The reviewers gush
as much about the hand-cut fries as the burgers.

The Burger Shack runs out of hand-cut fries when the lunch
rush is especially heavy. Disappointed customers grumble, vowing
to arrive earlier the next time.

	 Implementing Organizational Change	 109

If the solution to the shortage was merely to cook more fries,
the problem could be easily resolved. Unfortunately, the problem
is much more complicated. So complicated, in fact, that the own-
ers hired a consultant to help solve the problem.

The deliciousness of Burger Shack hand-cut fries doesn’t come
cheap. Preparing the Russet potatoes is a multistep process for
two employees that begins the night before at each store (they
expanded to three additional locations from their original shack
at the beach).

The hand-cut fry preparation process includes peeling, cutting,
rinsing, refrigerating, and blanching the potatoes. None of the steps
is optional in the exacting process. Refrigeration is the problem.

With everything else that must be refrigerated, fitting in the
vats of cut potatoes is like a game of Jenga. Storing additional vats
of potatoes isn’t possible without purchasing additional refrigera-
tors. None of the kitchens in the three locations can accommo-
date additional refrigerators without reconfiguring the setup and
reducing the workspace.

The consultant considers multiple solutions:
1.	Reduce the portion size so the restaurant doesn’t run out

during a heavy rush of business.
2.	Fill in with frozen fries when the restaurant runs out of

fries.
3.	Determine the soundness of investing in reconfiguring

the kitchen and adding additional refrigeration.
4.	Weigh the costs in #3 against leasing additional refrig-

eration space in an offsite location. This requires trans-
porting the potatoes to the stores, which must be
considered in the cost analysis.

5.	Consolidate all hand-cut fry preparation to a separate
location. Not only does this solution require transport-
ing the fries, but it also requires additional employees
for the massive operation.

The point of this scenario isn’t to debate the possible solu-
tions (although the owners chose the stopgap #1 solution and it’s
worked out well) but to illustrate how problems must be deeply
understood before it’s possible to devise viable solutions.

110	 THE AGILE ENTERPRISE

Paradoxically, the final and most important pillar of retooling a
company for agility is culture, not process, skill, communication,
measurement, or operational excellence. Companies that never find a
product–market fit often suffer from hubris. Executives who have expe-
rienced previous successful professional endeavors are most susceptible
to excessive confidence. The attitude that, “We don’t need to ask the
customer what they need because we already know,” is a recipe for the
company’s untimely death. Even when all the signs point to a prod-
uct that won’t gain market traction, know-it-all management doggedly
refuses to pivot.

A learning culture is about more than employees’ desire to learn new
programming languages or accounting techniques. Companies hungry
for knowledge are innately curious. Curiosity leads employees to dig
below the surface of their customers’ problems. Knowing the what is the
basis for understanding customers’ problems. Curiosity causes a team to
learn why the problem exists and persist in gaining a well-rounded under-
standing. Once a team fully understands the contours of customer prob-
lems, only then are they positioned to propose solutions.

Multidisciplinary discovery teams are the byproduct of a curiosity cul-
ture. Instead of a single Product Manager deciding how to craft a solution,
a team of experts across a company craft approaches that fully address the
problem in a technically feasible and elegant manner. Although a great
Product Manager may be adept at scoping a well-fitting solution, having
design, engineering, and quality experts viewing the problem through
their unique lenses invariably results in stronger outcomes.

Most Companies Require Outside Assistance

Recognizing corporate dysfunction doesn’t require an expert. It isn’t
rocket science. Missed sales targets, customer churn, disappointing usage
statistics, and negative customer feedback are the in-one’s-face indicators
of problems.

Companies, even small ones, are like ocean liners. Small changes
in direction are relatively simple, but sharp turns to avoid calamities
cause the dining room glassware to break and shake up the passengers.

	 Implementing Organizational Change	 111

Furthermore, avoiding icebergs requires someone to look out for them
and quickly communicate the danger.

A CEO may recognize the dangers the company faces but not
understand their severity. Therefore, the CEOs may give the Manage-
ment team mixed messages to fix the problems ASAP without a timeline
or direction.

Typically, department managers are inundated with deadlines. Unless
the CEO provides actionable direction, busy managers will likely back-
burner the directive until they have time to determine the best course
of action. Consequently, managers may acknowledge the problems but
postpone devising solutions until the next deadline is met. And when
another deadline follows on the heels of the previous one, managers pay
lip service to making significant changes. Becoming mired in the tacti-
cal concerns of the day-to-day grind prevents managers from taking a
longer-term view. However, the manager’s job is to think strategically
even if intensive daily demands force them to act tactically.

Experienced outsiders add value in situations where managers are
busy, threats are present, and solutions are ill-formed. Consultants aren’t
necessarily smarter or more insightful than the company’s employees.
The benefit consultants bring is their disconnection from the day-to-day
concerns that prevent higher-level thinking. Consequently, consultants
are well-positioned to understand a CEO’s concerns. If a consultant is
experienced, they will also devise achievable and measurable solutions to
the problems.

Consultants face justifiable wariness from managers who don’t want
to be told how to do their jobs. Managers may argue that the consultants’
superficial understanding of the company will result in half-baked solu-
tions that won’t solve real problems.

Exasperated CEOs likely also consider consultants a last resort. If a
CEO has alerted managers to the problems and they don’t take the bait,
continuing business as usual, the sudden appearance of consultants may
feel like punishment.

Instead of viewing outside opinions as a last resort, proactive CEOs
recognize the value of these opinions and seek them before the company
reaches the crisis stage.

112	 THE AGILE ENTERPRISE

The following indicators give proactive CEOs a rationale to seek
outside opinions.

Ignoring Strategy in Favor of Day-to-Day Tactical Concerns

The pressures of deadlines, customer demands, and fires sometimes require
pragmatic decision-making that contradicts overall corporate strategy.
When managers keep their heads in the weeds too long, it’s easy to for-
get about the big picture and adopt a day-to-day viewpoint. When the
volume of shortsighted decisions begins to jeopardize achieving greater
objectives, it’s time for a reckoning.

Managerial Squabbles

When everything’s going swimmingly in a company, its managers typi-
cally live harmoniously. Even then, the occasional scuffle between teams
is more the rule than the exception. When managers wage constant and
unrelenting battles, it’s a good indicator of problems that aren’t resolved
successfully.

Customer Discontent and Churn

Discontented, grumpy customers aren’t necessarily a problem. Paradox-
ically, customers who are passionate about a company’s products are
the ones who heap criticism. Ignoring customer discontent, however, is
unwise. What begins as criticism may morph into rage if customers feel
unheard. The departure of loyal customers is a solid indicator that the
company either doesn’t know how to allay customer concerns or doesn’t
care about them.

Employee Attrition

Some employee attrition is normal. In the best case, employees run
to new opportunities affording professional and personal growth. If
Glassdoor reviews indicate employees are running from the company,
or if the company is experiencing unusually high levels of attrition, it’s
another indicator of problems. Employee discontent is a pernicious
and contagious problem that may have devastating consequences if not
understood and rectified.

	 Implementing Organizational Change	 113

Employees Uninformed About Company Direction

When a CEO quizzes employees about the company’s mission and direc-
tion and there are more Fs than As, either the company lacks an under-
lying strategy, or its managers are doing a poor job communicating. In
either case, when employees don’t understand why they’re coming to
work every day, they may find new jobs where they feel they’re making
a difference.

Missed Deadlines

Consistently missed deadlines points to poor planning, poor execution, or
poor processes. All the other items in this list are potential consequences
of continuously missing deadlines. An outsider’s input is warranted if a
company lacks a realistic plan for meeting its deadlines.

Missed Sales Targets

Sales is traditionally the only company department with measurable
results. The revolving door of Sales jettisons managers and employees
who miss their sales targets and brings in new employees who promise to
do better. Presumably, the company doesn’t hire incompetent salespeo-
ple. Sales targets may be missed for various reasons that have nothing to
do with the salespeople’s ability. Instead of eliminating underperforming
salespeople and insisting new blood will solve all the problems, it’s wiser
to dig deeper.

The aforementioned red flags have root causes that cut across the
entire company. Missed sales targets are typically blamed on salespeo-
ple, but product deficiencies, poor customer support, and unclear com-
munications are often contributing factors. While it’s possible to address
these problems in-house, it requires the cooperation and teamwork of
managers who are already facing stressful situations. A Management team
may embark upon self-improvement projects with a good attitude, but it
often results in finger-pointing and turf battles. An overseer perceived by
managers as unbiased has more latitude to effect changes that would be
resisted if suggested by peers.

