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Foreword

I never forget the day when I first realized the importance of software quality. It was
in 1979 when I was doing my undergraduate study and introduced to programming
language. One day, I learned the story about Mariner 1, the first spacecraft in the
American Mariner program, which was launched on July 22, 1962, but had to be
destroyed after veering off course due to equipment failure and an error in coded
computer instructions. The post-flight review found that a missing hyphen in coded
computer instructions allowed transmission of incorrect guidance signals. Even
though this mission was later achieved by Mariner 2, the loss of Mariner 1 was
as high as 18.5 million US dollars. Significantly, this epic software bug impressed
me and influenced my following academic career.

After I started my master’s degree program supervised by Prof. Zhenyu Wang, I
gained a deeper understanding of programming languages (such as Ada, AED,
ALGOL60, ALGOL68, ALGOL W, APL, BASIC, BCPL, BLISS, C, CLU,
COBOL, Concurrent Pascal, CORAL66, Edison, Eiffel, Euclid, Euler, FORTH,
FORTRAN IV, FORTRAN 77, GPSS, JOVIAL, LIS, LISP, Modula, Modula-
2, Modula-3, NPL, Oberon, Pascal, PL/I, PL/M, PLZ/SYS, PROLOG, SETL,
SIMULA, SmallTalk, SNOBOL, SPL/I). In that age, though programs were not in
large scale or with complex structures, testing and debugging were actually very
challenging due to the lack of supporting mechanisms and facilities. Initiated by my
study on programming language principles, design, and implementation, a belief
that I should also do studies on software quality assurance becomes stronger and
stronger.

I was one of the first researchers who systematically studied software quality in
China. In 1986, I published the first paper in China, enumerating various issues in
C programming languages that can introduce risks in software. I also compared
several popular programming languages in that age, such as Ada and Pascal,
discussing principles and metrics for good programming languages. Right around
the same time, I worked on program analysis and slicing. I proposed a method for
backward dependence analysis. Under my supervision, my students also developed
a series of methods for static and dynamic program analysis, dependence analysis
in concurrent programs, monadic slicing for programs with pointers, etc.

v



vi Foreword

Since 1995, we have started to realize the importance of software measurements
in producing high-quality software systems. We proposed approaches to measuring
class cohesion based on dependence analysis, package cohesion based on client
usage, and methods to further improve software architecture design. Around 2000,
we initiated our first project on software testing. After that, my research group
kept putting many efforts in this area, and have harvested abundant achievements
over the past two decades, which cover combinatorial testing, regression testing,
evolutionary testing, metamorphic testing, web testing, and test case prioritization
and reduction. We also cared about software reliability and security. Based on the
accumulations in testing and analysis, our group was able to develop a series of
theories and methodologies in software fault localization and defect prediction,
which have exerted profound influences in these areas. Recently, we expanded our
directions to testing and debugging for artificial intelligent systems, crowdsourcing
software engineering, empirical software engineering, and knowledge graph.

Over the past 30 years, our group has obtained many important research
results, which are highly praised by international peers and exert great impact in
relevant fields. We have undertaken over 70 research projects from the National
Natural Science Foundation of China, the Ministry of Education, the Ministry of
Science and Technology, Jiangsu Province, institutions, and famous enterprises.
The group has published more than 500 papers, including top venues such as
ACM Transactions on Software Engineering and Methodology, IEEE Transactions
on Software Engineering, the International Conference on Software Engineering,
The ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, and the International Joint Conference
on Artificial Intelligence. We have also built close connections and collaboration
with many prestigious universities and institutes, including Purdue University,
Nanyang Technological University, University of California Irvine, University
College London, and Columbia University.

We have developed multiple systems including CRL/Ada language and its
generation system, Ada program analysis and understanding system (APAUS),
software maintenance and support system for Ada reverse engineering (ARMS),
embedded software testing support system (ETS), software quality assurance system
(SQAS), and testing platform for large and complex systems (Testeres). Through
participation in various projects, we also built up large-scale benchmarks of real-
life data. From these data, we conducted empirical studies and have provided useful
and convincing insights.

Such a long period of research gives us good accumulation in both theory and
practice. And hence we are planning a series of books on relevant areas of program
analysis, testing, and evolution. We hope they will appear in the near future.

Nanjing University, China Baowen Xu



Preface

Program debugging has always been a difficult and time-consuming task in software
development. Back in the 1970s, when researchers proposed the concept of program
slicing, automatic program fault localization became an ambition for efficiently
debugging the program. Since then, various trials were performed to get closer to
this goal, among which spectrum-based fault localization (SBFL) is one of the most
widely studied families of techniques.

SBFL was first proposed around 2000. Different from traditional slicing-based
methods, SBFL became popular because of its lightweight and practicability.
Since 2000, this area has seen thousands of techniques derived from various
perspectives. As a consequence, it becomes very important and urgent to compare
the actual performance among different SBFL techniques. In fact, before 2013,
many empirical studies were conducted to investigate this question. However,
they were strongly dependent on the experimental setup, and hence can hardly
be considered as sufficiently comprehensive due to the huge number of possible
combinations of various factors in SBFL. In other words, these empirical studies
did not reveal the essence of SBFL performance.

Therefore, we propose to draft this book, whose orientation is not to introduce
various SBFL techniques, or to compare their empirical performance. Instead, this
book aims to provide a deep understanding on the essence of this area, talking
about its essential theories. Specifically, this book introduces a series of set-based
theoretical frameworks, which reveal the intrinsic performance hierarchy among
different SBFL techniques. In addition, this book also discusses two emerging
challenges of “oracle problem” and “multiple faults” and introduces promising
solutions.

The target audience of this book are mainly graduate students and researchers
who work in the areas of software analysis, testing, debugging, and repairing, and
are seeking deep comprehension of SBFL.

Wuhan University, China Xiaoyuan Xie
Nanjing University, China Baowen Xu
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Chapter 1
Introduction

Abstract It is commonly recognized that debugging and fault localization are
important but expensive activities in software engineering. Currently, many tech-
niques have been proposed towards the automatic fault localization, among which
spectrum-based fault localization (referred to as SBFL in this book) has received
a lot of attention due to its simplicity and effectiveness. As the first chapter of
this book, Chap. 1 will first introduce the history of automatic debugging, then
briefly introduce the basis of SBFL, and finally give a literature review by covering
three research directions in SBFL, namely, “risk evaluation formulas,” “parallel
debugging,” and “combining deep learning with SBFL.”

1.1 Assurance of Software Quality

It is commonly recognized that testing and debugging are important but expensive
activities in software engineering. Attempts to reduce the number of faults in
software are estimated to consume 50% to 80% of the total development and
maintenance effort [14].

Software testing utilizes concrete test cases to dynamically reveal the problems in
the program system. Over the past few decades, this area has seen a massive amount
of studies, in test case generation, prioritization, oracle problem alleviation, etc.
For example, popular automatic test case generation methods include evolutionary
testing, combinatorial testing, new coverage-based testing, etc. [11, 12, 35, 46, 54,
55, 58, 63]. And for regression testing and prioritization, people derived methods
based on various criteria [17, 18, 57]. About 20 years ago, metamorphic testing was
proposed [6, 7] and now has become one or the most promising solutions to oracle
problem [16, 47, 50].

Finding failure test cases can be a starting point of debugging. Debugging is
a complex activity, which may involve program analysis, fault prediction, fault
localization, fault repairing, etc. Program analysis generally includes dependency
extraction [8–10, 24, 52], slicing [53, 56, 61], and type inference [51, 60]. With
the information obtained from analysis, people derived a variety of methods for

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Xie, B. Xu, Essential Spectrum-based Fault Localization,
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2 1 Introduction

automatic fault prediction, localization, repairing, etc. [13, 28, 39, 45, 48, 49, 59,
62, 64, 69, 71].

In this book, we will mainly focus on an automatic fault localization technique,
namely, spectrum-based fault localization.

1.2 Automatic Fault Localization

Fault localization aims to pinpoint the possible positions of the faults based on
various information and hence gives debuggers hints for fault fixing. However, this
activity always involves a great amount of manual jobs. For example, a typical
debugging process usually begins when the failures of a program are observed.
Then, a debugger will focus on a particular failed execution and manually set a
series of breakpoints in the program. By inspecting and altering the internal states
at these breakpoints and iteratively re-executing the program with this test case, the
debugger will locate the fault for this failure.

Obviously, such a great amount of manual involvement makes the fault local-
ization very resource consuming and not effective. Therefore, automation of this
task becomes very important, which can significantly increase its effectiveness and
decrease its cost.

Currently, many techniques have been proposed towards the automatic fault
localization. Some of them use various information to isolate a set of program
entities that are likely to be faulty, based on different heuristics [4, 15, 20, 36, 40, 67].
For example, Zhang et al. [67] have utilized different types of dynamic slices
associated with failed test cases, as the set of suspicious statements of being faulty.
However, these techniques always have difficulties in compromising between the
effectiveness and precision. Generally speaking, a large suspicious set of program
entities usually has better precision since it has more chance to contain the faults;
however, it has to sacrifice the effectiveness since more program entities need to
be examined. Moreover, these techniques usually involve complicated program
analysis and hence are not efficient enough to be adopted in practice.

Therefore, people have proposed another promising automatic fault localization
technique, spectrum-based fault localization (referred to as SBFL in this book).
Instead of isolating the suspicious program entities, SBFL ranks program entities
according to their risks of being faulty. Generally speaking, SBFL first collects
the information from software testing, including various program spectra and the
associated testing result, in terms of failed or passed, of each individual test case.
The program spectrum can be any granularity of program entities (e.g., statements,
branches, blocks, etc.) and any type of run-time information (e.g., the binary
coverage status, the execution frequency, etc.) [22, 37]. With this information, SBFL
then uses different formulas to evaluate the risk of containing a fault for each
program entity and gives a risk ranking list. SBFL intends to highlight program
entities which strongly correlate with program failures, and these entities are
regarded as the likely faulty locations [2].
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Compared with the other debugging techniques, SBFL is much easier to be
implemented and adopted in practice. Actually, it has received a lot of attention due
to its simplicity and effectiveness. Some recent studies in SBFL were focused on
proposing new approaches that are distinguished from each other in the selection
of program spectrum, the choice of formula used for evaluating risk values for
each program entity, etc., in order to improve the accuracy of the diagnosis. Some
typical risk evaluation formulas include Pinpoint [5], Tarantula [26], Ochiai [1],
etc. On the other hand, some studies have aimed to compare the performance of
different SBFL techniques or to investigate how can different factors (e.g., number
of failed test cases, size of test suite, selection of coverage criterion, tie-breaking
scheme for statements with the same risk values, etc.) affect the performance of a
particular SBFL technique and how to adjust them to obtain a better performance
[1, 3, 23, 25, 38].

As a family of fault localization methods with over two-decade history, spectrum-
based fault localization has been extensively studied. This book will mainly focus
on those studies beyond the basic SBFL process.

1.3 Basis in Spectrum-Based Fault Localization

As a dynamic approach, SBFL basically utilizes two types of information collected
during software testing, namely, testing results and program spectrum. The testing
result associated with each test case records whether a test case is failed or passed,
while a program spectrum is a collection of data that provides a specific view on
the dynamic behavior of software [21, 37]. Generally speaking, it records the run-
time profiles about various program entities for a specific test suite. The program
entities could be statements, branches, paths, basic blocks, etc., while the run-
time information could be the binary coverage status, the execution frequency, the
program state before and after executing the program entity, etc. In practice, there
are many kinds of combinations [21, 22]. The most widely adopted combination
involves statement and its binary coverage status in a test execution [4, 40, 41].
In this book, we will follow the common practice to use this combination as a
representative of the program spectrum.

Let us consider a program PG=<s1, s2, . . . , sn> with n statements and exe-
cuted by a test suite of m test cases T S={t1, t2, . . . , tm}. Figure 1.1 shows the
essential information required by SBFL.

RE records all the testing results associated with the test cases, in which p

indicates passed and f indicates failed. And matrix MS represents the program
spectrum, where the element in the ith column and j th row represents the coverage
information of statement si , by test case tj , with 1 indicating si is executed and 0
otherwise. In other words, the j th row represents the execution slice of tj .

For each statement si , these data can be represented as a vector of four elements,
denoted as Ai=<ai

ef , ai
ep, ai

nf , ai
np>, where ai

ef and ai
ep represent the number of

test cases in TS that execute statement si and return the testing result of failure
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Fig. 1.1 Essential information for SBFL

or pass, respectively, and ai
nf and ai

np denote the number of test cases that do not
execute si and return the testing result of failure or pass, respectively. Obviously,
the sum of these four parameters for each statement should always be equal to the
size of the test suite. An example is shown in Fig. 1.2.

In Fig. 1.2, program PG has four statements {s1, s2, s3, s4}, and test suite TS has
six test cases {t1, t2, t3, t4, t5, t6}. As indicated in RE, t1 and t5 give rise to passed
runs, and the remaining four test cases give rise to failed runs. Matrix MS records
the binary coverage information for each statement with respect to every test case.
Matrix MA is such defined that its ith column represents the corresponding Ai for
si . For instance, in this figure, a1

np=0 for s1 means that no test case in the current

test suite gives a testing result of pass without executing s1; a4
ef =4 for s4 represents

that s4 is executed by four test cases which can detect failure.
A risk evaluation formula R is then applied on each statement si to assign a real

value that indicates its risk of being faulty. All formulas follow the same intuition

PG : (s1    s2    s3    s4)

TS : 

t1   

t2

t3

t4

t5

t6

MS : RE : 
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0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

1

0

1

1

1

0

1

p
f
f
f
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2

2

2

0

0

1

4

1

2

0

2

2

4

0

0
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Fig. 1.2 An example
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that statements associated with more failed and less passed testing results should
have higher risks. For example, formula Tarantula is defined as follows [26].

RT (si) = ai
ef

ai
ef + ai

nf

/( ai
ef

ai
ef + ai

nf

+ ai
ep

ai
ep + ai

np

)

A statement with a higher risk value is interpreted to have a higher possibility
to be faulty, which therefore should be examined with higher priority. Hence,
after being assigned with the risk values, all statements are sorted descendingly
according to their risk values. An effective formula should be able to make the faulty
statements as the top in the list as possible.

For the performance measurement of the risk evaluation formulas, the majority of
the SBFL community used the same metric or its equivalent, which is the percentage
of the code that needs (or needs not) to be examined before the faulty statement is
identified. Such a metric is used with the assumption of perfect bug detection that
the fault can always be identified once it is examined [42]. In [42], the percentage of
code that needs to be examined before the faults are identified is referred to as the
EXAM score, which will be adopted in this book. Obviously, a lower EXAM score
indicates a better performance.

1.4 Some Research Directions in SBFL

1.4.1 Risk Evaluation Formulas

Risk evaluation formula is a core component in SBFL. Hence one of the most
popular research directions in SBFL is the design of effective formulas, aiming at
ranking the faulty statements as high in the risk list as possible.

Apart from the above Tarantula, there are many other risk evaluation formulas.
Early ones include Jaccard [5], AMPLE [66], CBI Inc. [30, 31], Ochiai [1], SOBER
[32], Wong [42], etc., which are based on different similarity measurements.
Recently, a series of innovative risk evaluation formulas, such as Crosstab [43] and
DStar (D*) [44], were proposed. Crosstab is a crosstab-based statistical technique
which constructs a crosstab for each executable statement. A statistic can be
computed to determine the risk value of the individual statement based on the
corresponding crosstab subsequently. DStar (D*) is a technique that can suggest
suspicious locations for fault localization automatically. No prior knowledge is
required on program structure or semantics in this approach. The authors stated
that DStar (D*) was more effective in locating faults than all the other techniques
compared to it.

Generally speaking, different formulas were developed from different intuitions
or designed to serve different purposes. But no matter from what intuitions the
formulas were derived, they should all comply with the expectation that statements
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associated with more failed and less passed testing results should have higher faulty
risks.

With more and more formulas proposed, some people started to compare their
performance via empirical studies. Risk evaluation formulas, including Pinpoint,
Ample, Tarantula, Jaccard, and Ochiai, were investigated by Abreu et al. [1, 2].
Their experiments employed Siemens Suite, which is composed of seven programs
as a benchmark. An important conclusion of this study is that Ochiai performs better
than the other formulas. More specifically, Ochiai has been observed to improve 5%
on average over the next best technique in terms of the amount of code that needs
to be examined. In 2009, Abreu et al. revisited Jaccard, Tarantula, and Ochiai using
Siemens Suite and Space [3], pointing out that all the three formulas can provide a
useful diagnosis, but Ochiai led to a better diagnosis than the others. Besides, Jones
et al. have compared Tarantula with four non-SBFL approaches, namely, Set union,
Set intersection, Nearest Neighbor, and Cause Transitions [25]. Their study showed
that Tarantula outperforms the other four approaches in both the effectiveness and
the efficiency.

Later, some researchers have investigated the performance of risk evaluation
formulas from a semi-theoretical perspective. As the first attempt, Lee et al. have
proved that formula Tarantula always produces identical ranking list as formula
qe, and hence they are equivalent [29]. This pilot study was followed by a more
comprehensive investigation by Naish et al. [34], where over 30 formulas were
studied and more equivalence relations were identified, using the same definition
of equivalence as [29]. Naish et al. [34] also investigated the non-equivalence
relations, using a hybrid approach, with a model program and a group of multisets
of execution paths. The multiset of execution paths is the abstraction of the path
coverage information and the testing results of each concrete test suite, with respect
to the model program.

In this study, for a risk evaluation formula, the performance score with respect
to a multiset of execution paths is 0 if the risk of the faulty statement is less than
any other statement. Otherwise, the score is 1/k, where k denotes the number of
statements (including the faulty statement) having equal risk values as the faulty
statement. The overall performance of a formula is measured by the total score,
which is the sum (or average) of the scores over all possible distinct multisets of
t execution paths that contain at least one failed test case. When the number of
possible multisets is not too large, all the possible multisets were used to evaluate the
performance; while for large numbers of multisets, a random sample of them is used,
which is selected according to a uniform distribution of the combinations of path
coverage and testing results. This study proposes two optimal formulas which are
equivalent with respect to their model program and the total score. A comprehensive
empirical study on 30 formulas is conducted, to compare the performance among
non-equivalent formulas, as well as to investigate the impacts of various factors,
including test suite size, error detection accuracy, the number of failed test cases,
and the execution frequency of the buggy code.
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1.4.2 Parallel Debugging

Recently, SBFL on the multi-fault scenario has drawn attentions of the community.
The main difficulty for the multi-fault scenario is to establish associations between
failed executions and the corresponding faults. Currently, there are two commonly
adopted approaches. One is OBA (One-Bug-at-A-time), that is, faults are one by one
localized sequentially (which is also known as sequential debugging). The other one
is parallel debugging, where several developers localize faults simultaneously.

Many researchers have argued that parallel debugging can be more helpful
than sequential debugging, in terms of its efficiency and relatively satisfactory
effectiveness. There are four key components in designing good parallel debugging
methods, namely, clustering algorithm, fingerprinting function, distance metric, and
evaluation metric.

• As an effective method for mining the similarity between data, the clustering
process can make data with similar characteristics form a cluster spontaneously,
so it is widely used by researchers to discover the “Fault → Failure” relationship.
Jones et al. used agglomerative hierarchical clustering to cluster failed cases [27]
and developed a technique that computes the stopping criterion based on fault
localization information. Three clustering algorithms, DBSCAN, K-means, and
K-medoids, were mentioned by Gao et al. in [19]. They argued that DBSCAN is
not appropriate for fault localization because failed cases for some faults might
be excluded during clustering, since they may fall in low-density regions. They
also pointed out that K-medoids has shown to be very robust in comparison to the
K-means clustering algorithm for the presence of noise or outliers, thus generally
producing high-quality clusters.

• Failed test cases are too abstract to be measured in distance calculation. They
must be represented in a mathematical form until they can be used for clustering.
A fingerprinting function that extracts signatures from failures achieves this
request in general. Liu et al. discussed six representative failure proximities
in [33], namely, FP (Failure Point)-Based Proximity, ST (Stack Trace)-Based
Proximity, CC (Code Coverage)-Based Proximity, PE (Predicate Evaluation)-
Based Proximity, DS (Dynamic Slicing)-Based Proximity, and SD (Statistical
Debugging)-Based Proximity. Inspired by this study, many researchers proposed
to use rank proximity, that is, to employ the suspiciousness ranking of all state-
ments based on a given fault localization technique, to represent an individual
failed test case.

• In addition to the clustering algorithm, distance metric also plays an important
role in parallel debugging. Zakari et al. have argued that clustering algorithms
with Euclidean distance, Jaccard distance, or Hamming distance are indeed
problematic and inappropriate in parallel debugging [65]. Kendall tau distance
counts the number of pairwise disagreements between two rankings of the same
size, which can ideally match the intuition that rankings with more pairwise
disagreements should be given greater distance. A revised Kendall tau distance
was proposed in [19].
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• In SBFL, EXAM score and CNSE (Cumulative Number of Statements Exam-
ined) are the two most widely used evaluation metrics. However, in parallel
debugging, the evaluation metrics need to be redesigned because faults are
localized and fixed simultaneously. Jones et al. proposed D (the total developer
expense) and FF (the critical expense to a failure-free program), to evaluate the
effectiveness of the parallel debugging technique.

1.4.3 Combining Deep Learning with SBFL

Recently, we have seen deep learning techniques applied in various software
engineering activities, including SBFL. Deep learning techniques can capture the
potential features of given data and then generate a data-based model with limited
human interaction. In SBFL, the developer obtains the risk value of each statement
based on the coverage information gathered by executing PG against TS and then
generates rankings to help debuggers localize the fault(s) in PG. The core of SBFL
is to find the mapping relationship between coverage information and risk values,
while the advantage of deep learning is to mine data features and generate models
to predict such relationships. In recent years, we have seen achievements in this
direction. Two representative methods are DNN-FL and CNN-FL.

1. To find the complex nonlinear relationship between the coverage of each test
case in the test suite TS and its execution result, Zheng et al. proposed DNN-FL
for determining the correlation between each statement in the program PG and
the failed execution [70]. This method first constructs and trains a deep neural
network and then generates a set of virtual test cases with the same number
of executable statements in PG (each virtual case covers only one statement)
followed by inputting these virtual cases into the trained DNN; thus, the risk
value of each statement could be output within DNN. The detailed steps are as
follows:

• Step 1: Construct a deep neural network containing an input layer, an output
layer, and an appropriate number of hidden layers;

• Step 2: The coverage data cti and execution result rti of TS were input as
training samples into the DNN model, allowing DNN to learn the complex
nonlinear relationship between coverage data and execution results;

• Step 3: Input the coverage data of m virtual test cases cv1 , cv2 , . . . , cvm into
the trained DNN; the generated m outputs rv1 , rv2 , . . . , rvm will reflect the risk
values of the m executable statements in PG, respectively;

• Step 4: Conduct descending ranking for rv1 , rv2 , . . . , rvm , i.e., rank all
executable statements in PG according to their corresponding risk values to
form a ranking.

• Step 5: Check the statement in PG one by one based on the ranking until the
fault(s) are localized.
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2. As the scale of PG increases, Zhang et al. have argued that the number of
statements included in PG will increase substantially, and the traditional deep
neural network needs to set more hidden layers and parameters to satisfy the
needs of data mining, which is bound to result in higher costs [68]. This
deficiency of DNN can be eliminated by three merits of the convolutional
neural network (CNN), that is, local connections, parameter sharing, and down-
sampling in pooling. Firstly, the local connections can be accomplished by
making a convolutional kernel much smaller than input data; thus the learning
efficiency of CNN can be improved by reducing the number of parameters.
Secondly, with the benefit of parameter sharing, CNN can scan input data
with fewer parameters, which significantly reduces the cost of network training,
particularly when the input data is large. Thirdly, the pooling layer in CNN
simplifies the processed data through down-sampling, further reducing the
number of output parameters and enhancing the generation ability of the model.
Based on these considerations, Zhang et al. combined CNN with SBFL and
proposed CNN-FL, which contains four steps.

• Step 1: Construct a convolutional neural network with an input layer (the
size is determined by the number of executable statements in PG), two
convolutional layers, two pooling layers, two rectified linear units (ReLU ),
several fully connected layers (the number of nodes in each layer is related to
the size of PG), and an output layer (the number of nodes is 1);

• Step 2: The coverage data and execution results of test cases in TS are split
into multiple batches and then fed to CNN in turn for training the network;

• Step 3: Construct virtual test cases equal to the number of executable
statements in PG, and each virtual test case covers only one statement in
PG, that is, the statement i corresponding to xi is only covered by the virtual
test case ti . Input the virtual case ti (i = 1, 2, . . . , N) into the trained CNN
to obtain the corresponding output, the output of ti represents the likelihood
that xi contains a bug, indicating the suspiciousness of statement i of being
defective. Since ti only covers one entity, statement i, the output is actually
the risk value of statement i;

• Step 4: All executable statements in PG are ranked to form a ranking in
descending order of risk values, and the debugger localizes the fault(s) in PG
accordingly.

1.5 Structure of This Book

In this book, we will cover two parts in SBFL. The first part is about the essential
theories of SBFL. Chapter 2 introduces the theoretical framework that reveals
the intrinsic relations among different risk evaluation formulas. In Chap. 3, we
show how to use the framework to compare various risk evaluation formulas and
demonstrate a performance hierarchy among these formulas. Chapter 4 further
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explains the sufficient and necessary condition to a general maximal formula.
In Chap. 5, we introduce an extended framework, which can be used to analyze
hybrid SBFL methods. And Chap. 6 will discuss the practicality of the introduced
frameworks.

The second part is about some emerging challenges in SBFL. Chapter 7
focuses on the widely existed “oracle problem” and introduces a solution with
“metamorphic slice.” And Chap. 8 targets at another widely studied challenge,
namely, “multiple-fault localization,” where two approaches are elaborated.

Finally, we conclude this book in Chap. 9.
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Chapter 2
A Theoretical Framework for
Spectrum-Based Fault Localization

Abstract An important research direction of spectrum-based fault localization
(SBFL) is the effectiveness of risk evaluation formulas. In the past two decades,
many relevant studies have adopted an empirical approach, which can hardly be con-
sidered as sufficiently comprehensive because of the huge number of combinations
of various factors in SBFL. Though some studies aimed at overcoming the limita-
tions of the empirical approach, none of them has provided a completely satisfactory
solution. Therefore, in this chapter, we introduce a theoretical framework proposed
by us (Xie et al (2013) ACM Trans Softw Eng Methodol 22(4):31:1–31:40), which
can compare and analyze the effectiveness of any given risk evaluation formulas,
without conducting any experiments. This framework is built on a concept of
set division of all program statements, and this division is defined by the given
formula. In Sect. 2.3 we show the proof of the set division for 30 commonly adopted
formulas, which will be used in the following chapters.

2.1 Comparison Among Risk Formulas

As introduced in Sect. 1.4.1, one of the most essential tasks in SBFL is the risk
evaluation. An effective risk evaluation formula is very crucial to provide a good
fault localization performance for SBFL. With more and more formulas proposed,
some people started to compare their performance, in order to identify the formulas
with the “best” performance [1–4]. In all these studies, empirical approaches
were conducted to investigate and measure the effectiveness of the risk evaluation
formulas. In order to make the experimental results more reliable, people have used
various approaches to control the threats to validity. For example, they adopted the
same performance metric or its equivalents, the standardized experimental setup,

Part of this chapter ©2013 ACM. Reprinted, with permission from ACM Transactions on Software
Engineering and Methodology; October 2013. Vol. 22, No. 4, Article 31, 1–40. https://doi.org/10.
1145/2522920.2522924 (Ref. [8]).
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and the unified benchmarks. In addition, both the mutation analysis and real-life
case studies were conducted.

However, the limitations of these empirical approaches shall not be ignored. In
an experimental analysis, the performance of a risk evaluation formula strongly
depends on the experimental setup. Different combinations of various test suites,
testing objects, fault types, etc. may affect the experimental results. Even though
people have adopted the unified setup and benchmarks, these empirical studies
can hardly be considered as sufficiently comprehensive due to the huge number of
combinations of all the possible variations. In other words, the experimental results
are still the sampled observations and cannot conclusively identify the most effective
formulas.

2.2 A Set-Based Framework

Therefore, in this chapter, we will introduce a set-based framework, to theoretically
analyze and compare risk evaluation formulas [8]. Different from empirical studies,
a theoretical analysis can reveal the most essential principles and properties of
SBFL.

As discussed in Chap. 1, in SBFL, given a program and a test suite, the matrix
MA can be constructed accordingly. A risk evaluation formula R uses MA to assess
the risk of being faulty for all statements, according to which, all statements will be
sorted descendingly. Such a ranking list is then used to assist debugging. Therefore,
the relative risk values rather than the absolute risk values of all statements are the
key factor determining the EXAM score for a formula R.

Given a ranking list in descending order of the risk values evaluated by a formula
R, we can divide all statements into three disjoint sets, SR

B , SR
F , and SR

A , with respect
to an arbitrary sf , as follows.

Definition 2.2.1 (Set division) Given a program with n statements PG=<s1, s2,

. . . , sn>, a test suite of m test cases T S={t1, t2, . . . , tm}, and a risk evaluation
formula R, vector Ai=<ai

ef , ai
ep, ai

nf , ai
np> can be constructed for each statement

si , and R(si) can be computed accordingly. For any faulty statement sf , the set
of program statements S={s1, s2, . . . , sn} can be decomposed into three mutually
exclusive subsets:

(a) SR
B consists of all statements with risk values higher than the risk value of the

faulty statement sf , that is, SR
B = {si∈S|R(si)>R(sf ), 1≤i≤n}.

(b) SR
F consists of all statements with the risk values equal to the risk value of the

faulty statement sf , that is, SR
F = {si∈S|R(si)=R(sf ), 1≤i≤n}.

(c) SR
A consists of all statements with the risk values lower than the risk value of

the faulty statement sf , that is, SR
A = {si∈S|R(si)<R(sf ), 1≤i≤n}.

In the practice of SBFL, a tie-breaking scheme is always required to determine
the order of the statements with same risk values, and this scheme may affect
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the performance of SBFL. Different tie-breaking schemes have been developed,
including WORST, BEST, ORIGINAL ORDER, etc. [5–7]. However, in terms of
evaluating the EXAM score, there is no need to consider the application or impact of
tie-breaking scheme on SR

B or SR
A , because by definition, in the final list returned by

a risk evaluation formula R, all si∈SR
B are ranked higher than sf , while all si∈SR

A are
ranked lower than sf . Thus, the ordering of the statements within SR

B or SR
A does not

affect the ranking of sf . As a consequence, it is only sensitive on how a tie-breaking
scheme distinguishes and ranks si∈SR

F .
Actually, a tie-breaking scheme solves the ordering problem that a risk evaluation

formula cannot handle. Thus, when focusing on the comparison between different
formulas, it is reasonable to expect that the tie-breaking scheme returns consistent
results for all formulas. Thus, in the theoretical framework, we require that a tie-
breaking scheme preserves the relative order of any pair of statements irrespective
of which formula is used. We refer such schemes as consistent tie-breaking schemes,
which are defined as follows.

Definition 2.2.2 (Tie-breaking scheme) Given any two statement sets S1 and S2,
which contain elements with the same risk values, a tie-breaking scheme returns
the ordered statement lists O1 and O2 for S1 and S2, respectively. The tie-breaking
scheme is said to be consistent, if all elements common to S1 and S2 have the same
relative order in O1 and O2.

Let us use a simple example to further illustrate the intuition behind this
requirement. Given two risk evaluation formulas R1 and R2 that return the same
SR

F but different SR
B , suppose the size of S

R1
B is smaller than the size of S

R2
B . Since

the order of si∈SR
F in both R1 and R2 cannot be decided by these two formulas,

that is, it is independent of these formulas, then to make a fair comparison, this
order must be identical in R1 and R2. Obviously, only by adopting a consistent tie-
breaking scheme such identical order can be guaranteed. And in this example, R1
with smaller SR

B would have a lower EXAM score.
Intuitively speaking, the most straightforward approach towards the theoretical

analysis of the performance between two formulas is to compare the sizes of their
SR

B and the numbers of statements that are from SR
F but ranked before sf based

on the tie-breaking scheme. However, since the sizes of SR
B and SR

F depend on the
program and test suite, which can be very varying, a size comparison appears to be
intractable. The core idea of this theoretical framework is to make use of the subset
relationships among SR

B (or SR
F ) of different formulas, to facilitate the analysis.

Let E1 and E2 denote the EXAM scores for risk evaluation formulas R1 and R2,
respectively. There are two types of relations between R1 and R2 as follows.

Definition 2.2.3 (Better) R1 is said to be better than R2 (denoted as R1 → R2) if
for any program, faulty statement sf , test suite, and consistent tie-breaking scheme,
we have E1≤E2.

Obviously the relation “→” is reflexive, that is, we have R1 → R1. Furthermore,
this relation is transitive, that is, if R1 → R2 and R2 → R3, we have R1 → R3.
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Definition 2.2.4 (Equivalent) R1 and R2 are said to be equivalent (denoted as
R1 ↔ R2), if for any program, faulty statement sf , test suite, and consistent tie-
breaking scheme, we have E1=E2.

As a reminder, this relation “↔” is reflexive, symmetric, and transitive, that is,
R1 ↔ R1; if R1 ↔ R2, then R2 ↔ R1; and if R1 ↔ R2 and R2 ↔ R3, then
R1 ↔ R3.

With the above definitions, we can have the following theorems and propositions.

Theorem 2.2.1 For any two risk evaluation formulas R1 and R2, R1 ↔ R2 if and
only if R1 → R2 and R2 → R1.

Proof Immediately after Definitions 2.2.3 and 2.2.4, this theorem can be proved.
��

Theorem 2.2.2 Given any two risk evaluation formulas R1 and R2, if for any
program, faulty statement sf , and test suite, we have S

R1
B ⊆S

R2
B and S

R2
A ⊆S

R1
A , then

R1 → R2.

Proof Consider a virtual formula R3, such that for any program, sf , and test suite,

S
R3
B =S

R1
B and S

R3
A =S

R2
A . Let E3 denote the EXAM score of R3, and let L1, L2, and

L3 denote the ranking lists returned by R1, R2, and R3, respectively. Obviously,
considering R1 and R3, we have S

R3
B =S

R1
B , S

R1
F ⊆S

R3
F , and S

R3
A ⊆S

R1
A . If the tie-

breaking scheme is consistent, sf can never have lower ranking in L1 than in

L3. Therefore, we have E1≤E3. Now, considering R2 and R3, we have S
R3
B ⊆S

R2
B ,

S
R2
F ⊆S

R3
F , and S

R3
A =S

R2
A . If the tie-breaking scheme is consistent, sf always has

the same relative order with any element of S
R2
F , in both L2 and L3. However,

all elements in S
R3
F \SR2

F will definitely be ranked higher than sf in L2, but not
necessarily be ranked higher than sf in L3. As a consequence, E3≤E2.

Therefore, we have E1≤E2. Following immediately from Definition 2.2.3, we
have R1 → R2. ��
Theorem 2.2.3 Given any two risk evaluation formulas R1 and R2, if for any
program, faulty statement sf , and test suite, we have S

R1
B =S

R2
B , S

R1
F =S

R2
F , and

S
R1
A =S

R2
A , then R1 ↔ R2.

Proof Suppose that for any program, sf , and test suite, we have S
R1
B =S

R2
B and

S
R1
A =S

R2
A . In other words, we have S

R1
B ⊆S

R2
B and S

R2
A ⊆S

R1
A , as well as S

R2
B ⊆S

R1
B and

S
R1
A ⊆S

R2
A . It follows immediately from Theorem 2.2.2 that R1 → R2 and R2 → R1.

Therefore, we have R1 ↔ R2 after Theorem 2.2.1. ��
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2.3 Set Division for Risk Evaluation Formulas

In this section, we will demonstrate the set division for risk evaluation formulas
in some commonly adopted SBFL techniques. For the sources of these formulas,
please refer to [8]. The definitions for these formulas are listed in Table 2.1.

Next, we will illustrate how to construct SR
B , SR

F , and SR
A for these formulas.

First, let us discuss some lemmas. Given a test suite T S, we denote its size as T , the
number of failed test cases as F , and the number of passed cases as P . Obviously,
we have 1≤F<T , 1≤P<T , and P+F=T . And we have the following lemmas of
which the proofs are immediately after the definitions and the above assumptions.

Lemma 2.3.1 For any Ai=<ai
ef , ai

ep, ai
nf , ai

np>, we have ai
ef +ai

ep>0, ai
ef +ai

nf

=F , ai
ep+ai

np=P , ai
ef ≤F , and ai

ep≤P .

Lemma 2.3.2 For any faulty statement sf with Af =<a
f

ef , a
f
ep, a

f

nf , a
f
np>, if sf is

the only faulty statement in the program, we have a
f
ef =F and a

f
nf =0.

With the above lemmas, now we can formally demonstrate the proof for Op1 set
division.

Proposition 2.3.1 S
Op1
B , S

Op1
F , and S

Op1
A for Op1 are equal to the following sets,

X1, Y 1, and Z1, respectively.

X1={si |ai
ef =F and a

f
ep−ai

ep>0, 1≤i≤n} (2.1)

Y 1={si |ai
ef =F and a

f
ep−ai

ep=0, 1≤i≤n} (2.2)

Z1={si |(ai
ef < F) or (ai

ef =F and a
f
ep−ai

ep<0), 1≤i≤n} (2.3)

Proof As stated in Table 2.1, formula Op1 is defined as follows.

ROp1(si ) =
{

−1 if ai
ef <F

P − ai
ep if ai

ef =F

After Definition 2.2.1, we have

S
Op1
B ={si |(ai

ef <F and −1>P−a
f
ep)

or (ai
ef =F and P−ai

ep>P−a
f
ep), 1≤i≤n} (2.4)

S
Op1
F ={si |(ai

ef <F and −1=P−a
f
ep)

or (ai
ef =F and P−ai

ep=P−a
f
ep), 1≤i≤n} (2.5)

S
Op1
A ={si |(ai

ef <F and −1<P−a
f
ep)

or (ai
ef =F and P−ai

ep<P−a
f
ep), 1≤i≤n} (2.6)
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Table 2.1 Investigated formulas

Name Expression

Op1

{
−1 if aef <F

P − aep if aef =F

Op2 aef − aep

aep+anp+1

Jaccard
aef

aef +anf +aep

Anderberg
aef

aef +2(anf +aep)

Sørensen-Dice 2aef

2aef +anf +aep

Dice
2aef

aef +anf +aep

Goodman
2aef −anf −aep

2aef +anf +aep

Tarantula aef

aef +anf
/(

aef

aef +anf
+ aep

aep+anp
)

qe
aef

aef +aep

CBI Inc.
aef

aef +aep
− aef +anf

aef +anf +aep+anp

Wong2 aef − aep

Hamann aef +anp−anf −aep

aef +anf +aep+anp

Simple Matching
aef +anp

aef +anf +aep+anp

Sokal 2(aef +anp)

2(aef +anp)+anf +aep

Rogers&Tanimoto
aef +anp

aef +anp+2(anf +aep)

Hamming etc. aef + anp

Euclid
√

aef + anp

Wong1 aef

Russel & Rao
aef

aef +anf +aep+anp

Binary

{
0 if aef <F

1 if aef =F

Scott 4aef anp−4anf aep−(anf −aep)2

(2aef +anf +aep)(2anp+anf +aep)

Rogot1 1
2 (

aef

2aef +anf +aep
+ anp

2anp+anf +aep
)

Kulczynski2 1
2 (

aef

aef +anf
+ aef

aef +aep
)

M2
aef

aef +anp+2(anf +aep)

Ochiai
aef√

(aef +anf )(aef +aep)

AMPLE2 aef

aef +anf
− aep

aep+anp

(continued)
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Table 2.1 (continued)

Name Expression

Wong3
aef −h, where h=

⎧⎪⎨
⎪⎩

aep if aep≤2

2+0.1(aep−2) if 2<aep≤10

2.8+0.001(aep−10) if aep>10

Arithmetic Mean
2aef anp−2anf aep

(aef +aep)(anp+anf )+(aef +anf )(aep+anp)

Cohen
2aef anp−2anf aep

(aef +aep)(anp+aep)+(aef +anf )(anf +anp)

Fleiss
4aef anp−4anf aep−(anf −aep)2

(2aef +anf +aep)+(2anp+anf +aep)

First, we will prove S
Op1
B =X1. S

Op1
B defined in (2.4) can be rewritten as:

S
Op1
B ={si |ai

ef <F and −1>P−a
f
ep, 1≤i≤n}

∪{si |ai
ef =F and a

f
ep−ai

ep>0, 1≤i≤n}

Since (−1<P−a
f
ep) after Lemma 2.3.1, we have

{si |ai
ef <F and −1>P−a

f
ep, 1≤i≤n}=∅

Therefore, SOp1
B becomes

S
Op1
B ={si |ai

ef =F and a
f
ep−ai

ep>0, 1≤i≤n}=X1

Similarly, we can prove that S
Op1
F =Y 1.

