ABSTRACT

Indoor air quality (IAQ) significantly impacts health and productivity, influenced by building materials, furniture, and outdoor air quality. Fine particles (PM_{2.5}) are a major pollutant posing respiratory and health risks. IAQ-related diseases contribute to premature deaths, emphasizing the public health concern. Research gaps persist in microsensor-based IAQ evaluation methods, their accuracy, measurement reliability, and performance assessment within sensor networks. This study aims to propose a Wireless Sensor Network (WSN)-based IAQ monitoring system. The system includes sensor calibration for accuracy, a 7day measurement period, data validation, and daily averaging based on PM_{2.5} concentration standards. Quality of service assessment determines system specifications. Calibration tests show an R^2 value of 0.99 and a standard deviation of 11.65 μ g/m³ for PM_{2.5} sensors. PM_{2.5} concentrations range from 48 μ g/m³ to 75 $\mu g/m^3$ indoors and 41 $\mu g/m^3$ to 105 $\mu g/m^3$ semi-indoors, influenced by environmental factors and air infiltration effects. Post-measurement sensor validation reveals a minimal error of 0.005%. The system achieves consistent data transmission up to 24 meters, even in obstructed environments.

Keywords: Indoor Air Quality, Microsensors, PM2.5, Quality of Service.