114	 THE AGILE ENTERPRISE

Selecting a Consultant

Not all consultants are created equal, but nearly all their work boils down
to the following three categories. Engagements may necessitate finding
consultants with strengths in some or all these categories.

1.	Providing functional expertise—These are the been there, have the
scars to prove it consultants who can roll up their sleeves and pitch
in. The role of a consultant with functional expertise is typically to
put processes in place and coach/mentor frontline employees about
the implementation. The consultant can perform the work themself,
but this isn’t generally the best use of consulting dollars. The goal is
to enable success with the current team in the future absence of the
consultant.

2.	Providing an objective analysis—A knowledgeable consultant
provides an objective opinion if a company has a major decision.
Although the company’s principals have a greater understanding
of the business domain, they may also have biases and blind spots.
A consultant with no political agenda or operational baggage can
provide a fresh, unbiased opinion. Sometimes when a team is dead-
locked over a decision, another voice in the mix breaks the logjam.

3.	Providing outsourced brain power—When corporate decision-
makers are mired in deadlines and urgent projects, they are too busy
to devote the required brain power to hard problems. In these cases,
the consultant acts as a brain for hire. The consultant must be savvy
enough to learn about the business to suggest pertinent solutions.
This category of consulting is the most resented by management.
Consultants become targets when they are brought in to provide
solutions that employees are too busy to give. Common criticisms of
these consultants are of the ilk, “It’s easy to make pronouncements
when they have no skin in the game and are leaving it to the rest of
us to implement these grand ideas,” or “They don’t understand the
business well enough to back up these recommendations, which will
not work.” The best way to counter employee criticism is to give the
consultant time and materials to learn so they gain credibility from
employees. Additionally, empower the consultant to collaborate with
employees to craft achievable solutions.

	 Implementing Organizational Change	 115

Checklist: General Questions for Choosing a Consultant

The following table addresses a variety of considerations when hiring a
consultant.

Table 7.1  Considerations for hiring a consultant

Questions Yes No Considerations
Do we need a
consultant?

This is often the most vexing of the ques-
tions about consultants. Managers may push
back against bringing in outsiders, but a CEO
sometimes overrules them. Longstanding,
acknowledged unresolved problems may require
a consultant with fresh ideas and an unbiased
perspective to break the logjam.

Are we willing to
make changes?

This is a tricky one. Often, an exasperated CEO
brings in a consultant to shake things up. Unless
there’s buy-in from the management team, it’s
difficult for top-down edicts to take root. Before
hiring a consultant, ensure the entire team rec-
ognizes the need for change and find someone
who will work well with the team.

Are we willing to
manage this consulting
engagement?

No matter how senior, any third party requires
oversight to remove obstacles and keep the
engagement on track. Typically, companies that
hire consultants have the best outcomes when
the engagement is treated as a partnership. This
implies that in addition to the cost of the con-
sulting agreement, managerial time devoted to
the project should be considered an additional
cost of the engagement.

Does this engage-
ment require industry
expertise?

Some consulting engagements require intimate
industry knowledge, and paying a consultant to
learn is not cost efficient. In this case, finding an
industry expert and expecting a greater hourly
fee is better.

Do we have clear
expectations for what
we expect a consultant
to accomplish?

If the answer is No, seek a consultant to assess
your business problems and provide ideas about
the best path forward. When a consultant makes
suggestions, arriving at a final plan is a collabo-
rative process.

Do we seek the imple-
mentation of ideas or
just the ideas?

This one reflects the difference between con-
sultants with ideas versus consultants willing to
roll up their sleeves and work with the team to
implement the ideas. Many consultants do both.

(Continues)

116	 THE AGILE ENTERPRISE

Questions Yes No Considerations
Do we need coaching
and/or mentoring?

Consultants who work with front-line employ-
ees can build processes that persist beyond the
consulting engagement. If one of the goals of
the consulting engagement is to grow the team,
choose a consultant with the people skills to
engage and encourage employees.

Do we expect the
consultant to work
with our customers
or is this an internal
engagement?

If the consultant will speak directly with
customers, choose carefully. Consultants who
represent the company professionally and
knowledgeably must already possess industry
expertise. Hiring an industry insider is typically
more expensive than a generalist who learns
enough to complete a project. If the primary
aspects of the project do not require industry
expertise, it’s more cost-effective to hire a
consultant who works behind the scenes, letting
employees handle direct customer interactions.

Can the consultant
help us discover our
mission and establish a
strategy?

A high-end consultant can help position a
company and assist in defining its core compe-
tencies. This level of advice requires experience
and a willingness to learn the particulars of what
makes each company unique.

Do we want the
consultant to inject
cultural change?

Changing an organization’s culture requires
a mix of qualitative and quantitative skills
and soft skills. Additionally, an experienced
consultant helps align culture with strategy and
company structure.

Ideal Consultant Characteristics

The preceding checklist suggests that different circumstances require dif-
ferent kinds of consultants. That said, these are the common denomina-
tors of all successful consultants:

1.	Experience—Even if a consultant is inexperienced in a particular
business domain, they should have the background to be a quick
study. Hiring consultants with a wide variety of business experience
is especially useful when the engagement goals are ill-defined and
established through consultant–employer collaboration.

2.	Openness—Consulting is about collaboration. Even if a consultant
is whispering sweet nothings about business improvement into the

(Continued)

	 Implementing Organizational Change	 117

CEO’s ear, the consultant will speak with others in the company to
form opinions. Consultants who explain why they’re asking ques-
tions and bring employees into the process are typically successful.

3.	Positivity—Companies engage consultants to solve some gnarly and
unpleasant problems. Consultants who are excited about finding
solutions that work for the team radiate infectious enthusiasm.

4.	Curiosity—Interested in understanding what make a company
unique and what it does better than any other companies.

Consultant Follow-On Support

Most consulting engagements are impermanent, often with a predefined
end date. Consultants will structure their approach in preparation for
their departure when the team must stand alone. This means that even
when consultants roll up their sleeves to execute changes, they are careful
to use it as a teaching experience rather than doing it themselves. One
sign of an effective consultant is one who is no longer needed when the
engagement ends.

Invariably, the team will need guidance and direction after a consul-
tant departs. Establishing a small tranche of follow-on hours for a consul-
tant to gradually step away helps to ease the transition.

Occasionally, if a team takes ownership of a consultant-inspired pro-
cess, training the staff is necessary. In many cases, the teams have adopted
the process so fully that they’re also capable trainers. If not, any consul-
tant should be pleased to offer training provided hours are set aside for
the follow-on engagement.

Managing Consultants

Even the highest-end consultant requires oversight and support. Regard-
less of a consultant’s business expertise, they aren’t expert in every busi-
ness. Applying a one-size-fits-all recipe for success without understanding
which ingredients to alter constitutes a failed consulting engagement. To
add true value, consultants must dig in and learn everything they can
about their employer. Anything the company can do to facilitate this
learning helps to guarantee a successful consulting arrangement.

118	 THE AGILE ENTERPRISE

The Hidden Costs of Consulting

Aside from the cost of hiring a consultant, corporate accountants may not
consider the management overhead that’s also required. No competent
consultant needs to be bossed around, but they do require a sounding
board for ideas, an offensive lineman to clear the way for the consultant
to learn, and someone to hold them to task; the sponsor typically occupies
all of these roles, and it takes time. Although a manager’s time is already
accounted for in the payroll, there’s no additional cost for a manager to
sponsor a consultant. However, the lost opportunity cost of what a man-
ager cannot accomplish because of consultant management should be
considered in the cost calculus of a consulting engagement.

Structuring a Consulting Engagement

In many cases, the deliverables of a consulting engagement are clear and
agreed upon upfront. For example, if a consultant is building the com-
pany a new data warehouse, it’s relatively easy to outline the steps in a
statement of work (SOW). When an engagement is less well-defined, like
being employed to fix whatever’s most broken, it’s typically up to the con-
sultant to take some time to learn enough to make a proposal. No work
should start in earnest until the consultant and sponsor agree upon the
focus, milestones, deliverables, and the timeline. Finally, the consultant
must commit this agreement to a written SOW.

In general, consulting engagements are best executed as Agile projects.
This way, it’s easier to focus on individual milestones and deliverables,
assessing success or failure. Furthermore, if the project goes sideways with
unexpected obstacles, the iterative work renders an end-of-sprint course
correction much easier.