Now, consider S
Op1
A defined in (2.6). Since (−1<P−a

f
ep) after Lemma 2.3.1,

(ai
ef <F and −1<P−a

f
ep) is logically equivalent to (ai

ef <F). Therefore, S
Op1
A

becomes

S
Op1
A ={si |(ai

ef <F) or (ai
ef =F and a

f
ep−ai

ep<0), 1≤i≤n}=Z1

In conclusion, we have proved that S
Op1
B =X1, S

Op1
F =Y 1 and S

Op1
A =Z1. ��

Similarly, we can prove the set division for all the remained formulas in Table 2.1.
In this section, we present the conclusions in propositions and leave all the detailed
proof in Appendix A.

Proposition 2.3.2 S
Op2
B , S

Op2
F , and S

Op2
A for Op2 are equal to the above sets X1

(2.1), Y 1 (2.2), and Z1 (2.3), respectively.
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Proposition 2.3.3 SR
B , SR

F , and SR
A for Jaccard, Anderberg, Sørensen-Dice, Dice,

and Goodman are equal to the following sets, respectively.

SR
B ={si |ai

ef > 0 and 1 + a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

> 0, 1≤i≤n}

SR
F ={si |ai

ef > 0 and 1 + a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

= 0, 1≤i≤n}

SR
A={si |(ai

ef = 0) or (ai
ef > 0 and 1 + a

f
ep

F
− F

ai
ef

− ai
ep

ai
ef

< 0), 1≤i≤n}

Proposition 2.3.4 SR
B , SR

F , and SR
A for Tarantula, qe, and CBI Inc. are equal to the

following sets, respectively.

SR
B ={si |ai

ef >0 and
a

f
ep

F
−ai

ep

ai
ef

>0, 1≤i≤n}

SR
F ={si |ai

ef >0 and
a

f
ep

F
−ai

ep

ai
ef

=0, 1≤i≤n}

SR
A={si |(ai

ef = 0) or (ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

<0), 1≤i≤n}

Proposition 2.3.5 SR
B , SR

F , and SR
A for Wong2, Hamann, Simple Matching, Sokal,

Rogers & Tanimoto, Hamming etc., and Euclid are equal to the following sets,
respectively.

SR
B ={si |(ai

ef −F)+(a
f
ep−ai

ep) > 0, 1≤i≤n}
SR

F ={si |(ai
ef −F)+(a

f
ep−ai

ep) = 0, 1≤i≤n}
SR

A={si |(ai
ef −F)+(a

f
ep−ai

ep) < 0, 1≤i≤n}

Proposition 2.3.6 SR
B , SR

F , and SR
A for Wong1, Russell & Rao, and Binary are equal

to ∅, {si |ai
ef =F, 1≤i≤n}, and {si |ai

ef <F, 1≤i≤n}, respectively.

Proposition 2.3.7 SR
B , SR

F , and SR
A for Scott and Rogot1 are equal to the following

sets, respectively.

SR
B ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

>
4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n}
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SR
F ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

=4PF−4Fa
f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n}

SR
A={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

<
4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n}

Proposition 2.3.8 SK2
B , SK2

F , and SK2
A for Kulczynski2 are equal to the following

sets, respectively.

SK2
B ={si |ai

ef >0 and
ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

>0, 1≤i≤n}

SK2
F ={si |ai

ef >0 and
ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

=0, 1≤i≤n}

SK2
A ={si |(ai

ef = 0) or (ai
ef >0 and

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

<0), 1≤i≤n}

Proposition 2.3.9 SM2
B , SM2

F , and SM2
A for M2 are equal to the following sets,

respectively.

SM2
B ={si |ai

ef >0 and
P+a

f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

>0, 1≤i≤n}

SM2
F ={si |ai

ef >0 and
P+a

f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

=0, 1≤i≤n}

SM2
A ={si |(ai

ef = 0) or (ai
ef >0 and

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

<0), 1≤i≤n}
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Proposition 2.3.10 SO
B , SO

F , and SO
A for Ochiai are equal to the following sets,

respectively.

SO
B ={si |ai

ef >0 and (1 + a
f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

>0, 1≤i≤n}

SO
F ={si |ai

ef >0 and (1 + a
f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

=0, 1≤i≤n}

SO
A ={si |(ai

ef = 0) or (ai
ef >0 and (1 + a

f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

<0), 1≤i≤n}

Proposition 2.3.11 SA
B , SA

F , and SA
A for AMPLE2 are equal to the following sets,

respectively.

SA
B ={si |ai

ef >0 and
Pai

ef −PF+Fa
f
ep

Fai
ef

−ai
ep

ai
ef

>0, 1≤i≤n}

SA
F ={si |ai

ef >0 and
Pai

ef −PF+Fa
f
ep

Fai
ef

−ai
ep

ai
ef

=0, 1≤i≤n}

SA
A={si |(ai

ef = 0) or (ai
ef >0 and

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

<0), 1≤i≤n}

Proposition 2.3.12 SW3
B , SW3

F , and SW3
A for Wong3 have three cases:

(1) If a
f
ep≤2, SW3

B , SW3
F , and SW3

A for Wong3 are equal to the following sets,
respectively.

SW3
B ={si |ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)>0, 1≤i≤n}
SW3

F ={si |ai
ep≤2 and (ai

ef −F)+(a
f
ep−ai

ep)=0, 1≤i≤n}
SW3

A ={si |(ai
ep>2) or (ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)<0), 1≤i≤n}

(2) If 2<a
f
ep≤10, SW3

B , SW3
F , and SW3

A for Wong3 are equal to the following sets,
respectively.

SW3
B ={si |(ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8>0) or

(2<ai
ep≤10 and (ai

ef −F)+(0.1a
f
ep−0.1ai

ep)>0), 1≤i≤n}
SW3

F ={si |2<ai
ep≤10 and (ai

ef −F)+(0.1a
f
ep−0.1ai

ep)=0, 1≤i≤n}
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SW3
A ={si |(ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8<0) or

(2<ai
ep≤10 and (ai

ef −F)+(0.1a
f
ep−0.1ai

ep)<0) or

(ai
ep>10), 1≤i≤n}

(3) If a
f
ep>10, SW3

B , SW3
F , and SW3

A for Wong3 are equal to the following sets,
respectively.

SW3
B ={si |(ai

ep≤2 and (ai
ef −F)+(0.001a

f
ep−ai

ep)+2.79>0) or

(2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99>0) or

(ai
ep>10 and (ai

ef −F)+(0.001a
f
ep−0.001ai

ep)>0), 1≤i≤n}
SW3

F ={si |(ai
ep≤2 and (ai

ef −F)+(0.001a
f
ep−ai

ep)+2.79=0) or

(2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99=0) or

(ai
ep>10 and (ai

ef −F)+(0.001a
f
ep−0.001ai

ep)=0), 1≤i≤n}
SW3

A ={si |(ai
ep≤2 and (ai

ef −F)+(0.001a
f
ep−ai

ep)+2.79<0) or

(2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99<0) or

(ai
ep>10 and (ai

ef −F)+(0.001a
f
ep−0.001ai

ep)<0), 1≤i≤n}

Proposition 2.3.13 SAM
B , SAM

F , and SAM
A for Arithmetic Mean are equal to the

following sets, respectively.

SAM
B ={si |

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF

>
PF−Fa

f
ep

(F+a
f
ep)(P−a

f
ep)+PF

, 1≤i≤n}

SAM
F ={si |

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF

= PF−Fa
f
ep

(F+a
f
ep)(P−a

f
ep)+PF

, 1≤i≤n}
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SAM
A ={si |

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF

<
PF−Fa

f
ep

(F+a
f
ep)(P−a

f
ep)+PF

, 1≤i≤n}

Proposition 2.3.14 SCO
B , SCO

F , and SCO
A for Cohen are equal to the following sets,

respectively.

SCO
B ={si |

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)

>
PF−Fa

f
ep

P (F+a
f
ep)+F(P−a

f
ep)

, 1≤i≤n}

SCO
F ={si |

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)

= PF−Fa
f
ep

P (F+a
f
ep)+F(P−a

f
ep)

, 1≤i≤n}

SCO
A ={si |

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)

<
PF−Fa

f
ep

P (F+a
f
ep)+F(P−a

f
ep)

, 1≤i≤n}

Proposition 2.3.15 SF
B , SF

F , and SF
A for Fleiss are equal to the following sets,

respectively.

SF
B ={si |−F 2+4ai

ef P+2Fai
ef −2Fai

ep−(ai
ep+ai

ef )2

>4PF−4Fa
f
ep−(a

f
ep)2, 1≤i≤n}

SF
F ={si |−F 2+4ai

ef P+2Fai
ef −2Fai

ep−(ai
ep+ai

ef )2

=4PF−4Fa
f
ep−(a

f
ep)2, 1≤i≤n}

SF
A ={si |−F 2+4ai

ef P+2Fai
ef −2Fai

ep−(ai
ep+ai

ef )2

<4PF−4Fa
f
ep−(a

f
ep)2, 1≤i≤n}
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Chapter 3
Theoretical Comparison Among Risk
Evaluation Formulas

Abstract In this chapter, we will adopt the set-based theoretical framework
introduced in Chap. 2 to build a performance hierarchy for the 30 commonly
adopted formulas (whose definitions and corresponding set divisions are listed and
proved in Sect. 2.3). Overall, we will demonstrate and prove six equivalent formula
groups, among which two groups are identified as maximal (including five maximal
formulas, namely, Op1, Op2, Wong1, Russell & Rao, and Binary). These theoretical
results are no longer suffering from any threats to validity introduced by experiments
and hence are definite and reliable.

3.1 Preliminary

With the set-based theoretical framework introduced in Chap. 2, we now can
compare any given formulas. Before presenting the detailed analysis, let us first
discuss some prerequisite assumptions.

1. The analysis assumes that the SBFL techniques are applied to programs with
testing oracle. In other words, for any test case, the testing result of either fail or
pass can be decided. This assumption is adopted in all previous studies, except
our work [2].

2. The analysis assumes “perfect bug detection,” which is adopted by most of the
previous SBFL studies. It assumes that the fault can always be identified once
the faulty statement is examined [1].

3. The analysis assumes that the faults are the deterministic faults, that is, a test
case will always yield the same testing result of either failed or passed. This
type of faults is not affected by any run-time environment and is also assumed in
the majority of previous SBFL studies. Moreover, we will exclude the omission

Part of this chapter ©2013 ACM. Reprinted, with permission from ACM Transactions on Software
Engineering and Methodology; October 2013. Vol. 22, No. 4, Article 31, 1–40. https://doi.org/10.
1145/2522920.2522924 (Ref. [3]).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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faults, because SBFL is designed to assign risk values to the existent statements.
Some previous SBFL experimental studies handled the omission faults by
considering the preceding or succeeding statement of the missing statement as the
“faulty statement.” However, this approach is not completely satisfactory because
it could lead to controversy or inconsistency. Furthermore, the “preceding or
succeeding” statement may have different interpretations, such as “the line order
of source code” or “the order according to the control flow graph.” Not all the
experimental studies have explicitly clarified their methods of identifying these
faults. Thus in order to avoid unnecessary noises, we do not consider the omission
faults in this study.

4. The test suite is assumed to have 100% statement coverage, that is, for any si , we
have ai

ef +ai
ep>0. Also assumed is that the test suite contains at least one passed

test case and one failed test case, that is, for any si , we have ai
ep + ai

np>0 and

ai
ef + ai

nf >0. Intuitively speaking, these assumptions are reasonable because
even though we can never justify that a test suite has provided “sufficient”
testing information for fault localization, we can at least argue that a test suite
with some uncovered statements, or with either solely passed test cases or
solely failed test cases, is not sufficient for debugging. More importantly, these
assumptions are required to make some formulas (such as Tarantula) totally
defined.

3.2 The Performance Hierarchy

In this section, we will show how to apply the framework in Chap. 2 to theoretically
compare the 30 formulas (whose definitions and corresponding set divisions are
listed and proved in Sect. 2.3). The illustration here will be based on single-fault
scenario. This analysis requires inference of the SR

B , SR
F , and SR

A for each formula,
which can be found in Appendix A.

3.2.1 Equivalent Cases

First, let us consider the analysis for equivalence relation. From the set division of
all the formulas, it is not difficult to find that among the 30 investigated formulas,
there are 6 groups of equivalent formulas (which are referred to as “ER1” to “ER6”),
as follows.

• ER1 consists of Op1 and Op2.
• ER2 consists of Jaccard, Anderberg, Sørensen-Dice, Dice, and Goodman.
• ER3 consists of Tarantula, qe, and CBI Inc.
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• ER4 consists of Wong2, Hamann, Simple Matching, Sokal, Rogers & Tanimoto,
Hamming etc., and Euclid.

• ER5 consists of Wong1, Russell & Rao, and Binary.
• ER6 consists of Scott and Rogot1.

Proposition 3.2.1 For ER1, we have Op1 ↔ Op2.

Proof As proved in Proposition 2.3.1 and Appendix A, SR
B , SR

F , and SR
A of both

Op1 and Op2 are equal to the sets defined in (2.1), (2.2), and (2.3), respectively, as
follows.

SR
B ={si |ai

ef =F and a
f
ep−ai

ep>0, 1≤i≤n}
SR

F ={si |ai
ef =F and a

f
ep−ai

ep=0, 1≤i≤n}
SR

A={si |(ai
ef < F) or (ai

ef =F and a
f
ep−ai

ep<0), 1≤i≤n}

Therefore, we have S
Op1
B =S

Op2
B , S

Op1
F =S

Op2
F , and S

Op1
A =S

Op2
A . Immediately

after Theorem 2.2.3, Op1 ↔ Op2. ��
Proposition 3.2.2 For ER2, we have Jaccard ↔ Anderberg ↔ Sørensen-Dice ↔
Dice ↔ Goodman.

Proof As shown in Proposition 2.3.3 and proved in Appendix A, SR
B , SR

F , and SR
A of

each formula R in ER2 are the same as the sets defined in (A.8), (A.9), and (A.10),
respectively, as follows.

SR
B ={si |ai

ef > 0 and 1 + a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

> 0, 1≤i≤n}

SR
F ={si |ai

ef > 0 and 1 + a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

= 0, 1≤i≤n}

SR
A={si |(ai

ef = 0) or (ai
ef > 0 and 1 + a

f
ep

F
− F

ai
ef

− ai
ep

ai
ef

< 0), 1≤i≤n}

Obviously, for any two formulas R1 and R2 of ER2, we have S
R1
B =S

R2
B , S

R1
F =S

R2
F ,

and S
R1
A =S

R2
A . Immediately after Theorem 2.2.3, R1 ↔ R2, that is, Jaccard ↔

Anderberg ↔ Sørensen-Dice ↔ Dice ↔ Goodman. ��
Proposition 3.2.3 For ER3, we have Tarantula ↔ qe ↔ CBI Inc.
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Proof As shown in Proposition 2.3.4 and proved in Appendix A, SR
B , SR

F , and SR
A

of each formula R in ER3 are the same as the sets defined in (A.31), (A.32), and
(A.33), respectively, as follows.

SR
B ={si |ai

ef >0 and
a

f
ep

F
−ai

ep

ai
ef

>0, 1≤i≤n}

SR
F ={si |ai

ef >0 and
a

f
ep

F
−ai

ep

ai
ef

=0, 1≤i≤n}

SR
A={si |(ai

ef = 0) or (ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

<0), 1≤i≤n}

Therefore, for any two formulas R1 and R2 of ER3, we have S
R1
B =S

R2
B , S

R1
F =S

R2
F ,

and S
R1
A =S

R2
A . It follows from Theorem 2.2.3 that Tarantula ↔ qe ↔ CBI Inc. ��

Proposition 3.2.4 For ER4, we have Wong2 ↔ Hamann ↔ Simple Matching ↔
Sokal ↔ Rogers & Tanimoto ↔ Hamming etc. ↔ Euclid.

Proof As shown in Proposition 2.3.5 and proved in Appendix A, SR
B , SR

F , and SR
A of

each formula R in ER4 are equal to the sets defined in (A.42), (A.43), and (A.44),
respectively, as follows.

SR
B ={si |(ai

ef −F)+(a
f
ep−ai

ep) > 0, 1≤i≤n}
SR

F ={si |(ai
ef −F)+(a

f
ep−ai

ep) = 0, 1≤i≤n}
SR

A={si |(ai
ef −F)+(a

f
ep−ai

ep) < 0, 1≤i≤n}

Therefore, for any two formulas R1 and R2 of ER4, we have S
R1
B =S

R2
B , S

R1
F =S

R2
F ,

and S
R1
A =S

R2
A . Immediately after Theorem 2.2.3, we have Wong2 ↔ Hamann ↔

Simple Matching ↔ Sokal ↔ Rogers & Tanimoto ↔ Hamming etc. ↔ Euclid. ��
Proposition 3.2.5 For ER5, we have Wong1 ↔ Russell & Rao ↔ Binary.

Proof As shown in Proposition 2.3.6 and proved in Appendix A, SR
B , SR

F , and
SR

A of each formula R in ER5 are equal to sets ∅, {si |ai
ef =F, 1≤i≤n}, and

{si |ai
ef <F, 1≤i≤n} defined in (A.63), (A.64), and (A.65), respectively.

Obviously, we have SW1
B =SRR

B =SB
B , SW1

F =SRR
F =SB

F , and SW1
A =SRR

A =SB
A . After

Theorem 2.2.3, Wong1 ↔ Russell & Rao ↔ Binary. ��
Proposition 3.2.6 For ER6, we have Scott ↔ Rogot1.
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Proof As shown in Proposition 2.3.7 and proved in Appendix A, SR
B , SR

F , and SR
A of

both Scott and Rogot1 are the same as the sets defined in (A.72), (A.73), and (A.74),
respectively, as follows.

SR
B ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

>
4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n}

SR
F ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

=4PF−4Fa
f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n}

SR
A={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

<
4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n}

Obviously, the sets SR
B , SR

F , and SR
A of Scott are equal to the corresponding sets

of Rogot1, respectively. After Theorem 2.2.3, Scott ↔ Rogot1. ��

3.2.2 Non-equivalent Cases
Next, we will show the analysis on non-equivalent relations.

Proposition 3.2.7 We have ER2 → ER3, ER2 → ER4, Ochiai → ER2, Kulczynski2
→ Ochiai, and M2 → AMPLE2.

Proof In this section, we only illustrate the proof for “ER2 → ER3” and leave the
other proof in Appendix B.

In order to prove ER2 → ER3, it is sufficient to prove Jaccard → Tarantula. As
proved in Appendix A, SJ

B and SJ
A are equal to the sets defined in (A.8) and (A.10),

respectively, as follows.

SJ
B={si |ai

ef > 0 and 1 + a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

> 0, 1≤i≤n}

SJ
A={si |(ai

ef = 0) or (ai
ef > 0 and 1 + a

f
ep

F
− F

ai
ef

− ai
ep

ai
ef

< 0), 1≤i≤n}
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And ST
B and ST

A are equal to the sets defined in (A.31) and (A.33), respectively,
as follows.

ST
B={si |ai

ef > 0 and
a

f
ep

F
−ai

ep

ai
ef

>0, 1≤i≤n}

ST
A={si |(ai

ef = 0) or (ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

<0), 1≤i≤n}

After rearranging the terms in 1+a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

from (A.8) and (A.10), we have

1+a
f
ep

F
− F

ai
ef

−ai
ep

ai
ef

=
(

a
f
ep

F
−ai

ep

ai
ef

)
+
(

1− F

ai
ef

)

Since 1− F

ai
ef

≤0 after Lemma 2.3.1, we have

1+a
f
ep

F
− F

ai
ef

−ai
ep

ai
ef

≤ a
f
ep

F
−ai

ep

ai
ef

(3.1)

Now, we are going to prove SJ
B⊆ST

B and ST
A⊆SJ

A.
Firstly, we will prove SJ

B⊆ST
B . Assume si∈SJ

B . Then, we have (ai
ef >0 and

1+a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0) after (A.8). As a consequence, we have
a

f
ep

F
− ai

ep

ai
ef

>0 from (3.1).

Thus, si∈ST
B after (A.31). Therefore, SJ

B⊆ST
B .

Secondly, we will prove ST
A⊆SJ

A. Assume si∈ST
A . Then, we have either (ai

ef =0)

or (ai
ef >0 and

a
f
ep

F
− ai

ep

ai
ef

<0) after (A.33).

• Consider the case that (ai
ef =0). Immediately after (A.10), si∈SJ

A.

• Consider the case that (ai
ef >0 and

a
f
ep

F
− ai

ep

ai
ef

<0). Then, we have 1+a
f
ep

F
−

F

ai
ef

− ai
ep

ai
ef

<0 after (3.1). Thus, si∈SJ
A after (A.10).

In summary, we have proved that ST
A⊆SJ

A.
In conclusion, we have SJ

B⊆ST
B and ST

A⊆SJ
A. Immediately after Theorem 2.2.2,

Jaccard → Tarantula. Since Jaccard belongs to ER2 and Tarantula belongs to ER3,
we have ER2 → ER3. ��
Proposition 3.2.8 ER1 → R (where R stands for Kulczynski2, M2, ER6, Wong3,
Arithmetic Mean, Cohen and Fleiss); and R → ER1 does not hold.
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Proof In this section, we only illustrate the proof for “ER1 → Kulczynski2” and
leave the other proof in Appendix B.

In order to prove ER1 → Kulczynski2, it is sufficient to prove Op1 →
Kulczynski2. As proved in Appendix A, SK2

B and SK2
A are equal to the sets defined

in (A.81) and (A.83), respectively; and S
Op1
B and S

Op1
A are equal to the sets defined

in (2.1) and (2.3), respectively, as follows.

S
Op1
B ={si |ai

ef =F and a
f
ep−ai

ep>0, 1≤i≤n}
S

Op1
A ={si |(ai

ef < F) or (ai
ef =F and a

f
ep−ai

ep<0), 1≤i≤n}

We are going to prove S
Op1
B ⊆SK2

B and SK2
A ⊆S

Op1
A .

Firstly, we will prove S
Op1
B ⊆SK2

B . Assume si∈S
Op1
B . Then, we can have

ai
ef =F>0 and (a

f
ep−ai

ep)>0 after (2.1). As a consequence, we have

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

=F 2+Fa
f
ep−F 2 − Fai

ep

F 2

=a
f
ep−ai

ep

F
>0

Therefore, si∈SK2
B after (A.81). Thus, S

Op1
B ⊆SK2

B .

Secondly, we are going to prove SK2
A ⊆S

Op1
A . Suppose si∈SK2

A . Then, after
(A.83), we can have either (ai

ef =0) or

⎛
⎝ai

ef >0 and
ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

<0

⎞
⎠

• Consider the case that (ai
ef =0). Obviously, ai

ef <F . Immediately after (2.3),

si∈S
Op1
A .

• Consider the case that (ai
ef >0 and

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
− ai

ep

ai
ef

<0). Assume further

that 0<ai
ef <F . After (2.3), we have si∈S

Op1
A . Next, consider the sub-

case that ai
ef =F . Then we have

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
− ai

ep

ai
ef

= a
f
ep−ai

ep

F
. Since

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
− ai

ep

ai
ef

<0 and F>0, we have (a
f
ep−ai

ep)<0. Thus, si∈S
Op1
A

after (2.3).

In summary, we have proved that SK2
A ⊆S

Op1
A .
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In conclusion, we have S
Op1
B ⊆SK2

B and SK2
A ⊆S

Op1
A . Immediately after Theo-

rem 2.2.2, Op1 → Kulczynski2. And after Proposition 3.2.1, ER1 → Kulczynski2.
��

Proposition 3.2.9 As proved in the above propositions, we have ER1 → R (where
R stands for Kulczynski2, M2, ER6, Wong3, Arithmetic Mean, Cohen, and Fleiss).
Actually, we can also prove that R → ER1 does not hold.

Proof Consider a sample program PG1 in Fig. 3.1, where s5 is the faulty statement.
Table 3.1 lists the Ai for PG1 with respect to a test suite T S1. As a reminder, data in
Table 3.1 are feasible. Firstly, they comply with Lemmas 2.3.1 and 2.3.2. Secondly,
the entry statement s1 has (a1

nf =0) and (a1
np=0). Thirdly, for any si in Fig. 3.1,

the value of element ai
ef or ai

ep is equal to the sum of the corresponding element
contributed by all of its directly preceding statements and also equal to the sum of
its contribution to all of its directly succeeding statements.

Then, for PG1 with T S1, SR
B , SR

F , and SR
A for ER1 are shown as the scenario A in

Table 3.3, while the corresponding sets for formulas Kulczynski2, M2, ER6, Wong3,
Arithmetic Mean, Cohen, and Fleiss are shown as the scenario B in Table 3.3. Then,
using any consistent tie-breaking scheme, the EXAM score of ER1 is less than the
EXAM scores of the other formulas. As a consequence, we have demonstrated that

Fig. 3.1 Sample program
PG1

Table 3.1 Ai for PG1 with
T S1

Statement Ai=<ai
ef , ai

ep, ai
nf , ai

np>

s1 <40, 160, 0, 0>

s2 <0, 40, 40, 120>

s3 <40, 120, 0, 40>

s4 <0, 40, 40, 120>

s5 <40, 80, 0, 80>

s6 <39, 1, 1, 159>

s7 <1, 79, 39, 91>

s8 <40, 80, 0, 80>
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R → ER1 does not hold, where R is Kulczynski2, M2, ER6, Wong3, Arithmetic
Mean, Cohen, or Fleiss. Thus, the proposition is proved. ��

Apart from the above relations, it can also be found that some formulas do not
have definite relations between them.

Proposition 3.2.10 ER1 and ER5 dominate all the other formulas in Table 2.1, but
ER1 � ER5 and ER5 � ER1.

Proof Firstly, we will prove that ER5 → ER1 does not hold. Consider PG1 with
T S1 in Table 3.1. It is not difficult to find that the relevant sets for ER1 are as the
scenario A in Table 3.3, while for ER5, they are as the scenario C in Table 3.3. If
we adopt the ORIGINAL ORDER tie-breaking scheme, which is a consistent tie-
breaking scheme and ranks all statements in SR

F according to their original order in
program, the EXAM score of ER5 is greater than the EXAM score of ER1. After
Definition 2.2.3, ER5 → ER1 does not hold.

Secondly, we will prove that ER1 → ER5 does not hold either. Consider another
sample program PG2 shown in Fig. 3.2, where s5 is the faulty statement. Table 3.2
gives the Ai for PG2 with respect to another test suite T S2. It is not difficult to learn
that data in Table 3.2 are feasible. For PG2 with T S2, the relevant sets for ER1 are
as the scenario D in Table 3.3, while for ER5, they are as the scenario E in Table 3.3.
If we adopt the ORIGINAL ORDER tie-breaking scheme, the EXAM score of ER1
is greater than the EXAM score of ER5. After Definition 2.2.3, ER1 → ER5 does
not hold.

The above examples demonstrate that neither ER1 → ER5 nor ER5 → ER1
holds. ��

With all the above analysis, we found that ER1 actually dominates all the other
formulas in Table 2.1, except ER5. In other words, ER1 and ER5 are the 2 maximal

Fig. 3.2 Sample program
PG2



38 3 Theoretical Comparison Among Risk Evaluation Formulas

Table 3.2 Ai for PG2 with
T S2

Statement Ai=<ai
ef , ai

ep, ai
nf , ai

np>

s1 <40, 160, 0, 0>

s2 <0, 70, 40, 90>

s3 <40, 90, 0, 70>

s4 <0, 30, 40, 130>

s5 <40, 60, 0, 100>

s6 <40, 30, 0, 130>

s7 <0, 30, 40, 130>

s8 <40, 30, 0, 130>

s9 <40, 30, 0, 130>

s10 <40, 60, 0, 100>

Table 3.3 Sets for different combinations of formula and test suite

Scenarios SR
B SR

F SR
A

A ∅ {s5, s8} {s1, s2, s3, s4, s6, s7}
B {s6} {s5, s8} {s1, s2, s3, s4, s7}
C ∅ {s1, s3, s5, s8} {s2, s4, s6, s7}
D {s6, s8, s9} {s5, s10} {s1, s2, s3, s4, s7}
E ∅ {s1, s3, s5, s6, s8, s9, s10} {s2, s4, s7}

formulas among the 30 investigated formulas. In the next chapter, we will give a
generalized analysis on the maximality of SBFL, among all potential formulas.
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Chapter 4
On the Maximality of Spectrum-Based
Fault Localization

Abstract This chapter will continue to utilize the set-based theoretical framework
introduced in Chap. 2, to detailedly explain the process for finding the general
theoretical maximal formulas, which was proved by Yoo et al. (ACM Trans Softw
Eng Methodol 26(1):4:1–4:30, 2017). In particular, we will introduce a sufficient
and necessary condition of general theoretical maximality among the entire space
of all possible formulas.

4.1 Definitions

In Chaps. 2 and 3, we introduce the framework and theoretical comparison among a
fixed size of risk evaluation formulas. In this section, we will show how to identify
the general maximality among all possible formulas [1].

First, we give all definitions used in this chapter. Different from the analysis on
individual concrete risk evaluation formulas as shown in Table 2.1, in this chapter,
we consider analysis on general formulas, defined as follows.

As introduced in Sect. 1.3, a risk evaluation formula in SBFL accepts a four-
dimensional vector as the input (Ai=<ai

ef , ai
ep, ai

nf , ai
np>) and one risk score as

the output. In fact, for a given pair of program and test suite, the values of F (i.e.,
total number of failed test cases) and P (i.e., the total number of passed test cases)
are constants. Thus for each statement si , we have its Ai = <ai

ef , P − ai
np, F −

ai
ef , ai

np>. In other words, when the program and test suite are fixed, Ai is decided

by only two elements, namely, ai
ef and ai

ep.

Let us denote Āi = <ai
ef , ai

ep>. In this way, the original definition of formula
can be formally rephrased as follows.

Part of this chapter ©2017 ACM. Reprinted, with permission from ACM Transactions on Software
Engineering and Methodology; June 2017. Vol. 26, No. 1, Article 4, 1–30. DOI: https://doi.org/10.
1145/3078840 (Ref. [1]).
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Fig. 4.1 Visualizing the SBFL space [1]

Definition 4.1.1 (Risk evaluation formulaR with two-dimensional input vector)
R : If × Ip → Real, where If denotes the set of integers within [0, F ] and Ip

denotes the set of integers within [0, P ], such that R(Āi) = R(Ai).

Given any values of P and F , the input domain of any formula R is shown as the
grid in Fig. 4.1a, where both aef and aep are nonnegative integers and 0 ≤ ai

ef ≤ F

and 0 ≤ ai
ep ≤ P . Given a pair of test suite and program, each point (aef , aep) on

this grid is associated with a group of statements that have the corresponding aef

and aep values.
A formula R maps each point (ai

ef , ai
ep) to a real number that is the risk value of

all statements associated with this point, as shown in Fig. 4.1b. Any assignment of
risk values is independent of the number of statements associated with each point
(aef , aep), but solely decided by the definition of R.

Two components in Fig. 4.1b are critical for the analysis, namely, faulty border
and overstepping points, which are defined in following Definitions 4.1.2 and 4.1.3,
respectively.

Definition 4.1.2 (Faulty border) We call the sequential points <(F, 0), (F, 1),

. . . , (F, aep), . . . , (F, P )> (0 ≤ aep ≤ P ) the faulty border, which is denoted
as E.

It can be found that for any R, the risk values of all points on E are solely
decided by their aep. And in single fault scenario, the faulty statement sf can only

be associated with a point (F, a
f
ep) on E. But this point may also be associated with

other correct statements si having (F, ai
ep)=(F, a

f
ep). These statements always share

the same risk values as that of sf , regardless of the selection of the formula. Points

(F, ai
ep) other than (F, a

f
ep) must be associated with correct statements. Depending

on the adopted formula, the risk values of such points can be either greater than,
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equal to, or smaller than that of sf . We can formulate the distribution of risk values
on E for R in the following way:

Given a formula R, the distribution of risk values (referred to as PR) on E can

be depicted as a set of o
i,j
p , where o

i,j
p = <ai

np, a
j
np, op> that indicates the relation

between the risk scores of two distinct points (F, ai
np) and (F, a

j
np) on E. Given

that ai
np < a

j
np, op can be either “>” (i.e., R(F, ai

np) > R(F, a
j
np)), “<” (i.e.,

R(F, ai
np) < R(F, a

j
np)), or “=” (i.e., R(F, ai

np) = R(F, a
j
np)).

Definition 4.1.3 (Overstepping points outside E) Let UR denote the set of
points outside E that have risk scores higher than or equal to those of some
points (F, ai

ep) on E, for formula R. More formally, UR = {Ā ∈ If × Ip −
E|∃Ā′ ∈ E such that R(Ā) ≥ R(Ā′)}

Let us denote the complete set of formulas as R = {R}. What follows are the
definitions for maximal and greatest formula in R.

Definition 4.1.4 (Generalized maximality) A risk evaluation formula R is said to
be a maximal formula in R if, for any formula R

′ ∈ R such that R
′ �= R ∧ R

′ → R,
it also holds that R

′ ↔ R.

Definition 4.1.5 (Generalized greatest formula) A risk evaluation formula R is
said to be a greatest formula in R if, for any formula R

′ ∈ R∧ R
′ �= R, it holds that

R → R
′
.

4.2 Theoretical Maximality in R

With the above definitions, it is possible to identify the maximal formulas [1]. To
simplify the description, we will use R instead of R to represent risk evaluation
formula in the following discussion.

4.2.1 Preliminary Propositions

Proposition 4.2.1 If UR1 = UR2 = ∅ and PR1 = PR2 , it follows that R1 ↔ R2.

Proof Consider the following two cases.
Case 1: statements associated with E. Since PR1 = PR2 , then for each pair of

these statements, the relation between their risk values is always the same in R1 and
R2. As a consequence, these statements have the same relative order with respect to
sf (which is associated with one point on E) between R1 and R2 and hence belong
to the same set division for R1 and R2 with any pair of program and test suite.
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Case 2: statements associated with points outside E. Since both UR1 and UR2

are empty, these statements always have risk values lower than that of the faulty
statement sf (which is associated with one point on E); therefore, these statements

belong to both S
R1
A and S

R2
A .

In summary, we have S
R1
B = S

R2
B , S

R1
F = S

R2
F , and S

R1
A = S

R2
A . Following

Theorem 2.2.3, R1 ↔ R2. ��
Proposition 4.2.2 If UR1 = UR2 = ∅ but PR1 �= PR2 , we have R1 � R2 and
R2 � R1.

Proof Since PR1 �= PR2 , there must exist at least one pair of points on E,

((F, ai
ep), (F, a

j
ep)) (where ai

ep < a
j
ep), such that < ai

ep, a
j
ep, op1 >∈ PR1∧ <

ai
ep, a

j
ep, op2 >∈ PR2 ∧ op1 �= op2. It is sufficient to consider the following two

cases because other cases can be transformed to these two cases by swapping R1
and R2:

Case 1: R1(F, ai
ep) < R1(F, a

j
ep) and R2(F, ai

ep) > R2(F, a
j
ep). With the

program shown in Fig. 4.2, it is possible to construct a test suite, such that a4
ef , a5

ef ,

a9
ef , and a10

ef are smaller than F . (As a reminder, it always holds that a2
ef = a7

ef = 0.)
For s1, s3, s6, s8 (sf ), and s11, whose aef values are all equal to F , we have

a
f
ep = ai

ep < a1
ep = a3

ep = a6
ep = a11

ep = a
j
ep. Then, for R1, we have s1, s3, s6,

and s11 ranked before sf and other statements ranked after sf . However, for R2,
we have sf ranked at the top of the whole list. Therefore, the EXAM score of R2 is
lower than that of R1.

On the other hand, it is also possible to construct another test suite, such that a4
ef

and a5
ef are both smaller than F , but a9

ef is equal to F . (Correspondingly, a10
ef = 0.)

For s1, s3, s6, s8 (sf ), s9, and s11, whose aef values are all equal to F , we have

a9
ep = ai

ep < a1
ep = a3

ep = a6
ep = a

f
ep = a11

ep = a
j
ep. Then, for R1, s1, s3 s6, sf ,

and s11 are tied together at the top of the whole list, before s9. However, for R2,
s9 is ranked at the top, immediately followed by s1, s3 s6, sf , and s11 that are tied
together. Therefore, with a consistent tie-breaking scheme, the EXAM score of R1
is lower than that of R2.

In summary, for the case that R1(F, ai
ep) < R1(F, a

j
ep) while R2(F, ai

ep) >

R2(F, a
j
ep), it is always possible to find examples to demonstrate R1 � R2 and

R2 � R1
Case 2: R1(F, ai

ep) < R1(F, a
j
ep) and R2(F, ai

ep) = R2(F, a
j
ep). With the

program shown in Fig. 4.2, it is possible to construct a test suite, such that a4
ef = F

(correspondingly, a5
ef = 0), while a9

ef and a10
ef are smaller than F . Then, for s1,

s3, s4, s6, s8 (sf ), and s11, whose aef values are all equal to F , it follows that

a4
ep = ai

ep < a1
ep = a3

ep = a6
ep = a

f
ep = a11

ep = a
j
ep. Then, for R1, s1, s3, s6,

sf , and s11 are tied together at the top of the ranking, before s4. However, for R2,
s1, s3, s4, s6, sf , and s11 are tied together at the top of the entire ranking. Since
the number of tied statements is different, the EXAM score now depends on the tie-
breaking scheme, without any guarantee of clear dominance of one formula. For
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void foo(double x, double y, double z) {
s1 : if(z <= 0){
s2 : // s2

} else {
s3 : if (z <= 12) {
s4 : // s4

} else {
s5 : // s5

}
s6 : if (z <= 3) {
s7 : // s7

} else {
s8 : if (2 * x − y < 0) { //faulty, should be: if (x

− y < 0)
s9 : // s9

} else {
s10 : // s10

}
}
}

s11 : return; // s11
}

s1

s2 s3

s4 s5

s6

s7 s8

s9 s10

s11

z ≤ 0
z > 0

0 < z ≤ 12
z > 12

0 < z ≤ 7
z > 7

z > 7 ∧ 2x − y < 0
z > 7 ∧ 2x − y ≥ 0

Fig. 4.2 Sample program: the faulty statement sf is s8 [1]
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example, if the original order of the statements is used as the tie-breaker, R1 yields
a lower EXAM score value than R2; if the reverse of the original order is adopted,
the opposite would follow.

