ABSTRACT

In situations such as shootings or other dangerous events, knowing the

direction of arrival of gunshots is important to identify the location of the sound

source and take appropriate action. In this research, the ESPRIT (Estimation of

Signal Parameters via Rotational Invariance Techniques) algorithm has been

analyzed and implemented to estimate the direction of arrival or DoA (Direction

of Arrival) of gunshots.

This research was conducted in several stages. First, prepare the microphone

array that will be used. Then, take the recorded gunshot data that will be used as

the input signal in the analysis. After that, process the data to produce an inter-

microphone correlation matrix that will be the basis for the ESPRIT algorithm.

The implementation of the ESPRIT algorithm will be carried out to accurately

estimate the direction of arrival of gunshots.

The results of estimating the angle of arrival of gunshots show that the system

has a fairly good level of accuracy, especially on the M4 weapon type with the

most consistent and accurate angle detection performance among the three

weapons tested, with the lowest average error at almost all angles. The Desert

Eagle showed variable but still relatively accurate detection performance,

especially at 180° angles, with very small errors. In contrast, the AK-47 had the

highest average error across all angles, indicating that the detection system had

the greatest difficulty in detecting the firing angle of this weapon.

Key Words: Gunshots, DoA, ESPRIT, Microphone Array

 \mathbf{v}