If a consulting arrangement isn’t run in an Agile fashion, keeping the
engagement short achieves the same results. A short SOW forces an evalu-
ation at the end when the sponsor decides the necessity of commissioning
follow-on work.

A poorly structured consulting engagement may have milestones and
deliverables all clustered toward the end of a very long project when it’s
too late to pivot toward a more successful outcome.

	 Implementing Organizational Change	 119

Anticipating Obstacles

Identifying obstacles is one of the primary purposes of a scrum daily
standup. For workers in the middle of a sprint, obstacles interrupt the
flow of heads-down work. By calling out blocker issues problems before
they become interruptions, a manager may have the opportunity to
intervene.

For example, if a user interface developer’s next story involves substi-
tuting a designer’s new icon family, and the designer hasn’t supplied the
icons, it’s a blocker. The developer cannot complete the story without
the icons. A manager or scrum master uses the forewarning to remind
the designer that the team needs the icons, tout de suite.

If a consultant relies on employees for information and collaboration,
it’s important that these employees are available. Sometimes, either insuf-
ficient communication or unexpected higher priorities prevent employees
from having the time to give a consultant. If these issues surface before
they become obstacles, the sponsor can work with the consultant to rear-
range the schedule or change the expectations.

Best Practices for Sponsoring a Successful Consulting Engagement

Following the practices in this checklist isn’t a guarantee of success.
However, not following these practices almost guarantees failure. These
items are primarily the sponsor’s responsibility.

Table 7.2  Best practices for sponsoring a consulting engagement

Practice Explanation
Agree upon a detailed SOW SOWs should identify the detailed specifics of work

to be performed, well-placed milestones, well-defined
deliverables, and a believable timeline. The company
must pay close attention to the SOW and work with
the consultant to ensure that it’s mutually acceptable.

Support the consultant A consultant may need to speak to or collaborate with
busy employees. It’s the sponsor’s job to coordinate
calendars to ensure employee availability issues don’t
scuttle the consultant’s timeline and deliverables.

(Continues)

120	 THE AGILE ENTERPRISE

Key Takeaways

1.	Agile doesn’t solve problems, so beware of conflating its powers.
Before Agile practices can become useful, it’s necessary to identify
and address obstacles to success.

2.	One of the most common business problems is plateauing—when a
company stalls in a growth phase, it is often because it relies on busi-
ness practices that no longer work.

3.	Company growth provides opportunities to make radical changes in
direction. Leaders must first consider improving their processes and
practices and hire for skillsets missing on the current team.

4.	A company’s readiness for Agile requires frameworks for measure-
ment of success and inter-team communications. A culture of learn-
ing and improvement is the key to Agile readiness.

5.	Recognizing corporate dysfunction is easy, but an outsider may be
the best solution.

6.	Managerial squabbles, customer dissatisfaction and attrition, missed
deadlines, and missed sales targets are clear indicators of problems
requiring assistance from an outsider.

7.	Consultants come in all shapes and sizes. Some consultants pro-
vide high-level advice, while others roll up their sleeves and work
with teams to educate them and execute the work. Some do both.
The nature of the company’s problems dictates what to seek in a
consultant.

Practice Explanation
Regularly provide feedback Consulting engagements require active management

to ensure the milestones are met and deliverables are
useful. Although every consulting engagement requires
significant managerial attention, the reward is the
successful conclusion of the work.

Step in and change course
when necessary

Regular milestones with managerial reviews or short
SOWs enable the sponsor to alter the direction of the
work, if necessary. Business needs may change during a
consulting engagement or the consultant’s discovery may
suggest a pivot. An Agile approach of short iterations
with deliverables helps protect the project’s overall success
even if it runs off course for a short period, needs to
change course, or needs to address newly discovered issues.

(Continued)

	 Implementing Organizational Change	 121

8.	Although the requirements for a consultant may differ by project,
all consultants should possess experience, positivity, openness, and
curiosity.

9.	The person sponsoring the consultant must take a hands-on role
to ensure the project’s success. The managerial overhead required
for any consulting project is an additional cost overlooked when
computing the engagement costs.

10.	To ensure the project’s success and prevent misunderstandings,
have a mutually agreed-upon detailed SOW, including milestones,
deliverables, and dates.

CHAPTER 8

When Everything’s in Place

What Works Best?

By now, the benefits of small-batch delivery should be clear. The
muddiness of decomposing large problems into small, manageable
pieces remains challenging. These tips and tricks are helpful in framing
problems and tackling them head-on.

Small Multidisciplinary Teams

The concept of multidisciplinary teams sounds great on paper. Who
doesn’t love the idea of a cadre of experts banding together to solve
gnarly problems? The reality of multidisciplinary teams may require some
managerial attitude adjustment.

Authoritarian managers give orders and expect their minions to obey.
In the mind of a dictatorial manager, everyone on their team must report
directly to them for their rule by fiat to succeed. This way, the man-
ager exerts full control over the project since each employee’s livelihood
depends on their performance. If this sounds retrograde and old-school,
that’s because it is.

One of the Agile Manifesto principles states, “Build projects around
motivated individuals. Give them the environment and support they
need and trust them to get the job done” (Beck et al. 2001).

The interpretation of this Agile Manifesto principle is that projects
staffed with engaged people manage themselves. All a manager needs
to do is provide the team with what they need to succeed and remove
obstacles that stand in their way. While it’s not precisely true that proj-
ects manage themselves, when the workers take responsibility for their
deliverables, they also take on a large chunk of managerial responsibility.

124	 THE AGILE ENTERPRISE

Traditional managers occupy a special role in Agile projects. Managers
are no longer directing the work or bossing people around. Instead,
managers in Agile projects block and tackle, removing any threats to
worker productivity. For example, if a Discovery team reaches an impasse
where their lack of knowledge prevents them from fully understanding
a customer’s problem, a manager might find and hire an expert to work
with the team.

Collaborative, Matrix Management

Matrix management is a business structure where employees have
multiple bosses—one at the functional level and one or more at the
project level. For example, an artist may answer to the head of Design at
the functional reporting level. The artists on the Design team may share
tips and tricks of the trade. The Design team manager is responsible
for the members’ performance reviews and other personnel issues. The
artists on the Design team may also be farmed out to projects led by
other managers. For example, the artist also may report to the head of
Engineering on a multidisciplinary discovery project.

Answering to one boss is difficult enough. The prospect of simultane-
ously reporting to two or more bosses seems like too much bossing. The
saving grace of this structure for Agile projects is the lightness of the Agile
project bossing. There’s little risk of an Agile project manager giving con-
flicting directions to a worker because the directions come from within
the self-managing team.

A matrixed business structure demands collaboration at the manage-
rial level. One of the greatest challenges of matrix management, regard-
less of the project’s agility, is accurately gauging time requirements for
each participant. Employees expected to contribute to multiple projects
while participating in their functional group may feel tugged like rag
dolls. It’s almost always better for an employee to devote full attention to
one project at a time. Companies that utilize matrix management often
appoint an overseer, a Program Management Officer, to keep track of the
interrelationships between projects and people.

	 When Everything’s in Place	 125

Exploratory Mindset

To understand the exploratory mindset, it’s easiest to start with the
anti-exploratory mindset. Humans tend to mold facts to fit their under-
standing. In the courts where justice is supposed to be blind, attorneys
frequently lead the witness, putting words into witnesses’ mouths. For
example, a lawyer might ask a witness, “You didn’t see the stop sign, did
you?” instead of asking, “Did you see the stop sign?”

Although those in technical careers may consider themselves more
honorable than lawyers, hubris is a human trait endemic to all profes-
sions. Know-it-alls are so certain they already understand customers’
problems, they’ll toss out facts they learn that violate their understand-
ing, considering them anomalies. For example, a Discovery team deter-
mining how to make an intersection safer may be so intent on lowering
the speed limit that they either ignore or disregard driver reports stating
they entered the intersection with their view blocked by a large hedge
on the street corner.

Exploratory teams must let the facts they learn drive their understand-
ing. Furthermore, exploratory teams must question customers without
leading them. This means that even if the team enters an engagement
with preconceived notions, they must possess the intellectual honesty to
toss these notions aside when the facts contradict them.

Appreciation of Waterfall

This book espouses the joys of Agile and the evils of Waterfall, so this isn’t
a last-chapter recantation. It’s not a dream—Waterfall remains a failed
methodology for most business endeavors.

Working in small Agile chunks to make targeted deliveries sometimes
blinds project members to the big picture. Although it’s anti-Agile to
get too wrapped up in the big picture and get sucked into a large-scale
design process, developing a conceptual picture of the whole is a nod to
Waterfall.