On the other hand, it is also possible to construct another test suite, such that
a4
ef , a5

ef , a9
ef , and a10

ef are smaller than F . Then, for s1, s3, s6, s8 (sf ), and s11

whose aef values are all equal to F , we have a
f
ep = ai

ep < a1
ep = a3

ep = a6
ep =

a11
ep = a

j
ep. Then, for R1, we have s1, s3, s6, and s11 tied together at the top of

the whole list before sf and other statements ranked after sf . However, for R2,
we have s1, s3, s6, sf , and s11 tied together at the top of the whole list. Since the
number of tied statements is different, the EXAM score now depends on the tie-
breaking scheme, without any guarantee of clear dominance of one formula. For
example, if the original order of the statements is used as the tie-breaker, R2 yields
a lower EXAM score value than R1; if the reverse of the original order is adopted,
the opposite would follow.

In summary, for the case that R1(F, ai
ep) < R1(F, a

j
ep) while R2(F, ai

ep) =
R2(F, a

j
ep), it is possible to demonstrate that R1 � R2 and R2 � R1.

In conclusion, for any two formulas whose UR1 and UR2 are both ∅, but PR1 �=
PR2 , it follows that R1 � R2 and R2 � R1. ��

4.2.2 A Necessary and Sufficient Condition for Maximal
Formula

With the above preliminary propositions, we now introduce a necessary and
sufficient condition for a maximal formula of R.

Proposition 4.2.3 A formula R is a maximal element of R if and only if UR is
empty.

Proof

(1) To prove that if R is a maximal element of R, then UR = ∅.
This is actually equivalent to proving that if UR �= ∅, then R is not a maximal

element. In other words, there exists R′ ∈ R such that R′ → R but R � R′.
First, let us construct R′ ∈ R such that R′ → R. Assume that UR is non-empty.
Let R′ be defined as follows:

R′ =
{

R if aef = F

R − (C1 − C2 + 1) otherwise

where C1 is the highest risk value of R for all points outside E, while C2 is the
lowest risk value of R for all points on E. By the definition of R′, any point
outside E has risk value lower than those of the points in E, which means all
statements associated with points outside E have risk values lower than that
of sf .
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Let UR′ denote the sets of points outside E which have risk values higher
than or equal to those of some points (F, ai

ep) on E, for formula R′. By
definition, R′ assigns identical risk values to points on E as R while ensuring
that UR′ = ∅.

Case 1: statements associated with E. These statements will be assigned to
the same set division by both R and R′, for any pair of program and test suite.

Case 2: statements associated with points outside E. For formula R′, since
these points (including those in UR) always have risk values lower than that of
sf on E, the corresponding statements belong to SR′

A . However, for formula R,
since UR �= ∅, some statements corresponding to points outside E belong to
either SR

B , SR
F , or SR

A .
Summarizing the above two cases, we have SR′

B ⊆ SR
B and SR

A ⊆ SR′
A .

Following Theorem 2.2.2, R′ → R.
Let us now turn to show that R � R′, by illustrating that it is possible for

R′ to produce a smaller EXAM score than R. Since UR �= ∅, there exists L,
a set of points on E whose risk values evaluated by R are not higher than any
point in UR . To show that R′ can produce a smaller EXAM score than R, it
is sufficient to show that Āf ∈ L while UR �= ∅. However, both L and UR

are specific to the choice of R. In order not to lose generality, therefore, let us
show that it is possible to construct a program and a test suite such that Āf can
be placed anywhere on E and another statement Āi can be placed anywhere
in If × Ip − E, independently from each other. Figure 4.2 illustrates such a
program.

With such a program and a test suite, any statement associated with points
outside UR always has the same relative ranking to sf in R and R′. For all
statements associated with UR , formula R′ will rank them below sf . However,
with R:

• statements that are associated with UR and have risk values higher than that
of sf are always ranked before sf by R.

• statements that are associated with UR and have risk values equal to that of sf
will be tied together with sf by R. However, it is possible to have a consistent
tie-breaking scheme which ranks parts or even all of these statements before
sf . ��
It is always possible to have statements associated with UR ranked before

sf . Consequently, the EXAM score of R′ is smaller than that of R. Therefore,
R → R′ does hold.

In conclusion, if R assigns point (a
j
ef , a

j
ep) outside E with risk value higher

than, or equal to, that of at least one point (F, ai
np) on E, there always exists

another formula R′ for which R′ → R holds but R → R′ does not hold.
Therefore, following Definition 4.1.4, R cannot be a maximal formula.

(2) To prove that if UR = ∅, then R is a maximal element of R.
Assume that UR = ∅. Then, for any distinct formula R′, let PR′ denote the

set of o
i,j
p for all pairs of distinct points (F, ai

np) and (F, a
j
np) on E (where

ai
np < a

j
np) and UR′ denote the sets of points outside E which have risk values
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higher than or equal to those of some points (F, ai
np) on E, for formula R′.

There are following cases.
Case 1: UR′ �= ∅. As illustrated in the above proof, it is always possible to

construct another formula R′′, such that UR′′ = ∅, R′′ → R′, and R′
� R′′.

If PR′′ = PR , after Lemma 4.2.1, R′′ ↔ R, and, consequently, R′
� R.

Otherwise, if PR′′ �= PR , after Lemma 4.2.2, R � R′′ and R′′
� R. As a

consequence, R′
� R.

Case 2: UR′ = ∅. Similar to the above analysis, if PR′ = PR , after
Lemma 4.2.1, R′ ↔ R. Otherwise, if PR′ �= PR , after Lemma 4.2.2, R � R′
and R′

� R.
In summary, if UR = ∅, then for any formula R′, we have either R′ ↔ R or

R′
� R. After Definition 4.1.4, R is a maximal element of R. ��

4.2.3 Non-existence of the Greatest Formula

All the above analysis actually imply a very important conclusion, as follows.

Proposition 4.2.4 There is no greatest formula in R.

Proof Assume that there exists a greatest formula Rg . After Proposition 4.2.3,
URg = ∅ and Rg is a maximal element of R. Consider the two maximal groups
of formulas ER1 and ER5 proved in Chap. 2. It is not difficult to prove that
UER1 = UER5 = ∅ and PER1 �= PER5 . Thus, there are three possible cases for
PRg , as follows:

Case 1: PRg = PER1 . Then it follows that, for ER5, UER5 = URg = ∅∧PER5 �=
PRg .

Case 2: PRg = PER5 . Then it follows that, for ER1, UER1 = URg = ∅∧PER1 �=
PRg .

Case 3: PRg �= PER1 and PRg �= PER5 . Then it follows that, both for ER1 and
ER5, UER1 = URg = ∅ ∧ PER1 �= PRg ∧ UER5 = URg = ∅ but PER5 �= PRg .

For any of the above cases, it is possible to construct another formula R′ such
that UR′ = URg = ∅ and PR′ �= PRg . After Proposition 4.2.2, we have R′

� Rg

and Rg � R′. After Definition 4.1.5, Rg cannot be the greatest formula. ��
As a reminder, the above proposition shows the non-existence of the theoretical

greatest element. However, there are also observations that in large-scaled exper-
iments, formulas from ER1 show significant advantage over other formulas, in
practice [1].
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Chapter 5
A Generalized Theoretical Framework
for Hybrid Spectrum-Based Fault
Localization

Abstract Combining SBFL with other techniques is generally regarded as a
feasible approach, as advantages from both techniques may be preserved. SENDYS,
which combines SBFL with slicing-hitting-set-computation, is one of the promising
techniques. In this chapter, we will extend the theoretical framework introduced in
Chap. 2 to make the framework applicable to such combined methods (Tu et al.
J Syst Softw 147:106–123, 2019.). With this extended framework, we provide an
in-depth theoretical analysis, which patches a loophole of SENDYS and proposes
an enhancement of SENDYS that is proved to be even better than traditional SBFL
maximal formulas.

5.1 A Hybrid Spectrum-Based Fault Localization: SENDYS

Combining SBFL with other techniques is generally regarded as a feasible approach,
as advantages from both techniques may be preserved. One of the promising
techniques was developed by Hofer and Wotawa, namely, SENDYS [1] which is
a combination of SBFL and slicing-hitting-set-computation (SHSC) [5]. First, let us
discuss some definitions in SHSC.

Definition 5.1.1 (Conflict in SHSC) In SHSC, a conflict is a set of components
(e.g., statements) in a system causing the misbehavior. The incorrectness of
components leads to the inconsistency between observations and expectations.

In other words, the components in a conflict cannot be correct simultaneously.
For example, the set of all statements in a failed dynamic slice is responsible
for a program failure and reveals the detected program misbehavior. Thus, this
statement set forms a conflict which means that these statements cannot be correct
simultaneously [4, 5]. Note that the faults in a program are non-omission faults
which are faulty statements not related with missing code.
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Definition 5.1.2 (Diagnose) A diagnosis is a possible root cause for the failure.

For example, given two failed dynamic slices, {1, 3} and {2, 3, 4}, each failed
dynamic slice forms a conflict where the equivalence of slices and conflicts has been
proved in [4]. From the two conflicts, we know that statements 1, 3 cannot be correct
simultaneously and neither are statements 2, 3, 4. If we select a statement from each
conflict such as {1, 4}, then {1, 4} is a diagnosis which is a possible root cause for
the failures.

To depict the relationship between diagnoses and conflicts, there is another
concept, namely, hitting set, which is formally defined as follows:

Definition 5.1.3 (Hitting set) For a set of sets DS, a set H is a hitting set if and
only if the intersection between H and any element x of DS is not empty, i.e.,
∀x ∈ DS, x

⋂
H �= ∅.

The hitting set H is minimal if none of its subsets is a hitting set. In the context of
program debugging, a minimal diagnosis is a minimal hitting set of all conflicts that
correspond to all failed dynamic slices. For example, the minimal hitting sets for
the two failed dynamic slices are {3}, {1, 2}, and {1, 4}. As a reminder, all possible
minimal hitting sets can be divided into two categories: single-element minimal
hitting sets which contain only one statement and multiple-element minimal hitting
sets which contain more than one statement.

SENDYS combines SBFL and SHSC. Given a program PG, a test suite T S,
the risk formula, and minimal hitting sets Hm, SENDYS is shown in Algorithm 1
(SENDYS): First, they collect spectra matrix O , and based on the spectra matrix,
the initial risk value R(s) for each statement is computed using Ochiai and the
initial risk values are also normalized; then, compute the risk value Pr(Hi) of each
minimal hitting set based on the normalized statement risk values; finally, derive the
risk value Rnew(s) of each statement being faulty associated with the minimal hitting
set risk values, and return the final statements ranking in the descending order of the
normalized statement risk value Rnorm(s).

Algorithm 1: Algorithm SENDYS [3]
Input: Program PG, risk formula Ochiai, minimal hitting sets Hm, and test suite T S

Output: Statements ranking
1 Compute the matrix O for program PG after the execution of test suite T S:

O = Matrix(PG, T S)

2 Compute the risk value R(s) for each statement of program PG: R(s) = Ochiai(s,O)

3 Compute the normalized risk value Rnorm(s) for each statement of program PG:

Rnorm(s) = R(s) ÷∑|PG|
i R(si )

4 Compute the risk value for each minimal hitting set Hi :
P r(Hi) =∏s∈Hi

Rnorm(s) ×∏s′∈PG\Hi
(1 − Rnorm(s′))

5 Derive the risk of each statement being faulty based on Hs :
Rnew(s) =∑Hi∈Hs P r(Hi),∀Hi such that s ∈ Hi

6 Normalize the computed risk value of each statement:

Rnorm(s) = Rnew(s) ÷∑|PG|
i Rnew(si )

7 Return the risk value ranking of each statement in the descending order of Rnorm(s)
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The minimal hitting sets can be divided into two types: (i) single-element
minimal hitting set (denoted as HS), which contains one and only one statement
which is involved in all the dynamic slices, and (ii) multiple-element minimal hitting
set (denoted as HM ), which contains more than one statement.

5.2 Addressing the NOR Problem in SENDYS

As a reminder, SENDYS is not restricted to any particular risk formula. Algorithm 1
is configured with formula Ochiai. However, by configuring Algorithm 1 with
other formulas, this original SENDYS has overlooked some possible scenarios.
Without giving consideration to these scenarios, the original SENDYS may lead to
unreasonable results.

5.2.1 Issue About Negative Values

First, many risk formulas (such as Op1, Goodman, etc.) may produce negative initial
risk values. But simply normalizing these negative values based on Step 3 could lead
to unreasonable results and a series of problems in the subsequent steps.

Let us consider a sample scenario where two failed dynamic slices from Sect. 5.1:
{1, 3} and {2, 3, 4}. All possible minimal hitting sets are {3}, {1, 2}, and {1, 4}.
Assume that statement 3 is faulty and the initial risk values of statements from 1
to 4 are −0.3, −0.1, n0.2, and −0.4, respectively. By simply applying Step 3 in
Algorithm 1, the initial risk values for statements 1 to 4 are normalized as 0.3, 0.1,
0.2, and 0.4, which obviously does not make any sense. Thus, it is necessary to
explicitly specify an appropriate strategy to handle such cases.

5.2.2 Issue About Zero Values

Secondly, in Algorithm 1, initial risk values may be also assigned as zero by some
formulas. Then the minimal hitting sets including such statements are assigned
zero risk values. In principle, the risk value computation of a minimal hitting set
needs to consider the contribution of each statement in this minimal hitting set.
Unfortunately, the contributions of other statements having non-zero risk values in
this minimal hitting set are overlooked. To investigate the influence of zero initial
risk values, let us consider the two possible types of formulas: The first type of
formulas (such as Jaccard, Tarantula, Ochiai, etc.) produces zero or positive risk
values and assigns zero values only to statements with aef = 0. Though we can
never assert that such statements are fault-free, at least we know that they can never
be the faults that trigger the currently observed failures [6]. In such a case, the
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performance of SENDYS is not affected, since these statements can be viewed as
“correct” in terms of the fault under discussion. According to Algorithm 1 Step
4, diagnoses containing such statements are assigned zero risk values, and it is
reasonable to assign any diagnosis containing correct statements zero risk values.
On the other hand, diagnoses which only contain faulty statements are assigned
positive values. From the above, the performance of SENDYS is not affected by such
zero risk values.

However, there exists another type of formulas, such as Op1, CBI, Wong3, etc.,
which may assign zero risk values to statements with aef �= 0, and these statements
cannot be excluded from potential faulty statements under discussion. In this case,
zero initial risk values may give rise to a poor risk prediction. For example, consider
two failed dynamic slices from Sect. 5.1: {1, 3} and {2, 3, 4}. All possible minimal
hitting sets are {3}, {1, 2}, and {1, 4}. Assume that statement 3 is faulty and the
initial risk values of statements from 1 to 4 are 0, −0.3, −0.2, and −0.5, respectively.
The initial rank of the faulty statement is 2. Directly following Algorithm 1 Step
3, the computed normalized risk values of the four statements are the same as their
initial ones. Furthermore, according to Algorithm 1 Step 4, the risk values Pr(Hi) of
the three minimal hitting sets are −0.39, 0, and 0. Actually, from Algorithm 1 Step
5, final risk values become −0.39, 0, 0, and 0 for statements 1 to 4, respectively. The
final rank of the faulty statement decreases to 4 due to the zero initial risk values.

5.2.3 Addressing the NOR Problem in the Original SENDYS

Let us denote the above two issues in the original SENDYS as the NOR problem. In
order to conduce a generalized theoretical analysis, this problem must be addressed
first. To this end, a slight modification in the normalization process (Step 3) of
Algorithm 1 will help, which is given in Algorithm 2.

Algorithm 2: Algorithm M1 [3]
Input: Program PG, risk formula Formula, minimal hitting sets Hm, and test suite T S

Output: Statements ranking
1 Compute the matrix O for program PG after the execution of test suite T S:

O = Matrix(PG, T S)

2 Compute the risk value R(s) for each statement of program PG: R(s) = Formula(s,O)

3 Get minimum risk value p of all the initial risk values: p = Min(R(s))

4 If the minimum risk value p is nonpositive or zero, then add −p and a small real number to
the risk value of each statement: R(s) = R(s) − p + 0.00000001

5 Compute the refined normalized risk value Rnorm(s) for each statement of program PG:

Rnorm(s) = R(s) ÷∑|PG|
i R(si )

6 Compute the final statements ranking with Algorithm 1 (SENDYS). Start with Step 4 in
Algorithm 1 (SENDYS)
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During normalizing the initial risk values, in order to have a consistent perfor-
mance, it is necessary to keep the relative order of the statements ranking. Given a
statements ranking, applying addition mathematical operation to the risk value of
each statement should not change the relative order of each statement, and addition
operation is an order-preserving operation. Hence, if there exist nonpositive risk
values in statements ranking, we can add an appropriate positive value to the initial
risk value of each statement.

As a consequence, M1 has patched the loophole of the original SENDYS after
a few corrections. It can be found that M1 delivers identical performance with the
original SENDYS if the adopted formula has no NOR problem.

5.3 Theoretical Analysis in Single-Fault Scenario

In this section, we will discuss a theoretical analysis on SENDYS, in single-fault
scenario [3].

First, we introduce a simple generalization of the framework in Chap. 2 to make
it applicable to the context of SENDYS. Next we will discuss some properties
of M1 and propose enhanced SENDYS (M2). Then we show the superiority of
M2 over M1 and the basic SBFL (denoted as M0) and further reformulate this
complicated algorithm M2 into a simple conversion G. This conversion gives a
shortcut explanation to M2. Finally, we show the proof that the enhanced SENDYS

can even outperform traditional SBFL maximal formulas.

5.3.1 Preliminary: Generalized Set Theory-Based Framework

The theoretical framework in Chap. 2 is designed to compare different risk formulas
only, where the fault localization method is fixed to SBFL. However, in the analysis
on SENDYS, objects for comparison become the entire methods that integrate fault
localization algorithm and risk formula. As a consequence, the previous framework
is not applicable here. Thus, it is necessary to generalize the framework by substitut-
ing the “formula” in the framework with “the entire fault localization method.” After
the generalization, all the definitions and theorems become applicable to current
context. First, Definition 2.2.1 can be rewritten in the following way.

Definition 5.3.1 (Set division: generalized) Given a program with n statements
PG = {s1, s2, . . . , sn}, a test suite of m test cases T S = {t1, t2, . . . , tm}, one faulty
statement sf ∈ PG, and a fault localization method M which gives a whole ranking
list to all the statements in PG, let M(si) denote the risk value assigned by M to
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a statement si . With respect to the faulty statement sf , we have the three following
subsets.

SM
B = {si ∈ PG | M(si) > M(sf ), 1 ≤ i ≤ n}

SM
F = {si ∈ PG | M(si) = M(sf ), 1 ≤ i ≤ n}

SM
A = {si ∈ PG | M(si) < M(sf ), 1 ≤ i ≤ n}

Similar to the basic version of SBFL (introduced in Chap. 1), after applying
method M , all statements will finally be ranked according to their risk values M(si).
Hence all statements of SM

B will be ranked before sf , all statements of SM
F will be

tied with sf , and all statements of SM
A will be ranked after sf .

When adopting EXAM as the performance metric, the ranking of sf , which is
decided by its relative M(sf ) to other si in the statements ranking, is the determinant
of method M ′s performance. It is not difficult to find that, by replacing formula R

with method M in theoretical framework introduced in Chap. 2, we can rephrase the
theorems of “Better” and “Equivalent” in Chap. 2 to context correspondingly.

Theorem 5.3.1 Given any two methods Mi and Mj , if we have S
Mi

B ⊆ S
Mj

B and

S
Mj

A ⊆ S
Mi

A for any program, faulty statement sf , and test suite, then Mi → Mj .

Theorem 5.3.2 Given any two methods Mi and Mj , if we have S
Mi

B = S
Mj

B , S
Mi

F =
S

Mj

F , S
Mi

A = S
Mj

A for any program, faulty statement sf , and test suite, then Mi ↔
Mj .

Based on Theorems 5.3.1 and 5.3.2, it becomes possible to compare the perfor-
mance of different methods and furthermore analyze the performance of different
risk formulas being combined in M1 in the single-fault scenario theoretically.

5.3.2 Properties ofM1 in the Single-Fault Scenario

From Sect. 5.1, we know that each minimal hitting set is computed based on failed
relevant dynamic slices. In this theoretical analysis, we consider all the possible
minimal hitting sets. Let us denote the union of all the possible HS (i.e., single-
element minimal hitting set) as US and the union of all the possible HM (i.e.,
multiple-element minimal hitting set) as UM .

Lemma 5.3.1 Given any statement si ∈ US , M1(si) = Pr(HSi ) where Pr(HSi ) is
the risk value of single-element hitting set HSi that consists of si and M1(si ) is the
updated risk value of si computed by M1.

Proof Given any statement si ∈ US , let HSi denote the single-element minimal
hitting set including si . Referring to Algorithm 2 (M1) in Sect. 5.2, the risk value of
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si is the sum of risk values of all the minimal hitting sets containing si . Hence, the
risk value of si is the risk value of HSi . ��

Then, let us discuss about the computation of risk values for single-element
hitting sets. Referring to Algorithm 2 (M1), for each HS , we have Pr(HS) =
Rnorm(si )×∏s ′∈PG\HS

(1−Rnorm(s′)) where si ∈ HS . We define such mathematical
operation as τ (Hitting Set Mathematical Operation).

Definition 5.3.2 (τ ) Given n real numbers S = {p1, p2, . . . , pn} where 0 < pi ≤
1 (1 ≤ i ≤ n) and

∑n
i=1 pi = 1, τ is defined as pi ×∏j �=i (1−pj ) where 1 ≤ i ≤ n

and 1 ≤ j ≤ n.

In the following, we can prove that τ is an order-preserving mathematical
operation for the normalized statements ranking.

Lemma 5.3.2 Given any normalized statements ranking γ , after applying τ on
each statement in γ , the relative order of each statement in the ranking γ still
remains the same.

Proof Given a program with n statements set PG = {s1, s2, . . . , sn}, the risk value
of any statement si is denoted as R(si), and the statements in γ are ranked in the
descending order of risk value. Given any two statements si and sj where 1 ≤ i ≤ n,
1 ≤ j ≤ n, and sj is ranked before si , we have R(si) = R(sj ) or R(si) < R(sj ).
After applying operation τ on the two statements, we have τ (si) = R(si ) × (1 −
R(sj )) ×∏k(1 − R(sk)) and τ (sj ) = R(sj ) × (1 − R(si)) ×∏k(1 − R(sk)) where
k �= i, k �= j and 1 ≤ k ≤ n.

(a) For R(si) = R(sj ). Immediately, we have τ (si) = τ (sj ). If the tie-breaking
scheme is consistent, after applying τ , statement sj is still ranked before si .

(b) For R(si) < R(sj ). We have R(si) < R(sj ) and (1 − R(sj )) < (1 − R(si)).∏
k(1 − R(sk)) is the common part of τ (si) and τ (sj ). Thus, τ (si) < τ(sj ).

After applying τ , statement sj is still ranked before si .

In summary, after applying τ , sj is still ranked before si . Hence, τ is an order-
preserving operation for the statement ranking. ��

5.3.3 EnhancedM1 in the Single-Fault Scenario

When focusing on the single-fault scenario, the faulty statement sf is covered by all
failed test executions. It is not difficult to conclude that sf is covered by all failed
relevant dynamic slices as well. Referring to the definition of hitting sets, US is the
intersection of all the failed relevant dynamic slices. Hence, we can immediately
conclude that for the faulty statement sf , we have sf ∈ US .

Accordingly, it is possible to have an enhanced M1 algorithm in the single-fault
scenario (denoted as M2), which assigns the lowest risk values (negative or zero
value) to each multiple-element hitting set. Following Algorithm 2 (M1), the risk
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Algorithm 3: Algorithm M2 [3]
Input: Program PG, risk formula Formula, minimal hitting sets Hm, and test suite T S

Output: Statements ranking
1 Normalize the initial risk values with Algorithm 2 (M1). Stop at Step 5 in Algorithm 2 (M1)
2 Compute the risk value for minimal hitting set Hi which is a single-element hitting set,

Hi = {si}: P rs(Hi) = Rnorm(si ) ×∏s′∈PG\Hi
(1 − Rnorm(s′))

3 Assign zero risk value to each minimal hitting set Hi which is a multiple-element hitting set:
P rm(Hi) = 0

4 Compute the final statements ranking with Algorithm 1 (SENDYS). Start with Step 5 in
Algorithm 1 (SENDYS)

value of any minimal hitting set must be positive; hence, the assignment of negative
or zero value can be the lowest risk value. Algorithm 3 illustrates the process of M2.

Since Lemmas 5.3.1 and 5.3.2 are properties of focusing on single-fault diag-
noses, it is not difficult to find that the properties of M1 in the single-fault scenario
are also held for M2.

5.3.4 Comparison Among theMi Algorithms with Execution
Slice

We use notation MR
i to represent the entire fault localization method which

integrates the risk formula R and the localization algorithm Mi (M0, M1 or M2).
In the following, according to the generalized set theory-based framework,

referring to Definition 5.3.1, we divide statements ranking of M0, M1, and M2 into
three subsets, respectively. Based on the divided subsets, we prove that given any
risk formula R, MR

2 performs better than MR
1 and MR

0 . Moreover, we will introduce
a simple formula conversion G which is proved to be equivalent to the process of
Algorithm M2. Analysis on conversion G will be given.

Let U
f
D denote the union of all the failed relevant dynamic slices. In M1 and M2,

risk values returned by a risk formula will be updated based on the obtained minimal
hitting sets. Referring to Algorithm 2 (M1), only these statements belonging to U

f
D

(US

⋃
UM ) are assigned with new positive risk values, while others are assigned

with new risk values of 0. Therefore, statements outside U
f
D (i.e., PG \ U

f
D)

having lower risk values than the ones within U
f

D belong to S
M1
A . Referring to

Algorithm 3 (M2), not only the statements outside U
f

D but also the statements in
UM are reassigned with the lowest value (zero value) because each HM is assigned
the lowest risk value 0 according to Step 3. On the other hand, statements in US are
reassigned with new positive risk values. Thus statements outside US having lower
risk values than the ones within US belong to S

M2
A .
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Notice that for both M1 and M2, the faulty statement is always reassigned with
a positive value (but may not necessarily be the highest one in US). Therefore, we
have the following statement subsets division for M1 and M2.

Corollary 5.3.1 Given any risk formula R, let PG denote the program statements
set. For M1, we have the following three subsets:

S
M1
B = {si | M1(si ) > M1(sf ) and si ∈ U

f
D}

S
M1
F = {si | M1(si ) = M1(sf ) and si ∈ U

f
D}

S
M1
A = {si | (M1(si ) < M1(sf ) and si ∈ U

f

D)

or si ∈ PG \ U
f
D}

Corollary 5.3.2 Given any risk formula R, let PG denote the program statements
set. For M2, we have the following three subsets

S
M2
B = {si | M2(si) > M2(sf ), and si ∈ US}

S
M2
F = {si | M2(si) = M2(sf ), and si ∈ US}

S
M2
A = {si | (M2(si ) < M2(sf ), and si ∈ US)

or si ∈ UM or si ∈ PG \ U
f

D}

Based on the properties of Algorithm M1 in the single-fault scenario (Lem-
mas 5.3.1 and 5.3.2), we can obtain Lemma 5.3.3 that is the basis upon which MR

2
performs better than MR

0 and MR
1 for any risk formula R (see Propositions 5.3.1

and 5.3.2).

Lemma 5.3.3 Given any risk formula R, statements in US have the same relative
order in MR

0 , MR
1 , and MR

2 .

Proof For any two distinct statements sk and sj belonging to US , given any risk
formula R, assume R(sj ) ≥ R(sk). Obviously, we have MR

0 (sj ) ≥ MR
0 (sk).

Besides we have two single-element sk and sj constitute HS1 = {sk} and HS2 =
{sj }, respectively. Let Pr(HS1) and Pr(HS2) denote the risk values of HS1 and
HS2 , respectively. Referring to Lemma 5.3.1, we have MR

1 (sk) = Pr(HS1) and
MR

1 (sj ) = Pr(HS2) and MR
2 (sk) = Pr(HS1) and MR

2 (sj ) = Pr(HS2).
Referring to Lemma 5.3.2, after computing the risk value of each single-element

minimal hitting set, we still have Pr(HS2) ≥ Pr(HS1). Consequently, we have
MR

1 (sj ) ≥ MR
1 (sk) and MR

2 (sj ) ≥ MR
2 (sk). If the tie-breaking scheme is consistent,

sj and sk still have the same relative order in MR
0 , MR

1 , and MR
2 .

From the above, we obtain that statements in US have the same relative order in
MR

0 , MR
1 , and MR

2 . ��
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Proposition 5.3.1 For any given risk formula R, in the single-fault scenario, we
have MR

2 → MR
0 .

Proof Given any risk evaluation formula R, for the convenience of illustration, we
use M0 and M2 to represent MR

0 and MR
2 , respectively, in this proof.

For M0, referring to Definition 5.3.1, we have:

S
M0
B = {si | M0(si ) > M0(sf ) and si ∈ PG}

S
M0
F = {si | M0(si ) = M0(sf ) and si ∈ PG}

S
M0
A = {si | M0(si ) < M0(sf ) and si ∈ PG}

For M2, referring to Corollary 5.3.2, we have:

S
M2
B = {si | M2(si) > M2(sf ) and si ∈ US}

S
M2
F = {si | M2(si) = M2(sf ) and si ∈ US}

S
M2
A = {si | (M2(si) < M2(sf ) and si ∈ US)

or si ∈ UM or si ∈ PG \ U
f

D}

(a) To prove that S
M2
B ⊆ S

M0
B .

Assume statement si ∈ S
M2
B . Referring to Lemma 5.3.3, the statements in

US have the same relative order in both M0 and M2. Since US ⊂ PG, we have
S

M2
B ⊆ S

M0
B .

(b) To prove that S
M0
A ⊆ S

M2
A .

S
M0
A and S

M2
A can be expressed using another form: S

M0
A = PG \S

M0
B \S

M0
F ;

S
M2
A = PG \ S

M2
B \ S

M2
F .

Similar to (a), we can also prove that S
M2
F ⊆ S

M0
F . Referring to (a), we have

S
M2
B ⊆ S

M0
B ; thus, S

M0
A ⊆ S

M2
A .

In conclusion, we have S
M2
B ⊆ S

M0
B and S

M0
A ⊆ S

M2
A . Immediately after

Theorem 5.3.1, MR
2 → MR

0 . ��
Proposition 5.3.2 For any given risk formula R, in the single-fault scenario, we
have MR

2 → MR
1 .

Proof Given any risk evaluation formula R, for the convenience of illustration, we
use M1 and M2 to represent MR

1 and MR
2 , respectively, in this proof.
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For M1, referring to Corollary 5.3.1, we have:

S
M1
B = {si | M1(si) > M1(sf ) and si ∈ U

f
D}

S
M1
F = {si | M1(si) = M1(sf ) and si ∈ U

f
D}

S
M1
A = {si | (M1(si ) < M1(sf ) and si ∈ U

f
D)

or si ∈ PG \ U
f

D}

For M2, referring to Corollary 5.3.2, we have:

S
M2
B = {si | M2(si ) > M2(sf ) and si ∈ US}

S
M2
F = {si | M2(si ) = M2(sf ) and si ∈ US}

S
M2
A = {si | (M2(si ) < M2(sf ) and si ∈ US)

or si ∈ UM or si ∈ PG \ U
f
D}

(a) To prove that S
M2
B ⊆ S

M1
B .

Since US ⊂ U
f

D , besides, referring to Lemma 5.3.3, the relative order of

statements in US is the same in M1 and M2. Therefore, SM2
B ⊆ S

M1
B .

(b) To prove that S
M1
A ⊆ S

M2
A .

From the above, we have

S
M1
A ={si | M2(si) < M2(sf ) and si ∈ U

f
D}

∪ {si | si ∈ PG \ U
f
D}

S
M2
A ={si | M2(si) < M2(sf ) and si ∈ US}

∪ {si | si ∈ UM} ∪ {si | si ∈ PG \ U
f
D}

Besides, referring to Lemma 5.3.3, the relative order of statements in US is
the same in M1 and M2.

Hence, we have S
M1
A ⊆ S

M2
A .

In conclusion, we have S
M2
B ⊆ S

M1
B and S

M1
A ⊆ S

M2
A . Immediately after

Theorem 5.3.1, MR
2 → MR

1 . ��
Propositions 5.3.1 and 5.3.2 tell us that in single-fault scenario, M2 (i.e., the

enhanced SENDYS) never gives worse performance than M1 (i.e., the correction of
SENDYS) and M0 (i.e., the original SBFL).

The proof of Proposition 4.2.3 implies a simple maximal conversion. In this
chapter, we denote this maximal conversion as conversion Cmax. Any non-maximal
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risk formula R can be converted into a maximal formula through the process of
conversion Cmax which is defined as follows.

Definition 5.3.3 (Conversion Cmax) Given any risk formula R, conversion Cmax
assigns identical risk values to points on the faulty border as R and to all points
outside the faulty border smaller risk values than that of any point on the faulty
border.

By applying Cmax on any formula, we can transform this formula into a maximal
one. We illustrated this conversion by visualizing the landscape of a formula in
3D figure (shown in Fig. 4.1b), which has given the first explanation to maximal
formulas in traditional SBFL. Here, we will introduce a similar conversion on
formulas, denoted as G and presented in Algorithm 4, such that the basic SBFL
(i.e., M0) with this transformed formula has equally good performance as M2 that
has shown definite superiority over other two methods. With G, the complicated M2
algorithm can be easily and vividly reformulated.

Algorithm 4 first computes Od , which includes both passed and failed dynamic
slices. From Od , we know F that is the number of failed dynamic slices and di

ef

that is the number of failed dynamic slices including statement si . Then, for each
statement with di

ef = F , define the output of GR(si) as R(si) (i.e., the original risk
value computed by formula R); while for all the remaining statements, define their
GR(si) outputs as a constant lower than p which is the minimum of risk values
R(si) among all si with di

ef = F .
Actually, this G conversion is very similar to Cmax defined in Definition 5.3.3.

The difference is that Cmax only decreases the risk values of statements outside the
faulty border (shown in Fig. 4.1b), but G decreases the risk values of statements
both outside the fault border and on the faulty border but having di

ef < F .

Algorithm 4: Conversion G [3]
Input: Program PG, risk formula R, and test suite T S

Output: A transformed R (denoted as GR)
1 Compute the matrix of relevant dynamic slices Od for PG after the execution of T S

2 Denote the number of failed test cases as F , which is also the number of failed dynamic
slices

3 Compute di
ef from Od for each statement si

4 For each si with di
ef = F : define GR(si) = R(si )

5 Get minimum risk value p of all si with di
ef = F : p = Min(R(si )) (∀si with di

ef = F )

6 For each si with di
ef < F : define GR(si) as a constant value lower than p

Given any risk formula R, we denote GR as the transformed formula by using
G conversion. Next we will prove that M0 with GR has equal superiority to the
complicated algorithm M2. In other words, G actually reformulates M2 by providing
a shortcut to achieve the same goal. Given any risk formula R, we use M

Cmax
0 to

represent SBFL with the maximal version of any formula R transformed by Cmax.
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Lemma 5.3.4 Given any MR
2 where R belongs to F , the points associated with

any statement in US are on the faulty border.

Proof Referring to the definition of minimal hitting sets, we have US as the
intersection of all the failed relevant dynamic slices. Hence, given any statement
si ∈ US , si is executed by all the failed executions. As a consequence, we have
aef = F . Therefore, the points associated with all the statements in US are on the
faulty border. ��
Lemma 5.3.5 For any statement si ∈ US , let di

ef denote the number of failed

relevant dynamic slices including si , we have di
ef = F .

Proof Referring to the definition of minimal hitting sets, we have US as the
intersection of all failed relevant dynamic slices; hence for any statement si ∈ US ,
we have di

ef = F . ��
Let MGR

0 denote the basic SBFL configuring with the transformed formula GR .
Then, we have the following propositions.

Proposition 5.3.3 For any given risk formula R, in the single-fault scenario, we
have MGR

0 ↔ MR
2 .

Proof Given any risk formula R, for the convenience of illustration, we use M2 to
denote MR

2 in the proof. Consider the points outside the faulty border and on the
faulty border in GR , respectively.

For M2, referring to Corollary 5.3.2, we have:

S
M2
B = {si | M2(si) > M2(sf ) and si ∈ US}

S
M2
F = {si | M2(si) = M2(sf ) and si ∈ US}

S
M2
A = {si | (M2(si) < M2(sf ) and si ∈ US)

or si ∈ UM or si ∈ PG \ U
f
D}

Referring to Algorithm 4 (conversion G), for the points outside the faulty border,
risk values of these statements are always lower than that of faulty statement; thus,
these statements belong to SG

A which denotes the set of statement having smaller risk
values than that of the faulty statement in GR . Notice that we can have the notations
of SG

B and SG
F for GR similarly. The corresponding def values of these statements

are smaller than F ; referring to Lemma 5.3.5, these statements do not belong to US .
Thus, these statements belong to S

M2
A . Thus S

M2
A = SG

A .
For the points on the faulty border, in GR, all these points are associated with

statements having def = F ; referring to Lemma 5.3.5, the set of these statements is
equal to US . These statements have the same relative order in MR

0 and GR. Referring
to Lemma 5.3.3, the relative order of these statements is the same in MR

0 and MR
2 .
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Thus, in both MR
2 and GR, the relative order of these statements is the same. If the

tie-breaking is consistent, we can have S
M2
B = SG

B , S
M2
F = SG

F .

Following immediately from Theorem 5.3.2, we have proved MGR

0 ↔ MR
2 . ��

Referring to Proposition 5.3.3, we prove that given any risk formula R, MR
2 is

equivalent to the variant of formula R after applying conversion G. Besides, from
Propositions 5.3.1 and 5.3.2, we have that for any risk formula R, MR

2 performs
better than MR

1 and MR
0 . It indicates that in the single-fault scenario, the updated

risk values of statements through the computation of single-element minimal hitting
set in Algorithm 3 can be substituted for a simple formula conversion G. Hence, in
the following, we focus on the analysis of conversion G.

As defined in Sect. 4.1, let us denote the distribution of risk values on the
faulty border as PR . Through investigating different risk formulas being applied
conversion G, we have the following proposition.

Proposition 5.3.4 For any two risk formulas R1 and R2, in the single-fault
scenario, if R1 and R2 have the same PR , then MGR1

0 ↔ MGR2

0 .

Proof Firstly, we prove that M
R1
2 ↔ M

R2
2 is held.

Let sf denote the faulty statement and (F, a
f
ep) denote the corresponding point on

the faulty border. Referring to Lemma 5.3.3, these statements in US have the same
relative order in both R1 and M

R1
2 and R2 and M

R2
2 . From the known condition, R1

and R2 have the same PR ; thus, M
R1
2 and M

R2
2 also have the same PR . We use M1

2

to denote M
R1
2 and M2

2 to denote M
R2
2 for illustrating conveniently.