Exploratory teams bridge the dichotomous Waterfall and Agile philos-
ophies. An exploratory team has the time and mission to give projects a

126	 THE AGILE ENTERPRISE

big think. Although exploratory teams should never fall into the Water-
fall upfront design trap, they should gain a holistic enough understand-
ing to make educated system-level recommendations. The members of
exploratory teams aren’t doing Waterfall, but they’re not quite doing Agile
either. This middle ground between the two methodologies offers a nod
to Waterfall, but no more.

Applying Agile Across the Board

Agile methodologies are geared toward engineering projects. Using an
Agile methodology in a non-engineering project requires some creativity
and may necessitate taking some license with the rules.

The Agile philosophy expressed in the Agile Manifesto is perfectly well-
suited to virtually any endeavor in a company. One of the Agile Manifesto
principles, “Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter timescale,” is
particularly applicable (Beck et al. 2001).

How Time-Boxing Benefits Everyone

The Agile principle of supplying small pieces of working software implies
that deliverables are governed by time. When the time meter ends, the
team delivers whatever it has completed.

Another approach is to regulate deliverables by functionality instead
of time. The work cycle doesn’t end with functionality-based deliverables
until the team completes the agreed-upon features.

Ideally, a team fits all the required features into a reasonable and pre-
dictable timeframe. Realistically, if a Product Manager demands a deliv-
erable on a specific date, she must negotiate with Engineering and choose
which features can comfortably be finished by this date. If the Product
Manager demands a feature-complete deliverable, she’ll likely not have
control of the delivery date.

Time-boxing, the governance of work by time constraints, is the pre-
ferred approach for Agile. In the best case, delivering working software is
difficult. In the worst case, delivering working software is excruciating.
The Agile way is to decompose large software projects into small pieces
accomplishable in fixed timeframes.

	 When Everything’s in Place	 127

The Agile concept of chipping away at a significant problem is so
sensible, it’s hard to imagine any business deliverable that wouldn’t ben-
efit from this approach. Granted, it’s difficult to decompose every busi-
ness problem into nice, neat two-week packages. Furthermore, even if a
team is clever enough to break a big problem into small pieces, finding
an equivalent of working software that encompasses the work of non-
software-delivering teams is another challenge.

Not Everything Fits Into Short Iterations—A Sales Use Case

Sales doesn’t lend itself to Agile processes like time-boxing in short iter-
ations and delivering working results. The sales cycle may take years
when the company’s product is complex, cloud-based enterprise software.
Although cultivating a sales prospect is a long-term affair, even a sales
organization may benefit from Agile.

A sales pipeline review perfectly fits an Agile approach. Anyone
involved in sales has experienced hot prospects cooling off and cold pros-
pects heating up. Sometimes the leaderboard of potential sales is like a
race with horses coming up from the back. Sales must be nimble enough
to change course as prospects ebb and flow. Doggedly sticking to a plan
that’s no longer relevant is waterfall-ish. Pivoting when sales conditions
change is agile.

A sales forecast is the most consequential document a company pro-
duces. Typically, the head of Sales collaborates with the Chief Financial
Officer (CFO), CEO, and other executives in the last quarter of the fiscal
year to create a forecast for the next year. A company relies on the sales
forecast for most of its financial decisions, including:

1.	Hiring plan—A sales forecast comes with caveats. For example,
Sales will achieve X in revenue if the company rolls out product Y
in Q2. A hiring plan specifies the roles that must be filled to deliver
product Y in Q2.

2.	Bonus plan—Most companies with bonus plans designate part
of the payout to personal performance and part of the payout to
company performance. Employees who underperform and receive
nothing for their personal performance bonus may still receive a
payout if the company meets or exceeds its sales goal.

128	 THE AGILE ENTERPRISE

3.	Capital and operational expenditures—Anticipated revenue deter-
mines how much the company will spend on laptops, facilities, host-
ing, and other costly items.

Companies use a sales forecast to guide growth, acceleration, and
spending. The impact of a sales forecast is immense. Yet, a sales forecast
is, at best, an educated guess.

Sales may use its pipeline to guess at the likely deals that will close
each quarter. Each deal in the pipeline has a revenue target, a target close
date, and a probability of successfully closing. CFOs are skilled at taking
these numbers and producing a revenue target that’s neither too aggres-
sive nor too conservative. Sometimes, a nearly sure-thing deal falls apart
and a long-shot deal miraculously closes. If the sales pipeline is large
enough, the CFO’s probabilistic model may remain mostly correct even
with the inevitable good and bad surprises.

Since a company bases growth, acceleration, and spending on the sales
forecast, under-forecasting sales is nearly as damaging as over-forecasting
sales. If sales exceed the forecast, the company may not accelerate quickly
enough. If sales are significantly less than the forecast, the company may
spend too much and be unable to meet its payroll.

Producing a sales forecast feels closer to Waterfall than Agile. A team
assiduously works to generate the forecast and hands it off to the rest of
the company as the basis for growth and spending plans. Yet, there’s little
point in forecasting an entire year’s sales when accurately predicting sales
for the next three months is a crapshoot.

Here’s an example of a more Agile approach to forecasting and
planning:

1.	Sales and the CFO generate a sales forecast for the next quarter.
Since the forecast covers a smaller and more immediate timeframe,
the level of effort to create the report isn’t nearly as great as producing
a forecast for the year.

2.	The other company executives review the plans and determine
a quarterly budget for hiring, raises, capital expenditures, and
operational expenditures.

	 When Everything’s in Place	 129

3.	The CEO restructures the bonus plan to have four smaller payouts
instead of one large payout at the end of the fiscal year. Focusing on
a narrower timespan than a year solves the problem of bonus incen-
tives established at the beginning of the year becoming obsolete as
business needs change.

4.	Sales and the CFO regularly review the sales forecast, making changes
to reflect reality. Budgetary items are adjusted to match the changes
in the forecast.

5.	Over the course of a year, a company inevitably faces unexpected
business challenges and opportunities. The constant forecast and
budget review cycle enables a company to pivot to address these
challenges and opportunities. For example, a large sales prospect will
likely sign a deal if the company integrates with a scheduling ser-
vice. Although the scheduling service integration isn’t on the prod-
uct roadmap, Product Management believes this integration will
drive sales to other prospective customers. Therefore, the CEO may
choose to forgo some profit in a quarter and instead hire an addi-
tional engineer for the integration work.

Managing an Agile Company

Agile teams are self-managing. So, there’s no need for managers,
right? Wrong.

Managers in Agile companies are still important. Regardless of agil-
ity, employees always require mentorship, support, and an ear for their
concerns and issues. From a workday perspective, however, the role of an
Agile manager differs from the norm in non-Agile companies.

Self-managing team members determine how they will work to meet
customer expectations and deadlines. The team determines the method-
ology that best suits its needs, how its estimates work, and how work
assignments are distributed.

The intense focus of Agile teams provides enormous benefits as
well as some pitfalls. Intensely focusing on a goal necessitates ignoring
everything else. Although a team may work in isolation to complete its
work, customer delivery requires coordination between multiple teams.

130	 THE AGILE ENTERPRISE

Managers are important in ensuring that multiple Engineering teams
are in sync, that Marketing and Sales are aware of Engineering and Prod-
uct Management deliverables, and that Customer Support is informed
about product changes.

Although a manager must ensure the company’s various parts work
collaboratively, this is not management’s foremost responsibility. The
key responsibility of management is to determine and communicate the
teams’ priorities. A secondary, but equally important, managerial role is
to monitor progress against objectives and to act when objectives are in
jeopardy.

Agile Management

This book focuses on applying Agile principles from software develop-
ment to a company’s non-engineering disciplines. Since management’s
role in an Agile company is less about bossing employees and more about
clearing the way for self-managing teams to flourish, it seems logical that
management adopt Agile practices.

Not so fast. It’s a stretch to take the Agile Manifesto philosophy and
twist it to apply to managerial duties. Instead, management may adopt
a more focused and nimble approach to monitoring and directing that’s
more akin to lowercase agility. Reminder: Uppercase Agile refers to the
practices of the Agile Manifesto and lowercase agile refers to sprightliness.

In her 2021 book, Radical Focus, Christina Wodtke gives a suggestion
for more nimble management. She espouses that each manager prepares
a four-quadrant, one-page document for weekly alignment meetings
(Wodtke 2021, 54).

The quadrants contain the following information:

Quadrant 1—This Week’s Priorities

•	 Label each item P1 for top priority or P2 for secondary
priority.