For M1
2 , referring to Corollary 5.3.2, we have:

S
M1

2
B = {si | M1

2 (si) > M1
2 (sf ) and si ∈ US}

S
M1

2
F = {si | M1

2 (si) = M1
2 (sf ) and si ∈ US}

S
M1

2
A = {si | (M1

2 (si) < M1
2 (sf ) and si ∈ US)

or si ∈ UM or si ∈ PG \ U
f
D}

For M2
2 , referring to Corollary 5.3.2, we have:

S
M2

2
B = {si | M2

2 (si) > M2
2 (sf ) and si ∈ US}

S
M2

2
F = {si | M2

2 (si) = M2
2 (sf ) and si ∈ US}

S
M2

2
A = {si | (M2

2 (si) < M2
2 (sf ) and si ∈ US)

or si ∈ UM or si ∈ PG \ U
f
D}
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(a) To prove that S
M1

2
B = S

M2
2

B .

Assume statement si ∈ S
M1

2
B . Referring to Lemma 5.3.4, the point associated

with si is on the faulty border which is denoted as (F, ai
ep). Whatever ai

ep > a
f
ep

and ai
ep < a

f
ep, the risk value of the point associated with si is larger than that

of the point associated with sf for M
R1
2 . Besides, M

R1
2 and M

R2
2 have the same

PR; then, for M
R2
2 , the risk value of si is still higher than that of sf . Thus, we

have si ∈ S
M2

2
B . Therefore, S

M1
2

B ⊆ S
M2

2
B . In a similar way, we can prove that

S
M2

2
B ⊆ S

M1
2

B .

In summary, we have proved S
M1

2
B = S

M2
2

B .

(b) To prove that S
M1

2
F = S

M2
2

F .

Assume statement si ∈ S
M1

2
F ; referring to Lemma 5.3.4, the point associated

with si is on the faulty border which is denoted as (F, ai
ep). Whatever ai

ep > a
f
ep

and ai
ep < a

f
ep, the risk value of the point associated with si is equal to that of

the point associated with sf for M
R1
2 . Besides, M

R1
2 and M

R2
2 have the same

PR; if the tie-breaking is consistent, the relative order of si and sf is still the

same for M
R2
2 . Thus, we have si ∈ S

M2
2

F . Therefore, S
M1

2
F ⊆ S

M2
2

F . In a similar

way, we can prove that S
M2

2
F ⊆ S

M1
2

F .

In summary, we have proved S
M1

2
F = S

M2
2

F .

From the above, it is not difficult to get S
M1

2
A = S

M2
2

A . Following immediately The-

orem 5.3.2, we have proved M
R1
2 ↔ M

R2
2 . Finally, referring to Proposition 5.3.3,

we have MGR1

0 ↔ MGR2

0 . ��
Proposition 5.3.4 provides a sufficient condition for the equivalence of any two

formulas being applied conversion G. In other words, formulas which have the same
PR after applying conversion G constitute their own maximal groups. We take the
30 risk formulas in Chap. 2 as examples to illustrate Proposition 5.3.4:

• Formulas that are not from ER5 have the same PR: given any two points on the
faulty border which are denoted as (F, ai

ep) and (F, a
j
ep), respectively, if ai

ep <

a
j
ep, then the risk value of (F, ai

ep) is higher than that of (F, a
j
ep). We refer to

such PR as “descending PR .” Given any R1 and R2 having descending PR , GR1

and GR2 are equivalent to each other.
• Formulas from ER5 have the same PR : the risk values of any two points on the

faulty border are equal which we refer to as equal PR . Given any two formulas
having equal PR , GR1 and GR2 are equivalent to each other.

Next, let us compare the performance between the transformed formula GR and
the traditional maximal formula proved in Chap. 4. Due to the equivalence between
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MGR

0 and MR
2 , this comparison also reveals the relation between the enhanced

SENDYS (M2) and basic SBFL (M0) with maximal formulas. Given any formula
R, denote GR and CR

max as the transformed formula via G and Cmax, respectively.
According to the proof in Chap. 4, the latter one is maximal formula in basic SBFL.
We denote M

Cmax
0 as basic SBFL working on execution slice with maximal formula

CR
max.

Proposition 5.3.5 For any given risk formula R, in the single-fault scenario, we
have MGR

0 (MR
2 ) → M

Cmax
0 .

Proof Referring to Algorithm 4, we have that after applying conversion G on R,
points associated with statements having aef = F and def �= F which have higher
risk values than that of the faulty statement can be removed. Thus, we can obtain
that MGR

0 (MR
2 ) → M

Cmax
0 . ��

As discussed after Algorithm 4, G further removes noises on the faulty border left
by Cmax. That is, any point associated with statements having aef = F but def < F

is assigned with a risk value lower than that of the faulty statement. Such statements
cannot be faulty in the single-fault scenario. As a reminder, to what extent MGR

0 can

improve M
Cmax
0 depends on the number of statements with def < F and aef = F ,

which varies in different scenarios.

5.3.5 Comparison Among theMi Algorithms with Dynamic
Slice

Note that in the above analysis, MGR

0 and M
Cmax
0 are applied on execution slice.

It is known that M0 (i.e., basic SBFL) can be applied on various types of spectra.
For example, Lei et al. [2] showed that by applying M0 on dynamic slices, the fault
localization performance can be improved.

For each statement si , the results of relevant dynamic slices can be represented
as a tuple d = <di

ef , di
ep, di

nf , di
np>, where di

ef and di
ep represent the number of

failed and passed relevant dynamic slices including si , respectively; di
nf and di

np

represent the number of failed and passed relevant dynamic slices not including
si , respectively. Given any risk formula R, we denote the Cmax version of R

applied on relevant dynamic slices as ˜
M

Cmax
0 . In the following, we will introduce

the comparison of performance between MGR

0 and ˜
M

Cmax
0 .

Proposition 5.3.6 For any given risk formula R, in the single-fault scenario, we

have MGR

0 (MR
2 ) �

˜
M

Cmax
0 .

Proof We prove this proposition by constructing a counterexample to show neither

MGR

0 (MR
2 ) → ˜

M
Cmax
0 nor ˜

M
Cmax
0 → MGR

0 (MR
2 ) holds.
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(a) PG1 (b) PG2

Fig. 5.1 Control flow graphs with dependency [3]

Let us consider the two sample programs PG1 and PG2, whose control flow
graphs with dependency information are shown in Fig. 5.1. In Fig. 5.1, the dashed
arrows represent data dependency, the solid arrows represent control dependency,
and the solid lines indicate control flow relations. The faulty statements of PG1 and
PG2 are S3 and S5, respectively.

• Scenario 1: Suppose we have a test suite T S1 executed on PG1, whose results
are shown in Table 5.1. The testing results include two failed test cases and
four passed test cases (i.e., F = 2). The execution slices and dynamic slices
(by considering both control and data dependency) are listed in the second
and third columns, respectively. Accordingly, we have (aef , aep, anf , anp) and
(def , dep, dnf , dnp) shown in Table 5.2.

Table 5.1 T S1 executed on
PG1 (Scenario 1)

Pass or fail Execution slices Dynamic slices

Fail (S1, S3, S5, S6, S7, S8, S9) (S1, S3, S5, S6, S9)

Fail (S1, S3, S5, S6, S7, S8, S9) (S1, S3, S5, S6, S9)

Pass (S1, S2, S8, S9) (S9)

Pass (S1, S3, S5, S6, S7, S8, S9) (S1, S3, S5, S6, S9)

Pass (S1, S3, S4, S7, S8, S9) (S9)

Pass (S1, S3, S4, S7, S8, S9) (S9)



64 5 A Generalized Theoretical Framework for Hybrid Spectrum-Based Fault. . .

Table 5.2 MGR

0 (MR
2 ) �

˜
M

Cmax
0 (Scenario 1)

Statements of PG1 (aef ,aep ,anf ,anp) (def ,dep,dnf ,dnp) MGR

0
˜
M

Cmax
0 (MR

2 )

S1 (2, 4, 0, 0) (2, 1, 0, 3) 0.0 0.333 0.112

S2 (0, 1, 2, 3) (0, 0, 2, 4) −0.333 −0.333 0.0

S3(f ) (2, 3, 0, 1) (2, 1, 0, 3) 0.067 0.333 0.143

S4 (0, 2, 2, 2) (0, 0, 2, 4) −0.333 −0.333 0.0

S5 (2, 1, 0, 3) (2, 1, 0, 3) 0.333 0.333 0.317

S6 (2, 1, 0, 3) (2, 1, 0, 3) 0.333 0.333 0.317

S7 (2, 3, 0, 1) (0, 0, 2, 4) −0.333 −0.333 0.0

S8 (2, 4, 0, 0) (0, 0, 2, 4) −0.333 −0.333 0.0

S9 (2, 4, 0, 0) (2, 4, 0, 0) 0.0 0.0 0.112

Ranking — — 3 2 3

Suppose we adopt CBI as a sample formula [7], which should be

aef

aef + aep

− aef + anf

aef + anf + aep + anp

(for M0 that uses execution slices);

def

def + dep

− def + dnf

def + dnf + dep + dnp

(for M̃0 that uses dynamic slices).

As a consequence, we have MGR

0 assign risk values to statements with def =2

as aef

aef +aep
− aef +anf

aef +anf +aep+anp
and assign “min_G - constant” to the remaining

statements (where “min_G” is the minimum among all the above risk values

with def =2 in MGR

0 ). Similarly, we have ˜
M

Cmax
0 assign risk values to statements

with def =2 as
def

def +dep
− def +dnf

def +dnf +dep+dnp
and assign “min_C - constant” to the

remaining statements (where “min_C” is the minimum among all the risk values

with def =2 in ˜
M

Cmax
0 ).1

Accordingly, the risk values are shown in Table 5.2. By adopting the Original
Order tie-breaking scheme [7], we have the ranking shown in Table 5.2, which

demonstrates the possibility of “˜MCmax
0 performing better than MGR

0 .” As a
reminder, we also list the risk values and ranking given by MR

2 for illustrating

the equivalence between MR
2 and MGR

0 . But we don’t repeat the calculation of
MR

2 here, since it is not necessary to this proof, and the equivalence between MR
2

and MGR

0 has been theoretically proved in Proposition 5.3.3.

In summary, we have proved MGR

0 (MR
2 ) �

˜
M

Cmax
0 .

1According to the definition, the constant can be any value. In Table 5.2, we have constant as 0.333.
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• Scenario 2: Suppose we have a test suite T S2 executed on PG2, whose results
are shown in Table 5.3. The testing results include two failed test cases and
six passed test cases (i.e., F = 2). The execution slices and dynamic slices
(by considering both control and data dependency) are listed in the second
and third columns, respectively. Accordingly, we have (aef , aep, anf , anp) and
(def , dep, dnf , dnp) shown in Table 5.4.

Again, suppose we adopt CBI as illustration. The risk values are shown in
Table 5.4.2 By adopting the “Original Order” tie-breaking scheme, we have
the ranking shown in Table 5.4, which demonstrates the possibility of “MGR

0

outperforming ˜
M

Cmax
0 .” Thus, we have proved ˜

M
Cmax
0 � MGR

0 (MR
2 ).

From the above two examples, we can have MGR

0 (MR
2 ) �

˜
M

Cmax
0 . ��

Table 5.3 T S2 for PG2 (Scenario 2)

Pass or fail Execution slices Dynamic slices

Fail (S1, S3, S5, S6, S8, S9, S10) (S1, S3, S5, S6, S10)

Fail (S1, S3, S5, S7, S8, S9, S10) (S1, S3, S5, S7, S10)

Pass (S1, S2, S10) (S10)

Pass (S1, S3, S4, S9, S10) (S10)

Pass (S1, S3, S5, S6, S8, S9, S10) (S1, S3, S5, S6, S10)

Pass (S1, S3, S5, S7, S8, S9, S10) (S1, S3, S5, S7, S10)

Pass (S1, S3, S4, S9, S10) (S10)

Pass (S1, S3, S5, S7, S8, S9, S10) (S1, S3, S5, S7, S10)

Table 5.4 ˜
M

Cmax
0 � MGR

0 (MR
2 ) (Scenario 2)

Statements of PG1 (aef ,aep ,anf ,anp) (def ,dep ,dnf ,dnp) MGR

0
˜
M

Cmax
0 (MR

2 )

S1 (2, 6, 0, 0) (2, 3, 0, 3) 0.0 0.15 0.146

S2 (0, 1, 2, 5) (0, 0, 2, 6) −0.15 −0.15 0.0

S3 (2, 5, 0, 1) (2, 3, 0, 3) 0.036 0.15 0.173

S4 (0, 2, 2, 4) (0, 0, 2, 6) −0.15 −0.15 0.0

S5(f ) (2, 3, 0, 3) (2, 3, 0, 3) 0.15 0.15 0.272

S6 (1, 1, 1, 5) (1, 1, 1, 5) −0.15 −0.15 0.0

S7 (1, 2, 1, 4) (1, 2, 1, 4) −0.15 −0.15 0.0

S8 (2, 3, 0, 3) (0, 0, 2, 6) −0.15 −0.15 0.0

S9 (2, 5, 0, 1) (0, 0, 2, 6) −0.15 −0.15 0.0

S10 (2, 6, 0, 0) (2, 6, 0, 0) 0.0 0.0 0.146

Ranking — — 1 3 1

2We have 0.15 as the constant in Table 5.4.
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Chapter 6
Practicality of the Theoretical
Frameworks

Abstract In the previous chapters, we have introduced several theoretical frame-
works for analyzing SBFL performance. It can be found that there are several
assumptions when adopting the frameworks. In this chapter, we will be further
discussing about the practicality of the theoretical frameworks with some potential
concerns of “ideal assumptions” (Chen et al. A revisit of a theoretical analysis
on spectrum-based fault localization. In: Proceedings of the 39th annual computer
software and applications conference, vol 1, pp 17–22, 2015).

6.1 100% Coverage and Omission Fault

There are concerns from the assumptions of 100% coverage and non-omission fault.
It is true that in real life, it is very common that a test suite cannot achieve a 100%
coverage on the whole program. And omission faults are also not rare. However,
these will not hinder the application of the theoretical frameworks in practice.

As a coverage-based debugging technique, SBFL utilizes coverage profiles and
testing results to perform a risk assessment, with intuitions of “higher aef /lower
aep should lead to higher risk value.” In other words, SBFL is actually designed
for locating non-omission fault, that is, its responsibility is to find the root faulty
statement, of which the execution will trigger failure. This is also explicitly indicated
in “the assumptions of SBFL” by Steimann et al. [5] – “Every failed test case
executes at least one fault whose execution causes the failure.” Obviously, this
implies that only the risk assessment on those covered statements is meaningful,
because statements that are not covered by any test case can never be the root
non-omission fault of the observed failures. As a consequence, it is unreasonable
to investigate statements that are not covered by any test case. This is supported by
Steimann et al. [5] – “However, searching the explanation for failed test cases in

Part of this chapter ©2015 IEEE. Reprinted, with permission from Proceedings of the 39th IEEE
Annual International Computers, Software and Applications Conference; 2015, Vol. 1, 17–22.
DOI: https://doi.org/10.1109/COMPSAC.2015.196 (Ref. [1]).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Xie, B. Xu, Essential Spectrum-based Fault Localization,
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code that is not covered by any test case, or even not covered by any failed test case,
not only makes little sense per se.”

In the theoretical frameworks, the assumptions of 100% coverage are never
equivalent to “having a test suite that can achieve a 100% coverage on the whole
program.” Instead, the 100% coverage means that the risk assessment and theoretical
analysis are only performed on the covered statements while those statements
without being covered by any test case are excluded from consideration. It should be
very clear that the introduced frameworks are applicable to any test suite with any
coverage level, because we can simply focus on the covered subset of the given
program, for which the test suite effectively achieves 100% coverage, regardless
what level of coverage it really achieves for the whole program. Since the above
intuitions and principles are the basis of SBFL, it should be always followed by
both theoretical and empirical studies.

In fact, there are two commonly adopted methods in dealing with non-100%
coverage in empirical studies:

• Method A: Exclude the non-covered statements, and focus on the covered ones
for SBFL.

• Method B: Simply calculate the risk values for an uncovered statement in the
same way as we do for a covered statement, by ignoring the coverage level.

It is obvious that Method A complies with the SBFL’s nature and should be
adopted in reasonable studies. This is consistent with the theoretical assumption
and has been suggested by Steimann et al. [5]. On the other hand, Method B may
introduce noises [5]. It may not affect some formulas with which the risk values of
uncovered statements are no higher than those of the covered statements, especially
lower than those of the statements with ai

ef =F , such as Jaccard. However, for
some formulas, it is possible that the risk values of uncovered statements are
higher than those of the covered statements, for example, Wong2 (aef −aep). In the
latter formulas, noises from the uncovered statements may affect the performance.
Actually, things may be even more complicated in some formulas, such as Ochiai
and Tarantula, where uncovered statements become undefined due to the zero
denominator. Then, how to define these statements will affect the performance of the
formula. Two extreme cases can be (i) ranking these statements at the top of the lists
or (ii) ranking them at the bottom. Obviously, these two strategies may give totally
different results, while the latter one gives better performance and is essentially the
same as the above Method A. (Note that it provides the same absolute ranking for
the faulty statement as Method A, but lower EXAM score because more statements
are considered and hence a larger denominator. But the comparison results between
formulas are the same as the ones with Method A.)

As mentioned above some empirical studies have suggested to use Method A [5]
to avoid the potential noises. Steimann et al. [5] also suggested to further exclude
the statements with aef =0, which has actually been suggested earlier by Xie et al.
[7, 8].
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6.2 Tie-Breaking Scheme

Another concern on the theoretical analysis is about the “consistent tie-breaking
scheme.”

It is very common that SBFL assigns the same risk values to different statements.
In such a case, a tie-breaking scheme is required to further distinguish these
statements. Therefore, given a program and a test suite, the EXAM score is co-
determined by formula R and the adopted tie-breaking scheme. In other words, a
tie-breaking scheme is not a component of a risk evaluation formula. Instead, it is a
component of a SBFL technique. Thus, for a fair comparison between various risk
evaluation formulas R, the tie-breaking scheme should be the same across different
R, which must therefore be applicable to any formula. For example, it is obviously
not meaningful to bind formula R1 with tie-breaking scheme B1 while binding R2
with a different tie-breaking scheme B2 and then treat the comparison between
R1+B1 and R2+B2 equally as the comparison between R1 and R2.

Therefore, the theoretical frameworks require different formulas to use a com-
mon tie-breaking scheme. Moreover, we have chosen a general family of tie-
breaking schemes, namely, consistent tie-breaking scheme, as a representative in
the previous theoretical analysis. We use it because of the following reasons.

• Instead of being one particular single scheme, consistent tie-breaking scheme
actually covers a large family of schemes. Based on Definition 2.2.2, as long
as a tie-breaking scheme always gives the same relative order to any set of tied
statements, it is said to be consistent. In other words, such a tie-breaking scheme
does not care about what particular order should be used for tied statements in
one formula. Instead, it only requires the same relative order for the common set
of tied statements in different formulas. There can be a wide variety of relative
orders, such as the sequential order in the source code or control flow graph, order
decided by other information, user-defined order based on their debugging habits
or experience, or even a fixed random order.1 Obviously, all of these particular
schemes can be practically applied in real life, of course in empirical studies as
well.

• Consistent tie-breaking scheme that always provides identical relative order
to tied statements is the most straightforward and intuitive way to be totally
independent of the risk formulas. With such a scheme, any noises from the tie-
breaking schemes can be excluded such that a fair comparison between formulas
can be guaranteed.

As a reminder, choosing the consistent tie-breaking scheme in the theoretical
frameworks does not mean that the frameworks are inapplicable with other tie-
breaking schemes. In the following discussion, we will prove that the propositions
in Chap. 3 still hold with other commonly adopted tie-breaking schemes, such as

1Same random order in different formulas.
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“Best”, “Worst,” and “Average.” However, we must also point out that strictly
speaking, such tie-breaking schemes are not realistic solutions when performing
SBFL in practice. Instead, they are just laboratory strategies to estimate the
performance of SBFL technique. That is, such tie-breaking schemes cannot be
applied in practice simply because we do not know which statement is faulty.

Theorem 6.2.1 If R1 and R2 satisfy the corresponding subset relations required by
Theorem 2.2.2 or 2.2.3, then by adopting “Best tie-breaking scheme,” we still have
R1 → R2 and R1 ↔ R2, respectively, for any program and test suite.

Proof “Best tie-breaking scheme” ranks sf at the top among all statements in
SR

F . Thus, have E=|SR
B |+1. Let us denote the difference between E1 and E2 as

δ=E1−E2. It follows immediately that δ=|SR1
B |−|SR2

B |.
1. If S

R1
B ⊆S

R2
B and S

R2
A ⊆S

R1
A , we have |SR1

B |−|SR2
B |≤0. As a consequence, δ≤0,

that is, E1≤E2.
2. If S

R1
B =S

R2
B and S

R2
A =S

R1
A , we have |SR1

B |−|SR2
B |=0. As a consequence, δ=0,

that is, E1=E2.

After Definitions 2.2.3 and 2.2.4, the theorem is proved. ��
Theorem 6.2.2 If R1 and R2 satisfy the corresponding subset relations required by
Theorem 2.2.2 or 2.2.3, then by adopting “Worst tie-breaking scheme,” we still have
R1 → R2 and R1 ↔ R2, respectively, for any program and test suite.

Proof “Worst tie-breaking scheme” ranks sf at the bottom among all statements in
SR

F . Thus, we have

E=|SR
B |+|SR

F |=|S|−|SR
A |

Let us denote δ=E1−E2, and then we have δ=|SR2
A |−|SR1

A |.
1. If S

R1
B ⊆S

R2
B and S

R2
A ⊆S

R1
A , we have |SR2

A |−|SR1
A |≤0. As a consequence, δ≤0,

that is, E1≤E2.
2. If S

R1
B =S

R2
B and S

R2
A =S

R1
A , we have |SR2

A |−|SR1
A |=0. As a consequence, δ=0,

that is, E1=E2.

After Definitions 2.2.3 and 2.2.4, the theorem is proved. ��
Actually, conclusions in the above two theorems have also been discussed in [6].

As a reminder, it can be found from the above proofs that, with “Best” or “Worst”
tie-breaking schemes, comparing two formulas does not require the subset relations
for both SR

B and SR
A . With “Best” tie-breaking scheme, S

R1
B ⊆S

R2
B implies E1≤E2,

and S
R1
B =S

R2
B implies E1=E2, regardless of the relations for the other two subsets,

while with “Worst” tie-breaking scheme, S
R2
A ⊆S

R1
A implies E1≤E2, and S

R1
A =S

R2
B

implies E1=E2, regardless of the relations for the other two subsets. However, even
though the adoption of these two tie-breaking schemes can simplify the theorem,
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they were not included in [8] because neither “Best” nor “Worst” is applicable in
real life.

Theorem 6.2.3 If R1 and R2 satisfy S
R1
B ⊆S

R2
B and S

R2
A ⊆S

R1
A , then by adopting

“Average” tie-breaking scheme, we still have R1 → R2, for any program and test
suite.

Proof “Average” tie-breaking scheme ranks sf at the medium position among all

statements in SR
F . If |SR

F | is odd, we always have E=|SR
B |+|SR

F |+1
2 . If |SR

F | is even,
there are two possible definitions of the medium position, and correspondingly, we

have (i) E=|SR
B |+|SR

F |
2 or (ii) E=|SR

B |+|SR
F |
2 +1. Since the proofs with definitions (i)

and (ii) are very similar, due to the page limitation, we will adopt (i) for even |SR
F |.

Let us denote δ=E1−E2, δB=|SR1
B |−|SR2

B |, and δA=|SR1
A |−|SR2

A |. Given R1 and

R2, since S
R1
B ⊆S

R2
B and S

R2
A ⊆S

R1
A , we have

δB=|SR1
B |−|SR2

B |≤0

δA=|SR1
A |−|SR2

A |≥0

Then,

|S|=|SR1
B |+|SR1

F |+|SR1
A |=|SR2

B |+|SR2
F |+|SR2

A |

can be rewritten as

(|SR1
B |−|SR2

B |)+(|SR1
A |−|SR2

A |)=δB+δA=|SR2
F |−|SR1

F | (6.1)

There are following possible cases.

1. Consider the case that both S
R1
F and S

R2
F are even or odd. Then, we have

δ=(|SR1
B |+|SR1

F |
2 )−(|SR2

B |+ |SR2
F |
2 ). After Equation (6.1), we have δ= 1

2 (δB−δA).
Since δB≤0 and δA≥0, we have δ≤0. In other words, we have E1≤E2.

2. Consider the case that S
R1
F is odd while S

R2
F is even. Then, we have

δ=
(

|SR1
B |+|SR1

F |+1

2

)
−
(

|SR2
B |+|SR2

F |
2

)

After Equation (6.1), we have δ= 1
2 (δB−δA+1). In this case, since S

R1
F is odd

while S
R2
F is even, then δB and δA cannot be 0 at the same time. Thus, we must

have δB−δA≤−1 and hence δ≤0. In other words, we also have E1≤E2.
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3. Consider the case that S
R1
F is even while S

R2
F is odd. Then, we have

δ=
(

|SR1
B |+|SR1

F |
2

)
−
(

|SR2
B |+ |SR2

F |+1

2

)

After Equation (6.1), we have δ= 1
2 (δB−δA−1). Similar to the second case, δB

and δA cannot be 0 at the same time. Thus, we must have δB−δA≤−1 and hence
δ<0. In other words, we have E1<E2.

In summary, if S
R1
B ⊆S

R2
B and S

R2
A ⊆S

R1
A , then by adopting “Average” tie-breaking

scheme, we also have E1≤E2, for any program and test suite. After Definition 2.2.3,
the theorem is proved. ��
Theorem 6.2.4 If R1 and R2 satisfy S

R1
B =S

R2
B , S

R1
F =S

R2
F , and S

R2
A =S

R1
A , then by

adopting any “Average tie-breaking scheme,” we still have R1 ↔ R2, for any
program and test suite.

Proof Since S
R1
B =S

R2
B , S

R1
F =S

R2
F , and S

R2
A =S

R1
A , then we have δB=0 and δA=0,

and S
R1
F and S

R2
F must both be either even or odd. Thus, we have δ=1

2 (δB−δA)=0,
which means E1=E2. After Definition 2.2.4, the theorem is proved. ��

6.3 Single-Fault Scenario

The third concern comes from the assumption of “single fault.” As discussed above,
SBFL formulas are designed based on intuition of “higher ef /lower ep should lead
to higher risk value.” It is not difficult to find out that such an intuition is only
meaningful for single (non-omission)-fault scenario [2]. Fortunately, DiGiuseppe
and Jones [2] also have demonstrated that “in terms of localizing at least one,
most prominent, fault, the performance of SBFL is not adversely affected by the
increasing number of faults, even in the presence of fault localization interference.”
Such an evidence implies that the conclusions of the introduced theoretical analysis
are equally useful for multiple faults.

On the other hand, an attractive idea was proposed to assist the application of
SBFL in multiple-fault scenario, namely, parallel debugging approaches [3, 4, 9].
As introduced in Sect. 1.4.2, in parallel debugging, test cases are first clustered into
several specialized test suites based on various execution information, and each
of the test suites targets an individual single fault. In practice, each specialized
test suite is dispatched to a particular developer, who is supposed to focus on the
corresponding single fault. In other words, by properly clustering the test suite, the
multiple-fault scenario can be transformed into single-fault scenario, in which the
introduced theoretical frameworks can be applied. For more details about parallel
debugging, please refer to the following Sect. 8.3.
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Chapter 7
Tackling the Oracle Problem in
Spectrum-Based Fault Localization

Abstract Currently, all existing SBFL techniques have assumed the existence of a
test oracle; otherwise, the program spectrum will not be associated with the testing
result of failed or passed. As a consequence, a program with no test oracle will
have no sufficient information to perform SBFL. However, in many real-world
applications, it is very common that test oracles do not exist, and hence SBFL cannot
be applied in such situations. In this chapter, we will introduce a technique proposed
by us Xie et al. (Inf Softw Technol 55(5):866–879, 2013), namely, metamorphic
slice to alleviate this problem. Metamorphic slice is resulted from the integration of
metamorphic testing and program slicing. Instead of using the program slice and the
testing result of failed or passed for an individual test case, metamorphic slice and
the testing result of violation or non-violation of a metamorphic relation are used.
Then, the existence of test oracle is no longer a prerequisite to SBFL, and hence the
application domain of SBFL can be significantly extended.

7.1 The Oracle Problem in SBFL

As discussed in Chap. 1, in order to evaluate the risk values for the program
statements, SBFL requires information of program spectrum that associated with
testing results of failed or passed. For instance, when adopting the statement
binary coverage as the program spectrum, coverage of each test execution must be
associated with the testing result of the corresponding individual test case, in terms
of failed or passed (as shown in Fig. 1.1). In other words, the SBFL procedure has
assumed the existence of a test oracle.

However, such assumption is not always true. Many real-life programs, including
complex computational programs, bioinformatics applications, machine learning
algorithms, etc. [1, 7], do not have test oracles (known as “an oracle problem”).

Part of this chapter ©Reprinted from Information and Software Technology; May 2013, Vol.
55, No. 5, Xie X, Wong WE, Chen TY, Xu B, Metamorphic slice: An application in spectrum-
based fault localization, 866–879, DOI: https://doi.org/10.1016/j.infsof.2012.08.008 (Ref. [8]),
Copyright (2013), with permission from Elsevier.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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Thus, this assumption has severely restricted the application of SBFL. In this
chapter, we will introduce a solution to alleviate such an oracle problem in SBFL
[8].

7.2 A Solution to General Oracle Problem: Metamorphic
Testing

“Oracle problem” means it is impossible or too expensive to verify the correctness of
the computed outputs [5]. For example, in programs computing multiple precision
arithmetic, the operands involved are very large numbers, and hence, the computed
results are very expensive to check. When testing a compiler, it is not easy to
verify whether the generated object code is equivalent to the source code or not.
Other examples include testing programs involving machine learning algorithms,
simulations, combinatorial calculations, graph display in the monitor, etc. [6, 7].

Actually, the oracle problem has been one of the biggest difficulties in software
testing in the past decades, and several attempts have been conducted to alleviate
it. One attempt is to use a “pseudo-oracle,” in which multiple implementations of
an algorithm process the same test case input and the outputs are compared; if the
outputs are not the same, then one or both of the implementations contain a fault.
But this is not always feasible, since multiple implementations may not exist, or
they may have been created by the same developers or by groups of developers who
are prone to making the same types of mistakes. However, even without multiple
implementations, these applications often exhibit properties such that given a test
case input and its output, if the input is modified in a certain way, it should be
possible to predict some characteristics of the new output. This approach is known
as metamorphic testing.

Metamorphic testing (MT) [2, 3] uses some specific properties of the problem
domain, namely, metamorphic relations (MRs), to verify the relationship between
multiple but related test cases and their outputs, rather than verifying the correctness
of the output for each individual test case. Generally speaking, when conducting
MT, we first need to identify the MRs of the program under testing and choose
a test case selection strategy to generate the source test cases, from which the
corresponding follow-up test cases are constructed based on the MRs. Then, we
execute both the source and the follow-up test cases on the program and check
whether their outputs satisfy the corresponding MRs.

Consider a program that searches for the shortest path between any two nodes in
an undirected graph and reports its length. Given a weighted graph G, a start node x,
and a destination node y in G, the target program is to output the shortest path and its
length. Let us denote the length of the shortest path by d(x, y,G). Suppose that the
computed value of d(x, y,G) is 12345. It is very expensive to check whether 12345
is correct due to the combinatorially large number of possible paths between x and
y. Therefore, such a program is said to have the oracle problem. When applying
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MT to this program, we first need to define an MR based on some well-known
properties in graph theory. One possible MR (referred to as MR1) is that the length
of the shortest path will remain unchanged if we swap the start node and destination
node, that is, d(x, y,G)=d(y, x,G). Another possible MR (referred to as MR2) is
that suppose w is any node in the shortest path with x as the start node and y as the
destination node, then the sum of the length of the shortest path from x to w and the
length of the shortest path from w to y shall be equal to the length of the shortest
path from x to y, that is, d(x, y,G)=d(x,w,G)+d(w, y,G).

The core idea is that although it is difficult to verify the correctness of the
individual output, namely, d(x, y,G), d(y, x,G), d(x,w,G), and d(w, y,G), it
is easy to verify whether the MR1 and MR2 are satisfied or not, that is, whether
d(x, y,G)=d(y, x,G) and d(x, y,G)=d(x,w,G)+d(w, y,G). In other words,
for MR1, we can run the program using y as the start node and x as the destination
node; if d(y, x,G) is not equal to 12345, test cases (x, y,G) and (y, x,G) are
said to violate MR1. Then, we can conclude that the program is incorrect. As a
reminder, if d(y, x,G) is also 12345, we can neither conclude the program is correct
nor incorrect. This is due to the limitation of software testing. And the similar
conclusion can be obtained by using MR2. In this example, (x, y,G) is referred
to as the source test case, (y, x,G) is the follow-up test case of MR1, and (x,w,G)

and (w, y,G) are the follow-up test cases of MR2. As shown, follow-up test cases
could be multiple and dependent on both the source test case and the relevant MR.
As a reminder, the source test case involved in an MR need not be a single test case,
and it can be selected according to any test case selection strategies.

For convenience of reference, we will refer a source test case (or a group
of source test cases if appropriate) and its corresponding follow-up test cases as
a metamorphic test group. As a reminder, a metamorphic test group violating
its corresponding MR implies an incorrect program, but a satisfaction of the
corresponding MR does not imply the correctness of the program [2, 3].

7.3 Metamorphic Slice: A Property-Based Program Slice

In this section, we introduce a concept of program slice, namely, metamorphic slice
[8]. It is based on the integration of metamorphic testing and program slicing.
Different from the traditional program slice, metamorphic slice is not only data-
based but also property-based. Intuitively speaking, a metamorphic slice is a group
of slices which are bound together with a specific program property (known as MR).

Corresponding to the traditional static slice, dynamic slice, and execution slice,
we can have static metamorphic slice, dynamic metamorphic slice, and execution
metamorphic slice, respectively. As introduced in Chap. 1, the most adopted spec-
trum is the statement binary coverage, which is essentially execution slice. Thus
here we give the definition of execution metamorphic slice as an illustration.
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Definition 7.3.1 (Execution metamorphic slice) For a metamorphic relation MR,
suppose T S={tS1 , tS2 , . . . , tSks} and T F ={tF1 , tF2 , . . . , tFkf } are its respective set of

source test cases and set of follow-up test cases, such that T S and T F constitute a
metamorphic test group g. The execution metamorphic slice, e_mslice(MR, T S),
is the union of all e_slice(t), where t∈(T S∪T F ). That is,

e_mslice(MR, T S) =
⎛
⎝

ks⋃
i=1

e_slice(tSi )) ∪ (

kf⋃
i=1

e_slice(tFi )

⎞
⎠

Technically speaking, a metamorphic slice has bound the e_slice(t) of all test
cases belonging to a metamorphic test group of MR. For a given MR, each e_mslice

must be associated with a metamorphic testing result of violation or non-violation.
More importantly, regardless of the availability of the testing result of failure or
pass associated with each individual e_slice, such metamorphic testing result is
always available. Thus, if we replace the application of e_slice in SBFL with
the application of e_mslice, respectively, it is always feasible to obtain sufficient
information for fault localization, no matter whether the test oracle is available or
not.

7.4 SBFL with e_mslice

With the above preliminary knowledge, we now can formally introduce the allevia-
tion of oracle problem in SBFL, that is, SBFL with e_mslice [8].

In SBFL with e_mslice, the coverage information is provided by the e_mslice

of each metamorphic test group gi . Suppose there are m metamorphic test groups in
the current metamorphic test suite. Then, there are m e_mslices and m metamorphic
testing results in total. With this information, as shown in Fig. 7.1, we can construct
the counterparts for the matrix and vectors in the conventional SBFL.

Fig. 7.1 Essential
information for SBFL with
e_mslice [8]
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In Fig. 7.1, the vector MTS is the test suite containing m metamorphic test groups.
The j th column of matrix MS represents the corresponding e_mslice of gj , in which
the binary value of “1” in the ith line denotes the membership of statement si in
this e_mslice and 0 otherwise. Besides, the j th element in vector RE records the
corresponding metamorphic testing result for gi , with “v” indicating violated and
“n” indicating non-violated.

The transformation from Fig. 1.1 (essential information for SBFL with e_slice)
to Fig. 7.1 (essential information for SBFL with e_mslice) basically consists of the
following replacements. Each individual test case tj is replaced by a metamorphic
test group gj ; the e_slice for each tj is replaced by e_mslice for each gj ;
and the testing result of failure or pass is replaced by the metamorphic testing
result of violation or non-violation, respectively. After such replacements, the same
procedure can be applied to reformulate the collected information into vector Ai or
each si and to evaluate the risk value ri of si using a formula.

In the conventional SBFL using e_slice, a failed test case implies that a faulty
statement is definitely included in the corresponding e_slice, while a passed test
case does not provide a definite conclusion whether the corresponding e_slice is
free of faulty statement. Similarly, a violated metamorphic test group implies that
there is at least one failed test case within it. Even though it is impossible to know
which test cases are actually the failed ones, we still can conclude that a faulty
statement must be included in the union of all the corresponding e_slices, that is,
the e_mslice. On the other hand, a non-violated metamorphic test group does not
provide a definite conclusion that all the involved test cases are passed, and the
correctness of all statements in the current e_mslice is not guaranteed.

7.5 Illustrative Examples

To conduct SBFL with metamorphic slices, MRs should be first generated for the
program under testing. In this section, we show MRs for two programs, namely,
grep and SeqMap [8].

(1) Program grep and its MRs.
grep is a well-known UNIX utility written in C to perform pattern matching.

Given a pattern to be matched and some input files for searching, grep searches
these files for lines containing a match to the specified pattern. It supports
three different versions of syntax for regular expression, namely, “Basic,”
“Extended,” and “Perl.” By default, grep follows the “Basic” version, and when
a match in a line is found, the whole line is printed to standard output. For
example, grep can be invoked by command: grep “[Gg]r?ep” myfile.txt, where
expression “[Gg]r?ep” is the specified regular expression to be matched and
“myfile.txt” is the input file. grep searches “myfile.txt” for lines containing a
match to pattern “[Gg]r?ep” and prints all lines containing “grep,” “Grep,”
“gep,” or “Gep.”
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However, testing grep is not an easy task, because it may be very difficult to
verify the correctness of its output. As shown in the above example command,
though we can check whether all the printed lines actually contain matches to
the specified pattern, it is almost impossible to know whether grep has printed
all the matched lines, unless we do an exhaustive examination through the entire
file (namely, inspecting every single line of “myfile.txt”). Therefore, grep has the
oracle problem, which makes it impossible to be applied with traditional SBFL
algorithms.

Given the same input file to be scanned, the regular expressions in the source
and follow-up test cases are denoted as rs and rf , respectively. All the three
MRs construct rf that is equivalent to rs . As a consequence, the output of the
follow-up test case (denoted as Of ) should be the same as the output of the
source test case (denoted as Os).

• MR1: Completely decomposing the bracketed sub-expression
In a bracketed regular expression “[x1 . . . xn],” where xi is a single character,
if these characters “x1, . . . , xn” are continuous for the current locale,1 they
can be presented in a compressed way “[x1−xn].” For such a bracketed
regular expression, one of its equivalents is the complete decomposition of
the bracket, by using the symbol “|” that means “or.” In MR1, we construct
rf by completely decomposing such bracketed sub-expressions in rs . For
example, if rs contains a sub-expression “[abcdef ]” or “[a−f ],” then we
have “a|b|c|d|e|f” instead in rf .

• MR2: Splitting the bracketed structure
Consider the bracketed regular expression “[x1 . . . xn]” or “[x1−xn]” again.
Another equivalent format is to split the bracket into two brackets, by using
symbol “|.” In MR2, rf is constructed by replacing such sub-expression in rs
with this equivalent. For example, if rs contains a sub-expression “[abcdef ]”
or “[a−f ],” then we have “[ab]|[c−f ]” instead in rf .

• MR3: Bracketing simple characters
Apart from the reserved words with special meanings, any simple character
in a regular expression should be equivalent to itself enclosed by the brackets,
that is, “a” is equivalent to “[a]” if a is not a reserved word. In MR3, rf is
constructed by replacing some simple characters in rs with their bracketed
formats. For example, if rs contains a sub-expression “abc,” then we have
“[a][b][c]” instead in rf .

(2) Program SeqMap and its MRs.
SeqMap is a Short Sequence Mapping Tool in bioinformatics [4]. Given

a long reference string t and a set of short strings P={p1, . . . , pk}, which
consist of characters taken from the set of alphabets {A, T ,G,C}, as well as
a maximum number of mismatches e, SeqMap finds all substrings in t such that

1In our experiments, we consider the default C locale, where characters are sorted according to
their ASCII codes.
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each substring has an edit distance equal to or less than e against some pi∈P .
Here edit distance refers to the number of operations required to transform
one string to another. The valid edit operations include substitution, insertion,
and deletion. If a pi matches any substring in t with not more than e edit
distance, it is said to be mappable, otherwise unmappable. SeqMap outputs all
the mappable pi with optional information including the mapped location in t ,
the mapped substring of t , the edit distance of this mapping, etc.

Obviously, for each mappable pi , it may be not difficult to verify the
correctness of the printed mapping information. However, it is very expensive
to check whether SeqMap has printed all the possible matching positions in t ,
or whether all the unmappable pi are indeed truly unmappable to t . In other
words, soundness of the output is easy to verify, but not the completeness of the
output. Therefore, SeqMap also has the oracle problem.

For this program, we construct MRs by modifying t and e while keeping P

unchanged. Given a set of short strings P={p1, . . . , pk}, a long reference string
ts , and the specified maximum of mismatches es as a source test case, the output
of the set of all mappable pi is denoted as Ms . Obviously, Ms⊆P . And the set
of unmappable pi is Us=(P\Ms). Let us denote the long reference string and
the specified maximum of mismatches in the follow-up test case as tf and ef ,
respectively. The sets of mappable and unmappable short strings produced by
the follow-up test case are referred to as Mf and Uf , respectively.

• MR1: Concatenating some elements ofP to ts Suppose P1 is a non-empty
subset of P . tf is constructed by concatenating all elements in P1 to the end
of ts one by one. As a consequence,

– For any pi∈Ms , we have pi∈Mf . Thus, Ms⊆Mf .
– For each pi∈(Ms∩P1), the follow-up test case should have at least one

additional mapping location in tf .
– Each pi∈(Us∩P1) should be mapped at least once in tf , that is, we have

pi∈Mf .

• MR2: Deleting a substring in ts
In this MR, tf is constructed from ts by deleting an arbitrary portion of
strings at either the head or the end of ts . As a consequence, for any pi∈Us ,
we have pi∈Uf . Therefore, Us⊆Uf .

• MR3: Changing of es

In this MR, tf =ts . And ef can be set to either greater or smaller than es .

– Consider the case that 0≤ef <es . Then, we have Mf ⊆Ms .
– Consider the case that 0≤es<ef . Then, we have Ms⊆Mf .

Given n source test cases T S={tS1 , tS2 , . . . , tSn }, it is easy to obtain follow-up test

cases through each of the above MRs (denoted as T MRi ={tMRi

1 , t
MRi

2 , . . . , t
MRi
n }

for MRi). By executing both T S and T MRi , we are able to collect the e_slice(tSj )

and e_slice(t
MRi

j ) for each pair of source and follow-up test cases. By following
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Definition 7.3.1, it is always possible to obtain the e_mslice for each pair of source
of follow-up test cases. Furthermore, by checking their outputs against MRi , we are
able to have their metamorphic testing results as violation or non-violation.

Up to now, it will be straightforward to form the matrix shown in Fig. 7.1, as well
as to finish the remained steps for ranking all program statements.
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Chapter 8
Spectrum-Based Fault Localization
for Multiple Faults

Abstract Currently, SBFL for multi-fault scenario has received more and more
attention. In general, there are two common ways to perform multiple fault
localization, namely, sequential debugging (SD) and parallel debugging (PD). SD
executes the program against all failed test cases and all passed test cases in test
suite and achieves the goal of eliminating all faults through localizing one fault at a
time iteratively. PD separates failed test cases and forms a number of fault-focused
clusters (each cluster is aimed at one fault); each fault-focused cluster merged with
passed cases can be executed simultaneously for parallel fault localization. Because
of the lower cost and higher efficiency, PD is more widely investigated. This chapter
will introduce two important techniques of PD, namely, P2 and MSeer.

8.1 Challenge in SBFL: Dealing with Multiple Faults

A lot of studies around spectrum-based fault localization (SBFL) have been carried
out by a significant number of researchers in recent years, but many of them
are based on single-fault environment, that is, assuming that there is only one
fault in the program, which is obviously inconsistent with reality. In single-fault
environment, all failed executions are unquestionably caused by one fault in the
program; however, in multiple-fault environment, various failed executions have
different origins, i.e., the due-to relationship between a failure and its corresponding
fault(s) is not defined in advance, which would decrease the effectiveness of the fault
localization technique.

In general, there are two common ways to solve the problem of multiple-fault
localization: sequential debugging (SD) and parallel debugging (PD). SD executes
the program PG against all failed test cases and all passed test cases in test suite
TS and achieves the goal of eliminating all faults through localizing one fault at a
time iteratively. PD separates failed test cases and forms a number of fault-focused
clusters (each cluster is aimed at one fault); each fault-focused cluster merged with
passed cases can be executed simultaneously for parallel fault localization.
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8.2 Sequential Debugging

Sequential debugging is also known as One-Bug-at-A-time (OBA) method. It is
one of the easiest methods for solving software multiple-fault localization. OBA
starts working when the failures of PG are observed through a given TS. After
localizing and fixing the first fault according to the ranking, the debugger will
continue to execute fixed PG against TS and observe the execution result of TS and
then re-localize and move faults again until no execution failure has been detected.
Figure 8.1 demonstrates the OBA process using SBFL technique.

The detailed steps for OBA using SBFL are as follows:

• Step 1: Execute PG against TS and collect spectrum information simultaneously;
• Step 2: Input the spectrum information into the risk evaluation formula, and then

generate the statement risk value ranking;
• Step 3: Localize and fix one fault according to the ranking;
• Step 4: Repeat Step 1 - Step 3 until no execution failure can be observed.

It is obvious that One-Bug-at-a-time is actually a sequential debugging method
that starts the next localization process only after the current fault has been fixed.
Its evident drawbacks are high costs of time and low efficiency. In addition,
OBA is often used for fault localization based on Bayesian reasoning. However,
Wong et al. pointed out that this is equivalent to assuming that multiple faults
existing in the program are independent of one another [12]; in other words, the
possible correlation between the various faults is disregarded, which is certainly
incompatible with the actual situation. Debroy and Wong investigated the interaction
between multiple faults and found that there were mainly two conditions: destructive
interference and constructive interference [2]. The former refers to the execution
failure, which is triggered when a fault exists on its own, while the execution result
becomes correct when another fault is injected. The latter means that if there is a
certain fault on its own, the execution failure will not be triggered; only if there are
two faults at the same time, the program will show abnormality. The conclusion

Fig. 8.1 An overview of OBA using SBFL technique
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in [2] confirms that destructive interference is more common than constructive
interference.

In summary, OBA not only has the disadvantages of high cost and low efficiency,
but is also often inconsistent with the practice. In order to overcome these drawbacks
of sequential debugging, many researchers are focusing on parallel debugging and
proposing a series of new methods.

8.3 Parallel Debugging

The basic principle of multiple-fault parallel localization is to separate failed cases
in TS according to the similarity measure, so that the failed cases in the same cluster
are triggered by the same fault, and different faults cause the failed cases between
different clusters. That is, the multiple-fault is isolated into multiple single-faults by
generating a number of f ault-f ocused clusters, which reduces the complexity of
the problem.

Clustering is a recognized scheme for separating failed test cases in TS. A proper
representation of failed cases is the prerequisite for a high-quality clustering process.
There are mainly two types of vectors widely used to represent failed test cases.
One is the path of execution coverage, which is a binary vector transformed from
the trace of execution of a failed test case on PG (similar to the representation used
to compute T-proximity). Another is the risk value ranking, which is a statement
risk value list generated by the risk evaluation formula using spectrum information
gathered from a failed case and all passed cases on PG (similar to the representation
used to compute R-proximity). Liu et al. have proved that the latter has higher
efficiency than the former [7], because the fault could trigger execution failure in
various ways. In other words, even failed cases caused by the same fault can have
different paths of execution, which is obviously ignored by the representation using
execution path coverage.

Several researchers have proposed a series of SBFL techniques for multiple-
fault based on R-proximity accordingly, such as P2 proposed by Jones et al. [5]
and MSeer proposed by Gao et al. [3].

8.3.1 Approach: P2

In [5], two parallel debugging techniques for multiple-fault were proposed: P1 based
on behavior models and fault localizing results and P2 based on fault localizing
results only. However, [1, 3, 4] all pointed out that Jones et al. did not provide
technical details for the clustering process of P1 in [5], so P1 was hard to reproduce.
In contrast, P2 has been used by many researchers for experimental comparison.
The detail of P2 is shown in Fig. 8.2.
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Fig. 8.2 An overview of P2

The detailed steps for P2 are as follows:

• Step 1: Execute PG against TS and gather coverage information, and then divide
the test cases in TS into failed cases and passed cases by comparing between
expected outputs and target outputs;

• Step 2: Merge n failed cases with all passed cases to obtain n sub-TSs;
• Step 3: Input spectrum information of n sub-TSs into T arantula to generate n

rankings;
• Step 4: Conduct hierarchical clustering on n rankings according to Jaccard

distance to generate k fault-focused clusters;
• Step 5: Merge the failed cases in k clusters with all passed cases, respectively, to

obtain k fault-focused TSs;
• Step 6: Input the spectrum information of these fault-focused TSs into the risk

evaluation formula to generate k rankings;
• Step 7: Localize and fix the first fault suggested by each ranking;
• Step 8: Repeat Step 1 - Step7 until there is no detectable execution failure.

The distance measure and clustering algorithm in Step 4 is the core of P2 and
will directly affect the effectiveness of this technique. The following describes the
Jaccard distance metric and hierarchical clustering algorithm involved in P2.

For rankings ri and rj that represent two failed test cases, Jaccard computes the
distance (between 0 and 1) by taking the ratio of the intersection of the two rankings
to the union.

Jaccard(ri, rj ) = 1 − |ri ∩ rj |
|ri ∪ rj |

where |ri ∩ rj | and |ri ∪ rj | are the size of the intersection and the union of ri
and rj , respectively. To determine whether the relationship between two rankings is
similar or not similar , P2 sets the threshold = 0.5; ri and rj are not considered
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to be similar unless the distance between them is smaller than the threshold . It
should be noted that when measuring Jaccard distance, P2 only considers the top
MostSusp part of the rankings and the rest are deemed not of interest .

Jones et al. first presented the definition of Expense to evaluate the effectiveness
of P2.

Expense = rank of f ault

size of program
× 100%

Based on Expense, Jones et al. further proposed two metrics, total developer

expense (denote as D) and critical expense to a f ailure-f ree program

(denote as FF ), to conduct a more comprehensive evaluation of P2.

D =
|f aults|∑

i=1

Expensei

FF =
|iterat ions|∑

i=1

max{Expensef |f is a subtask at iteration i}

D is used to evaluate total costs paid by all debuggers to localize all faults in the
program in a sequential or parallel manner and captures essential quantities such
as employee-hours and payroll-expense; FF is used to evaluate the cost to deliver
a failure-free program and can be used to calculate the time required to complete
the multiple-fault localization task. Jones et al. also pointed out that the failure-
free program does not mean the program has no fault, only that it does not present
abnormalities against the current TS.

8.3.2 Approach: MSeer

Gao et al., who are also interested in SBFL for multiple faults, argue that P2 has
two apparent disadvantages. Firstly, all statements are assigned the same weight
by Jaccard distance metric; in other words, no attention is paid to enhancing the
contribution of high-risk value statements when measuring the distance between
rankings, so that the distance between rankings cannot be measured accurately.
Secondly, the hierarchical clustering algorithm does not have strong effectiveness
in the process of multiple-fault localization. Thus, Gao et al. proposed a parallel
debugging method [3], MSeer, which is shown in Fig. 8.3.

There are three fundamental differences in MSeer compared with P2: the use of
Crosstab in ranking generation, the revised Kendall tau metric in distance metric,
and the K-medoids algorithm based on the estimated number of clusters and the
initial medoids.
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Fig. 8.3 An overview of MSeer

(1) Crosstab: A risk evaluation formula. Crosstab is a risk evaluation technique
proposed by Wong et al. [11], which uses spectrum information to construct
a crosstab for each statement by computing the chi-square statistic and the
coefficient of contingency [8]. Crosstab is given by

χ2 = (aef − Eef )2

Eef

+ (aep − Eep)2

Eep

+ (anf − Enf )2

Enf

+ (anp − Enp)2

Enp

Crosstab will first calculate ϕ for each statement to determine its association
with failed and passed execution and then use ϕ to decide if the statement should
be assigned χ2, -χ2, or 0. Please refer to [11] for more details on this technique.

(2) Revised Kendall tau distance. By counting the number of discordant pairs
between two rankings of the same size [6], Kendall tau computes distance
between them directly. Gao et al. pointed out that although Kendall tau distance
has been successfully used in other research such as information retrieval [10]
and bioengineering [9], it cannot be directly applied to SBFL since it assigns
identical weight to all statements. Kendall tau distance metric is given by

D(x, y) =
∑

1≤i<j≤m

K
(
si, sj

)

where x and y are two rankings to be compared and m is the number of
statements included in each ranking. In the original Kendall tau, K(si, sj ) is
defined as follows:

• If (x(si) – x(sj )) × (y(si) – y(sj )) < 0, K(si, sj ) = 1;
• Otherwise, K(si, sj ) = 0

where x(si), x(sj ), y(si), y(sj ) represent the positions of statement si and
statement sj in ranking x and ranking y, respectively. Thus, even though si and
sj are at a very low position in the ranking, their contribution to the distance
would still be the same as that of the statement at a high position in the ranking,
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which is contrary to Gao et al.’s viewpoint. To solve this problem, Gao et al.
proposed a revised Kendall tau distance:

D′(x, y) =
∑

1≤i<j≤N

K ′ (si , sj
)

where x and y are two rankings to be compared and N is the number of
statements included in each ranking. In the revised Kendall tau, K ′(si, sj ) is
defined as follows:

• If (x(si) – x(sj )) × (y(si) – y(sj )) < 0, K ′(si, sj ) = x(si)
−1 + x(sj )

−1 +
y(si)

−1 + y(sj )
−1;

• Otherwise, K ′(si, sj ) = 0

Obviously, the greater is the risk value of si and sj , the higher the value of
K ′(si , sj ), which met Gao et al.’s preceding concept.

(3) Estimation of the number of clusters and assignment of initial medoids.
As a mainstream clustering algorithm, K-medoids is applied in many fields
including software fault localization. One limitation of K-medoids is that the
number of clusters must be determined in advance. Gao et al. argue that
in software multiple-fault localization, the number of clusters generated by
clustering is expected to be the same as the number of faults in PG; however,
the latter is often not known by the debugger, which limits the application
of K-medoids in SBFL for multiple-fault. On the other hand, Gao et al. also
mention that K-medoids has another obvious drawback, i.e., in the process
of minimizing the cost function, K-medoids has to examine each individual
possible combination of rankings as initial medoids, which will make the
cost significantly higher. To eliminate this limitation, Gao et al. proposed an
approach for estimating the number of clusters and determining the initial
medoids simultaneously for K-medoids [3], as mentioned below.

Execute PG against TS, supposing there are n failed test cases in TS. Merge
these n failed cases and all passed cases P respectively to form n sub-TSs, then
input sub-TSs into Crosstab to generate n rankings{r1, r2, r3, . . . , rn}.

• Step 1: Compute the revised Kendall tau distance between ri and rj (1 ≤
i, j ≤ n);

• Step 2: Assign the potential value P 0
i for each ranking ri (1 ≤ i ≤ n);

P 0
i =

n∑
j=1

e−αD′(ri ,rj )2

where α = 4 / ψ2 and ψ equals to half of the 5 percent winsorized mean of
the distance between two distinct rankings.

• Step 3: Once Pθ
i is computed, select the ranking with the highest potential

value as Rθ , and set its potential value as Mθ (randomly choose one when
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multiple rankings share the same highest potential value). Set R0 as the first
cluster medoid and then proceed to Step 4. The criterion for determining the
number of clusters is provided by the algorithm in Algorithm 5.1

Algorithm 5: A criterion to determine the number of clusters [3]
if Mθ>εM0 (ε = 0.5 and ε = 0.15)

Accept Rθ as a cluster medoid and go to Step 4
else if Mθ<εM0

Reject Rθ and stop
else

Let D
′
min = [shortest of the revisited Kendall-tau distance between Rθ and all previously

found cluster medoids]

if
D

′
min

ψ
+ Mθ

M0 ≥ 1

Accept Rθ as a cluster medoid and go to Step 4
else

(1) Reject Rθ and set the potential value of Mθ to 0
(2) Select the ranking with the next highest potential value as Rθ and assign its

potential value as the new Mθ

(3) Repeat the stopping criterion from the beginning
end if

end if

• Step 4: Update the potential value of each ranking, and then go back to Step
3.

Pθ+1
i = Pθ

i − Mθ × e−βD′(ri ,Rθ
)2

where β = 16 / 9ψ2.

It follows that MSeer primarily improves Step 3 and Step 4 of P2. The
detailed process of MSeer is not described here due to the remaining steps of
these two techniques being essentially identical.
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Chapter 9
Conclusion

Abstract This chapter concludes the entire book. This book provides the first
comprehensive guide to fundamental theories in SBFL while addressing some
emerging challenges in this area. We believe that these contents will be helpful to
readers who want to gain deep understanding of SBFL.

SBFL has been extensively investigated, due to its simplicity and effectiveness.
There exist a large number of studies that design new risk evaluation formulas.
But in this book, instead of introducing various formulas, we choose to cover
some fundamental and essential theories, as well as some emerging and challenging
research directions, in SBFL.

The first part of this book (from Chaps. 2, 3, 4, 5, and 6) is about the essential
theories of SBFL. In fact, with the emerging of many risk evaluation formulas, it
is very important to know which one should be used when SBFL is applied. Most
of the related studies have adopted an empirical approach, and hence the reported
results are strongly dependent on the experimental setup. Though researchers used
various approaches to control the threats to validity in order to provide a more
fair comparison of various formulas, the empirical investigations can hardly be
considered as sufficiently comprehensive due to the huge number of possible
combinations of various factors in SBFL.

To tackle this problem, we have proposed the first theoretical framework that
reveals the intrinsic and definite relations among any arbitrary formulas, without
any empirical analysis [5]. Further, we worked together with Prof. Shin Yoo from
Korea Advanced Institute of Science and Technology, Prof. Mark Harman from
University College London, and Prof. Tsong Yueh Chen and Dr. Fei-Ching Kuo
from Swinburne University, to prove the sufficient and necessary condition to the
general maximality [6]. Besides, we have extended the framework to analyze hybrid
SBFL methods [4]. These theories have been elaborated in detail in this book. An
ACM Computing Review on our framework [5] points out that:

There is an unhealthy tendency toward empirical studies in software testing and debugging
research. Researchers use hypothesis testing to determine whether their proposal is better
than that of their predecessors. Reviewers demand more subject programs and larger test
pools for further validation. It is refreshing to see that the authors of this paper do not
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simply rely on empirical studies, but prove mathematically whether various proposals have
hit their mark. [3]

The second part of this book (from Chaps. 7 to 8) introduces some emerging
challenges in SBFL. The first challenge is known as the “oracle problem.” We have
proposed a concept of “metamorphic slice” to address this problem in SBFL, and
this technique is introduced in Chap. 7. The second challenge is to deal with multiple
faults. In this book, we introduce two approaches, namely, P2 (proposed by Jones et
al. [2]) and Mseer (proposed by Gao et al. [1]), in Chap. 8.
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Appendix A
SR
B
, SR

F
, and SR

A
for All Formulas

In Chap. 2, we have presented the set divisions for all formulas in Table 2.1, in the
form of propositions. In this appendix, we will demonstrate and prove the complete
construction process of SR

B , SR
F , and SR

A in these propositions.

(1) Op2
As stated in Table 2.1, formula Op2 is defined as follows.

ROp2(si ) = ai
ef − ai

ep

ai
ep + ai

np + 1

It follows from Lemmas 2.3.1 and 2.3.2 that

ROp2(si )=ai
ef − ai

ep

P+1

ROp2(sf )=F− a
f
ep

P+1

Then, after Definition 2.2.1, we have

S
Op2
B = {si |ai

ef − ai
ep

P+1
> F− a

f
ep

P+1
, 1≤i≤n} (A.1)

S
Op2
F = {si |ai

ef − ai
ep

P+1
= F− a

f
ep

P+1
, 1≤i≤n} (A.2)

S
Op2
A = {si |ai

ef − ai
ep

P+1
< F− a

f
ep

P+1
, 1≤i≤n} (A.3)
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We are going to prove that S
Op2
B , S

Op2
F , and S

Op2
A are equal to the above sets

X1 in (2.1), Y 1 in (2.2), and Z1 in (2.3), respectively.
First, we will prove S

Op2
B =X1. For any si , we have either (ai

ef <F ) or

(ai
ef =F ). Therefore, SOp2

B defined in (A.1) can be rewritten as

S
Op2
B ={si |ai

ef <F and ai
ef − ai

ep

P+1
> F− a

f
ep

P+1
, 1≤i≤n}

∪{si |ai
ef =F and ai

ef − ai
ep

P+1
> F− a

f
ep

P+1
, 1≤i≤n}

Consider the case that ai
ef <F . Then, we have F−ai

ef ≥1. Since ai
ep−a

f
ep≤P

after Lemma 2.3.1, we have
a

f
ep−ai

ep

P+1 <1. Thus,

(
ai
ef − ai

ep

P+1

)
−
(

F− a
f
ep

P+1

)
=a

f
ep−ai

ep

P+1
−
(
F−ai

ef

)
<0

Therefore, we have

ai
ef − ai

ep

P+1
<F− a

f
ep

P+1

which is contradictory to

ai
ef − ai

ep

P+1
>F− a

f
ep

P+1

Thus,

{si |ai
ef <F and ai

ef − ai
ep

P+1
>F− a

f
ep

P+1
, 1≤i≤n}=∅

Hence, we have

S
Op2
B ={si |ai

ef =F and ai
ef − ai

ep

P+1
> F− a

f
ep

P+1
, 1≤i≤n} (A.4)

• Assume that si∈S
Op2
B . After (A.4), we have

ai
ef =F and ai

ef − ai
ep

P+1
>F− a

f
ep

P+1
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Since ai
ef =F , ai

ef − ai
ep

P+1>F− a
f
ep

P+1 becomes
a

f
ep−ai

ep

P+1 >0. Since P+1>0,

then
a

f
ep−ai

ep

P+1 >0 implies a
f
ep−ai

ep>0. Thus, si∈X1 after (2.1). Therefore,

S
Op2
B ⊆X1.

• Assume that si∈X1. After (2.1), we have

ai
ef =F and a

f
ep−ai

ep>0

Since ai
ef =F , we have

a
f
ep−ai

ep=(a
f
ep−ai

ep)−(P+1)(F−ai
ef )>0

Since P+1>0, (a
f
ep−ai

ep)−(P+1)(F−ai
ef )>0 implies ai

ef − ai
ep

P+1

>F− a
f
ep

P+1 . Thus, si∈S
Op2
B after (A.4). Therefore, X1⊆S

Op2
B .

In summary, we have proved that S
Op2
B =X1.

Similarly, we can prove that S
Op2
F =Y 1.

Next, we are going to prove S
Op2
A =Z1. S

Op2
A defined in (A.3) can be rewritten

as

S
Op2
A ={si |ai

ef <F and ai
ef − ai

ep

P+1
< F− a

f
ep

P+1
, 1≤i≤n}

∪{si |ai
ef =F and ai

ef − ai
ep

P+1
< F− a

f
ep

P+1
, 1≤i≤n}

Consider the case that ai
ef <F . As shown in the above proof of S

Op2
B =X1,

ai
ef <F implies ai

ef − ai
ep

P+1<F− a
f
ep

P+1 . Thus, (ai
ef <F and ai

ef − ai
ep

P+1<F− a
f
ep

P+1 )

is logically equivalent to ai
ef <F . Therefore, SOp2

A becomes

{si |ai
ef <F, 1≤i≤n}∪{si |ai

ef =F and ai
ef − ai

ep

P+1
< F− a

f
ep

P+1
, 1≤i≤n}

Similar to the proof of S
Op2
B =X1, {si |ai

ef =F and ai
ef − ai

ep

P+1<F− a
f
ep

P+1, 1≤i≤n}
can be proved to be equivalent to {si |ai

ef =F and a
f
ep−ai

ep<0, 1≤i≤n}.
Therefore,

S
Op2
A ={si |(ai

ef <F) or (ai
ef =F and a

f
ep−ai

ep<0), 1≤i≤n}=Z1

In conclusion, we have proved that S
Op2
B =X1, S

Op2
F =Y 1, and S

Op2
A =Z1.
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(2) Jaccard
As stated in Table 2.1, formula Jaccard is defined as follows.

RJ (si) = ai
ef

ai
ef + ai

nf + ai
ep

It follows from Lemmas 2.3.1 and 2.3.2 that RJ (si)= ai
ef

F+ai
ep

and RJ (sf )=
F

F+a
f
ep

. Then, after Definition 2.2.1, we have

SJ
B={si |

ai
ef

F + ai
ep

>
F

F + a
f
ep

, 1≤i≤n} (A.5)

SJ
F ={si |

ai
ef

F + ai
ep

= F

F + a
f
ep

, 1≤i≤n} (A.6)

SJ
A={si |

ai
ef

F + ai
ep

<
F

F + a
f
ep

, 1≤i≤n} (A.7)

We are going to prove that the above sets SJ
B , SJ

F , and SJ
A are equal to the

following sets, X2, Y 2, and Z2, respectively.

X2={si |ai
ef > 0 and 1 + a

f
ep

F
− F

ai
ef

− ai
ep

ai
ef

> 0, 1≤i≤n} (A.8)

Y 2={si |ai
ef > 0 and 1 + a

f
ep

F
− F

ai
ef

− ai
ep

ai
ef

= 0, 1≤i≤n} (A.9)

Z2={si |(ai
ef = 0) or (ai

ef > 0 and 1 + a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

< 0), 1≤i≤n}
(A.10)

First, we will prove SJ
B=X2. For any si , we have either (ai

ef =0) or (ai
ef >0).

Therefore, SJ
B in (A.5) can be rewritten as

SJ
B={si |ai

ef =0 and
ai
ef

F+ai
ep

>
F

F+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

F+ai
ep

>
F

F+a
f
ep

, 1≤i≤n}



A SR
B , SR

F , and SR
A for All Formulas 99

Consider the case that (ai
ef =0). Since F>0 and (F+a

f
ep)>0 after

Lemma 2.3.1, we have
ai
ef

F+ai
ep

= 0
F+ai

ep
=0< F

F+a
f
ep

, which is contradictory

to
ai
ef

F+ai
ep

> F

F+a
f
ep

. Thus,

{si |ai
ef =0 and

ai
ef

F+ai
ep

>
F

F+a
f
ep

, 1≤i≤n}=∅

Hence, we have

SJ
B = {si |ai

ef >0 and
ai
ef

F+ai
ep

>
F

F+a
f
ep

, 1≤i≤n} (A.11)

• Assume that si∈SJ
B . It follows from (A.11) that (ai

ef >0 and
ai
ef

F+ai
ep

> F

F+a
f
ep

).

Since ai
ef >0, F>0, (F+ai

ep)>0 (after Lemma 2.3.1), and (F+a
f
ep)>0

(after Lemma 2.3.1),
ai
ef

F+ai
ep

> F

F+a
f
ep

implies
F+ai

ep

ai
ef

<
F+a

f
ep

F
. After rear-

ranging the terms, we have 1+ a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0. Thus, si∈X2 after (A.8).

Therefore, SJ
B⊆X2.

• Assume that si∈X2. After (A.8), we have (ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0).

After rearranging the terms, 1+ a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0 becomes
F+ai

ep

ai
ef

<
F+a

f
ep

F
,

which implies
ai
ef

F+ai
ep

> F

F+a
f
ep

after ai
ef >0, F>0, (F+ai

ep)>0, and

(F+a
f
ep)>0. It follows from (A.11) that si∈SJ

B . Therefore, X2⊆SJ
B .

In summary, we have proved that SJ
B=X2.

Similarly, we can prove that SJ
F =Y 2.

Next, we are going to prove SJ
A=Z2. SJ

A in (A.7) can be rewritten as

SJ
A={si |ai

ef =0 and
ai
ef

F+ai
ep

<
F

F+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

F+ai
ep

<
F

F+a
f
ep

, 1≤i≤n}
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Consider the case (ai
ef =0), which implies

ai
ef

F+ai
ep

=0< F

F+a
f
ep

. Thus,

(ai
ef =0 and

ai
ef

F+ai
ep

< F

F+a
f
ep

) is logically equivalent to (ai
ef =0). Therefore,

SJ
A becomes

{si |ai
ef =0, 1≤i≤n}∪{si |ai

ef >0 and
ai
ef

F+ai
ep

<
F

F+a
f
ep

, 1≤i≤n}

Similar to the proof of SJ
B=X2, we can prove

{si |ai
ef >0 and

ai
ef

F+ai
ep

<
F

F+a
f
ep

, 1≤i≤n}

={si |ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0, 1≤i≤n}

Therefore,

SJ
A={si |(ai

ef =0) or (ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0), 1≤i≤n}

=Z2

In conclusion, we have proved that SJ
B=X2, SJ

F =Y 2, and SJ
A=Z2.

(3) Anderberg
As stated in Table 2.1, formula Anderberg is defined as

RAn(si) = ai
ef

ai
ef + 2(ai

nf + ai
ep)

It follows from Lemmas 2.3.1 and 2.3.2 that RAn(si)= ai
ef

2F−ai
ef +2ai

ep

and

RAn(sf )= F

F+2a
f
ep

. Then, after Definition 2.2.1, we have

SAn
B = {si |

ai
ef

2F − ai
ef + 2ai

ep

>
F

F + 2a
f
ep

, 1≤i≤n} (A.12)

SAn
F = {si |

ai
ef

2F − ai
ef + 2ai

ep

= F

F + 2a
f
ep

, 1≤i≤n} (A.13)

SAn
A = {si |

ai
ef

2F − ai
ef + 2ai

ep

<
F

F + 2a
f
ep

, 1≤i≤n} (A.14)
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We are going to prove that SAn
B , SAn

F , and SAn
A are equal to the above sets X2

in (A.8), Y 2 in (A.9), and Z2 in (A.10), respectively.
First, we will prove SAn

B =X2. For any si , we have either (ai
ef =0) or (ai

ef >0).

Therefore, SAn
B in (A.12) can be rewritten as

SAn
B ={si |ai

ef =0 and
ai
ef

2F−ai
ef +2ai

ep

>
F

F+2a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

2F−ai
ef +2ai

ep

>
F

F+2a
f
ep

, 1≤i≤n}

Consider the case that (ai
ef =0). Since F>0 and (F+2a

f
ep)>0 after

Lemma 2.3.1, we have
ai
ef

2F−ai
ef +2ai

ep

=0< F

F+2a
f
ep

, which is contradictory to

ai
ef

2F−ai
ef +2ai

ep

> F

F+2a
f
ep

. Thus,

{si |ai
ef =0 and

ai
ef

2F−ai
ef +2ai

ep

>
F

F+2a
f
ep

, 1≤i≤n}=∅

Hence we have

SAn
B = {si |ai

ef >0 and
ai
ef

2F − ai
ef + 2ai

ep

>
F

F + 2a
f
ep

, 1≤i≤n} (A.15)

• Assume that si∈SAn
B . After (A.15), we have

ai
ef >0 and

ai
ef

2F − ai
ef + 2ai

ep

>
F

F + 2a
f
ep

Since ai
ef >0, F>0, (2F−ai

ef +2ai
ep)>0, and (F+2a

f
ep)>0 (after

Lemma 2.3.1),
ai
ef

2F−ai
ef +2ai

ep

> F

F+2a
f
ep

implies
2F−ai

ef +2ai
ep

ai
ef

<
F+2a

f
ep

F
. After

rearranging the terms, we have

1+a
f
ep

F
− F

ai
ef

−ai
ep

ai
ef

>0

It follows from (A.8) that si∈X2. Therefore, SAn
B ⊆X2.
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• Assume that si∈X2. After (A.8), we have (ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0).

After rearranging the terms, 1+a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0 becomes
2F−ai

ef +2ai
ep

ai
ef

<

F+2a
f
ep

F
, which implies

ai
ef

2F−ai
ef +2ai

ep

> F

F+2a
f
ep

after ai
ef >0, F>0,

(F+2a
f
ep)>0, and (2F−ai

ef +2ai
ep)>0. Then, we have si∈SAn

B after (A.15).

Therefore, X2⊆SAn
B .

In summary, we have proved that SAn
B =X2.

Similarly, we can prove that SAn
F =Y 2.

Next, we are going to prove SAn
A =Z2. SAn

A defined in (A.14) can be rewritten
as follows.

SAn
A ={si |ai

ef =0 and
ai
ef

2F−ai
ef +2ai

ep

<
F

F+2a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

2F−ai
ef +2ai

ep

<
F

F+2a
f
ep

, 1≤i≤n}

Consider the case (ai
ef =0), which implies

ai
ef

2F−ai
ef +2ai

ep

=0< F

F+2a
f
ep

. Thus,

(
ai
ef =0 and

ai
ef

2F−ai
ef +2ai

ep

< F

F+2a
f
ep

)
is logically equivalent to (ai

ef =0). There-

fore, SAn
A becomes

{si |ai
ef =0, 1≤i≤n}∪{si |ai

ef >0 and
ai
ef

2F−ai
ef +2ai

ep

<
F

F+2a
f
ep

, 1≤i≤n}

Similar to the proof of SAn
B =X2, we can prove

{si |ai
ef >0 and

ai
ef

2F−ai
ef +2ai

ep

<
F

F+2a
f
ep

, 1≤i≤n}

={si |ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0, 1≤i≤n}

Therefore, we have

SAn
A ={si |(ai

ef =0) or (ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0), 1≤i≤n}

=Z2

In conclusion, we have proved that SAn
B =X2, SAn

F =Y 2, and SAn
A =Z2.
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(4) Sørensen-Dice
As stated in Table 2.1, formula Sørensen-Dice is defined as follows.

RSD(si) = 2ai
ef

2ai
ef + ai

nf + ai
ep

It follows from Lemmas 2.3.1 and 2.3.2 that RSD(si)= 2ai
ef

ai
ef +ai

ep+F
and

RSD(sf )= 2F

2F+a
f
ep

. Then, after Definition 2.2.1, we have

SSD
B = {si |

2ai
ef

ai
ef +ai

ep + F
>

2F

2F+a
f
ep

, 1≤i≤n} (A.16)

SSD
F = {si |

2ai
ef

ai
ef +ai

ep + F
= 2F

2F+a
f
ep

, 1≤i≤n} (A.17)

SSD
A = {si |

2ai
ef

ai
ef +ai

ep + F
<

2F

2F+a
f
ep

, 1≤i≤n} (A.18)

We are going to prove that SSD
B , SSD

F , and SSD
A are equal to the above sets X2

in (A.8), Y 2 in (A.9), and Z2 in (A.10), respectively.
First, we will prove SSD

B =X2. For any si , we have either (ai
ef =0) or (ai

ef >0).

Therefore, SSD
B in (A.16) can be rewritten as

SSD
B ={si |ai

ef =0 and
2ai

ef

ai
ef + ai

ep + F
>

2F

2F + a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

2ai
ef

ai
ef + ai

ep + F
>

2F

2F + a
f
ep

, 1≤i≤n}

Consider the case that (ai
ef =0). Since F>0 and (2F+a

f
ep)>0 after

Lemma 2.3.1, we have
2ai

ef

ai
ef +ai

ep+F
=0< 2F

2F+a
f
ep

, which is contradictory to

2ai
ef

ai
ef +ai

ep+F
> 2F

2F+a
f
ep

. Thus,

{si |ai
ef =0 and

2ai
ef

ai
ef + ai

ep + F
>

2F

2F + a
f
ep

, 1≤i≤n}=∅
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Hence, we have

SSD
B = {si |ai

ef >0 and
2ai

ef

ai
ef + ai

ep + F
>

2F

2F + a
f
ep

, 1≤i≤n} (A.19)

• Assume that si∈SSD
B . After (A.19), we have

ai
ef >0 and

2ai
ef

ai
ef +ai

ep+F
>

2F

2F+a
f
ep

Since ai
ef >0, F>0, (ai

ef +ai
ep+F)>0, and (2F+a

f
ep)>0 (after Lemma

2.3.1),
2ai

ef

ai
ef +ai

ep+F
> 2F

2F+a
f
ep

implies
ai
ef +ai

ep+F

ai
ef

<
2F+a

f
ep

F
, which can be rear-

ranged as 1+ a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0. Then, we have si∈X2 after (A.8). Therefore,

SSD
B ⊆X2.

• Assume that si∈X2. After (A.8), we have (ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0).

Obviously, 1+a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0 can be rearranged as
ai
ef +ai

ep+F

ai
ef

<
2F+a

f
ep

F
,

which implies
2ai

ef

ai
ef +ai

ep+F
> 2F

2F+a
f
ep

after ai
ef >0, F>0, (ai

ef +ai
ep+F)>0,

and (2F+a
f
ep)>0. Then, we have si∈SSD

B after (A.19). Therefore,
X2⊆SSD

B .

In summary, we have proved that SSD
B =X2.

Similarly, we can prove that SSD
F =Y 2.

Next, we are going to prove SSD
A =Z2. SSD

A in (A.18) can be rewritten as
follows.