•	 Exclude items that are neither top nor second priority.
•	 This quadrant holds the few things prioritized for this week.

	 When Everything’s in Place	 131

Quadrant 2—Objectives and KRs

•	 List the key objectives. It’s okay if there’s just one objective.
In fact, having one objective identified as the most important
item is preferable to identifying a bunch of objectives as all
top priority (P1).

•	 List up to three KRs per objective.
•	 Place a confidence number next to each KR (on a scale of 1

to 10). A 5/10 indicates 50 percent confidence.
•	 Don’t waste time discussing high-confidence KRs.
•	 If the confidence level of a KR decreases from the previous

week, it should be a topic of conversation.

Quadrant 3—Next Four Weeks

•	 Identify essential items that will be important in the near-ish
term.

•	 These items may fall outside a team’s objectives but require
attention, nonetheless.

•	 The purpose of this quadrant is for alignment between
teams. If there’s a big product release next month, it’s time
for Marketing, Sales, Product, Engineering, and Customer
Success to sync up.

Quadrant 4—Health Metrics

•	 Pick a few things you want to heed as you seek to hit your
objectives. These are the things you can’t afford to mess up.
Items like these are appropriate for this quadrant: technical
debt acquisition or paydown, key customer relationships,
morale, and burnout.

•	 These items represent key performance indicators for the
business.

•	 Provide general metrics that might or might not tie into
the OKRs.

132	 THE AGILE ENTERPRISE

Rethinking Management Meetings

Managers bemoan the time spent in meetings but are often the instiga-
tors of meeting-itis. Occasionally, however, participants leave meetings
feeling the time was well-spent. In successful meetings, the participants
meet their objectives in the least amount of time. Effective meetings must
have agendas that lay out the goals and a facilitator to move things along.
Enlightened companies encourage employees to decline meetings in
which they will have no meaningful impact on the agenda.

One of the trickiest types of meetings is when management convenes
to update each other. These alignment meetings tend to go awry because
one manager’s updates are seldom useful to the other managers. These
meetings waste highly paid employees’ time.

The presence of C-suite executives in management meetings further
degrades these meetings because managers often use their time to tout
accomplishments instead of raising red flags. Highlighting successes is
easy to communicate in an e-mail or Slack message because it requires
no discussion. The true value of a management meeting derives from
honest discussion of difficult topics like unhappy customers, jeopar-
dized goals, and employee attrition. A management meeting becomes
engaging and effective if the team puts politics aside and collaborates to
solve problems.

If each manager comes to a management meeting with a four-
quadrant document, they’re already off to a great start. The short time
required to prepare the four quadrants forces a manager to think about
the immediate, the longer term, and the obstacles they may face along
the way.

By focusing on controversial topics like objectives in jeopardy or
organizational health problems, managers will naturally collaborate to
ameliorate the problems. Even though a naïve CEO may sleep soundly
after happy path meetings, realistic CEOs will appreciate it when man-
agers raise problems and find solutions.

Participants will be thankful they prepared in advance and used the
time to discuss only substantive issues when the meetings are efficient and
agenda-driven.

	 When Everything’s in Place	 133

Identifying Conflicting Objectives

In the best of companies, objectives are transparent, so each department
knows the other departments’ primary goals. Even if objectives are trans-
parent, other groups often don’t absorb them.

For example, a Sales team goal might be to make deep inroads into
Samsung’s customer base. This goal may have a KR that specifies bolstering
the feature set of the Android mobile app. If Engineering aims to deliver an
iOS (Apple) mobile app without attention to the Android side, it’s a case
of conflicting objectives. Moreover, this type of disconnect between teams
causes bad blood because neither side feels supported by their counterparts.

Left unchecked, suppose Sales makes good on its objective and sells
deep into Samsung’s customer base. The next step is an urgent request
from Sales for Engineering to beef up its Android support. Unless Engi-
neering drops its iOS work and capitulates to the demands of Sales, the
company risks taking on new, disgruntled customers.

Although this disconnect between Sales and Engineering may sound
fictitious, it’s all too common when a company doesn’t continually
revisit objectives. Conflicting objectives cause Engineering to accuse
Sales of peddling vaporware and causes Sales to accuse Engineering of
sandbagging.

Introducing four-quadrant management documents in alignment
meetings exposes conflicting objectives so they can be nipped in the bud
before interdepartmental warfare ensues.

Developing an Agile Managerial Mindset

Regardless of one’s feelings about fast food and McDonald’s, the Golden
Arches provides a helpful management example. McDonald’s manage-
ment training requires intimate knowledge of a store’s workstations. In
a pinch, McDonald’s managers are so well-trained, they can make milk-
shakes, flip burgers, prepare fries, or operate the cash register. An informed
suggestion is likely forthcoming when an employee brings a problem to a
McDonald’s manager.

Ideally, company managers possess more than a passing understand-
ing of their employee’s jobs. Company managers should follow the

134	 THE AGILE ENTERPRISE

McDonald’s model where Engineering managers are former engineers,
and Sales leaders are former salespeople.

Do self-managing Agile teams obviate the need for well-informed,
McDonald’s-style managers? Nope, deeply knowledgeable managers are
still invaluable, but their contributions are somewhat different in Agile
companies.

Sometimes managers who know everything about their employees’
jobs micromanage, becoming too involved in the work’s minutiae in an
unhelpful manner. For example, instead of answering a question about
milkshake composition, a McDonald’s manager might go make the shakes
herself. Although the manager may have solved the immediate problem,
they neglected to teach the employee. Consequently, the same problem
will likely recur. Similarly, a VP of Engineering ideally knows enough to
understand the team’s code but allows the team leaders to run the code
reviews. A micromanaging manager risks losing sight of the big picture
because of low-level distractions.

Managers in self-managing Agile companies are less prone to micro-
manage. However, when a team hits roadblocks that jeopardize achiev-
ing its objectives, a knowledgeable manager asks the right questions and
provides valuable advice.

Bringing It All Together … and Two Confessions

For those who read this book seeking ways to deliver work products faster,
here’s my first confession: Agile does not accelerate work schedules nor
facilitates speedier output. The good news is that teams produce better
results in the same amount of time.

Even if Agile doesn’t produce faster delivery, breaking large prob-
lems into smaller more understandable pieces results in more accurate
estimates. Furthermore, the results of the circular process of planning,
developing, seeking feedback, and fine-tuning are work products that
address immediate customer problems better than non-Agile approaches.
Still, customers will always bemoan the time it takes to receive their solu-
tions. Hopefully, their satisfaction with Agile-fueled results allays their
annoyance at the wait.

Agile replaces the Waterfall process. Waterfall is especially ill-suited
to work that’s inexpensive to tweak when things go awry. Besides those

	 When Everything’s in Place	 135

in building construction, few work mistakes are prohibitively expensive
to fix.

Even mission-critical applications like rocket launches, which may
result in loss of life, employ Agile approaches, albeit accompanied by
sophisticated and thorough automated testing processes.

Agile is now over 20—young for a person, but long in the tooth for
a business philosophy. Humans are wired to seek a better mousetrap.
Dissatisfaction with Agile is causing some to consider post-Agile philos-
ophies. In many cases, however, the argument is not with the eminently
sensible Agile Manifesto, but with the Agile methodologies, which were
invented to help teams apply the Agile philosophy.

Many teams cloak themselves in the terminology of Scrum—sprints,
standups, backlogs, retrospectives—while working in a Waterfall mode.
Unfortunately, adopting the trappings of Agile methodologies without
understanding the Agile philosophy is talking the talk without walking
the walk. No wonder Agile gets a bad rap!

My second confession: The world would be better if Agile meth-
odologies were never invented. Teams are better served by going to the
original text of the Agile Manifesto than embracing the abstractions
offered by Agile methodologies. Granted, figuring out how to apply
the Agile philosophy to the daily work of a company is a heavy lift. But
the prospect of replacing mediocre with stellar work products makes the
Agile struggle worthwhile.

Every successful company with a great business model faces the same
problem: Customers become so invested in their products that they
demand more than the company can easily deliver. Demanding custom-
ers is the best problem any company can have. These insistent customers
also understand that exquisite solutions aren’t easy, quick, or cheap. By
developing Agile processes across the enterprise, companies can respond
to demand with realistic plans and schedules while including customers
in the decision-making and evaluation.

Corporate Agility: A Smooth Ride Forevermore or a
Constant Struggle?