SSD
A ={si |ai

ef =0 and
2ai

ef

ai
ef + ai

ep + F
<

2F

2F + a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

2ai
ef

ai
ef + ai

ep + F
<

2F

2F + a
f
ep

, 1≤i≤n}

Consider the case (ai
ef =0), which implies

2ai
ef

ai
ef +ai

ep+F
=0< 2F

2F+a
f
ep

. Thus,

(ai
ef =0 and

2ai
ef

ai
ef +ai

ep+F
< 2F

2F+a
f
ep

) is logically equivalent to (ai
ef =0).
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Therefore, SSD
A becomes

{si |ai
ef =0, 1≤i≤n}∪{si |ai

ef >0 and
2ai

ef

ai
ef +ai

ep + F
<

2F

2F+a
f
ep

, 1≤i≤n}

Similar to the proof of SSD
B =X2, we can prove

{si |ai
ef >0 and

2ai
ef

ai
ef + ai

ep + F
<

2F

2F + a
f
ep

, 1≤i≤n}

={si |ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0, 1≤i≤n}

Therefore, we have

SSD
A ={si |(ai

ef =0) or (ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0), 1≤i≤n}

=Z2

In conclusion, we have proved that SSD
B =X2, SSD

F =Y 2, and SSD
A =Z2.

(5) Dice
As stated in Table 2.1, formula Dice is defined as

RD(si) = 2ai
ef

ai
ef + ai

nf + ai
ep

It follows from Lemmas 2.3.1 and 2.3.2 that RD(si)= 2ai
ef

F+ai
ep

and

RD(sf )= 2F

F+a
f
ep

. Then, after Definition 2.2.1, we have

SD
B = {si |

2ai
ef

F+ai
ep

>
2F

F+a
f
ep

, 1≤i≤n} (A.20)

SD
F = {si |

2ai
ef

F+ai
ep

= 2F

F+a
f
ep

, 1≤i≤n} (A.21)

SD
A = {si |

2ai
ef

F+ai
ep

<
2F

F+a
f
ep

, 1≤i≤n} (A.22)

We are going to prove that SD
B , SD

F , and SD
A are equal to the above sets X2 in

(A.8), Y 2 in (A.9), and Z2 in (A.10), respectively.
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First, we will prove SD
B =X2. For any si , we have either (ai

ef =0) or (ai
ef >0).

Therefore, SD
B defined in (A.20) can be rewritten as

SD
B ={si |ai

ef =0 and
2ai

ef

F+ai
ep

>
2F

F+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

2ai
ef

F+ai
ep

>
2F

F+a
f
ep

, 1≤i≤n}

Consider the case that (ai
ef =0). Since F>0 and (F+a

f
ep)>0 after

Lemma 2.3.1, we have
2ai

ef

F+ai
ep

=0< 2F

F+a
f
ep

, which is contradictory to

2ai
ef

F+ai
ep

> 2F

F+a
f
ep

. Thus,

{si |ai
ef =0 and

2ai
ef

F+ai
ep

>
2F

F+a
f
ep

, 1≤i≤n}=∅

Hence, we have

SD
B ={si |ai

ef >0 and
2ai

ef

F+ai
ep

>
2F

F+a
f
ep

, 1≤i≤n} (A.23)

• Assume that si∈SD
B . After (A.23), we have

ai
ef >0 and

2ai
ef

F+ai
ep

>
2F

F+a
f
ep

Since ai
ef >0, F>0, (F+ai

ep)>0, and (F+a
f
ep)>0 (after Lemma 2.3.1),

we have
F+ai

ep

ai
ef

<
F+a

f
ep

F
from

2ai
ef

F+ai
ep

> 2F

F+a
f
ep

. After rearranging the terms,

F+ai
ep

ai
ef

<
F+a

f
ep

F
becomes 1+a

f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0. It follows from (A.8) that

si∈X2. Therefore, SD
B ⊆X2.

• Assume that si∈X2. After (A.8), we have

ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

>0
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Obviously, 1+a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0 can be rearranged as
F+ai

ep

ai
ef

<
F+a

f
ep

F
, which

implies
2ai

ef

F+ai
ep

> 2F

F+a
f
ep

after ai
ef >0, F>0, (F+ai

ep)>0, and (F+a
f
ep)>0.

Then, we have si∈SD
B after (A.23). Therefore, X2⊆SD

B .

In summary, we have proved that SD
B =X2.

Similarly, we can prove that SD
F =Y 2.

Next, we are going to prove SD
A =Z2. SD

A in (A.22) can be rewritten as follows.

2SD
A ={si |ai

ef =0 and
2ai

ef

F+ai
ep

<
2F

F+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

2ai
ef

F+ai
ep

<
2F

F+a
f
ep

, 1≤i≤n}

Consider the case (ai
ef =0), which implies

2ai
ef

F+ai
ep

=0< 2F

F+a
f
ep

. Thus, (ai
ef =0

and
2ai

ef

F+ai
ep

< 2F

F+a
f
ep

) is logically equivalent to (ai
ef =0). Therefore, SD

A becomes

{si |ai
ef =0, 1≤i≤n}∪{si |ai

ef >0 and
2ai

ef

F+ai
ep

<
2F

F+a
f
ep

, 1≤i≤n}

Similar to the proof of SD
B =X2, we can prove

{si |ai
ef >0 and

2ai
ef

F+ai
ep

<
2F

F+a
f
ep

, 1≤i≤n}

={si |ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0, 1≤i≤n}

Therefore, we have

SD
A ={si |(ai

ef =0) or (ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0), 1≤i≤n}=Z2

In conclusion, we have proved that SD
B =X2, SD

F =Y 2, and SD
A =Z2.

(6) Goodman
As stated in Table 2.1, formula Goodman is defined as

RG(si) = 2ai
ef − ai

nf − ai
ep

2ai
ef + ai

nf + ai
ep
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It follows from Lemmas 2.3.1 and 2.3.2 that RG(si)= 3ai
ef −F−ai

ep

ai
ef +F+ai

ep

and

RG(sf )= 2F−a
f
ep

2F+a
f
ep

. Then, after Definition 2.2.1, we have

SG
B = {si |

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

>
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n} (A.24)

SG
F = {si |

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

=2F−a
f
ep

2F+a
f
ep

, 1≤i≤n} (A.25)

SG
A = {si |

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

<
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n} (A.26)

We are going to prove that SG
B , SG

F , and SG
A are equal to the above sets X2 in

(A.8), Y 2 in (A.9), and Z2 in (A.10), respectively.
First, we will prove SG

B =X2. For any si , we have either (ai
ef =0) or (ai

ef >0).

Therefore, SG
B defined in (A.24) can be rewritten as

SG
B ={si |ai

ef =0 and
3ai

ef −F−ai
ep

ai
ef +F+ai

ep

>
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

>
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n}

Consider the case that (ai
ef =0). Since F>0, we have

2F−a
f
ep

2F+a
f
ep

>−1. Thus, we

have
3ai

ef −F−ai
ep

ai
ef +F+ai

ep

=−1<
2F−a

f
ep

2F+a
f
ep

, which is contradictory to
3ai

ef −F−ai
ep

ai
ef +F+ai

ep

>
2F−a

f
ep

2F+a
f
ep

.

Thus,

{si |ai
ef =0 and

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

>
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n}=∅

Hence, we have

SG
B ={si |ai

ef >0 and
3ai

ef −F−ai
ep

ai
ef +F+ai

ep

>
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n} (A.27)

• Assume that si∈SG
B . After (A.27), we have

ai
ef >0 and

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

>
2F−a

f
ep

2F+a
f
ep
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After rearranging the terms,
3ai

ef −F−ai
ep

ai
ef +F+ai

ep

>
2F−a

f
ep

2F+a
f
ep

becomes

4Fai
ef +4a

f
epai

ef −4Fai
ep−4F 2

(ai
ef +F+ai

ep)(2F+a
f
ep)

>0

Since ai
ef >0 and F>0, we have Fai

ef >0. Furthermore, after Lemma 2.3.1

we have (ai
ef +F+ai

ep)(2F+a
f
ep)>0; thus,

4Fai
ef +4a

f
epai

ef −4Fai
ep−4F 2

(ai
ef +F+ai

ep)(2F+a
f
ep)

>0

implies
Fai

ef +a
f
epai

ef −Fai
ep−F 2

Fai
ef

>0, which can be rearranged as 1+a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0. Then, we have si∈X2 after (A.8). Therefore, SG
B ⊆X2.

• Assume that si∈X2. After (A.8), we have

ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

>0

Obviously, 1+a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

>0 can be rearranged as
Fai

ef +a
f
epai

ef −Fai
ep−F 2

Fai
ef

>0. Since ai
ef >0, we have Fai

ef >0 because F>0. Furthermore, after
Lemma 2.3.1, we have

(ai
ef +F+ai

ep)(2F+a
f
ep)>0

Thus
Fai

ef +a
f
epai

ef −Fai
ep−F 2

Fai
ef

>0 implies
4(Fai

ef +a
f
epai

ef −Fai
ep−F 2)

(ai
ef +F+ai

ep)(2F+a
f
ep)

>0, which

can be rearranged as
3ai

ef −F−ai
ep

ai
ef +F+ai

ep

>
2F−a

f
ep

2F+a
f
ep

. Then, we have si∈SG
B

after (A.27). Therefore, X2⊆SG
B .

In summary, we have proved that SG
B =X2.

Similarly, we can prove that SG
F =Y 2.

Next, we are going to prove SG
A =Z2. SG

A in (A.26) can be rewritten as follows.

SG
A ={si |ai

ef =0 and
3ai

ef −F−ai
ep

ai
ef +F+ai

ep

<
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

<
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n}
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Consider the case that (ai
ef =0). As shown in the above proof of SG

B =X2,

(ai
ef =0) implies

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

<
2F−a

f
ep

2F+a
f
ep

. Thus, (ai
ef =0 and

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

<
2F−a

f
ep

2F+a
f
ep

)

is logically equivalent to (ai
ef =0). Therefore, SG

A becomes

{si |ai
ef =0, 1≤i≤n}∪{si |ai

ef >0 and
3ai

ef −F−ai
ep

ai
ef +F+ai

ep

<
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n}

Similar to the proof of SG
B =X2, we can prove

{si |ai
ef >0 and

3ai
ef −F−ai

ep

ai
ef +F+ai

ep

<
2F−a

f
ep

2F+a
f
ep

, 1≤i≤n}

={si |ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0, 1≤i≤n}

Therefore, we have

SG
A ={si |(ai

ef =0) or (ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

<0), 1≤i≤n}

=Z2

In conclusion, we have proved that SG
B =X2, SG

F =Y 2, and SG
A =Z2.

(7) Tarantula
As stated in Table 2.1, formula Tarantula is defined as follows.

RT (si) = ai
ef

ai
ef + ai

nf

/( ai
ef

ai
ef + ai

nf

+ ai
ep

ai
ep + ai

np

)

It follows from Lemmas 2.3.1 and 2.3.2 that RT (si)= ai
ef

F
/(

ai
ef

F
+ ai

ep

P
) and

RT (sf )=1/(1 + a
f
ep

P
). Then, after Definition 2.2.1, we have

ST
B = {si |

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)>1/(1+a

f
ep

P
), 1≤i≤n} (A.28)

ST
F = {si |

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)=1/(1+a

f
ep

P
), 1≤i≤n} (A.29)

ST
A = {si |

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)<1/(1+a

f
ep

P
), 1≤i≤n} (A.30)
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We are going to prove that ST
B , ST

F , and ST
A are equal to the following sets X3,

Y 3, and Z3, respectively.

X3={si |ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

>0, 1≤i≤n} (A.31)

Y 3={si |ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

=0, 1≤i≤n} (A.32)

Z3={si |(ai
ef = 0) or (ai

ef >0 and
a

f
ep

F
−ai

ep

ai
ef

<0), 1≤i≤n} (A.33)

First, we will prove ST
B =X3. For any si , we have either (ai

ef =0) or (ai
ef >0).

Therefore, ST
B defined in (A.28) can be rewritten as

ST
B ={si |ai

ef =0 and
ai
ef

F
/(

ai
ef

F
+ai

ep

P
)>1/(1+a

f
ep

P
), 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)>1/(1+a

f
ep

P
), 1≤i≤n}

Consider the case that (ai
ef =0). Since (1+a

f
ep

P
)>0 after Lemma 2.3.1, we have

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)=0<1/(1+a

f
ep

P
), which is contradictory to

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)>

1/(1+a
f
ep

P
). Thus,

{si |ai
ef =0 and

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)>1/(1+a

f
ep

P
), 1≤i≤n}=∅

Hence, we have

ST
B ={si |ai

ef >0 and
ai
ef

F
/(

ai
ef

F
+ai

ep

P
)>1/(1+a

f
ep

P
), 1≤i≤n} (A.34)

• Assume that si∈ST
B . After (A.34), we have

ai
ef >0 and

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)>1/(1+a

f
ep

P
)
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Since ai
ep>0, we have F

ai
ef

>0 because F>0. Then,

ai
ef

F
/(

ai
ef

F
+ ai

ep

P
)>1/(1+a

f
ep

P
) implies 1/(1+ai

ep

P
F

ai
ef

)>1/(1+a
f
ep

P
). Further-

more, it follows from F

ai
ef

>0 and Lemma 2.3.1 that (1+ai
ep

P
F

ai
ef

)>0 and

(1+ a
f
ep

P
)>0; then, we have

ai
ep

P
F

ai
ef

<
a

f
ep

P
. Since P

F
>0, after multiplying each

side by P
F

and rearranging the terms, we have
a

f
ep

F
− ai

ep

ai
ef

>0. Then, we have

si∈X3 after (A.31). Therefore, ST
B ⊆X3.

• Assume that si∈X3. After (A.31), we have

ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

>0

Since F
P

>0, after rearranging the terms and multiplying each side by F
P

,
a

f
ep

F
− ai

ep

ai
ef

>0 becomes
ai
ep

P
F

ai
ef

<
a

f
ep

P
. Since ai

ef >0, F>0,
ai
ep

P
>0, and

a
f
ep

P
>0,

ai
ep

P
F

ai
ef

<
a

f
ep

P
implies

ai
ef

F
/(

ai
ef

F
+ ai

ep

P
)>1/(1+a

f
ep

P
). Then, we have si∈ST

B

after (A.34). Therefore, X3⊆ST
B .

In summary, we have proved that ST
B =X3.

Similarly, we can prove that ST
F =Y 3.

Next, we are going to prove ST
A=Z3. ST

A in (A.30) can be rewritten as follows.

ST
A={si |ai

ef =0 and
ai
ef

F
/(

ai
ef

F
+ai

ep

P
)<1/(1+a

f
ep

P
), 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)<1/(1+a

f
ep

P
), 1≤i≤n}

Consider the case (ai
ef =0), which implies

ai
ef

F
/(

ai
ef

F
+ ai

ep

P
)=0<1/(1+a

f
ep

P
).

Thus, (ai
ef =0 and

ai
ef

F
/(

ai
ef

F
+ ai

ep

P
)<1/(1+a

f
ep

P
)) is logically equivalent to

(ai
ef =0). Therefore, ST

A becomes

{si |ai
ef =0, 1≤i≤n}∪{si |ai

ef >0 and
ai
ef

F
/(

ai
ef

F
+ai

ep

P
)<1/(1+a

f
ep

P
), 1≤i≤n}
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Similar to the proof of ST
B =X3, we can prove

{si |ai
ef >0 and

ai
ef

F
/(

ai
ef

F
+ai

ep

P
)<1/(1+a

f
ep

P
), 1≤i≤n}

={si |ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

<0, 1≤i≤n}

Therefore, we have

ST
A={si |(ai

ef = 0) or (ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

<0), 1≤i≤n}

=Z3

In conclusion, we have proved that ST
B =X3, ST

F =Y 3, and ST
A=Z3.

(8) qe
As stated in Table 2.1, formula qe is defined as follows.

RQE(si) = ai
ef

ai
ef + ai

ep

It follows from Lemma 2.3.2 that RQE(sf )= F

F+a
f
ep

. Then, after Defini-

tion 2.2.1, we have

S
QE
B = {si |

ai
ef

ai
ef + ai

ep

>
F

F + a
f
ep

, 1≤i≤n} (A.35)

S
QE
F = {si |

ai
ef

ai
ef + ai

ep

= F

F + a
f
ep

, 1≤i≤n} (A.36)

S
QE
A = {si |

ai
ef

ai
ef + ai

ep

<
F

F + a
f
ep

, 1≤i≤n} (A.37)

We are going to prove that S
QE
B , S

QE
F , and S

QE
A are equal to the above sets X3

in (A.31), Y 3 in (A.32), and Z3 in (A.33), respectively.
First, we will prove S

QE
B =X3. For any si , we have either (ai

ef =0) or (ai
ef >0).

Therefore, SQE
B in (A.35) can be rewritten as

S
QE
B ={si |ai

ef =0 and
ai
ef

ai
ef +ai

ep

>
F

F+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

ai
ef +ai

ep

>
F

F+a
f
ep

, 1≤i≤n}
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Consider the case that (ai
ef =0). Since F>0 and (F+a

f
ep)>0 after

Lemma 2.3.1, we have
ai
ef

ai
ef +ai

ep

=0< F

F+a
f
ep

, which is contradictory to

ai
ef

ai
ef +ai

ep

> F

F+a
f
ep

. Thus,

{si |ai
ef =0 and

ai
ef

ai
ef +ai

ep

>
F

F+a
f
ep

, 1≤i≤n}=∅

Hence, we have

S
QE
B ={si |ai

ef >0 and
ai
ef

ai
ef + ai

ep

>
F

F + a
f
ep

, 1≤i≤n} (A.38)

• Assume that si∈S
QE
B . After (A.38), we have

ai
ef >0 and

ai
ef

ai
ef + ai

ep

>
F

F + a
f
ep

Since ai
ef >0, F>0, we have 1/(1+ ai

ep

ai
ef

)>1/(1+a
f
ep

F
) from

ai
ef

ai
ef +ai

ep

> F

F+a
f
ep

.

Furthermore, since
ai
ep

ai
ef

>0 and
a

f
ep

F
>0 after ai

ef >0, F>0 and Lemma 2.3.1,

1/(1+ ai
ep

ai
ef

)>1/(1+a
f
ep

F
) implies

a
f
ep

F
− ai

ep

ai
ef

>0. Then, we have si∈X3

after (A.31). Therefore, SQE
B ⊆X3.

• Assume that si∈X3. After (A.31), we have

ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

>0

Obviously,
a

f
ep

F
− ai

ep

ai
ef

>0 can be rewritten as
ai
ep

ai
ef

<
a

f
ep

F
. Since

ai
ep

ai
ef

>0 and

a
f
ep

F
>0 after ai

ef >0, F>0 and Lemma 2.3.1,
ai
ep

ai
ef

<
a

f
ep

F
implies 1/(1+ ai

ep

ai
ef

)>

1/(1+a
f
ep

F
). Furthermore, we have

ai
ef

ai
ef +ai

ep

> F

F+a
f
ep

because ai
ef >0 and

F>0. Then, we have si∈S
QE
B after (A.38). Therefore, X3⊆S

QE
B .
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In summary, we have proved that S
QE
B =X3.

Similarly, we can prove that S
QE
F =Y 3.

Next, we are going to prove S
QE
A =Z3. S

QE
A in (A.37) can be rewritten as

follows.

S
QE
A ={si |ai

ef =0 and
ai
ef

ai
ef +ai

ep

<
F

F+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

ai
ef +ai

ep

<
F

F+a
f
ep

, 1≤i≤n}

Consider the case (ai
ef =0), which implies

ai
ef

ai
ef +ai

ep

=0< F

F+a
f
ep

. Thus,

(ai
ef =0 and

ai
ef

ai
ef +ai

ep

< F

F+a
f
ep

) is logically equivalent to (ai
ef =0). Therefore,

S
QE
A becomes

{si |ai
ef =0, 1≤i≤n}∪{si |ai

ef >0 and
ai
ef

ai
ef +ai

ep

<
F

F+a
f
ep

, 1≤i≤n}

Similar to the proof of S
QE
B =X3, {si |ai

ef >0 and
ai
ef

ai
ef +ai

ep

< F

F+a
f
ep

, 1≤i≤n} can

be proved to be equivalent to {si |ai
ef >0 and

a
f
ep

F
− ai

ep

ai
ef

<0, 1≤i≤n}.
Therefore, we have

S
QE
A ={si |(ai

ef = 0) or (ai
ef >0 and

a
f
ep

F
−ai

ep

ai
ef

<0), 1≤i≤n}

=Z3

In conclusion, we have proved that S
QE
B =X3, S

QE
F =Y 3, and S

QE
A =Z3.

(9) CBI Inc.
As stated in Table 2.1, formula CBI Inc. is defined as follows.

RC(si) = ai
ef

ai
ef + ai

ep

− ai
ef + ai

nf

ai
ef + ai

nf + ai
ep + ai

np



116 A SR
B , SR

F , and SR
A for All Formulas

It follows from Lemmas 2.3.1 and 2.3.2 that RC(si)= ai
ef

ai
ef +ai

ep

− F
F+P

and

RC(sf )= F

F+a
f
ep

− F
F+P

. Then, after Definition 2.2.1, we have

SC
B ={si |

ai
ef

ai
ef +ai

ep

− F

F+P
>

F

F+a
f
ep

− F

F+P
, 1≤i≤n}

={si |
ai
ef

ai
ef +ai

ep

>
F

F+a
f
ep

, 1≤i≤n} (A.39)

SC
F ={si |

ai
ef

ai
ef +ai

ep

− F

F+P
= F

F+a
f
ep

− F

F+P
, 1≤i≤n}

={si |
ai
ef

ai
ef +ai

ep

= F

F+a
f
ep

, 1≤i≤n} (A.40)

SC
A={si |

ai
ef

ai
ef +ai

ep

− F

F+P
<

F

F+a
f
ep

− F

F+P
, 1≤i≤n}

={si |
ai
ef

ai
ef +ai

ep

<
F

F+a
f
ep

, 1≤i≤n} (A.41)

Obviously, the above sets defined in (A.39), (A.40), and (A.41) are the same
as S

QE
B in (A.35), S

QE
F in (A.36), and S

QE
A in (A.37), respectively, and hence

are equal to X3 in (A.31), Y 3 in (A.32), and Z3 in (A.33), respectively.
(10) Wong2

As stated in Table 2.1, formula Wong2 is defined as follows.

RW2(si) = ai
ef − ai

ep

After Lemma 2.3.2 and Definition 2.2.1, by rearranging the terms, we have

SW2
B ={si |(ai

ef −F)+(a
f
ep−ai

ep) > 0, 1≤i≤n} (A.42)

SW2
F ={si |(ai

ef −F)+(a
f
ep−ai

ep) = 0, 1≤i≤n} (A.43)

SW2
A ={si |(ai

ef −F)+(a
f
ep−ai

ep) < 0, 1≤i≤n} (A.44)

(11) Hamann
As stated in Table 2.1, formula Hamann is defined as follows.

RHN(si) = ai
ef + ai

np − ai
nf − ai

ep

ai
ef + ai

nf + ai
ep + ai

np
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It follows from Lemmas 2.3.1 and 2.3.2 that RHN(si)=P−F+2ai
ef −2ai

ep

F+P
and

RHN(sf )=P+F−2a
f
ep

F+P
. Then, after Definition 2.2.1, we have

SHN
B = {si |

P−F+2ai
ef −2ai

ep

F+P
>

P+F−2a
f
ep

F+P
, 1≤i≤n} (A.45)

SHN
F = {si |

P−F+2ai
ef −2ai

ep

F+P
=P+F−2a

f
ep

F+P
, 1≤i≤n} (A.46)

SHN
A = {si |

P−F+2ai
ef −2ai

ep

F+P
<

P+F−2a
f
ep

F+P
, 1≤i≤n} (A.47)

We are going to prove that SHN
B , SHN

F , and SHN
A are equal to the above sets

SW2
B in (A.42), SW2

F in (A.43), and SW2
A in (A.44), respectively.

First, we will prove SHN
B =SW2

B .

• Assume that si∈SHN
B . After (A.45), we have

P−F+2ai
ef −2ai

ep

F+P
>

P+F−2a
f
ep

F+P

Since F+P>0, we have

P−F+2ai
ef −2ai

ep>P+F−2a
f
ep

Thus, (ai
ef −F)+(a

f
ep−ai

ep)>0, and hence si∈SW2
B after (A.42). Therefore,

SHN
B ⊆SW2

B .
• Assume that si∈SW2

B . After (A.42), we have

(ai
ef −F)+(a

f
ep−ai

ep)>0

which implies P−F+2ai
ef −2ai

ep>P+F−2a
f
ep. Since F+P>0, we have

P−F+2ai
ef −2ai

ep

F+P
>

P+F−2a
f
ep

F+P

Then, we have si∈SHN
B after (A.45). Therefore, SW2

B ⊆SHN
B .

In summary, we have proved that SHN
B =SW2

B .
Similarly, we can prove SHN

F =SW2
F and SHN

A =SW2
A .
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(12) Simple Matching
As stated in Table 2.1, formula Simple Matching is defined as follows.

RSM(si) = ai
ef + ai

np

ai
ef + ai

nf + ai
ep + ai

np

It follows from Lemmas 2.3.1 and 2.3.2 that RSM(si)=P+ai
ef −ai

ep

F+P
and

RSM(sf )= P+F−a
f
ep

F+P
. Then, after Definition 2.2.1, we have

SSM
B = {si |

P+ai
ef −ai

ep

F+P
>

P+F−a
f
ep

F+P
, 1≤i≤n} (A.48)

SSM
F = {si |

P+ai
ef −ai

ep

F+P
=P+F−a

f
ep

F+P
, 1≤i≤n} (A.49)

SSM
A = {si |

P+ai
ef −ai

ep

F+P
<

P+F−a
f
ep

F+P
, 1≤i≤n} (A.50)

We are going to prove that SSM
B , SSM

F , and SSM
A are equal to the above sets

SW2
B in (A.42), SW2

F in (A.43), and SW2
A in (A.44), respectively.

First, we will prove SSM
B =SW2

B .

• Assume that si∈SSM
B . After (A.48), we have

P+ai
ef −ai

ep

F+P
>

P+F−a
f
ep

F+P

Since F+P>0, we have

P+ai
ef −ai

ep>P+F−a
f
ep

and

(ai
ef −F)+(a

f
ep−ai

ep)>0

After (A.42), si∈SW2
B . Therefore, SSM

B ⊆SW2
B .

• Assume that si∈SW2
B . After (A.42), we have

(ai
ef −F)+(a

f
ep−ai

ep)>0

and hence

P+ai
ef −ai

ep>P+F−a
f
ep
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Since F+P>0, we have

P+ai
ef −ai

ep

F+P
>

P+F−a
f
ep

F+P

Then, after (A.48), si∈SSM
B . Therefore, SW2

B ⊆SSM
B .

In summary, we have proved that SSM
B =SW2

B .
Similarly, we can prove SSM

F =SW2
F and SSM

A =SW2
A .

(13) Sokal
As stated in Table 2.1, formula Sokal is defined as follows.

RS(si) = 2(ai
ef + ai

np)

2(ai
ef + ai

np) + ai
nf + ai

ep

It follows from Lemmas 2.3.1 and 2.3.2 that RS(si)= 2P+2ai
ef −2ai

ep

2P+F+ai
ef −ai

ep

and

RS(sf )=2P+2F−2a
f
ep

2P+2F−a
f
ep

. Then, after Definition 2.2.1, we have

SS
B = {si |

2P+2ai
ef −2ai

ep

2P+F+ai
ef −ai

ep

>
2P+2F−2a

f
ep

2P+2F−a
f
ep

, 1≤i≤n} (A.51)

SS
F = {si |

2P+2ai
ef −2ai

ep

2P+F+ai
ef −ai

ep

=2P+2F−2a
f
ep

2P+2F−a
f
ep

, 1≤i≤n} (A.52)

SS
A = {si |

2P+2ai
ef −2ai

ep

2P+F+ai
ef −ai

ep

<
2P+2F−2a

f
ep

2P+2F−a
f
ep

, 1≤i≤n} (A.53)

We are going to prove that SS
B , SS

F , and SS
A are equal to the above sets SW2

B in
(A.42), SW2

F in (A.43), and SW2
A in (A.44), respectively.

First, we will prove SS
B=SW2

B .

• Assume that si∈SS
B . After (A.51), we have

2P+2ai
ef −2ai

ep

2P+F+ai
ef −ai

ep

>
2P+2F−2a

f
ep

2P+2F−a
f
ep

Since (2P+F+ai
ef −ai

ep)>0 and (2P+2F−a
f
ep)>0 after Lemma 2.3.1, we

have

(2P+2ai
ef −2ai

ep)(2P+2F−a
f
ep)>(2P+2F−2a

f
ep)(2P+F+ai

ef −ai
ep)



120 A SR
B , SR

F , and SR
A for All Formulas

After simplification, we have

(F+P)(ai
ef −F+a

f
ep−ai

ep)>0

Since F+P>0, we have

(ai
ef −F)+(a

f
ep−ai

ep)>0

After (A.42), si∈SW2
B . Therefore, SS

B⊆SW2
B .

• Assume that si∈SW2
B . After (A.42), we have

(ai
ef −F)+(a

f
ep−ai

ep)>0

which implies

2(F+P)(ai
ef −F+a

f
ep−ai

ep)>0

because F+P>0.
It can be proved that

2(F+P)(ai
ef −F+a

f
ep−ai

ep)

=(2P+2ai
ef −2ai

ep)(2P+2F−a
f
ep)−(2P+2F−2a

f
ep)(2P+F+ai

ef −ai
ep)

Thus, we have

(2P+2ai
ef −2ai

ep)(2P+2F−a
f
ep)>(2P+2F−2a

f
ep)(2P+F+ai

ef −ai
ep)

It follows from Lemma 2.3.1 that (2P+F+ai
ef −ai

ep)>0 and (2P+2F−a
f
ep)

>0. Thus, we have

2P+2ai
ef −2ai

ep

2P+F+ai
ef −ai

ep

>
2P+2F−2a

f
ep

2P+2F−a
f
ep

After (A.51), si∈SS
B . Therefore, SW2

B ⊆SS
B .

In summary, we have proved that SS
B=SW2

B .
Similarly, we can prove SS

F =SW2
F and SS

A=SW2
A .

(14) Rogers & Tanimoto
As stated in Table 2.1, formula Rogers & Tanimoto is defined as follows.

RRT (si) = ai
ef + ai

np

ai
ef + ai

np + 2(ai
nf + ai

ep)
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It follows from Lemmas 2.3.1 and 2.3.2 that RRT (si)= P+ai
ef −ai

ep

2F+P−ai
ef +ai

ep

and

RRT (sf )=F+P−a
f
ep

F+P+a
f
ep

. Then, after Definition 2.2.1, we have

SRT
B = {si |

P+ai
ef −ai

ep

2F+P−ai
ef +ai

ep

>
F+P−a

f
ep

F+P+a
f
ep

, 1≤i≤n} (A.54)

SRT
F = {si |

P+ai
ef −ai

ep

2F+P−ai
ef +ai

ep

=F+P−a
f
ep

F+P+a
f
ep

, 1≤i≤n} (A.55)

SRT
A = {si |

P+ai
ef −ai

ep

2F+P−ai
ef +ai

ep

<
F+P−a

f
ep

F+P+a
f
ep

, 1≤i≤n} (A.56)

We are going to prove that SRT
B , SRT

F , and SRT
A are equal to the above sets SW2

B

in (A.42), SW2
F in (A.43), and SW2

A in (A.44), respectively.
First, we will prove SRT

B =SW2
B .

• Assume that si∈SRT
B . After (A.54), we have

P+ai
ef −ai

ep

2F+P−ai
ef +ai

ep

>
F+P−a

f
ep

F+P+a
f
ep

Since (2F+P−ai
ef +ai

ep)>0 and (F+P+a
f
ep)>0 after Lemma 2.3.1, we

have

(P+ai
ef −ai

ep)(F+P+a
f
ep)>(F+P−a

f
ep)(2F+P−ai

ef +ai
ep)

After simplification, we have

(F+P)(ai
ef −F+a

f
ep−ai

ep)>0

Since F+P>0, we have

(ai
ef −F)+(a

f
ep−ai

ep)>0

After (A.42), si∈SW2
B . Therefore, SRT

B ⊆SW2
B .

• Assume that si∈SW2
B . After (A.42), we have

(ai
ef −F)+(a

f
ep−ai

ep)>0
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which implies

(F+P)(ai
ef −F+a

f
ep−ai

ep)>0

because F+P>0. It can be proved that

(F+P)(ai
ef −F+a

f
ep−ai

ep)

=(P+ai
ef −ai

ep)(F+P+a
f
ep)−(F+P−a

f
ep)(2F+P−ai

ef +ai
ep)

Thus, we have

(P+ai
ef −ai

ep)(F+P+a
f
ep)>(F+P−a

f
ep)(2F+P−ai

ef +ai
ep)

Since (2F+P−ai
ef +ai

ep)>0 and (F+P+a
f
ep)>0 after Lemma 2.3.1, we

have

P+ai
ef −ai

ep

2F+P−ai
ef +ai

ep

>
F+P−a

f
ep

F+P+a
f
ep

After (A.54), si∈SRT
B . Thus SW2

B ⊆SRT
B .

In summary, we have proved that SRT
B =SW2

B .
Similarly, we can prove SRT

F =SW2
F and SRT

A =SW2
A .

(15) Hamming etc.
As stated in Table 2.1, Hamming etc. is defined as follows.

RHM(si) = ai
ef + ai

np

After Lemmas 2.3.1 and 2.3.2 and Definition 2.2.1, we have

SHM
B = {si |ai

ef +P−ai
ep>F+P−a

f
ep, 1≤i≤n} (A.57)

SHM
F = {si |ai

ef +P−ai
ep=F+P−a

f
ep, 1≤i≤n} (A.58)

SHM
A = {si |ai

ef +P−ai
ep<F+P−a

f
ep, 1≤i≤n} (A.59)

It is obvious that the above sets defined in (A.57), (A.58), and (A.59) are equal
to SW2

B in (A.42), SW2
F in (A.43), and SW2

A in (A.44), respectively.
(16) Euclid

As stated in Table 2.1, formula Euclid is defined as follows.

RE(si) =
√

ai
ef + ai

np
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After Lemmas 2.3.1 and 2.3.2 and Definition 2.2.1, we have

SE
B = {si |

√
ai
ef +P−ai

ep>

√
F+P−a

f
ep, 1≤i≤n} (A.60)

SE
F = {si |

√
ai
ef +P−ai

ep=
√

F+P−a
f
ep, 1≤i≤n} (A.61)

SE
A = {si |

√
ai
ef +P−ai

ep<

√
F+P−a

f
ep, 1≤i≤n} (A.62)

Since ai
ef +P−ai

ep≥0 and F+P−a
f
ep>0 after Lemma 2.3.1, obviously,

√
ai
ef +P−ai

epΘ

√
F+P−a

f
ep

if and only if

(ai
ef +P−ai

ep)Θ(F+P−a
f
ep)

where “Θ” is “<,” “=,” or “>.” As a consequence, sets defined in (A.60),
(A.61), and (A.62) are equal to sets in (A.57), (A.58), and (A.59), respectively.
Therefore, SE

B , SE
F , and SE

A are equal to SW2
B , SW2

F , and SW2
A , respectively.

(17) Wong1
As stated in Table 2.1, formula Wong1 is defined as follows.

RW1(si) = ai
ef

It follows from Lemma 2.3.2 that RW1(sf )=F . Then, after Definition 2.2.1,
we have

SW1
B = {si |ai

ef >F, 1≤i≤n} (A.63)

SW1
F = {si |ai

ef =F, 1≤i≤n} (A.64)

SW1
A = {si |ai

ef <F, 1≤i≤n} (A.65)

Since ai
ef ≤F after Lemma 2.3.1, we have SW1

B =∅.
(18) Russell & Rao

As stated in Table 2.1, formula Russell & Rao is defined as follows.

RRR(si) = ai
ef

ai
ef + ai

nf + ai
ep + ai

np
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It follows from Lemmas 2.3.1 and 2.3.2 that RRR(si)= ai
ef

F+P
and

RRR(sf )= F
F+P

. Then, after Definition 2.2.1, we have

SRR
B = {si |

ai
ef

F + P
>

F

F + P
, 1≤i≤n} (A.66)

SRR
F = {si |

ai
ef

F + P
= F

F + P
, 1≤i≤n} (A.67)

SRR
A = {si |

ai
ef

F + P
<

F

F + P
, 1≤i≤n} (A.68)

Since F+P>0, obviously, (
ai
ef

F+P
Θ F

F+P
) if and only if (ai

ef ΘF), where “Θ”
is <, =, or >. As a consequence, sets defined in (A.66), (A.67), and (A.68)
are equal to sets defined in (A.63), (A.64), and (A.65), respectively.

(19) Binary
As stated in Table 2.1, formula Binary is defined as follows.

RB(si) =
{

0 if ai
ef <F

1 if ai
ef =F

It follows from Lemma 2.3.2 that RB(sf )=1. Then, after Definition 2.2.1, we
have

SB
B ={si |(ai

ef <F and 0>1) or (ai
ef =F and 1>1), 1≤i≤n} (A.69)

SB
F ={si |(ai

ef <F and 0=1) or (ai
ef =F and 1=1), 1≤i≤n} (A.70)

SB
A={si |(ai

ef <F and 0<1) or (ai
ef =F and 1<1), 1≤i≤n} (A.71)

We are going to prove that SB
B , SB

F , and SB
A are equal to sets SW1

B in (A.63),
SW1

F in (A.64), and SW1
A in (A.65), respectively.

Firstly, we will prove SB
B =SW1

B . It is obvious that neither (0>1) nor (1>1) is
possible. Thus, SB

B =∅=SW1
B .

Secondly, we will prove SB
F =SW1

F . SB
F defined in (A.70) can be rewritten as

SB
F ={si |ai

ef <F and 0=1, 1≤i≤n}
∪{si |ai

ef =F and 1=1, 1≤i≤n}

Obviously, (0=1) is false and (ai
ef =F and 1=1) is logically equivalent to

(ai
ef =F). Thus, SB

F becomes {si |ai
ef =F, 1≤i≤n}=SW1

F .

Similarly, we can prove that SB
A={si |ai

ef <F, 1≤i≤n}=SW1
A .
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In conclusion, SB
B in (A.69), SB

F in (A.70), and SB
A in (A.71) are equal to sets

defined in (A.63), (A.64), and (A.65), respectively.
(20) Scott

As stated in Table 2.1, formula Scott is defined as follows.

RSC(si) = 4ai
ef ai

np−4ai
nf ai

ep−(ai
nf −ai

ep)2

(2ai
ef +ai

nf +ai
ep)(2ai

np+ai
nf +ai

ep)

From Definition 2.2.1 and Lemmas 2.3.1 and 2.3.2, after simplification, we
have

SSC
B ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

>
4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n} (A.72)

SSC
F ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

=4PF−4Fa
f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n} (A.73)

SSC
A ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

<
4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n} (A.74)

(21) Rogot1
As stated in Table 2.1, formula Rogot1 is defined as follows.

RRO(si) = 1

2

(
ai
ef

2ai
ef +ai

nf +ai
ep

+ ai
np

2ai
np+ai

nf +ai
ep

)

It follows from Lemmas 2.3.1 and 2.3.2 that

RRO(sf )=1

2

(
F

2F+a
f
ep

+ P−a
f
ep

2P−a
f
ep

)
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and

RRO(si)=1

2

(
ai
ef

2ai
ef +F−ai

ef +ai
ep

+ P−ai
ep

2(P−ai
ep)+F−ai

ef +ai
ep

)

Then, after Definition 2.2.1, we have

SRO
B ={si |1

2

(
ai
ef

2ai
ef +F−ai

ef +ai
ep

+ P−ai
ep

2(P−ai
ep)+F−ai

ef +ai
ep

)

>
1

2

(
F

2F+a
f
ep

+ P−a
f
ep

2P−a
f
ep

)
, 1≤i≤n} (A.75)

SRO
F ={si |1

2

(
ai
ef

2ai
ef +F−ai

ef +ai
ep

+ P−ai
ep

2(P−ai
ep)+F−ai

ef +ai
ep

)

=1

2

(
F

2F+a
f
ep

+ P−a
f
ep

2P−a
f
ep

)
, 1≤i≤n} (A.76)

SRO
A ={si |1

2

(
ai
ef

2ai
ef +F−ai

ef +ai
ep

+ P−ai
ep

2(P−ai
ep)+F−ai

ef +ai
ep

)

<
1

2

(
F

2F+a
f
ep

+ P−a
f
ep

2P−a
f
ep

)
, 1≤i≤n} (A.77)

We are going to prove that the sets SRO
B , SRO

F , and SRO
A are equal to SSC

B in
(A.72), SSC

F in (A.73), and SSC
A in (A.74), respectively.

First, we will prove SRO
B =SSC

B .

• Assume that si∈SRO
B . After (A.75), we have

1

2

(
ai
ef

2ai
ef +F−ai

ef +ai
ep

+ P−ai
ep

2(P−ai
ep)+F−ai

ef +ai
ep

)

>
1

2

(
F

2F+a
f
ep

+ P−a
f
ep

2P−a
f
ep

)

which implies

ai
ef

2ai
ef +F−ai

ef +ai
ep

+ P−ai
ep

2(P−ai
ep)+F−ai

ef +ai
ep

−1

>
F

2F+a
f
ep

+ P−a
f
ep

2P−a
f
ep

−1
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After rearranging the terms, we have

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

>
4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

Thus, si∈SSC
B after (A.72). Therefore, SRO

B ⊆SSC
B .

• Assume that si∈SSC
B . After (A.72), we have

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)

>
4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

which implies

1

2

(−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)
+1

)

>
1

2

(
4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

+1

)

After rearranging the terms, we have

1

2

(
ai
ef

2ai
ef +F−ai

ef +ai
ep

+ P−ai
ep

2(P−ai
ep)+F−ai

ef +ai
ep

)

>
1

2

(
F

2F+a
f
ep

+ P−a
f
ep

2P−a
f
ep

)

It follows from (A.75) that si∈SRO
B . Therefore, SSC

B ⊆SRO
B .

In summary, we have proved that SRO
B =SSC

B .
Similarly, we can prove SRO

F =SSC
F and SRO

A =SSC
A .

(22) Kulczynski2
As stated in Table 2.1, formula Kulczynski2 is defined as follows.

RK2(si ) = 1

2
(

ai
ef

ai
ef + ai

nf

+ ai
ef

ai
ef + ai

ep

)
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It follows from Lemmas 2.3.1 and 2.3.2 that RK2(si )= 1
2 (

ai
ef

F
+ ai

ef

ai
ef +ai

ep

) and

RK2(sf )= 1
2 (1+ F

F+a
f
ep

). Then, after Definition 2.2.1, we have

SK2
B ={si |1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)>
1

2
(1+ F

F+a
f
ep

), 1≤i≤n} (A.78)

SK2
F ={si |1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)=1

2
(1+ F

F+a
f
ep

), 1≤i≤n} (A.79)

SK2
A ={si |1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)<
1

2
(1+ F

F+a
f
ep

), 1≤i≤n} (A.80)

We are going to prove that the above sets SK2
B , SK2

F , and SK2
A are equal to the

following sets XK2, YK2, and ZK2, respectively.

XK2={si |ai
ef >0 and

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

>0,

1≤i≤n} (A.81)

YK2={si |ai
ef >0 and

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

=0,

1≤i≤n} (A.82)

ZK2={si |(ai
ef = 0) or (ai

ef >0 and
ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

<0),

1≤i≤n} (A.83)

First, we will prove SK2
B =XK2. For any si , we have either (ai

ef =0) or (ai
ef >0).

Therefore, SK2
B defined in (A.78) can be rewritten as

SK2
B ={si |ai

ef =0 and
1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)>
1

2
(1+ F

F+a
f
ep

), 1≤i≤n}

∪{si |ai
ef >0 and

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)>
1

2
(1+ F

F+a
f
ep

), 1≤i≤n}
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Consider the case that (ai
ef =0). Since F>0 and F+a

f
ep>0 after Lemma 2.3.1,

we have 1
2 (

ai
ef

F
+ ai

ef

ai
ef +ai

ep

)=0< 1
2 (1+ F

F+a
f
ep

), which is contradictory to

1
2 (

ai
ef

F
+ ai

ef

ai
ef +ai

ep

)> 1
2 (1+ F

F+a
f
ep

). Thus,

{si |ai
ef =0 and

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)>
1

2
(1+ F

F+a
f
ep

), 1≤i≤n}=∅

Hence, we have

SK2
B ={si |ai

ef >0 and
1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)>
1

2
(1+ F

F+a
f
ep

), 1≤i≤n} (A.84)

• Assume that si∈SK2
B . After (A.84), we have

ai
ef >0 and

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)>
1

2
(1+ F

F+a
f
ep

)

By simplification and rearrangement of the terms,

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)>
1

2
(1+ F

F+a
f
ep

)

becomes

ai
ef

ai
ef +ai

ep

>
F(2F+a

f
ep)−ai

ef (F+a
f
ep)

F (F+a
f
ep)

It follows from F>0 and Lemma 2.3.1 that ai
ef +ai

ep>0, F(F+a
f
ep)>0,

and F(2F+a
f
ep)−ai

ef (F+a
f
ep)>0. Since ai

ef >0,

ai
ef

ai
ef +ai

ep

>
F(2F+a

f
ep)−ai

ef (F+a
f
ep)

F (F+a
f
ep)

implies

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

>0

After (A.81), si∈XK2 . Therefore, SK2
B ⊆XK2.
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• Assume that si∈XK2. After (A.81), we have

ai
ef >0 and

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

>0

Then,

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

>0

can be rewritten as

ai
ep

ai
ef

<
F(F+a

f
ep)

F (2F+a
f
ep)−ai

ef (F+a
f
ep)

−1

Since ai
ef >0, ai

ef +ai
ep>0, F(F+a

f
ep)>0, and F(2F+a

f
ep)−ai

ef (F+a
f
ep)>0

after Lemma 2.3.1,

ai
ep

ai
ef

<
F(F+a

f
ep)

F (2F+a
f
ep)−ai

ef (F+a
f
ep)

−1

implies

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)>
1

2
(1+ F

F+a
f
ep

)

Then, we have si∈SK2
B after (A.84). Therefore, XK2⊆SK2

B .

In summary, we have proved that SK2
B =XK2.

Similarly, we can prove that SK2
F =YK2.

Next, we are going to prove SK2
A =ZK2. SK2

A in (A.80) can be rewritten as
follows.

SK2
A ={si |ai

ef =0 and
1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)<
1

2
(1+ F

F+a
f
ep

), 1≤i≤n}

∪{si |ai
ef >0 and

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)<
1

2
(1+ F

F+a
f
ep

), 1≤i≤n}
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Consider the case (ai
ef =0), which implies

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)=0<
1

2
(1+ F

F+a
f
ep

)

Thus,

ai
ef =0 and

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)<
1

2
(1+ F

F+a
f
ep

)

is logically equivalent to (ai
ef =0). Therefore, SK2

A becomes

{si |ai
ef =0, 1≤i≤n}

∪{si |ai
ef >0 and

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)<
1

2
(1+ F

F+a
f
ep

), 1≤i≤n}

Similar to the proof of SK2
B =XK2, we can prove

{si |ai
ef >0 and

1

2
(
ai
ef

F
+ ai

ef

ai
ef +ai

ep

)<
1

2
(1+ F

F+a
f
ep

), 1≤i≤n}

={si |ai
ef >0 and

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

<0, 1≤i≤n}

Therefore, we have

SK2
A ={si |(ai

ef = 0) or (ai
ef >0 and

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

<0), 1≤i≤n}

=ZK2

In conclusion, we have proved that SK2
B =XK2, SK2

F =YK2, and SK2
A =ZK2.

(23) M2
As stated in Table 2.1, formula M2 is defined as follows.

RM2(si ) = ai
ef

ai
ef + ai

np + 2(ai
nf + ai

ep)
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It follows from Lemmas 2.3.1 and 2.3.2 that RM2(si)= ai
ef

2F+P−ai
ef +ai

ep

and

RM2(sf )= F

F+P+a
f
ep

. Then, after Definition 2.2.1, we have

SM2
B ={si |

ai
ef

2F+P−ai
ef +ai

ep

>
F

F+P+a
f
ep

, 1≤i≤n} (A.85)

SM2
F ={si |

ai
ef

2F+P−ai
ef +ai

ep

= F

F+P+a
f
ep

, 1≤i≤n} (A.86)

SM2
A ={si |

ai
ef

2F+P−ai
ef +ai

ep

<
F

F+P+a
f
ep

, 1≤i≤n} (A.87)

We are going to prove that the above sets SM2
B , SM2

F , and SM2
A are equal to the

following sets XM2, YM2, and ZM2, respectively.

XM2={si |ai
ef >0 and

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

>0, 1≤i≤n} (A.88)

YM2={si |ai
ef >0 and

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

=0, 1≤i≤n} (A.89)

ZM2={si |(ai
ef = 0) or (ai

ef >0 and
P+a

f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

<0), 1≤i≤n}
(A.90)

First, we will prove SM2
B =XM2. For any si , we have either (ai

ef =0) or (ai
ef >0).

Therefore, SM2
B defined in (A.85) can be rewritten as

SM2
B ={si |ai

ef =0 and
ai
ef

2F+P−ai
ef +ai

ep

>
F

F+P+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

2F+P−ai
ef +ai

ep

>
F

F+P+a
f
ep

, 1≤i≤n}

Consider the case that (ai
ef =0). Since F>0 and F+P+a

f
ep>0 after

Lemma 2.3.1, we have
ai
ef

2F+P−ai
ef +ai

ep

=0< F

F+P+a
f
ep

, which is contradictory to

ai
ef

2F+P−ai
ef +ai

ep

>
F

F+P+a
f
ep
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Thus,

{si |ai
ef =0 and

ai
ef

2F+P−ai
ef +ai

ep

>
F

F+P+a
f
ep

, 1≤i≤n}=∅

Then, we have

SM2
B ={si |ai

ef >0 and
ai
ef

2F+P−ai
ef +ai

ep

>
F

F+P+a
f
ep

, 1≤i≤n} (A.91)

• Assume that si∈SM2
B . After (A.91), we have

ai
ef >0 and

ai
ef

2F+P−ai
ef +ai

ep

>
F

F+P+a
f
ep

Since ai
ef >0, F>0, (2F+P−ai

ef +ai
ep)>0, and (F+P+a

f
ep)>0 (after

Lemma 2.3.1), we have

2F+P−ai
ef +ai

ep

ai
ef

<
F+P+a

f
ep

F

After rearranging the terms, we have

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

>0

After (A.88), si∈XM2. Therefore, SM2
B ⊆XM2.

• Assume that si∈XM2. After (A.88), we have

ai
ef >0 and

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

>0

It is easy to know that

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

>0
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can be rewritten as

2F+P−ai
ef +ai

ep

ai
ef

<
F+P+a

f
ep

F

Since ai
ef >0, F>0, (2F+P−ai

ef +ai
ep)>0, and (F+P+a

f
ep)>0, we have

ai
ef

2F+P−ai
ef +ai

ep

>
F

F+P+a
f
ep

Then, we have si∈SM2
B after (A.91). Therefore, XM2⊆SM2

B .

In summary, we have proved that SM2
B =XM2.

Similarly, we can prove that SM2
F =YM2.

Next, we are going to prove SM2
A =ZM2. SM2

A in (A.87) can be rewritten as
follows.

SM2
A ={si |ai

ef =0 and
ai
ef

2F+P−ai
ef +ai

ep

<
F

F+P+a
f
ep

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

2F+P−ai
ef +ai

ep

<
F

F+P+a
f
ep

, 1≤i≤n}

Consider the case (ai
ef =0), which implies

ai
ef

2F+P−ai
ef +ai

ep

=0<
F

F+P+a
f
ep

Thus,

(ai
ef =0 and

ai
ef

2F+P−ai
ef +ai

ep

<
F

F+P+a
f
ep

)

is logically equivalent to (ai
ef =0).

Therefore, SM2
A becomes

{si |ai
ef =0, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

2F+P−ai
ef +ai

ep

<
F

F+P+a
f
ep

, 1≤i≤n}
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Similar to the proof of SM2
B =XM2, we can prove

{si |ai
ef >0 and

ai
ef

2F+P−ai
ef +ai

ep

<
F

F+P+a
f
ep

, 1≤i≤n}

={si |ai
ef >0 and

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

<0, 1≤i≤n}

Therefore, we have

SM2
A ={si |(ai

ef = 0) or (ai
ef >0 and

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

<0), 1≤i≤n}

=ZM2

In conclusion, we have proved that SM2
B =XM2, SM2

F =YM2, and SM2
A =ZM2.

(24) Ochiai
As stated in Table 2.1, formula Ochiai is defined as follows.

RO(si) = ai
ef√

(ai
ef + ai

nf )(ai
ef + ai

ep)

It follows from Lemmas 2.3.1 and 2.3.2 that RO(si)= ai
ef√

F(ai
ef +ai

ep)
and

RO(sf )= F√
F(F+a

f
ep)

. Then, after Definition 2.2.1, we have

SO
B ={si |

ai
ef√

F(ai
ef +ai

ep)
>

F√
F(F+a

f
ep)

, 1≤i≤n} (A.92)

SO
F ={si |

ai
ef√

F(ai
ef +ai

ep)
= F√

F(F+a
f
ep)

, 1≤i≤n} (A.93)

SO
A ={si |

ai
ef√

F(ai
ef +ai

ep)
<

F√
F(F+a

f
ep)

, 1≤i≤n} (A.94)



136 A SR
B , SR

F , and SR
A for All Formulas

We are going to prove that the above sets SO
B , SO

F , and SO
A are equal to the

following sets XO , YO , and ZO , respectively.

XO={si |ai
ef >0 and (1 + a

f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

>0, 1≤i≤n} (A.95)

YO={si |ai
ef >0 and (1 + a

f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

=0, 1≤i≤n} (A.96)

ZO={si |(ai
ef = 0) or (ai

ef >0 and (1 + a
f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

<0), 1≤i≤n}
(A.97)

First, we will prove SO
B =XO . For any si , we have either (ai

ef =0) or (ai
ef >0).

Therefore, SO
B defined in (A.92) can be rewritten as

SO
B ={si |ai

ef =0 and
ai
ef√

F(ai
ef +ai

ep)
>

F√
F(F+a

f
ep)

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef√

F(ai
ef +ai

ep)
>

F√
F(F+a

f
ep)

, 1≤i≤n}

Consider the case that (ai
ef =0). Since F>0 and F+a

f
ep>0 after Lemma 2.3.1,

we have

ai
ef√

F(ai
ef +ai

ep)
=0<

F√
F(F+a

f
ep)

which is contradictory to

ai
ef√

F(ai
ef +ai

ep)
>

F√
F(F+a

f
ep)

Thus,

{si |ai
ef =0 and

ai
ef√

F(ai
ef +ai

ep)
>

F√
F(F+a

f
ep)

, 1≤i≤n}=∅
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Then, we have

SO
B ={si |ai

ef >0 and
ai
ef√

F(ai
ef +ai

ep)
>

F√
F(F+a

f
ep)

, 1≤i≤n} (A.98)

• Assume that si∈SO
B . After (A.98), we have

ai
ef >0 and

ai
ef√

F(ai
ef +ai

ep)
>

F√
F(F+a

f
ep)

Since ai
ef >0 and F>0, we have

√√√√F(ai
ef +ai

ep)

(ai
ef )2

<

√
F(F+a

f
ep)

F 2

because

ai
ef√

F(ai
ef +ai

ep)
>

F√
F(F+a

f
ep)

Then, we have

F(ai
ef +ai

ep)

(ai
ef )2

<
F(F+a

f
ep)

F 2

After rearranging the terms, we have

(1+a
f
ep

F
)− F

ai
ef

(1+ai
ep

ai
ef

)>0

which implies

(1+a
f
ep

F
)
ai
ef

F
−1−ai

ep

ai
ef

>0

because
ai
ef

F
>0. Then, we have si∈XO after (A.95). Therefore, SO

B ⊆XO .
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• Assume that si∈XO . After (A.95), we have

ai
ef >0 and (1+a

f
ep

F
)
ai
ef

F
−1−ai

ep

ai
ef

>0

Since ai
ef >0 and F>0, through multiplying F

ai
ef

by (1+a
f
ep

F
)
ai
ef

F
−1− ai

ep

ai
ef

>0,

we have

(1+a
f
ep

F
)− F

ai
ef

(1+ai
ep

ai
ef

)>0

After rearranging the terms, we have

F(ai
ef +ai

ep)

(ai
ef )2

<
F(F+a

f
ep)

F 2

Since ai
ef >0, F>0, F+a

f
ep>0, and ai

ef +ai
ep>0 (after Lemma 2.3.1),

F(ai
ef +ai

ep)

(ai
ef )2

<
F(F+a

f
ep)

F 2

implies

ai
ef√

F(ai
ef +ai

ep)
>

F√
F(F+a

f
ep)

Then, we have si∈SO
B after (A.98). Therefore, XO⊆SO

B .

In summary, we have proved that SO
B =XO .

Similarly, we can prove that SO
F =YO .

Next, we are going to prove SO
A =ZO . SO

A defined in (A.94) can be rewritten
as follows.

SO
A ={si |ai

ef =0 and
ai
ef√

F(ai
ef +ai

ep)
<

F√
F(F+a

f
ep)

, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef√

F(ai
ef +ai

ep)
<

F√
F(F+a

f
ep)

, 1≤i≤n}
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Consider the case (ai
ef =0), which implies

ai
ef√

F(ai
ef +ai

ep)
=0<

F√
F(F+a

f
ep)

Thus,

(ai
ef =0 and

ai
ef√

F(ai
ef +ai

ep)
<

F√
F(F+a

f
ep)

)

is logically equivalent to (ai
ef =0). Therefore, SO

A becomes

{si |ai
ef =0, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef√

F(ai
ef +ai

ep)
<

F√
F(F+a

f
ep)

, 1≤i≤n}

Similar to the proof of SO
B =XO , we can prove

{si |ai
ef >0 and

ai
ef√

F(ai
ef +ai

ep)
<

F√
F(F+a

f
ep)

, 1≤i≤n}

={si |ai
ef >0 and (1 + a

f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

<0, 1≤i≤n}

Therefore, we have

SO
A ={si |(ai

ef = 0) or (ai
ef >0 and (1 + a

f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

<0), 1≤i≤n}

=ZO

In conclusion, we have proved that SO
B =XO , SO

F =YO , and SO
A =ZO .

(25) AMPLE2
As stated in Table 2.1, formula AMPLE2 is defined as follows.

RA(si) = ai
ef

ai
ef + ai

nf

− ai
ep

ai
ep + ai

np
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It follows from Lemmas 2.3.1 and 2.3.2 that RA(si)= ai
ef

F
− ai

ep

P
and

RA(sf )=1−a
f
ep

P
. Then, after Definition 2.2.1, we have

SA
B={si |

ai
ef

F
−ai

ep

P
>1−a

f
ep

P
, 1≤i≤n} (A.99)

SA
F ={si |

ai
ef

F
−ai

ep

P
=1−a

f
ep

P
, 1≤i≤n} (A.100)

SA
A={si |

ai
ef

F
−ai

ep

P
<1−a

f
ep

P
, 1≤i≤n} (A.101)

We are going to prove that the above sets SA
B , SA

F , and SA
A are equal to the

following sets XA, YA, and ZA, respectively.

XA={si |ai
ef >0 and

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

>0, 1≤i≤n} (A.102)

YA={si |ai
ef >0 and

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

=0, 1≤i≤n} (A.103)

ZA={si |(ai
ef = 0) or (ai

ef >0 and
Pai

ef −PF+Fa
f
ep

Fai
ef

−ai
ep

ai
ef

<0), 1≤i≤n}
(A.104)

First, we will prove SA
B=XA. For any si , we have either (ai

ef =0) or (ai
ef >0).

Therefore, SA
B defined in (A.99) can be rewritten as

SA
B={si |ai

ef =0 and
ai
ef

F
−ai

ep

P
>1−a

f
ep

P
, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

F
−ai

ep

P
>1−a

f
ep

P
, 1≤i≤n}

Consider the case (ai
ef =0), which implies ai

ep>0 because ai
ef +ai

ep>0 after
Lemma 2.3.1. Then, we have

ai
ef

F
−ai

ep

P
=−ai

ep

P
<0
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Besides, since a
f
ep≤P , we have 1−a

f
ep

P
≥0. As a consequence,

ai
ef

F
−ai

ep

P
<1−a

f
ep

P
,

which is contradictory to
ai
ef

F
− ai

ep

P
>1−a

f
ep

P
. Thus,

{si |ai
ef =0 and

ai
ef

F
−ai

ep

P
>1−a

f
ep

P
, 1≤i≤n}=∅

Hence, we have

SA
B ={si |ai

ef >0 and
ai
ef

F
−ai

ep

P
>1−a

f
ep

P
, 1≤i≤n} (A.105)

• Assume that si∈SA
B . After (A.105), we have

ai
ef >0 and

ai
ef

F
−ai

ep

P
>1−a

f
ep

P

Since ai
ef >0 and P>0, after

ai
ef

F
−ai

ep

P
> 1−a

f
ep

P
, we have

P

ai
ef

(
ai
ef

F
−ai

ep

P

)
>

P

ai
ef

(
1−a

f
ep

P

)

After simplification, we have

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

>0

After (A.102), si∈XA. Therefore, SA
B ⊆XA.

• Assume that si∈XA. After (A.102), we have

ai
ef >0 and

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

>0

Then,

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

>0
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can be rearranged as

P

F
−ai

ep

ai
ef

>
P

ai
ef

−a
f
ep

ai
ef

Since ai
ef >0 and P>0, we have

ai
ef

P

(
P

F
−ai

ep

ai
ef

)
>

ai
ef

P

(
P

ai
ef

−a
f
ep

ai
ef

)

After simplification, we have

ai
ef

F
−ai

ep

P
>1−a

f
ep

P

After (A.105), si∈SA
B . Therefore, XA⊆SA

B .

In summary, we have proved that SA
B =XA.

Similarly, we can prove that SA
F =YA.

Next, we are going to prove SA
A=ZA. SA

A in (A.101) can be rewritten as
follows.

SA
A={si |ai

ef =0 and
ai
ef

F
−ai

ep

P
<1−a

f
ep

P
, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

F
−ai

ep

P
<1−a

f
ep

P
, 1≤i≤n}

Consider the case that (ai
ef =0). As shown in the above proof of SA

B=XA,

(ai
ef =0) implies

ai
ef

F
− ai

ep

P
<1−a

f
ep

P
. Thus,

(
ai
ef =0 and

ai
ef

F
−ai

ep

P
<1−a

f
ep

P

)

is logically equivalent to (ai
ef =0). Therefore, SA

A becomes

{si |ai
ef =0, 1≤i≤n}

∪{si |ai
ef >0 and

ai
ef

F
−ai

ep

P
<1−a

f
ep

P
, 1≤i≤n}
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Similar to the proof of SA
B =XA, we can prove

{si |ai
ef >0 and

ai
ef

F
−ai

ep

P
<1−a

f
ep

P
, 1≤i≤n}

={si |ai
ef >0 and

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

<0, 1≤i≤n}

Therefore, we have

SA
A={si |(ai

ef = 0) or (ai
ef >0 and

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

<0), 1≤i≤n}

=ZA

In conclusion, we have proved that SA
B =XA, SA

F =YA, and SA
A=ZA.

(26) Wong3
As stated in Table 2.1, formula Wong3 is defined as RW3(si) = ai

ef −h, where

h =

⎧
⎪⎨
⎪⎩

ai
ep if ai

ep≤2
2 + 0.1(ai

ep − 2) if 2<ai
ep≤10

2.8 + 0.001(ai
ep − 10) if ai

ep>10

(a) Assume that a
f
ep≤2. Then, RW3(sf ) = F−a

f
ep. After Definition 2.2.1 and

rearranging the terms, we have

SW3
B ={si |ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)>0, 1≤i≤n}
∪{si |2<ai

ep≤10 and (ai
ef −F)+(a

f
ep−0.1ai

ep)−1.8>0, 1≤i≤n}
∪{si |ai

ep>10 and (ai
ef −F)+(a

f
ep−0.001ai

ep)−2.79>0, 1≤i≤n}
(A.106)

SW3
F ={si |ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)=0, 1≤i≤n}
∪{si |2<ai

ep≤10 and (ai
ef −F)+(a

f
ep−0.1ai

ep)−1.8=0, 1≤i≤n}
∪{si |ai

ep>10 and (ai
ef −F)+(a

f
ep−0.001ai

ep)−2.79=0, 1≤i≤n}
(A.107)



144 A SR
B , SR

F , and SR
A for All Formulas

SW3
A ={si |ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)<0, 1≤i≤n}
∪{si |2<ai

ep≤10 and (ai
ef −F)+(a

f
ep−0.1ai

ep)−1.8<0, 1≤i≤n}
∪{si |ai

ep>10 and (ai
ef −F)+(a

f
ep−0.001ai

ep)−2.79<0, 1≤i≤n}
(A.108)

We are going to prove that the above sets in (A.106), (A.107), and (A.108)
are equal to the following sets, XW3

1 , YW3
1 , and ZW3

1 , respectively.

XW3
1 ={si |ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)>0, 1≤i≤n} (A.109)

YW3
1 ={si |ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)=0, 1≤i≤n} (A.110)

ZW3
1 ={si |(ai

ep>2) or (ai
ep≤2 and (ai

ef −F)+(a
f
ep−ai

ep)<0), 1≤i≤n}
(A.111)

First, we will prove that SW3
B defined in (A.106) is equal to XW3

1 in
(A.109).

• Consider the case that (2<ai
ep≤10). Since a

f
ep≤2<ai

ep≤10, we have

(a
f
ep−0.1ai

ep)−1.8<0

And since ai
ef −F≤0 after Lemma 2.3.1, we have

(ai
ef −F)+(a

f
ep−0.1ai

ep)−1.8<0

which is contradictory to

(ai
ef −F)+(a

f
ep−0.1ai

ep)−1.8>0

Thus,

{si |2<ai
ep≤10 and (ai

ef −F)+(a
f
ep−0.1ai

ep)−1.8>0, 1≤i≤n}=∅

• Consider the case that (ai
ep>10). We have (a

f
ep−0.001ai

ep)−2.79<0

after a
f
ep≤2 and ai

ep>10. Since ai
ef −F≤0, we have

(ai
ef −F)+(a

f
ep−0.001ai

ep)−2.79<0
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which is contradictory to

(ai
ef −F)+(a

f
ep−0.001ai

ep)−2.79>0

Thus,

{si |ai
ep>10 and (ai

ef −F)+(a
f
ep−0.001ai

ep)−2.79>0, 1≤i≤n}=∅

As a consequence, SW3
B in (A.106) becomes

SW3
B ={si |ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)>0, 1≤i≤n}
=XW3

1

Similarly, we can prove that SW3
F defined in (A.107) is equal to YW3

1 in
(A.110).
Next, we are going to prove that SW3

A defined in (A.108) is equal to ZW3
1 in

(A.111). As shown in the above proof of SW3
B =XW3

1 , (2<ai
ep≤10) implies

(ai
ef −F)+(a

f
ep−0.1ai

ep)−1.8<0

and (ai
ep>10) implies

(ai
ef −F)+(a

f
ep−0.001ai

ep)−2.79<0

Thus,

(2<ai
ep≤10 and (ai

ef −F)+(a
f
ep−0.1ai

ep)−1.8<0)

is logically equivalent to (2<ai
ep≤10), and

(ai
ep>10 and (ai

ef −F)+(a
f
ep−0.001ai

ep)−2.79<0)

is logically equivalent to (ai
ep>10). Therefore, SW3

A in (A.108) becomes

{si |(ai
ep>2) or (ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)<0), 1≤i≤n}=ZW3
1

(b) Assume that 2<a
f
ep≤10. Then,

RW3(sf )=F−2−0.1(a
f
ep−2)=F−0.1a

f
ep−1.8
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After Definition 2.2.1 and rearranging the terms, we have

SW3
B ={si |ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8>0, 1≤i≤n}
∪{si |2<ai

ep≤10 and (ai
ef −F)+(0.1a

f
ep−0.1ai

ep)>0, 1≤i≤n}
∪{si |ai

ep>10 and (ai
ef −F)+(0.1a

f
ep−0.001ai

ep)−0.99>0, 1≤i≤n}
(A.112)

SW3
F ={si |ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8=0, 1≤i≤n}
∪{si |2<ai

ep≤10 and (ai
ef −F)+(0.1a

f
ep−0.1ai

ep)=0, 1≤i≤n}
∪{si |ai

ep>10 and (ai
ef −F)+(0.1a

f
ep−0.001ai

ep)−0.99=0, 1≤i≤n}
(A.113)

SW3
A ={si |ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8<0, 1≤i≤n}
∪{si |2<ai

ep≤10 and (ai
ef −F)+(0.1a

f
ep−0.1ai

ep)<0, 1≤i≤n}
∪{si |ai

ep>10 and (ai
ef −F)+(0.1a

f
ep−0.001ai

ep)−0.99<0, 1≤i≤n}
(A.114)

We are going to prove that the above sets defined in (A.112), (A.113), and
(A.114) are equal to the following sets XW3

2 , YW3
2 , and ZW3

2 , respectively.

XW3
2 ={si |(ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8>0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.1a
f
ep−0.1ai

ep)>0), 1≤i≤n}
(A.115)

YW3
2 ={si |2<ai

ep≤10 and (ai
ef −F)+(0.1a

f
ep−0.1ai

ep)=0, 1≤i≤n}
(A.116)

ZW3
2 ={si |(ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8<0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.1a
f
ep−0.1ai

ep)<0)

or (ai
ep>10), 1≤i≤n} (A.117)

Firstly, we will prove that SW3
B defined in (A.112) is equal to XW3

2 in

(A.115). Consider the case that ai
ep>10. Thus, we have 2<a

f
ep≤10<ai

ep,
which implies

(0.1a
f
ep−0.001ai

ep)−0.99<0
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And since ai
ef −F≤0 after Lemma 2.3.1, we have

(ai
ef −F)+(0.1a

f
ep−0.001ai

ep)−0.99<0

which is contradictory to

(ai
ef −F)+(0.1a

f
ep−0.001ai

ep)−0.99>0

Thus,

{si |ai
ep>10 and (ai

ef −F)+(0.1a
f
ep−0.001ai

ep)−0.99>0, 1≤i≤n}=∅

Then, SW3
B in (A.112) becomes

SW3
B ={si |(ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8>0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.1a
f
ep−0.1ai

ep)>0), 1≤i≤n}
=XW3

2

Secondly, we will prove that SW3
F defined in (A.113) is equal to YW3

2 in
(A.116).

• Consider the case that ai
ep>10. Thus, we have 2<a

f
ep≤10<ai

ep,

which implies (0.1a
f
ep−0.001ai

ep)−0.99<0. Since ai
ef −F≤0 after

Lemma 2.3.1, we have

(ai
ef −F)+(0.1a

f
ep−0.001ai

ep)−0.99<0

which is contradictory to

(ai
ef −F)+(0.1a

f
ep−0.001ai

ep)−0.99=0

Thus,

{si |ai
ep>10 and (ai

ef −F)+(0.1a
f
ep−0.001ai

ep)−0.99=0, 1≤i≤n}=∅

• Consider the case that ai
ep≤2. Thus, we have ai

ep≤2<a
f
ep≤10. Then,

0.1a
f
ep will be within the range of (0.2, 1]. Therefore, (0.1a

f
ep+1.8)

cannot be integer. As a consequence,

(ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8=(ai
ef −F−ai

ep)+(0.1a
f
ep+1.8) �=0
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because ai
ef , F and ai

ep are all integers. Thus,

{si |ai
ep≤2 and (ai

ef −F)+(0.1a
f
ep−ai

ep)+1.8=0, 1≤i≤n}=∅

Therefore, SW3
F in (A.113) becomes

SW3
F ={si |2<ai

ep≤10 and (ai
ef −F)+(0.1a

f
ep−0.1ai

ep)=0, 1≤i≤n}
=YW3

2

Next, we are going to prove that SW3
A defined in (A.114) is equal to ZW3

2
in (A.117). As shown in the above proof of SW3

B =XW3
2 , (ai

ep>10) implies

(ai
ef −F)+(0.1a

f
ep−0.001ai

ep)−0.99<0

Thus,

(ai
ep>10 and (ai

ef −F)+(0.1a
f
ep−0.001ai

ep)−0.99<0)

is logically equivalent to (ai
ep>10). Therefore, SW3

A in (A.114) becomes

SW3
A ={si |(ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8<0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.1a
f
ep−0.1ai

ep)<0)

or (ai
ep>10), 1≤i≤n}

=ZW3
2

(c) Assume that a
f
ep>10. Then,

RW3(sf )=F−2.8−0.001(a
f
ep−10)=F−0.001a

f
ep−2.79

After Definition 2.2.1, we have

SW3
B ={si |ai

ep≤2 and ai
ef −ai

ep>F−0.001a
f
ep−2.79, 1≤i≤n}

∪{si |2<ai
ep≤10 and ai

ef −2−0.1(ai
ep−2)>F−0.001a

f
ep−2.79, 1≤i≤n}

∪{si |ai
ep>10 and ai

ef −2.8−0.001(ai
ep−10)>F−0.001a

f
ep−2.79, 1≤i≤n}

(A.118)
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SW3
F ={si |ai

ep≤2 and ai
ef −ai

ep=F−0.001a
f
ep−2.79, 1≤i≤n}

∪{si |2<ai
ep≤10 and ai

ef −2−0.1(ai
ep−2)=F−0.001a

f
ep−2.79, 1≤i≤n}

∪{si |ai
ep>10 and ai

ef −2.8−0.001(ai
ep−10)=F−0.001a

f
ep−2.79, 1≤i≤n}

(A.119)

SW3
A ={si |ai

ep≤2 and ai
ef −ai

ep<F−0.001a
f
ep−2.79, 1≤i≤n}

∪{si |2<ai
ep≤10 and ai

ef −2−0.1(ai
ep−2)<F−0.001a

f
ep−2.79, 1≤i≤n}

∪{si |ai
ep>10 and ai

ef −2.8−0.001(ai
ep−10)<F−0.001a

f
ep−2.79, 1≤i≤n}

(A.120)

It is obvious that through rearranging the terms and merging the subsets,
the above sets defined in (A.118), (A.119), and (A.120) are equal to the
following sets, XW3

3 , YW3
3 , and ZW3

3 , respectively.

XW3
3 ={si |(ai

ep≤2 and (ai
ef −F)+(0.001a

f
ep−ai

ep)+2.79>0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99>0)

or (ai
ep>10 and (ai

ef −F)+(0.001a
f
ep−0.001ai

ep)>0), 1≤i≤n}
(A.121)

YW3
3 ={si |(ai

ep≤2 and (ai
ef −F)+(0.001a

f
ep−ai

ep)+2.79=0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99=0)

or (ai
ep>10 and (ai

ef −F)+(0.001a
f
ep−0.001ai

ep)=0), 1≤i≤n}
(A.122)

ZW3
3 ={si |(ai

ep≤2 and (ai
ef −F)+(0.001a

f
ep−ai

ep)+2.79<0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99<0)

or (ai
ep>10 and (ai

ef −F)+(0.001a
f
ep−0.001ai

ep)<0), 1≤i≤n}
(A.123)

(27) Arithmetic Mean
As stated in Table 2.1, formula Arithmetic Mean is defined as follows.

RAM(si) = 2ai
ef ai

np−2ai
nf ai

ep

(ai
ef + ai

ep)(ai
np+ai

nf )+(ai
ef + ai

nf )(ai
ep + ai

np)
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From Definition 2.2.1 and Lemmas 2.3.1 and 2.3.2, after simplification, we
have

SAM
B ={si |

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF
>

PF−Fa
f
ep

(F+a
f
ep)(P−a

f
ep)+PF

,

1≤i≤n} (A.124)

SAM
F ={si |

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF
= PF−Fa

f
ep

(F+a
f
ep)(P−a

f
ep)+PF

,

1≤i≤n} (A.125)

SAM
A ={si |

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF
<

PF−Fa
f
ep

(F+a
f
ep)(P−a

f
ep)+PF

,

1≤i≤n} (A.126)

(28) Cohen
As stated in Table 2.1, formula Cohen is defined as follows.

RCO(si) = 2aef anp−2anf aep

(aef + aep)(anp+aep)+(aef + anf )(anf + anp)

From Definition 2.2.1 and Lemmas 2.3.1 and 2.3.2, after simplification, we
have

SCO
B ={si |

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)
>

PF−Fa
f
ep

P (F+a
f
ep)+F(P−a

f
ep)

,

1≤i≤n} (A.127)

SCO
F ={si |

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)
= PF−Fa

f
ep

P (F+a
f
ep)+F(P−a

f
ep)

,

1≤i≤n} (A.128)

SCO
A ={si |

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)
<

PF−Fa
f
ep

P (F+a
f
ep)+F(P−a

f
ep)

,

1≤i≤n} (A.129)

(29) Fleiss
As stated in Table 2.1, formula Fleiss is defined as follows.

RF (si) = 4aef anp−4anf aep−(anf −aep)2

(2aef +anf +aep)+(2anp+anf +aep)
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From Definition 2.2.1 and Lemmas 2.3.1 and 2.3.2, after simplification, we
have

SF
B ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

2P+2F

>
4PF−4Fa

f
ep−(a

f
ep)2

2P+2F
, 1≤i≤n}

SF
F ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

2P+2F

=4PF−4Fa
f
ep−(a

f
ep)2

2P+2F
, 1≤i≤n}

SF
A ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

2P+2F

<
4PF−4Fa

f
ep−(a

f
ep)2

2P+2F
, 1≤i≤n}

Since 2P+2F>0, obviously, SF
B , SF

F , and SF
A are equal to the following sets,

XF , YF , and ZF , respectively.

XF ={si |−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

>4PF−4Fa
f
ep−(a

f
ep)2, 1≤i≤n} (A.130)

YF ={si |−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

=4PF−4Fa
f
ep−(a

f
ep)2, 1≤i≤n} (A.131)

ZF ={si |−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

<4PF−4Fa
f
ep−(a

f
ep)2, 1≤i≤n} (A.132)



Appendix B
Theoretical Comparison Among
All Formulas

In Chap. 3, we have illustrated the proofs for all equivalent relations and one non-
equivalent relation (i.e., “ER2 → ER3”). In this appendix, we will provide the
detailed proofs for the comparison among different formulas in the remained non-
equivalent relations.

Proposition B.1 ER2 → ER4.

Proof In order to prove ER2 → ER4, it is sufficient to prove Jaccard → Wong2. As
proved in Appendix A, SJ

B and SJ
A are equal to the sets defined in (A.8) and (A.10),

respectively, and SW2
B and SW2

A are equal to the sets defined in (A.42) and (A.44),
respectively, as follows.