The journey to spread the Agile Manifesto philosophy across the orga-
nization is far from linear. Although a journey is defined as the act of

136	 THE AGILE ENTERPRISE

going from one place to another, the word implies that important things
happen during the trip.

Conceptually, the journey begins in Waterfall-land and ends in Agile-
land. Realistically, most companies don’t begin with strict Waterfall and
don’t end with strict Agile. Consequently, most companies travel a circu-
itous route with plenty of twists and turns.

The Agile Manifesto was penned by software luminaries seeking a
better way to work. The Agile methodologies that followed are mostly
intended for Engineering teams. Interestingly, Engineering teams struggle
with adopting the elements of Agile, even though the philosophy and
methodologies were purpose-built for them.

Understanding Agile principles well enough to apply them to non-
engineering corporate projects requires both creativity and a clear under-
standing of the Agile Manifesto philosophy. Individuals and teams develop
Agile muscles by absorbing the philosophy and making forays into small-
batch deliverables in time-boxed iterations.

Despite the best efforts of the purveyors of Agile methodologies to
prescribe behavior, Agile is a constant challenge. By keeping at it through
repetition and commitment, Agile muscles will transform into an Agile
habit. Teammates demonstrate their Agile habit when they naturally look
for ways to apply the Agile Manifesto philosophy. Team members learn
from the twists of their Agile journey and apply their newfound knowl-
edge at every turn.

Key Takeaways

1.	Traditional managerial roles change with self-managing Agile teams.
Managers become facilitators, obstacle-removers, and less bossy.

2.	Small, multidisciplinary discovery teams imply a matrix-managed
business structure.

3.	Matrix management has its challenges when employees answer to
multiple managers. Ideally, employees focus on a single project at a
time.

4.	The exploratory mindset requires team members to leave their
preconceptions at the door and listen closely to customers without
asking leading questions.

	 When Everything’s in Place	 137

5.	Time-boxing is a key Agile practice that benefits just about any
project.

6.	Although not everything fits neatly into a short work-cycle, the
results are often better when large projects are decomposed into
small pieces.

7.	Management is generally not an Agile endeavor, but managers can
certainly act with agility.

8.	Managers become agile by running efficient meetings and eliminat-
ing unnecessary meetings.

9.	A four-quadrant document allows managers to identify and discuss
short- and longer-term problem areas in alignment meetings.

10.	Agile isn’t easy, but developing the proper musculature leads to an
Agile habit.

Glossary

Agile Manifesto: A seminal software development philosophy penned in
2001 by a group of legendary software developers at a Wasatch Mountain,
Utah ski resort. The Agile Manifesto refutes an earlier approach to
software called Waterfall, in which work is performed in discrete stages
and handed off to the next team upon completion. Instead, the Agile
Manifesto prescribes a more collaborative work style with fewer handoffs.

Agile programming: Although Agile isn’t a programming style, the Agile
approach to software development implies decomposing large problems
into smaller ones, working on them in short iterations, and soliciting user
feedback after each iteration.

Average pages per visit: A measure of the pages visited by individual
website visitors averaged over the total number of visitors to the website.
The number of pages website visitors click on is an excellent measure of
the site’s engagement. When the pages per visit increase, it reflects more
interesting and engaging content.

Backlog: A Scrum term referring to the set of user stories not scheduled
in a sprint.

Bounce rate: The bounce rate measures the percentage of people who
land on a website, don’t interact, and leave. Website designers work to
reduce bounce rates.

Code commit: When a programmer submits software to a version con-
trol system, the act of committing the code often precipitates a series of
prescribed behaviors, including code review, the automated building of
the software, and the automated execution of tests.

Continuous delivery: An automated process that enables teams to deploy
software to targeted environments after a code commit.

140	 GLOSSARY

Continuous integration: An automated process that builds software and
runs tests, typically in a test environment, whenever code is committed to
a source code repository.

Extreme Programming: A technically focused Agile methodology that
includes pair programming, test-driven development, continuous inte-
gration, and continuous delivery. Extreme Programming is difficult to
adapt to non-engineering projects.

Failing fast: Quickly recognizing when an idea or an approach isn’t
succeeding before too much time, effort, and money is wasted.

Fire: A customer emergency requiring company employees to drop
everything they’re doing to focus on extinguishing the blaze. Too much
firefighting derails planned deliverable dates.

Functional reporting: A traditional reporting structure where an
employee reports to a manager based on role. For example, a team
of quality engineers reports functionally to the head of Quality, but
each may be farmed out to project teams managed by someone else.
Typically, one’s functional manager handles personnel issues like perfor-
mance reviews. In a matrix-managed structure, an employee has a single
functional manager and one or more project managers.

Git: A distributed version control system that tracks file changes and
supports teams of programmers.

GitHub: Cloud-based hosting service for software development and
version control using the Git version control system.

Kanban: An Agile methodology based on a Japanese manufacturing
system in which the capacity of workers on the assembly line regulates
the supply of components.

Lean development: An Agile methodology incorporating lean manufac-
turing principles of minimizing waste and maximizing value.

	 Glossary	 141

Management by objectives: A theory devised by Peter Drucker in 1954
promoting manager/employee goals that are reviewed annually.

Matrix management: A business structure where employees have
multiple bosses—one at the functional level and one or more at the
project level.

Methodology: The specification of transforming a philosophy like the
Agile Manifesto into an actionable set of behaviors.

Micromanagement: Becoming too involved in the minutiae of the work
in a manner that’s unhelpful to the employee.

Objectives and key results (OKRs): A management methodology that
helps ensure everyone in a company is focusing their efforts on the same
important issues. Devised by Intel President and CEO, Andy Grove, and
popularized by John Doerr, Venture Capitalist at Kleiner Perkins, OKRs are
implemented at Google, Facebook, and other leading software companies.

Pair programming: An Extreme Programming practice where two
programmers work together to write or modify a piece of code.

Postmortem: Borrowed from forensics, a software postmortem is a report
issued after a fire that explains the root causes and intended actions to
prevent a recurrence.

Process heaviness: When complicated tools or excessive bureaucracy get in
the way of achieving goals. The selection of appropriate tools and processes
may help facilitate progress. It’s a sign of process heaviness when a team must
change how it performs its work to satisfy the requirements of the tool.

Research spike: An Agile methodology salve that blocks time for learning
and doesn’t result in a customer-deliverable product.

Retrospective: A Scrum practice where a team reflects on the positives
and negatives of a completed sprint.

142	 GLOSSARY

Scope creep: A common practice where additional work is added after
stakeholders have agreed on the parameters of a work iteration.

Scrum: The most widely practiced Agile methodology. Scrum utilizes
user stories, story points, sprints, retrospectives, and backlog. Scrum is so
ubiquitous as an Agile methodology that Scrum and Agile are frequently
used interchangeably; this is incorrect. Scrum includes a set of practices
that help teams follow an Agile philosophy.

Scrumban: A blending of Agile methodologies that use elements of
Scrum and Kanban.

SEO: Search engine optimization is the process used to optimize a web-
site’s technical configuration. SEO enables a website’s pages to become
easily findable and higher ranked by search engines.

Sponsor: A company employee who manages a consulting engagement.
Typically, a sponsor acts as a sounding board for ideas, an offensive line-
man to clear the way for the consultant to learn, and someone to hold
them to task.

Sprint: The active phase of a Scrum cycle where the team works heads-
down for a short duration, typically a couple of weeks. The goal of a sprint
is to produce working software at the end.

Story points: A measure of the complexity of a story. Story points may
use whatever measurement scale the team decides but points must be
assigned consistently across sprints.

Technical debt: The accrual of shortcuts and workarounds to meet dead-
lines. Technical debt may cause future problems if substandard work is
never corrected and keeps piling up.

Test-driven development (TDD): An Extreme Programming practice
where tests are written before code is written. TDD implies that the pro-
grammer has a complete enough understanding of the problem to know
how the code should behave.

	 Glossary	 143

Time-boxing: Limiting work to a specified period. Sprints are typically
time-boxed to a couple of weeks, and the delivered functionality reflects
whatever can fit into the box. The alternative to time-boxing is for teams
to work until a feature set is completed, regardless of time.

User stories: The basic unit of work of a Scrum sprint. Stories express
the who, what, and why but don’t provide excessive detail. Stories spark
discussion to ensure all parties understand and agree on the details.

Velocity: The sum of the completed story points in a sprint. The averag-
ing of completed story points over many sprints provides an average team
velocity. Note that any changes to the team like additions, subtractions,
or swaps of people results in velocity changes.