SW2
B ={si |(ai

ef −F)+(a
f
ep−ai

ep) > 0, 1≤i≤n}
SW2

A ={si |(ai
ef −F)+(a

f
ep−ai

ep) < 0, 1≤i≤n}

After rearranging the terms in 1+a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

from (A.8) and (A.10), we have

1+a
f
ep

F
− F

ai
ef

−ai
ep

ai
ef

=
(

1+a
f
ep

ai
ef

− F

ai
ef

−ai
ep

ai
ef

)
+a

f
ep

(
1

F
− 1

ai
ef

)

Since a
f
ep( 1

F
− 1

ai
ef

)≤0 after Lemma 2.3.1, we have

1+a
f
ep

F
− F

ai
ef

−ai
ep

ai
ef

≤ 1+a
f
ep

ai
ef

− F

ai
ef

−ai
ep

ai
ef

(B.1)

Now, we are going to prove SJ
B⊆SW2

B and SW2
A ⊆SJ

A.
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Firstly, we will prove SJ
B⊆SW2

B . Assume si∈SJ
B . Then, after (A.8) we have

ai
ef >0 and 1+a

f
ep

F
− F

ai
ef

−ai
ep

ai
ef

>0

As a consequence, from (B.1) we have

1+a
f
ep

ai
ef

− F

ai
ef

−ai
ep

ai
ef

>0

Furthermore, since ai
ef >0 and

1+a
f
ep

ai
ef

− F

ai
ef

−ai
ep

ai
ef

= (ai
ef −F)+(a

f
ep−ai

ep)

ai
ef

we have

(ai
ef −F)+(a

f
ep−ai

ep)>0

After (A.42), si∈SW2
B . Therefore, SJ

B⊆SW2
B .

Secondly, we will prove SW2
A ⊆SJ

A. Assume si∈SW2
A .

Then, we have (ai
ef −F)+(a

f
ep−ai

ep)<0 after (A.44). Let us consider the follow-
ing situations:

• Suppose ai
ef =0. Immediately after (A.10), si∈SJ

A.

• Suppose ai
ef >0. Since

(ai
ef −F)+(a

f
ep−ai

ep)

ai
ef

=1+a
f
ep

ai
ef

− F

ai
ef

−ai
ep

ai
ef

we have 1+ a
f
ep

ai
ef

− F

ai
ef

− ai
ep

ai
ef

<0. As a consequence, we have 1+a
f
ep

F
− F

ai
ef

− ai
ep

ai
ef

<0

after (B.1). Thus, si∈SJ
A after (A.10).

In summary, we have proved that SW2
A ⊆SJ

A.
In conclusion, we have SJ

B⊆SW2
B and SW2

A ⊆SJ
A. Immediately after Theo-

rem 2.2.2, Jaccard → Wong2. Since Jaccard belongs to ER2 and Wong2 belongs to
ER4, we have ER2 → ER4. ��
Proposition B.2 Ochiai → ER2.

Proof In order to prove Ochiai → ER2, it is sufficient to prove Ochiai → Jaccard.
As proved in Appendix A, SJ

B and SJ
A are equal to the sets defined in (A.8) and



B Theoretical Comparison Among All Formulas 155

(A.10), respectively, and SO
B and SO

A are equal to the sets defined in (A.95) and
(A.97), respectively, as follows.

SO
B ={si |ai

ef >0 and (1 + a
f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

>0, 1≤i≤n}

SO
A ={si |(ai

ef = 0) or (ai
ef >0 and (1 + a

f
ep

F
)
ai
ef

F
− 1 − ai

ep

ai
ef

<0), 1≤i≤n}

Let fJ and fO denote the following expressions.

fJ (si) = 1 + a
f
ep

F
− F

ai
ef

= ai
ef F + ai

ef a
f
ep − F 2

Fai
ef

(B.2)

fO(si) = (1 + a
f
ep

F
)
ai
ef

F
− 1 = ai

ef F + ai
ef a

f
ep − F 2

F 2 (B.3)

Now, we are going to prove SO
B ⊆SJ

B and SJ
A⊆SO

A .
First, we will prove that SO

B ⊆SJ
B . Assume si∈SO

B . Then, after (A.95) we have

ai
ef >0 and fO(si) − ai

ep

ai
ef

>0

Since ai
ep≥0, we have

ai
ep

ai
ef

≥0. Therefore, fO(si)>0. Then from Equation (B.3),

we have (ai
ef F+ai

ef a
f
ep−F 2)>0 because F 2>0. It follows from Lemma 2.3.1 that

F 2≥Fai
ef . Then, from Equations (B.3) and (B.2), we have fJ (si)≥fO(si). As a

consequence, we have

fJ (si)−
ai
ep

ai
ef

≥fO(si)−
ai
ep

ai
ef

>0

It follows from (A.8) that si∈SJ
B . Thus, SO

B ⊆SJ
B .

Next, we will prove SJ
A⊆SO

A . Assume si∈SJ
A. Then, we have either (ai

ef =0) or

(ai
ef >0 and fJ (si)− ai

ep

ai
ef

<0) after (A.10).

• Consider the case that (ai
ef =0). Immediately, we have si∈SO

A after (A.97).
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• Consider the case that (ai
ef >0 and fJ (si)− ai

ep

ai
ef

<0). Assume further that fJ (si)

<0. Since Fai
ef >0, we have (ai

ef F+ai
ef a

f
ep−F 2)<0 from Equation (B.2). Then,

fO(si)<0 from Equation (B.3) because F 2>0. As a consequence,

fO(si)−
ai
ep

ai
ef

<0

Hence, si∈SO
A after (A.97). Next consider the sub-case that fJ (si)=0. Then,

(ai
ef F+ai

ef a
f
ep−F 2)=0

Thus we have fO(si)=fJ (si)=0 from Equation (B.3). Furthermore, since

fJ (si)− ai
ep

ai
ef

<0 and fJ (si)=0, we have
ai
ep

ai
ef

>0. As a consequence, fO(si)− ai
ep

ai
ef

<0.

Hence, si∈SO
A after (A.97). Finally, consider the sub-case that fJ (si)>0. Since

Fai
ef >0, we have

(ai
ef F+ai

ef a
f
ep−F 2)>0

It follows from Lemma 2.3.1 that F 2≥Fai
ef . Then, from Equations (B.3)

and (B.2), we have fJ (si)≥fO(si). As a consequence, we have fO(si)− ai
ep

ai
ef

≤
fJ (si)− ai

ep

ai
ef

<0. Thus, si∈SO
A after (A.97).

In summary, we have proved that SJ
A⊆SO

A .
In conclusion, we have SO

B ⊆SJ
B and SJ

A⊆SO
A . Immediately after Theorem 2.2.2,

Ochiai → Jaccard. Since Jaccard belongs to ER2, we have Ochiai → ER2. ��
Proposition B.3 Kulczynski2 → Ochiai.

Proof As proved in Appendix A, SO
B and SO

A are equal to the sets defined in (A.95)
and (A.97), respectively, and SK2

B and SK2
A are equal to the sets defined in (A.81)

and (A.83), respectively, as follows.

SK2
B ={si |ai

ef >0 and
ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

>0, 1≤i≤n}

SK2
A ={si |(ai

ef = 0) or (ai
ef >0 and

ai
ef F+ai

ef a
f
ep−F 2

F 2+(F+a
f
ep)(F−ai

ef )
−ai

ep

ai
ef

<0), 1≤i≤n}
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Let fK2 denote the following expression.

fK2(si) = ai
ef F + ai

ef a
f
ep − F 2

F 2 + (F + a
f
ep)(F − ai

ef )
(B.4)

Now, we are going to prove SK2
B ⊆SO

B and SO
A ⊆SK2

A .
Firstly, we will prove SK2

B ⊆SO
B . Assume si∈SK2

B . Then, after (A.81) we have

ai
ef >0 and fK2(si)−

ai
ep

ai
ef

>0

Since ai
ep≥0, we have

ai
ep

ai
ef

≥0. Therefore, fK2(si )>0. Then, from Equation (B.4),

we have

(ai
ef F+ai

ef a
f
ep−F 2)>0

because after Lemma 2.3.1, we have

(F 2+(F+a
f
ep)(F−ai

ef ))>0

It also follows from Lemma 2.3.1 that

F 2+(F+a
f
ep)(F−ai

ef )≥F 2>0

Thus from Equations (B.4) and (B.3), we have fO(si)≥fK2(si). As a consequence,
we have

fO(si)−
ai
ep

ai
ef

≥fK2(si)−
ai
ep

ai
ef

>0

It follows from (A.95) that si∈SO
B . Thus, SK2

B ⊆SO
B .

Next, we will prove SO
A ⊆SK2

A . Assume si∈SO
A . Then, we have either (ai

ef =0) or

(ai
ef >0 and fO(si) − ai

ep

ai
ef

<0) after (A.97).

• Consider the case that (ai
ef =0). It follows immediately from (A.83) that si∈SK2

A .

• Consider the case that (ai
ef >0 and fO(si)− ai

ep

ai
ef

<0). Assume further that fO(si)

<0. Since F 2>0, from Equation (B.3) we have

(ai
ef F+ai

ef a
f
ep−F 2)<0



158 B Theoretical Comparison Among All Formulas

Then, fK2(si )<0 from Equation (B.4) because

(F 2+(F+a
f
ep)(F−ai

ef ))>0

As a consequence,

fK2(si)−
ai
ep

ai
ef

<0

Hence, si∈SK2
A after (A.83). Next consider the sub-case that fO(si)=0. Then,

(ai
ef F+ai

ef a
f
ep−F 2)=0

Thus we have fK2(si )=fO(si)=0 from Equation (B.4). Furthermore, since

fO(si)− ai
ep

ai
ef

<0 and fO(si)=0, we have
ai
ep

ai
ef

>0. As a consequence,

fK2(si)−
ai
ep

ai
ef

<0

Thus, si∈SK2
A after (A.83). Finally, consider the sub-case that fO(si)>0. Since

F 2>0, we have

(ai
ef F+ai

ef a
f
ep−F 2)>0

It follows from Lemma 2.3.1 that

F 2+(F+a
f
ep)(F−ai

ef )≥F 2>0

Thus, from Equations (B.4) and (B.3), we have fO(si)≥fK2(si ). As a conse-
quence, we have

fK2(si)−
ai
ep

ai
ef

≤fO(si)−
ai
ep

ai
ef

<0

Thus, we have si∈SK2
A after (A.83).

In summary, we have proved that SO
A ⊆SK2

A .
In conclusion, we have SK2

B ⊆SO
B and SO

A ⊆SK2
A . Immediately after Theo-

rem 2.2.2, Kulczynski2 → Ochiai. ��
Following from Propositions 3.2.7 to B.3, we have Kulczynski2 → Ochiai →

ER2 → ER3 and ER2 → ER4.
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Proposition B.4 M2 → AMPLE2.

Proof As proved in Appendix A, SM2
B and SM2

A are equal to the sets defined in
(A.88) and (A.90), respectively, as follows.

SM2
B ={si |ai

ef >0 and
P+a

f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

>0, 1≤i≤n}

SM2
A ={si |(ai

ef = 0) or (ai
ef >0 and

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

<0), 1≤i≤n}

And SA
B and SA

A are equal to the sets defined in (A.102) and (A.104), respectively,
as follows.

SA
B ={si |ai

ef >0 and
Pai

ef −PF+Fa
f
ep

Fai
ef

−ai
ep

ai
ef

>0, 1≤i≤n}

SA
A={si |(ai

ef = 0) or (ai
ef >0 and

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

<0), 1≤i≤n}

If ai
ef >0, the expression

P+a
f
ep

F
−2F+P

ai
ef

+2− ai
ep

ai
ef

from (A.88) and (A.90) can be

rewritten as follows.

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

=
(

P

F
− P

ai
ef

+a
f
ep

ai
ef

−ai
ep

ai
ef

)
+
(

a
f
ep

F
− 2F

ai
ef

−a
f
ep

ai
ef

+2

)

=
⎛
⎝Pai

ef −PF+Fa
f
ep

Fai
ef

−ai
ep

ai
ef

⎞
⎠+ (a

f
ep+2F)(ai

ef −F)

Fai
ef

Then, we have

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

≤ Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

(B.5)

because
(a

f
ep+2F)(ai

ef −F)

Fai
ef

≤0 after Lemma 2.3.1.

Now, we are going to prove SM2
B ⊆SA

B and SA
A⊆SM2

A .
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Firstly, we will prove SM2
B ⊆SA

B . Assume si∈SM2
B . Then, after (A.88) we have

ai
ef >0 and

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

>0

As a consequence, from (B.5) we have

Pai
ef −PF+Fa

f
ep

Fai
ef

−ai
ep

ai
ef

>0

Thus, si∈SA
B after (A.102). Therefore, SM2

B ⊆SA
B .

Secondly, we will prove SA
A⊆SM2

A . Assume si∈SA
A . Then, we have either (ai

ef =0)

or (ai
ef >0 and

Pai
ef −PF+Fa

f
ep

Fai
ef

− ai
ep

ai
ef

<0) after (A.104).

• Consider the case that (ai
ef =0). Immediately after (A.90), si∈SM2

A .

• Consider the case that (ai
ef >0 and

Pai
ef −PF+Fa

f
ep

Fai
ef

− ai
ep

ai
ef

<0). Then, we have

P+a
f
ep

F
− 2F+P

ai
ef

+2− ai
ep

ai
ef

<0 after (B.5). Thus, si∈SM2
A after (A.90).

In summary, we have proved that SA
A⊆SM2

A .
In conclusion, we have SM2

B ⊆SA
B and SA

A⊆SM2
A . Immediately after Theo-

rem 2.2.2, M2 → AMPLE2. ��
Proposition B.5 ER1 → M2.

Proof In order to prove ER1 → M2, it is sufficient to prove Op1 → M2. As proved
in Appendix A, S

Op1
B and S

Op1
A are equal to the sets defined in (2.1) and (2.3),

respectively, and SM2
B and SM2

A are equal to the sets defined in (A.88) and (A.90),
respectively.

We are going to prove S
Op1
B ⊆SM2

B and SM2
A ⊆S

Op1
A .

Firstly, we will prove S
Op1
B ⊆SM2

B . Assume si∈S
Op1
B . Then we have ai

ef =F>0

and (a
f
ep−ai

ep)>0 after (2.1). As a consequence, we have

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

=P+a
f
ep−2F−P+2F − ai

ep

F
=a

f
ep−ai

ep

F
>0

Therefore, si∈SM2
B after (A.88). Thus, S

Op1
B ⊆SM2

B .

Secondly, we are going to prove SM2
A ⊆S

Op1
A . Suppose si∈SM2

A . Then we have

either (ai
ef =0) or (ai

ef >0 and
P+a

f
ep

F
− 2F+P

ai
ef

+2− ai
ep

ai
ef

<0) after (A.90).
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• Consider the case that (ai
ef =0). Obviously, ai

ef <F . Immediately after (2.3),

si∈S
Op1
A .

• Consider the case that (ai
ef >0 and

P+a
f
ep

F
− 2F+P

ai
ef

+2− ai
ep

ai
ef

<0). Assume further

that 0<ai
ef <F . After (2.3), we have si∈S

Op1
A . Next, consider the sub-case that

ai
ef =F . Then, we have

P+a
f
ep

F
−2F+P

ai
ef

+2−ai
ep

ai
ef

=a
f
ep−ai

ep

F

Since
P+a

f
ep

F
− 2F+P

ai
ef

+2− ai
ep

ai
ef

<0 and F>0, we have (a
f
ep−ai

ep)<0. Thus,

si∈S
Op1
A after (2.3).

In summary, we have proved that SM2
A ⊆S

Op1
A .

In conclusion, we have S
Op1
B ⊆SM2

B and SM2
A ⊆S

Op1
A . Immediately after Theo-

rem 2.2.2, Op1 → M2. And after Proposition 3.2.1, ER1 → M2. ��
Proposition B.6 ER1 → ER6.

Proof In order to prove ER1 → ER6, it is sufficient to prove Op1 → Scott. As
proved in Appendix A, S

Op1
B and S

Op1
A are equal to the sets defined in (2.1) and

(2.3), respectively, and SSC
B and SSC

A are equal to the sets defined in (A.72) and
(A.74), respectively, as follows.

SSC
B ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)
>

4PF−4Fa
f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n}

SSC
A ={si |

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)
<

4PF−4Fa
f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

, 1≤i≤n}

If ai
ef =F , we have

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)
−4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

=4PF−4Fai
ep−(ai

ep)2

(2F+ai
ep)(2P−ai

ep)
−4PF−4Fa

f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

=(8PF 2+8P 2F+2Pa
f
epai

ep+2Fa
f
epai

ep)(a
f
ep−ai

ep)

(2F+ai
ep)(2P−ai

ep)(2F+a
f
ep)(2P−a

f
ep)

(B.6)

Now, we are going to prove S
Op1
B ⊆SSC

B and SSC
A ⊆S

Op1
A .
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Firstly, we will prove S
Op1
B ⊆SSC

B . Assume si∈S
Op1
B . Then, ai

ef =F and

(a
f
ep−ai

ep) >0 after (2.1). It follows from Lemma 2.3.1 that

(8PF 2+8P 2F+2Pa
f
epai

ep+2Fa
f
epai

ep)>0

and

(2F+ai
ep)(2P−ai

ep)(2F+a
f
ep)(2P−a

f
ep)>0

Then we have

(8PF 2+8P 2F+2Pa
f
epai

ep+2Fa
f
epai

ep)(a
f
ep−ai

ep)

(2F+ai
ep)(2P−ai

ep)(2F+a
f
ep)(2P−a

f
ep)

>0

because (a
f
ep−ai

ep)>0. From Equation (B.6), we have

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)
>

4PF−4Fa
f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

Therefore, si∈SSC
B after (A.72). Thus, S

Op1
B ⊆SSC

B .

Secondly, we are going to prove SSC
A ⊆S

Op1
A . Suppose si∈SSC

A . Then after (A.74)
we have

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)
<

4PF−4Fa
f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

• Suppose (ai
ef <F). Immediately after (2.3), si∈S

Op1
A .

• Suppose (ai
ef =F). It follows from

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2

(F+2P−ai
ep−ai

ef )(F+ai
ef +ai

ep)
<

4PF−4Fa
f
ep−(a

f
ep)2

(2F+a
f
ep)(2P−a

f
ep)

and Equation (B.6) that

(8PF 2+8P 2F+2Pa
f
epai

ep+2Fa
f
epai

ep)(a
f
ep−ai

ep)

(2F+ai
ep)(2P−ai

ep)(2F+a
f
ep)(2P−a

f
ep)

<0
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which implies (a
f
ep−ai

ep)<0, because (8PF 2+8P 2F+2Pa
f
epai

ep+2Fa
f
epai

ep)>0

and (2F+ai
ep)(2P−ai

ep)(2F+a
f
ep)(2P−a

f
ep)>0 after Lemma 2.3.1. Thus,

si∈S
Op1
A after (2.3).

In summary, we have proved that SSC
A ⊆S

Op1
A .

In conclusion, we have S
Op1
B ⊆SSC

B and SSC
A ⊆S

Op1
A . Immediately after Theo-

rem 2.2.2, Op1 → Scott. Since Op1 belongs to ER1 and Scott belongs to ER6, we
have ER1 → ER6. ��
Proposition B.7 ER1 → Wong3.

Proof In order to prove ER1 → Wong3, it is sufficient to prove Op1 → Wong3.
As proved in Appendix A, S

Op1
B and S

Op1
A are equal to the sets defined in (2.1) and

(2.3), respectively; and for Wong3, the definitions of SW3
B and SW3

A vary in three

situations: a
f
ep≤2, 2<a

f
ep≤10, and a

f
ep>10. Under each of these situations, we are

going to prove that S
Op1
B ⊆SW3

B and SW3
A ⊆S

Op1
A .

1. Case 1: Assume a
f
ep≤2.

As proved in Appendix A, SW3
B and SW3

A are equal to the sets defined in (A.109)
and (A.111), respectively, as follows.

SW3
B ={si |ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)>0, 1≤i≤n}
SW3

A ={si |(ai
ep>2) or (ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)<0), 1≤i≤n}

Firstly, we will prove S
Op1
B ⊆SW3

B . Assume si∈S
Op1
B . Then, (ai

ef =F) and

(a
f
ep−ai

ep) >0 after (2.1). As a consequence,

(ai
ef −F)+(a

f
ep−ai

ep)=(a
f
ep−ai

ep)>0

Furthermore, since a
f
ep≤2, we have ai

ep<a
f
ep≤2. Then, si∈SW3

B after (A.109).

Thus, S
Op1
B ⊆SW3

B .

Secondly, we are going to prove SW3
A ⊆S

Op1
A . Assume si∈SW3

A . Then we have

either ai
ep>2 or (ai

ep≤2 and (ai
ef −F)+(a

f
ep−ai

ep)<0) after (A.111).

• Consider the case that ai
ep>2. Assume further that ai

ef <F . Immediately, we

have si∈S
Op1
A after (2.3). Then consider the sub-case that ai

ef =F . Since

ai
ep>2 and a

f
ep≤2, we have (a

f
ep−ai

ep)<0. Thus after (2.3), si∈S
Op1
A .
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• Consider the case that (ai
ep≤2 and (ai

ef −F)+(a
f
ep−ai

ep)<0). Assume further

that ai
ef <F . Then, si∈S

Op1
A after (2.3). Now consider the sub-case that

ai
ef =F . We have

(ai
ef −F)+(a

f
ep−ai

ep)=(a
f
ep−ai

ep)

Since (ai
ef −F)+ (a

f
ep−ai

ep)<0, then (a
f
ep−ai

ep)<0. After (2.3), si∈S
Op1
A .

In summary, we have proved that SW3
A ⊆S

Op1
A .

2. Case 2: Assume 2<a
f
ep≤10.

As proved in Appendix A, SW3
B and SW3

A are equal to the sets defined in (A.115)
and (A.117), respectively, as follows.

SW3
B ={si |(ai

ep≤2 and (ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8>0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.1a
f
ep−0.1ai

ep)>0), 1≤i≤n}
SW3

A ={si |(ai
ep≤2 and (ai

ef −F)+(0.1a
f
ep−ai

ep)+1.8<0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.1a
f
ep−0.1ai

ep)<0)

or (ai
ep>10), 1≤i≤n}

Firstly, we will prove S
Op1
B ⊆SW3

B . Assume si∈S
Op1
B . Then, ai

ef =F and

(a
f
ep−ai

ep) >0 after (2.1). Since 2<a
f
ep≤10, we have ai

ep<10. Consider the
following two cases:

• Suppose ai
ep≤2. Since ai

ef =F , we have

(ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8=0.1(a
f
ep−ai

ep)+(1.8−0.9ai
ep)>0

because after ai
ep≤2 we have

(a
f
ep−ai

ep)>0 and (1.8−0.9ai
ep)>0

After (A.115), si∈SW3
B .

• Suppose 2<ai
ep<10. Since ai

ef =F , we have

(ai
ef −F)+0.1(a

f
ep−ai

ep)=0.1(a
f
ep−ai

ep)>0

because (a
f
ep−ai

ep)>0. Thus, si∈SW3
B after (A.115).
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In summary, we have proved that S
Op1
B ⊆SW3

B .

Secondly, we are going to prove SW3
A ⊆S

Op1
A . Assume si∈SW3

A . Then, we have

either (ai
ep>10), (2<ai

ep≤10 and (ai
ef −F)+0.1(a

f
ep−ai

ep)<0), or (ai
ep≤2 and

(ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8<0).

• Consider the case that ai
ep>10. Assume further ai

ef <F . Immediately after

(2.3), we have si∈S
Op1
A . Then consider the sub-case that ai

ef =F . Since

2<a
f
ep≤10 and ai

ep>10, we have (a
f
ep−ai

ep)<0. After (2.3), si∈S
Op1
A .

• Consider the case that (2<ai
ep≤10 and (ai

ef −F)+0.1(a
f
ep−ai

ep)<0). Assume

further that ai
ef <F . Then, we have si∈S

Op1
A after (2.3). Now consider the

sub-case that ai
ef =F . Then, we have

(ai
ef −F)+0.1(a

f
ep−ai

ep)=0.1(a
f
ep−ai

ep)

Since (ai
ef −F)+0.1(a

f
ep−ai

ep)<0, then (a
f
ep−ai

ep)<0. After (2.3), si∈S
Op1
A .

• Consider the case that (ai
ep≤2 and (ai

ef −F)+(0.1a
f
ep−ai

ep)+1.8<0). Assume

further that ai
ef =F . Then, we have

(ai
ef −F)+(0.1a

f
ep−ai

ep)+1.8=0.1a
f
ep−ai

ep+1.8<0

However, it follows from 2<a
f
ep≤10 and ai

ep≤2 that 0.1a
f
ep−ai

ep+1.8>0,

which is contradictory to 0.1a
f
ep−ai

ep+1.8<0. Therefore, it is impossible to

have ai
ef =F , and all statements in this case have ai

ef <F . Then, we have

si∈S
Op1
A after (2.3).

In summary, we have proved that SW3
A ⊆S

Op1
A .

3. Case 3: Assume a
f
ep>10.

As proved in Appendix A, SW3
B and SW3

A are equal to the sets defined in (A.121)
and (A.123), respectively, as follows.

SW3
B ={si |(ai

ep≤2 and (ai
ef −F)+(0.001a

f
ep−ai

ep)+2.79>0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99>0)

or (ai
ep>10 and (ai

ef −F)+(0.001a
f
ep−0.001ai

ep)>0), 1≤i≤n}
SW3

A ={si |(ai
ep≤2 and (ai

ef −F)+(0.001a
f
ep−ai

ep)+2.79<0)

or (2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99<0)

or (ai
ep>10 and (ai

ef −F)+(0.001a
f
ep−0.001ai

ep)<0), 1≤i≤n}
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Firstly, we will prove S
Op1
B ⊆SW3

B . Assume si∈S
Op1
B . Then, we have ai

ef =F and

(a
f
ep−ai

ep)>0 after (2.1). Since a
f
ep>10, ai

ep can be any value within [0, P ]. Now,
let us consider the following cases:

• Suppose ai
ep≤2. Since ai

ef =F , we have

(ai
ef −F)+(0.001a

f
ep−ai

ep)+2.79=0.001(a
f
ep−ai

ep)+(2.79−0.999ai
ep)>0

because (a
f
ep−ai

ep)>0 and (2.79−0.999ai
ep)>0 after ai

ep≤2. After (A.121),

si∈SW3
B .

• Suppose 2<ai
ep≤10. Since ai

ef =F , we have

(ai
ef −F)+(0.001a

f
ep−0.1ai

ep)+0.99=0.001(a
f
ep−ai

ep)+(0.99−0.099ai
ep)>0

because (a
f
ep−ai

ep)>0 and (0.99−0.099ai
ep)≥0 after 2<ai

ep≤10. After

(A.121), si∈SW3
B .

• Suppose ai
ep>10. Since ai

ef =F , we have

(ai
ef −F)+0.001(a

f
ep−ai

ep)=0.001(a
f
ep−ai

ep)>0

because (a
f
ep−ai

ep)>0. Thus, si∈SW3
B after (A.121).

In summary, we have proved that S
Op1
B ⊆SW3

B .

Secondly, we will prove SW3
A ⊆S

Op1
A . Assume si∈SW3

A . Then we have either
(ai

ep≤2 and

(ai
ef −F)+(0.001a

f
ep−ai

ep)+2.79<0)

or

2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99<0)

or

(ai
ep>10 and (ai

ef −F)+0.001(a
f
ep−ai

ep)<0)

• Consider the case that ai
ep≤2 and (ai

ef −F)+(0.001a
f
ep−ai

ep)+2.79<0.

Assume further ai
ef =F . Then, we have

(ai
ef −F)+(0.001a

f
ep−ai

ep)+2.79 = 0.001a
f
ep−ai

ep+2.79 < 0
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However, it follows from a
f
ep>10 and ai

ep≤2 that 0.001a
f
ep−ai

ep+2.79>0.8,

which is contradictory to 0.001a
f
ep−ai

ep+2.79<0. Therefore, it is impossible

to have ai
ef =F , and all statements in this case have ai

ef <F . Then, we have

si∈S
Op1
A after (2.3).

• Consider the case that (2<ai
ep≤10 and (ai

ef −F)+(0.001a
f
ep−0.1ai

ep)+0.99

<0). Assume further ai
ef =F . Then, we have

(ai
ef −F)+(0.001a

f
ep−0.1ai

ep)+0.99 = 0.001a
f
ep−0.1ai

ep+0.99 < 0

However, it follows from a
f
ep>10 and 2<ai

ep≤10 that

0.001a
f
ep−0.1ai

ep+0.99>0

which is contradictory to

0.001a
f
ep−0.1ai

ep+0.99<0

Therefore, it is impossible to have ai
ef =F , and all statements in this case have

ai
ef <F . Then, we have si∈S

Op1
A after (2.3).

• Consider the case that (ai
ep>10 and (ai

ef −F)+0.001(a
f
ep−ai

ep)<0). Assume

further ai
ef <F . Then, si∈S

Op1
A after (2.3). Now consider the sub-case that

ai
ef =F . Then, we have

(ai
ef −F)+0.001(a

f
ep−ai

ep)=0.001(a
f
ep−ai

ep)

Since (ai
ef −F)+0.001(a

f
ep−ai

ep)<0, then (a
f
ep−ai

ep)<0. Therefore, si∈S
Op1
A

after (2.3).

In summary, we have proved that SW3
A ⊆S

Op1
A .

In conclusion, for any value of a
f
ep, we have S

Op1
B ⊆SW3

B and SW3
A ⊆S

Op1
A . It

follows from Theorem 2.2.2 that Op1 → Wong3. Therefore, ER1 → Wong3, since
Op1 belongs to ER1. ��
Proposition B.8 ER1 → Arithmetic Mean.

Proof In order to prove ER1 → Arithmetic Mean, it is sufficient to prove Op1 →
Arithmetic Mean. As proved in Appendix A, S

Op1
B and S

Op1
A are equal to the sets

defined in (2.1) and (2.3), respectively, and SAM
B and SAM

A are equal to the sets
defined in (A.124) and (A.126), respectively, as follows.
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SAM
B ={si |

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF
>

PF−Fa
f
ep

(F+a
f
ep)(P−a

f
ep)+PF

, 1≤i≤n}

SAM
A ={si |

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF
<

PF−Fa
f
ep

(F+a
f
ep)(P−a

f
ep)+PF

, 1≤i≤n}

If ai
ef =F , we have

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF
− PF−Fa

f
ep

(F+a
f
ep)(P−a

f
ep)+PF

= PF−Fai
ep

(F+ai
ep)(P−ai

ep)+PF
− PF−Fa

f
ep

(F+a
f
ep)(P−a

f
ep)+PF

= F [(P−ai
ep)(P−a

f
ep)+PF ](af

ep−ai
ep)

[(F+ai
ep)(P−ai

ep)+PF ][(F+a
f
ep)(P−a

f
ep)+PF ]

(B.7)

Now, we are going to prove S
Op1
B ⊆SAM

B and SAM
A ⊆S

Op1
A .

Firstly, we will prove S
Op1
B ⊆SAM

B . Assume si∈S
Op1
B . Then, ai

ef =F and

(a
f
ep−ai

ep)>0 after (2.1). It follows from Lemma 2.3.1 that F [(P−ai
ep)(P−a

f
ep)+

PF ]>0, (F+ai
ep)(P−ai

ep)+PF>0, and (F+a
f
ep)(P−a

f
ep)+PF>0; then we have

F [(P−ai
ep)(P−a

f
ep)+PF ](af

ep−ai
ep)

[(F+ai
ep)(P−ai

ep)+PF ][(F+a
f
ep)(P−a

f
ep)+PF ]

>0

because (a
f
ep−ai

ep)>0. From Equation (B.7), we have

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF
>

PF−Fa
f
ep

(F+a
f
ep)(P−a

f
ep)+PF

Therefore, si∈SAM
B after (A.124). Thus, S

Op1
B ⊆SAM

B .

Secondly, we are going to prove SAM
A ⊆S

Op1
A . Suppose si∈SAM

A . Then after
(A.126), we have

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF
<

PF−Fa
f
ep

(F+a
f
ep)(P−a

f
ep)+PF
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• Suppose (ai
ef <F). Immediately after (2.3), si∈S

Op1
A .

• Suppose (ai
ef =F). It follows from

ai
ef P−ai

epF

(ai
ef +ai

ep)(P+F−ai
ef −ai

ep)+PF
<

PF−Fa
f
ep

(F+a
f
ep)(P−a

f
ep)+PF

and Equation (B.7) that

F [(P−ai
ep)(P−a

f
ep)+PF ](af

ep−ai
ep)

[(F+ai
ep)(P−ai

ep)+PF ][(F+a
f
ep)(P−a

f
ep)+PF ]

<0

which implies (a
f
ep−ai

ep)<0 because after Lemma 2.3.1, there are

F [(P−ai
ep)(P−a

f
ep)+PF ]>0

(F+ai
ep)(P−ai

ep)+PF>0

(F+a
f
ep)(P−a

f
ep)+PF>0

Thus, si∈S
Op1
A after (2.3).

In summary, we have proved that SAM
A ⊆S

Op1
A .

In conclusion, we have S
Op1
B ⊆SAM

B and SAM
A ⊆S

Op1
A . Immediately after Theo-

rem 2.2.2, Op1 → Arithmetic Mean. Since Op1 belongs to ER1, we have ER1 →
Arithmetic Mean. ��
Proposition B.9 ER1 → Cohen.

Proof In order to prove ER1 → Cohen, it is sufficient to prove Op1 → Cohen.
As proved in Appendix A, S

Op1
B and S

Op1
A are equal to the sets defined in (2.1)

and (2.3), respectively, and SC
B and SC

A are equal to the sets defined in (A.127) and
(A.129), respectively, as follows.

SC
B ={si |

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)
>

PF−Fa
f
ep

P (F+a
f
ep)+F(P−a

f
ep)

, 1≤i≤n}

SC
A={si |

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)
<

PF−Fa
f
ep

P (F+a
f
ep)+F(P−a

f
ep)

, 1≤i≤n}
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If ai
ef =F , we have

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)
− PF−Fa

f
ep

P (F+a
f
ep)+F(P−a

f
ep)

= PF−Fai
ep

P (F+ai
ep)+F(P−ai

ep)
− PF−Fa

f
ep

P (F+a
f
ep)+F(P−a

f
ep)

= F(PF+P 2)(a
f
ep−ai

ep)

[P(F+ai
ep)+F(P−ai

ep)][P(F+a
f
ep)+F(P−a

f
ep)]

(B.8)

Now, we are going to prove S
Op1
B ⊆SC

B and SC
A⊆S

Op1
A .

Firstly, we will prove S
Op1
B ⊆SC

B . Assume si∈S
Op1
B . Then, ai

ef =F and

(a
f
ep−ai

ep)>0 after (2.1). It follows from Lemma 2.3.1 that F(PF+P 2)>0,

P(F+ai
ep)+F(P−ai

ep)>0, and P(F+a
f
ep)+F(P−a

f
ep)>0; then because

(a
f
ep−ai

ep)>0, we have

F(PF+P 2)(a
f
ep−ai

ep)

[P(F+ai
ep)+F(P−ai

ep)][P(F+a
f
ep)+F(P−a

f
ep)]

>0

From Equation (B.8), we have

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)
>

PF−Fa
f
ep

P (F+a
f
ep)+F(P−a

f
ep)

Therefore, si∈SC
B after (A.127). Thus, S

Op1
B ⊆SC

B .

Secondly, we are going to prove SC
A⊆S

Op1
A . Suppose si∈SC

A . Then we have
ai
ef P−ai

epF

P (ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)
<

PF−Fa
f
ep

P (F+a
f
ep)+F(P−a

f
ep)

after (A.129).

• Suppose (ai
ef <F). Immediately after (2.3), si∈S

Op1
A .

• Suppose (ai
ef =F). It follows from Equation (B.8) and

ai
ef P−ai

epF

P(ai
ef +ai

ep)+F(P+F−ai
ef −ai

ep)
<

PF−Fa
f
ep

P (F+a
f
ep)+F(P−a

f
ep)

that

F(PF+P 2)(a
f
ep−ai

ep)

[P(F+ai
ep)+F(P−ai

ep)][P(F+a
f
ep)+F(P−a

f
ep)]

<0
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which implies (a
f
ep−ai

ep)<0 because F(PF+P 2)>0, P(F+ai
ep)+F(P−ai

ep)>0,

and P(F+a
f
ep)+F(P−a

f
ep)>0 after Lemma 2.3.1. Thus, si∈S

Op1
A after (2.3).

In summary, we have proved that SC
A⊆S

Op1
A .

In conclusion, we have S
Op1
B ⊆SC

B and SC
A⊆S

Op1
A . Immediately after Theo-

rem 2.2.2, Op1 → Cohen. Since Op1 belongs to ER1, we have ER1 → Cohen. ��
Proposition B.10 ER1 → Fleiss.

Proof In order to prove ER1 → Fleiss, it is sufficient to prove Op1 → Fleiss. As
proved in Appendix A, SOp1

B and S
Op1
A are equal to the sets defined in (2.1) and (2.3),

respectively, and SF
B and SF

A are equal to the sets defined in (A.130) and (A.132),
respectively, as follows.

SF
B ={si |−F 2+4ai

ef P+2Fai
ef −2Fai

ep−(ai
ep+ai

ef )2

>4PF−4Fa
f
ep−(a

f
ep)2, 1≤i≤n}

SF
A ={si |−F 2+4ai

ef P+2Fai
ef −2Fai

ep−(ai
ep+ai

ef )2

<4PF−4Fa
f
ep−(a

f
ep)2, 1≤i≤n}

If ai
ef =F , we have

[−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2]−[4PF−4Fa

f
ep−(a

f
ep)2]

=[4PF−4Fai
ep−(ai

ep)2]−[4PF−4Fa
f
ep−(a

f
ep)2]

=(4F+a
f
ep+ai

ep)(a
f
ep−ai

ep) (B.9)

Now, we are going to prove S
Op1
B ⊆SF

B and SF
A ⊆S

Op1
A .

Firstly, we will prove S
Op1
B ⊆SF

B . Assume si∈S
Op1
B . Then, ai

ef =F and

(a
f
ep−ai

ep)>0 after (2.1). It follows from Lemma 2.3.1 that 4F+a
f
ep+ai

ep>0;
then we have

(4F+a
f
ep+ai

ep)(a
f
ep−ai

ep)>0

because (a
f
ep−ai

ep)>0. From Equation (B.9), we have

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2>4PF−4Fa

f
ep−(a

f
ep)2

Therefore, si∈SF
B after (A.130). Thus, S

Op1
B ⊆SF

B .



172 B Theoretical Comparison Among All Formulas

Secondly, we are going to prove SF
A⊆S

Op1
A . Suppose si∈SF

A . Then after (A.132)
we have

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2<4PF−4Fa

f
ep−(a

f
ep)2

• Suppose (ai
ef <F). Immediately after (2.3), si∈S

Op1
A .

• Suppose (ai
ef =F). It follows from Equation (B.9) and

−F 2+4ai
ef P+2Fai

ef −2Fai
ep−(ai

ep+ai
ef )2<4PF−4Fa

f
ep−(a

f
ep)2

that

(4F+a
f
ep+ai

ep)(a
f
ep−ai

ep)<0

which implies (a
f
ep−ai

ep)<0 after Lemma 2.3.1. Thus, si∈S
Op1
A after (2.3).

In summary, we have proved that SF
A⊆S

Op1
A .

In conclusion, we have S
Op1
B ⊆SF

B and SF
A⊆S

Op1
A . Immediately after Theo-

rem 2.2.2, Op1 → Fleiss. Since Op1 belongs to ER1, we have ER1 → Fleiss. ��
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