Waterfall: A development approach with lengthy periods of design,
documentation, development, and testing. When one group finishes, the
work is handed off for the next group to begin. Waterfall and Agile are
diametrically opposed processes.

Work in progress (WIP): A Kanban concept governing work so that
individuals must complete existing work before undertaking new work.

References

Beck, K., B. Mike, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, et al. 2001. “Manifesto for Agile Software Development.” https://
agilemanifesto.org/ (accessed April 2022).

Beck, K., B. Mike, A. van Bennekum, A. Cockburn, W. Cunningham, M.
Fowler, J. Grenning, et al. 2001. “Principles Behind the Agile Manifesto.”
https://agilemanifesto.org/principles.html (accessed April 2022).

Brand Minds. 2018. “Why Did Kodak Fail and What Can You Learn From
Its Demise.” https://brand-minds.medium.com/why-did-kodak-fail-and-
what-can-you-learn-from-its-failure-70b92793493c (accessed May 2022).

DesiLu Productions. 1956. “Lucy and the Chocolate Factory.” www.youtube
.com/watch?v=NkQ58I53mjk (accessed May 2022).

Doerr, J. 2018. Measure What Matters: How Google, Bono, and the Gates
Foundation Rock the World With OKRs. New York, NY: Portfolio/Penguin.

Drucker, P. 1954. The Practice of Management. New York, NY: Harper Collins
Publishers, Inc.

Fahy, R., B. Evarts, and G.P. Stein. 2022. “National Fire Protection Association’s
US Fire Department Profile.” www.nfpa.org/News-and-Research/Data-research-
and-tools/Emergency-Responders/US-fire-department-profile#:~:text=Key%20
findings,firefighters%20were%20female%20(9%25) (accessed June 2022).

Google. 2020. “Google’s OKR Playbook.” www.whatmatters.com/resources/
google-okr-playbook (accessed July 2022).

Hern, A. 2018. “The Two-Pizza Rule and the Secret of Amazon’s Success.” www
.theguardian.com/technology/2018/apr/24/the-two-pizza-rule-and-the-secret-
of-amazons-success (accessed August 2022).

Highsmith, J. 2001. “History: The Agile Manifesto.” https://agilemanifesto.org/
history (accessed September 2022).

Isaacson, W. 2017. Leonardo Da Vinci. New York, NY: Simon & Schuster.
Lavallee, G. 2022. “You Can’t Code Your Way Out of the Culture Problem.”

https://slate.com/technology/2022/11/elon-musk-twitter-code-fixation
.html (accessed September 2022).

Marxist Internet Archive. n.d. “Chapter IV. Position of  the Communists in
Relation to the Various Existing Opposition Parties.” www.marxists.org/archive/
marx/works/1848/communist-manifesto/ch04.htm (accessed September 12,
2022).

ProductPlan.com. 2022. “Lean Software Development.” www.productplan.com/
glossary/lean-software-development/ (accessed July 2022).

146	 REFERENCES

Schwartz, A. and A. Hurst. 2022. “Is Texting and Driving Illegal?” www
.policygenius.com/auto-insurance/texting-and-driving-laws-in-all-50-states/
(accessed October 2022).

Scrum.org. 2022. “The Scrum Framework.” www.scrum.org/resources/what-is-
scrum (accessed August 2022).

Wodtke, C. 2021. Radical Focus: Achieving Your Most Important Goals With
Objectives and Key Results. Cucina Media LLC.

About the Author

David Asch has a 36-year career in startup and mid-stage commercial
software companies. David began as a Software Developer for the first
part of his career and subsequently moved into management, leading
technical teams for over 20 years. He’s worked in various industries,
including transportation, supply chain, retail analytics, scientific market-
ing, blockchain, and secure communications.

In virtually all his managerial positions, David produced robust,
enterprise software-as-a-service products in cloud-based environments.
He introduced Agile philosophy and methodologies to each of his com-
panies, enabling his teams to meet their goals.

David founded 10xPrinciples, a management/organizational consult-
ing company, to help technology companies navigate the transition from
startup to mid-stage. During this time of rapid growth and change, teams
typically find that the wearing many hats culture from their startup days
is no longer the best approach to honoring commitments. David helps
these companies weave Agile practices into the fabric of their cultures.

Before 10xPrinciples, David was Vice President of Product Devel-
opment at Decisiv. He managed a large, distributed organization with
employees scattered throughout the United States and near-shore con-
sultants in Argentina and Costa Rica. Instead of separating teams by
geography, David blended the teams using digital communication and
collaboration tools. By introducing Extreme Programming method-
ologies, including test automation, automatic deployment, and pair
programming, David reduced the release cycle from six weeks to weekly
deployments.

In a prior position as Director of Engineering at Sentrana, David
faced an entirely different problem. In addition to managing a U.S. team,
David was responsible for two large engineering teams in Bangladesh.
David introduced the Bangladesh teams to the Scrum methodology and
taught the teams about stories, sprints, velocity, and retrospectives. The
introduction of Scrum also changed how the U.S. team communicated
with the Bangladesh team; since the teams were so far apart geographically

148	 ABOUT THE AUTHOR

and culturally, the U.S. team learned to clearly communicate their ideas
graphically, using prototyping to ensure both sides were aligned.

David’s recognized expertise in companywide Agile-driven man-
agement makes him invaluable to clients who need to implement Agile
principles and methodologies into their unique business environments.

Index

Accountability, 44–45
Agile/agility, xv, xix

assessment, 104–106
checklist, 5–8
continuity, 50–53
development, xvi, 18, 25, 26
discovery, 38, 41, 44, 51, 54, 56,

57, 125
forecasting and planning, 128–129
management, 129–134
metrics, 83–84, 87–89, 106–107
programming, 139
projects, 118, 124
quiz, 76–78
research spikes, 49–50

Agile Manifesto, xvi, xvii, 17–18,
24–26, 41, 139

philosophy, 41, 49, 126, 130,
135–136

principles of, 18–19, 31–32, 123
review of, 19–20

Amazon, 82–83, 88–89
Apple, 2–3
Audio app, 54–56
Average pages per visit, 93, 94, 139

Backlog, 50, 51, 139
Bezos, J., 82
Bonus plan, 127
Botticelli, S., 86
Bottom-up approach, 97
Bounce rate, 93, 139
Brain power, 114
Bugginess, 75
Burger Shack, 9–10, 14, 108–109

agility checklist, 10–13
Byzantine code, 73

Capital-A, 7–8
Capital and operational expenditures,

128

CEO, xv, 1–7, 38–39, 45, 64, 66,
73–74, 82–84, 87–91, 94–98,
101, 111–113, 129

Chief Financial Officer (CFO),
127–129

Chief Technical Officer (CTO), 1, 2
Code commit, 84, 139
Cognitive overload, 63
Company and growth, 35–36

agile advice, 36–37
chunk of work, 37–38
direction, 113
initial waterfall plans, 36
plateaus, 101–102
real-world opportunities, 103–104
self-managing team, 39–40
work measurable, 38–39

Consultants/consulting
characteristics, 116–117
engagement, 118
follow-on support, 117
hidden costs of, 118
hiring considerations, 115–116
obstacles identification, 119
practices for, 119–120
with strengths, 114

Continuity, 50–53
Continuous

delivery, 97, 139
integration, 30, 140

Continuous integration/continuous
delivery (CI/CD), 30

Cost of rearchitecture, 74–75
Culture, 69

of learning, 108–110
of testing, 76

Curiosity, 110, 117
Customer

churn, 75–76
collaboration, 19–20
discontent and churn, 112

150	 INDEX

problem, 108–110
retention, 94–96
Success Officer, 2

Day-to-day tactical concerns, 112
Design, 56
Doerr, J., 89, 91
Drucker, P., 98

Employees
attrition, 112
company direction, 113

Engineering, 42, 56, 104, 105
Excluding the big picture, 46
Expect change, 18
Experience, 116
Exploration dream team, 55–57
Exploratory mindset, 125
Extreme Programming (XP), 29–31,

140

Failing fast, 43–44, 140
Fire(s), 140

and firefighting, 67–75
kinds of, 75–76

Flexibility, 20
Fruit roll-ups, 25
Fuel, 68–69
Functional

expertise, 114
reporting, 124, 140

Gates, B., 43, 66
Git, 140
GitHub commit, 83–84
Google, 91
Grove, A., 89

Heat, 69
Hiring plan, 127
Hubris, 4, 51, 106, 110, 125
Humanity, 88–89
Human Resources (HR), 40–41, 88,

103

Ideal consultant, 116–117
Inability, 63
India Pale Ales (IPAs), 23
Interdependent sprints, 65

Internal Revenue Service (IRS),
xvii–xviii

Interruption, 65–66
Inter-team communication, 107–108
IOS (Apple) mobile app, 133
Isaacson, W., 85
Iterations, sanctity of, 62–63

Jobs, S., 2–3
JustTrustMe, 22

Kanban, 28–29, 32, 140
Kodak, 4

Leadership, 45
Lean development, 30–31, 140
Leonardo da Vinci (Isaacson), 85–86
Lickety-split, 25

Management by objectives (MBO),
98–99, 141

Managerial squabbles, 112
Marketing team, 46, 64–65
Matrix management, 124, 141
McDonald, 133–134
Medici, L. d., 85–86
Methodology, xix–xx, 26, 28–32, 35,

126, 141
Metric-driven teams, 87–88
Micromanagement, 3, 141
Middle management, 84–87
Minimal first versions, 74
Missed deadlines, 113
Missed sales targets, 113
Morale problems, 63
Multidisciplinary teams, 53–57,

123–125
Musk, E., 66, 83–84

No handoffs, 18

Objective analysis, 114
Objectives and Key Results (OKRs),

89–91, 141
cascading, 96–98
counterexample, 93–94
customer retention and, 94–96
example, 93
key results portion, 90, 92

	 INDEX	 151

low-value, 91
objective portion, 90
performance review, 92
pitfalls, 91–92
sandbagging, 92
small-minded aspirational, 92
status quo, 91
vs. MBO, 98–99

Older managers, 14
Openness, 116–117
Operations, 56, 104
Opportunity cost, 75
Oxygen, 68

Page, L., 91
Pair Programming, 29, 141
Perkins, K., 91
Positivity, 117
Postmortem, 141

examinations, 71
lines, 71–72

Practice of Management (Drucker),
98–99

Prioritization, 69–70
Process

heaviness, 14–15, 46, 141
and quality, 70

Product backlog, 51
Product management, 38, 42, 44,

51–53, 56, 69, 104, 129
Product manager, 25, 28, 50–53, 82,

110, 126

Quality, 56
assurance, 103

Radical Focus (Wodtke), 130
Research spikes, 40, 43, 49–50, 54,

141
Retrospective, 28, 141
Return on investment (ROI), 53, 54

Sales, 42, 103, 105, 127–129
Scope creep, 53, 62, 142
Scrum, 26–29, 31–32, 49–51, 135,

142
Scrumban, 28, 32, 142
Search engine optimization (SEO),

93, 142

Self-management, 19
Self-managing team, 39–40
Sistine Chapel ceiling, 85–86
Software delivery, 18
Software development teams, 57
Sponsor, 118–120, 142
Sprint/sprinting, 28, 40, 44–45,

49–51, 81–82, 142
changes, 63
failures, 52–53, 63–66

StaidCorp, 57–59
Staid. H., 57–58
Statement of work (SOW), 118
Status report-driven teams, 87–88
Story points, 28, 81–84, 92, 142
Success, 106–107
Sustainability, 18–19

Technical debt, 69–70, 142
Test-Driven Development (TDD),

30, 142
Time-boxing, 126–127, 143
Time/cost overruns, 74
The Titanic, 4
Top-down approach, 96–97
Toyota manufacturing principles,

30–31
T-shirt sizing, 81
Two-pizza rule, 82–83
Tyson, M., 20

User stories, 26–27, 50–52, 62, 143

Velocity, 81–82, 143
VP of Engineering, 36, 97–98, 134

Waterfall approach, 20–21, 24, 44,
134–135, 143

appreciation of, 125–126
merits of, 21–22, 53
planning, 36
weaknesses of, 22–24, 53

We wear many hats approach, 102
Wodtke, C., 130
Working software, 18, 19, 24–26, 30,

35, 49, 126–127
Work in progress (WIP), 29, 143

Zoom, 51–52

OTHER TITLES IN THE PORTFOLIO AND
PROJECT MANAGEMENT COLLECTION

Timothy J. Kloppenborg, Xavier University and
Kam Jugdev, Athabasca University, Editors

•	 When Graduation’s Over, Learning Begins by Roger Forsgren

•	 Project Control Methods and Best Practices by Yakubu Olawale

•	 Managing Projects With PMBOK 7 by James W. Marion and Tracey Richardson

•	 Shields Up by Gregory J. Skulmoski

•	 Greatness in Construction History by Sherif Hashem

•	 The Inner Building Blocks by Abhishek Rai

•	 Project Profitability by Reginald Tomas Lee

•	 Moving the Needle With Lean OKRs by Bart den Haak

•	 Lean Knowledge Management by Roger Forsgren

•	 The MBA Distilled for Project & Program Professionals by Bradley D. Clark

•	 Project Management for Banks by Dan Bonner

•	 Successfully Achieving Strategy Through Effective Portfolio Management by
Frank R. Parth

Concise and Applied Business Books

The Collection listed above is one of 30 business subject collections that Business Expert
Press has grown to make BEP a premiere publisher of print and digital books. Our concise and
applied books are for…

•	 Professionals and Practitioners
•	 Faculty who adopt our books for courses
•	 Librarians who know that BEP’s Digital Libraries are a unique way to offer students ebooks to

download, not restricted with any digital rights management
•	 Executive Training Course Leaders
•	 Business Seminar Organizers

Business Expert Press books are for anyone who needs to dig deeper on business ideas, goals, and
solutions to everyday problems. Whether one print book, one ebook, or buying a digital library of 110
ebooks, we remain the affordable and smart way to be business smart. For more information, please
visit www.businessexpertpress.com, or contact sales@businessexpertpress.com.

D A V I D A S C H

A p p l y i n g A g i l e P r i n c i p l e s t o
D r i v e O r g a n i z a t i o n a l S u c c e s s

T H E A G I L E

E N T E R P R I S E

THE AGILE ENTERPRISE
Applying Agile Principles to Drive
Organizational Success
DAVID ASCH
“Not only does Asch make a compelling case for using Agile methodologies across
departments in an organization, he does it through relatable examples and with immense
humour. I continually found myself excited to move on to the next chapter, both for the
educational value and for the raw entertainment.”—Pete Devenyi, (Retired) Senior Vice
President, Global Products and Solutions, Dematic/Author, Decoding Your Stem Career

“I had honestly never thought about Agile for other business functions the way Asch does
and he manages to do so with a great sense of humor. I wish David Asch had written
this book 7 years ago and handed it to me. It would have saved me many headaches.”
—Javier Ferraez, Product Management, Amazon.com

A group of eminent so� ware developers gathered at a Colorado ski lodge in 2001,
codifying The Agile Manifesto, a philosophy for effi ciently accomplishing technical work. In
this accessible, real-world-example-laden, and unexpectedly entertaining book, The Agile
Enterprise explains how to apply The Agile Manifesto’s ideas companywide.

The wisdom imparted in The Agile Enterprise teaches students to decompose large problems
into manageable chunks, helps managers fi nd their value among self-managing teams, and
enables executives to measure and recognize success in their own Agile enterprises.

David Asch produced robust, Enterprise So� ware-as-a-Service, cloud-
based products in all his managerial positions throughout a storied 36-year
career. He introduced Agile philosophy and methodologies to each of
his companies, enabling his teams to meet their goals. Asch currently owns
and operates 10xPrinciples, a management/organizational consulting
company, that helps technology companies navigate the transition from
startup to mid-stage. During this time of rapid growth and change, teams
typically fi nd that the “wearing many hats” behavior from their startup

days is no longer the best approach to honoring commitments. Asch helps these companies
weave Agile practices into the fabric of their cultures.

Portfolio and Project Management Collection

Tim Kloppenborg and Kam Jugdev, Editors

A
SC

H

ISBN: 978-1-63742-547-3

TH
E A

G
ILE EN

TER
P

R
ISE

	Cover
	Halftitle
	Title
	Copyright
	Dedication
	Description
	Contents
	Testimonials
	Acknowledgments
	Introduction
	Chapter 1: The Agility Myth
	Chapter 2: Brief Tour of Agile Software Development
	Chapter 3: Holistic Challenges of Agile
	Chapter 4: The Dirty Secret of Agile
	Chapter 5: A Closer Look: Obstacles to Agile
	Chapter 6: Measuring Success
	Chapter 7: Implementing Organizational Change
	Chapter 8: When Everything’s in Place: What Works Best?
	Glossary
	References
	About the Author
	Index
	Adpage
	Backcover

